JP2022026969A - Water treatment system and water treatment method - Google Patents

Water treatment system and water treatment method Download PDF

Info

Publication number
JP2022026969A
JP2022026969A JP2020130697A JP2020130697A JP2022026969A JP 2022026969 A JP2022026969 A JP 2022026969A JP 2020130697 A JP2020130697 A JP 2020130697A JP 2020130697 A JP2020130697 A JP 2020130697A JP 2022026969 A JP2022026969 A JP 2022026969A
Authority
JP
Japan
Prior art keywords
injection rate
activated carbon
raw water
odorous substance
powdered activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020130697A
Other languages
Japanese (ja)
Inventor
法光 阿部
Norimitsu Abe
徳介 早見
Tokusuke Hayami
卓 毛受
Taku Menju
雄 横山
Takeshi Yokoyama
道昭 金谷
Michiaki Kanaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020130697A priority Critical patent/JP2022026969A/en
Publication of JP2022026969A publication Critical patent/JP2022026969A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

To provide a water treatment system and a water treatment method capable of optimizing the injection rate of powdered activated carbon.MEANS FOR SOLVING THE PROBLEM: A water treatment system is equipped with a first coagulant injection rate calculation unit and an activated carbon injection rate calculation unit. The first flocculant injection rate calculation unit calculates, based on the quality of the raw water, the first flocculant injection rate, which is the injection rate of flocculant required for flocculation and sedimentation of suspended matter in the raw water. The activated carbon injection rate calculation unit calculates the first powdered activated carbon injection rate, which is the injection rate of powdered activated carbon required to remove odorous substances from raw water, based on: the concentration of odorous substances contained in raw water; at least one of UV absorbance, fluorescence intensity and soluble organic carbon concentration of raw water; and the first flocculant injection rate.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、被処理水に粉末活性炭と凝集剤とを注入し、被処理水中の臭気物質や溶解性有機物および濁質を除去する水処理システムおよび水処理方法に関する。 An embodiment of the present invention relates to a water treatment system and a water treatment method for injecting powdered activated carbon and a flocculant into water to be treated to remove odorous substances, soluble organic substances and turbid substances in the water to be treated.

一般に、河川や湖沼、貯水池等から取水した被処理水(以下、「原水」とも称する)には、臭気物質やフミン等の溶解性の天然有機物(以下、「溶解性有機物」とも称する)や、微粒子等の濁質が含まれている。 Generally, the treated water (hereinafter, also referred to as "raw water") taken from rivers, lakes, marshes, reservoirs, etc. includes soluble natural organic substances such as odorous substances and fumin (hereinafter, also referred to as "soluble organic substances"). It contains turbid substances such as fine particles.

一方、浄水場では、鉄、マンガン等の金属類の除去や消毒処理を目的として、次亜塩素酸ナトリウム等の薬品剤が注入されるが、溶解性有機物を含む原水の場合、溶解性有機物と薬品剤が化学反応してトリハロメタン類やハロ酢酸類(以下、「消毒副生成物」とも称する)を生成する。これら消毒副生成物は発癌性物質であるため、生成を抑制する必要がある。 On the other hand, in water purification plants, chemical agents such as sodium hypochlorite are injected for the purpose of removing and disinfecting metals such as iron and manganese, but in the case of raw water containing soluble organic substances, it is regarded as soluble organic substances. Chemicals chemically react to produce trihalomethanes and haloacetic acids (hereinafter also referred to as "disinfection by-products"). Since these disinfection by-products are carcinogens, their production needs to be suppressed.

多くの浄水場では、原水中の臭気物質や溶解性有機物を除去するために粉末活性炭を、濁質を除去するために凝集剤を注入している。この種の水処理システムでは、原水の水質に応じて粉末活性炭の注入率を決定する必要がある。 Many waterworks inject powdered activated carbon to remove odorous substances and soluble organic matter in raw water, and inject a flocculant to remove turbidity. In this type of water treatment system, it is necessary to determine the injection rate of powdered activated carbon according to the quality of the raw water.

粉末活性炭の注入率を決定する方法としては、ジャーテスト(以下、「ビーカーテスト」とも称する)が用いられることが多い。ジャーテストとは、原水を複数のビーカーに採水し、採水した複数の原水にそれぞれ異なる量の粉末活性炭を注入して、臭気物質や溶解性有機物の除去率を評価し、処理後の臭気濃度および溶解性有機物質が目標濃度以下まで低減するために必要な最低限の粉末活性炭注入率を求める方法である。 As a method for determining the injection rate of powdered activated carbon, a jar test (hereinafter, also referred to as "beaker test") is often used. The jar test is to collect raw water into multiple beakers, inject different amounts of powdered activated charcoal into each of the collected raw water, evaluate the removal rate of odorous substances and soluble organic substances, and evaluate the odor after treatment. This is a method for obtaining the minimum powdered activated carbon injection rate required to reduce the concentration and soluble organic substance below the target concentration.

しかしながら、ジャーテストによって粉末活性炭の注入率を決定する上記方法は、原水の水質の変化に追随した粉末活性炭の注入が非常に難しく、注入率の過不足が生じる恐れがある。また、ジャーテストは、粉末活性炭の最適な注入率を求めるのに時間を要するため、粉末活性炭の最適な注入率が得られたときには既に、原水の水質が変化している可能性もある。 However, in the above method of determining the injection rate of the powdered activated carbon by the jar test, it is very difficult to inject the powdered activated carbon in accordance with the change in the water quality of the raw water, and there is a possibility that the injection rate may be excessive or insufficient. In addition, since it takes time to obtain the optimum injection rate of the powdered activated carbon in the jar test, it is possible that the water quality of the raw water has already changed when the optimum injection rate of the powdered activated carbon is obtained.

特に、臭気物質の粉末活性炭による吸着特性に対しては、共存する溶解性有機物質の濃度や分子構造等により影響を受け、臭気物質の吸着が阻害されることが知られている。 In particular, it is known that the adsorption characteristics of odorous substances by powdered activated carbon are affected by the concentration and molecular structure of coexisting soluble organic substances, and the adsorption of odorous substances is inhibited.

また、実際に投入する粉末活性炭の注入率を決定する際は、ジャーテストによって得られた注入率よりも安全側で注入率を決定するため過剰注入となってしまう。 Further, when determining the injection rate of the powdered activated carbon to be actually charged, the injection rate is determined on the safer side than the injection rate obtained by the jar test, resulting in excessive injection.

粉末活性炭は、凝集剤、硫酸、次亜塩素酸ナトリウム等の他の薬品に比べ単価が非常に高い。そのため、粉末活性炭の過剰注入は、薬品コストの急騰を招くおそれがあり、経済的な観点からも、粉末活性炭の過剰注入を抑制し、原水の水質の変化に応じた粉末活性炭の最適な注入率を制御する方法が望まれている。 The unit price of powdered activated carbon is much higher than that of other chemicals such as flocculants, sulfuric acid, and sodium hypochlorite. Therefore, excessive injection of powdered activated carbon may lead to a sharp rise in chemical costs, and from an economic point of view, excessive injection of powdered activated carbon is suppressed, and the optimum injection rate of powdered activated carbon according to changes in the quality of raw water. A method of controlling the above is desired.

粉末活性炭注入率を制御する方法として、例えば、粉末活性炭処理槽内の原水について、臭気センサにより水面近傍の大気中の臭気物質を検出し、これより得られた臭気強度指示値に基づいて、原水の流量に対する粉末活性炭注入率を算出し、この粉末活性炭注入率に基づいて、粉末活性炭を制御する方法がある(例えば、特許文献1参照)。 As a method of controlling the powdered activated carbon injection rate, for example, in the raw water in the powdered activated carbon treatment tank, the odorous substance in the atmosphere near the water surface is detected by the odor sensor, and the raw water is based on the odor intensity indicated value obtained from the odor substance. There is a method of calculating the powdered activated carbon injection rate with respect to the flow rate of the above and controlling the powdered activated carbon based on the powdered activated carbon injection rate (see, for example, Patent Document 1).

また、他の方法としては、粉末活性炭注入後の原水における微粉炭の状態を観察し、その観察結果をフィードバック信号として、前段にある活性炭の注入率を算出部に送ることで、目標とする設定流出濁度となるように、粉末活性炭の注入率を制御する制御方法がある(例えば、特許文献2参照)。 As another method, the state of the pulverized coal in the raw water after the injection of the activated carbon powder is observed, and the observation result is used as a feedback signal to send the injection rate of the activated carbon in the previous stage to the calculation unit to set the target. There is a control method for controlling the injection rate of the powdered activated carbon so that the runoff turbidity is obtained (see, for example, Patent Document 2).

しかしながら、このような従来の方法は、原水の水質については考慮されておらず、粉末活性炭の注入率の最適化を図る上で精度が不十分であった。また、特に、臭気物質の吸着特性に対しては共存する溶解性有機物質の影響が考慮されていない。 However, such a conventional method does not consider the water quality of raw water, and its accuracy is insufficient in optimizing the injection rate of powdered activated carbon. In particular, the influence of coexisting soluble organic substances on the adsorption characteristics of odorous substances is not taken into consideration.

これに対しては、臭気物質および有機物質の、粉末活性炭注入時の残存率に影響を与える係数をそれぞれ求め、必要な粉末活性炭注入率を求める方法がある(例えば、特許文献3参照)。 To this end, there is a method of obtaining the coefficients that affect the residual rate of the odorous substance and the organic substance at the time of injecting the powdered activated carbon, and obtaining the required powdered activated carbon injection rate (see, for example, Patent Document 3).

しかしながら、粉末活性炭の注入は、必ずその後段で凝集沈澱、ろ過工程による除濁操作で対象物質を吸着した粉末活性炭を除去する必要がある。 However, when injecting powdered activated carbon, it is necessary to remove the powdered activated carbon that has adsorbed the target substance by coagulation sedimentation and turbidity operation by the filtration step in the subsequent stage.

この場合、凝集処理工程においても、粉末活性炭の吸着対象である臭気物質や溶解性有機物質が除去されるが、従来の粉末活性炭注入制御では考慮されていないため、殆どの場合、粉末活性炭が過剰に注入される結果となっている。これにより、薬品費が過剰になるばかりか、粉末活性炭の過剰注入により、その除去に必要な凝集剤注入率の増加による費用増および、排泥量の増加に伴う処理コストの増大をもたらしている。 In this case, the odorous substance and the soluble organic substance which are the adsorption targets of the powdered activated carbon are also removed in the coagulation treatment step, but since they are not considered in the conventional powdered activated carbon injection control, the powdered activated carbon is excessive in most cases. The result is that it is injected into. As a result, not only the chemical cost becomes excessive, but also the excessive injection of powdered activated carbon causes an increase in cost due to an increase in the coagulant injection rate required for its removal, and an increase in processing cost due to an increase in the amount of mud discharged. ..

特開平2-284687号公報Japanese Unexamined Patent Publication No. 2-284678 特許第2969927号公報Japanese Patent No. 2969927 特許第4153893号公報Japanese Patent No. 4153893

本発明が解決しようとする課題は、粉末活性炭の注入率の最適化を図ることができる水処理システムおよび水処理方法を提供することである。 An object to be solved by the present invention is to provide a water treatment system and a water treatment method capable of optimizing the injection rate of powdered activated carbon.

実施形態の水処理システムは、第1の凝集剤注入率算出部と、活性炭注入率算出部とを備えている。第1の凝集剤注入率算出部は、原水の水質に基づき、原水の濁質の凝集沈澱に必要な凝集剤の注入率である第1の凝集剤注入率を算出する。活性炭注入率算出部は、原水中の臭気物質濃度と、原水の紫外線吸光度、蛍光強度、および溶解性有機体炭素濃度のうちの少なくとも何れかならびに、第1の凝集剤注入率とに基づき、原水中の臭気物質の除去に必要な粉末活性炭の注入率である第1の粉末活性炭注入率を算出する。 The water treatment system of the embodiment includes a first coagulant injection rate calculation unit and an activated carbon injection rate calculation unit. The first coagulant injection rate calculation unit calculates the first coagulant injection rate, which is the injection rate of the coagulant required for coagulation and precipitation of the turbidity of the raw water, based on the water quality of the raw water. The activated carbon injection rate calculation unit is based on the concentration of the odorous substance in the raw water, at least one of the ultraviolet absorbance, the fluorescence intensity, and the soluble organic carbon concentration of the raw water, and the injection rate of the first flocculant. The first powdered activated carbon injection rate, which is the injection rate of powdered activated carbon required for removing odorous substances in water, is calculated.

本発明の各実施形態に共通する、水処理方法が適用された水処理システムを、急速ろ過方式の水処理施設に適用した例を示す概念図である。It is a conceptual diagram which shows the example which applied the water treatment system to which the water treatment method common to each embodiment of this invention is applied to the water treatment facility of the rapid filtration system. 第1の実施形態の水処理システムにおける活性炭注入率算出部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the activated carbon injection rate calculation part in the water treatment system of 1st Embodiment. 第1の実施形態の水処理方法が適用された水処理システムによる処理の流れを示す図である。It is a figure which shows the flow of the treatment by the water treatment system to which the water treatment method of 1st Embodiment is applied. 凝集処理による凝集剤注入率Ipaclと紫外線吸光度残存率RUVpaclとの関係の一例を示す図である。It is a figure which shows an example of the relationship between the coagulant injection rate I pall by the coagulation treatment, and the ultraviolet absorbance residual rate RUV pall . 凝集剤注入率Ipaclと併用処理係数FDOMとの関係を示す図である。It is a figure which shows the relationship between the aggregating agent injection rate I pack , and the combined treatment coefficient F DOM . 原水中の比吸光度SUVAと係数fとの関係を示す図である。It is a figure which shows the relationship between the specific absorbance SUVA of raw water, and a coefficient f. 粉末活性炭注入率Icarと粉末活性炭処理後臭気物質濃度残存率RCcarとの関係を示す図である。It is a figure which shows the relationship between the powdered activated carbon injection rate I car and the odor substance concentration residual rate RC car after powdered activated carbon treatment. 粉末活性炭と凝集剤の併用処理における凝集剤注入率Ipaclと臭気物質濃度残存率RCcar/paclとの関係を示す図である。It is a figure which shows the relationship between the flocculant injection rate I pack and the odor substance concentration residual rate RC car / packl in the combined treatment of powdered activated carbon and a flocculant. 第2の実施形態の水処理システムにおける凝集剤注入率算出部の構成例を示すブロック図である。It is a block diagram which shows the structural example of the coagulant injection rate calculation part in the water treatment system of 2nd Embodiment. 第2の実施形態の水処理方法が適用された水処理システムによる処理の流れを示す図である。It is a figure which shows the flow of the treatment by the water treatment system to which the water treatment method of 2nd Embodiment is applied.

以下、本発明の各実施形態の水処理システムおよび水処理方法を、図面を参照して説明する。 Hereinafter, the water treatment system and the water treatment method according to each embodiment of the present invention will be described with reference to the drawings.

(構成)
先ず、本発明の各実施形態に共通する、水処理方法が適用された水処理システムの構成について説明する。
(Constitution)
First, a configuration of a water treatment system to which a water treatment method is applied, which is common to each embodiment of the present invention, will be described.

図1は、本発明の各実施形態に共通する、水処理方法が適用された水処理システムを、急速ろ過方式の水処理施設に適用した例を示す概念図である。 FIG. 1 is a conceptual diagram showing an example in which a water treatment system to which a water treatment method is applied, which is common to each embodiment of the present invention, is applied to a water treatment facility of a rapid filtration method.

なお本発明の各実施形態の水処理システムは、急速ろ過方式の水処理施設に限らず、例えば、膜ろ過方式や砂ろ過方式の水処理設備のように、他の方式の水処理施設にも適用可能である。 The water treatment system of each embodiment of the present invention is not limited to the water treatment facility of the rapid filtration method, but also to the water treatment facilities of other methods such as the water treatment facility of the membrane filtration method and the sand filtration method. Applicable.

図1に示すように、水処理システム1は、水処理装置2とともに水処理施設3に組み込まれている。 As shown in FIG. 1, the water treatment system 1 is incorporated in the water treatment facility 3 together with the water treatment device 2.

水処理装置2は、原水Aに対して吸着処理および凝集沈澱を行う。吸着処理は、原水A中の臭気物質および溶解性有機物を粉末活性炭により吸着除去する処理である。凝集沈澱は、原水A中の濁質を凝集剤により凝集沈降させる処理である。 The water treatment device 2 performs an adsorption treatment and a coagulation sedimentation on the raw water A. The adsorption treatment is a treatment for adsorbing and removing odorous substances and soluble organic substances in the raw water A with powdered activated carbon. The coagulation sedimentation is a treatment for coagulating and sedimenting the turbidity in the raw water A with a coagulant.

水処理装置2は、着水井20、粉末活性炭注入装置21、凝集剤混和池30、凝集剤注入装置31、フロック形成池40、沈澱池50、ろ過池60、および浄水池70を備えている。 The water treatment device 2 includes a landing well 20, a powdered activated carbon injection device 21, a coagulant mixing pond 30, a coagulant injection device 31, a floc forming pond 40, a settling pond 50, a filtration pond 60, and a water purification pond 70.

着水井20は、水処理施設3によって処理される被処理水である原水Aを貯留する。着水井20は、配管91によって凝集剤混和池30に接続されており、原水Aは、着水井20から配管91を介して凝集剤混和池30に導かれる。着水井20前の配管91には、原水Aの水質を測定する水質計器セット10、原水A中の臭気物質濃度を測定する臭気センサ11、原水A中の有機物質濃度指標を測定する溶解性有機物質指標計器セット12、および原水Aの流量を測定する流量計13が備えられている。 The landing well 20 stores raw water A, which is the water to be treated by the water treatment facility 3. The landing well 20 is connected to the coagulant mixing pond 30 by a pipe 91, and the raw water A is guided from the landing well 20 to the coagulant mixing pond 30 via the pipe 91. In the pipe 91 in front of the landing well 20, a water quality instrument set 10 for measuring the water quality of the raw water A, an odor sensor 11 for measuring the odorous substance concentration in the raw water A, and a soluble organic for measuring the organic substance concentration index in the raw water A A material index meter set 12 and a flow meter 13 for measuring the flow rate of raw water A are provided.

水質計器セット10は、限定されないが、濁度計10a、アルカリ度計10b、水温計10c、およびpH計10dを含んでおり、これらセンサは、各種水質を測定した後に、測定データを、水処理システム1に送信する。 The water quality meter set 10 includes, but is not limited to, a turbidity meter 10a, an alkalinity meter 10b, a water temperature meter 10c, and a pH meter 10d, and these sensors measure various water qualities and then treat the measurement data with water. Send to system 1.

溶解性有機物指標計器セット12は、限定されないが、紫外線吸光度計12a、蛍光強度計12b、および溶解性有機体炭素濃度(DOC)計12cを含んでおり、これらセンサは、測定データを、水処理システム1に送信する。 The Soluble Organic Index Meter Set 12 includes, but is not limited to, an ultraviolet absorbance meter 12a, a fluorescence intensity meter 12b, and a soluble organic carbon concentration (DOC) meter 12c, which sensors water-treat the measurement data. Send to system 1.

着水井20には、原水A中の臭気物質と溶解性有機物との吸着処理のために、粉末活性炭注入装置21から粉末活性炭Cが注入される。 The powdered activated carbon C is injected into the water landing well 20 from the powdered activated carbon injection device 21 for the adsorption treatment of the odorous substance and the soluble organic substance in the raw water A.

粉末活性炭注入装置21には、粉末活性炭Cが貯留されている。粉末活性炭注入装置21は、水処理システム1からの制御に基づき、粉末活性炭Cを着水井20に着水している原水Aに対して注入する。 The powdered activated carbon C is stored in the powdered activated carbon injection device 21. The powdered activated carbon injection device 21 injects the powdered activated carbon C into the raw water A landing on the water landing well 20 based on the control from the water treatment system 1.

凝集剤混和池30では、原水Aに含まれる粘土質、細菌、藻類等の懸濁物質(濁質)および着水井20で注入された粉末活性炭Cが、凝集剤注入装置31から注入される凝集剤Pによって凝集され、微細なフロックが生成される。凝集剤混和池30は、例えばフラッシュミキサのような撹拌機32を備えている。 In the coagulant mixing pond 30, suspended solids (turbidity) such as clay, bacteria, and algae contained in the raw water A and powdered activated carbon C injected in the landing well 20 are coagulated from the coagulant injection device 31. It is aggregated by the agent P to produce fine flocs. The flocculant mixing pond 30 is equipped with a stirrer 32 such as a flash mixer.

凝集剤混和池30には、pH測定器14が設けられている。pH測定器14は、原水Aに凝集剤Pが注入された混和水BのpHを測定し、測定データを、水処理システム1に送信する。 The pH measuring device 14 is provided in the coagulant mixing pond 30. The pH measuring device 14 measures the pH of the mixed water B in which the flocculant P is injected into the raw water A, and transmits the measured data to the water treatment system 1.

凝集剤注入装置31には、凝集剤Pが貯留されている。また、凝集剤注入装置31は、水処理システム1に接続されており、水処理システム1による制御に基づき、凝集剤Pを凝集剤混和池30の混和水Bに対して注入する。 The flocculant P is stored in the flocculant injection device 31. Further, the coagulant injection device 31 is connected to the water treatment system 1 and injects the coagulant P into the coagulant water B of the coagulant admixture pond 30 based on the control by the water treatment system 1.

凝集剤Pとしては、アルミニウム系凝集剤および鉄系凝集剤を用いることが好ましい。アルミニウム系凝集剤の例としては、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PACl)などが挙げられる。また、鉄系凝集剤の例としては、塩化鉄、硫酸鉄、およびポリシリカ鉄などが挙げられる。 As the coagulant P, it is preferable to use an aluminum-based coagulant and an iron-based coagulant. Examples of the aluminum-based flocculant include aluminum sulfate (aluminum sulfate band) and polyaluminum chloride (PACl). Examples of iron-based flocculants include iron chloride, iron sulfate, and polysilica iron.

フロック形成池40では、凝集剤混和池30から供給された混和水Bに含まれる微細なフロックのサイズが成長する。図1に示す例では、フロック形成池40は、例えば2つの撹拌池40a、40bを有しているが、撹拌池の数は2つに限定されない。 In the floc forming pond 40, the size of fine flocs contained in the admixture water B supplied from the coagulant admixture pond 30 grows. In the example shown in FIG. 1, the floc forming pond 40 has, for example, two stirring ponds 40a and 40b, but the number of stirring ponds is not limited to two.

沈澱池50は、フロック形成池40の下流に設けられ、沈澱池50では、フロック形成池40で成長したフロックの沈澱分離が行われる。沈澱池50内では所定時間以上フロック混和水が滞留される。これによってフロック混和水中のフロックが沈降し、沈澱池50の下部に沈澱する。沈澱池50で沈澱したフロックは、汚泥として沈澱池50の底部から排出されて処理される。 The settling pond 50 is provided downstream of the floc forming pond 40, and in the settling pond 50, the settling separation of the flocs grown in the floc forming pond 40 is performed. Flock-mixed water stays in the settling pond 50 for a predetermined time or longer. As a result, the flocs in the floc-mixed water settle and settle in the lower part of the settling pond 50. The flocs settled in the settling pond 50 are discharged as sludge from the bottom of the settling pond 50 and treated.

ろ過池60は、沈澱池50の下流に設けられている。ろ過池60には、沈澱池50において所定時間以上滞留させて得られた上澄み水Zが供給される。ろ過池60に供給された上澄み水Zは、ろ過池60に形成されたろ過層60aを通過することにより、沈澱池50で沈澱除去されなかった微小なフロックが除去される。このように微小なフロックが除去されたろ過処理水Wが、清浄水として浄水池70へ送られる。 The filtration pond 60 is provided downstream of the settling pond 50. The supernatant water Z obtained by staying in the settling pond 50 for a predetermined time or longer is supplied to the filtration pond 60. The supernatant water Z supplied to the filter pond 60 passes through the filter layer 60a formed in the filter pond 60, so that minute flocs that have not been settled and removed in the settling pond 50 are removed. The filtered water W from which the minute flocs have been removed is sent to the water purification pond 70 as clean water.

着水井20および凝集剤混和池30には、原水Aおよび混和水BのpHを調整するための薬剤として使用される硫酸等の注入のための酸化剤注入装置23や、藻類、細菌の消毒のための次亜塩素酸ナトリウム等の注入のための注入装置22が接続されている。 The landing well 20 and the coagulant mixing pond 30 are provided with an oxidizing agent injection device 23 for injecting sulfuric acid or the like used as a chemical for adjusting the pH of the raw water A and the mixing water B, and disinfection of algae and bacteria. An injection device 22 for injecting sodium hypochlorite or the like is connected.

ろ過池60にも同様に、上澄み液ZのpHを調整するための薬剤として使用される苛性ソーダ72等の注入のためのアルカリ剤注入装置61が接続されている。 Similarly, the filter pond 60 is also connected to an alkaline agent injection device 61 for injecting caustic soda 72 or the like used as an agent for adjusting the pH of the supernatant liquid Z.

浄水池70にもまた、清浄水WのpHを調整するための薬剤として使用される苛性ソーダ等の注入のためのアルカリ剤注入装置72、藻類、細菌の消毒のための次亜塩素酸ナトリウム等の注入のための注入装置71が接続されている。 The water purification pond 70 also has an alkaline agent injection device 72 for injecting caustic soda used as a chemical for adjusting the pH of clean water W, algae, sodium hypochlorite for disinfecting bacteria, and the like. An injection device 71 for injection is connected.

ろ過池60からろ過処理水を排出する配管92には、ろ過処理水Wの紫外線吸光度を測定するろ過水紫外線透過率計15が備えられている。 The pipe 92 for discharging the filtered water from the filter pond 60 is provided with a filtered water ultraviolet transmittance meter 15 for measuring the ultraviolet absorbance of the filtered water W.

浄水池70には、水道水質計器セット80が備えられており、水道水質計器セット80は、水道水として放流されるろ過処理水Wの水質として、濁・色度、残塩濃度、pH、水温等を測定するための濁・色度センサ80a、残塩濃度センサ80b、pHセンサ80c、および水温センサ80d等を含んでいる。 The water purification pond 70 is provided with a tap water quality meter set 80, and the tap water quality meter set 80 has turbidity / color, residual salt concentration, pH, and water temperature as the water quality of the filtered water W discharged as tap water. It includes a turbidity / chromaticity sensor 80a, a residual salt concentration sensor 80b, a pH sensor 80c, a water temperature sensor 80d, and the like for measuring and the like.

(第1の実施形態)
次に、本発明の第1の実施形態の水処理方法が適用された水処理システムについて説明する。
(First Embodiment)
Next, a water treatment system to which the water treatment method of the first embodiment of the present invention is applied will be described.

図1に示すように、水処理システム1は、原水A中の臭気物質および溶解性有機物を粉末活性炭により除去する吸着処理と、原水A中の濁質を凝集剤により凝集沈澱させる凝集沈澱処理とを順次行う水処理装置2を含む水処理施設3に適用され、構成要素として、処理水質目標設定部100、活性炭注入率算出部200、および凝集剤注入率算出部300を備えている。 As shown in FIG. 1, the water treatment system 1 includes an adsorption treatment for removing odorous substances and soluble organic substances in raw water A with powdered activated carbon, and a coagulation sedimentation treatment for coagulating and precipitating turbid substances in raw water A with a coagulant. It is applied to the water treatment facility 3 including the water treatment apparatus 2 which sequentially performs the above, and has a treated water quality target setting unit 100, an activated carbon injection rate calculation unit 200, and a coagulant injection rate calculation unit 300 as components.

活性炭注入率算出部200、および凝集剤注入率算出部300は、これら機能を実現するプログラムを、コンピュータ読取可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませることによって実現する。 The activated carbon injection rate calculation unit 200 and the flocculant injection rate calculation unit 300 record a program that realizes these functions on a computer-readable recording medium, and cause the computer system to read the program recorded on the recording medium. It will be realized by that.

なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読取可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読取可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するものや、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持するものを含むことができる。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組合せで実現できるものであってもよい。 The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It can include things and things that hold programs for a certain period of time, such as volatile memory inside a computer system that is a server or client in that case. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be further realized by combining the above-mentioned functions with a program already recorded in the computer system.

このような凝集剤注入率算出部300は、水質計器セット10およびpH測定器14からの測定データを受信し、受信した測定データを使って、吸着処理前の原水Aの水質に基づき、凝集沈澱処理において原水Aに注入する凝集剤Pの注入率である凝集剤注入率Ipaclを算出する。そして、算出結果である凝集剤注入率Ipaclを、活性炭注入率算出部200および凝集剤注入装置31へ出力する。 Such a coagulant injection rate calculation unit 300 receives measurement data from the water quality meter set 10 and the pH measuring device 14, and uses the received measurement data to coagulate and precipitate based on the water quality of the raw water A before the adsorption treatment. The flocculant injection rate I pacl , which is the injection rate of the flocculant P to be injected into the raw water A in the treatment, is calculated. Then, the calculated result of the coagulant injection rate I pack is output to the activated carbon injection rate calculation unit 200 and the coagulant injection device 31.

一方、活性炭注入率算出部200は、処理水質目標設定部100からの設定データ、臭気センサ11、溶解性有機物指標計器セット12からの測定データ、および凝集剤注入率算出部300からの算出結果を受信し、受信したこれらデータを使って、吸着処理前の原水A中の臭気物質濃度Cと、吸着処理前の原水Aの紫外線吸光度UV、蛍光強度FL、および溶解性有機体炭素濃度DOCのうちの少なくとも何れかと、凝集剤注入率Ipaclとに基づき、吸着処理のために原水Aに注入する粉末活性炭Cの注入率である粉末活性炭注入率Icarを算出し、粉末活性炭注入装置21に出力する。 On the other hand, the activated carbon injection rate calculation unit 200 obtains the setting data from the treated water quality target setting unit 100, the measurement data from the odor sensor 11, the soluble organic matter index meter set 12, and the calculation result from the coagulant injection rate calculation unit 300. Using these received and received data, the odorous substance concentration CR in the raw water A before the adsorption treatment, the ultraviolet absorbance UV R, the fluorescence intensity FL R , and the soluble organic carbon concentration of the raw water A before the adsorption treatment. Based on at least one of the DOC R and the coagulant injection rate I pack , the powdered activated carbon injection rate I car , which is the injection rate of the powdered activated carbon C to be injected into the raw water A for the adsorption treatment, is calculated, and the powdered activated carbon is injected. Output to device 21.

このために、活性炭注入率算出部200は、図2に例示するような構成を有する。 For this purpose, the activated carbon injection rate calculation unit 200 has a configuration as illustrated in FIG.

図2は、第1の実施形態の水処理システムにおける活性炭注入率算出部の構成例を示すブロック図である。 FIG. 2 is a block diagram showing a configuration example of an activated carbon injection rate calculation unit in the water treatment system of the first embodiment.

活性炭注入率算出部200は、データ受信部200a、データ処理部200b、有機物対応活性炭注入率算出部203、併用処理後臭気物質濃度残存率推定部204、臭気対応活性炭注入率算出部207、および活性炭注入率決定部209を有する。 The activated carbon injection rate calculation unit 200 includes a data reception unit 200a, a data processing unit 200b, an organic substance-compatible activated carbon injection rate calculation unit 203, an odorous substance concentration residual rate estimation unit 204 after combined treatment, an odor-compatible activated carbon injection rate calculation unit 207, and activated carbon. It has an injection rate determining unit 209.

データ受信部200aは、臭気センサ11、溶解性有機物指標計器セット12からの測定データ、処理水質目標設定部100によって設定された設定データ(例えば、目標臭気強度、目標溶解性有機体炭素濃度、紫外線吸光度等)、および凝集剤注入率算出部300からの算出結果(凝集剤注入率Ipacl)を受信する。 The data receiving unit 200a includes measurement data from the odor sensor 11, the soluble organic matter index meter set 12, and setting data set by the treated water quality target setting unit 100 (for example, target odor intensity, target soluble organic body carbon concentration, ultraviolet rays). Absorbance, etc.) and the calculation result (aggregating agent injection rate I pack ) from the coagulant injection rate calculation unit 300 are received.

データ処理部200bは、データ受信部200aによって受信されたこれらデータをデータ受信部200aから受け取り、格納するとともに、格納したデータを使って、必要な演算等のデータ処理を行い、この結果も格納する。このようにしてデータ処理部200bに格納されたデータは、有機物対応活性炭注入率算出部203、併用処理後臭気物質濃度残存率推定部204、臭気対応活性炭注入率算出部207、および活性炭注入率決定部209による使用が可能となる。 The data processing unit 200b receives and stores these data received by the data receiving unit 200a from the data receiving unit 200a, performs data processing such as necessary operations using the stored data, and stores the result as well. .. The data stored in the data processing unit 200b in this way includes the organic substance-compatible activated carbon injection rate calculation unit 203, the odorous substance concentration residual rate estimation unit 204 after the combined treatment, the odor-compatible activated carbon injection rate calculation unit 207, and the activated carbon injection rate determination. It can be used by the unit 209.

また、データ処理部200bへは、有機物対応活性炭注入率算出部203、併用処理後臭気物質濃度残存率推定部204、および臭気対応活性炭注入率算出部207によって演算された結果も送られる。これによって、有機物対応活性炭注入率算出部203、併用処理後臭気物質濃度残存率推定部204、および臭気対応活性炭注入率算出部207によって演算された結果は、有機物対応活性炭注入率算出部203、併用処理後臭気物質濃度残存率推定部204、臭気対応活性炭注入率算出部207、および活性炭注入率決定部209によって共有される。 Further, the result calculated by the organic substance-compatible activated carbon injection rate calculation unit 203, the odor substance concentration residual rate estimation unit 204 after the combined treatment, and the odor-compatible activated carbon injection rate calculation unit 207 is also sent to the data processing unit 200b. As a result, the results calculated by the organic substance-compatible activated carbon injection rate calculation unit 203, the odor substance concentration residual rate estimation unit 204 after the combined treatment, and the odor-compatible activated carbon injection rate calculation unit 207 are combined with the organic substance-compatible activated carbon injection rate calculation unit 203. It is shared by the odor substance concentration residual rate estimation unit 204 after treatment, the odor-responsive activated carbon injection rate calculation unit 207, and the activated carbon injection rate determination unit 209.

併用処理後臭気物質濃度残存率推定部204は、データ処理部200bに格納されたデータを使って、粉末活性炭処理と凝集処理とを連続して実施する併用処理後の臭気物質濃度残存率RCcar/paclを算出する。算出結果は、併用処理後臭気物質濃度残存率推定部204からデータ処理部200bへ送られ、データ処理部200bに格納される。 The odorant concentration residual rate estimation unit 204 after the combined treatment uses the data stored in the data processing unit 200b to continuously perform the powdered activated carbon treatment and the agglomeration treatment. The odorous substance concentration residual rate RCcar / Calculate powder. The calculation result is sent from the odorant substance concentration residual rate estimation unit 204 after the combined treatment to the data processing unit 200b, and is stored in the data processing unit 200b.

臭気対応活性炭注入率算出部207は、データ処理部200bに格納されたデータを使って、凝集沈澱処理における原水Aに対する目標臭気物質濃度Cを、臭気物質濃度Cで除して得られる目標臭気物質濃度残存率RCに基づき、臭気物質の吸着処理のために原水Aに注入する粉末活性炭Cの注入率である粉末活性炭注入率Icar―Dを算出する。算出結果は、臭気対応活性炭注入率算出部207からデータ処理部200bへ送られ、データ処理部200bに格納される。 The odor-responsive activated carbon injection rate calculation unit 207 uses the data stored in the data processing unit 200b to divide the target odor substance concentration CD with respect to the raw water A in the coagulation sedimentation treatment by the odor substance concentration CR . Based on the odorous substance concentration residual rate RCT, the powdered activated carbon injection rate I car-D , which is the injection rate of the powdered activated carbon C to be injected into the raw water A for the adsorption treatment of the odorous substance, is calculated. The calculation result is sent from the odor-responsive activated carbon injection rate calculation unit 207 to the data processing unit 200b and stored in the data processing unit 200b.

有機物対応活性炭注入率算出部203は、データ処理部200bに蓄積されたデータを使って、凝集沈澱処理における原水Aに対する目標紫外線吸光度UVを、紫外線吸光度UVで除して得られる目標紫外線吸光度残存率RUVに基づき、溶解性有機物の吸着処理のために原水Aに注入する粉末活性炭Cの注入率である粉末活性炭注入率Icar―UVを算出する。算出結果は、有機物対応活性炭注入率算出部203からデータ処理部200bへ送られ、データ処理部200bに格納される。 The activated carbon injection rate calculation unit 203 for organic matter uses the data accumulated in the data processing unit 200b to divide the target ultraviolet absorbance UV D for the raw water A in the coagulation sedimentation treatment by the ultraviolet absorbance UV R , and obtains the target ultraviolet absorbance. Based on the residual rate RUV T , the powdered activated carbon injection rate I car-UV , which is the injection rate of the powdered activated carbon C to be injected into the raw water A for the adsorption treatment of the soluble organic substance, is calculated. The calculation result is sent from the organic matter-compatible activated carbon injection rate calculation unit 203 to the data processing unit 200b, and is stored in the data processing unit 200b.

活性炭注入率決定部209は、データ処理部200bに蓄積された粉末活性炭注入率Icar―Dと、粉末活性炭注入率Icar―UVとのうち、値が大きい方を、吸着処理のための粉末活性炭注入率として決定する。そして、決定した粉末活性炭注入率を、粉末活性炭注入率Icarとして、粉末活性炭注入装置21へ出力する。 The activated carbon injection rate determination unit 209 determines which of the powdered activated carbon injection rate I car-D and the powdered activated carbon injection rate I car-UV stored in the data processing unit 200b, whichever is larger, is the powder for the adsorption treatment. Determined as the activated carbon injection rate. Then, the determined powdered activated carbon injection rate is output to the powdered activated carbon injection device 21 as the powdered activated carbon injection rate I car .

次に、以上のように構成した本発明の第1の実施形態の水処理方法が適用された水処理システムの動作例について説明する。 Next, an operation example of the water treatment system to which the water treatment method of the first embodiment of the present invention configured as described above is applied will be described.

図3は、第1の実施形態の水処理方法が適用された水処理システムによる処理の流れを示す図である。 FIG. 3 is a diagram showing a flow of treatment by a water treatment system to which the water treatment method of the first embodiment is applied.

はじめに、処理水質目標設定部100において、処理後のろ過処理水Wの目標値として、目標臭気物質濃度C、目標紫外線吸光度UV、目標濁度Tu、目標残留塩素濃度RCl、目標水素イオン濃度指数pH等が設定される(S100)。設定されたこれらデータは、活性炭注入率算出部200へ送信され、データ受信部200aによって受信され、データ処理部200bに格納される。 First, in the treated water quality target setting unit 100, as the target values of the filtered treated water W after treatment, the target odorous substance concentration C D , the target ultraviolet absorbance UV D , the target turbidity Tu D , the target residual chlorine concentration RCl D , and the target hydrogen The ion concentration index pH D and the like are set (S100). These set data are transmitted to the activated carbon injection rate calculation unit 200, received by the data reception unit 200a, and stored in the data processing unit 200b.

データ処理部200bでは、目標臭気物質濃度CDと、臭気センサ11で測定された原水中の臭気物質濃度Cから、下記(1)式に従って目標臭気物質濃度残存率RCが算出される(S201)。 In the data processing unit 200b, the target odor substance concentration residual rate RCT is calculated from the target odor substance concentration CD and the odor substance concentration CR in the raw water measured by the odor sensor 11 according to the following equation (1) (S201). ).

RC=C/C・・・(1)
データ処理部200bではまた、目標紫外線吸光度UVDと、紫外線吸光度計12aで測定された原水の紫外線吸光度UVから、下記(2)式に従って目標紫外線吸光度残存率RUVが算出される(S201)。
RC T = CD / CR ... (1)
The data processing unit 200b also calculates the target ultraviolet absorbance residual rate RUV T from the target ultraviolet absorbance UVD and the ultraviolet absorbance UV R of the raw water measured by the ultraviolet absorbance meter 12a according to the following equation (2) (S201).

RUV=UV/UV・・・(2)
並行して、凝集剤注入率算出部300では、目標濁度Tuと、水質計器セット10の濁度計10a、アルカリ度計10b、水温計10c、およびpH計10dにより測定された、原水濁度Tu、原水アルカリ度Alk、水温T、および水素イオン濃度指数pHと、凝集剤混和池30に設置されたpH測定器14により測定された混和池水素イオン濃度指数pHと用いて、下記(3)式に従って、目標濁度TUを達成するための凝集剤注入率Ipaclが算出される(S300)。
RUV T = UV D / UV R ... (2)
At the same time, in the coagulant injection rate calculation unit 300, the raw water turbidity measured by the target turbidity Tu D , the turbidity meter 10a, the alkalinity meter 10b, the water temperature meter 10c, and the pH meter 10d of the water quality meter set 10. Degree Tu R , raw water alkalinity Ark R , water temperature TR, and hydrogen ion concentration index pH R , and the admixture pond hydrogen ion concentration index pH F measured by the pH meter 14 installed in the flocculant admixture pond 30 . Then, according to the following equation (3), the flocculant injection rate I pack for achieving the target turbidity TUD is calculated (S300).

pacl=f(Tu,Tu,Alk,T,pH,pH) ・・・(3)
ここで、粉末活性炭処理と凝集処理を併用した場合の紫外線吸光度RUVcar/paclを、粉末活性炭処理後紫外線吸光度残存率RUVcar、凝集処理後紫外線残存率RUVpacl、および併用処理係数FDOMを用いて、下記(4)式の通り定義する。
I pacl = f (Tu D , Tu R , Alk R , TR, pH R , pH F ) ... (3)
Here, the ultraviolet absorbance RUV car / pcl when the powdered activated carbon treatment and the agglomeration treatment are used in combination, the ultraviolet absorbance residual rate RUV car after the powdered activated carbon treatment, the ultraviolet residual rate RUV pacl after the agglomeration treatment, and the combined treatment coefficient FDOM are used. Then, it is defined as the following equation (4).

RUVcar/pacl=FDOM×RUVcar×RUVpacl・・・(4)
図4は、凝集処理による凝集剤注入率Ipaclと紫外線吸光度残存率RUVpaclとの関係の一例を示す図である。
RUV car / pack = F DOM x RUV car x RUV pack ... (4)
FIG. 4 is a diagram showing an example of the relationship between the flocculant injection rate I pack by the flocculant treatment and the ultraviolet absorbance residual rate RUV pack .

図4は発明者らが、溶解性有機体炭素濃度DOC=2.5(mg/L)、混和水pH=6.5に調整した原水に凝集剤Pを添加後、回転数150(rpm)で10分間急速撹拌した後、回転数80(rpm)で60分緩速撹拌処理した試験の結果であり、縦軸の紫外線吸光度残存率RUVpaclは、処理後紫外線吸光度UVpaclを原水紫外線吸光度UVで除した値(すなわち、RUVpacl=UVpacl/UV)を示している。この試験では、溶解性有機物としてフミン酸とフルボ酸との混合割合を調整して添加した。 In FIG. 4, the inventors added the flocculant P to the raw water adjusted to the soluble organic carbon concentration DOC R = 2.5 (mg / L) and the mixed water pH F = 6.5, and then the rotation speed was 150 ( It is the result of the test of rapid stirring for 10 minutes at rpm) and then slow stirring for 60 minutes at a rotation speed of 80 (rpm). The value obtained by dividing the absorbance by UV R (that is, RUV pack = UV pack / UV R ) is shown. In this test, the mixing ratio of humic acid and fulvic acid was adjusted and added as a soluble organic substance.

図4は、フミン酸100%、フミン酸50%/フルボ酸50%混合、およびフルボ酸100%の3つの場合を示しており、フルボ酸混合割合により凝集処理による溶解性有機物除去性能が影響を受けることが分かる。 FIG. 4 shows three cases of humic acid 100%, humic acid 50% / fulvic acid 50% mixture, and fulvic acid 100%, and the soluble organic substance removal performance by aggregation treatment is affected by the fulvic acid mixing ratio. I understand that I will receive it.

したがって、凝集処理後の紫外線吸光度RUVpaclは、凝集剤注入率算出部300において、図4の関係を用いて、下記(5)式および(6)式に従って算出される(S301)。 Therefore, the ultraviolet absorbance RUV sol after the coagulation treatment is calculated by the coagulant injection rate calculation unit 300 according to the following equations (5) and (6) using the relationship of FIG. 4 (S301).

RUVpacl=α×Ipacl+β・・・(5)
β=f(pH,UV,DOC,FL)・・・(6)
したがって、凝集処理後の紫外線吸光度RUVpaclは、以下のような関数として表現される。
RUV packl = α × I packl + β ・ ・ ・ (5)
β = f (pH F , UV R , DOC R , FL R ) ... (6)
Therefore, the ultraviolet absorbance RUV sol after the aggregation treatment is expressed as the following function.

RUVpacl=f(Ipacl,pH,UV,DOC,FL)・・・(6a)
ここで、Ipaclは、凝集剤注入率(mg/L)、αは、注入率定数(-)、βは、図4のIpacl=0(mg/L)に対応する切片であり、混和池水素イオン濃度指数pHと、原水の波長260(nm)の紫外線吸光度(abs/cm)であるE260と、溶解性有機体炭素濃度DOC(mg/L)と原水の蛍光強度FLとして、励起波長に対する蛍光波長の蛍光強度を用いて算出される。励起波長および蛍光波長としては、300(nm)乃至350(nm)、および波長400(nm)乃至450(nm)が好ましく、本実施形態では、特に、励起波長345(nm)および蛍光波長425(nm)とする。
RUV packl = f (I packl , pH F , UV R , DOC R , FL R ) ... (6a)
Here, I pacl is a section corresponding to the flocculant injection rate (mg / L), α is an injection rate constant (−), and β is a section corresponding to I pacl = 0 (mg / L) in FIG. Pond hydrogen ion concentration index pH F , E260 R , which is the ultraviolet absorbance (abs / cm) at a wavelength of 260 (nm) of raw water, soluble organic carbon concentration DOC R (mg / L), and fluorescence intensity FL R of raw water. Is calculated using the fluorescence intensity of the fluorescence wavelength with respect to the excitation wavelength. The excitation wavelength and the fluorescence wavelength are preferably 300 (nm) to 350 (nm) and wavelengths of 400 (nm) to 450 (nm), and in this embodiment, the excitation wavelength of 345 (nm) and the fluorescence wavelength of 425 (nm) are particularly preferable. nm).

ところで、前述した(4)式において示される併用処理係数FDOMは、粉末活性炭処理と凝集処理との併用処理効果を示す係数である。 By the way, the combined treatment coefficient FDOM shown in the above-mentioned equation (4) is a coefficient showing the combined treatment effect of the powdered activated carbon treatment and the agglomeration treatment.

図5は、凝集剤注入率Ipaclと併用処理係数FDOMとの関係を示す図である。 FIG. 5 is a diagram showing the relationship between the flocculant injection rate I pacl and the combined treatment coefficient F DOM .

図5に示す結果は、発明者らによる試験により得られた結果である。この試験は、粉末活性炭処理を、回転数150(rpm)で、60分急速撹拌後、pHを所定の値に調整し、凝集剤Pを添加して回転数150(rpm)で10分間急速撹拌し、回転数80(rpm)で60分緩速撹拌処理したものである。 The results shown in FIG. 5 are the results obtained by the tests by the inventors. In this test, the powder activated charcoal treatment is rapidly stirred at a rotation speed of 150 (rpm) for 60 minutes, the pH is adjusted to a predetermined value, the flocculant P is added, and the mixture is rapidly stirred at a rotation speed of 150 (rpm) for 10 minutes. Then, it was subjected to slow stirring treatment at a rotation speed of 80 (rpm) for 60 minutes.

図示するように、併用処理係数FDOMは、添加する有機物のフミン酸とフルボ酸の混合割合により大きく変化し、フミン酸が多い場合は、併用処理の紫外線吸光度残存率RUVcar/paclの方が、粉末活性炭単独処理後の紫外線吸光度残存率RUVcarと、凝集剤単独処理後の紫外線吸光度残存率RUVpaclとを掛け合わせた値(RUVcar×RUVpacl)よりも小さく(FDOM<1)なる併用促進効果があり、フルボ酸の割合が多くなると、併用処理の紫外線吸光度残存率RUVcar/paclの方が、(RUVcar×RUVpacl)よりも大きく(FDOM≧1)なり、併用阻害効果となることが分かった。 As shown in the figure, the combined treatment coefficient FDOM changes greatly depending on the mixing ratio of the organic substances humic acid and fulvic acid to be added . , The value (F DOM <1) is smaller than the value obtained by multiplying the UV absorbance residual rate RUV car after the powdered activated carbon alone treatment and the UV absorbance residual rate RUV pacl after the flocculant alone treatment (RUV car × RUV pacl ). There is a combined use promoting effect, and when the proportion of fulvic acid increases, the UV absorbance residual rate RUV car / pcl of the combined use treatment becomes larger (FDOM ≧ 1) than (RUV car × RUV puckl ), and the combined use inhibitory effect. It turned out to be.

ここで、図5において、フミン酸とフルボ酸の混合割合毎に併用処理係数FDOMと凝集剤注入率Ipaclの関係を下記(7)式で近似すると、混合割合毎の異なる係数fと指数nが求められる。 Here, in FIG. 5, if the relationship between the combined treatment coefficient F DOM and the flocculant injection rate I packl is approximated by the following equation (7) for each mixing ratio of humic acid and fulvic acid, different coefficients f and indexes for each mixing ratio are approximated. n is required.

DOM=f×Ipacl ・・・(7)
そこで、原水A中の溶解性有機物におけるフミン酸とフルボ酸の混合割合に近い指標として下記(8)式で定義される比吸光度SUVAと、係数fとの関係を調べた結果、図6に示すような関係が得られる(S202)。
F DOM = f × I pack n ... (7)
Therefore, as a result of investigating the relationship between the specific absorbance SUVA defined by the following equation (8) as an index close to the mixing ratio of humic acid and fulvic acid in the soluble organic substance in the raw water A, and the coefficient f, the result is shown in FIG. Such a relationship is obtained (S202).

図6は、原水中の比吸光度SUVAと係数fとの関係を示す図である。 FIG. 6 is a diagram showing the relationship between the specific absorbance SUVA in raw water and the coefficient f.

SUVA=E260/DOC (abs・L/m・mg)・・・(8)
ここで、E260Rは原水Aの波長260(nm)における紫外線吸光度(abs/m)であり、DOCRは原水Aの溶解性有機体炭素濃度(mg/L)である。
SUVA = E260 g / DOC R (abs ・ L / m ・ mg) ・ ・ ・ (8)
Here, E260R is the ultraviolet absorbance (abs / m) of the raw water A at a wavelength of 260 (nm), and DOCR is the soluble organic carbon concentration (mg / L) of the raw water A.

有機物対応活性炭注入率算出部203では、上記(3)式から(8)式の関係を用いて、次の手順で溶解性有機物質対応の粉末活性炭注入率Icar-UVが算出される(S203)。 In the organic substance-compatible activated carbon injection rate calculation unit 203, the powdered activated carbon injection rate Icar-UV corresponding to the soluble organic substance is calculated by the following procedure using the relationship of the above equations (3) to (8) (S203). ..

有機物対応活性炭注入率算出部203では、粉末活性炭注入率Icar-UVを算出するために、はじめに、目標紫外線吸光度残存率RUVが、粉末活性炭と凝集剤の併用処理後RUVcar/paclとされ、下記(9)式および(10)式を用いて、粉末活性炭処理工程後の紫外線吸光度残存率RUVcarが算出される。 In order to calculate the powdered activated carbon injection rate Icar-UV, the organic substance-compatible activated carbon injection rate calculation unit 203 first sets the target ultraviolet absorption residual rate RUV T as RUV car / pacl after the combined treatment of the powdered activated carbon and the flocculant. Using the following equations (9) and (10), the ultraviolet absorbance residual rate RUV car after the powder activated carbon treatment step is calculated.

RUV=RUVcar/pacl=FDOM×RUVcar×RUVpacl・・・(9)
RUVcar=RUV(FDOM×RUVpacl)・・・(10)
次に、下記(11)式に示す等温吸着式の関係を用いて、溶解性有機物質対応の粉末活性炭注入率Icar-UVが算出される。
RUV T = RUV car / pack = F DOM x RUV car x RUV pack ... (9)
RUV car = RUV T (F DOM x RUV pack ) ... (10)
Next, the powdered activated carbon injection rate I car-UV corresponding to the soluble organic substance is calculated using the isothermal adsorption type relationship shown in the following formula (11).

car-UV=f(KUV,RUVcar,E260,DOC)・・・(11)
ここで、KUVは粉末活性炭の性能と、吸着対象物質の性質とによって決まる吸着定数であり、あらかじめ調べられた上で設定される。
I car-UV = f (K UV , RUV car , E260 R , DOC R ) ... (11)
Here, K UV is an adsorption constant determined by the performance of the powdered activated carbon and the properties of the substance to be adsorbed, and is set after being investigated in advance.

このようにして、有機物対応活性炭注入率算出部203では、原水の紫外線吸光度UVRをUVDまで低減するために必要な溶解性有機物質対応の粉末活性炭注入率Icar-UVが算出される。 In this way, the organic substance-compatible activated carbon injection rate calculation unit 203 calculates the powdered activated carbon injection rate I car-UV corresponding to the soluble organic substance required to reduce the ultraviolet absorbance UVR of the raw water to UVD.

次に、上記(11)式で算出された溶解性有機物質対応の粉末活性炭注入率Icar-UVを、粉末活性炭注入率Icarとした場合の臭気物質除去効果が推定される。 Next, the effect of removing odorous substances is estimated when the powdered activated carbon injection rate I car -UV for soluble organic substances calculated by the above equation (11) is set to the powdered activated carbon injection rate I car.

図7は、粉末活性炭注入率Icarと粉末活性炭処理後臭気物質濃度残存率RCcarとの関係を示す図である。 FIG. 7 is a diagram showing the relationship between the powdered activated carbon injection rate I car and the residual odorant concentration rate RC car after powdered activated carbon treatment.

図8は、粉末活性炭と凝集剤の併用処理における凝集剤注入率Ipaclと臭気物質濃度残存率RCcar/paclとの関係を示す図である。 FIG. 8 is a diagram showing the relationship between the coagulant injection rate Ipac l and the odorant concentration residual rate RC car / pacl in the combined treatment of powdered activated carbon and coagulant.

図7および図8は何れも発明者らによる試験によって得られた結果であり、図7は、臭気物質の粉末活性炭Cの単独処理による除去特性に関してなされた試験結果であり、図8は、臭気物質の粉末活性炭Cと凝集剤Pとの併用処理による除去特性に関してなされた試験結果である。 7 and 8 are the results obtained by the tests by the inventors, FIG. 7 is the test results regarding the removal characteristics of the odorous substance by the single treatment of the powdered activated carbon C, and FIG. 8 is the odor. It is a test result made about the removal property by the combined treatment of the powder activated carbon C of a substance and a coagulant P.

試験は臭気物質として水道原水でカビ臭物質として知られる2-メチルイソボルネオールを用い、さらに、共存有機物としてフミン酸とフルボ酸を混合添加した原水に対してなされ、図7は、粉末活性炭処理を回転数150(rpm)で60分急速撹拌後の臭気物質濃度残存率RCcarと粉末活性炭注入率Icarの関係を示し、図8は、粉末活性炭処理を回転数150(rpm)で60分急速撹拌後、pHを所定の値に調整し、凝集剤Pを添加して回転数150(rpm)で10分間急速撹拌、回転数80(rpm)で60分緩速撹拌処理後の、臭気物質濃度残存率RCcar/paclと凝集剤注入率Ipaclの関係とを示している。 The test was performed on raw water containing 2-methylisoborneol, which is known as a musty odor substance in raw tap water as an odor substance, and further mixed and added with humic acid and fulvic acid as coexisting organic substances. FIG. 7 shows powdered activated carbon treatment. The relationship between the residual odorant concentration RC car and the powdered activated carbon injection rate I car after rapid stirring at a rotation speed of 150 (rpm) for 60 minutes is shown. FIG. 8 shows the powder activated carbon treatment rapidly for 60 minutes at a rotation speed of 150 (rpm). After stirring, adjust the pH to a predetermined value, add the flocculant P, rapidly stir at a rotation speed of 150 (rpm) for 10 minutes, and slowly stir at a rotation speed of 80 (rpm) for 60 minutes. The relationship between the residual rate RC car / packl and the flocculant injection rate I packl is shown.

図8では、凝集剤注入率Ipacl=0(mg/L)のy軸上には、凝集処理前の粉末活性炭処理後の臭気物質濃度残存率RCcar/paclが示されているが、粉末活性炭処理後の臭気物質濃度残存率RCcarに対して、凝集処理後の臭気物質濃度残存率RCcar/paclの方が大きくなる結果となった。これは、粉末活性炭処理で一旦吸着された臭気物質が、その後の凝集処理工程で放出されることを示唆しており、共存する有機物質の構成でフルボ酸の割合が多い程、放出割合が大きくなっている。 In FIG. 8, on the y-axis of the coagulant injection rate I pacl = 0 (mg / L), the residual odorant concentration after the powdered activated carbon treatment before the coagulation treatment RC car / pacl is shown. The result was that the residual odorous substance concentration RC car / powder after the coagulation treatment was larger than the residual odorous substance concentration RC car after the activated charcoal treatment. This suggests that the odorous substance once adsorbed by the powdered activated carbon treatment is released in the subsequent coagulation treatment step, and the larger the proportion of fulvic acid in the composition of the coexisting organic substances, the larger the release proportion. It has become.

以上の結果に基づき、併用処理後臭気物質濃度残存率推定部204では、粉末活性炭処理と凝集処理とを連続して実施する併用処理後の臭気物質濃度残存率RCcar/paclが、粉末活性炭注入率Icar(mg/L)、凝集剤注入率Ipacl(mg/L)、共存する有機物の指標である原水の波長260(nm)における紫外線吸光度E260(abs/cm)、原水の溶解性有機体炭素濃度DOC(mg/L)、フルボ酸を検知するために、励起波長345(nm)によって発光する425(nm)の蛍光強度FL、および混和池水素イオン濃度指数pHを用いて推定される(S204)。下記(12)式を参照されたい。 Based on the above results, in the odorant concentration residual rate estimation unit 204 after the combined treatment, the odorous substance concentration residual rate RC car / packl after the combined treatment, in which the powdered activated charcoal treatment and the aggregation treatment are continuously carried out, is injected with the powdered activated charcoal. Rate I car (mg / L), flocculant injection rate I pacl (mg / L), UV absorbance E260 R (abs / cm) at wavelength 260 (nm) of raw water, which is an index of coexisting organic substances, solubility of raw water The organic carbon concentration DOC R (mg / L), the fluorescence intensity FL R of 425 (nm) emitted by the excitation wavelength 345 (nm), and the mixing pond hydrogen ion concentration index pH F are used to detect fluboic acid. Is estimated (S204). Please refer to equation (12) below.

RCcar/pacl=f(Icar,Ipacl,E260,DOC,FL,pH)・・・(12)
次に、図3に戻って示すように、データ処理部200bでは、ステップS204で推定された臭気物質濃度残存率RCcar/paclと、ステップS201で算出された目標臭気物質濃度残存率RCとが比較される(S205)。
RC car / pack = f (I car , I pack, E260 R , DOC R , FL R , pH F ) ... (12)
Next, as shown back to FIG. 3, in the data processing unit 200b, the odorous substance concentration residual rate RC car / pack estimated in step S204 and the target odorous substance concentration residual rate RCT calculated in step S201 Are compared (S205).

ステップS205における比較の結果、臭気物質濃度残存率RCcar/paclが目標臭気物質濃度残存率RC以下の場合(S205:Yes)、データ処理部200bによって、粉末活性炭注入率Icarは、下記(13)式のように、ステップS203で求められた溶解性有機物除去に必要な粉末活性炭注入率Icar-UVとされる(S206)。 As a result of comparison in step S205, when the odorous substance concentration residual rate RC car / packl is equal to or less than the target odorous substance concentration residual rate RCT (S205: Yes), the powdered activated carbon injection rate I car is calculated by the data processing unit 200b as follows (S205: Yes). As shown in the formula 13), the powdered activated carbon injection rate I car-UV required for removing the soluble organic substance obtained in step S203 is obtained (S206).

car=Icar-UV (mg/L)・・・(13)
一方、ステップS205における比較の結果、臭気物質濃度残存率RCcar/paclの方が、目標臭気物質濃度残存率RCよりも値が大きい場合(S205:No)、臭気対応活性炭注入率算出部207によって、下記(13a)式のRCcar/paclにRCが代入されて、逆算によって、臭気物質除去に必要な粉末活性炭注入率Icar-Dが算出される(S207)。
I car = I car-UV (mg / L) ... (13)
On the other hand, as a result of comparison in step S205, when the value of the odor substance concentration residual rate RC car / powder is larger than the target odor substance concentration residual rate RCT (S205: No), the odor-responsive activated charcoal injection rate calculation unit 207. RC T is substituted into RC car / packl of the following formula (13a), and the powdered activated carbon injection rate I car-D required for removing odorous substances is calculated by back calculation (S207).

car-D=f(RC,RCcar/pacl,UV,DOC,Ipacl) ・・・(13a)
そして、データ処理部200bによって、粉末活性炭注入率Icarは、ステップS207で求められた、臭気物質除去に必要な粉末活性炭注入率Icar-Dとされる(S208)。
I car-D = f (RC T , RC car / pack , UV R , DOC R , I pack ) ... (13a)
Then, the data processing unit 200b sets the powdered activated carbon injection rate I car to be the powdered activated carbon injection rate I car-D required for removing the odorous substance obtained in step S207 (S208).

次に、活性炭注入率決定部209では、臭気物質除去に必要な粉末活性炭注入率Icar―Dと、溶解性有機物除去に必要な粉末活性炭注入率Icar―UVとのうち、値が大きい方が、吸着処理のための粉末活性炭注入率として決定され(S209)、決定された粉末活性炭注入率Icarで、粉末活性炭注入装置21が制御される。 Next, in the activated carbon injection rate determination unit 209, the larger of the powdered activated carbon injection rate I car-D required for removing odorous substances and the powdered activated carbon injection rate I car-UV required for removing soluble organic substances, whichever is larger. Is determined as the powdered activated carbon injection rate for the adsorption treatment (S209), and the powdered activated carbon injection device 21 is controlled by the determined powdered activated carbon injection rate I car .

なお、上記の説明では、溶解性有機物質の代表指標として、260(nm)における紫外線吸光度E260の残存率RUVが用いられている。しかしながら、算出式において溶解性有機体炭素濃度や、励起波長345(nm)に対する蛍光波長425(nm)の蛍光強度が用いられているので、260(nm)における紫外線吸光度E260の残存率RUVは、原水の変動や異なる水源に対しても、溶解性有機物質の代表指標として汎用的に適用することができる。 In the above description, the residual ratio RUV of ultraviolet absorbance E260 at 260 (nm) is used as a representative index of the soluble organic substance. However, since the soluble organic carbon concentration and the fluorescence intensity of the fluorescence wavelength 425 (nm) with respect to the excitation wavelength 345 (nm) are used in the calculation formula, the residual ratio RUV of the ultraviolet absorbance E260 at 260 (nm) is determined. It can be universally applied as a representative index of soluble organic substances even for fluctuations in raw water and different water sources.

また、上記の説明では、臭気物質として2-メチルイソボルネオールが用いられた図7および図8の試験結果に基づいて算出式が導出されているが、他の臭気に対しても、臭気センサ出力と物質濃度との関係を予め把握し、2-メチルイソボルネオールに対する変換係数を用いることで同様に対応することができる。 Further, in the above description, the calculation formula is derived based on the test results of FIGS. 7 and 8 in which 2-methylisoborneol is used as the odor substance, but the odor sensor output is also applied to other odors. The relationship between the substance and the substance concentration can be grasped in advance, and the conversion coefficient for 2-methylisoborneol can be used in the same manner.

さらに、上記の説明では、原水の溶解性有機物質が、紫外線吸光度計12a、蛍光強度計12b、および溶解性有機体炭素濃度(DOC)計12cの3種の計器で監視されている例について記載されているが、溶解性有機体炭素濃度DOCおよび蛍光強度FLは、下記(14)式および(15)式に示すように、紫外線吸光度E260の一次関数として表現される。このため、単一の原水系で原水中の有機物構成の変動が少ない場合には、1つの代表計器である紫外線吸光度計を用いることによって、得られた紫外線吸光度E260から、下記(14)式および(15)式に示す換算式に従って、原水有機体炭素濃度DOCおよび原水蛍光強度FLを求めることによって、1つの代表計器で、他の指標の値を得ることもできる。 Further, the above description describes an example in which the soluble organic substance of the raw water is monitored by three types of instruments: an ultraviolet absorbance meter 12a, a fluorescence intensity meter 12b, and a soluble organic carbon concentration (DOC) total 12c. However, the soluble organic carbon concentration DOC R and the fluorescence intensity FL R are expressed as linear functions of the ultraviolet absorbance E260 R as shown in the following equations (14) and (15). Therefore, when the fluctuation of the organic matter composition in the raw water is small in a single raw water system, the following formula (14) can be obtained from the ultraviolet absorbance E260 R obtained by using an ultraviolet absorbance meter, which is one representative instrument. And, by obtaining the raw water organic carbon concentration DOC R and the raw water fluorescence intensity FL R according to the conversion formula shown in the formula (15), the values of other indexes can be obtained with one representative instrument.

DOC=a×UV+b・・・(14)
FL=c×UV+d ・・・(15)
ここで、
DOC:原水有機体炭素濃度(mg/L)、
FL:原水蛍光強度(-)、
UV:原水紫外線吸光度(abs/cm)、
a:紫外線吸光度、溶解性有機体炭素濃度変換係数、
b:紫外線吸光度、溶解性有機体炭素濃度変換定数、
c:紫外線吸光度、蛍光強度変換係数、
d:紫外線吸光度、蛍光強度変換定数、
である。
DOC R = a × UV R + b ... (14)
FL R = c × UV R + d ・ ・ ・ (15)
here,
DOC R : Raw water organic carbon concentration (mg / L),
FL R : Raw water fluorescence intensity (-),
UV R : Raw water UV absorbance (abs / cm),
a: UV absorbance, soluble organic carbon concentration conversion coefficient,
b: UV absorbance, soluble organic carbon concentration conversion constant,
c: UV absorbance, fluorescence intensity conversion coefficient,
d: UV absorbance, fluorescence intensity conversion constant,
Is.

また、上述したように、粉末活性炭Cに吸着した溶解性有機物および臭気物質を、凝集剤Pによって粉末活性炭Cを捉えることで除去する場合、粉末活性炭Cの残存状態の評価指標として、波長260nmにおける紫外線吸光度E260を用いることで、適切かつ高精度の評価を実施できることができる。つまり、紫外線吸光度E260を用いて粉末活性炭Cの状態を評価した上で、粉末活性炭注入率を求めることで、原水の水質変動に追随した高精度の粉末活性炭注入率の決定、および溶解性有機物と臭気物質の除去が実現される。また結果的に、粉末活性炭の注入不足によるろ過水の溶解性有機物濃度および臭気物質の目標超過や、過剰注入による薬品費の無駄も防止される。 Further, as described above, when the soluble organic substance and the odorous substance adsorbed on the powdered activated carbon C are removed by capturing the powdered activated carbon C with the flocculant P, the residual state of the powdered activated carbon C is used as an evaluation index at a wavelength of 260 nm. By using the ultraviolet absorbance E260, it is possible to carry out an appropriate and highly accurate evaluation. That is, by evaluating the state of the powdered activated carbon C using the ultraviolet absorbance E260 and then determining the powdered activated carbon injection rate, the powdered activated carbon injection rate can be determined with high accuracy according to the fluctuation of the water quality of the raw water, and the soluble organic substance can be obtained. Removal of odorous substances is realized. As a result, it is possible to prevent the concentration of soluble organic substances in the filtered water and the target of odorous substances from being exceeded due to insufficient injection of activated carbon powder, and the waste of chemical costs due to excessive injection.

上述したように、第1の実施形態の水処理方法が適用された水処理システム1は、粉炭活性炭Cと凝集剤Pとの併用によって溶解性有機物と臭気物質との両方を除去する場合、原水中臭気物質濃度Cに対する、処理後臭気物質濃度Cの比(=C/C)である目標臭気物質濃度残存率RCと、原水紫外線吸光度UVに対する、処理後紫外線吸光度UVの比(=UV/UV)である目標紫外線吸光度残存率RUVとを算出する(S201)。 As described above, when the water treatment system 1 to which the water treatment method of the first embodiment is applied removes both the soluble organic substance and the odorous substance by the combined use of the pulverized coal activated coal C and the flocculant P, the raw material is used. The target odorous substance concentration residual rate RCT , which is the ratio of the treated odorous substance concentration CD to the water odorous substance concentration CR (= CD / CR ), and the treated ultraviolet absorbance UV D with respect to the raw water ultraviolet absorbance UV R. The target ultraviolet absorbance residual rate RUV T , which is the ratio of (= UV D / UV R ), is calculated (S201).

並行して、目標濁度Tu、原水濁度Tu、原水アルカリ度Alk、水温T、水素イオン濃度指数pH、および混和池水素イオン濃度指数pHに基づいて、前述した(3)式に従って、目標濁度TUを達成するための凝集剤注入率Ipaclを算出する(S300)。 In parallel, based on the target turbidity Tu D , raw water turbidity Tu R , raw water alkalinity Ark R , water temperature TR, hydrogen ion concentration index pH R , and mixing pond hydrogen ion concentration index pH F , as described above (3). ), The flocculant injection rate I pcl to achieve the target turbidity TUD is calculated (S300).

その後、前述した(3)式から(10)式の関係、および、前述した(11)式に示す等温吸着式fから、溶解性有機物対応の粉末活性炭注入率Icar―UVを算出する(S203)。 After that, the powdered activated carbon injection rate I car-UV corresponding to the soluble organic substance is calculated from the relationship between the above-mentioned equations (3) to (10) and the isothermal adsorption equation f shown in the above-mentioned equation (11) (S203). ).

次に、溶解性有機物対応の粉末活性炭注入率Icar―UVを、粉末活性炭注入率Icarとし、凝集剤注入率Ipacl、紫外線吸光度E260R、溶解性有機体炭素濃度DOC、蛍光強度FL、および混和槽pHに基づいて、前述した(12)式に従って、粉末活性炭と凝集剤による併用処理後臭気物質濃度残存率RCcar/paclを算出する(S204)。 Next, the powdered activated carbon injection rate I car-UV for soluble organic substances is defined as the powdered activated carbon injection rate I car , and the flocculant injection rate I packl , ultraviolet absorbance E260R, soluble organic carbon concentration DOC R , and fluorescence intensity FL R. , And, based on the mixing tank pH F , the residual odorant concentration RC car / packl after the combined treatment with the powdered activated carbon and the flocculant is calculated according to the above-mentioned equation (12) (S204).

そして、併用処理後臭気物質濃度残存率RCcar/paclの値が、目標臭気物質濃度残存率RCの値以下の場合(S205:Yes)は、粉末活性炭注入率Icarの値を、溶解性有機物対応の粉末活性炭注入率Icar―UVに設定する(S206)。 When the value of the residual odorous substance concentration RC car / pack after the combined treatment is equal to or less than the value of the target residual odorous substance concentration RCT (S205: Yes), the value of the powdered activated carbon injection rate I car is soluble. The powdered activated carbon injection rate for organic substances is set to I car-UV (S206).

一方、併用処理後臭気物質濃度残存率RCcar/paclの方が、目標臭気物質濃度残存率RCよりも値が大きい場合(S205:No)は、前述した(13a)式に従って臭気物質対応の粉末活性炭注入率Icar―Dを算出し(S207)、粉末活性炭注入率Icarの値を、臭気物質対応の粉末活性炭注入率Icar―Dに設定する(S208)。 On the other hand, when the value of the residual odorous substance concentration RC car / powder after the combined treatment is larger than the target residual odorous substance concentration RCT (S205: No), the odorous substance is dealt with according to the above-mentioned equation (13a). The powdered activated carbon injection rate I car-D is calculated (S207), and the value of the powdered activated carbon injection rate I car is set to the powdered activated carbon injection rate I car-D corresponding to the odorous substance (S208).

そして、粉末活性炭注入率Icar―Dと、粉末活性炭注入率Icar―UVとのうち、値が大きい方を、吸着処理のための粉末活性炭注入率として決定し(S209)、決定した粉末活性炭注入率Icarで、粉末活性炭注入装置21を制御することができる。 Then, the larger value of the powdered activated carbon injection rate I car-D and the powdered activated carbon injection rate I car-UV was determined as the powdered activated carbon injection rate for the adsorption treatment (S209), and the determined powdered activated carbon was determined. The powdered activated carbon injection device 21 can be controlled by the injection rate I car .

このように、第1の実施形態の水処理方法が適用された水処理システムによれば、溶解性有機物除去と臭気物質除去に対する粉末活性炭Cと凝集剤Pの併用効果を考慮した粉末活性炭注入を行うことで、処理水の水質の変化に応じて、粉末活性炭Cの注入率Icarが最適値になるように制御することができる。 As described above, according to the water treatment system to which the water treatment method of the first embodiment is applied, powdered activated carbon injection in consideration of the combined effect of powdered activated carbon C and flocculant P on the removal of soluble organic substances and the removal of odorous substances is performed. By doing so, the injection rate Icar of the powdered activated carbon C can be controlled to be the optimum value according to the change in the water quality of the treated water.

これによって、無駄な粉末活性炭Cの注入が抑制されるので、従来まで注入を必要とされてきた粉末活性炭Cの量の大幅な削減を図りながら、かつ、粉末活性炭Cの注入不足によるろ過水の溶解性有機物濃度および臭気物質の目標超過や、過剰注入による薬品費の無駄も回避することによって、経済性に優れた水処理を実現することが可能となる。 As a result, unnecessary injection of the powdered activated carbon C is suppressed, so that the amount of the powdered activated carbon C, which has been required to be injected in the past, can be significantly reduced, and the filtered water due to insufficient injection of the powdered activated carbon C can be achieved. By avoiding the excess of the target of soluble organic substance concentration and odorous substance and the waste of chemical cost due to excessive injection, it is possible to realize highly economical water treatment.

(第2の実施形態)
次に、第2の実施形態の水処理方法が適用された水処理システムについて説明する。
(Second embodiment)
Next, a water treatment system to which the water treatment method of the second embodiment is applied will be described.

本実施形態では、第1の実施形態と同一部位については、同一符号を用いることによって、重複説明を避ける。 In the present embodiment, duplicate explanations are avoided by using the same reference numerals for the same parts as those in the first embodiment.

図9は、第2の実施形態の水処理システムにおける凝集剤注入率算出部の構成例を示すブロック図である。 FIG. 9 is a block diagram showing a configuration example of a coagulant injection rate calculation unit in the water treatment system of the second embodiment.

凝集剤注入率算出部300は、データ受信部300a、データ処理部300b、臭気物質濃度残存率推定部302、凝集剤注入率算出部304、および凝集剤注入率決定部306を有する。 The coagulant injection rate calculation unit 300 includes a data reception unit 300a, a data processing unit 300b, an odor substance concentration residual rate estimation unit 302, a coagulant injection rate calculation unit 304, and a coagulant injection rate determination unit 306.

データ受信部300aは、水質計器セット10、臭気センサ11からの測定データ、およびpH測定器14からの測定データを受信する。 The data receiving unit 300a receives the measurement data from the water quality meter set 10, the odor sensor 11, and the pH measuring device 14.

データ処理部300bは、データ受信部300aによって受信されたこれらデータをデータ受信部300aから受け取るとともに、受け取ったデータを使って、必要な演算等のデータ処理を行い、この結果も格納する。このようにしてデータ処理部300bに格納されたデータ(データ受信部300aからのデータと、データ処理部300bでなされたデータ処理の結果)は、臭気物質濃度残存率推定部302、凝集剤注入率算出部304、および凝集剤注入率決定部306による使用が可能となる。 The data processing unit 300b receives these data received by the data receiving unit 300a from the data receiving unit 300a, performs data processing such as necessary operations using the received data, and stores the result as well. The data stored in the data processing unit 300b in this way (the data from the data receiving unit 300a and the result of the data processing performed by the data processing unit 300b) are the odorous substance concentration residual rate estimation unit 302 and the coagulant injection rate. It can be used by the calculation unit 304 and the coagulant injection rate determination unit 306.

また、データ処理部300bへは、臭気物質濃度残存率推定部302、凝集剤注入率算出部304、および凝集剤注入率決定部306によって演算された結果も送られる。これによって、臭気物質濃度残存率推定部302、凝集剤注入率算出部304、および凝集剤注入率決定部306によって演算された結果は、臭気物質濃度残存率推定部302、凝集剤注入率算出部304、および凝集剤注入率決定部306によって共有される。 Further, the result calculated by the odorant concentration residual rate estimation unit 302, the coagulant injection rate calculation unit 304, and the coagulant injection rate determination unit 306 is also sent to the data processing unit 300b. As a result, the results calculated by the odor substance concentration residual rate estimation unit 302, the coagulant injection rate calculation unit 304, and the coagulant injection rate determination unit 306 are the odor substance concentration residual rate estimation unit 302 and the coagulant injection rate calculation unit. It is shared by 304 and the flocculant injection rate determination unit 306.

臭気物質濃度残存率推定部302は、凝集沈澱処理における原水に対する目標臭気物質濃度Cを、臭気物質濃度Cで除して得られる目標臭気物質濃度残存率RC(=C/C)に基づき算出される、溶解性有機物の吸着処理のために原水に注入する粉末活性炭Cの注入率である粉末活性炭注入率Icarと、紫外線吸光度E260を、溶解性有機体炭素濃度DOCで除して得られる比吸光度SUVA(=E260/DOC)と、前述した(3)式に従って得られた凝集剤注入率Ipaclとを用いて、前述した(12)式に従って、粉末活性炭と凝集剤とが併用処理された後の、原水A中の臭気物質濃度残存率推定値RCcar/paclを算出する。 The odorant concentration residual rate estimation unit 302 divides the target odorous substance concentration C D with respect to the raw water in the coagulation sedimentation treatment by the odorous substance concentration CR to obtain the target odorous substance concentration residual rate RCT (= CD / CR ). ), Which is the injection rate of powdered activated charcoal C to be injected into raw water for adsorption treatment of soluble organic matter. Using the specific absorbance SUVA (= E260 R / DOC R ) obtained by dividing by and the coagulant injection rate I pack obtained according to the above-mentioned formula (3), the powdered activated carbon according to the above-mentioned formula (12). The estimated value RC car / packl of the residual odorant concentration in the raw water A after the coagulant is treated in combination is calculated.

凝集剤注入率算出部304は、臭気物質濃度残存率推定値RCcar/paclの方が、目標臭気物質濃度残存率RCよりも値が大きい場合、予め設定された、併用処理による臭気物質濃度残存率特性予測式(Ipacl-D=f(RC,RCcar/pacl,UV,DOC,Icar-UV))を用いて、臭気物質濃度残存率推定値RCcar/paclを、目標臭気物質濃度残存率RCと一致させるのに必要な凝集剤注入率である凝集剤注入率Ipacl-Dを算出する。 When the coagulant injection rate calculation unit 304 has a larger value than the target odorant concentration residual rate RCT in the odorous substance concentration residual rate estimated value RC car / packl , the odorous substance concentration by the combined treatment set in advance is set. Using the residual rate characteristic prediction formula (I pack-D = f (RC T , RC car / pack , UV R , DOC R , I car-UV )), the estimated residual rate of odorous substance concentration RC car / packl was determined. The coagulant injection rate I packl -D , which is the coagulant injection rate required to match the target odorant concentration residual rate RCT, is calculated.

凝集剤注入率決定部306は、凝集剤注入率Ipaclの値が、凝集剤注入率Ipacl-Dの値以上である場合(Ipacl-D≦Ipacl)、凝集剤注入率Ipaclの値を、凝集沈澱における凝集剤注入率とし、逆に、凝集剤注入率Ipaclよりも、凝集剤注入率Ipacl-Dの方が、値が大きい場合(Ipacl-D>Ipacl)、凝集剤注入率Ipacl-Dの値を、凝集沈澱における凝集剤注入率とする。 When the value of the coagulant injection rate I paccl is equal to or higher than the value of the coagulant injection rate I paccl-D (I paccl-D ≤ I paccl ), the coagulant injection rate determining unit 306 determines the coagulant injection rate I paccl . The value is taken as the coagulant injection rate in the coagulation sediment, and conversely, when the coagulant injection rate I packl -D has a larger value than the coagulant injection rate I packl (I packl-D > I packl ). The value of the coagulant injection rate I packl-D is taken as the coagulant injection rate in the coagulation precipitate.

次に、以上のように構成した第2の実施形態の水処理方法が適用された水処理システムの動作例について説明する。 Next, an operation example of the water treatment system to which the water treatment method of the second embodiment configured as described above is applied will be described.

図10は、第2の実施形態の水処理方法が適用された水処理システムによる処理の流れを示す図である。 FIG. 10 is a diagram showing a flow of treatment by a water treatment system to which the water treatment method of the second embodiment is applied.

本実施形態における処理の流れは、第1の実施形態と、溶解性有機物対応粉末活性炭注入率で臭気物質除去が不十分な場合の対応が異なるが、それ以外は同じであるので、図10では、図3と同一の処理部位には、同じステップ番号を付している。 The flow of the treatment in the present embodiment is different from that of the first embodiment when the odorant removal is insufficient at the powder activated carbon injection rate for soluble organic substances, but the other cases are the same. , The same processing site as in FIG. 3 is assigned the same step number.

したがって、以下では、図3と異なる点について説明する。 Therefore, the differences from FIG. 3 will be described below.

本実施形態では、第1の実施形態とは異なり、ステップS203において算出された溶解性有機物質対応の粉末活性炭注入率Icar-UVで、粉末活性炭注入装置21が制御される。 In the present embodiment, unlike the first embodiment, the powdered activated carbon injection device 21 is controlled by the powdered activated carbon injection rate Icar-UV corresponding to the soluble organic substance calculated in step S203.

また、本実施形態では、臭気物質濃度残存率推定部302において、粉末活性炭Cと凝集剤Pとが併用処理された後の、原水A中の臭気物質濃度残存率推定値RCcar/paclが算出される(S204a)。算出方法の詳細は、ステップS204で説明した通りである。 Further, in the present embodiment, the odorant concentration residual rate estimation unit 302 calculates the odorous substance concentration residual rate estimation value RC car / packl in the raw water A after the powdered activated carbon C and the flocculant P are treated in combination. (S204a). The details of the calculation method are as described in step S204.

また、本実施形態では、第1の実施形態とは異なり、ステップS205においてRCcar/paclがRCT以下の場合(S205:Yes)、ステップS300で算出された凝集剤注入率Ipaclで、凝集剤注入装置31が制御される(S218:Yes、S219)。 Further, in the present embodiment, unlike the first embodiment, when RCcar / pac l is RCT or less in step S205 (S205: Yes), the aggregating agent injection rate Ipac l calculated in step S300 is used as the aggregating agent. The injection device 31 is controlled (S218: Yes, S219).

一方、ステップS205において、RCcar/paclが、RCTよりも値が大きい場合(S205:No)、凝集剤注入率算出部304によって、図8の凝集剤注入率Ipaclと併用処理後臭気物質濃度残存率RCcar/paclの関係に従い、併用処理による臭気物質濃度残存率特性予測式(Ipacl-D=f(RC,RCcar/pacl,UV,DOC,Icar-UV))を用いて、RCcar/paclが目標臭気物質濃度残存率RCTと一致する臭気物質対応の凝集剤注入率Ipacl-Dが算出される(S217)。算出された臭気物質対応の凝集剤注入率Ipacl-Dは、データ処理部300bへ送られ、データ処理部300bで保持される。また、データ処理部300bには、ステップS300で算出された凝集剤注入率Ipaclも保持されている。 On the other hand, in step S205, when the value of RCcar / pac l is larger than that of RCT (S205: No), the coagulant injection rate calculation unit 304 is used in combination with the coagulant injection rate Ipac l in FIG. Residual rate According to the relationship of RC car / pac l , the odorant concentration residual rate characteristic prediction formula (I pacl-D = f (RC T , RC car / paccl , UV R , DOC R , I car-UV )) by combined treatment was used. Using this, the coagulant injection rate Ipac l -D corresponding to the odorant whose RCcar / pac l matches the target odorant concentration residual rate RCT is calculated (S217). The calculated coagulant injection rate Ipac l -D corresponding to the odorous substance is sent to the data processing unit 300b and held by the data processing unit 300b. Further, the data processing unit 300b also holds the flocculant injection rate Ipac l calculated in step S300.

ステップS217の後、ステップS218では、データ処理部300bに保持されている臭気物質対応の凝集剤注入率Ipacl-Dの値と、凝集剤注入率Ipaclの値とが、凝集剤注入率決定部306によって比較される。そして、凝集剤注入率Ipaclの値が、臭気物質対応の凝集剤注入率Ipacl-Dの値以上である場合(S218:Yes)、凝集剤注入率Ipaclの値が、凝集沈澱における凝集剤注入率とされ、凝集剤注入率Ipaclの値によって凝集剤注入装置31が制御される(S219)。一方、凝集剤注入率Ipaclよりも、臭気物質対応の凝集剤注入率Ipacl-Dの方が、値が大きい場合(S218:No)、臭気物質対応の凝集剤注入率Ipacl-Dの値が凝集沈澱における凝集剤注入率とされ、凝集剤注入率Ipacl-Dの値によって凝集剤注入装置31が制御される(S220)。 After step S217, in step S218, the value of the coagulant injection rate Ipac l −D corresponding to the odorous substance held in the data processing unit 300b and the value of the coagulant injection rate Ipac l determine the coagulant injection rate. Compared by unit 306. When the value of the flocculant injection rate I packl is equal to or higher than the value of the flocculant injection rate I packl-D corresponding to the odorous substance (S218: Yes), the value of the flocculant injection rate I packl is the aggregation in the coagulation sediment. The agent injection rate is defined, and the coagulant injection device 31 is controlled by the value of the coagulant injection rate I pack (S219). On the other hand, when the value of the flocculant injection rate I packl -D corresponding to the odorous substance is larger than that of the flocculant injection rate I packl (S218: No), the coagulant injection rate I packl-D corresponding to the odorous substance is found. The value is taken as the coagulant injection rate in the coagulation sediment, and the coagulant injection device 31 is controlled by the value of the coagulant injection rate I packl-D (S220).

上述したように、第2の実施形態の水処理方法が適用された水処理システムによれば、溶解性有機物対応の粉末活性炭注入率Icar-UVでは臭気物質の除去が不十分な場合、単価の高い粉末活性炭Cの注入率を増加させず、比較的安価な凝集剤Pの注入率を増加することで臭気物質濃度残存率を低減することができるため、過度な薬品費の上昇を抑えることが可能となる。また、粉末活性炭Cの注入率を最低限にできるので、汚泥の発生量を減らし、その処分コストの増加も抑制することが可能となる。 As described above, according to the water treatment system to which the water treatment method of the second embodiment is applied, when the removal of odorous substances is insufficient with the powdered activated carbon injection rate Icar-UV for soluble organic substances, the unit price is Since the residual rate of odorous substance concentration can be reduced by increasing the injection rate of the relatively inexpensive flocculant P without increasing the injection rate of the high powdered activated carbon C, it is possible to suppress an excessive increase in chemical costs. It will be possible. Further, since the injection rate of the powdered activated carbon C can be minimized, it is possible to reduce the amount of sludge generated and suppress the increase in the disposal cost thereof.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.

1・・水処理システム、2・・水処理装置、3・・水処理施設、10・・水質計器セット、10a・・濁度計、10b・・アルカリ度計、10c・・水温計、10d・・pH計、11・・臭気センサ、12・・溶解性有機物指標計器セット、12a・・紫外線吸光度計、12b・・蛍光強度計、12c・・溶解性有機体炭素濃度(DOC)計、13・・流量計、14・・pH測定器、15・・ろ過水紫外線透過率計、20・・着水井、21・・粉末活性炭注入装置、22・・次亜塩素酸ナトリウム注入装置、23・・酸化剤注入装置、30・・凝集剤混和池、31・・凝集剤注入装置、32・・撹拌機、40・・フロック形成池、40a・・撹拌池、40b・・撹拌池、50・・沈澱池、60・・ろ過池、60a・・ろ過層、61・・アルカリ剤注入装置、70・・浄水池、71・・次亜塩素酸ナトリウム注入装置、72・・アルカリ剤注入装置、80・・水道水質計器セット、80a・・濁・色度センサ、80b・・残塩濃度センサ、80c・・pHセンサ、80d・・水温センサ、91・・配管、92・・配管、100・・処理水質目標設定部、200、200A・・活性炭注入率算出部、200a・・データ受信部、200b・・データ処理部、203・・有機物対応活性炭注入率算出部、204・・併用処理後臭気物質濃度残存率推定部、204a・・臭気物質濃度残存率推定部、207・・臭気対応活性炭注入率算出部、209・・活性炭注入率決定部、230・・臭気物質濃度残存率算出部、230・・臭気物質濃度残存率算出部、240・・臭気物質濃度残存率更新部、300・・凝集剤注入率算出部、300a・・データ受信部、300b・・データ処理部、302・・臭気物質濃度残存率推定部、304・・凝集剤注入率算出部、306・・凝集剤注入率決定部 1 ... Water treatment system, 2 ... Water treatment equipment, 3 ... Water treatment facility, 10 ... Water quality meter set, 10a ... Turbidity meter, 10b ... Alkaliity meter, 10c ... Water temperature gauge, 10d ...・ PH meter, 11 ・ ・ Odor sensor, 12 ・ ・ Soluble organic substance index meter set, 12a ・ ・ Ultraviolet absorptiometer, 12b ・ ・ Fluorescence intensity meter, 12c ・ ・ Soluble organism carbon concentration (DOC) meter, 13 ・・ Flow meter, 14 ・ ・ pH measuring device, 15 ・ ・ Filtered water UV transmission meter, 20 ・ ・ Watering well, 21 ・ ・ Powdered activated charcoal injection device, 22 ・ ・ Sodium hypochlorite injection device, 23 ・ ・ Oxidation Agent injection device, 30 ... Aggregator mixing pond, 31 ... Aggregator injection device, 32 ... Stirrer, 40 ... Flock forming pond, 40a ... Stirring pond, 40b ... Stirring pond, 50 ... Precipitation pond , 60 ... Filtration pond, 60a ... Filtration layer, 61 ... Alkaline agent injection device, 70 ... Water purification pond, 71 ... Sodium hypochlorite injection device, 72 ... Alkaline agent injection device, 80 ... Water supply Water quality meter set, 80a ... turbidity / chromaticity sensor, 80b ... residual salt concentration sensor, 80c ... pH sensor, 80d ... water temperature sensor, 91 ... piping, 92 ... piping, 100 ... treated water quality target setting Unit, 200, 200A ... Activated charcoal injection rate calculation unit, 200a ... Data receiving unit, 200b ... Data processing unit, 203 ... Activated charcoal injection rate calculation unit for organic substances, 204 ... Estimating residual odorous substance concentration after combined treatment , 204a ... Odor substance concentration residual rate estimation unit, 207 ... Odor-compatible activated charcoal injection rate calculation unit, 209 ... Activated charcoal injection rate determination unit, 230 ... Odor substance concentration residual rate calculation unit, 230 ... Odor substance concentration Residual rate calculation unit, 240 ... Odor substance concentration residual rate update unit, 300 ... Coagulant injection rate calculation unit, 300a ... Data reception unit, 300b ... Data processing unit, 302 ... Odor substance concentration residual rate estimation unit , 304 ... Coagulant injection rate calculation unit, 306 ... Coagulant injection rate determination unit

Claims (8)

原水の水質に基づき、前記原水の濁質の凝集沈澱に必要な凝集剤の注入率である第1の凝集剤注入率を算出する第1の凝集剤注入率算出部と、
前記原水中の臭気物質濃度と、前記原水の紫外線吸光度、蛍光強度、および溶解性有機体炭素濃度のうちの少なくとも何れかならびに、前記第1の凝集剤注入率とに基づき、前記原水中の臭気物質の除去に必要な粉末活性炭の注入率である第1の粉末活性炭注入率を算出する活性炭注入率算出部と、
を備えた水処理システム。
A first coagulant injection rate calculation unit that calculates a first coagulant injection rate, which is an injection rate of a coagulant required for coagulation and precipitation of the turbidity of the raw water based on the water quality of the raw water.
The odor of the raw water is based on the concentration of the odorous substance in the raw water, at least one of the ultraviolet absorbance, the fluorescence intensity, and the soluble organic carbon concentration of the raw water, and the injection rate of the first flocculant. An activated carbon injection rate calculation unit that calculates the first powdered activated carbon injection rate, which is the injection rate of powdered activated carbon required for removing substances, and
Water treatment system equipped with.
前記活性炭注入率算出部は、
前記原水に対する目標臭気物質濃度を前記臭気物質濃度で除して得られる目標臭気物質濃度残存率に基づき、前記臭気物質の吸着処理のために必要な粉末活性炭の注入率である第2の粉末活性炭注入率を算出する臭気対応活性炭注入率算出部と、
前記原水に対する目標紫外線吸光度を前記紫外線吸光度で除して得られる目標紫外線吸光度残存率に基づき、前記原水中の溶解性有機物の吸着処理のために必要な粉末活性炭の注入率である第3の粉末活性炭注入率を算出する有機物対応活性炭注入率算出部と、
前記第2の粉末活性炭注入率と、前記第3の粉末活性炭注入率とのうち、値が大きい方を、粉末活性炭注入率として決定する活性炭注入率決定部とを有する、
請求項1に記載の水処理システム。
The activated carbon injection rate calculation unit is
The second powdered activated carbon, which is the injection rate of the powdered activated carbon required for the adsorption treatment of the odorous substance, based on the target odorous substance concentration residual rate obtained by dividing the target odorous substance concentration with respect to the raw water by the odorous substance concentration. Odor-responsive activated carbon injection rate calculation unit that calculates the injection rate,
A third powder, which is the injection rate of powdered activated carbon required for the adsorption treatment of soluble organic substances in the raw water, based on the target ultraviolet absorbance residual rate obtained by dividing the target ultraviolet absorbance with respect to the raw water by the ultraviolet absorbance. The activated carbon injection rate calculation unit for organic substances that calculates the activated carbon injection rate, and
It has an activated carbon injection rate determining unit that determines the larger value of the second powdered activated carbon injection rate and the third powdered activated carbon injection rate as the powdered activated carbon injection rate.
The water treatment system according to claim 1.
前記第1の凝集剤注入率算出部は、
前記原水に対する目標臭気物質濃度を前記臭気物質濃度で除して得られる目標臭気物質濃度残存率と、前記紫外線吸光度と、前記溶解性有機体炭素濃度と、前記第1の凝集剤注入率とに基づいて、前記粉末活性炭と前記凝集剤とが併用処理された後の、前記原水中の臭気物質濃度残存率推定値を算出する臭気物質濃度残存率推定部と、
前記臭気物質濃度残存率推定値の方が、前記目標臭気物質濃度残存率よりも値が大きい場合、前記臭気物質濃度残存率推定値を、前記目標臭気物質濃度残存率と一致させるのに必要な凝集剤注入率である第2の凝集剤注入率を算出する第2の凝集剤注入率算出部と、
前記第1の凝集剤注入率の値が、前記第2の凝集剤注入率の値以上である場合、前記第1の凝集剤注入率を凝集剤注入率として決定し、前記第1の凝集剤注入率よりも、前記第2の凝集剤注入率の値が大きい場合、前記第2の凝集剤注入率を、前記凝集剤注入率として決定する凝集剤注入率決定部とを有する、
請求項1に記載の水処理システム。
The first coagulant injection rate calculation unit is
The target odorous substance concentration residual rate obtained by dividing the target odorous substance concentration with respect to the raw water by the odorous substance concentration, the ultraviolet absorbance, the soluble organic carbon concentration, and the first flocculant injection rate. Based on this, an odorant concentration residual rate estimation unit that calculates an odorous substance concentration residual rate estimation value in the raw water after the powdered activated charcoal and the flocculant are combinedly treated.
When the estimated odorous substance concentration residual rate is larger than the target odorous substance concentration residual rate, it is necessary to match the odorous substance concentration residual rate estimated value with the target odorous substance concentration residual rate. A second coagulant injection rate calculation unit for calculating a second coagulant injection rate, which is a coagulant injection rate, and a second coagulant injection rate calculation unit.
When the value of the first coagulant injection rate is equal to or higher than the value of the second coagulant injection rate, the first coagulant injection rate is determined as the coagulant injection rate, and the first coagulant injection rate is determined. When the value of the second coagulant injection rate is larger than the injection rate, it has a coagulant injection rate determining unit that determines the second coagulant injection rate as the coagulant injection rate.
The water treatment system according to claim 1.
前記活性炭注入率算出部は、
前記原水に対する目標臭気物質濃度を前記臭気物質濃度で除して得られる目標臭気物質濃度残存率と、前記紫外線吸光度と、前記溶解性有機体炭素濃度と、前記第1の凝集剤注入率とに基づいて、前記粉末活性炭と前記凝集剤とが併用処理された後の、前記原水中の臭気物質濃度残存率推定値を算出する臭気物質濃度残存率推定部と、
前記臭気物質濃度残存率推定値の方が、前記目標臭気物質濃度残存率よりも値が大きい場合、現在の粉末活性炭注入率において推定される臭気物質濃度残存率に基づいて、前記凝集沈澱後の臭気物質濃度残存率を算出する臭気物質濃度残存率算出部と、
前記目標臭気物質濃度残存率を、前記凝集沈澱後の臭気物質濃度残存率で除した値を、新たな目標臭気物質濃度残存率の値とする臭気物質濃度残存率更新部とを有する、
請求項1に記載の水処理システム。
The activated carbon injection rate calculation unit is
The target odorous substance concentration residual rate obtained by dividing the target odorous substance concentration with respect to the raw water by the odorous substance concentration, the ultraviolet absorbance, the soluble organic carbon concentration, and the first flocculant injection rate. Based on this, an odorant concentration residual rate estimation unit that calculates an odorous substance concentration residual rate estimation value in the raw water after the powdered activated charcoal and the flocculant are combinedly treated.
When the estimated odorous substance concentration residual rate is larger than the target odorous substance concentration residual rate, after the coagulation sedimentation, based on the odorous substance concentration residual rate estimated at the current powdered activated carbon injection rate. The odorous substance concentration residual rate calculation unit that calculates the odorous substance concentration residual rate, and
It has an odorant concentration residual rate update unit having a value obtained by dividing the target odorous substance concentration residual rate by the odorous substance concentration residual rate after coagulation sedimentation as a new target odorous substance concentration residual rate value.
The water treatment system according to claim 1.
前記溶解性有機体炭素濃度および前記蛍光強度は、前記紫外線吸光度の一次関数として表現される、請求項1に記載の水処理システム。 The water treatment system according to claim 1, wherein the soluble organic carbon concentration and the fluorescence intensity are expressed as a linear function of the ultraviolet absorbance. 前記紫外線吸光度は、紫外線光源から発せられた紫外線の、前記原水で得られた、波長260nmにおける吸光度である、請求項1乃至5のうち何れか1項に記載の水処理システム。 The water treatment system according to any one of claims 1 to 5, wherein the ultraviolet absorbance is the absorbance of ultraviolet rays emitted from an ultraviolet light source at a wavelength of 260 nm obtained from the raw water. 前記原水に含まれるフルボ酸を検知するために、前記蛍光強度は、励起波長300nm乃至350nmの範囲に含まれる励起波長での紫外線照射により、前記原水から発光される波長400nm乃至450nmの範囲に含まれる波長において得られる、請求項1乃至5のうち何れか1項に記載の水処理システム。 In order to detect fulvic acid contained in the raw water, the fluorescence intensity is included in the wavelength range of 400 nm to 450 nm emitted from the raw water by irradiation with ultraviolet rays at an excitation wavelength included in the excitation wavelength range of 300 nm to 350 nm. The water treatment system according to any one of claims 1 to 5, which is obtained at a certain wavelength. 原水の水質に基づき、前記原水の濁質の凝集沈澱に必要な凝集剤の注入率である第1の凝集剤注入率を算出し、
前記原水中の臭気物質濃度と、前記原水の紫外線吸光度、蛍光強度、および溶解性有機体炭素濃度のうちの少なくとも何れかならびに、前記第1の凝集剤注入率とに基づき、前記原水中の臭気物質の除去に必要な粉末活性炭の注入率である第1の粉末活性炭注入率を算出する、
水処理方法。
Based on the water quality of the raw water, the first coagulant injection rate, which is the injection rate of the coagulant required for the coagulation and precipitation of the turbidity of the raw water, was calculated.
The odor of the raw water is based on the concentration of the odorous substance in the raw water, at least one of the ultraviolet absorbance, the fluorescence intensity, and the soluble organic carbon concentration of the raw water, and the injection rate of the first flocculant. Calculate the first powdered activated carbon injection rate, which is the injection rate of powdered activated carbon required for removing substances.
Water treatment method.
JP2020130697A 2020-07-31 2020-07-31 Water treatment system and water treatment method Pending JP2022026969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020130697A JP2022026969A (en) 2020-07-31 2020-07-31 Water treatment system and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020130697A JP2022026969A (en) 2020-07-31 2020-07-31 Water treatment system and water treatment method

Publications (1)

Publication Number Publication Date
JP2022026969A true JP2022026969A (en) 2022-02-10

Family

ID=80264369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020130697A Pending JP2022026969A (en) 2020-07-31 2020-07-31 Water treatment system and water treatment method

Country Status (1)

Country Link
JP (1) JP2022026969A (en)

Similar Documents

Publication Publication Date Title
McCormick et al. Disinfection by-products in filter backwash water: implications to water quality in recycle designs
Zhu et al. DOM removal by flocculation process: fluorescence excitation–emission matrix spectroscopy (EEMs) characterization
JP4862576B2 (en) Aggregation apparatus and aggregation method
JP4793193B2 (en) Aggregation apparatus and aggregation method
Tafvizi et al. Enhanced coagulation for removal of natural organic matter and disinfection byproducts: Multivariate optimization
JP7086658B2 (en) Water treatment system and water treatment method
Dąbrowska Removal of organic matter from surface water using coagulants with various basicity
De Julio et al. A methodology for optimising the removal of cyanobacteria cells from a brazilian eutrophic water
Xu et al. Pilot study on the treatment of lake water with algae by ultrafiltration–ozone–biologically activated carbon
JP2022026969A (en) Water treatment system and water treatment method
Venditto et al. A microsieve-based filtration process for combined sewer overflow treatment with nutrient control: modeling and experimental studies
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
KR100636265B1 (en) Apparatus and method for removing the algae using ozonation
Guimaraes et al. Removal of graphene oxide from water and wastewater using coagulation–flocculation
JP4249768B2 (en) Water quality control system
Ma et al. Residual aluminum control for source water with high risk of overproof coagulant residue: a novel application of principal component analysis
JP2012223690A (en) Contaminant treatment method for water purification plant
JP2004188273A (en) Ultraviolet irradiation system
Becker et al. Optimizing ozonation for turbidity and organics (TOC) removal by coagulation and filtration
JPH10118411A (en) Method and device for controlling injection of flocculant in water purification plant
Gao et al. Clogging mechanisms of biological aerobic filter in a petro-chemical wastewater treatment plant: A field study
JP2017056418A (en) Flocculant injection rate determination method and flocculant injection rate determination device
JP5137724B2 (en) Method and apparatus for treating organic wastewater with activated sludge
JP2017047395A (en) Method for evaluating membrane-clogging property of water to be treated, membrane filtration apparatus used in the method for evaluating the membrane-clogging property, and membrane filtration method for water to be treated whose membrane-clogging property evaluation index value is determined by using the method for evaluating the membrane-clogging property
JP2022187271A (en) Powdery activated carbon injection control system, powdery activated carbon injection control method, powdery activated carbon injection control device, and program

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240312