JP2022187271A - Powdery activated carbon injection control system, powdery activated carbon injection control method, powdery activated carbon injection control device, and program - Google Patents

Powdery activated carbon injection control system, powdery activated carbon injection control method, powdery activated carbon injection control device, and program Download PDF

Info

Publication number
JP2022187271A
JP2022187271A JP2021095215A JP2021095215A JP2022187271A JP 2022187271 A JP2022187271 A JP 2022187271A JP 2021095215 A JP2021095215 A JP 2021095215A JP 2021095215 A JP2021095215 A JP 2021095215A JP 2022187271 A JP2022187271 A JP 2022187271A
Authority
JP
Japan
Prior art keywords
activated carbon
powdered activated
odorant
concentration
carbon injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021095215A
Other languages
Japanese (ja)
Inventor
法光 阿部
Norimitsu Abe
徳介 早見
Tokusuke Hayami
卓 毛受
Taku Menju
雄 横山
Takeshi Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2021095215A priority Critical patent/JP2022187271A/en
Publication of JP2022187271A publication Critical patent/JP2022187271A/en
Pending legal-status Critical Current

Links

Images

Abstract

To optimize an injection rate of powdery activated carbon.SOLUTION: A powdery activated carbon injection control system comprises: algae detection/determination means for detecting algae contained in raw water to determine species of the algae; odor substance estimation means for estimating a kind of an odor substance emitted from the algae, from the species of the algae determined by the algae detection/determination means; odor substance concentration measurement means for measuring a concentration of an odor substance contained in the raw water or in treated water after powdery activated carbon injection treatment, targeting the kind of the odor substance estimated by the odor substance estimation means; and powdery activated carbon injection control means for calculating an injection rate of odor substance corresponding powdery activated carbon for making the concentration of the odor substance contained in water to be treated in a raw water receiving well equal to a target concentration by using at least the concentration of the odor substance measured by the odor substance concentration measurement means, and controlling an injection amount of powdery activated carbon to be injected into the water to be treated in the raw water receiving well or into water to be treated in a coagulant mixing pond on the basis of the injection rate of the odor substance corresponding powdery activated carbon.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、粉末活性炭注入制御システム、粉末活性炭注入制御方法、粉末活性炭注入制御装置、およびプログラムに関する。 Embodiments of the present invention relate to a powdered activated carbon injection control system, a powdered activated carbon injection control method, a powdered activated carbon injection control device, and a program.

水道の水源となるダムや湖沼、貯水池等では、富栄養化の進行により藻類(以下、植物プランクトンとも称する)が異常繁殖し浄水処理の障害となることが知られている。
この藻類の中にはカビ臭に代表される臭気物質を発生するものがあり水道水における異臭味の原因となっていが、藻類種により発生する臭気物質が異なるため浄水処理をより困難にしている。
It is known that algae (hereinafter also referred to as phytoplankton) proliferate abnormally in dams, lakes, reservoirs, etc., which serve as water sources for water supply, and impede water purification treatment due to progress of eutrophication.
Some of these algae produce odorous substances such as musty odors, which are the cause of the offensive odors and tastes in tap water. .

また、浄水処理における原水には臭気物質の他にもフミン質等の溶解性有機物質や微粒子等の濁質、鉄・マンガン等の金属イオン類が含まれている。 In addition to odorous substances, raw water in water purification treatment contains soluble organic substances such as humic substances, turbid substances such as fine particles, and metal ions such as iron and manganese.

一方、浄水場では、鉄・マンガン等の金属イオン類の除去や消毒処理を目的として、次亜塩素酸ナトリウム等の薬剤が注入されるが、溶解性有機物質を含む原水の場合、溶解性有機物質と薬剤が化学反応して発癌性物質であるトリハロメタン類やハロ酢酸類といった消毒副生成物を生成する。 On the other hand, at water purification plants, chemicals such as sodium hypochlorite are injected for the purpose of removing metal ions such as iron and manganese and for disinfection. Substances and drugs chemically react to produce disinfection by-products such as carcinogenic trihalomethanes and haloacetic acids.

多くの浄水場では、原水に含まれる臭気物質や溶解性有機物質を除去するために粉末活性炭を、濁質を除去するために凝集剤を注入している。この粉末活性炭を用いた水処理システムでは、被処理水の臭気物質の種類や濃度及び溶解性有機物質の構成や濃度等に応じて粉末活性炭の注入率を調整する必要がある。 Many water purification plants inject powdered activated carbon to remove odorous substances and soluble organic substances contained in raw water, and coagulants to remove turbidity. In a water treatment system using this powdered activated carbon, it is necessary to adjust the injection rate of the powdered activated carbon according to the type and concentration of odorous substances and the composition and concentration of soluble organic substances in the water to be treated.

粉末活性炭の注入率を決定する方法としては、ジャーテスト(以下、ビーカーテストとも称する)が用いられることが多い。ジャーテストとは、被処理水を複数のビーカーに採水し、その採水した複数の被処理水にそれぞれ異なる量の粉末活性炭を注入して、臭気物質や溶解性有機物質の除去率を評価し、処理後の臭気濃度および溶解性有機物質が目標濃度以下まで低減するために必要な最低限の粉末活性炭注入率を求める方法である。 A jar test (hereinafter also referred to as a beaker test) is often used as a method for determining the injection rate of powdered activated carbon. In the jar test, the water to be treated is sampled into multiple beakers, different amounts of powdered activated carbon are injected into each of the multiple samples of water to be treated, and the removal rate of odorants and soluble organic substances is evaluated. Then, the minimum powdered activated carbon injection rate required to reduce the post-treatment odor concentration and soluble organic matter to below the target concentration is obtained.

しかしながら、ジャーテストによって粉末活性炭の注入率を決定する方法は、被処理水の水質の変化に追随した粉末活性炭の注入が非常に難しく、注入率の過不足が生じるおそれがある。またジャーテストは、粉末活性炭の最適な注入率を求めるのに時間を要するため、粉末活性炭の最適な注入率が得られたときには、被処理水の水質が変化している可能性もある。 However, in the method of determining the injection rate of powdered activated carbon by a jar test, it is very difficult to inject the powdered activated carbon in accordance with changes in the water quality of the water to be treated, and there is a risk that the injection rate will be excessive or insufficient. In addition, since the jar test requires time to determine the optimum injection rate of powdered activated carbon, the quality of the water to be treated may have changed when the optimum injection rate of powdered activated carbon is obtained.

特に、粉末活性炭による臭気物質の吸着特性に対しては、臭気物質の種類や共存する溶解性有機物質の分子構造および濃度等により影響を受け、吸着阻害されることが知られている。 In particular, it is known that the adsorption of odorous substances by powdered activated carbon is affected by the type of odorant, the molecular structure and concentration of coexisting soluble organic substances, and the adsorption is inhibited.

また、実際に投入する粉末活性炭の注入率を決定する際は、ジャーテストによって得られた注入率よりも安全側で注入率を決定するため過剰注入となってしまう。 Moreover, when determining the injection rate of the powdered activated carbon to be actually charged, the injection rate is determined on the safer side than the injection rate obtained by the jar test, resulting in excessive injection.

粉末活性炭は、凝集剤、硫酸、次亜塩素酸ナトリウム等の他の薬品に比べ単価が非常に高い。そのため、粉末活性炭の過剰注入は、薬品コストの急騰を招くおそれがあり、経済的な観点からも、粉末活性炭の過剰注入を抑制し、被処理水の水質の変化に応じた粉末活性炭の最適な注入率を制御する技術が望まれている。 Powdered activated carbon has a very high unit price compared to other chemicals such as flocculants, sulfuric acid, and sodium hypochlorite. Therefore, excessive injection of powdered activated carbon may lead to a sharp rise in chemical costs. A technique for controlling the injection rate is desired.

特開2005-288309号公報JP 2005-288309 A 特開2014-124593号公報JP 2014-124593 A 特開2018-134039号公報JP 2018-134039 A

本発明が解決しようとする課題は、粉末活性炭の注入率の最適化を図ることができる、粉末活性炭注入制御システム、粉末活性炭注入制御方法、粉末活性炭注入制御装置、およびプログラムを提供することにある。 The problem to be solved by the present invention is to provide a powdered activated carbon injection control system, a powdered activated carbon injection control method, a powdered activated carbon injection control device, and a program, which are capable of optimizing the powdered activated carbon injection rate. .

実施形態の粉末活性炭注入制御システムは、原水に含まれる藻類を検出して当該藻類の種類を判定する藻類検出判定手段と、前記藻類検出判定手段により判定された藻類の種類から、当該藻類が発する臭気物質の種類を推定する臭気物質推定手段と、前記臭気物質推定手段により推定された臭気物質の種類を対象に、前記原水もしくは粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度を測定する臭気物質濃度測定手段と、少なくとも前記臭気物質濃度測定手段により測定された臭気物質の濃度を用いて、着水井の被処理水に含まれる臭気物質の濃度を目標の濃度にするための臭気物質対応粉末活性炭注入率を計算し、当該臭気物質対応粉末活性炭注入率に基づき、前記着水井の被処理水もしくは凝集剤混和池の被処理水に注入する粉末活性炭の注入量を制御する粉末活性炭注入制御手段とを具備する。 The powdered activated carbon injection control system of the embodiment includes algae detection determination means for detecting algae contained in raw water and determining the type of algae, and the type of algae determined by the algae detection determination means. Odor substance estimating means for estimating the type of odor substance, and measuring the concentration of the odor substance contained in the raw water or the treated water after the powdered activated carbon injection treatment with respect to the type of the odor substance estimated by the odor substance estimation means. and an odorant concentration measuring means for adjusting the concentration of the odorant contained in the treated water of the receiving well to a target concentration using at least the concentration of the odorant measured by the odorant concentration measuring means. Powder activated carbon injection for calculating the powdered activated carbon injection rate corresponding to the odorant, and controlling the amount of powdered activated carbon to be injected into the water to be treated in the receiving well or the water to be treated in the coagulant mixing pond based on the powdered activated carbon injection rate corresponding to the odor substance. and a control means.

第1の実施形態に係る水処理システムの構成の一例を示す図。The figure which shows an example of a structure of the water treatment system which concerns on 1st Embodiment. 藻類検出判定装置11の構成の一例を示す図。1 is a diagram showing an example of the configuration of an algae detection/determination device 11; FIG. 臭気物質推定装置12に臭気物質参照データベースとして記憶されている臭気物質参照情報の一例を示す図。4 is a diagram showing an example of odorant reference information stored as an odorant reference database in the odorant estimation device 12; FIG. 臭気物質濃度測定装置13の構成の一例を示す図。FIG. 2 is a diagram showing an example of the configuration of an odorant concentration measuring device 13; 臭気センサー13dの出力変化dV/dtと臭気物質「ジメチルイソボルネオール」の濃度との関係を示すグラフ及び換算式の例を示す図。FIG. 13 is a graph showing the relationship between the output change dV/dt of the odor sensor 13d and the concentration of the odorant "dimethylisoborneol" and an example of a conversion formula. 臭気センサー13dの出力変化dV/dtと臭気物質「ジェオスミン」の濃度との関係を示すグラフ及び換算式の例を示す図。FIG. 4 is a graph showing the relationship between the output change dV/dt of the odor sensor 13d and the concentration of the odorous substance “geosmin” and an example of a conversion formula. 臭気センサー13dの出力変化dV/dtと臭気物質「2,4-デカジエナール」の濃度との関係を示すグラフ及び換算式の例を示す図。FIG. 4 is a graph showing the relationship between the output change dV/dt of the odor sensor 13d and the concentration of the odorous substance “2,4-decadienal” and an example of a conversion formula. 第1の実施形態の粉末活性炭注入制御システムに関わる動作の一例を示すフローチャート。4 is a flow chart showing an example of operations related to the powdered activated carbon injection control system of the first embodiment; 同実施形態の粉末活性炭注入制御システムに関わる設定処理および演算処理を詳細に示す動作の一例を示すフローチャート。4 is a flowchart showing an example of detailed operation of setting processing and arithmetic processing related to the powdered activated carbon injection control system of the embodiment; 某浄水場原水にジメチルイソボルネオールもしくはジェオスミンを添加して、同一の粉末活性炭注入処理を行った場合の発明者らによる試験結果を示すグラフ。Graph showing test results by the inventors when dimethylisoborneol or geosmin was added to raw water of a certain water purification plant and the same powdered activated carbon injection treatment was performed. 純水にジメチルイソボルネオールを添加すると共にフミン酸とフルボ酸の混合比を変えて添加し、粉末活性炭注入処理を行った場合の試験結果を示すグラフ。5 is a graph showing test results when dimethylisoborneol was added to pure water, and humic acid and fulvic acid were added at different mixing ratios, and powdered activated carbon was injected. 純水にジェオスミンを添加すると共にフミン酸とフルボ酸の混合比を変えて添加し、粉末活性炭注入処理を行った場合の試験結果を示すグラフ。5 is a graph showing the test results when geosmin was added to pure water, and humic acid and fulvic acid were added at different mixing ratios, and powdered activated carbon was injected. 原水の溶解性有機体炭素濃度DOC=2.5(mg/L)、混和水pH=6.5に調整した被処理水に凝集剤を添加後、回転数150(rpm)で10分間急速撹拌処理し、回転数80(rpm)で60分緩速撹拌処理した場合の試験結果を示すグラフ。After adding a flocculant to the water to be treated, which has been adjusted to the raw water soluble organic carbon concentration DOCR = 2.5 (mg/L) and the mixed water pH F = 6.5, rotate at 150 (rpm) for 10 minutes. The graph which shows the test result at the time of rapid-stirring processing and slow-stirring processing for 60 minutes at rotation speed 80 (rpm). 粉末活性炭処理を回転数150(rpm)で60分急速撹拌後、水素イオン濃度指数(pH)を所定の値に調整、凝集剤を添加して回転数150(rpm)で10分間急速撹拌、回転数80(rpm)で60分緩速撹拌処理した場合の試験結果を示すグラフ。After rapidly stirring the powdered activated carbon treatment at 150 (rpm) for 60 minutes, the hydrogen ion concentration index (pH) is adjusted to a predetermined value, a flocculant is added, and the mixture is rapidly stirred at 150 (rpm) for 10 minutes and rotated. The graph which shows the test result at the time of slow-stirring processing for 60 minutes at several 80 (rpm). 比吸光度SUVAと係数fの関係を示す図。The figure which shows the relationship between the specific absorbance SUVA and the coefficient f. 第2の実施形態における臭気物質濃度測定装置13の構成の一例を示す図。The figure which shows an example of a structure of the odorant concentration measuring apparatus 13 in 2nd Embodiment. 第3の実施形態に係る水処理システムの構成の一例を示す図。The figure which shows an example of a structure of the water treatment system which concerns on 3rd Embodiment. 第3の実施形態の粉末活性炭注入制御システムに関わる動作の一例を示すフローチャート。11 is a flow chart showing an example of operations related to the powdered activated carbon injection control system of the third embodiment; 同実施形態の粉末活性炭注入制御システムに関わる設定処理および演算処理を詳細に示す動作の一例を示すフローチャート。4 is a flowchart showing an example of detailed operation of setting processing and arithmetic processing related to the powdered activated carbon injection control system of the embodiment;

以下、図面を参照して、実施の形態について説明する。 Embodiments will be described below with reference to the drawings.

<第1の実施形態>
最初に、第1の実施形態について説明する。
<First Embodiment>
First, the first embodiment will be described.

[システム構成]
図1は、第1の実施形態に係る水処理システムの構成の一例を示す図である。
[System configuration]
Drawing 1 is a figure showing an example of composition of a water treatment system concerning a 1st embodiment.

ここでは、本実施形態に係る水処理システムを、急速ろ過方式の水処理施設に適用した例を示す。但し、本実施形態の水処理システムは、急速ろ過方式の水処理施設に限らず、他の方式の水処理施設にも適用できる。例えば、膜ろ過方式や砂ろ過方式の水処理設備に適用することができる。 Here, an example in which the water treatment system according to the present embodiment is applied to a rapid sand filtration type water treatment facility is shown. However, the water treatment system of the present embodiment is not limited to the rapid sand filtration type water treatment facility, and can be applied to other types of water treatment facility. For example, it can be applied to membrane filtration type water treatment equipment and sand filtration type water treatment equipment.

図1に示される水処理施設1では、「吸着処理」および「凝集処理」を行う。吸着処理は、着水に含まれる臭気物質および溶解性有機物質を粉末活性炭により吸着除去する処理である。凝集処理は、着水に含まれる濁質を凝集剤により凝集沈降させる処理である。 In the water treatment facility 1 shown in FIG. 1, "adsorption treatment" and "coagulation treatment" are performed. The adsorption treatment is a treatment for adsorbing and removing odorous substances and soluble organic substances contained in landing water with powdered activated carbon. The flocculation process is a process of flocculating and sedimenting turbidity contained in landing water using a flocculating agent.

水処理施設1は、着水井20、粉末活性炭注入装置21、凝集剤混和池30、凝集剤注入装置31、凝集・沈澱池40、及び、図示していないろ過池、浄水池を備えている。 The water treatment facility 1 includes a receiving well 20, a powdered activated carbon injection device 21, a coagulant mixing basin 30, a coagulant injection device 31, a coagulation/sedimentation basin 40, and a filtration basin and a clean water basin (not shown).

着水井20は、配管2を通じて送られてくる原水(被処理水)を受け入れて着水として安定させる。この着水井20には、上述した吸着処理のために、粉末活性炭注入装置21が設けられる。粉末活性炭注入装置21は、粉末活性炭を被処理水に注入する粉末活性炭注入処理を行う。被処理水に注入された粉末活性炭は、原水に含まれる臭気物質および溶解性有機物質を吸着処理する。着水井20で吸着処理が行われた被処理水は、配管3を通じて凝集剤混和池30に導かれる。 The receiving well 20 receives the raw water (water to be treated) sent through the pipe 2 and stabilizes it as landing. This receiving well 20 is provided with a powder activated carbon injector 21 for the above-described adsorption treatment. The powdered activated carbon injection device 21 performs a powdered activated carbon injection process of injecting powdered activated carbon into the water to be treated. The powdered activated carbon injected into the water to be treated adsorbs odorous substances and soluble organic substances contained in the raw water. The water to be treated that has been subjected to the adsorption treatment in the receiving well 20 is guided to the coagulant mixing pond 30 through the pipe 3 .

凝集剤混和池30は、配管3を通じて送られてくる被処理水を受け入れる。この凝集剤混和池30には、上述した凝集処理のために、凝集剤注入装置31が設けられる。凝集剤注入装置31は、凝集剤を被処理水に注入する凝集剤注入処理を行う。被処理水に注入された凝集剤は、原水に含まれる粘土質、細菌、藻類等の懸濁物質(濁質)および着水井20で注入された粉末活性炭を凝集させ、微細なフロックを生成させる。凝集剤としては、アルミニウム系凝集剤及び鉄系凝集剤を用いることが好ましい。アルミニウム系凝集剤の例としては、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PACl)などが挙げられる。また、鉄系凝集剤の例としては、塩化鉄、硫酸鉄、およびポリシリカ鉄などが挙げられる。 The coagulant mixing pond 30 receives the water to be treated sent through the pipe 3 . The flocculant mixing pool 30 is provided with a flocculant injection device 31 for the flocculation treatment described above. The coagulant injection device 31 performs a coagulant injection process of injecting a coagulant into the water to be treated. The flocculant injected into the water to be treated aggregates suspended matter (turbidity) such as clay, bacteria and algae contained in the raw water and the powdered activated carbon injected in the receiving well 20 to form fine flocs. . As the flocculant, it is preferable to use an aluminum-based flocculant and an iron-based flocculant. Examples of aluminum-based flocculants include aluminum sulfate (aluminum sulfate) and polyaluminum chloride (PACl). Examples of iron-based flocculants include iron chloride, iron sulfate, and iron polysilica.

また、凝集剤混和池30には、被処理水の水素イオン濃度指数(pH値)を調整するために、酸化剤注入装置32も設けられる。酸化剤注入装置32は、硫酸等の酸化剤を被処理水に注入する。被処理水に注入された酸化剤は、被処理水の水素イオン濃度指数(pH値)を変える。 The coagulant mixing pond 30 is also provided with an oxidant injection device 32 for adjusting the hydrogen ion concentration index (pH value) of the water to be treated. The oxidant injector 32 injects an oxidant such as sulfuric acid into the water to be treated. The oxidizing agent injected into the water to be treated changes the hydrogen ion concentration index (pH value) of the water to be treated.

また、凝集剤混和池30には、被処理水を撹拌するための撹拌機30aが設けられている。この撹拌機30aは、例えばフラッシュミキサを用いて構成される。凝集剤混和池30で凝集剤および酸化剤が注入された被処理水は、撹拌機30aにより攪拌されて混和水となり、配管4を通じて凝集・沈澱池40に導かれる。 In addition, the coagulant mixing pond 30 is provided with an agitator 30a for agitating the water to be treated. This stirrer 30a is configured using, for example, a flash mixer. The water to be treated into which the flocculant and the oxidizing agent have been injected in the flocculant mixing tank 30 is stirred by the agitator 30 a to become mixed water, which is led through the pipe 4 to the flocculation/sedimentation tank 40 .

本実施形態に係る水処理システムには、処理水水質目標設定装置100、粉末活性炭注入制御装置200、および凝集剤注入制御装置300が備えられる。 The water treatment system according to this embodiment includes a treated water quality target setting device 100 , a powdered activated carbon injection control device 200 and a coagulant injection control device 300 .

処理水水質目標設定装置100は、被処理水の水質を示す各種の物理量に対する目標値を設定するものである。粉末活性炭注入制御装置200は、着水井20の被処理水に粉末活性炭を注入する粉末活性炭注入装置21を制御するものである。凝集剤注入制御装置300は、凝集剤混和池30の被処理水に凝集剤を注入する凝集剤注入装置31および酸化剤を注入する酸化剤注入装置32を制御するものである。 The treated water quality target setting device 100 sets target values for various physical quantities indicating the quality of the water to be treated. The powdered activated carbon injection control device 200 controls the powdered activated carbon injection device 21 that injects powdered activated carbon into the water to be treated in the receiving well 20 . The coagulant injection control device 300 controls the coagulant injection device 31 that injects the coagulant into the water to be treated in the coagulant mixing pond 30 and the oxidant injection device 32 that injects the oxidant.

なお、これらの処理水水質目標設定装置100、粉末活性炭注入制御装置200、および凝集剤注入制御装置300は、まとめて1つのコンピュータとして実現してもよいし、それぞれ個別のコンピュータとして実現してもよい。また、粉末活性炭注入制御装置200と凝集剤注入制御装置300とをあわせて、1つのコンピュータとして実現してもよい。また、これらの処理水水質目標設定装置100、粉末活性炭注入制御装置200、および凝集剤注入制御装置300のそれぞれの機能は、コンピュータに備えられる中央演算装置等のプロセッサが実行するプログラムとして実現してもよい。なお、処理水水質目標設定装置100、粉末活性炭注入制御装置200、および凝集剤注入制御装置300の詳細については、後で述べる。 The treated water quality target setting device 100, the powdered activated carbon injection control device 200, and the coagulant injection control device 300 may be collectively realized as one computer, or may be realized as individual computers. good. Further, the powdered activated carbon injection control device 200 and the flocculant injection control device 300 may be combined and realized as one computer. The functions of the treated water quality target setting device 100, the powdered activated carbon injection control device 200, and the coagulant injection control device 300 are realized as programs executed by a processor such as a central processing unit provided in a computer. good too. Details of the treated water quality target setting device 100, the powdered activated carbon injection control device 200, and the coagulant injection control device 300 will be described later.

配管2には、水質計器セット10、藻類検出判定装置(藻類検出判定手段)11、臭気物質推定装置(臭気物質推定手段)12、臭気物質濃度測定装置(臭気物質濃度測定手段)13、溶解性有機物質指標計器セット(溶解性有機物質指標測定手段)14、流量計15が備えられている。少なくともこれらの計器類と粉末活性炭注入制御装置200とは、粉末活性炭の注入制御を行う粉末活性炭注入制御システムを構成する。 The pipe 2 includes a water quality meter set 10, an algae detection determination device (algae detection determination means) 11, an odorant estimation device (odorant estimation means) 12, an odorant concentration measurement device (odorant concentration measurement means) 13, a solubility An organic substance indicator instrument set (soluble organic substance indicator measuring means) 14 and a flow meter 15 are provided. At least these instruments and the powdered activated carbon injection control device 200 constitute a powdered activated carbon injection control system that controls injection of powdered activated carbon.

水質計器セット10は、原水の水質を測定するものである。この水質計器セット10は、原水の濁度を測定する濁度計10a、原水のアルカリ度を測定するアルカリ度計10b、原水の水温を測定する水温計10c、および原水の水素イオン濃度(pH値)を測定する水素イオン濃度指数計10dを含む。これらの計器で測定されたデータは、凝集剤注入制御装置300へ供給される。 The water quality meter set 10 measures the water quality of raw water. This water quality instrument set 10 includes a turbidity meter 10a for measuring the turbidity of the raw water, an alkalinity meter 10b for measuring the alkalinity of the raw water, a water thermometer 10c for measuring the temperature of the raw water, and a hydrogen ion concentration (pH value) of the raw water. ) is included. Data measured by these instruments are supplied to the flocculant injection controller 300 .

藻類検出判定装置11は、原水に含まれる藻類を検出して当該藻類の種類(属性および種の少なくとも一方)の判定や藻類種類毎の計数を行い、その結果を示す藻類情報を生成するものである。例えば、藻類検出判定装置11は、原水が流入する配管2から原水の一部を採水して、特殊カメラで原水内を観察することで対象の藻類を検出し、その種類(属性および種)を判定する。藻類検出判定装置11により生成された藻類情報のデータは、臭気物質推定装置12へ供給される。この藻類情報のデータは、粉末活性炭注入制御装置200へも供給されるようにしてもよい。 The algae detection and determination device 11 detects algae contained in raw water, determines the type of algae (at least one of attributes and species), counts each type of algae, and generates algae information indicating the results. be. For example, the algae detection and determination device 11 collects part of the raw water from the pipe 2 into which the raw water flows, detects the target algae by observing the inside of the raw water with a special camera, and determines the type (attribute and species) judge. The algae information data generated by the algae detection and determination device 11 is supplied to the odorant estimation device 12 . This algae information data may also be supplied to the powdered activated carbon injection control device 200 .

臭気物質推定装置12は、藻類検出判定装置11から送られた藻類情報に基づき、藻類検出判定装置11により判定された藻類の種類から当該藻類が発する臭気物質の種類を推定するものである。臭気物質推定装置12で推定された藻類の種類を示すデータは、臭気物質濃度測定装置13へ供給される。この藻類の種類を示すデータは、粉末活性炭注入制御装置200へも供給されるようにしてもよい。 Based on the algae information sent from the algae detection and determination device 11, the odorant estimation device 12 estimates the type of odorant emitted by the algae based on the type of algae determined by the algae detection and determination device 11. Data indicating the type of algae estimated by the odorant estimation device 12 is supplied to the odorant concentration measurement device 13 . The data indicating the type of algae may also be supplied to the powdered activated carbon injection control device 200 .

臭気物質濃度測定装置13は、臭気物質推定装置12により推定された臭気物質の種類を対象に、原水に含まれる臭気物質の濃度を測定する。臭気物質濃度測定装置13で測定された濃度のデータは、粉末活性炭注入制御装置200へ供給される。 The odorant concentration measuring device 13 measures the concentration of the odorant contained in the raw water for the type of the odorant estimated by the odorant estimation device 12 . Concentration data measured by the odorant concentration measuring device 13 is supplied to the powdered activated carbon injection control device 200 .

溶解性有機物質指標計器セット14は、原水の紫外線吸光度、蛍光強度、溶解性有機体炭素濃度(DOC)の少なくともいずれかを溶解性有機物質指標値として測定するものである。この溶解性有機物質指標計器セット14は、原水の紫外線吸光度を測定する紫外線吸光度計14a、原水の蛍光強度を測定する蛍光強度計14b、および原水の溶解性有機体炭素濃度を測定する溶解性有機体炭素濃度計(DOC計)14cを含む。各計器で測定された溶解性有機物質指標値のデータは、粉末活性炭注入制御装置200へ供給される。 The soluble organic matter indicator instrument set 14 measures at least one of ultraviolet absorbance, fluorescence intensity, and soluble organic carbon concentration (DOC) of raw water as a soluble organic matter index value. This soluble organic substance indicator instrument set 14 includes an ultraviolet absorbance meter 14a for measuring the ultraviolet absorbance of the raw water, a fluorescence intensity meter 14b for measuring the fluorescence intensity of the raw water, and a soluble organic substance indicator for measuring the soluble organic carbon concentration of the raw water. Includes an airframe carbon concentration meter (DOC meter) 14c. Data on the soluble organic matter index value measured by each instrument is supplied to the powdered activated carbon injection control device 200 .

流量計15は、原水の流量を測定するものである。流量計15で測定された流量のデータは、粉末活性炭注入制御装置200へ供給される。 The flow meter 15 measures the flow rate of raw water. Flow rate data measured by the flow meter 15 is supplied to the powdered activated carbon injection control device 200 .

そのほか、凝集剤混和池30に、水素イオン濃度指数測定器(pH測定器)16が設けられる。この水素イオン濃度指数測定器16は、凝集剤混和池30の混和水の水素イオン濃度指数(pH値)を測定する。水素イオン濃度指数測定器16で測定された水素イオン濃度指数のデータは、凝集剤注入制御装置300へ供給される。 In addition, the coagulant mixing pond 30 is provided with a hydrogen ion concentration index measuring device (pH measuring device) 16 . This hydrogen ion concentration index measuring device 16 measures the hydrogen ion concentration index (pH value) of the mixed water in the coagulant mixing pond 30 . The hydrogen ion concentration index data measured by the hydrogen ion concentration index measuring device 16 is supplied to the coagulant injection control device 300 .

[藻類検出判定装置11の構成]
図2は、藻類検出判定装置11の構成の一例を示す図である。
[Configuration of algae detection and determination device 11]
FIG. 2 is a diagram showing an example of the configuration of the algae detection/determination device 11. As shown in FIG.

図2に示されるように、藻類検出判定装置11は、例えば、フローセル11a、照明11b、カメラ11cから成る観察セル11dと、カメラ11cで撮影した画像を基に、原水に含まれる藻類を検出し、検出される藻類の種類(属性および種)の判定や、藻類の種類毎の計数を行う画像解析ソフトおよび藻類参照データベース等を内蔵した計算機11fと、計算機11fにより処理した結果を表示する表示装置11gとを含む。この藻類検出判定装置11により生成された藻類情報は、臭気物質推定装置12へ供給される。 As shown in FIG. 2, the algae detection/judgment device 11 detects algae contained in raw water based on an observation cell 11d composed of, for example, a flow cell 11a, a lighting 11b, and a camera 11c, and an image taken by the camera 11c. , a computer 11f containing image analysis software for judging the type (attribute and species) of detected algae and counting for each type of algae, an algae reference database, etc., and a display device for displaying the results processed by the computer 11f. 11g. The algae information generated by the algae detection/determining device 11 is supplied to the odorant estimation device 12 .

なお、藻類検出判定装置11の構成は、図2の例に限られるものではない。同等の機能を実現できるのであれば、別の構成を採用してもよい。 Note that the configuration of the algae detection/determination device 11 is not limited to the example in FIG. A different configuration may be adopted as long as it can realize an equivalent function.

[臭気物質推定装置12が有する臭気物質参照情報]
図3は、臭気物質推定装置12に臭気物質参照データベースとして記憶されている臭気物質参照情報の一例を示す図である。
[Odor substance reference information possessed by odor substance estimation device 12]
FIG. 3 is a diagram showing an example of odorant reference information stored in the odorant estimation device 12 as an odorant reference database.

臭気物質参照情報は、各種の藻類とこれらの藻類からそれぞれ生じる臭気物質との関係を示す情報である。図3に示される臭気物質参照情報の例では、藻類として「アナベナ」、「オシラトリア」、「ホルミジウム」、[ウログレナ]が記載され、これらに対応する臭気物質としてそれぞれ「ジェオスミン」、「2-MIB(ジメチルイソボルネオール)」、「2-MIB(ジメチルイソボルネオール)」、「2,4-デカジエナール」が記載されている。 The odorant reference information is information indicating the relationship between various types of algae and odorants produced from these algae. In the example of odorant reference information shown in FIG. 3, "Anabaena", "Oscillatria", "Phormidium", and [Urogrena] are described as algae, and "Geosmin" and "2-MIB" are described as corresponding odorants, respectively. (dimethylisoborneol)”, “2-MIB (dimethylisoborneol)”, and “2,4-decadienal”.

臭気物質推定装置12は、当該情報に基づき、藻類検出判定装置11から供給された藻類情報に示される藻類の種類から、原水に含まれ可能性が最も高い臭気物質の種類を推定する。この臭気物質推定装置12により推定された臭気物質の種類を示す臭気物質情報が、臭気物質濃度測定装置13や粉末活性炭注入制御装置200へ供給される。 Based on the information, the odorant estimation device 12 estimates the type of odorant that is most likely contained in the raw water from the algae species indicated in the algae information supplied from the algae detection and determination device 11 . Odor substance information indicating the type of odor substance estimated by the odor substance estimation device 12 is supplied to the odor substance concentration measurement device 13 and the powdered activated carbon injection control device 200 .

なお、臭気物質参照情報は、図3の例に限られるものではない。同等の機能を実現できるのであれば、別の情報を採用してもよい。 Note that the odorant reference information is not limited to the example shown in FIG. Other information may be adopted as long as it can realize an equivalent function.

[臭気物質濃度測定装置13の構成]
図4は、臭気物質濃度測定装置13の構成の一例を示す図である。
[Configuration of odorant concentration measuring device 13]
FIG. 4 is a diagram showing an example of the configuration of the odorant concentration measuring device 13. As shown in FIG.

図4に示される臭気物質濃度測定装置13は、臭気物質抽出槽13a、除湿器13b、臭気センサーセル13c、臭気センサーヘッド(以下、「臭気センサー」)13d、および臭気物質濃度演算装置13fを含む。 The odorant concentration measuring device 13 shown in FIG. 4 includes an odorant extraction tank 13a, a dehumidifier 13b, an odor sensor cell 13c, an odor sensor head (hereinafter referred to as "odor sensor") 13d, and an odorant concentration calculator 13f. .

臭気物質抽出槽13aの内部にはオーバーフロートレイ13a-1、原水導入管13a-2がある。また、原水導入管13a-2内にはヒータ13a-3が内蔵されており、原水を所定の温度まで加熱することにより原水内の臭気物質が水蒸気とともに蒸発する。蒸発した水蒸気および臭気物質は、臭気物質抽出槽13aに取り付けられた送気ファン13a-4により取り込まれた空気とともに、除湿器13bへ送られ、ここで水蒸気が分離され、臭気物質を含む乾燥空気が臭気センサーセル13cへ送られる。臭気センサーセル13cには、臭気物質に反応する臭気センサー13dが取り付けられており、臭気物質の濃度に応じた出力が臭気物質濃度演算装置13fへ送られる。 An overflow tray 13a-1 and a raw water introduction pipe 13a-2 are provided inside the odorant extraction tank 13a. A heater 13a-3 is built in the raw water inlet pipe 13a-2, and heats the raw water to a predetermined temperature to evaporate the odorous substance in the raw water together with the steam. The evaporated water vapor and odorous substances are sent to the dehumidifier 13b together with the air taken in by the air supply fan 13a-4 attached to the odorant extraction tank 13a, where the water vapor is separated to produce dry air containing odorous substances. is sent to the odor sensor cell 13c. An odor sensor 13d that reacts to an odorant is attached to the odor sensor cell 13c, and an output corresponding to the concentration of the odorant is sent to the odorant concentration calculator 13f.

臭気物質濃度演算装置13fは、想定される各種の臭気物質毎に、臭気センサー13dの出力変化dV/dt(センサー出力Vの時間的変化(傾き))と臭気物質濃度との関係を示す換算式の情報を有しており、各種の換算式のうち、臭気物質推定装置12から供給された臭気物質情報に示される臭気物質の種類に応じた換算式を選定し、この換算式に基づき、臭気センサー13dの出力変化dV/dtから、その臭気物質の濃度を求める。この濃度を示す濃度情報が、粉末活性炭注入制御装置200へ供給される。なお、臭気センサー13dの出力変化dV/dtが確認されるものの、該当する臭気物質の種類が臭気物質推定装置12より供給された臭気物質情報から得られない場合は、ジメチルイソボルネオールを仮想臭気物質として、対応する換算式により濃度を求めてもよい。 The odorant concentration calculation unit 13f calculates the relationship between the output change dV/dt of the odor sensor 13d (temporal change (inclination) of the sensor output V) and the odorant concentration for each assumed odorant. From among various conversion formulas, a conversion formula corresponding to the type of odorant indicated in the odorant information supplied from the odorant estimation device 12 is selected, and based on this conversion formula, the odor The concentration of the odorant is obtained from the output change dV/dt of the sensor 13d. Concentration information indicating this concentration is supplied to the powdered activated carbon injection control device 200 . Although the output change dV/dt of the odor sensor 13d is confirmed, if the type of the corresponding odorant cannot be obtained from the odorant information supplied from the odorant estimation device 12, dimethylisoborneol is used as the virtual odorant. , the density may be obtained from the corresponding conversion formula.

ここで、臭気センサー13dの出力変化と各種の臭気物質の濃度との関係を図5A,図5B,及び図5Cを参照して説明する。 Here, the relationship between the output change of the odor sensor 13d and the concentration of various odorants will be described with reference to FIGS. 5A, 5B, and 5C.

[臭気センサー13dの出力変化と各種の臭気物質の濃度との関係]
図5Aは、臭気センサー13dの出力変化dV/dtと臭気物質「ジメチルイソボルネオール」の濃度との関係を示すグラフ及び換算式の例を示す図である。図5Bは、臭気センサー13dの出力変化dV/dtと臭気物質「ジェオスミン」の濃度との関係を示すグラフ及び換算式の例を示す図である。図5Cは、臭気センサー13dの出力変化dV/dtと臭気物質「2,4-デカジエナール」の濃度との関係を示すグラフ及び換算式の例を示す図である。
[Relationship between Output Change of Odor Sensor 13d and Concentration of Various Odor Substances]
FIG. 5A is a diagram showing an example of a graph and a conversion formula showing the relationship between the output change dV/dt of the odor sensor 13d and the concentration of the odorant "dimethylisoborneol". FIG. 5B is a diagram showing an example of a graph and a conversion formula showing the relationship between the output change dV/dt of the odor sensor 13d and the concentration of the odorant "geosmin". FIG. 5C is a graph showing the relationship between the output change dV/dt of the odor sensor 13d and the concentration of the odorant "2,4-decadienal" and an example of a conversion formula.

臭気センサーの出力は、電圧(mV)あるいは周波数(Hz)として出力される。臭気センサー13dに臭気物質が付着することにより、時間(t)の経過と共に出力Vが上昇する。このときの単位時間dt(sec)当たりの出力の変化dV(傾き)の大きさと臭気物質濃度とは比例する。また、臭気物質の種類により比例定数が異なるため、予めそれぞれの臭気物質に対応する比例係数kを設定しておき、臭気物質推定装置12から供給された臭気物質情報に示される臭気物質の種類に対応する換算式を選定するようにすることで、原水の臭気物質濃度を測定することができる。 The output of the odor sensor is output as voltage (mV) or frequency (Hz). As the odorant adheres to the odor sensor 13d, the output V increases with the lapse of time (t). At this time, the magnitude of change dV (inclination) of the output per unit time dt (sec) is proportional to the odorant concentration. In addition, since the proportionality constant differs depending on the type of odorant, the proportionality coefficient k corresponding to each odorant is set in advance, and the type of odorant indicated in the odorant information supplied from the odorant estimating device 12 is used. By selecting a corresponding conversion formula, the odorant concentration of raw water can be measured.

ジメチルイソボルネオール、ジェオスミン、2,4-デカジエナールにそれぞれ対応する換算式の例を以下に示す。 Examples of conversion formulas corresponding to dimethylisoborneol, geosmin, and 2,4-decadienal are shown below.

2-MIB = k2-MIB × dV/dt + v ・・・(1) C2 -MIB = k2 -MIB x dV/dt + v (1)

Geosmin = kGeosmin × dV/dt + v ・・・(2) C Geosmin = k Geosmin x dV/dt + v (2)

= k × dV/dt + v ・・・(3) CD= kD × dV /dt+v (3)

ここで、C:臭気物質濃度(ng/L)、添え字の2-MIB:ジメチルイソボルネオール、添え字のGeosmin:ジェオスミン,添え字のD:2,4-デカジエナール、k:比例係数、dV:出力変化(mVまたはHz)、dt:時間変化(sec)である。 Here, C: odorant concentration (ng/L), subscript 2-MIB: dimethylisoborneol, subscript Geosmin: geosmin, subscript D: 2,4-decadienal, k: proportional coefficient, dV: Output change (mV or Hz), dt: time change (sec).

このような(1)~(3)式に示される各換算式のうち、臭気物質推定装置12により推定された臭気物質の種類に対応する換算式を用いることにより、臭気センサー13dの出力変化dV/dtから、その臭気物質の濃度を求めることができる。 By using the conversion formula corresponding to the type of odor substance estimated by the odor substance estimation device 12 among the conversion formulas (1) to (3), the output change dV of the odor sensor 13d can be calculated. /dt, the concentration of the odorant can be determined.

[装置100、200、300の機能の概要]
次に、上述した処理水水質目標設定装置100、粉末活性炭注入制御装置200、および凝集剤注入制御装置300の各種機能について説明する。
[Overview of Functions of Devices 100, 200, and 300]
Next, various functions of the treated water quality target setting device 100, the powdered activated carbon injection control device 200, and the coagulant injection control device 300 will be described.

処理水水質目標設定装置100は、前述したように、被処理水の水質を示す各種の物理量に対する目標値を設定するものである。具体的には、各種の臭気物質の濃度の目標値(目標臭気物質濃度)として、例えば、臭気物質「ジメチルイソボルネオール」の濃度、臭気物質「ジェオスミン」の濃度、臭気物質「2,4-デカジエナール」の濃度のそれぞれの目標濃度(目標臭気物質濃度)が設定される。また、溶解性有機物質指標値の目標値(目標溶解性有機物質指標値)として、紫外線吸光度、蛍光強度、溶解性有機体炭素濃度のそれぞれの目標値(目標紫外線吸光度、目標蛍光強度、目標溶解性有機体炭素濃度)の少なくともいずれかが設定される。そのほか、濁度の目標値(目標濁度)や、水素イオン濃度指数の目標値(目標水素イオン濃度指数)が設定される。 As described above, the treated water quality target setting device 100 sets target values for various physical quantities indicating the quality of the water to be treated. Specifically, as target values (target odorant concentrations) for various odorant concentrations, for example, the concentration of the odorant "dimethylisoborneol", the concentration of the odorant "geosmin", and the odorant "2,4-decadienal ] are set (target odorant concentration). In addition, as the target value of the soluble organic matter index value (target soluble organic matter index value), the target values of ultraviolet absorbance, fluorescence intensity, and soluble organic carbon concentration (target ultraviolet absorbance, target fluorescence intensity, target dissolution organic carbon concentration) is set. In addition, a target value of turbidity (target turbidity) and a target value of hydrogen ion concentration index (target hydrogen ion concentration index) are set.

粉末活性炭注入制御装置200は、前述したように、着水井20の被処理水に粉末活性炭を注入する粉末活性炭注入装置21を制御するものである。この粉末活性炭注入制御装置200は、処理水水質目標設定装置100で設定されたデータを取り込むと共に、必要に応じて藻類検出判定装置11、臭気物質推定装置12、臭気物質濃度測定装置13、溶解性有機物質指標計器セット14、流量計15から供給される各種のデータや、凝集剤注入制御装置300のから供給されるデータを取り込み、これらのデータを用いて、着水井20の被処理水に注入する粉末活性炭の注入率を制御する。 The powdered activated carbon injection control device 200 controls the powdered activated carbon injection device 21 that injects the powdered activated carbon into the water to be treated in the receiving well 20, as described above. This powdered activated carbon injection control device 200 takes in the data set by the treated water quality target setting device 100, and if necessary, the algae detection determination device 11, the odor substance estimation device 12, the odor substance concentration measurement device 13, the solubility Various data supplied from the organic substance indicator instrument set 14 and the flow meter 15 and data supplied from the coagulant injection control device 300 are taken in, and these data are used to inject into the water to be treated in the receiving well 20. Controls the injection rate of the powdered activated carbon used.

凝集剤注入制御装置300は、前述したように、凝集剤混和池30の被処理水に凝集剤を注入する凝集剤注入装置31および酸化剤を注入する酸化剤注入装置32を制御するものである。この凝集剤注入制御装置300は、処理水水質目標設定装置100で設定されたデータを取り込むと共に、水質計器セット10から供給されるデータや水素イオン濃度指数測定器16から供給されるデータを取り込み、これらのデータを用いて、凝集剤混和池30の被処理水に注入する凝集剤の注入率や酸化剤の注入率を制御する。 As described above, the coagulant injection control device 300 controls the coagulant injection device 31 that injects the coagulant into the water to be treated in the coagulant mixing tank 30 and the oxidant injection device 32 that injects the oxidant. . This coagulant injection control device 300 takes in data set by the treated water quality target setting device 100, and also takes in data supplied from the water quality meter set 10 and data supplied from the hydrogen ion concentration index measuring device 16, These data are used to control the injection rate of the coagulant and the injection rate of the oxidant to be injected into the water to be treated in the coagulant mixing pond 30 .

[粉末活性炭注入制御装置200が備えている各種の機能]
以下、本実施形態の粉末活性炭注入制御装置200が備えている各種の機能を示す。
[Various Functions of Powdered Activated Carbon Injection Control Device 200]
Various functions provided in the powdered activated carbon injection control device 200 of the present embodiment are described below.

本実施形態の粉末活性炭注入制御装置200は、少なくとも臭気物質濃度測定装置13により測定された臭気物質の濃度を用いて、着水井20の被処理水に含まれる臭気物質の濃度を目標臭気物質濃度にするための粉末活性炭注入率(以下、「臭気物質対応粉末活性炭注入率」)を計算し、当該臭気物質対応粉末活性炭注入率に基づき、着水井20の被処理水に注入する粉末活性炭の注入量を制御する機能を有する。 The powdered activated carbon injection control device 200 of this embodiment uses at least the concentration of the odorant measured by the odorant concentration measuring device 13 to determine the concentration of the odorant contained in the water to be treated in the receiving well 20 from the target odorant concentration. Calculate the powdered activated carbon injection rate (hereinafter referred to as the “odorant-compatible powdered activated carbon injection rate”) for Has the ability to control the amount.

また、粉末活性炭注入制御装置200は、溶解性有機物質指標測定セット14により測定された溶解性有機物質指標値(紫外線吸光度、蛍光強度、溶解性有機体炭素濃度の少なくともいずれか)を用いて、着水井20の被処理水の溶解性有機物質残存率を目標の残存率にするための粉末活性炭注入率(以下、「溶解性有機物質対応粉末活性炭注入率」)を計算し、この溶解性有機物質対応粉末活性炭注入率と前記臭気物質対応粉末活性炭注入率とを比較し、大きい方の粉末活性炭注入率に従って、着水井20の被処理水に注入する粉末活性炭の注入量を制御する機能を有する。 In addition, the powdered activated carbon injection control device 200 uses the soluble organic substance index value (at least one of ultraviolet absorbance, fluorescence intensity, and soluble organic carbon concentration) measured by the soluble organic substance index measurement set 14 to A powdered activated carbon injection rate (hereinafter referred to as “dissolved organic substance compatible powdered activated carbon injection rate”) for achieving a target residual rate of soluble organic substances in the water to be treated in the receiving well 20 is calculated. It has a function of comparing the injection rate of powdered activated carbon corresponding to the substance and the injection rate of powdered activated carbon corresponding to the odorant, and controlling the injection amount of powdered activated carbon to be injected into the water to be treated in the receiving well 20 according to the larger powdered activated carbon injection rate. .

また、粉末活性炭注入制御装置200は、臭気物質濃度測定装置13により測定された臭気物質の濃度が目標臭気物質濃度より大きい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも大きくなるように制御し、臭気物質濃度測定装置13により測定された臭気物質の濃度が目標臭気物質濃度より小さい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも小さくなるように制御する機能を有する。 Further, when the concentration of the odorant measured by the odorant concentration measuring device 13 is greater than the target concentration of the odorant, the powdered activated carbon injection control device 200 determines that the powdered activated carbon injection rate corresponding to the odorant is lower than the predetermined reference value. When the concentration of the odorant measured by the odorant concentration measuring device 13 is smaller than the target odorant concentration, the powdered activated carbon injection rate corresponding to the odorant is controlled to be smaller than the predetermined reference value. It has a function to control

また、粉末活性炭注入制御装置200は、粉末活性炭による臭気物質の吸着を阻害する溶解性有機物質の影響が補完されるように、前記臭気物質対応粉末活性炭注入率を計算する機能を有する。 In addition, the powdered activated carbon injection control device 200 has a function of calculating the powdered activated carbon injection rate corresponding to the odorant so as to compensate for the influence of the soluble organic substance that inhibits the adsorption of the odorant by the powdered activated carbon.

また、粉末活性炭注入制御装置200は、粉末活性炭注入処理と凝集剤注入処理とを併用するに際して当該粉末活性炭による臭気物質の吸着を阻害する溶解性有機物質の影響が補完されるように、前記溶解性有機物質対応粉末活性炭注入率を計算する機能を有する。 In addition, the powdered activated carbon injection control device 200 controls the powdered activated carbon injection process and the coagulant injection process so that the effect of the soluble organic substance that inhibits the adsorption of the odorant by the powdered activated carbon is complemented. It has a function to calculate the injection rate of powdered activated carbon for organic substances.

[動作の概要]
次に、図6Aのフローチャートを参照して、第1の実施形態の粉末活性炭注入制御システムに関わる動作の一例を説明する。但し、以下に説明する各ステップの処理は必ずしも図6Aに示される順序で実施される必要はなく、適宜、実施する順序を変えてもよい。
[Overview of operation]
Next, an example of the operation related to the powdered activated carbon injection control system of the first embodiment will be described with reference to the flowchart of FIG. 6A. However, the processing of each step described below does not necessarily have to be performed in the order shown in FIG. 6A, and the order of performing may be changed as appropriate.

処理水水質目標設定装置100では、被処理水の水質を示す各種の目標値(目標臭気物質濃度、目標溶解性有機物質指標値(目標紫外線吸光度、目標蛍光強度、目標溶解性有機体炭素濃度の少なくともいずれか)、目標濁度、および目標水素イオン濃度指数)が設定される(S101)。設定された目標臭気物質濃度、目標溶解性有機物質指標値、および目標水素イオン濃度指数の各データは粉末活性炭注入制御装置200に取り込まれ、一方、設定された目標濁度のデータは凝集剤注入制御装置300に取り込まれる。 In the treated water quality target setting device 100, various target values indicating the water quality of the water to be treated (target odorant concentration, target soluble organic substance index value (target ultraviolet absorbance, target fluorescence intensity, target soluble organic carbon concentration) At least one of them), the target turbidity, and the target hydrogen ion concentration index) are set (S101). The set target odorant concentration, target soluble organic matter index value, and target hydrogen ion concentration index data are taken into the powdered activated carbon injection control device 200, while the set target turbidity data are obtained from the coagulant injection. It is taken into the control device 300 .

一方、水質計器セット10では、原水の水質(濁度、アルカリ度、水温、水素イオン濃度指数)が測定される。測定された水質のデータは凝集剤注入制御装置300に取り込まれる。また、藻類検出判定装置11では、原水に含まれる藻類の検出、当該藻類の種類の判定が行われ、臭気物質推定装置12では、藻類の種類から当該藻類が発する臭気物質の種類が推定され、臭気物質濃度測定装置13では、推定された臭気物質の種類を対象に、原水に含まれる臭気物質の濃度が測定され、溶解性有機物質指標計器セット14では、原水の紫外線吸光度、蛍光強度、溶解性有機体炭素濃度の少なくともいずれかの溶解性有機物質指標値が測定され、流量計15では、原水の流量が測定される(S102)。これらの測定されたデータは粉末活性炭注入制御装置200に取り込まれる。 On the other hand, the water quality instrument set 10 measures the quality of raw water (turbidity, alkalinity, water temperature, hydrogen ion concentration index). The measured water quality data is taken into the coagulant injection control device 300 . The algae detection and determination device 11 detects algae contained in the raw water and determines the type of algae. The odorant concentration measuring device 13 measures the concentration of the odorant contained in the raw water for the estimated type of odorant. At least one of the soluble organic substance index values of the organic carbon concentration is measured, and the flow rate of the raw water is measured by the flow meter 15 (S102). These measured data are taken into the powdered activated carbon injection control device 200 .

また、水素イオン濃度指数測定器16では、凝集剤混和池30の混和水の水素イオン濃度指数(pH値)が測定される(S103)。測定された水素イオン濃度指数のデータは凝集剤注入制御装置300に取り込まれる。 Further, the hydrogen ion concentration index measuring device 16 measures the hydrogen ion concentration index (pH value) of the mixed water in the coagulant mixing pond 30 (S103). Data of the measured hydrogen ion concentration index are taken into the coagulant injection control device 300 .

凝集剤注入制御装置300は、水質計器セット10で測定された原水の濁度、アルカリ度、水温、および水素イオン濃度指数と、水素イオン濃度指数測定器16で測定された水素イオン濃度指数とを用いて、目標濁度を達成するための凝集剤注入率を演算し(S104)、当該凝集剤注入率に従って凝集剤混和池30の被処理水に凝集剤が注入されるように凝集剤注入装置31を制御すると共に酸化剤も注入されるように酸化剤注入装置32を制御する(S105)。なお、このステップS105の処理は、例えば後述するステップS107の処理と同時に行ってもよいし、あるいはその後に行ってもよい。 The coagulant injection control device 300 measures the turbidity, alkalinity, water temperature, and hydrogen ion concentration index of the raw water measured by the water quality instrument set 10, and the hydrogen ion concentration index measured by the hydrogen ion concentration index measuring device 16. is used to calculate the coagulant injection rate for achieving the target turbidity (S104), and the coagulant injection device is operated so that the coagulant is injected into the water to be treated in the coagulant mixing basin 30 according to the coagulant injection rate 31, the oxidant injector 32 is controlled so that the oxidant is also injected (S105). Note that the process of step S105 may be performed at the same time as the process of step S107, which will be described later, or after that.

粉末活性炭注入制御装置200は、臭気物質濃度測定装置13で測定された臭気物質の濃度などを用いて、目標臭気物質濃度を達成するための臭気物質対応粉末活性炭注入率を計算すると共に、溶解性有機物質指標計器セット14で測定された溶解性有機物質指標値などを用いて、目標溶解性有機物質指標値を達成するための溶解性有機物質対応粉末活性炭注入率を計算し、この溶解性有機物質対応粉末活性炭注入率と前記臭気物質対応粉末活性炭注入率のうち、大きい方の粉末活性炭注入率を算出し(S106)、当該粉末活性炭注入率に従って着水井20の被処理水に粉末活性炭が注入されるように粉末活性炭注入装置21を制御する(S107)。この場合、粉末活性炭注入制御装置200は、例えば、算出した粉末活性炭注入率と、流量計15で測定された流量とから、粉末活性炭の単位時間あたりの注入量を計算し、当該注入量の粉末活性炭が着水井20の被処理水に注入されるように粉末活性炭注入装置21を制御することができる。 The powdered activated carbon injection control device 200 uses the concentration of the odorant measured by the odorant concentration measuring device 13 to calculate the powdered activated carbon injection rate corresponding to the odorant for achieving the target concentration of the odorant, Using the soluble organic substance index value measured by the organic substance index instrument set 14, etc., the powdered activated carbon injection rate corresponding to the soluble organic substance for achieving the target soluble organic substance index value is calculated. The larger powdered activated carbon injection rate is calculated from the powdered activated carbon injection rate corresponding to the substance and the powdered activated carbon injection rate corresponding to the odorant (S106), and the powdered activated carbon is injected into the water to be treated in the receiving well 20 according to the powdered activated carbon injection rate. The powdered activated carbon injector 21 is controlled so that the powder is injected (S107). In this case, the powdered activated carbon injection control device 200, for example, calculates the injection amount of the powdered activated carbon per unit time from the calculated powdered activated carbon injection rate and the flow rate measured by the flow meter 15, and The powdered activated carbon injector 21 can be controlled so that activated carbon is injected into the water to be treated in the receiving well 20 .

以降、ステップS102からステップS107までの処理が繰り返し行われる。 Henceforth, the process from step S102 to step S107 is performed repeatedly.

[設定処理および演算処理の具体例]
次に、図6Bのフローチャートを参照して、同実施形態の粉末活性炭注入制御システムに関わる設定処理および演算処理を詳細に示す動作の一例を説明する。但し、以下に説明する各ステップの処理は必ずしも図6Bに示される順序で実施される必要はなく、適宜実施する順序を変えてもよい。
[Specific example of setting processing and arithmetic processing]
Next, with reference to the flowchart of FIG. 6B, an example of operation showing details of setting processing and arithmetic processing related to the powdered activated carbon injection control system of the embodiment will be described. However, the processing of each step described below does not necessarily have to be performed in the order shown in FIG. 6B, and the order of performing may be changed as appropriate.

ステップS1では、処理水水質目標設定装置100において、水処理後の水道水質目標値として各種の目標値が設定される。 In step S1, in the treated water quality target setting device 100, various target values are set as tap water quality target values after water treatment.

ここでは、各種の臭気物質の目標臭気物質濃度の例として、原水に含まれると想定される「ジメチルイソボルネオール」,「ジェオスミン」,「2,4-デカジエナール」,…の目標臭気物質濃度C2-MIB,CGeosmin,C…がそれぞれ設定され、目標溶解性有機物質指標値の一例として目標紫外線吸光度UVDが設定されるものとする。また、目標濁度TuDおよび目標水素イオン濃度指数pHDも設定される。 Here, as an example of the target odorant concentrations of various odorants, the target odorant concentrations C 2 −MIB , C Geosmin , CD . A target turbidity Tu D and a target hydrogen ion concentration index pH D are also set.

設定された目標臭気物質濃度C2-MIB,CGeosmin,C、目標紫外線吸光度UVD、および目標水素イオン濃度指数pHDの各データは粉末活性炭注入制御装置200に取り込まれ、一方、設定された目標濁度TuDのデータは凝集剤注入制御装置300に取り込まれる。 Data on the set target odorant concentrations C 2-MIB , C Geosmin , and CD , the target ultraviolet absorbance UV D , and the target hydrogen ion concentration index pH D are taken into the powdered activated carbon injection control device 200. The data of the target turbidity Tu D obtained is taken into the coagulant injection control device 300 .

以降の説明では、説明を理解しやすいものとするため、各種の臭気物質「ジメチルイソボルネオール」,「ジェオスミン」,「2,4-デカジエナール」,…のうち、「ジメチルイソボルネオール」を対象とした計算例を示す。 In the following explanation, in order to make the explanation easier to understand, among various odorous substances “dimethylisoborneol”, “geosmin”, “2,4-decadienal”, etc., “dimethylisoborneol” is targeted. A calculation example is shown.

ステップS2では、粉末活性炭注入制御装置200において、臭気物質の残存率の目標値である目標臭気物質残存率が計算される。ここでは、一例としてジメチルイソボルネオールの目標臭気物質残存率RC2-MIBが計算される場合の例を示す。 In step S2, the powdered activated carbon injection control device 200 calculates a target odorant residual rate, which is a target value of the odorant residual rate. Here, an example in which the target odor substance retention rate RC 2-MIB of dimethylisoborneol is calculated is shown as an example.

粉末活性炭注入制御装置200は、処理水水質目標設定装置100で設定されたジメチルイソボルネオールの目標臭気物質濃度C2-MIBと、臭気物質濃度測定装置13で測定された原水の臭気物質濃度CRとから、ジメチルイソボルネオールの目標臭気物質残存率RC2-MIBを次式により計算する。 The powdered activated carbon injection control device 200 controls the target odorant concentration C 2-MIB of dimethylisoborneol set by the treated water quality target setting device 100 and the raw water odorant concentration C R measured by the odorant concentration measuring device 13. , the target odor substance residual rate RC 2-MIB of dimethylisoborneol is calculated by the following equation.

RC2-MIB = C2-MIB /C ・・・(4) RC2 -MIB = C2 -MIB / CR (4)

ステップS3では、粉末活性炭注入制御装置200において、ステップS2で計算された目標臭気物質残存率を達成する粉末活性炭注入率である臭気物質対応粉末活性炭注入率が計算される。ここでは、一例としてジメチルイソボルネオールに対応する臭気物質対応粉末活性炭注入率Icar-Dが計算される場合の例を示す。 In step S3, the powdered activated carbon injection control device 200 calculates the powdered activated carbon injection rate corresponding to the odorant, which is the powdered activated carbon injection rate that achieves the target odorant residual rate calculated in step S2. Here, as an example, an example in which the powdered activated carbon injection rate Icar-D corresponding to the odorant corresponding to dimethylisoborneol is calculated is shown.

粉末活性炭注入制御装置200は、ジメチルイソボルネオールの濃度を目標臭気物質濃度C2-MIBにするための臭気物質対応粉末活性炭注入率Icar-Dを次式により計算する。 The powdered activated carbon injection control device 200 calculates the powdered activated carbon injection rate Icar-D corresponding to the odorant for bringing the concentration of dimethylisoborneol to the target odorant concentration C 2-MIB using the following equation.

car-D = f(RC2-MIB,E260,DOC,FL) ・・・(5) Icar -D =f(RC2 -MIB , E260R , DOCR , FLR ) (5)

上記の式の中のE260は、原水の紫外線吸光度UVを表す指標の一例として、原水の波長260(nm)の紫外線吸光度(abs/m)を示すものである。 E260 R in the above formula indicates the ultraviolet absorbance (abs/m) at a wavelength of 260 (nm) of raw water as an example of an index representing the ultraviolet absorbance UV R of raw water.

粉末活性炭の臭気物質吸着においては、共存する有機物による吸着阻害の影響を受ける。そのため、臭気物質対応粉末活性炭注入率Icar-Dを計算するにあたっては、その影響を補完するような補正処理を施すことが望ましい。以下、これに関して図7~図9を参照して説明する。 The adsorption of odorants by powdered activated carbon is affected by the inhibition of adsorption by coexisting organic matter. Therefore, when calculating the powdered activated carbon injection rate Icar-D corresponding to the odorant, it is desirable to perform a correction process to complement the influence. This will be described below with reference to FIGS. 7 to 9. FIG.

図7は、某浄水場原水にジメチルイソボルネオールもしくはジェオスミンを添加して、同一の粉末活性炭注入処理を行った場合の発明者らによる試験結果を示すグラフである。 FIG. 7 is a graph showing test results by the inventors when dimethylisoborneol or geosmin was added to the raw water of a certain water purification plant and the same powdered activated carbon injection treatment was performed.

図7のグラフには、一般的な粉末活性炭注入率Icar(mg/L)と各臭気物質の臭気物質残存率RC(%)との関係が表れている。このグラフから、同一原水、同一粉末活性炭を用いた場合でも臭気物質の種類により吸着特性が異なることが分かる。 The graph of FIG. 7 shows the relationship between the general powdered activated carbon injection rate Icar (mg/L) and the odorant residual rate RC (%) of each odorant. From this graph, it can be seen that even when the same raw water and the same powdered activated carbon are used, the adsorption characteristics differ depending on the type of odorant.

図8は、純水にジメチルイソボルネオールを添加すると共にフミン酸とフルボ酸の混合比を変えて添加し、粉末活性炭注入処理を行った場合の試験結果を示すグラフである。図9は、純水にジェオスミンを添加すると共にフミン酸とフルボ酸の混合比を変えて添加し、粉末活性炭注入処理を行った場合の試験結果を示すグラフである。 FIG. 8 is a graph showing test results when dimethylisoborneol was added to pure water, and humic acid and fulvic acid were added at different mixing ratios, and powdered activated carbon was injected. FIG. 9 is a graph showing test results when geosmin was added to pure water, and humic acid and fulvic acid were added at different mixing ratios, and powdered activated carbon was injected.

図8及び図9のグラフには、粉末活性炭注入率Icar(mg/L)とジメチルイソボルネオールの臭気物質残存率RC2-MIB(%)もしくはジェオスミンの臭気物質残存率RCGeosmin(%)と関係が表れている。いずれの試験結果も、合計添加濃度TOC≒3.0(mg/L)とし、ジャーテスターにて回転数150(rpm)で60分急速撹拌処理した結果である。これらのグラフから分かるように、粉末活性炭の臭気物質吸着においては共存有機物の構造(フミン酸/フルボ酸比)により異なる影響を受ける。 The graphs of FIGS. 8 and 9 show the powdered activated carbon injection rate I car (mg/L) and the odorant residual rate RC 2-MIB (%) of dimethylisoborneol or the odorant residual rate RC Geosmin (%) of geosmin. relationship is shown. All test results are the results of rapid stirring treatment with a jar tester at 150 (rpm) for 60 minutes with a total additive concentration of TOC ≈ 3.0 (mg/L). As can be seen from these graphs, the adsorption of odorants by powdered activated carbon is affected differently by the structure of coexisting organic matter (humic acid/fulvic acid ratio).

したがって、臭気物質対応粉末活性炭注入率Icar-Dを計算するにあたっては、共存する有機物の指標である溶解性有機物質指標値(ここでは、例えば紫外線吸光度E260)、溶解性有機体炭素濃度DOC、蛍光強度FL等の割合を考慮することが望ましい。さらに、対象となる臭気物質によって共存有機物の影響の受け方も異なるため、想定される複数種の臭気物質について臭気物質毎に、補正のための係数を(5)式の関数に含めることで、臭気物質推定装置12で推定された臭気物質に対応する適正な粉末活性炭注入率を計算することが可能となる。 Therefore, when calculating the powdered activated carbon injection rate Icar-D corresponding to odorous substances, the soluble organic substance index value (here, for example, the ultraviolet absorbance E260 R ), which is an index of coexisting organic substances, the soluble organic carbon concentration DOC It is desirable to consider the ratio of R , fluorescence intensity FL R , and the like. Furthermore, since the effect of coexisting organic matter differs depending on the target odorant, by including a correction coefficient for each odorant in the function of formula (5) for multiple types of assumed odorants, the odor It is possible to calculate an appropriate powdered activated carbon injection rate corresponding to the odorous substance estimated by the substance estimating device 12 .

ステップS4では、粉末活性炭注入制御装置200において、溶解性有機物質の残存率の目標値である目標溶解性有機物質残存率が計算される。ここでは、溶解性有機物質指標値の一例として紫外線吸光度を用いた目標紫外線吸光度残存率RUVが計算される場合の例を示す。 In step S4, the powdered activated carbon injection control device 200 calculates a target soluble organic substance residual ratio, which is a target value of the soluble organic substance residual ratio. Here, an example in which the target ultraviolet absorbance residual rate RUV T is calculated using the ultraviolet absorbance as an example of the soluble organic substance index value is shown.

粉末活性炭注入制御装置200は、処理水水質目標設定装置100で設定された目標紫外線吸光度UVと、紫外線吸光度計14aで測定された原水の紫外線吸光度UVとから、目標紫外線吸光度残存率RUVを次式により計算する。 The powdered activated carbon injection control device 200 calculates the target UV absorbance residual rate RUV T from the target UV absorbance UV D set by the treated water quality target setting device 100 and the UV absorbance UV R of the raw water measured by the UV absorbance meter 14a. is calculated by the following formula.

RUV = UV/UV ・・・(6) RUV T = UV D /UV R (6)

ステップS5では、凝集剤注入制御装置300において、目標濁度Tuを達成するための凝集剤注入率Ipaclが計算される。 In step S5, the coagulant injection rate I pacl for achieving the target turbidity Tu D is calculated in the coagulant injection control device 300 .

凝集剤注入制御装置300は、処理水水質目標設定装置100で設定された目標濁度Tuと、水質計器セット10における濁度計10a、アルカリ度計10b、水温計10c、および水素イオン濃度指数計10dにより測定された、原水濁度Tu、原水アルカリ度Alk、水温T、および水素イオン濃度指数pH、ならびに凝集剤混和池30に設置された水素イオン濃度指数測定器16により測定された混和池水素イオン濃度指数pHを用いて、目標濁度Tuを達成するための凝集剤注入率Ipaclを計算する。 The coagulant injection control device 300 controls the target turbidity Tu D set by the treated water quality target setting device 100, the turbidity meter 10a, the alkalinity meter 10b, the water temperature meter 10c, and the hydrogen ion concentration index in the water quality meter set 10. Raw water turbidity Tu R , raw water alkalinity Alk R , water temperature T R , and hydrogen ion concentration index pH R measured by the total 10d, and the hydrogen ion concentration index measuring device 16 installed in the coagulant mixing pond 30. Calculate the flocculant injection rate I pacl to achieve the target turbidity Tu D using the calculated mixed pond pH F.

Ipacl = f(Tu,Tu,Alk,T,pH,pH) ・・・(7) I pacl = f (Tu D , Tu R , Alk R , TR , pH R , pH F ) (7)

ステップS6では、凝集剤注入制御装置300において、計算された凝集剤注入率Ipaclに従って凝集剤混和池30の被処理水に凝集剤が注入されるように凝集剤注入装置31が制御される。 In step S6, the coagulant injection control device 300 controls the coagulant injection device 31 so that the coagulant is injected into the water to be treated in the coagulant mixing tank 30 according to the calculated coagulant injection rate I pacl .

ステップS7では、粉末活性炭注入制御装置200において、凝集処理を行った場合に凝集処理後に残存する溶解性有機物質の残存率である凝集処理後溶解性有機物質残存率が計算される。ここでは、一例として凝集処理後紫外線吸光度残存率RUVpaclが計算される場合の例を示す。 In step S7, the powdered activated carbon injection control device 200 calculates the soluble organic substance residual ratio after the coagulation treatment, which is the residual ratio of the soluble organic substances remaining after the coagulation treatment. Here, as an example, an example in which the post-aggregation treatment ultraviolet light absorbance residual rate RUV pacl is calculated is shown.

粉末活性炭注入制御装置200は、凝集剤注入率Ipaclによる凝集処理後に残存する溶解性有機物質の残存率を、凝集処理後紫外線吸光度残存率RUVpaclとして計算する。 The powdered activated carbon injection control device 200 calculates the residual rate of the soluble organic substances remaining after the flocculation treatment with the flocculant injection rate I pacl as the post-flocculation ultraviolet absorbance residual rate RUV pacl .

なお、凝集処理による溶解性有機物質の除去においても有機物構造の影響を受ける。そのため、凝集処理後紫外線吸光度残存率RUVpaclを計算するにあたっては、その影響を補完するような補正処理を施すことが望ましい。以下、これに関して図10を参照して説明する。 The removal of soluble organic substances by flocculation is also affected by the structure of organic substances. Therefore, in calculating the post-aggregation UV absorbance residual rate RUV pacl , it is desirable to perform a correction process to complement the influence. This will be described below with reference to FIG.

図10は、発明者らが、原水の溶解性有機体炭素濃度DOC=2.5(mg/L)、混和水pH=6.5に調整した被処理水に凝集剤を添加後、回転数150(rpm)で10分間急速撹拌処理し、回転数80(rpm)で60分緩速撹拌処理した場合の試験結果を示すグラフである。 FIG. 10 shows that after the inventors added a flocculant to the water to be treated, which was adjusted to the raw water soluble organic carbon concentration DOCR = 2.5 (mg / L) and the mixed water pH F = 6.5, It is a graph which shows the test result at the time of rapid stirring processing for 10 minutes at rotation speed 150 (rpm), and slow stirring processing at rotation speed 80 (rpm) for 60 minutes.

この試験においても、溶解性有機物質としてフミン酸とフルボ酸の混合比を変えて添加した。図10のグラフには、凝集剤注入率Ipacl(mg/L)と凝集処理後紫外線吸光度残存率RUVpacl(%)との関係が表れている。なお、縦軸の凝集処理後紫外線吸光度残存率RUVpaclは、凝集処理後の紫外線吸光度UVpaclを原水の紫外線吸光度UVで除した値を示している。 Also in this test, humic acid and fulvic acid were added as soluble organic substances at different mixing ratios. The graph of FIG. 10 shows the relationship between the coagulant injection rate I pacl (mg/L) and the post-aggregation UV absorbance residual rate RUV pacl (%). The post-aggregation UV absorbance residual rate RUV pacl on the vertical axis indicates a value obtained by dividing the post-aggregation UV absorbance UV pacl by the UV absorbance UV R of the raw water.

図10には、フミン酸100%、フミン酸50%/フルボ酸50%混合、およびフルボ酸100%の場合が示されており、フルボ酸混合割合により凝集処理による溶解性有機物質除去性能が影響を受けることが分かった。 Fig. 10 shows the case of 100% humic acid, a mixture of 50% humic acid/50% fulvic acid, and 100% fulvic acid. was found to receive

したがって、粉末活性炭注入制御装置200は、凝集処理後紫外線吸光度残存率RUVpaclを、図10の関係を用いて次式により計算する。 Therefore, the powdered activated carbon injection control device 200 calculates the post-aggregation UV absorbance residual rate RUV pacl using the relationship shown in FIG.

RUVpacl = α × Ipacl + β ・・・(8) RUV pacl = α × I pacl + β (8)

β = f(pH,UV,DOC,FL) ・・・(9) β=f( pHF , UVR , DOCR , FLR ) (9)

ここで、Ipaclは凝集剤注入率(mg/L)、αは注入率定数(-)、βは図10のグラフ中のIpacl=0(mg/L)に対応する切片である。 Here, I pacl is the coagulant injection rate (mg/L), α is the injection rate constant (−), and β is the intercept corresponding to I pacl =0 (mg/L) in the graph of FIG.

βは、混和池水素イオン濃度指数pH、紫外線吸光度UV(abs/cm)(ここでは、例えば原水の波長260(nm)の紫外線吸光度E260)、溶解性有機体炭素濃度DOC(mg/L)、および原水の蛍光強度FL(ここでは、例えば励起波長345(nm)に対する蛍光波長425(nm)の蛍光強度)を用いて算出される。 β is the mixed pond hydrogen ion concentration index pH F , ultraviolet absorbance UV R (abs/cm) (here, for example, ultraviolet absorbance E260 R at a wavelength of 260 (nm) of raw water), soluble organic carbon concentration DOC R (mg /L), and the fluorescence intensity FL R of raw water (here, for example, fluorescence intensity at a fluorescence wavelength of 425 (nm) with respect to an excitation wavelength of 345 (nm)).

ステップS8では、粉末活性炭注入制御装置200において、吸着処理を行った場合に吸着処理後に残存する溶解性有機物質の残存率である吸着処理後溶解性有機物質残存率が計算される。ここでは、溶解性有機物質指標値の一例として紫外線吸光度を用いた吸着処理後紫外線吸光度残存率RUVcarが計算される場合の例を示す。 In step S8, the powdered activated carbon injection control device 200 calculates the post-adsorption treatment soluble organic substance residual ratio, which is the residual ratio of the soluble organic substances remaining after the adsorption treatment when the adsorption treatment is performed. Here, an example in which the post-adsorption treatment ultraviolet absorbance residual rate RUV car is calculated using the ultraviolet absorbance as an example of the soluble organic substance index value is shown.

この吸着処理後紫外線吸光度残存率RUVcarは、粉末活性炭処理を単独で行った場合に吸着処理後に残存する溶解性有機物質の残存率であり、粉末活性炭処理と凝集処理とを併用して行った場合に吸着処理後に残存する溶解性有機物質の残存率とは異なるものである。以下、これに関して説明する。 The UV absorbance residual ratio after adsorption treatment RUV car is the residual ratio of soluble organic substances remaining after the adsorption treatment when the powdered activated carbon treatment is performed alone, and the powdered activated carbon treatment and the aggregation treatment were performed together. It is different from the residual rate of soluble organic substances remaining after adsorption treatment in some cases. This will be explained below.

粉末活性炭処理と凝集処理とを併用した場合の紫外線吸光度を、併用処理後紫外線吸光度RUVcar/paclとする。この併用処理後紫外線吸光度RUVcar/paclを、吸着処理後紫外線吸光度残存率RUVcar、凝集処理後紫外線吸光度RUVpacl、および併用処理係数FDOMを用いて次式で定義する。 The ultraviolet absorbance when the powdered activated carbon treatment and the flocculation treatment are used together is defined as the ultraviolet absorbance after combined treatment RUV car/pacl . The UV absorbance after combined treatment RUV car/pacl is defined by the following equation using the UV absorbance residual rate after adsorption process RUV car , the UV absorbance after coagulation process RUV pacl , and the combined treatment factor F DOM .

RUVcar/pacl = FDOM × RUVcar × RUVpacl ・・・(10) RUV car/pacl = FDOM x RUV car x RUV pacl (10)

DOMは、併用処理の効果を示す係数(併用処理係数)であり、併用処理後紫外線吸光度残存率RUVcar/paclを、吸着処理を単独で行った場合の吸着処理後紫外線透過率残存率RUVcarと凝集処理を単独で行った場合の凝集処理後紫外線透過率残存率RUVpaclとを乗じたもので除して得られる。 F DOM is a coefficient that indicates the effect of combined treatment (combined treatment coefficient) . It is obtained by dividing by the product of car and the post-aggregation UV transmittance residual rate RUV pacl when the aggregation treatment is performed alone.

ここで、併用処理係数FDOMに関する発明者らによる試験の結果を示す。 Here are the results of our studies on the combined treatment factor F DOM .

図11は、粉末活性炭処理を回転数150(rpm)で60分急速撹拌後、水素イオン濃度指数(pH)を所定の値に調整、凝集剤を添加して回転数150(rpm)で10分間急速撹拌、回転数80(rpm)で60分緩速撹拌処理した場合の試験結果を示すグラフである。 Fig. 11 shows that powdered activated carbon treatment is rapidly stirred at 150 (rpm) for 60 minutes, the hydrogen ion concentration index (pH) is adjusted to a predetermined value, a flocculant is added, and the mixture is stirred at 150 (rpm) for 10 minutes. It is a graph which shows the test result at the time of rapid stirring and slow stirring processing for 60 minutes at rotation speed 80 (rpm).

図11に示されるように、併用処理係数FDOMは、添加する有機物のフミン酸とフルボ酸の混合割合により大きく変化し、フミン酸が多い場合は、併用処理後紫外線吸光度残存率RUVcar/paclの方が、吸着処理後紫外線吸光度残存率と凝集処理後紫外線吸光度残存率を乗算した値(RUVcar×RUVpacl)よりも小さくなり(FDOM<1となり)、併用による処理の促進効果があり、一方、フルボ酸の割合が多くなると、併用処理後紫外線吸光度残存率RUVcar/paclの方が、吸着処理後紫外線吸光度残存率と凝集処理後紫外線吸光度残存率とを乗算した値(RUVcar×RUVpacl)よりも大きくなり(FDOM≧1となり)、併用による処理の阻害効果があることが分かった。 As shown in FIG. 11, the combined treatment factor F DOM varies greatly depending on the mixing ratio of the added organic substances humic acid and fulvic acid. is smaller than the value obtained by multiplying the UV absorbance residual rate after adsorption treatment by the UV absorbance residual rate after aggregation treatment (RUV car × RUV pacl ) (F DOM < 1), and there is an effect of promoting the treatment when used in combination. On the other hand, when the proportion of fulvic acid increases, the residual UV absorbance ratio after combined treatment, RUV car/pacl , is the value obtained by multiplying the residual UV absorbance ratio after adsorption treatment and the residual UV absorbance ratio after flocculation treatment (RUV car × RUV pacl ) (F DOM ≧1), indicating an inhibitory effect of the combined treatment.

ここで、図11において、フミン酸とフルボ酸の混合割合毎に併用処理係数FDOMと凝集剤注入率Ipaclの関係を次式で近似すると、混合割合毎の異なる係数fと指数nが求められる。 Here, in FIG. 11, when the relationship between the combined treatment coefficient F DOM and the coagulant injection rate I pacl for each mixing ratio of humic acid and fulvic acid is approximated by the following equation, the different coefficient f and index n for each mixing ratio can be obtained. be done.

DOM = f × Ipacl ・・・(11) F DOM = f × I pacl n (11)

そこで、原水に含まれる溶解性有機物質におけるフミン酸とフルボ酸の混合割合に近い指標として次式で定義される比吸光度SUVAと係数fの関係を調べた結果、図12に示す結果が得られた。 Therefore, as a result of examining the relationship between the specific absorbance SUVA defined by the following equation as an index close to the mixing ratio of humic acid and fulvic acid in the soluble organic substances contained in raw water and the coefficient f, the results shown in FIG. 12 were obtained. rice field.

SUVA = E260/ DOC (abs・L/m・mg) ・・・(12) SUVA = E260 R /DOC R (abs.L/m.mg) (12)

ここで、E260は原水の波長260(nm)の紫外線吸光度(abs/m)であり、DOCは原水の溶解性有機体炭素濃度(mg/L)である。 Here, E260 R is the ultraviolet absorbance (abs/m) at a wavelength of 260 (nm) of the raw water, and DOC R is the soluble organic carbon concentration (mg/L) of the raw water.

図12のグラフには、比吸光度SUVA(abs・L/m・mg)と係数fとの関係が表れている。このグラフから、係数fは比吸光度SUVAの関数で表せることが分かる。 The graph of FIG. 12 shows the relationship between the specific absorbance SUVA (abs·L/m·mg) and the coefficient f. From this graph, it can be seen that the coefficient f can be expressed as a function of the specific absorbance SUVA.

したがって、ステップS8では、粉末活性炭注入制御装置200は、以下の式により、目標紫外線吸光度残存率RUVを併用処理後紫外線吸光度残存率RUVcar/paclとして、吸着処理後紫外線吸光度残存率RUVcarを求める。 Therefore, in step S8, the powdered activated carbon injection control device 200 sets the target ultraviolet absorbance residual rate RUV T to the post-combined treatment ultraviolet absorbance residual rate RUV car/pacl , and calculates the post-adsorption treatment ultraviolet absorbance residual rate RUV car according to the following equation: demand.

RUV = RUVcar/pacl = FDOM × RUVcar × RUVpacl ・・・(13) RUV T = RUV car/pacl = FDOM x RUV car x RUV pacl (13)

RUVcar = RUV/(FDOM × RUVpacl) ・・・(14) RUV car = RUV T / ( FDOM x RUV pacl ) (14)

ステップS9では、粉末活性炭注入制御装置200において、ステップS8で計算された吸着処理後溶解性有機物質残存率を達成する粉末活性炭注入率である溶解性有機物質対応粉末活性炭注入率が計算される。ここでは、溶解性有機物質指標値の一例として紫外線吸光度を用いた溶解性有機物質対応粉末活性炭注入率Icar-UVが計算される場合の例を示す。 In step S9, the powdered activated carbon injection control device 200 calculates the powdered activated carbon injection rate corresponding to the soluble organic substance, which is the powdered activated carbon injection rate that achieves the soluble organic substance residual rate after the adsorption treatment calculated in step S8. Here, as an example of the soluble organic substance index value, an example of calculating the powdered activated carbon injection rate Icar-UV corresponding to the soluble organic substance using the ultraviolet absorbance is shown.

粉末活性炭注入制御装置200は、溶解性有機物質対応粉末活性炭注入率Icar-UVを次式により計算する。 The powdered activated carbon injection control device 200 calculates the powdered activated carbon injection rate Icar-UV corresponding to the soluble organic substance by the following equation.

car-UV = f(KUV,RUVcar,E260,DOC) ・・・(15) Icar -UV =f( KUV , RUVcar , E260R , DOCR ) (15)

ここで、KUVは、粉末活性炭の性能と吸着対象物質の性質とによって決まる吸着定数であり、あらかじめ調べて設定しておく値である。 Here, K UV is an adsorption constant determined by the performance of the powdered activated carbon and the properties of the substance to be adsorbed, and is a value that is determined and set in advance.

ステップS10では、粉末活性炭注入制御装置200において、ステップS3で計算した臭気物質対応粉末活性炭注入率Icar-Dと、ステップS9で計算した溶解性有機物質対応粉末活性炭注入率Icar-UVとを比較し、大きい方を粉末活性炭注入率Icarとして採用する。 In step S10, in the powdered activated carbon injection control device 200, the powdered activated carbon injection rate Icar-D for odorous substances calculated in step S3 and the powdered activated carbon injection rate Icar-UV for soluble organic substances calculated in step S9 are calculated. The larger one is adopted as the powdered activated carbon injection rate Icar .

溶解性有機物質対応粉末活性炭注入率Icar-UVの方が大きい場合は、ステップS11A及びS12において、溶解性有機物質対応粉末活性炭注入率Icar-UVが粉末活性炭注入率Icarとされ、この粉末活性炭注入率Icarに従って着水井20の被処理水に粉末活性炭が注入されるように粉末活性炭注入装置21が制御される。 When the powdered activated carbon injection rate Icar-UV for soluble organic substances is larger, in steps S11A and S12, the powdered activated carbon injection rate Icar-UV for soluble organic substances is set as the powdered activated carbon injection rate Icar . The powdered activated carbon injection device 21 is controlled so that the powdered activated carbon is injected into the water to be treated in the receiving well 20 according to the powdered activated carbon injection rate Icar .

一方、臭気物質対応粉末活性炭注入率Icar-Dの方が大きい場合は、ステップS11B及びS12において、臭気物質対応粉末活性炭注入率Icar-Dが粉末活性炭注入率Icarとされ、この粉末活性炭注入率Icarに従って着水井20の被処理水に粉末活性炭が注入されるように粉末活性炭注入装置21が制御される。 On the other hand, when the powdered activated carbon injection rate Icar-D corresponding to the odorous substance is larger, in steps S11B and S12, the powdered activated carbon injection rate Icar-D corresponding to the odorant is made the powdered activated carbon injection rate Icar . The powdered activated carbon injector 21 is controlled so that the powdered activated carbon is injected into the water to be treated in the receiving well 20 according to the injection rate Icar .

第1の実施形態によれば、藻類検出判定装置11、臭気物質推定装置12、および臭気物質濃度測定装置13を用いて、粉末活性炭の除去対象となる臭気物質の種類を特定しその臭気物質の濃度を求めることができるので、粉末活性炭注入制御装置200において当該臭気物質の濃度に基づき目標濃度を達成する最適な粉末活性炭注入率を求めることができる。さらに、予め想定される各種の臭気物質に濃度目標値を設定することで、原水に生息する藻類が変化して発生する臭気物質が変わった場合でも柔軟に対応することができ、原水の水質変化に応じた粉末活性炭の最適な注入率を求めることができ、無駄な粉末活性炭注入を抑制でき、経済性に優れた水処理制御を実現できる。 According to the first embodiment, the algae detection determination device 11, the odorant estimation device 12, and the odorant concentration measurement device 13 are used to identify the type of odorant to be removed by the powdered activated carbon, and to identify the odorant. Since the concentration can be determined, the powdered activated carbon injection control device 200 can determine the optimum powdered activated carbon injection rate for achieving the target concentration based on the concentration of the odorant. Furthermore, by setting concentration target values for various assumed odorous substances in advance, it is possible to flexibly respond to changes in odorous substances caused by changes in the algae that live in the raw water. It is possible to determine the optimum injection rate of powdered activated carbon according to the condition, suppress wasteful injection of powdered activated carbon, and realize economical water treatment control.

また、第1の実施形態によれば、溶解性有機物質の除去と臭気物質の除去に対する粉末活性炭と凝集剤との併用の効果を考慮した粉末活性炭注入を行うことで、従来まで必要とされてきた粉末活性炭量を大幅に削減することができるとともに、粉末活性炭注入率の適切かつ高精度な制御が可能となる。また結果的に、粉末活性炭の注入不足によるろ過水の溶解性有機物質の濃度および臭気物質の残存率の目標超過や、過剰注入による薬品費の無駄を防止することができる。 In addition, according to the first embodiment, by performing powdered activated carbon injection in consideration of the effect of combined use of powdered activated carbon and a flocculant on the removal of soluble organic substances and the removal of odorous substances, The amount of powdered activated carbon can be greatly reduced, and the injection rate of powdered activated carbon can be controlled appropriately and with high precision. As a result, it is possible to prevent the concentration of soluble organic substances in the filtered water and the residual ratio of odorous substances from exceeding the target due to insufficient injection of powdered activated carbon, and waste of chemical costs due to excessive injection.

なお、第1の実施形態では、溶解性有機物質の代表指標として波長260(nm)における紫外線吸光度E260の残存率RUVを用いたが、演算式において溶解性有機体炭素濃度DOCや、励起波長345(nm)に対する蛍光波長425(nm)の蛍光強度FLを用いることで、原水の変動や異なる水源に対しても汎用的に対応することができる。 In the first embodiment, the residual rate RUV of the ultraviolet absorbance E260 at a wavelength of 260 (nm) was used as a representative index of soluble organic substances. By using the fluorescence intensity FL at a fluorescence wavelength of 425 (nm) with respect to (nm), it is possible to universally cope with fluctuations in raw water and different water sources.

また、第1の実施形態では、原水の溶解性有機物質を紫外線吸光度計14a、蛍光強度計14b、および溶解性有機体炭素濃度計(DOC計)14cの3種の計器で監視する例を示したが、単一の原水系で原水の有機物構成の変動が少ない場合には1つの代表計器で他の指標を換算式で求めても良い。以下に、代表計器として紫外線吸光度計を用いた場合の換算式の例を示す。 Further, in the first embodiment, an example of monitoring the soluble organic substances in the raw water with three types of instruments: an ultraviolet absorbance meter 14a, a fluorescence intensity meter 14b, and a soluble organic carbon concentration meter (DOC meter) 14c is shown. However, in the case of a single raw water system where there is little variation in the composition of organic matter in the raw water, one representative instrument may be used to obtain another indicator by a conversion formula. An example of a conversion formula when using an ultraviolet absorbance meter as a representative instrument is shown below.

DOC = a × UV × b ・・・(16) DOC R = a x UV R x b (16)

FL = c × UV × d ・・・(17) FL R = c x UV R x d (17)

ここで、
DOC:原水の溶解性有機体炭素濃度(mg/L)
FL:原水の蛍光強度(-)
UV:原水の紫外線吸光度(abs/cm)
a :紫外線吸光度-溶解性有機体炭素濃度の変換係数
b :紫外線吸光度-溶解性有機体炭素濃度の変換定数
c :紫外線吸光度-蛍光強度の変換係数
d :紫外線吸光度-蛍光強度の変換定数
このように換算式を用いることで、1つの計器のみの設置の場合でも、原水の溶解性有機物質を3種の計器で監視する場合と同様な効果を得ることができる。
here,
DOC R : Concentration of soluble organic carbon in raw water (mg/L)
FL R : Fluorescence intensity of raw water (-)
UV R : UV absorbance of raw water (abs/cm)
a: UV absorbance - dissolved organic carbon concentration conversion coefficient b: UV absorbance - dissolved organic carbon concentration conversion constant c: UV absorbance - fluorescence intensity conversion coefficient d: UV absorbance - fluorescence intensity conversion constant By using the conversion formula for , even if only one instrument is installed, it is possible to obtain the same effect as in the case of monitoring soluble organic substances in raw water with three instruments.

<第2の実施形態>
次に、第2の実施形態について説明する。ここでは、前述した第1の実施形態と共通する部分の説明を省略し、異なる部分を中心に説明する。
<Second embodiment>
Next, a second embodiment will be described. Here, the description of the parts common to the above-described first embodiment will be omitted, and the different parts will be mainly described.

水処理システムの構成は、図1に示す構成と同様である。但し、以下に説明するように臭気物質濃度測定装置13の中の臭気センサーに関わる構成が異なる。 The configuration of the water treatment system is the same as the configuration shown in FIG. However, as described below, the configuration related to the odor sensor in the odor substance concentration measuring device 13 is different.

図13は、第2の実施形態における臭気物質濃度測定装置13の構成の一例を示す図である。なお、この図13では、図4と共通する要素に同一の符号を付している。 FIG. 13 is a diagram showing an example of the configuration of the odorant concentration measuring device 13 according to the second embodiment. 13, elements common to those in FIG. 4 are given the same reference numerals.

前述した第1の実施形態では、図4中の臭気物質濃度測定装置13に備えられる臭気センサーが1種類である場合を説明したが、この第2の実施形態では、複数種のセンサーとして、例えば藻類から発生するカビ臭物質に反応する臭気センサーと、カビ臭物質には無反応で油臭に反応する臭気センサーとが備えられる。 In the first embodiment described above, the case where the odor sensor provided in the odor substance concentration measuring device 13 in FIG. 4 is of one type has been described. An odor sensor that reacts to musty odor substances generated from algae and an odor sensor that does not react to musty odor substances but reacts to oily odors is provided.

図13の例では、臭気物質濃度測定装置13に複数の臭気センサー13d-1、13d-2、13d-3が備えられている。 In the example of FIG. 13, the odor substance concentration measuring device 13 is equipped with a plurality of odor sensors 13d-1, 13d-2 and 13d-3.

臭気センサー13d-1、13d-2、13d-3は、それぞれ、検知対象物質が異なる。例えば、臭気センサー13d-1は、ジメチルイソボルネオールを選択的に検知するように設計されたセンサー、臭気センサー13d-2は、ジェオスミンを選択的に検知するように設計されたセンサー、臭気センサー13d-3は、カビ臭物質には反応せず油臭を選択的に検知するように設定されたセンサーとする。 The odor sensors 13d-1, 13d-2, and 13d-3 detect different substances. For example, the odor sensor 13d-1 is a sensor designed to selectively detect dimethylisoborneol, the odor sensor 13d-2 is a sensor designed to selectively detect geosmin, the odor sensor 13d- A sensor 3 is set to selectively detect an oil odor without reacting to a musty odor substance.

第2の実施形態によれば、検知対象の臭気物質に合わせて最適に設計されたセンサーを設置することで、原水に含まれる臭気物質の種類が変わった場合でも、臭気物質推定装置12による推定結果に基づいて最適なセンサーが選択され、感度の高い濃度計測が可能になる。さらに、複数のセンサーのうち、少なくとも1つについては油臭を選択的に検知するセンサーを設置しておくことによって、水源への油流出事故が発生した場合には、即座に警報を発することが可能になるとともに、必要に応じて粉末活性炭を緊急注入することも可能となり、原水の汚濁物質に対する対応力が格段に向上する。 According to the second embodiment, by installing a sensor that is optimally designed according to the odorant to be detected, even if the type of odorant contained in the raw water changes, the odorant estimation device 12 can perform estimation. Based on the results, the optimum sensor is selected, enabling highly sensitive concentration measurement. Furthermore, by installing at least one of the multiple sensors that selectively detects oil odors, it is possible to immediately issue an alarm in the event of an oil spill into a water source. In addition, it becomes possible to inject powdered activated carbon in an emergency as needed, which greatly improves the ability to deal with contaminants in raw water.

<第3の実施形態>
次に、第3の実施形態について説明する。ここでは、前述した第1の実施形態と共通する部分の説明を省略し、異なる部分を中心に説明する。
<Third Embodiment>
Next, a third embodiment will be described. Here, the description of the parts common to the above-described first embodiment will be omitted, and the different parts will be mainly described.

[構成]
図14は、第3の実施形態に係る水処理システムの構成の一例を示す図である。なお、この図14では、図1と共通する要素に同一の符号を付している。
[composition]
FIG. 14 is a diagram showing an example of the configuration of a water treatment system according to the third embodiment. In addition, in FIG. 14, elements common to those in FIG. 1 are given the same reference numerals.

この第3の実施形態の水処理システムでは、粉末活性炭注入装置が、1つではなく2段構成となっており、1段目の粉末活性炭注入装置21aが着水井20に粉末活性炭を注入するように設置され、2段目の粉末活性炭注入装置21bが凝集剤混和池30に粉末活性炭を注入するように設置されている。さらに、臭気物質濃度測定装置13が、配管2に設置されるのではなく、着水井20から凝集剤混和池30に至る配管3に設置されている点が、第1の実施形態の場合と異なる。よって、臭気物質濃度測定装置13は、着水井20から凝集剤混和池30に至る配管から採水した検水にふくまれる臭気物質の濃度、すなわち、粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度を測定することになる。これに伴い、粉末活性炭注入制御装置200の中の機能や動作が第1の実施形態と異なる部分がある。 In the water treatment system of the third embodiment, the powdered activated carbon injection device is not one, but has a two-stage configuration, and the powdered activated carbon injection device 21 a of the first stage is configured to inject the powdered activated carbon into the receiving well 20 . , and a second-stage powdered activated carbon injection device 21 b is installed so as to inject powdered activated carbon into the coagulant mixing pond 30 . Furthermore, the odorant concentration measuring device 13 is not installed in the pipe 2, but is installed in the pipe 3 from the receiving well 20 to the coagulant mixing pond 30, which is different from the case of the first embodiment. . Therefore, the odorant concentration measuring device 13 measures the concentration of the odorant contained in the test water sampled from the pipe from the receiving well 20 to the coagulant mixing pond 30, that is, the odor contained in the treated water after powdered activated carbon injection treatment. It will measure the concentration of the substance. Along with this, some functions and operations in the powdered activated carbon injection control device 200 are different from those of the first embodiment.

第3の実施形態の粉末活性炭注入制御装置200は、溶解性有機物質指標測定セット14により測定された溶解性有機物質指標値(紫外線吸光度、蛍光強度、溶解性有機体炭素濃度の少なくともいずれか)を用いて、着水井20の被処理水の溶解性有機物質残存率を目標の残存率にするための溶解性有機物質対応粉末活性炭注入率を計算し、この溶解性有機物質対応粉末活性炭注入率に従って、着水井20の被処理水に注入する粉末活性炭の注入量を制御すると共に、着水井20の被処理水に含まれる臭気物質の濃度を目標の濃度にするための臭気物質対応粉末活性炭注入率に従って、凝集剤混和池30の被処理水に注入する粉末活性炭の注入量を制御する機能を有する。 The powdered activated carbon injection control device 200 of the third embodiment measures the soluble organic substance index value (at least one of ultraviolet absorbance, fluorescence intensity, and soluble organic carbon concentration) measured by the soluble organic substance index measurement set 14. is used to calculate the powdered activated carbon injection rate corresponding to soluble organic substances for achieving the target residual rate of soluble organic substances in the water to be treated in the receiving well 20, and this powdered activated carbon injection rate corresponding to soluble organic substances is calculated. According to the above, the injection amount of powdered activated carbon to be injected into the treated water of the receiving well 20 is controlled, and the concentration of the odorant contained in the treated water of the receiving well 20 is adjusted to the target concentration. It has a function of controlling the amount of powdered activated carbon to be injected into the water to be treated in the coagulant mixing pond 30 according to the rate.

また、第3の実施形態の粉末活性炭注入制御装置200は、臭気物質濃度測定装置13により測定された臭気物質の濃度が目標の濃度より大きい場合は、臭気物質対応粉末活性炭注入率が予め定めた基準値よりも大きくなるように制御し、一方、臭気物質濃度測定装置13により測定された臭気物質の濃度が目標の濃度より小さい場合は、臭気物質対応粉末活性炭注入率が予め定めた基準値よりも小さくなるように制御(フィードバック制御)する機能を有する。 Further, in the powdered activated carbon injection control device 200 of the third embodiment, when the concentration of the odorant measured by the odorant concentration measuring device 13 is higher than the target concentration, the powdered activated carbon injection rate corresponding to the odorant is set in advance. On the other hand, if the concentration of the odorant measured by the odorant concentration measuring device 13 is smaller than the target concentration, the injection rate of powdered activated carbon corresponding to the odorant is lower than the predetermined reference value. has a function of controlling (feedback control) so that the

[動作の概要]
次に、図15Aのフローチャートを参照して、第3の実施形態の粉末活性炭注入制御システムに関わる動作の一例を説明する。但し、以下に説明する各ステップの処理は必ずしも図15Aに示される順序で実施される必要はなく、適宜、実施する順序を変えてもよい。以下では、図6Aと異なる部分を中心に説明する。
[Overview of operation]
Next, an example of operations related to the powdered activated carbon injection control system of the third embodiment will be described with reference to the flowchart of FIG. 15A. However, the processing of each step described below does not necessarily have to be performed in the order shown in FIG. 15A, and the order of performing may be changed as appropriate. The following description will focus on the portions that are different from FIG. 6A.

ステップS101の処理は、図6Aで説明した処理と同様である。 The processing of step S101 is the same as the processing described with reference to FIG. 6A.

ステップS102’の処理は、原水中の臭気物質の濃度の測定を行わない点で、図6Aで説明したステップS102の処理と異なる。 The process of step S102' differs from the process of step S102 described with reference to FIG. 6A in that the concentration of odorants in the raw water is not measured.

ステップS201では、臭気物質濃度測定装置13により、臭気物質推定装置12で推定された臭気物質の種類を対象に、粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度が測定される。 In step S201, the odorant concentration measuring device 13 measures the concentration of the odorant contained in the treated water after the powdered activated carbon injection treatment, targeting the type of odorant estimated by the odorant estimation device 12 .

ステップS104及びS105の処理は、図6Aで説明した処理と同様である。 The processing of steps S104 and S105 is the same as the processing described with reference to FIG. 6A.

ステップS106’及びS107’の処理は、図6Aで説明したステップS106及びS107の処理とは異なる。 The processing of steps S106' and S107' is different from the processing of steps S106 and S107 described with reference to FIG. 6A.

ステップS106’では、粉末活性炭注入制御装置200は、臭気物質濃度測定装置13で測定された臭気物質の濃度などを用いて、目標臭気物質濃度を達成するための臭気物質対応粉末活性炭注入率を計算すると共に、溶解性有機物質指標計器セット14で測定された溶解性有機物質指標値などを用いて、目標溶解性有機物質指標値を達成するための溶解性有機物質対応粉末活性炭注入率を計算するが、その際の処理の詳細が図6Aで説明したステップS106とは異なる。当該処理の詳細については、後述する図15Bのフローチャートにて説明する。 In step S106', the powdered activated carbon injection control device 200 uses the concentration of the odorant measured by the odorant concentration measuring device 13 to calculate the powdered activated carbon injection rate for achieving the target odorant concentration. At the same time, using the soluble organic substance index value measured by the soluble organic substance index meter set 14, etc., the soluble organic substance corresponding powdered activated carbon injection rate for achieving the target soluble organic substance index value is calculated. However, the details of the processing at that time are different from step S106 described with reference to FIG. 6A. Details of the processing will be described later with reference to the flowchart of FIG. 15B.

ステップS107’では、粉末活性炭注入制御装置200は、計算した溶解性有機物質対応粉末活性炭注入率に従って、着水井20の被処理水に注入する粉末活性炭の注入量を制御すると共に、計算した臭気物質対応粉末活性炭注入率に従って、凝集剤混和池30の被処理水に注入する粉末活性炭の注入量を制御する。 In step S107′, the powdered activated carbon injection control device 200 controls the injection amount of powdered activated carbon injected into the water to be treated in the receiving well 20 according to the calculated injection rate of powdered activated carbon corresponding to soluble organic substances. The amount of powdered activated carbon to be injected into the water to be treated in the coagulant mixing tank 30 is controlled according to the corresponding powdered activated carbon injection rate.

以降、ステップS102’からステップS107’までの処理が繰り返し行われる。 Thereafter, the processing from step S102' to step S107' is repeated.

[設定処理および演算処理の具体例]
次に、図15Bのフローチャートを参照して、同実施形態の粉末活性炭注入制御システムに関わる設定処理および演算処理を詳細に示す動作の一例を説明する。但し、以下に説明する各ステップの処理は必ずしも図15Bに示される順序で実施される必要はなく、適宜実施する順序を変えてもよい。
以下では、図6Bと異なる部分を中心に説明する。
[Specific example of setting processing and arithmetic processing]
Next, with reference to the flowchart of FIG. 15B, an example of operation showing details of setting processing and arithmetic processing related to the powdered activated carbon injection control system of the embodiment will be described. However, the processing of each step described below does not necessarily have to be performed in the order shown in FIG. 15B, and the order of performing may be changed as appropriate.
Below, it demonstrates centering on a different part from FIG. 6B.

ステップS1の処理は、図6Bで説明した処理と同様である。 The processing of step S1 is the same as the processing described with reference to FIG. 6B.

ステップS2の処理は、図6Bで説明した処理と同様であるが、計算に使用する臭気物質濃度CRが、原水に含まれる臭気物質の濃度ではなく、粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度である点で、図6Bで説明した処理とは異なる。 The processing in step S2 is the same as the processing described in FIG. It differs from the process described in FIG. 6B in that it is the concentration of odorant that is

ステップS2及びS3’の処理は、図6Bで説明したステップS2及びS3の処理とは異なり、例えばステップS4~S9の処理を終えた後に実施されるものとする。 The processes of steps S2 and S3' are different from the processes of steps S2 and S3 described in FIG. 6B, and are performed after the processes of steps S4 to S9, for example.

粉末活性炭注入制御装置200は、ステップS9で溶解性有機物質対応粉末活性炭注入率Icar-UVを計算し、ステップS12aでこの溶解性有機物質対応粉末活性炭注入率Icar-UVに従って着水井20の被処理水に粉末活性炭が注入されるように粉末活性炭注入装置21aを制御する。次に、ステップS2で、処理水水質目標設定装置100で設定されたジメチルイソボルネオールの目標臭気物質濃度C2-MIBと、臭気物質濃度測定装置13で測定された原水の臭気物質濃度CRとから、ジメチルイソボルネオールの目標臭気物質残存率RC2-MIBを次式により計算する。 The powdered activated carbon injection control device 200 calculates the powdered activated carbon injection rate Icar-UV corresponding to soluble organic substances in step S9, and determines the injection rate of the receiving well 20 according to this powdered activated carbon injection rate Icar-UV corresponding to soluble organic substances in step S12a. The powdered activated carbon injector 21a is controlled so that the powdered activated carbon is injected into the water to be treated. Next, in step S2, the target odorant concentration C 2-MIB of dimethylisoborneol set by the treated water quality target setting device 100 and the raw water odorant concentration C R measured by the odorant concentration measuring device 13 Then, the target odor substance residual rate RC 2-MIB of dimethylisoborneol is calculated by the following formula.

RC2-MIB = C2-MIB /CR ・・・(18) RC2 -MIB =C2 -MIB /C R (18)

次に、ステップS3’で、ジメチルイソボルネオールを目標臭気物質濃度C2-MIBにするための臭気物質対応粉末活性炭注入率Icar-Dを次式により計算する。 Next, in step S3′, the powdered activated carbon injection rate Icar-D corresponding to the odorous substance for making dimethylisoborneol the target odorant concentration C 2-MIB is calculated by the following equation.

car-D = f(RC2-MIB) ・・・(19) Icar-D =f(RC2 -MIB ) (19)

次に、ステップS12bで、この臭気物質対応粉末活性炭注入率CRに従って、凝集剤混和池30の被処理水に粉末活性炭が注入されるように粉末活性炭注入装置21bを制御する。 Next, in step S12b, the powdered activated carbon injection device 21b is controlled so that the powdered activated carbon is injected into the water to be treated in the coagulant mixing pond 30 according to this powdered activated carbon injection rate C R corresponding to the odorant.

第3の実施形態によれば、粉末活性炭注入制御装置200が、溶解性有機物質対応粉末活性炭注入率Icar-UVに従って着水井20の被処理水に粉末活性炭が注入されるように粉末活性炭注入装置21aを制御することに加えて、粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度CRを用いて計算された臭気物質対応粉末活性炭注入率Icar-Dに従って凝集剤混和池30の被処理水に粉末活性炭が注入されるように粉末活性炭注入装置21bを制御(フィードバック制御)するので、例えば粉末活性炭注入装置21aでの粉末活性炭注入が不足気味だった場合でも、その不足分を粉末活性炭注入装置21bでの粉末活性炭注入で補うことが可能になり、共存有機物による吸着阻害分を補完でき、予め阻害効果の予測による誤差を無くし、粉末活性炭注入の過不足を防止することができる。 According to the third embodiment, the powdered activated carbon injection control device 200 injects the powdered activated carbon so that the powdered activated carbon is injected into the water to be treated in the receiving well 20 according to the dissolved organic substance-compatible powdered activated carbon injection rate Icar-UV . In addition to controlling the device 21a, the flocculant mixing pond 30 is controlled according to the powdered activated carbon injection rate I car-D corresponding to the odorant calculated using the concentration C R of the odorant contained in the treated water after the powdered activated carbon injection treatment. The powdered activated carbon injection device 21b is controlled (feedback controlled) so that the powdered activated carbon is injected into the water to be treated. It is possible to compensate by injecting powdered activated carbon with the powdered activated carbon injection device 21b, and it is possible to compensate for the adsorption inhibition by the coexisting organic matter, eliminate errors due to prediction of the inhibitory effect in advance, and prevent excess or deficiency of powdered activated carbon injection. .

以上詳述したように、各実施形態によれば、粉末活性炭の注入率の最適化を図ることができる。 As described in detail above, according to each embodiment, the injection rate of the powdered activated carbon can be optimized.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While several embodiments of the invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1…水処理施設、2,3,4…配管、10…水質計器セット、10a…濁度計、10b…アルカリ度計、10c…水温計、10d…水素イオン濃度指数計、11…藻類検出判定装置、11a…フローセル、11b…照明、11c…カメラ、11f…計算機、11g…表示装置、12…臭気物質推定装置、13…臭気物質濃度測定装置、13a…臭気物質抽出槽、13a-1…オーバーフロートレイ、13a-2…原水導入管、13a-3…ヒータ、13a-4…送気ファン、13b…除湿器、13c…臭気センサーセル、13d…臭気センサーヘッド(臭気センサー)、13f…臭気物質濃度演算装置、16…水素イオン濃度指数測定器(pH測定器)、20…着水井、21,21a,21b…粉末活性炭注入装置、30…凝集剤混和池、30a…攪拌機、31…凝集剤注入装置、32…酸化剤注入装置、40…凝集・沈澱池、100…処理水水質目標設定装置、200…粉末活性炭注入制御装置、300…凝集剤注入制御装置。 1 Water treatment facility 2, 3, 4 Piping 10 Water quality meter set 10a Turbidity meter 10b Alkalinity meter 10c Water temperature meter 10d Hydrogen ion concentration index meter 11 Algae detection determination Apparatus 11a Flow cell 11b Lighting 11c Camera 11f Calculator 11g Display device 12 Odor substance estimation device 13 Odor substance concentration measurement device 13a Odor substance extraction tank 13a-1 Overflow Tray 13a-2 Raw water introduction pipe 13a-3 Heater 13a-4 Air supply fan 13b Dehumidifier 13c Odor sensor cell 13d Odor sensor head (odor sensor) 13f Odor substance concentration Arithmetic device 16... Hydrogen ion concentration index measuring instrument (pH measuring instrument) 20... Receiving well 21, 21a, 21b... Powdered activated carbon injector 30... Flocculant mixing pond 30a... Stirrer 31... Flocculant injector 32... Oxidant injection device 40... Coagulation/sedimentation tank 100... Treated water quality target setting device 200... Powdered activated carbon injection control device 300... Flocculant injection control device.

Claims (19)

原水に含まれる藻類を検出して当該藻類の種類を判定する藻類検出判定手段と、
前記藻類検出判定手段により判定された藻類の種類から、当該藻類が発する臭気物質の種類を推定する臭気物質推定手段と、
前記臭気物質推定手段により推定された臭気物質の種類を対象に、前記原水もしくは粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度を測定する臭気物質濃度測定手段と、
少なくとも前記臭気物質濃度測定手段により測定された臭気物質の濃度を用いて、着水井の被処理水に含まれる臭気物質の濃度を目標の濃度にするための臭気物質対応粉末活性炭注入率を計算し、当該臭気物質対応粉末活性炭注入率に基づき、前記着水井の被処理水もしくは凝集剤混和池の被処理水に注入する粉末活性炭の注入量を制御する粉末活性炭注入制御手段と
を具備する、粉末活性炭注入制御システム。
Algae detection determination means for detecting algae contained in raw water and determining the type of the algae;
odorant estimation means for estimating the type of odorant emitted by the algae from the algae species determined by the algae detection determination means;
odorant concentration measuring means for measuring the concentration of the odorant contained in the raw water or the treated water after the powdered activated carbon injection treatment, targeting the type of the odorant estimated by the odorant estimation means;
Using at least the concentration of the odorant measured by the odorant concentration measuring means, the powdered activated carbon injection rate corresponding to the odorant is calculated to bring the concentration of the odorant contained in the treated water of the receiving well to the target concentration. and a powdered activated carbon injection control means for controlling the amount of powdered activated carbon injected into the water to be treated in the receiving well or the water to be treated in the coagulant mixing basin based on the powdered activated carbon injection rate corresponding to the odorant. Activated carbon injection control system.
前記臭気物質推定手段は、
各種の藻類とこれらの藻類からそれぞれ生じる臭気物質との関係を示す情報を有し、当該情報に基づき、前記藻類検出判定手段により判定された藻類の種類から、前記原水に含まれる臭気物質の種類を推定する、
請求項1に記載の粉末活性炭注入制御システム。
The odorant estimation means is
Information indicating the relationship between various types of algae and odorous substances generated from these algae is provided, and based on the information, the types of odorous substances contained in the raw water are selected from the types of algae determined by the algae detection determination means. to estimate
The powdered activated carbon injection control system of claim 1.
前記臭気物質濃度測定手段は、
各種の臭気物質毎に、当該臭気物質濃度測定手段が備える臭気センサーの出力変化と臭気物質濃度との関係を示す情報を有し、当該情報のうち、前記臭気物質推定手段により推定された臭気物質の種類に対応する情報に基づき、前記臭気センサーで測定された出力変化から、前記濃度を判定する、
請求項1又は2に記載の粉末活性炭注入制御システム。
The odorant concentration measuring means comprises:
Information indicating the relationship between the output change of the odor sensor provided in the odorant concentration measuring means and the odorant concentration for each of various odorous substances, and among the information, the odorant estimated by the odorant estimation means Determining the concentration from the output change measured by the odor sensor based on information corresponding to the type of
The powdered activated carbon injection control system according to claim 1 or 2.
前記臭気物質濃度測定手段は、
藻類から発生するカビ臭物質に反応する臭気センサーと、前記カビ臭物質には無反応で油臭に反応する臭気センサーとを含む、
請求項1乃至3のいずれか1項に記載の粉末活性炭注入制御システム。
The odorant concentration measuring means comprises:
An odor sensor that reacts to a musty odor substance generated from algae, and an odor sensor that does not react to the musty odor substance but reacts to an oil odor,
The powdered activated carbon injection control system according to any one of claims 1 to 3.
前記原水の紫外線吸光度、蛍光強度、溶解性有機体炭素濃度の少なくともいずれかを溶解性有機物質指標値として測定する溶解性有機物質指標測定手段をさらに具備し、
前記粉末活性炭注入制御手段は、
前記溶解性有機物質指標測定手段により測定された溶解性有機物質指標値を用いて、前記着水井の被処理水の溶解性有機物質残存率を目標の残存率にするための溶解性有機物質対応粉末活性炭注入率を計算し、
前記溶解性有機物質対応粉末活性炭注入率と前記臭気物質対応粉末活性炭注入率とを比較し、大きい方の粉末活性炭注入率を、粉末活性炭注入率とし、前記粉末活性炭注入率に従って、前記着水井の被処理水に注入する粉末活性炭の注入量を制御する、
請求項1乃至4のいずれか1項に記載の粉末活性炭注入制御システム。
Further comprising soluble organic substance index measuring means for measuring at least one of ultraviolet absorbance, fluorescence intensity, and soluble organic carbon concentration of the raw water as a soluble organic substance index value,
The powdered activated carbon injection control means includes:
Using the soluble organic matter index value measured by the soluble organic matter index measuring means, soluble organic matter correspondence for achieving a target soluble organic matter residual rate in the water to be treated in the receiving well Calculate the powdered activated carbon injection rate,
The powdered activated carbon injection rate for the soluble organic substance and the powdered activated carbon injection rate for the odorous substance are compared, and the larger powdered activated carbon injection rate is taken as the powdered activated carbon injection rate. Controlling the amount of powdered activated carbon injected into the water to be treated,
The powdered activated carbon injection control system according to any one of claims 1 to 4.
前記臭気物質濃度測定手段は、
前記原水に含まれる臭気物質の濃度を測定し、
前記粉末活性炭注入制御手段は、
前記臭気物質濃度測定手段により測定された臭気物質の濃度が目標の濃度より大きい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも大きくなるように制御し、前記臭気物質濃度測定手段により測定された臭気物質の濃度が目標の濃度より小さい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも小さくなるように制御する、
請求項5に記載の粉末活性炭注入制御システム。
The odorant concentration measuring means comprises:
Measuring the concentration of odorants contained in the raw water,
The powdered activated carbon injection control means includes:
When the concentration of the odorant measured by the odorant concentration measuring means is higher than the target concentration, the powdered activated carbon injection rate corresponding to the odorant is controlled to be greater than a predetermined reference value, and the concentration of the odorant is controlled. If the concentration of the odorant measured by the measuring means is lower than the target concentration, the powdered activated carbon injection rate corresponding to the odorant is controlled to be smaller than a predetermined reference value.
The powdered activated carbon injection control system according to claim 5.
前記原水の紫外線吸光度、蛍光強度、溶解性有機体炭素濃度の少なくともいずれかを溶解性有機物質指標値として測定する溶解性有機物質指標測定手段をさらに具備し、
前記粉末活性炭注入制御手段は、
前記溶解性有機物質指標測定手段により測定された溶解性有機物質指標値を用いて、前記着水井の被処理水の溶解性有機物質残存率を目標の残存率にするための溶解性有機物質対応粉末活性炭注入率を計算し、
前記溶解性有機物質対応粉末活性炭注入率に従って、前記着水井の被処理水に注入する粉末活性炭の注入量を制御し、
前記臭気物質対応粉末活性炭注入率に従って、凝集剤注入処理対象の被処理水に注入する粉末活性炭の注入量を制御する、
請求項1乃至4のいずれか1項に記載の粉末活性炭注入制御システム。
Further comprising soluble organic substance index measuring means for measuring at least one of ultraviolet absorbance, fluorescence intensity, and soluble organic carbon concentration of the raw water as a soluble organic substance index value,
The powdered activated carbon injection control means includes:
Using the soluble organic matter index value measured by the soluble organic matter index measuring means, soluble organic matter correspondence for achieving a target soluble organic matter residual rate in the water to be treated in the receiving well Calculate the powdered activated carbon injection rate,
controlling the amount of powdered activated carbon to be injected into the water to be treated in the receiving well according to the powdered activated carbon injection rate for soluble organic substances;
Controlling the amount of powdered activated carbon to be injected into the water to be treated by injecting the coagulant according to the odorant-compatible powdered activated carbon injection rate;
The powdered activated carbon injection control system according to any one of claims 1 to 4.
前記臭気物質濃度測定手段は、
前記粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度を測定し、
前記粉末活性炭注入制御手段は、
前記臭気物質濃度測定手段により測定された臭気物質の濃度が目標の濃度より大きい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも大きくなるように制御し、前記臭気物質濃度測定手段により測定された臭気物質の濃度が目標の濃度より小さい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも小さくなるように制御する、
請求項7に記載の粉末活性炭注入制御システム。
The odorant concentration measuring means comprises:
Measuring the concentration of odorants contained in the treated water after the powdered activated carbon injection treatment,
The powdered activated carbon injection control means includes:
When the concentration of the odorant measured by the odorant concentration measuring means is higher than the target concentration, the powdered activated carbon injection rate corresponding to the odorant is controlled to be greater than a predetermined reference value, and the concentration of the odorant is controlled. If the concentration of the odorant measured by the measuring means is lower than the target concentration, the powdered activated carbon injection rate corresponding to the odorant is controlled to be smaller than a predetermined reference value.
The powdered activated carbon injection control system of claim 7.
前記粉末活性炭注入制御手段は、
前記粉末活性炭による臭気物質の吸着を阻害する溶解性有機物質の影響が補完されるように、前記臭気物質対応粉末活性炭注入率を計算する、
請求項1乃至8のいずれか1項に記載の粉末活性炭注入制御システム。
The powdered activated carbon injection control means includes:
Calculate the powdered activated carbon injection rate corresponding to the odorant so that the effect of the soluble organic substance that inhibits the adsorption of the odorant by the powdered activated carbon is complemented;
The powdered activated carbon injection control system according to any one of claims 1-8.
前記粉末活性炭注入制御手段は、
粉末活性炭注入処理と凝集剤注入処理とを併用するに際して当該粉末活性炭による臭気物質の吸着を阻害する溶解性有機物質の影響が補完されるように、前記溶解性有機物質対応粉末活性炭注入率を計算する、
請求項5乃至8のいずれか1項に記載の粉末活性炭注入制御システム。
The powdered activated carbon injection control means includes:
When powdered activated carbon injection treatment and coagulant injection treatment are used together, the powdered activated carbon injection rate corresponding to the dissolved organic substance is calculated so that the influence of the dissolved organic substance that inhibits the adsorption of the odorant by the powdered activated carbon is complemented. do,
The powdered activated carbon injection control system according to any one of claims 5-8.
藻類検出判定手段により、原水に含まれる藻類を検出して当該藻類の種類を判定することと、
臭気物質推定手段により、前記判定された藻類の種類から、当該藻類が発する臭気物質の種類を推定することと、
臭気物質濃度測定手段により、前記推定された臭気物質の種類を対象に、前記原水もしくは粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度を測定することと、
粉末活性炭注入制御手段により、少なくとも前記測定された臭気物質の濃度を用いて、着水井の被処理水に含まれる臭気物質の濃度を目標の濃度にするための臭気物質対応粉末活性炭注入率を計算し、当該臭気物質対応粉末活性炭注入率に基づき、前記着水井の被処理水もしくは凝集剤混和池の被処理水に注入する粉末活性炭の注入量を制御することと
を含む、粉末活性炭注入制御方法。
Detecting algae contained in the raw water by the algae detection and determination means to determine the type of the algae;
estimating the type of odorant emitted by the algae from the determined type of algae by the odorant estimating means;
measuring the concentration of the odorant contained in the raw water or the treated water after powdered activated carbon injection treatment for the estimated type of the odorant by the odorant concentration measuring means;
The powdered activated carbon injection control means uses at least the measured concentration of the odorous substance to calculate the powdered activated carbon injection rate corresponding to the odorous substance for bringing the concentration of the odorant contained in the treated water of the receiving well to the target concentration. and controlling the amount of powdered activated carbon to be injected into the water to be treated in the receiving well or the water to be treated in the coagulant mixing pond based on the powdered activated carbon injection rate corresponding to the odorant. .
原水に含まれる藻類が発する臭気物質の種類を対象に前記原水もしくは粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度を測定した結果を取り込み、少なくとも前記臭気物質の濃度を用いて、着水井の被処理水に含まれる臭気物質の濃度を目標の濃度にするための臭気物質対応粉末活性炭注入率を計算し、当該臭気物質対応粉末活性炭注入率に基づき、前記着水井の被処理水もしくは凝集剤混和池の被処理水に注入する粉末活性炭の注入量を制御する粉末活性炭注入制御手段を具備する、粉末活性炭注入制御装置。 Targeting the types of odorous substances emitted by algae contained in raw water, the results of measuring the concentration of odorous substances contained in the raw water or the treated water after powdered activated carbon injection treatment are taken in, and at least the concentration of the odorous substances is used to determine the Calculate the powdered activated carbon injection rate corresponding to the odorous substance to bring the concentration of the odorant contained in the treated water of the water well to the target concentration, and based on the powdered activated carbon injection rate corresponding to the odorant, the treated water of the receiving well or A powdered activated carbon injection control device comprising powdered activated carbon injection control means for controlling the amount of powdered activated carbon injected into water to be treated in a flocculant mixing pond. 前記粉末活性炭注入制御手段は、
前記原水の紫外線吸光度、蛍光強度、溶解性有機体炭素濃度の少なくともいずれかを溶解性有機物質指標値として測定した結果を取り込み、当該溶解性有機物質指標値を用いて、前記着水井の被処理水の溶解性有機物質残存率を目標の残存率にするための溶解性有機物質対応粉末活性炭注入率を計算し、
前記溶解性有機物質対応粉末活性炭注入率と前記臭気物質対応粉末活性炭注入率とを比較し、大きい方の粉末活性炭注入率を、粉末活性炭注入率とし、前記粉末活性炭注入率に従って、前記着水井の被処理水に注入する粉末活性炭の注入量を制御する、
請求項12に記載の粉末活性炭注入制御装置。
The powdered activated carbon injection control means includes:
A result obtained by measuring at least one of the raw water ultraviolet absorbance, fluorescence intensity, and soluble organic carbon concentration as a soluble organic substance index value is taken in, and the soluble organic substance index value is used to determine the receiving well for treatment. Calculate the powdered activated carbon injection rate for soluble organic substances to achieve the target residual rate of soluble organic substances in water,
The powdered activated carbon injection rate for the soluble organic substance and the powdered activated carbon injection rate for the odorous substance are compared, and the larger powdered activated carbon injection rate is taken as the powdered activated carbon injection rate. Controlling the amount of powdered activated carbon injected into the water to be treated,
13. The powdered activated carbon injection control device according to claim 12.
前記粉末活性炭注入制御手段は、
前記測定された臭気物質の濃度が目標の濃度より大きい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも大きくなるように制御し、前記測定された臭気物質の濃度が目標の濃度より小さい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも小さくなるように制御する、
請求項13に記載の粉末活性炭注入制御装置。
The powdered activated carbon injection control means includes:
When the measured concentration of the odorant is higher than the target concentration, the injection rate of the powdered activated carbon corresponding to the odorant is controlled to be greater than a predetermined reference value, and the measured concentration of the odorant reaches the target. If the concentration is less than the concentration of , the powdered activated carbon injection rate corresponding to the odorant is controlled to be smaller than a predetermined reference value.
14. The powdered activated carbon injection control device of claim 13.
前記粉末活性炭注入制御手段は、
前記原水の紫外線吸光度、蛍光強度、溶解性有機体炭素濃度の少なくともいずれかを溶解性有機物質指標値として測定した結果を取り込み、当該溶解性有機物質指標値を用いて、前記着水井の被処理水の溶解性有機物質残存率を目標の残存率にするための溶解性有機物質対応粉末活性炭注入率を計算し、
前記溶解性有機物質対応粉末活性炭注入率に従って、前記着水井の被処理水に注入する粉末活性炭の注入量を制御し、
前記臭気物質対応粉末活性炭注入率に従って、凝集剤注入処理対象の被処理水に注入する粉末活性炭の注入量を制御する、
請求項12に記載の粉末活性炭注入制御装置。
The powdered activated carbon injection control means includes:
A result obtained by measuring at least one of the raw water ultraviolet absorbance, fluorescence intensity, and soluble organic carbon concentration as a soluble organic substance index value is taken in, and the soluble organic substance index value is used to determine the receiving well for treatment. Calculate the powdered activated carbon injection rate for soluble organic substances to achieve the target residual rate of soluble organic substances in water,
controlling the amount of powdered activated carbon to be injected into the water to be treated in the receiving well according to the powdered activated carbon injection rate for soluble organic substances;
Controlling the amount of powdered activated carbon to be injected into the water to be treated by injecting the coagulant according to the odorant-compatible powdered activated carbon injection rate;
13. The powdered activated carbon injection control device according to claim 12.
前記粉末活性炭注入制御手段は、
前記測定された臭気物質の濃度が目標の濃度より大きい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも大きくなるように制御し、前記測定された臭気物質の濃度が目標の濃度より小さい場合は、前記臭気物質対応粉末活性炭注入率が予め定めた基準値よりも小さくなるように制御する、
請求項15に記載の粉末活性炭注入制御装置。
The powdered activated carbon injection control means includes:
When the measured concentration of the odorant is higher than the target concentration, the injection rate of the powdered activated carbon corresponding to the odorant is controlled to be greater than a predetermined reference value, and the measured concentration of the odorant reaches the target. If the concentration is less than the concentration of , the powdered activated carbon injection rate corresponding to the odorant is controlled to be smaller than a predetermined reference value.
16. The powdered activated carbon injection control device of claim 15.
前記粉末活性炭注入制御手段は、
前記粉末活性炭による臭気物質の吸着を阻害する溶解性有機物質の影響が補完されるように、前記臭気物質対応粉末活性炭注入率を計算する、
請求項12乃至16のいずれか1項に記載の粉末活性炭注入制御装置。
The powdered activated carbon injection control means includes:
Calculate the powdered activated carbon injection rate corresponding to the odorant so that the effect of the soluble organic substance that inhibits the adsorption of the odorant by the powdered activated carbon is complemented;
17. A powdered activated carbon injection control device according to any one of claims 12-16.
前記粉末活性炭注入制御手段は、
粉末活性炭注入処理と凝集剤注入処理とを併用するに際して当該粉末活性炭による臭気物質の吸着を阻害する溶解性有機物質の影響が補完されるように、前記溶解性有機物質対応粉末活性炭注入率を計算する、
請求項13乃至16のいずれか1項に記載の粉末活性炭注入制御装置。
The powdered activated carbon injection control means includes:
When powdered activated carbon injection treatment and coagulant injection treatment are used together, the powdered activated carbon injection rate corresponding to the dissolved organic substance is calculated so that the influence of the dissolved organic substance that inhibits the adsorption of the odorant by the powdered activated carbon is complemented. do,
17. A powdered activated carbon injection control device according to any one of claims 13-16.
コンピュータに、
原水に含まれる藻類が発する臭気物質の種類を対象に前記原水もしくは粉末活性炭注入処理後の処理水に含まれる臭気物質の濃度を測定した結果を取り込み、少なくとも前記臭気物質の濃度を用いて、着水井の水に含まれる臭気物質の濃度を目標の濃度にするための臭気物質対応粉末活性炭注入率を計算させる機能と、
前記臭気物質対応粉末活性炭注入率に基づき、前記着水井の被処理水もしくは凝集剤混和池の被処理水に注入する粉末活性炭の注入量を制御する機能と
を実現させるためのプログラム。
to the computer,
Targeting the types of odorous substances emitted by algae contained in raw water, the results of measuring the concentration of odorous substances contained in the raw water or the treated water after powdered activated carbon injection treatment are taken in, and at least the concentration of the odorous substances is used to determine the A function to calculate the injection rate of powdered activated carbon corresponding to odorous substances in order to bring the concentration of odorous substances contained in well water to the target concentration;
and a function of controlling the amount of powdered activated carbon to be injected into the water to be treated in the receiving well or the water to be treated in the coagulant mixing pond based on the powdered activated carbon injection ratio for odorants.
JP2021095215A 2021-06-07 2021-06-07 Powdery activated carbon injection control system, powdery activated carbon injection control method, powdery activated carbon injection control device, and program Pending JP2022187271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021095215A JP2022187271A (en) 2021-06-07 2021-06-07 Powdery activated carbon injection control system, powdery activated carbon injection control method, powdery activated carbon injection control device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021095215A JP2022187271A (en) 2021-06-07 2021-06-07 Powdery activated carbon injection control system, powdery activated carbon injection control method, powdery activated carbon injection control device, and program

Publications (1)

Publication Number Publication Date
JP2022187271A true JP2022187271A (en) 2022-12-19

Family

ID=84525457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021095215A Pending JP2022187271A (en) 2021-06-07 2021-06-07 Powdery activated carbon injection control system, powdery activated carbon injection control method, powdery activated carbon injection control device, and program

Country Status (1)

Country Link
JP (1) JP2022187271A (en)

Similar Documents

Publication Publication Date Title
CA2989452C (en) Process and device for the treatment of a fluid containing a contaminant
Assmann et al. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization
JP6158118B2 (en) Coagulant injection rate setting support system, coagulant injection rate setting support method, coagulant injection rate setting support device, and coagulant injection rate setting support program
JP4862576B2 (en) Aggregation apparatus and aggregation method
JP2008161809A (en) Coagulant injection control system
JP2004177122A (en) Water quality detection method and operation method of water purifying apparatus
JP2008068200A (en) Flocculation device and flocculation method
Wang et al. Effects of advanced oxidation pretreatment on residual aluminum control in high humic acid water purification
Tafvizi et al. Enhanced coagulation for removal of natural organic matter and disinfection byproducts: Multivariate optimization
Cruz-Alcalde et al. Characterization and fate of EfOM during ozonation applied for effective abatement of recalcitrant micropollutants
CN113039160A (en) Measuring and controlling organics in wastewater streams
JP2022187271A (en) Powdery activated carbon injection control system, powdery activated carbon injection control method, powdery activated carbon injection control device, and program
JP7086658B2 (en) Water treatment system and water treatment method
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
JP5769300B2 (en) Flocculant injection amount determination device and flocculant injection amount control system
KR100636265B1 (en) Apparatus and method for removing the algae using ozonation
CN107367476A (en) Assess method and system and its application in water process of the biodegradability of water
Ramírez et al. Formation of disinfection by-products within the drinking water production system and distribution network of a real case study
JP7443265B2 (en) How to determine the dosage of coagulant for treating raw water
JP3969217B2 (en) Disinfection by-product concentration control method and apparatus
Van Leeuwen et al. Modelling the application of inorganic coagulants and pH control reagents for removal of organic matter from drinking waters
JP2022026969A (en) Water treatment system and water treatment method
JP2004188273A (en) Ultraviolet irradiation system
JP2007014955A (en) Water-quality control system
JP4153893B2 (en) Water treatment method and water treatment system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20230105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240325