JP2020141144A - 高出力レーザシステム用の強化された支持及び/又は冷却機構を備えた平面導波路 - Google Patents
高出力レーザシステム用の強化された支持及び/又は冷却機構を備えた平面導波路 Download PDFInfo
- Publication number
- JP2020141144A JP2020141144A JP2020081957A JP2020081957A JP2020141144A JP 2020141144 A JP2020141144 A JP 2020141144A JP 2020081957 A JP2020081957 A JP 2020081957A JP 2020081957 A JP2020081957 A JP 2020081957A JP 2020141144 A JP2020141144 A JP 2020141144A
- Authority
- JP
- Japan
- Prior art keywords
- planar waveguide
- core region
- cooler
- clad layer
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/0407—Liquid cooling, e.g. by water
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/0405—Conductive cooling, e.g. by heat sinks or thermo-electric elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/04—Arrangements for thermal management
- H01S3/042—Arrangements for thermal management for solid state lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
- H01S3/0621—Coatings on the end-faces, e.g. input/output surfaces of the laser light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/0632—Thin film lasers in which light propagates in the plane of the thin film
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
- H01S3/0625—Coatings on surfaces other than the end-faces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/1305—Feedback control systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/13—Stabilisation of laser output parameters, e.g. frequency or amplitude
- H01S3/131—Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
- H01S3/1312—Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
[1] 光信号を受け取って増幅するように構成された平面導波路を有し、
前記平面導波路は、
コア領域と、
前記コア領域を挟んで反対側に配置された第1及び第2のコーティング又はクラッド層と、
前記コア領域の1つ以上の端部において、前記第1のコーティング又はクラッド層と前記第2のコーティング又はクラッド層との間に配置された、1つ以上のエンドキャップと
を有し、
前記コア領域は、少なくとも1つの材料を有し、且つ少なくとも1つの活性イオン種でドープされており、各エンドキャップは、前記少なくとも1つの材料を有するが、ポンプ波長及び信号波長における実質的な吸収を生み出す活性イオン種でドープされていない、
装置。
[例2] 前記1つ以上のエンドキャップは、第1及び第2のエンドキャップを有し、前記第1のエンドキャップは、前記平面導波路の入力端に位置し、前記第2のエンドキャップは前記平面導波路の出力端に位置する、例1に記載の装置。
[例3] 各エンドキャップが、該エンドキャップを形成する前記少なくとも1つの材料の屈折率を変化させるように少なくとも1つのドーパントでドープされている、例1に記載の装置。
[例4] 各エンドキャップが、受動ガイドエンドキャップを有する、例3に記載の装置。
[例5] 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域上に配置された少なくとも1つのクラッド層とを有する平面導波路
を有し、
前記コア領域は、少なくとも1つの結晶又は結晶材料を有し、且つ
前記少なくとも1つのクラッド層は、少なくとも1つのガラスを有する、
装置。
[例6] 前記少なくとも1つのクラッド層は、前記コア領域を挟んで反対側に配置された第1及び第2のクラッド層を有し、各クラッド層が前記少なくとも1つのガラスを有する、例5に記載の装置。
[例7] 前記第1及び第2のクラッド層は、前記平面導波路が非対称であるように実質的に異なる厚さを有する、例6に記載の装置。
[例8] 当該装置は更に、
前記第1のクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された第1の冷却器と、
前記第2のクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された第2の冷却器と
を有し、
前記第1及び第2の冷却器は、異なるタイプの冷却器である、
例7に記載の装置。
[例9] 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域を挟んで反対側に配置された第1及び第2のコーティング又はクラッド層と、を有する平面導波路と、
前記第1のコーティング又はクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された第1の冷却器と、
前記第2のコーティング又はクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された第2の冷却器と
を有し、
前記第1及び第2の冷却器は、異なるタイプの冷却器である、
装置。
[例10] 前記第1の冷却器は直接液体冷却器を有し、
前記第2の冷却器は伝導冷却器を有する、
例9に記載の装置。
[例11] 前記第2の冷却器は直接液体冷却器を有する、例10に記載の装置。
[例12] 前記冷却器のうち少なくとも一方は、
前記平面導波路に冷却液を供給するように構成された冷却マニホールドと、
前記冷却マニホールドと前記平面導波路との間に配置されたシールと
を有する、例9に記載の装置。
[例13] 前記第1の冷却器はアパーチャプレートを有し、
前記第2の冷却器はソリッドプレートを有する、
例9に記載の装置。
[例14] 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域上に配置された少なくとも1つのコーティング又はクラッド層と、を有する平面導波路と、
前記平面導波路を挟んで両側面に配置された第1及び第2の側面クラッドであり、前記両側面は、前記平面導波路の長い方の側面を表す、第1及び第2の側面クラッドと、
を有する装置。
[例15] 前記平面導波路の1つ以上の端部に配置された1つ以上のエンドキャップ、
を更に有する例14に記載の装置。
[例16] 前記1つ以上のエンドキャップは第1及び第2のエンドキャップを有し、前記第1のエンドキャップは前記平面導波路の入力端に位置し、前記第2のエンドキャップは前記平面導波路の出力端に位置する、例15に記載の装置。
[例17] 前記第1及び第2の側面クラッドと前記第1及び第2のエンドキャップとに接触する冷却器及びシールのうちの少なくとも一方、
を更に有する例16に記載の装置。
[例18] 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域上に配置された少なくとも1つのコーティング又はクラッド層と、を有する平面導波路と、
前記平面導波路に及びハウジングに封止された第1及び第2のエンドキャップと、
前記ハウジングに封止され、前記平面導波路を冷却するように構成された1つ以上の冷却器と
を有し、
前記1つ以上の冷却器のうちの少なくとも1つは、冷却剤を受け取って、前記ハウジングの内部空間内に画成された通路を通じて前記冷却剤を導くように構成され、前記通路は、前記平面導波路の長さに沿った実質的に直線状の通路を有する、
装置。
[例19] 前記1つ以上の冷却器のうちの前記少なくとも1つは、第1のチャネルを介して前記冷却剤を受け取り、フローコントローラによって画成された前記通路を通じて前記冷却剤を導き、そして、第2のチャネルを介して前記冷却剤を提供するように構成される、例18に記載の装置。
[例20] 前記1つ以上の冷却器は、複数の冷却器を有し、
各冷却器が、前記第1のチャネル、前記フローコントローラ、及び前記第2のチャネルを有する、
例19に記載の装置。
[例21] 前記第1及び第2のエンドキャップの各々が、前記平面導波路の端部が露出されたままであるように前記平面導波路が中を延在するスロットを含む、例18に記載の装置。
[例22] 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域を挟んで反対側に配置された第1及び第2のコーティング又はクラッド層と、を有する平面導波路と、
前記第1のコーティング又はクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された冷却器と
を有し、
前記第2のコーティング又はクラッド層は冷却されない、
装置。
[例23] 前記第1のコーティング又はクラッド層の厚さは、前記第2のコーティング又はクラッド層の厚さよりも小さい、例22に記載の装置。
[例24] 前記平面導波路は、前記冷却器に接合されている又ははんだ付けされている、例22に記載の装置。
[例25] 前記第2のコーティング又はクラッド層の上に透明基板が配置されている、請求項24に記載の装置。
Claims (20)
- 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域を挟んで反対側に配置された第1及び第2のコーティング又はクラッド層と、を有する平面導波路と、
前記第1のコーティング又はクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された第1の冷却器と、
前記第2のコーティング又はクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された第2の冷却器と
を有し、
前記第1及び第2の冷却器は、異なるタイプの冷却器である、
装置。 - 前記第1の冷却器は直接液体冷却器を有し、
前記第2の冷却器は伝導冷却器を有する、
請求項1に記載の装置。 - 前記第2の冷却器は直接液体冷却器を有する、請求項2に記載の装置。
- 前記冷却器のうち少なくとも一方は、
前記平面導波路に冷却液を供給するように構成された冷却マニホールドと、
前記冷却マニホールドと前記平面導波路との間に配置されたシールと
を有する、請求項1に記載の装置。 - 前記第1の冷却器はアパーチャプレートを有し、
前記第2の冷却器はソリッドプレートを有する、
請求項1に記載の装置。 - 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域上に配置された少なくとも1つのコーティング又はクラッド層と、を有する平面導波路と、
前記平面導波路に及びハウジングに封止された第1及び第2のエンドキャップと、
前記ハウジングに封止され、前記平面導波路を冷却するように構成された1つ以上の冷却器と
を有し、
前記1つ以上の冷却器のうちの少なくとも1つは、冷却剤を受け取って、前記ハウジングの内部空間内に画成された通路を通じて前記冷却剤を導くように構成され、前記通路は、前記平面導波路の長さに沿った実質的に直線状の通路を有する、
装置。 - 前記1つ以上の冷却器のうちの前記少なくとも1つは、第1のチャネルを介して前記冷却剤を受け取り、フローコントローラによって画成された前記通路を通じて前記冷却剤を導き、そして、第2のチャネルを介して前記冷却剤を提供するように構成される、請求項6に記載の装置。
- 前記1つ以上の冷却器は、複数の冷却器を有し、
各冷却器が、前記第1のチャネル、前記フローコントローラ、及び前記第2のチャネルを有する、
請求項7に記載の装置。 - 前記第1及び第2のエンドキャップの各々が、前記平面導波路の端部が露出されたままであるように前記平面導波路が中を延在するスロットを含む、請求項6に記載の装置。
- 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域上に配置された少なくとも1つのコーティング又はクラッド層と、を有する平面導波路と、
前記平面導波路を挟んで両側面に配置された第1及び第2の側面クラッドであり、前記両側面は、前記平面導波路の長い方の側面を表す、第1及び第2の側面クラッドと、
前記平面導波路の入力端に位置する第1のエンドキャップ、及び前記平面導波路の出力端に位置する第2のエンドキャップと、
前記第1及び第2の側面クラッドと前記第1及び第2のエンドキャップとに接触する冷却器及びシールのうちの少なくとも一方と、
を有する装置。 - 光信号を受け取って増幅するように構成された平面導波路であり、
コア領域と、
前記コア領域の反対側の主表面に沿って配置された第1及び第2のコーティング又はクラッド層と、
前記コア領域の両端部に沿って配置された第1及び第2のエンドキャップと、
前記コア領域の両側面に沿って配置された第1及び第2の側面クラッドであり、前記第1及び第2のエンドキャップと当該第1及び第2の側面クラッドとが、連続的な取り付け領域を提供するように、当該第1及び第2の側面クラッドの各々が、前記第1及び第2のエンドキャップと接触する、第1及び第2の側面クラッドと、
を有する平面導波路と、
前記第1のコーティング又はクラッド層上に又は隣接して配置され且つ前記連続的な取り付け領域に沿って取り付けられた冷却器であり、前記平面導波路を冷却するように構成された冷却器と
を有し、
前記第2のコーティング又はクラッド層は、更なる冷却器を用いて能動的に冷却されない、
装置。 - 前記第1のコーティング又はクラッド層の厚さは、前記第2のコーティング又はクラッド層の厚さよりも小さい、請求項11に記載の装置。
- 前記平面導波路は、前記冷却器に接合されている又ははんだ付けされている、請求項11に記載の装置。
- 前記第2のコーティング又はクラッド層の上に透明基板が配置されている、請求項13に記載の装置。
- 光信号を受け取って増幅するように構成された平面導波路であり、コア領域と、該コア領域上に配置された少なくとも1つのクラッド層とを有する平面導波路
を有し、
前記コア領域は、少なくとも1つの結晶又は結晶材料を有し、且つ
前記少なくとも1つのクラッド層は、少なくとも1つのガラスを有する、
装置。 - 前記少なくとも1つのクラッド層は、前記コア領域を挟んで反対側に配置された第1及び第2のクラッド層を有し、各クラッド層が前記少なくとも1つのガラスを有する、請求項15に記載の装置。
- 前記第1及び第2のクラッド層は、前記平面導波路が非対称であるように実質的に異なる厚さを有する、請求項16に記載の装置。
- 当該装置は更に、
前記第1のクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された第1の冷却器と、
前記第2のクラッド層上に又は隣接して配置され、前記平面導波路を冷却するように構成された第2の冷却器と
を有し、
前記第1及び第2の冷却器は、異なるタイプの冷却器である、
請求項17に記載の装置。 - 光信号を生成するように構成されたマスタ発振器と、
ポンプ光を生成するように構成されたポンプ源と、
前記ポンプ光を用いて前記光信号を増幅して、増幅された光信号を生成するように構成された平面導波路(PWG)増幅器であり、請求項1乃至18のいずれか一項に記載の装置を有するPWG増幅器と、
を有するシステム。 - 前記増幅された光信号のサンプルに基づいて、前記マスタ発振器、前記ポンプ源、及び前記PWG増幅器のうちの少なくとも1つを制御するように構成されたフィードバックループ、を更に有する請求項19に記載のシステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/041,909 US10069270B2 (en) | 2016-02-11 | 2016-02-11 | Planar waveguides with enhanced support and/or cooling features for high-power laser systems |
US15/041,909 | 2016-02-11 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018559668A Division JP6703136B2 (ja) | 2016-02-11 | 2016-12-09 | 高出力レーザシステム用の強化された支持及び/又は冷却機構を備えた平面導波路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020141144A true JP2020141144A (ja) | 2020-09-03 |
JP6999740B2 JP6999740B2 (ja) | 2022-01-19 |
Family
ID=59067872
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018559668A Active JP6703136B2 (ja) | 2016-02-11 | 2016-12-09 | 高出力レーザシステム用の強化された支持及び/又は冷却機構を備えた平面導波路 |
JP2020081957A Active JP6999740B2 (ja) | 2016-02-11 | 2020-05-07 | 高出力レーザシステム用の強化された支持及び/又は冷却機構を備えた平面導波路 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018559668A Active JP6703136B2 (ja) | 2016-02-11 | 2016-12-09 | 高出力レーザシステム用の強化された支持及び/又は冷却機構を備えた平面導波路 |
Country Status (5)
Country | Link |
---|---|
US (4) | US10069270B2 (ja) |
EP (1) | EP3414803A2 (ja) |
JP (2) | JP6703136B2 (ja) |
IL (1) | IL259558A (ja) |
WO (1) | WO2017139017A2 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10297968B2 (en) | 2015-11-25 | 2019-05-21 | Raytheon Company | High-gain single planar waveguide (PWG) amplifier laser system |
US10511135B2 (en) | 2017-12-19 | 2019-12-17 | Raytheon Company | Laser system with mechanically-robust monolithic fused planar waveguide (PWG) structure |
US11133639B2 (en) * | 2018-07-24 | 2021-09-28 | Raytheon Company | Fast axis thermal lens compensation for a planar amplifier structure |
CN111152375A (zh) * | 2019-11-05 | 2020-05-15 | 中国电子科技集团公司第十三研究所 | 磷化铟晶棒裁切衬底晶圆片的方法 |
CN113050462A (zh) * | 2019-12-26 | 2021-06-29 | 福州高意通讯有限公司 | 实现edfa光输出不中断的结构及控制方法 |
CN113151819A (zh) * | 2021-02-23 | 2021-07-23 | 徐玲萍 | 一种激光熔覆再制造用高效率冷却装置 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394427A (en) * | 1994-04-29 | 1995-02-28 | Cutting Edge Optronics, Inc. | Housing for a slab laser pumped by a close-coupled light source |
US5475702A (en) * | 1994-05-31 | 1995-12-12 | General Electric Company | Diode pumped slab module |
JP2000036631A (ja) * | 1998-07-07 | 2000-02-02 | Trw Inc | 端部ポンピングが行われるジグザグスラブレ―ザ―ゲイン媒体 |
US6160824A (en) * | 1998-11-02 | 2000-12-12 | Maxios Laser Corporation | Laser-pumped compound waveguide lasers and amplifiers |
US20030021324A1 (en) * | 2001-07-24 | 2003-01-30 | Gsi Lumonics, Inc. | Waveguide device with mode control and pump light confinement and method of using same |
US20040028094A1 (en) * | 2001-11-13 | 2004-02-12 | Raytheon Company | Multi-jet impingement cooled slab laser pumphead and method |
US20050008051A1 (en) * | 2003-05-15 | 2005-01-13 | Sumida David S. | Numerical aperture optimization using doped cladding layers |
US20050090030A1 (en) * | 2003-10-28 | 2005-04-28 | Sridharan Arun K. | Method for fabricating zig-zag slabs for solid state lasers |
CN1905293A (zh) * | 2006-07-28 | 2007-01-31 | 中国科学院上海光学精密机械研究所 | 包层掺杂的平板波导激光放大器 |
WO2010146706A1 (ja) * | 2009-06-19 | 2010-12-23 | 三菱電機株式会社 | 平面導波路型レーザ装置およびそれを用いたディスプレイ装置 |
US20110200292A1 (en) * | 2010-02-17 | 2011-08-18 | Raytheon Company | Glass core planar waveguide laser amplifier |
US20120051688A1 (en) * | 2010-09-01 | 2012-03-01 | Xyratex Technology Limited | Amplification module for an optical printed circuit board and an optical printed circuit board |
JP2013205573A (ja) * | 2012-03-28 | 2013-10-07 | Mitsubishi Cable Ind Ltd | 光ファイバ・エンドキャップ接合構造及びその製造方法 |
JP2013254861A (ja) * | 2012-06-07 | 2013-12-19 | Mitsubishi Electric Corp | 平面導波路型光増幅器 |
US20140268309A1 (en) * | 2013-03-12 | 2014-09-18 | Raytheon Company | Suppression of amplified spontaneous emission (ase) within laser planar waveguide devices |
WO2015182017A1 (ja) * | 2014-05-26 | 2015-12-03 | 三菱電機株式会社 | 光学装置 |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5852622A (en) | 1988-08-30 | 1998-12-22 | Onyx Optics, Inc. | Solid state lasers with composite crystal or glass components |
US5327444A (en) | 1989-04-20 | 1994-07-05 | Massachusetts Institute Of Technology | Solid state waveguide lasers |
US6631842B1 (en) | 2000-06-07 | 2003-10-14 | Metrologic Instruments, Inc. | Method of and system for producing images of objects using planar laser illumination beams and image detection arrays |
US5105430A (en) | 1991-04-09 | 1992-04-14 | The United States Of America As Represented By The United States Department Of Energy | Thin planar package for cooling an array of edge-emitting laser diodes |
US5377212A (en) | 1991-10-17 | 1994-12-27 | Hitachi, Ltd. | Solid-state laser device including uniaxial laser crystal emitting linearly polarized fundamental wave and nonlinear optical crystal emitting linearly polarized harmonic wave |
US5363391A (en) | 1992-04-24 | 1994-11-08 | Hughes Aircraft Company | Conductive face-cooled laser crystal |
US5233624A (en) | 1992-09-30 | 1993-08-03 | International Business Machines Corporation | Method and apparatus for an increased output for a pumped laser using a moving aperture |
US5398130A (en) | 1992-12-01 | 1995-03-14 | The United States Of America As Represented By The Secretary Of The Army | Gradient index lens phased array phase compensation technique and apparatus |
GB9522925D0 (en) | 1995-11-09 | 1996-01-10 | Barr & Stroud Ltd | Solid state lasers |
US5863017A (en) | 1996-01-05 | 1999-01-26 | Cymer, Inc. | Stabilized laser platform and module interface |
US5778132A (en) | 1997-01-16 | 1998-07-07 | Ciena Corporation | Modular optical amplifier and cassette system |
US6072814A (en) | 1997-05-30 | 2000-06-06 | Videojet Systems International, Inc | Laser diode module with integral cooling |
US6026109A (en) | 1998-01-22 | 2000-02-15 | Cutting Edge Optronics, Inc. | High-power, solid-state laser in a cylindrical package |
US6301277B1 (en) | 1998-11-20 | 2001-10-09 | Trw Inc. | Solid state laser master oscillator gain module |
US6289031B1 (en) | 1999-05-14 | 2001-09-11 | Raytheon Company | Integrated lightweight optical bench and miniaturized laser transmitter using same |
US6417955B1 (en) | 1999-12-14 | 2002-07-09 | Spectra Physics Lasers, Inc. | Stack pumped vanadate amplifier |
US6339605B1 (en) | 2000-02-16 | 2002-01-15 | The Boeing Company | Active mirror amplifier system and method for a high-average power laser system |
US6904069B2 (en) | 2000-12-29 | 2005-06-07 | The Regents Of The University Of California | Parasitic oscillation suppression in solid state lasers using optical coatings |
US6810060B2 (en) | 2001-02-13 | 2004-10-26 | The Boeing Company | High-average power active mirror solid-state laser with multiple subapertures |
US20020110166A1 (en) | 2001-02-14 | 2002-08-15 | Filgas David M. | Method and system for cooling a laser gain medium |
US7065121B2 (en) | 2001-07-24 | 2006-06-20 | Gsi Group Ltd. | Waveguide architecture, waveguide devices for laser processing and beam control, and laser processing applications |
US6738396B2 (en) | 2001-07-24 | 2004-05-18 | Gsi Lumonics Ltd. | Laser based material processing methods and scalable architecture for material processing |
US6529318B1 (en) | 2001-08-30 | 2003-03-04 | Np Photonics, Inc. | Total internal reflection (TIR) coupler and method for side-coupling pump light into a fiber |
US6809307B2 (en) | 2001-09-28 | 2004-10-26 | Raytheon Company | System and method for effecting high-power beam control with adaptive optics in low power beam path |
US20030138021A1 (en) | 2001-10-25 | 2003-07-24 | Norman Hodgson | Diode-pumped solid-state thin slab laser |
DE60218211T2 (de) | 2001-11-21 | 2007-10-18 | General Atomics, San Diego | Laser mit einem verteilten verstärkungsmedium |
US6690696B2 (en) | 2002-06-14 | 2004-02-10 | Raytheon Company | Laser cooling apparatus and method |
US20040032896A1 (en) | 2002-08-15 | 2004-02-19 | Raytheon Company | Miniaturized multi-functional laser resonator |
US6724792B2 (en) | 2002-09-12 | 2004-04-20 | The Boeing Company | Laser diode arrays with replaceable laser diode bars and methods of removing and replacing laser diode bars |
US7170919B2 (en) | 2003-06-23 | 2007-01-30 | Northrop Grumman Corporation | Diode-pumped solid-state laser gain module |
JP4167209B2 (ja) | 2004-08-12 | 2008-10-15 | 浜松ホトニクス株式会社 | レーザ装置 |
US7353859B2 (en) | 2004-11-24 | 2008-04-08 | General Electric Company | Heat sink with microchannel cooling for power devices |
US7675952B2 (en) * | 2004-12-23 | 2010-03-09 | Raytheon Company | Articulated glaze cladding for laser components and method of encapsulation |
US7472741B2 (en) | 2005-02-09 | 2009-01-06 | Raytheon Company | Foil slot impingement cooler with effective light-trap cavities |
US7305016B2 (en) | 2005-03-10 | 2007-12-04 | Northrop Grumman Corporation | Laser diode package with an internal fluid cooling channel |
US7430230B2 (en) | 2005-04-07 | 2008-09-30 | The Boeing Company | Tube solid-state laser |
US7787729B2 (en) | 2005-05-20 | 2010-08-31 | Imra America, Inc. | Single mode propagation in fibers and rods with large leakage channels |
US7551656B2 (en) | 2006-03-29 | 2009-06-23 | Lockheed Martin Coherent Technologies, Inc. | Low stress optics mount using thermally conductive liquid metal or gel |
US20080037601A1 (en) | 2006-07-07 | 2008-02-14 | Torsana Laser Technologies A/S | Avoiding temperature-related faults of a laser by temperature adjustment |
US7808636B2 (en) | 2007-01-11 | 2010-10-05 | Rensselaer Polytechnic Institute | Systems, methods, and devices for handling terahertz radiation |
US8731013B2 (en) | 2007-01-24 | 2014-05-20 | Raytheon Company | Linear adaptive optics system in low power beam path and method |
US7903351B2 (en) | 2007-02-21 | 2011-03-08 | Corning Incorporated | Active cooling of crystal optics for increased laser lifetime |
US7983312B2 (en) | 2007-08-09 | 2011-07-19 | Raytheon Company | Method and apparatus for generation and amplification of light in a semi-guiding high aspect ratio core fiber |
EP2039979B1 (de) * | 2007-09-24 | 2011-03-30 | BMDSys Production GmbH | Kryostat mit verstärktem Innengefäss |
US20160028210A1 (en) | 2008-04-04 | 2016-01-28 | CVI Laser, LLC. | Compact, thermally stable multi-laser engine |
US9413130B2 (en) | 2012-12-12 | 2016-08-09 | Cvi Laser, Llc | Optical systems |
US8564783B2 (en) | 2008-05-15 | 2013-10-22 | Axsun Technologies, Inc. | Optical coherence tomography laser with integrated clock |
US7983313B2 (en) | 2009-01-30 | 2011-07-19 | Northrop Grumman Information Technology, Inc. | System and method for coupling multiple beams to an active fiber |
US8204094B2 (en) | 2009-04-21 | 2012-06-19 | Innova, Inc. | Scalable, efficient laser systems |
US8111451B2 (en) * | 2009-08-03 | 2012-02-07 | Dmitry Starodubov | MOPA seed source with wavelength control for resonant frequency conversion |
US8488245B1 (en) | 2011-03-07 | 2013-07-16 | TeraDiode, Inc. | Kilowatt-class diode laser system |
US8787768B2 (en) | 2010-06-03 | 2014-07-22 | Raytheon Company | Method and apparatus for synthesizing and correcting phase distortions in ultra-wide bandwidth optical waveforms |
US8514901B2 (en) | 2010-11-02 | 2013-08-20 | Gerald Ho Kim | Silicon-based cooling package for laser gain medium |
US8989224B2 (en) | 2011-08-22 | 2015-03-24 | Korea Electrotechnology Research Institute | Apparatus for femtosecond laser optically pumped by laser diode pumping module |
JP6051469B2 (ja) | 2011-09-09 | 2016-12-27 | 国立研究開発法人情報通信研究機構 | 光ファイバ型光機能素子カートリッジモジュール |
GB201214856D0 (en) | 2012-08-21 | 2012-10-03 | Powerlase Ltd | A laser module |
US9574749B2 (en) | 2013-06-28 | 2017-02-21 | Raytheon Company | Adaptive multi-wavelength laser illuminator |
FR3008555B1 (fr) | 2013-07-10 | 2015-07-03 | Commissariat Energie Atomique | Laser cristallin comportant un systeme de refroidissement du cristal par un liquide |
US9465165B2 (en) | 2014-06-30 | 2016-10-11 | Raytheon Company | Reflection/absorption coating for laser slabs |
US9726820B2 (en) | 2014-08-14 | 2017-08-08 | Raytheon Company | End pumped PWG with tapered core thickness |
US9843164B2 (en) | 2015-01-27 | 2017-12-12 | TeraDiode, Inc. | Solder sealing in high-power laser devices |
US9865988B2 (en) * | 2015-11-25 | 2018-01-09 | Raytheon Company | High-power planar waveguide (PWG) pumphead with modular components for high-power laser system |
-
2016
- 2016-02-11 US US15/041,909 patent/US10069270B2/en active Active
- 2016-12-09 WO PCT/US2016/065988 patent/WO2017139017A2/en active Application Filing
- 2016-12-09 JP JP2018559668A patent/JP6703136B2/ja active Active
- 2016-12-09 EP EP16876952.9A patent/EP3414803A2/en not_active Withdrawn
-
2017
- 2017-11-29 US US15/825,653 patent/US10630039B2/en active Active
- 2017-11-29 US US15/825,677 patent/US10777959B2/en active Active
- 2017-11-29 US US15/825,593 patent/US10763633B2/en active Active
-
2018
- 2018-05-23 IL IL259558A patent/IL259558A/en unknown
-
2020
- 2020-05-07 JP JP2020081957A patent/JP6999740B2/ja active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394427A (en) * | 1994-04-29 | 1995-02-28 | Cutting Edge Optronics, Inc. | Housing for a slab laser pumped by a close-coupled light source |
US5475702A (en) * | 1994-05-31 | 1995-12-12 | General Electric Company | Diode pumped slab module |
JP2000036631A (ja) * | 1998-07-07 | 2000-02-02 | Trw Inc | 端部ポンピングが行われるジグザグスラブレ―ザ―ゲイン媒体 |
US6160824A (en) * | 1998-11-02 | 2000-12-12 | Maxios Laser Corporation | Laser-pumped compound waveguide lasers and amplifiers |
US20030021324A1 (en) * | 2001-07-24 | 2003-01-30 | Gsi Lumonics, Inc. | Waveguide device with mode control and pump light confinement and method of using same |
US20040028094A1 (en) * | 2001-11-13 | 2004-02-12 | Raytheon Company | Multi-jet impingement cooled slab laser pumphead and method |
US20050008051A1 (en) * | 2003-05-15 | 2005-01-13 | Sumida David S. | Numerical aperture optimization using doped cladding layers |
US20050090030A1 (en) * | 2003-10-28 | 2005-04-28 | Sridharan Arun K. | Method for fabricating zig-zag slabs for solid state lasers |
CN1905293A (zh) * | 2006-07-28 | 2007-01-31 | 中国科学院上海光学精密机械研究所 | 包层掺杂的平板波导激光放大器 |
WO2010146706A1 (ja) * | 2009-06-19 | 2010-12-23 | 三菱電機株式会社 | 平面導波路型レーザ装置およびそれを用いたディスプレイ装置 |
US20110200292A1 (en) * | 2010-02-17 | 2011-08-18 | Raytheon Company | Glass core planar waveguide laser amplifier |
US20120051688A1 (en) * | 2010-09-01 | 2012-03-01 | Xyratex Technology Limited | Amplification module for an optical printed circuit board and an optical printed circuit board |
JP2013205573A (ja) * | 2012-03-28 | 2013-10-07 | Mitsubishi Cable Ind Ltd | 光ファイバ・エンドキャップ接合構造及びその製造方法 |
JP2013254861A (ja) * | 2012-06-07 | 2013-12-19 | Mitsubishi Electric Corp | 平面導波路型光増幅器 |
US20140268309A1 (en) * | 2013-03-12 | 2014-09-18 | Raytheon Company | Suppression of amplified spontaneous emission (ase) within laser planar waveguide devices |
WO2015182017A1 (ja) * | 2014-05-26 | 2015-12-03 | 三菱電機株式会社 | 光学装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3414803A2 (en) | 2018-12-19 |
IL259558A (en) | 2018-07-31 |
JP6703136B2 (ja) | 2020-06-03 |
US10630039B2 (en) | 2020-04-21 |
US10763633B2 (en) | 2020-09-01 |
US20180090901A1 (en) | 2018-03-29 |
US20170237220A1 (en) | 2017-08-17 |
WO2017139017A2 (en) | 2017-08-17 |
US20180090903A1 (en) | 2018-03-29 |
US20180090902A1 (en) | 2018-03-29 |
WO2017139017A3 (en) | 2017-12-14 |
US10069270B2 (en) | 2018-09-04 |
JP2019503592A (ja) | 2019-02-07 |
US10777959B2 (en) | 2020-09-15 |
JP6999740B2 (ja) | 2022-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6999740B2 (ja) | 高出力レーザシステム用の強化された支持及び/又は冷却機構を備えた平面導波路 | |
US9865988B2 (en) | High-power planar waveguide (PWG) pumphead with modular components for high-power laser system | |
US11211763B2 (en) | High-gain single planar waveguide (PWG) amplifier laser system | |
US10211590B2 (en) | Dual-function optical bench and cooling manifold for high-power laser system | |
EP2059839B1 (en) | Reducing thermal load on optical head | |
CN101443969B (zh) | 具有耦合到一个主振荡器的多个同步放大器的激光装置 | |
US11114813B2 (en) | Integrated pumplight homogenizer and signal injector for high-power laser system | |
EP3345265B1 (en) | Fiber-laser pumped crystal-laser | |
RU2013148791A (ru) | Способ и система для криогенно-охлаждаемого лазерного усилителя | |
EP3453083B1 (en) | Heat exchangers with tapered light scrapers for high-power laser systems and other systems | |
US10511135B2 (en) | Laser system with mechanically-robust monolithic fused planar waveguide (PWG) structure | |
JPWO2006098313A1 (ja) | 光増幅器およびレーザ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6999740 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |