JP2020139720A - Automatic combustion control method for garbage incinerator - Google Patents

Automatic combustion control method for garbage incinerator Download PDF

Info

Publication number
JP2020139720A
JP2020139720A JP2019037809A JP2019037809A JP2020139720A JP 2020139720 A JP2020139720 A JP 2020139720A JP 2019037809 A JP2019037809 A JP 2019037809A JP 2019037809 A JP2019037809 A JP 2019037809A JP 2020139720 A JP2020139720 A JP 2020139720A
Authority
JP
Japan
Prior art keywords
waste
quality
incinerator
measured value
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019037809A
Other languages
Japanese (ja)
Other versions
JP7237654B2 (en
Inventor
健司 中神
Kenji Nakagami
健司 中神
正二 泉
Shoji Izumi
正二 泉
一栄 柴田
Kazue Shibata
一栄 柴田
孝輔 眞田
Kosuke Sanada
孝輔 眞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2019037809A priority Critical patent/JP7237654B2/en
Publication of JP2020139720A publication Critical patent/JP2020139720A/en
Application granted granted Critical
Publication of JP7237654B2 publication Critical patent/JP7237654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Abstract

To appropriately control the combustion temperature in a garbage incinerator and the exhaust gas characteristics in accordance with the characteristics of a garbage combusted in the incinerator.SOLUTION: A garbage characteristic database that includes a plurality of garbage characteristics is created. Every time a garbage is loaded in an incinerator, the garbage are selected from the garbage characteristic database, and the oxygen concentration in an exhaust gas produced when the garbage is combusted is calculated from a calculation formula. Conversely, the oxygen concentration in the exhaust gas produced from the actually combusted garbage is measured. The comparison between the calculated value and the measured value is repeated until both become consistent with each other upon the comparison between the calculated value and the measured value to determine the garbage characteristics having the calculated value and the measured value consistent with each other.SELECTED DRAWING: Figure 1

Description

本発明は、ごみ焼却場におけるごみ焼却炉の自動燃焼制御方法に関する。 The present invention relates to an automatic combustion control method for a waste incinerator in a waste incinerator.

事業所や家庭等から廃棄されたごみは、各地域に設けられたごみ焼却場に搬送され、焼却処理されて清浄化された排ガスや焼却灰として処分される。
ごみ焼却場には多種多様なごみ(紙、繊維、プラスチック、水分を多く含んだ生ごみなど)が搬入され、(焼却)処理されている。しかし、それらの性状は一様でなく組成も不明なため、ごみ焼却場の焼却炉内の燃焼状態(燃焼炉内温度や排ガス濃度)は、投入されるごみの組成・熱量(ごみ質)によって大きく変動し、焼却炉で安定して燃焼させることが難しい。
一般的なごみ焼却炉は、図9に示すように燃焼温度と排ガス性状を制御しごみを焼却している。
[1]一次空気吹き込み:ごみ焼却炉1のごみ燃焼室2内のストーカ6の真下から空気送風機7で空気を送り込みごみを燃焼させる。
[2]ごみ汚水噴霧+汚水噴霧用空気吹き込み:貯留しているごみから染み出した汚水(ごみ汚水)を処分するために、空気とともにごみ汚水を前記ごみ燃焼室2内へ吹き込み、燃焼させる。
[3]排ガス再循環(EGR:Exhaust Gas Recirculation):前記ごみ燃焼室2から排出された排ガスの一部を焼却炉に戻し、局所的な高温燃焼を抑制することで、NOx(窒素酸化物)の生成を抑える。
[4]補助燃料+補助燃料用空気投入:熱量の小さなごみがごみ燃焼室2に投入され焼却炉内の温度が低下した場合に、焼却炉内の温度を上げるためごみ焼却炉内に補助燃料(灯油等)と空気を投入する。
[5]二次空気吹き込み:排ガス中の未燃ガスを完全燃焼させるためと、排ガスの温度を低下させるためにごみ焼却炉2に二次空気を吹き込む。
[6]尿素水噴霧+尿素水噴霧用空気吹き付け:排ガスに尿素水を吹き付け、窒素酸化物を窒素と水に分解する。
[7]冷却水噴霧:冷却塔において排ガスに冷却水を吹き付けて排ガスの温度を下げる。
上記のように現状用いられている手法としては、焼却炉出口温度を参照し、焼却炉出口温度が目標値となるようにプッシャー速度やストーカ速度、燃焼用空気風量の調整を行い、焼却炉内の燃焼状態を制御する方法の他、様々な新たな手法も提案されている。
Garbage discarded from business establishments and households is transported to waste incinerators set up in each region and disposed of as exhaust gas and incineration ash that have been incinerated and cleaned.
A wide variety of garbage (paper, fiber, plastic, water-rich food waste, etc.) is brought into the garbage incinerator and processed (incinerated). However, since their properties are not uniform and the composition is unknown, the combustion state (combustion furnace temperature and exhaust gas concentration) in the incinerator of the waste incinerator depends on the composition and calorific value (waste quality) of the input waste. It fluctuates greatly and it is difficult to burn it stably in an incinerator.
In a general waste incinerator, as shown in FIG. 9, the combustion temperature and the exhaust gas properties are controlled to incinerate the waste.
[1] Primary air blowing: Air is blown from directly below the stoker 6 in the waste combustion chamber 2 of the waste incinerator 1 by an air blower 7 to burn the waste.
[2] Garbage sewage spraying + air blowing for sewage spraying: In order to dispose of the sewage (garbage sewage) exuded from the stored garbage, the garbage sewage is blown into the waste combustion chamber 2 together with air and burned.
[3] Exhaust gas recirculation (EGR: Exhaust Gas Recirculation): NOx (nitrogen oxide) by returning a part of the exhaust gas discharged from the waste combustion chamber 2 to the incinerator and suppressing local high-temperature combustion. Suppress the generation of.
[4] Auxiliary fuel + air input for auxiliary fuel: When a small amount of heat is charged into the waste combustion chamber 2 and the temperature inside the incinerator drops, the auxiliary fuel is added to the waste incinerator to raise the temperature inside the incinerator. Add (kerosene, etc.) and air.
[5] Secondary air injection: Secondary air is blown into the waste incinerator 2 in order to completely burn the unburned gas in the exhaust gas and to lower the temperature of the exhaust gas.
[6] Urea spray + air spray for urea spray: Urea water is sprayed on the exhaust gas to decompose nitrogen oxides into nitrogen and water.
[7] Cooling water spray: Cooling water is sprayed on the exhaust gas in the cooling tower to lower the temperature of the exhaust gas.
As described above, the method currently used is to refer to the incinerator outlet temperature, adjust the pusher speed, stoker speed, and combustion air volume so that the incinerator outlet temperature becomes the target value, and then inside the incinerator. In addition to the method of controlling the combustion state of, various new methods have been proposed.

従来は、作業員が排ガスの温度や濃度の測定値を確認後、燃焼させるごみの量、燃焼用空気量を調整して、焼却炉内温度を安定させている。しかし、作業員の調整が反映されるまでに時間を要するため、焼却炉内における燃焼温度の調整処理が遅れる。なおかつ、反映までに時間を要するために、処理を施したごみ質と現在燃焼しているごみ質が異なってしまうことから焼却炉内の燃焼状態を常に一定に保つことは難しい。 Conventionally, after the worker confirms the measured values of the temperature and concentration of the exhaust gas, the amount of waste to be burned and the amount of air for combustion are adjusted to stabilize the temperature inside the incinerator. However, since it takes time for the adjustment of the workers to be reflected, the adjustment process of the combustion temperature in the incinerator is delayed. Moreover, since it takes time to reflect the waste, it is difficult to keep the combustion state in the incinerator constant because the quality of the treated waste and the quality of the waste currently being burned are different.

本発明は、かかる観点に鑑みてなされたもので、予め焼却場に持ち込まれるごみの分析値のデータベース(ごみ質データベース)を作っておき、当該ごみ質データベースを使ってごみ焼却場の焼却炉内に投入したごみのごみ質を計算によって推算し特定し、当該特定されたごみ質に対応して焼却炉に吹き込む一次空気量を調整することで、ごみ焼却炉内の燃焼温度と排ガス性状を最適に制御し、排ガス中の有害成分の発生を抑制する自動燃焼制御方法を提供することを目的とするものである。
本発明に係るごみ焼却炉の自動燃焼制御方法は、ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉の燃焼制御を行うことを特徴とする。
(1)ごみ質データベースを用いて焼却炉内で燃えているごみ質を特定する。
(2)特定されたごみ質に応じて一次空気の吹き込み量を制御する。
The present invention has been made in view of this viewpoint. A database (waste quality database) of analysis values of waste brought into an incinerator is prepared in advance, and the waste quality database is used in an incinerator of a waste incinerator. By estimating and identifying the waste quality of the waste put into the waste incinerator by calculation and adjusting the amount of primary air blown into the incinerator according to the specified waste quality, the combustion temperature and exhaust gas properties in the waste incinerator are optimized. It is an object of the present invention to provide an automatic combustion control method for controlling the generation of harmful components in the exhaust gas.
The automatic combustion control method for a waste incinerator according to the present invention is characterized in that combustion control of the incinerator is performed based on the following procedure in the process of incinerating waste in the waste incinerator.
(1) Use the waste quality database to identify the waste quality that is burning in the incinerator.
(2) The amount of primary air blown is controlled according to the specified waste quality.

本発明者らは上記課題を下記の手段により解決した。
〈1〉ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉に投入されたごみのごみ質を特定し、当該特定されたごみ質に応じてごみ焼却炉に供給する一次空気の吹き込み量を制御し、焼却炉の燃焼制御を行うことを特徴とするごみ焼却炉の自動燃焼制御方法。
ごみ焼却炉内に投入され燃焼しているごみ質を次のステップに従って計算し推算する。
(R1)ごみ質データベースから任意のごみ質を選び焼却炉で燃焼されたときに、発生する酸素濃度を計算式に従って計算値を出す。
(R2)ごみ焼却炉から排気された酸素濃度を測定し実測値を出す。
(R3)前記酸素濃度の計算値と実測値を比較する。
(R4)前記酸素濃度の計算値と実測値が所定の範囲内で一致するときは、ごみ質の特定を終え、前記酸素濃度の計算値と実測値を比較し酸素濃度の計算値と実測値が所定の範囲で異なっているときは、前記ごみ質データベースから別のごみ質を選び前記(R1)から(R3)のステップに従って酸素濃度の計算値と実測値が所定の範囲内で一致するまで前記ごみ質を変えて計算し、ごみ質を特定する。
(R5)前記特定されたごみ質に応じてごみ焼却炉に供給する一次空気の吹き込み量を制御する。
なお、前記酸素の濃度に基づいてごみ質を特定する場合における計算値と実測値が所定の範囲とは、計算値と実測値の差が、例えば±0.05の範囲内であることをいう。このように、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば酸素濃度で±0.05)内で一致する場合を含む。
例えば、酸素濃度の実測値が3.07%であったとしたら計算値は3.02%〜3.12%の範囲内であれば一致とする。
〈2〉ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉に投入されたごみ質を特定し、当該特定されたごみ質に応じてごみ焼却炉に供給する一次空気の吹き込み量を制御し、焼却炉の燃焼制御を行うことを特徴とするごみ焼却炉の自動燃焼制御方法。
ごみ焼却炉内に投入され燃焼しているごみ質を次のステップに従って計算し推算する。
(S1)ごみ質データベースから任意のごみ質を選び焼却炉で燃焼されたときに、発生する二酸化炭素濃度を計算式に従って計算値を出す。
(S2)ごみ焼却炉から排気された二酸化炭素濃度を測定し実測値を出す。
(S3)前記二酸化炭素濃度の計算値と実測値を比較する。
(S4)前記二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは、ごみ質の特定を終え、前記二酸化炭素濃度の計算値と実測値を比較し二酸化炭素濃度の計算値と実測値が所定の範囲で異なっているときは、前記ごみ質データベースから別のごみ質を選び前記(S1)から(S3)のステップに従って二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するまで前記ごみ質を変えて計算し、ごみ質を特定する。
なお、前記二酸化炭素濃度に基づいてごみ質を特定する場合における計算値と実測値が所定の範囲とは、計算値と実測値の差が、例えば±2.0の範囲内であることをいう。
このように、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば二酸化炭素濃度で±2.0以内)内で一致する場合を含む。
例えば、二酸化炭素濃度の実測値が19.0%であったとしたら計算値は17.0〜21.0%の範囲内であれば一致とする。
〈3〉前記ごみ質データベースから選ばれたごみ質が焼却炉で燃焼されたときに、発生する酸素及び二酸化炭素濃度の計算値を一連の計算式に従って求めることを特徴とする請求項〈1〉又は〈2〉に記載のごみ焼却炉の自動燃焼制御方法。
なお、前記一連の計算式とは、請求項3に記載する式(1)〜式(10)のことである。
〈4〉前記ごみ焼却炉の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を次の手順により特定することを特徴とする〈1〉又は〈2〉のいずれかに記載されたごみ焼却炉の自動燃焼制御方法。
(T1)ごみ質データベースは、ごみの発熱量の順に並んでおり、発熱量が少ないごみ質はデータベースの左側、発熱量が多いごみ質はデータベースの右側に並べる。
ごみ質データベースに記載されている複数のごみ質の中心に近いごみ質を選び焼却炉で燃焼させたときに、発生する酸素濃度又は二酸化炭素濃度の計算値と実測値と比較し、酸素濃度の計算値と実測値が所定の範囲内で一致するとき又は二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉内に投入されたごみ質が選択したごみ質であると特定する。
(T2)酸素濃度の場合において、計算値と実測値が所定の範囲内で一致しなかった場合、前記計算値が前記実測値に対して高い場合と低い場合に分けて、ごみ質を選択しなおす。前記計算値が前記実測値に対して高い場合は、前記選んだ中心にあるごみ質と最も発熱量が大きい右にあるごみ質の間でごみ質選択範囲を狭め、前記計算値が前記実測値に対して低い場合は、前記選んだ中心にあるごみ質と最も発熱量が小さい左にあるごみ質の間でごみ質選択範囲を狭め、狭めた範囲内で中心に位置するごみ質を選び、選んだごみ質が焼却炉で燃焼したときに発生する酸素濃度を計算し、計算値と実測値が所定の範囲内で一致するときは前記焼却炉内に投入されたごみ質が、選択したごみ質であると特定する。
(T3)酸素濃度の場合において、前記により選んだごみ質を焼却炉で燃焼させたときに、発生する酸素濃度の計算値と実測値とが異なるときは再度上記手順に従ってごみ質を選び、選んだごみ質の酸素濃度の計算値と実測値が所定の範囲内で一致するまで上記(T2)の手順を繰り返す。
(T2’)二酸化炭素濃度の場合において、計算値と実測値が所定の範囲内で一致しなかった場合、前記計算値が前記実測値に対して高い場合と低い場合に分けて、ごみ質を選択しなおす。前記計算値が前記実測値に対して高い場合は、前記選んだ中心にあるごみ質と最も発熱量が小さい左にあるごみ質の間でごみ質選択範囲を狭め、前記計算値が前記実測値に対して低い場合は、前記選んだ中心にあるごみ質と最も発熱量が大きい右にあるごみ質の間でごみ質選択範囲を狭め、狭めた範囲内で中心に位置するごみ質を選び、選んだごみ質が焼却炉で燃焼したときに発生する二酸化炭素濃度を計算し、二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉内に投入されたごみ質が、選択したごみ質であると特定する。
(T3’)二酸化炭素濃度の場合において、前記により選んだごみ質を焼却炉で燃焼させたときに、発生する二酸化炭素濃度の計算値と実測値が異なるときは再度上記手順に従ってごみ質を選び、選んだごみ質の二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するまで上記(T2’)の手順を繰り返す。
〈5〉前記ごみ焼却炉の自動燃焼制御方法におけるごみ質データベースから焼却炉内に投入されたごみ質を次の手順により特定することを特徴とする〈1〉又は〈2〉のいずれかに記載されたごみ焼却炉の自動燃焼制御方法。
(U1)ごみ質データベースは、ごみの発熱量の順に並んでおり、発熱量が少ないごみ質はデータベースの左側、発熱量が多いごみ質はデータベースの右側に並べる。
ごみ質データベースに記載されている[1]最も左側のごみ質、[2]最も右側のごみ質及び[3]複数のごみ質の中心に近いごみ質を選び焼却炉で燃焼させたときに、発生する酸素濃度又は二酸化炭素濃度の計算値と実測値と比較し、実測値の含まれる範囲が[1]〜[2]か[2]〜[3]を判定する。
(U2)実測値が含まれる範囲において、残りのごみ質が2又は3個になるまで(U1)を繰り返す。
(U3)ごみ質が残り2又は3個になったら、各々のごみ質の計算値を算出し、実測値に近いごみ質を選んでごみ質を特定する。
The present inventors have solved the above problems by the following means.
<1> In the process of incinerating waste in a waste incinerator, the waste quality of the waste put into the incinerator is specified based on the following procedure, and the primary is supplied to the waste incinerator according to the specified waste quality. An automatic combustion control method for waste incinerators, which comprises controlling the amount of air blown and controlling the combustion of the incinerator.
The quality of the waste that is put into the waste incinerator and burned is calculated and estimated according to the following steps.
(R1) Select an arbitrary waste quality from the waste quality database and calculate the oxygen concentration generated when it is burned in the incinerator according to the calculation formula.
(R2) Measure the oxygen concentration exhausted from the waste incinerator and obtain the measured value.
(R3) The calculated value of the oxygen concentration is compared with the measured value.
(R4) When the calculated value of the oxygen concentration and the measured value match within a predetermined range, the waste quality is specified, the calculated value of the oxygen concentration is compared with the measured value, and the calculated value and the measured value of the oxygen concentration are compared. If is different within a predetermined range, select another waste material from the waste quality database and follow the steps (R1) to (R3) until the calculated oxygen concentration value and the measured value match within the predetermined range. The waste quality is specified by changing the waste quality.
(R5) The amount of primary air blown into the waste incinerator is controlled according to the specified waste quality.
The range of the calculated value and the measured value in the case of specifying the waste quality based on the oxygen concentration means that the difference between the calculated value and the measured value is, for example, within the range of ± 0.05. .. As described above, the case is not limited to the case where the calculated value and the actually measured value are exactly the same, and includes the case where they match within a predetermined range (threshold value) (for example, ± 0.05 in oxygen concentration).
For example, if the measured value of oxygen concentration is 3.07%, the calculated value is in the range of 3.02% to 3.12%.
<2> In the process of incinerating waste in a waste incinerator, the quality of waste put into the incinerator is specified based on the following procedure, and the primary air supplied to the waste incinerator according to the specified waste quality. An automatic combustion control method for waste incinerators, which comprises controlling the amount of blown water and controlling the combustion of the incinerator.
The quality of the waste that is put into the waste incinerator and burned is calculated and estimated according to the following steps.
(S1) Select an arbitrary waste quality from the waste quality database and calculate the carbon dioxide concentration generated when it is burned in the incinerator according to the calculation formula.
(S2) Measure the concentration of carbon dioxide exhausted from the waste incinerator and obtain the measured value.
(S3) The calculated value of the carbon dioxide concentration is compared with the measured value.
(S4) When the calculated value of the carbon dioxide concentration and the measured value match within a predetermined range, the identification of the waste quality is completed, the calculated value of the carbon dioxide concentration is compared with the measured value, and the calculated value of the carbon dioxide concentration is compared. If the measured value is different within the specified range, select another waste material from the waste quality database and follow the steps (S1) to (S3) above to keep the calculated and measured carbon dioxide concentration within the specified range. The waste quality is specified by changing the waste quality until they match.
The range of the calculated value and the measured value in the case of specifying the waste quality based on the carbon dioxide concentration means that the difference between the calculated value and the measured value is, for example, within the range of ± 2.0. ..
In this way, the calculated value and the measured value are not limited to the case where they exactly match, but include the case where they match within a predetermined range (threshold value) (for example, within ± 2.0 in carbon dioxide concentration). ..
For example, if the measured value of the carbon dioxide concentration is 19.0%, the calculated value is in the range of 17.0 to 21.0%.
<3> A claim <1>, wherein the calculated values of oxygen and carbon dioxide concentrations generated when the waste material selected from the waste quality database is burned in an incinerator are obtained according to a series of calculation formulas. Alternatively, the automatic combustion control method for the waste incinerator according to <2>.
The series of calculation formulas are the formulas (1) to (10) according to claim 3.
<4> Described in either <1> or <2>, wherein the waste quality input into the incinerator is specified by the following procedure from the waste quality database in the automatic combustion control method of the waste incinerator. Automatic combustion control method for garbage incinerators.
(T1) The waste quality database is arranged in the order of the calorific value of the waste. The waste quality with a small calorific value is arranged on the left side of the database, and the waste quality with a large calorific value is arranged on the right side of the database.
When multiple waste materials listed in the waste quality database near the center of the waste quality are selected and burned in an incinerator, the calculated and measured values of the oxygen concentration or carbon dioxide concentration generated are compared with the measured values to determine the oxygen concentration. When the calculated value and the measured value match within a predetermined range, or when the calculated value of oxygen concentration and the measured value match within a predetermined range, the waste quality put into the incinerator is the selected waste quality. Identify as being.
(T2) In the case of oxygen concentration, when the calculated value and the measured value do not match within a predetermined range, the waste quality is selected according to the case where the calculated value is higher or lower than the measured value. fix. When the calculated value is higher than the measured value, the waste quality selection range is narrowed between the selected central waste material and the right waste material having the largest calorific value, and the calculated value is the measured value. If it is lower than the above, narrow the waste quality selection range between the selected central waste quality and the left waste quality with the smallest calorific value, and select the central waste quality within the narrowed range. The oxygen concentration generated when the selected waste quality burns in the incinerator is calculated, and when the calculated value and the measured value match within a predetermined range, the waste quality put into the incinerator is the selected waste quality. Identify as quality.
(T3) In the case of oxygen concentration, if the calculated value and the measured value of the oxygen concentration generated when the waste quality selected above is burned in the incinerator are different, the waste quality is selected and selected again according to the above procedure. The above procedure (T2) is repeated until the calculated value and the measured value of the oxygen concentration of the waste material match within a predetermined range.
In the case of (T2') carbon dioxide concentration, when the calculated value and the measured value do not match within a predetermined range, the waste quality is classified into the case where the calculated value is higher than the measured value and the case where the measured value is lower than the measured value. Reselect. When the calculated value is higher than the measured value, the waste material selection range is narrowed between the selected central waste material and the left waste material having the smallest calorific value, and the calculated value is the measured value. If it is lower than the above, narrow the waste quality selection range between the selected central waste quality and the right waste material with the highest calorific value, and select the central waste quality within the narrowed range. Calculate the carbon dioxide concentration generated when the selected waste quality burns in the incinerator, and if the calculated value of the carbon dioxide concentration and the measured value match within a predetermined range, the waste quality put into the incinerator. Identifyes the selected waste quality.
In the case of (T3') carbon dioxide concentration, if the calculated value and the measured value of the carbon dioxide concentration generated when the waste quality selected above is burned in the incinerator are different, select the waste quality again according to the above procedure. , The above procedure (T2') is repeated until the calculated value and the measured value of the carbon dioxide concentration of the selected waste material match within a predetermined range.
<5> Described in either <1> or <2>, wherein the waste quality put into the incinerator is specified by the following procedure from the waste quality database in the automatic combustion control method of the waste incinerator. Automatic combustion control method for waste incinerators.
(U1) The waste quality database is arranged in the order of the calorific value of the waste. The waste quality with a small calorific value is arranged on the left side of the database, and the waste quality with a large calorific value is arranged on the right side of the database.
When [1] the leftmost waste quality, [2] the rightmost waste quality, and [3] multiple waste quality near the center of the waste quality are selected and burned in the incinerator, they are listed in the waste quality database. By comparing the calculated value of the generated oxygen concentration or carbon dioxide concentration with the measured value, it is determined whether the range including the measured value is [1] to [2] or [2] to [3].
(U2) Repeat (U1) until the remaining waste quality becomes 2 or 3 in the range including the measured value.
(U3) When there are only 2 or 3 pieces of waste, calculate the calculated value of each waste, select the waste that is close to the measured value, and specify the waste.

本発明のごみ焼却炉の自動燃焼制御方法によれば、ごみ焼却場の焼却炉内に投入したごみ質を計算によって推算し、当該特定されたごみ質に対応して焼却炉に吹き込む一次空気量を調整することで焼却炉内の燃焼温度と排ガス性状を最適に制御することができる。 According to the automatic combustion control method of the waste incinerator of the present invention, the quality of the waste put into the incinerator of the waste incinerator is estimated by calculation, and the amount of primary air blown into the incinerator corresponding to the specified waste quality. The combustion temperature and exhaust gas properties in the incinerator can be optimally controlled by adjusting.

本発明のごみ焼却施設の全体系統図である。It is an overall system diagram of the waste incineration facility of this invention. 本発明におけるごみ質データベースの例を示す図である。It is a figure which shows the example of the waste quality database in this invention. 本発明におけるごみ質データベースからごみ質を特定するための手順を説明するため説明図である。It is explanatory drawing for demonstrating the procedure for specifying the waste quality from the waste quality database in this invention. 本発明におけるごみ質データベースからごみ質を特定するための別の手順を説明するため説明図である。It is explanatory drawing for demonstrating another procedure for identifying waste quality from the waste quality database in this invention. 本発明におけるごみ焼却炉の自動燃焼制御方法のフローチャートである。It is a flowchart of the automatic combustion control method of the waste incinerator in this invention. 本発明における別のごみ焼却炉の自動燃焼制御方法のフローチャートである。It is a flowchart of another automatic combustion control method of a waste incinerator in this invention. 本発明を実施する他のごみ焼却施設の全体系統図である。It is an overall system diagram of other waste incineration facilities which carry out this invention. 本発明を実施する他のごみ焼却施設の全体系統図である。It is an overall system diagram of other waste incineration facilities which carry out this invention. 従来のごみ焼却施設を部分的に示した系統図である。It is a system diagram which partially showed the conventional waste incineration facility.

本発明に係るごみ焼却炉の自動燃焼制御方法を実施するための形態を、実施例の図に基づいて説明する。
図1は、本発明に係るごみ焼却炉の自動燃焼制御方法のごみ焼却施設の概略全体系統図である。
図1において、1はごみ焼却炉、2はごみ燃焼室、3はごみ供給ホッパ、4はごみ、5はプッシャー、6はストーカ、6aは乾燥ストーカ、6bは燃焼ストーカ、6cは後燃焼ストーカ、7は空気送風機、8は冷却塔、9は煙突、10は灰シュート、11は燃焼制御部、12はコントローラ、13は演算装置である。
図1を参照してこの焼却炉へのごみ投入から当該ごみが焼却されるまでの流れを説明する。
ごみ供給ホッパ3よりクレーン(図示しない)にて投入されたごみ4はごみ焼却炉1に入り乾燥ストーカ6a、燃焼ストーカ6b、後燃焼ストーカ6c上を移動する。このとき焼却量の信号aが燃焼制御部11へ送られ演算装置13で演算された燃焼用の一次空気量[A]が空気送風機7によりごみ焼却炉1の下から供給される。ごみ焼却炉1内で、ごみ4は燃焼し灰となり、焼却炉1の灰シュート10より排出され発生した排ガス[G]はダクト等を通り冷却塔8に送られる。
A mode for implementing the automatic combustion control method of the waste incinerator according to the present invention will be described with reference to the figures of Examples.
FIG. 1 is a schematic overall system diagram of a waste incineration facility according to an automatic combustion control method for a waste incinerator according to the present invention.
In FIG. 1, 1 is a waste incinerator, 2 is a waste combustion chamber, 3 is a waste supply hopper, 4 is waste, 5 is a pusher, 6 is a stoker, 6a is a dry stoker, 6b is a combustion stoker, and 6c is a post-combustion stoker. 7 is an air blower, 8 is a cooling tower, 9 is a chimney, 10 is an ash chute, 11 is a combustion control unit, 12 is a controller, and 13 is a computing device.
The flow from putting the waste into the incinerator to incineration of the waste will be described with reference to FIG.
The waste 4 thrown in by a crane (not shown) from the waste supply hopper 3 enters the waste incinerator 1 and moves on the drying stoker 6a, the combustion stoker 6b, and the post-combustion stoker 6c. At this time, the signal a of the incineration amount is sent to the combustion control unit 11, and the primary air amount [A] for combustion calculated by the arithmetic unit 13 is supplied from below the waste incinerator 1 by the air blower 7. In the waste incinerator 1, the waste 4 is burned to become ash, and the exhaust gas [G] discharged from the ash chute 10 of the incinerator 1 is sent to the cooling tower 8 through a duct or the like.

ごみが燃焼し灰となる過程において焼却炉1へは燃焼制御部11による制御に従い以下の処理が行われる。
ごみ焼却炉へ投入されたごみ焼却量の信号aが燃焼制御部11に送られこれに対応した一次空気量Aが空気送風機7によりごみ焼却炉1の下から供給される([A])。また、前記信号aを受け前記ごみ焼却量に対応した汚水量がごみ焼却炉1内に噴霧される(ごみ汚水噴霧量)([B])。
排ガスを再利用するため排ガスをごみ焼却炉1に供給する(排ガス再循環)([C])。
ごみ焼却炉1内の燃焼温度Aの信号bが燃焼制御部11へ送られ前記燃焼温度Aに対応した補助燃料がごみ焼却炉1内へ供給される([D])。
ごみ焼却炉1内の燃焼温度Bの信号cが燃焼制御部11へ送られ前記燃焼温度Bに対応した二次空気がごみ焼却炉1へ吹き込まれる([E])。
冷却塔8から煙突9へ送られる途中の排ガスのNOX量の信号gが燃焼制御部11に送られこれに対応した尿素水がごみ焼却炉1へ噴霧される(尿素噴霧量)([F])。
このとき焼却炉内から排出される排ガス内に含まれる酸素濃度及び二酸化炭素濃度の実測値の信号dを前記燃焼制御部11へ送る。
なお、前記酸素濃度又は二酸化炭素濃度の実測値を後述するごみ質データベース表1から選んだごみ質を前記の条件で焼却した場合に発生する排ガス内の酸素濃度又は二酸化炭素濃度を計算式で計算した計算値と比較することで前記ごみ質を特定する過程で使用する。
前記焼却炉内から排出された排ガスの温度(排ガス温度)Cの信号eが燃焼制御部11へ送られ前記排ガス温度Cに対応した冷却水が冷却塔8内へ吹き込まれる(冷却水噴霧量)([I])。
前記冷却塔8内に吹き込まれた冷却水により温度Cに冷却された排ガスの一部は、前記ごみ焼却炉1内に供給され(排ガス再循環)([C])、残りは煙突9から排出される。
In the process of burning garbage into ash, the incinerator 1 is subjected to the following processing under the control of the combustion control unit 11.
A signal a of the amount of waste incinerated into the waste incinerator is sent to the combustion control unit 11, and the corresponding primary air amount A is supplied from below the waste incinerator 1 by the air blower 7 ([A]). Further, in response to the signal a, an amount of sewage corresponding to the amount of waste incinerated is sprayed into the waste incinerator 1 (amount of sprayed waste sewage) ([B]).
Exhaust gas is supplied to the waste incinerator 1 in order to reuse the exhaust gas (exhaust gas recirculation) ([C]).
A signal b of the combustion temperature A in the waste incinerator 1 is sent to the combustion control unit 11, and auxiliary fuel corresponding to the combustion temperature A is supplied into the waste incinerator 1 ([D]).
A signal c of the combustion temperature B in the waste incinerator 1 is sent to the combustion control unit 11, and secondary air corresponding to the combustion temperature B is blown into the waste incinerator 1 ([E]).
A signal g of the NO X amount of exhaust gas being sent from the cooling tower 8 to the chimney 9 is sent to the combustion control unit 11, and the corresponding urea water is sprayed to the waste incinerator 1 (urea spray amount) ([F. ]).
At this time, the signal d of the measured values of the oxygen concentration and the carbon dioxide concentration contained in the exhaust gas discharged from the incinerator is sent to the combustion control unit 11.
It should be noted that the oxygen concentration or carbon dioxide concentration in the exhaust gas generated when the waste quality selected from the waste quality database Table 1 described later for the measured value of the oxygen concentration or carbon dioxide concentration is incinerated under the above conditions is calculated by a calculation formula. It is used in the process of identifying the waste quality by comparing it with the calculated value.
A signal e of the temperature (exhaust gas temperature) C of the exhaust gas discharged from the incinerator is sent to the combustion control unit 11, and cooling water corresponding to the exhaust gas temperature C is blown into the cooling tower 8 (cooling water spray amount). ([I]).
A part of the exhaust gas cooled to the temperature C by the cooling water blown into the cooling tower 8 is supplied into the waste incinerator 1 (exhaust gas recirculation) ([C]), and the rest is discharged from the chimney 9. Will be done.

表1は本発明に係るごみ焼却炉の自動燃焼制御方法を実施するためのごみ質データベースで、当該ごみ質データベースの概念を説明するものであり、本発明においては焼却炉内で燃焼しているごみ質(ごみの組成・熱量)を計算によって推算する過程で使用される。
ごみ焼却場に運び込まれるごみは季節によって異なることから、本発明の実施形態においては、ごみ焼却場に運び込まれる焼却されるごみを例えば1週間ごとにサンプリングし、組成や熱量を分析し分析値(発熱量、可燃分、水分、灰分、元素構成比)を蓄積し、月ごとの平均値をとり、ごみ質データベースを作成している。
表1の一番上の横欄に前記複数の異なるごみのごみ質が記載され、左側縦欄に、上からごみ質の含まれる水分量、可燃分量、灰分量を%で記載している。また、上記ごみ質を焼却炉内で同じ燃焼条件で燃焼させたときに発生する発熱量、可燃分に含まれている炭素(C)、水素(H)、窒素(N)、酸素(0)の元素の構成比が記載されている。
なお、表1の一番上の横欄に記載されたごみ質は、左から右に向かって前記発熱量に従って左から右に大きくなるように分けられている。
表2は、ごみ焼却場に運び込まれたごみに基づいて作成したごみ質データベースの一例であり、一番下の欄に、前記図1の本発明に係るごみ焼却炉の自動燃焼制御方法によるごみ質の排ガス内の酸素濃度と二酸化炭素濃度の計算値を記載している

Figure 2020139720
Figure 2020139720
Table 1 is a waste quality database for implementing the automatic combustion control method of the waste incinerator according to the present invention, and explains the concept of the waste quality database. In the present invention, the waste is burned in the incinerator. It is used in the process of estimating the quality of waste (composition and calorific value of waste) by calculation.
Since the amount of waste carried into the waste incinerator varies depending on the season, in the embodiment of the present invention, the waste to be incinerated carried into the waste incinerator is sampled, for example, weekly, and the composition and calorific value are analyzed and analyzed values ( Calorific value, combustible content, water content, ash content, element composition ratio) are accumulated, and monthly average values are taken to create a waste quality database.
In the upper horizontal column of Table 1, the waste qualities of the plurality of different wastes are described, and in the left vertical column, the water content, the combustible content, and the ash content of the waste qualities are described in% from the top. In addition, the calorific value generated when the above waste is burned in an incinerator under the same combustion conditions, carbon (C), hydrogen (H), nitrogen (N), and oxygen (0) contained in combustible components. The composition ratio of the elements of is described.
The waste materials listed in the uppermost horizontal column of Table 1 are divided from left to right so as to increase from left to right according to the calorific value.
Table 2 is an example of a waste quality database created based on the waste brought into the waste incinerator, and in the bottom column, the waste by the automatic combustion control method of the waste incinerator according to the present invention of FIG. The calculated values of oxygen concentration and carbon dioxide concentration in the quality exhaust gas are described.

Figure 2020139720
Figure 2020139720

図2は、本発明におけるごみ質データベースの例を示す図であり、図3は、本発明の実施形態におけるごみ焼炉内の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を特定するための手順を説明するため説明図である。
前記焼却炉内に投入されたごみ質を特定するための手順の要旨は、次の手順に従ってごみ質を選択することにある。
前記図2に示すごみ質データベースからごみ質を特定するための手順の一例を、図3に基づいて説明する。
最初にごみ質データベースに記載されている複数のごみ質の中心に近いごみ質(6)を選択し発生する酸素濃度又は二酸化炭素濃度の計算値を計算式に基づいて求め、前記焼却炉から排出された排気ガスの酸素濃度又は二酸化炭素実測値と前記計算値が一致した場合は、ごみ質(6)を前記焼却炉内に投入されたごみ質とし、前記計算値と実測値が異なった場合、計算値と実測値の大小関係から次の計算で用いるごみ質を選択する。
なお、本実施の形態においては、前記ごみ質データベースの複数のごみ質の中心のごみ質を選択する場合、ごみ質の番号(1)〜(12)の中心値である6.5を切り下げて(6)を選んでいるが、これに限定されるものではなく中心値を切り上げて(7)を選ぶ方法でも構わない。
なお、前記焼却炉から排出された排気ガスの酸素の濃度又は二酸化炭素の実測値と前記計算値が一致した場合とは、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば、酸素濃度で±0.05、二酸化炭素濃度で±2.0以内)内で一致する場合を含む。
例えば、酸素濃度の実測値が3.07%であったとしたら計算値は3.02%〜3.12%の範囲内であれば一致とし、二酸化炭素濃度の実測値が19.0%であったとしたら計算値は17.0%〜21.0%の範囲内であれば一致とする。
1)酸素濃度を計算する場合
1-1)前記選択されたごみ質(6)について計算値が実測値より小さい場合、ごみ質データベースの発熱量が小さいごみ質側の一番左(1)と上記(6)の左隣の(5)との中心のごみ質(3)を選択する。
1-1-1)前記選択されたごみ質(3)について同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(3)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、計算値が実測値より小さい場合は残った(1)と(2)のうち、発熱量の大きな(2)を選択し、前記と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(2)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(1)を前記焼却炉内に投入されたごみ質とする。
1-1-2)前記選択されたごみ質(3)について前記と同様に計算値を求め、計算値が実測値より大きい場合は残った(4)と(5)のうち、発熱量の大きな(5)を選択し、前期と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(5)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(4)を前記焼却炉内に投入されたごみ質とする。
1-2) 前記選択されたごみ質(6)について計算値が実測値より大きい場合、ごみ質データベースの発熱量が大きいごみ質側の一番右の(12)と上記(6)右隣の(7)との中心に近いごみ質(9)と(10)のうち、熱量の大きな(10)を選択する。
1-2-1)前記選択されたごみ質(10)について前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(10)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合で、計算値が実測値より小さい場合、(7)と(9)の中心のごみ質(8)を選択し、前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(8)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、計算値が実測値より小さい場合はごみ質(7)を、計算値が実測値より大きい場合はごみ質(9)を前記焼却炉内に投入されたごみ質とする。
1-2-2)前記選択されたごみ質(10)について、前記と同様に計算値を求め、当該計算値と実測値が異なった場合で、計算値が実測値より大きい場合、(11)と(12)のうち、発熱量の大きな(12)を選択し、前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(12)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(11)を前記焼却炉内に投入されたごみ質とする。
なお、1-1-1)、1-1-2)及び1-2-2)において発熱量の大きなほうを選んでいるが、もちろん発熱量の小さなほうを選ぶように決めてもよいし、ごみ質の番号(1)〜(12)の中心値である6.5を切り下げて(6)を中心値として、発熱量の小さい側では残ったごみ質のうち発熱量の小さいごみ質を選択し、発熱量の大きい側では残ったごみ質のうち発熱量の大きいごみ質を選択するようにしてもよい。
上記のように選択したごみ質の計算値と実測値の大小を比較し両者の値が異なった場合、計算値と実測値の大小関係から上記手順に従って次のごみ質を選択することで、上記1-1)計算値が実測値より小さい場合は、(6)より右にあるごみ質(7)〜(12)のごみ質の計算値を求める必要がなく、上記1-2)計算値が実測値より大きい場合は、(6)より左にあるごみ質(1)〜(5)のごみ質の計算値を求める必要がない。このごみ質の特定手順に従えば、ごみ質データベースの全てのごみ質について計算値を求める必要がないので、実際に焼却炉内で燃焼しているごみ質を効率よく特定することができる。
なお、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば、酸素濃度で±0.05)内で一致する場合を含む。
例えば、酸素濃度の実測値が3.07%であったとしたら計算値は3.02%〜3.12%の範囲内であればよい。
2)二酸化炭素濃度を計算する場合
前記酸素濃度を計算する場合と同様に、選択されたごみ質の二酸化炭素濃度について計算値と実測値が一致した場合は、前記ごみ質を前記焼却炉内に投入されたごみ質とする。以下前記酸素濃度と同様に、二酸化炭素濃度が計算値と実測値が異なった場合に、残りのごみ質を選択し前記焼却炉内に投入されたごみ質を特定する。
2-1)前記選択されたごみ質(6)について、計算値が実測値より大きい場合、ごみ質データベースの発熱量が小さいごみ質側の一番左(1)と上記(6)の左隣の(5)との中心のごみ質(3)を選択する。
2-1-1)前記選択されたごみ質(3)について、同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(3)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合、計算値が実測値より大きい場合は残った(1)と(2)のうち、発熱量の大きな(2)を選択し、前記と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(2)を前記焼却炉内に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(1)を選択する。
2-1-2)前記選択されたごみ質(3)について、前記と同様に計算値を求め、計算値が実測値より小さい場合は残った(4)と(5)のうち、発熱量の大きな(5)を選択し、前期と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(5)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(4)を前記焼却炉に投入されたごみ質とする。
2-2) 前記選択されたごみ質(6)について、計算値が実測値より小さい場合、ごみ質データベースの発熱量が大きいごみ質側の一番右の(12)と上記(6)右隣の(7)との中心に近いごみ質(9)と(10)のうち、熱量の大きな(10)を選択する。
2-2-1)前記選択されたごみ質(10)について、前記と同様に計算値を求め、計算値と実測値が一致した場合は、前記ごみ質(10)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合で、計算値が実測値より大きい場合、(7)と(9)の中心のごみ質(8)を選択し、前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(8)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合、計算値が実測値より大きい場合はごみ質(7)を、計算値が実測値より小さい場合はごみ質(9)を前記焼却炉に投入されたごみ質とする。
2-2-2)前記選択されたごみ質(10)について、前記と同様に計算値を求め、当該計算値と実測値が異なった場合で、計算値が実測値より小さい場合、(11)と(12)のうち、発熱量の大きな(12)を選択し、前記と同様に計算値を求め、当該計算値と実測値が一致した場合は、前記ごみ質(12)を前記焼却炉に投入されたごみ質とし、当該計算値と実測値が異なった場合、残りのごみ質(11)を前記焼却炉内に投入されたごみ質とする。
なお、2-1-1)、2-1-2)及び2-2-2)において発熱量の大きなほうを選んでいるが、もちろん発熱量の小さなほうを選ぶように決めてもよいし、ごみ質の番号(1)〜(12)の中心値である6.5を切り下げて(6)を中心値として、発熱量の小さい側では残ったごみ質のうち発熱量の小さいごみ質を選択し、発熱量の大きい側では残ったごみ質のうち発熱量の大きいごみ質を選択するようにしてもよい。
上記のように選択したごみ質の計算値と実測値の大小を比較し両者の値が異なった場合、計算値と実測値の大小関係から上記手順に従って次のごみ質を選択することで、上記2-1)計算値が実測値より大きい場合は、(6)より右にあるごみ質(7)〜(12)のごみ質の計算値を求める必要がなく、上記2-2)計算値が実測値より小さい場合は、(6)より左にあるごみ質(1)〜(5)のごみ質の計算値を求める必要がない。このごみ質の特定手順に従えば、ごみ質データベースの全てのごみ質について計算値を求める必要がないので、実際に焼却炉内で燃焼しているごみ質を効率よく特定することができる。
なお、計算値と実測値とが完全一致の場合に限定されるものではなく、所定の範囲(しきい値)(例えば、二酸化炭素濃度で±2.0以内)内で一致する場合を含む。
例えば、二酸化炭素濃度の実測値が19.0%であったとしたら計算値は17.0%〜21.0%の範囲内、であればよい。
FIG. 2 is a diagram showing an example of a waste quality database in the present invention, and FIG. 3 is a diagram showing the waste quality input into the incinerator from the waste quality database in the automatic combustion control method in the waste incinerator according to the embodiment of the present invention. It is explanatory drawing for demonstrating the procedure for specifying.
The gist of the procedure for identifying the waste quality put into the incinerator is to select the waste quality according to the following procedure.
An example of the procedure for identifying the waste quality from the waste quality database shown in FIG. 2 will be described with reference to FIG.
First, select a plurality of waste materials (6) near the center of a plurality of waste materials listed in the waste quality database, obtain the calculated value of the generated oxygen concentration or carbon dioxide concentration based on the calculation formula, and discharge from the incinerator. When the calculated value matches the oxygen concentration of the exhaust gas or the measured value of carbon dioxide, the waste quality (6) is regarded as the waste quality put into the incinerator, and the calculated value and the measured value are different. , Select the waste quality to be used in the next calculation from the magnitude relationship between the calculated value and the measured value.
In the present embodiment, when selecting the central waste quality of a plurality of waste quality in the waste quality database, the median value of the waste quality numbers (1) to (12), 6.5, is rounded down. Although (6) is selected, the method is not limited to this, and a method of rounding up the center value and selecting (7) may be used.
The case where the oxygen concentration of the exhaust gas discharged from the incinerator or the measured value of carbon dioxide and the calculated value match is not limited to the case where the calculated value and the measured value completely match. , Includes cases where they match within a predetermined range (threshold value) (for example, within ± 0.05 for oxygen concentration and within ± 2.0 for carbon dioxide concentration).
For example, if the measured value of oxygen concentration is 3.07%, the calculated value is consistent if it is within the range of 3.02% to 3.12%, and the measured value of carbon dioxide concentration is 19.0%. If so, if the calculated values are within the range of 17.0% to 21.0%, they are considered to match.
1) When calculating the oxygen concentration
1-1) If the calculated value for the selected waste quality (6) is smaller than the measured value, the leftmost (1) on the waste quality side where the calorific value of the waste quality database is small and the left side of the above (6) Select the central waste quality (3) with (5).
1-1-1) The calculated value was obtained for the selected waste material (3) in the same manner, and when the calculated value and the measured value match, the waste material (3) was put into the incinerator. If the calculated value is different from the measured value, and if the calculated value is smaller than the measured value, select (2), which has a larger calorific value, from the remaining (1) and (2), and the same as above. If the calculated value and the measured value match, the waste quality (2) is regarded as the waste quality that was put into the incinerator, and if the calculated value and the measured value are different, the remaining waste. The quality (1) is the quality of waste put into the incinerator.
1-1-2) Calculate the calculated value for the selected waste quality (3) in the same way as above, and if the calculated value is larger than the measured value, the calorific value of the remaining (4) and (5) is larger. Select (5), obtain the calculated value in the same way as in the previous term, and if the calculated value and the measured value match, the waste quality (5) is regarded as the waste quality put into the incinerator, and the calculated value and the calculated value are used. If the measured values are different, the remaining waste quality (4) is regarded as the waste quality put into the incinerator.
1-2) When the calculated value for the selected waste material (6) is larger than the measured value, the calorific value of the waste material database is large. The rightmost (12) on the waste material side and the right side of (6) above. Of the waste materials (9) and (10) near the center of (7), the one having a large calorific value (10) is selected.
1-2-1) Calculate the calculated value of the selected waste quality (10) in the same manner as above, and if the calculated value and the measured value match, put the waste quality (10) into the incinerator. If the calculated value and the measured value are different and the calculated value is smaller than the measured value, select the waste quality (8) at the center of (7) and (9), and perform the same as above. The calculated value is calculated, and if the calculated value and the measured value match, the waste quality (8) is regarded as the waste quality put into the incinerator, and if the calculated value and the measured value are different, the calculated value is calculated. If it is smaller than the measured value, the waste quality (7) is used, and if the calculated value is larger than the measured value, the waste quality (9) is used as the waste quality put into the incinerator.
1-2-2) For the selected waste quality (10), the calculated value is obtained in the same manner as above, and when the calculated value and the measured value are different and the calculated value is larger than the measured value (11). Of (12) and (12), select (12) having a large calorific value, obtain a calculated value in the same manner as described above, and if the calculated value and the measured value match, the waste material (12) is placed in the incinerator. If the calculated value and the measured value are different from each other, the remaining waste quality (11) is taken as the waste quality charged into the incinerator.
In 1-1-1), 1-1-2) and 1-2-2), the one with the larger calorific value is selected, but of course you may decide to select the one with the smaller calorific value. The center value of the waste quality numbers (1) to (12) is devalued from 6.5, and (6) is used as the center value, and on the side with the smaller calorific value, the waste quality with the smaller calorific value is selected from the remaining waste quality. However, on the side with a large calorific value, a waste material having a large calorific value may be selected from the remaining waste materials.
If the calculated value of the waste quality selected as above and the measured value are compared and the two values are different, the next waste quality can be selected according to the above procedure from the magnitude relationship between the calculated value and the measured value. 1-1) If the calculated value is smaller than the measured value, it is not necessary to obtain the calculated value of the waste quality (7) to (12) on the right side of (6), and the above 1-2) calculated value is If it is larger than the measured value, it is not necessary to obtain the calculated value of the waste quality (1) to (5) on the left side of (6). According to this waste quality identification procedure, it is not necessary to obtain calculated values for all the waste quality in the waste quality database, so that the waste quality actually burned in the incinerator can be efficiently specified.
It should be noted that the present invention is not limited to the case where the calculated value and the actually measured value are exactly the same, and includes the case where they match within a predetermined range (threshold value) (for example, ± 0.05 in oxygen concentration).
For example, if the measured value of the oxygen concentration is 3.07%, the calculated value may be in the range of 3.02% to 3.12%.
2) When calculating the carbon dioxide concentration In the same way as when calculating the oxygen concentration, if the calculated value and the measured value match the carbon dioxide concentration of the selected waste material, the waste material is placed in the incinerator. It shall be the quality of the input waste. Hereinafter, similarly to the oxygen concentration, when the calculated value and the measured value of the carbon dioxide concentration are different, the remaining waste quality is selected to specify the waste quality put into the incinerator.
2-1) For the selected waste quality (6), if the calculated value is larger than the measured value, the leftmost (1) on the waste quality side where the calorific value of the waste quality database is small and the left side of (6) above Select the central waste quality (3) with (5).
2-1-1) The calculated value of the selected waste quality (3) was obtained in the same manner, and when the calculated value and the measured value matched, the waste quality (3) was put into the incinerator. If the calculated value is different from the measured value, and if the calculated value is larger than the measured value, select (2), which has a larger calorific value, from the remaining (1) and (2), and the same as above. If the calculated value and the measured value match, the waste quality (2) is regarded as the waste quality that has been put into the incinerator, and if the calculated value and the measured value are different, the remaining waste. Select quality (1).
2-1-2) For the selected waste quality (3), calculate the calculated value in the same way as above, and if the calculated value is smaller than the measured value, of the remaining (4) and (5), the calorific value Select a large (5), obtain the calculated value in the same way as in the previous term, and if the calculated value and the measured value match, the waste quality (5) is regarded as the waste quality put into the incinerator, and the calculated value and the calculated value are used. If the measured values are different, the remaining waste quality (4) is taken as the waste quality put into the incinerator.
2-2) For the selected waste quality (6), if the calculated value is smaller than the measured value, the rightmost (12) on the waste quality side with a large calorific value in the waste quality database and the right side of (6) above Of the waste materials (9) and (10) near the center of (7), the one having a large calorific value (10) is selected.
2-2-1) For the selected waste quality (10), calculate the calculated value in the same manner as above, and if the calculated value and the measured value match, the waste quality (10) is put into the incinerator. If the calculated value is different from the measured value and the calculated value is larger than the measured value, select the central waste quality (8) in (7) and (9) and calculate in the same way as above. If the calculated value and the measured value match, the waste quality (8) is regarded as the waste quality put into the incinerator, and if the calculated value and the measured value are different, the calculated value is the measured value. If it is larger, the waste quality (7) is used, and if the calculated value is smaller than the measured value, the waste quality (9) is used as the waste quality put into the incinerator.
2-2-2) For the selected waste quality (10), the calculated value is obtained in the same manner as above, and when the calculated value and the measured value are different and the calculated value is smaller than the measured value (11). Of (12) and (12), (12) having a large calorific value is selected, a calculated value is obtained in the same manner as described above, and if the calculated value and the measured value match, the waste material (12) is put into the incinerator. If the calculated value and the measured value are different from each other, the remaining waste quality (11) is regarded as the waste quality charged into the incinerator.
In 2-1-1), 2-1-2) and 2-2-2), the one with the larger calorific value is selected, but of course you may decide to select the one with the smaller calorific value. The center value of the waste quality numbers (1) to (12) is devalued from 6.5, and (6) is used as the center value, and on the side with the smaller calorific value, the waste quality with the smaller calorific value is selected from the remaining waste quality. However, on the side with a large calorific value, a waste material having a large calorific value may be selected from the remaining waste materials.
If the calculated value of the waste quality selected as above and the measured value are compared and the two values are different, the next waste quality can be selected according to the above procedure from the magnitude relationship between the calculated value and the measured value. 2-1) If the calculated value is larger than the measured value, it is not necessary to obtain the calculated value of the waste quality (7) to (12) on the right side of (6), and the above 2-2) calculated value is If it is smaller than the measured value, it is not necessary to obtain the calculated value of the waste quality (1) to (5) on the left side of (6). According to this waste quality identification procedure, it is not necessary to obtain calculated values for all the waste quality in the waste quality database, so that the waste quality actually burned in the incinerator can be efficiently specified.
The calculated value and the measured value are not limited to the case where they match exactly within a predetermined range (threshold value) (for example, within ± 2.0 in terms of carbon dioxide concentration).
For example, if the measured value of the carbon dioxide concentration is 19.0%, the calculated value may be in the range of 17.0% to 21.0%.

図4は、別の本発明の実施形態におけるごみ焼炉の自動燃焼制御方法におけるごみ質データベースから焼却炉内に投入されたごみ質を特定するための手順を説明するため説明図である。
前記焼却炉内に投入されたごみ質を特定するための手順の要旨は、次の手順に従ってごみ質を選択することにある。
前記図2に示すごみ質データベースからごみ質の特定するための手順の一例を、図4に基づいて説明する。
最初にごみ質データベースに記載されている複数の、ごみ質の最も発熱量の小さいごみ質(1)、中心に近いごみ質(7)及びごみ質の最も発熱量の大きいごみ質(12)を選択し発生する酸素濃度又は二酸化炭素濃度を計算して実測値と比較し、実測値の含まれる範囲が、<(7)か(7)≦か、を判定する。
なお本実施の形態においては、前記ごみ質データベースの複数のごみ質の中心のごみ質を選択する場合、ごみ質の番号(1)〜(12)の中心値である6.5を切り上げて(7)を選んでいるが、これに限定されるものではなく中心値を切り下げて(6)を選ぶ方法でも構わない。
2-1)実測値の含まれる範囲が、<(7)の場合、<(7)のごみ質データベースに記載されている複数の、ごみ質の最も発熱量の小さいごみ質(1)、中心に近いごみ質(4)及びごみ質の最も発熱量の大きいごみ質(6)を選択し発生する酸素濃度又は二酸化炭素濃度を計算して実測値と比較し、実測値の含まれる範囲が、<(4)か(4)≦か、を判定する。
2-1-1)実測値の含まれる範囲が、<(4)の場合、<(4)のごみ質データベースに記載されている(1)〜(3)の発生する酸素濃度又は二酸化炭素濃度を各々計算して実測値と比較し、最も実測値に近いごみ質を選択し、前記焼却炉内に投入されたごみ質とする。
2-1-2)実測値の含まれる範囲が、(4)≦の場合、(4)≦のごみ質データベースに記載されている(4)〜(6)の発生する酸素濃度又は二酸化炭素濃度を各々計算して実測値と比較し、最も実測値に近いごみ質を選択し、前記焼却炉内に投入されたごみ質とする。
2-2)実測値の含まれる範囲が、(7)≦の場合、(7)≦のごみ質データベースに記載されている複数の、ごみ質の最も発熱量の小さいごみ質(7)、中心に近いごみ質(10)及びごみ質の最も発熱量の大きいごみ質(12)を選択し発生する酸素濃度又は二酸化炭素濃度を計算して実測値と比較し、実測値の含まれる範囲が、<(10)か(10)≦か、を判定する。
2-2-1)実測値の含まれる範囲が、<(10)の場合、<(10)のごみ質データベースに記載されている(7)〜(9)の発生する酸素濃度又は二酸化炭素濃度を各々計算して実測値と比較し、最も実測値に近いごみ質を選択し、前記焼却炉内に投入されたごみ質とする。
2-2-2)実測値の含まれる範囲が、(10)≦の場合、(10)≦のごみ質データベースに記載されている(10)〜(12)の発生する酸素濃度又は二酸化炭素濃度を各々計算して実測値と比較し、最も実測値に近いごみ質を選択し、前記焼却炉内に投入されたごみ質とする。
上記のように実測値の含まれるごみ質の範囲を選択して絞り込んでいくことで、上記2-1)の範囲に実測値が含まれる場合は、(7)から右にあるごみ質(7)〜(12)のごみ質の計算値を求める必要がなく、上記2-2)の範囲に実測値が含まれる場合は、(7)より左にあるごみ質(1)〜(6)のごみ質の計算値を求める必要がない。このごみ質の特定手順に従えば、ごみ質データベースの全てのごみ質について計算値を求める必要がないので、実際に焼却炉で燃焼しているごみ質を効率よく特定することができる。
FIG. 4 is an explanatory diagram for explaining a procedure for identifying the waste quality put into the incinerator from the waste quality database in the automatic combustion control method of the waste incinerator according to another embodiment of the present invention.
The gist of the procedure for identifying the waste quality put into the incinerator is to select the waste quality according to the following procedure.
An example of the procedure for identifying the waste quality from the waste quality database shown in FIG. 2 will be described with reference to FIG.
First, a plurality of waste materials with the lowest calorific value (1), a waste material near the center (7), and a waste material with the highest calorific value (12) listed in the waste quality database. The oxygen concentration or carbon dioxide concentration that is selected and generated is calculated and compared with the measured value, and it is determined whether the range including the measured value is <(7) or (7) ≦.
In the present embodiment, when selecting the central waste quality of a plurality of waste quality in the waste quality database, the median value of the waste quality numbers (1) to (12) is rounded up to 6.5 ( Although 7) is selected, the method is not limited to this, and a method of devaluing the center value and selecting (6) may be used.
2-1) When the range including the measured value is <(7), a plurality of waste materials with the smallest calorific value (1) and centers listed in the waste quality database of <(7). Select the waste material (4) that is close to the waste material (4) and the waste material (6) that has the largest calorific value of the waste material, calculate the oxygen concentration or carbon dioxide concentration generated, compare it with the measured value, and the range that the measured value is included is <(4) or (4) ≤ is determined.
2-1-1) When the range including the measured value is <(4), the oxygen concentration or carbon dioxide concentration generated in (1) to (3) described in the waste quality database of <(4) Are calculated and compared with the measured values, and the waste quality closest to the measured values is selected and used as the waste quality put into the incinerator.
2-1-2) When the range including the measured value is (4) ≤, the oxygen concentration or carbon dioxide concentration generated in (4) to (6) described in the waste quality database of (4) ≤ Are calculated and compared with the measured values, and the waste quality closest to the measured values is selected and used as the waste quality put into the incinerator.
2-2) When the range including the measured value is (7) ≤, the waste quality (7) with the smallest calorific value of the multiple waste materials listed in the waste quality database of (7) ≤, the center. Select the waste material (10) that is close to the waste material (10) and the waste material (12) that has the largest calorific value of the waste material, calculate the oxygen concentration or carbon dioxide concentration that is generated, compare it with the measured value, and the range that includes the measured value is <(10) or (10) ≦ is determined.
2-2-1) When the range including the measured value is <(10), the oxygen concentration or carbon dioxide concentration generated in (7) to (9) described in the waste quality database of <(10). Are calculated and compared with the measured values, and the waste quality closest to the measured values is selected and used as the waste quality put into the incinerator.
2-2-2) When the range including the measured value is (10) ≤, the oxygen concentration or carbon dioxide concentration generated in (10) to (12) described in the waste quality database of (10) ≤ Are calculated and compared with the measured values, and the waste quality closest to the measured values is selected and used as the waste quality put into the incinerator.
By selecting and narrowing down the range of waste quality that includes the measured value as described above, if the measured value is included in the range of 2-1) above, the waste quality (7) on the right from (7) )-(12) It is not necessary to obtain the calculated value of the waste quality, and if the measured value is included in the range of 2-2) above, the waste quality (1)-(6) on the left side of (7) There is no need to calculate the calculated value of waste quality. According to this waste quality identification procedure, it is not necessary to obtain calculated values for all the waste quality in the waste quality database, so that the waste quality actually burned in the incinerator can be efficiently specified.

〔ごみ質データベースから選ばれたごみ質の排気ガス中の酸素濃度の算出〕
前記ごみ質データベースから選ばれたごみ質が燃焼炉で燃焼されたときに、発生する酸素濃度の計算値を求める。
ここでは、表2のごみ質4を例にして計算する。ただし、実測値と定数は以下の値で与えられているものとする。
〈1〉実測値
・(ごみ焼却量) [kg/h] = 4000
・(一次空気量) [m3N/h] = 2900
・(ごみ汚水噴霧量) [kg/h] = 200
・(補助燃料投入量) [L/h] = 95.3
・(尿素水噴霧量) [kg/h] = 52.7
・(二次空気量) [m3N/h] = 250
・EGR流量 [m3N/h] = 2380.62
〈2〉定数
・(補助燃料の燃焼で生じる水分:α1) [m3N/L] = 0.90
・(補助燃料の燃焼で生じる二酸化炭素:α2) [m3N/L] = 0.85
・(補助燃料の燃焼で生じる窒素:α3) [m3N/L] = 3.0
・(補助燃料燃焼用理論空気量:ε) [m3N/L] = 7.5
・(飛灰率β)[%] = 10
・(熱灼減量γ)[%] = 5
・(ごみ汚水噴霧用空気量:δ) [m3N/kg] = 0.5
・(補助燃料燃焼用理論空気量の空気過剰率:ζ) = 1.5
・(尿素水噴霧用空気量:η) [m3N/kg] = 0.30
・(一次空気量の空気過剰率:X)= 1.3
〈3〉ごみ質データベース値
・(ごみ中の水分)[%] = 43
・(ごみ中の可燃分)[%] = 50
・(ごみ中の灰分)[%] = 7
・(ごみ中の炭素の割合)[%] = 54
・(ごみ中の水素の割合)[%] = 7.6
・(ごみ中の窒素の割合)[%] = 0.4
〈4〉算出値
算出値は下記式(5)〜式(8)で求める。
・(n-1回目の制御サイクルに冷却塔を通過した水分濃度)
(H2O’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(5)
・(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度)
(CO2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(6)
・(n-1回目の制御サイクルに冷却塔を通過した酸素濃度)
(O2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(7)
・(n-1回目の制御サイクルに冷却塔を通過した窒素濃度)
(N2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(8)

式(5)の(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]は、図5又は図6のフローチャートでの一次空気吹込量を出力する制御サイクルをn回目としたとき、制御サイクルn-1回目の焼却炉出口での排ガス量に、
制御サイクルn-1回目の冷却水噴霧量 [kg/h]× ((22.4L/mol)/(18.0g/mol)) を加えたときの水分濃度[%]である。ここで、制御サイクルn-1回目の冷却水噴霧量 [kg/h]は実測値である。
上記の式(6)〜式(8)のガス濃度は、図5又は図6のフローチャートでの一次空気吹込量を出力する制御サイクルをn回目としたとき、制御サイクルのn-1回目で冷却塔を通過した排ガス中の二酸化炭素濃度、酸素濃度、窒素濃度である。
上記の、図5又は図6のフローチャートでの一次空気吹込量を出力する制御サイクルをn回目としたとき、制御サイクルn-1回目の焼却炉出口での水分濃度、二酸化炭素濃度、酸素濃度および窒素濃度から、酸素濃度を計算する理由としては、焼却炉へ流入する冷却塔通過後の排ガス再循環(EGR)の各成分ガス濃度がn回目の制御サイクルの酸素濃度の計算に必要で、各成分ガス濃度は制御サイクルn回目の一つ前のn-1回目の制御サイクルでの各成分ガス濃度を用いているためである。

算出にあたり、上記式(5)〜式(8)に下記の値を使用した。
(H2O’)=(n-1回目の制御サイクルに冷却塔を通過した水分量) [m3N/h]=9374.8、
(CO2’)=(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素量) [m3N/h]=2445、
(O2’)=(n-1回目の制御サイクルに冷却塔を通過した酸素量) [m3N/h]=339.6
(N2’)=(n-1回目の制御サイクルに冷却塔を通過した窒素量) [m3N/h]=3711.4
その結果算出された算出値は以下の通りである。
・(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%] = 59.07
・(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%] = 15.41
・(n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%] = 2.14
・(n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%] = 23.38

上記〈1〉と〈2〉の値、表2のごみ質データベースのごみ質4の値〈3〉及び〈4〉の値を下式(1)〜(4)及び式(9)に代入すると、酸素濃度3.10%を得る。

・水の総量
(H2O)[m3N/h]
= (ごみ焼却量) [kg/h]
× [ (ごみ中の水素の割合)[%] × ((22.4L/mol)/(2.0g/mol)) ×(ごみ中の可燃分)[%]
+ (ごみ中の水分)[%] × ((22.4L/mol)/(18.0g/mol)) ]
+ (ごみ汚水噴霧量) [kg/h] × ((22.4L/mol)/(18.0g/mol))
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]
+ (補助燃料投入量) [L/h] × (補助燃料の燃焼で生じる水分:α1) [m3N/L]
+ (尿素水噴霧量) [kg/h] × ((22.4L/mol)/(18.0g/mol)) ・・・式(1)

・二酸化炭素の総量
(CO2)[m3N/h]
= (ごみ焼却量) [kg/h] × ((22.4L/mol)/(12.0g/mol))
× [ (ごみ中の炭素の割合)[%] × (ごみ中の可燃分)[%]
−(ごみ中の灰分)[%] × [1−(飛灰率β)[%]] × (熱灼減量γ)[%] ]
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%]
+(補助燃料投入量) [L/h] × (補助燃料の燃焼で生じる二酸化炭素:α2) [m3N/L]
・・・式(2)

・酸素の総量
(O2)[m3N/h]
= (一次空気量) [m3N/h] × 0.21 × [(一次空気の空気過剰率:X)−1]
+(ごみ汚水噴霧量) [kg/h] × (ごみ汚水噴霧用空気量:δ) [m3N/kg] × 0.21
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%]
+ [ (補助燃料燃焼用理論空気量:ε) [m3N/L] × (補助燃料投入量) [L/h]
×[ (補助燃料燃焼用理論空気量の空気過剰率:ζ) − 1] × 0.21 ]
+ (二次空気量) [m3N/h] × 0.21
+ (尿素水噴霧量) [kg/h] × (尿素水噴霧用空気量:η) [m3N/kg] × 0.21
・・・式(3)

・窒素の総量
(N2)[m3N/h]
= (一次空気量) [m3N/h] × 0.79
+(ごみ焼却量) [kg/h]
× (ごみ中の窒素の割合)[%] × ((22.4L/mol)/(28.0g/mol)) × (ごみ中の可燃分)[%]
+(ごみ汚水噴霧量) [kg/h] × (ごみ汚水噴霧用空気量:δ) [m3N/kg] × 0.79
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%]
+ (補助燃料投入量) [L/h] × [ (補助燃料燃焼用理論空気量:ε) [m3N/L]
× (空気過剰率:ζ)× 0.79 + (補助燃料の燃焼で生じる窒素:α3) [m3N/L] ]
+ (二次空気量) [m3N/h] × 0.79
+ (尿素水噴霧量) [kg/h] × (尿素水噴霧用空気量:η) [m3N/kg] × 0.79
・・・式(4)

・排ガス中の酸素濃度を求める式
(O2)/{(H2O)+(CO2)+(O2)+(N2)}×100 ・・・式(9)
[Calculation of oxygen concentration in exhaust gas of waste quality selected from waste quality database]
The calculated value of the oxygen concentration generated when the waste material selected from the waste quality database is burned in the combustion furnace is obtained.
Here, the calculation is performed using the waste quality 4 in Table 2 as an example. However, it is assumed that the measured values and constants are given by the following values.
<1> Measured value ・ (Garbage incineration amount) [kg / h] = 4000
・ (Primary air volume) [m 3 N / h] = 2900
・ (Garbage sewage spray amount) [kg / h] = 200
・ (Auxiliary fuel input) [L / h] = 95.3
・ (Urea spray amount) [kg / h] = 52.7
・ (Secondary air volume) [m 3 N / h] = 250
・ EGR flow rate [m 3 N / h] = 2380.62
<2> Constant ・ (Moisture generated by combustion of auxiliary fuel: α1) [m 3 N / L] = 0.90
・ (Carbon dioxide generated by combustion of auxiliary fuel: α2) [m 3 N / L] = 0.85
・ (Nitrogen generated by combustion of auxiliary fuel: α3) [m 3 N / L] = 3.0
・ (Theoretical air volume for combustion of auxiliary fuel: ε) [m 3 N / L] = 7.5
・ (Fly ash rate β) [%] = 10
・ (Heat loss γ) [%] = 5
・ (Amount of air for spraying waste sewage: δ) [m 3 N / kg] = 0.5
・ (Enantiomeric excess of theoretical air volume for combustion of auxiliary fuel: ζ) = 1.5
・ (Amount of air for spraying urea water: η) [m 3 N / kg] = 0.30
・ (Enantiomeric excess of primary air volume: X) = 1.3
<3> Waste quality database value ・ (Moisture in waste) [%] = 43
・ (Combustible content in garbage) [%] = 50
・ (Ash in garbage) [%] = 7
・ (Ratio of carbon in garbage) [%] = 54
・ (Ratio of hydrogen in garbage) [%] = 7.6
・ (Ratio of nitrogen in garbage) [%] = 0.4
<4> Calculated value The calculated value is calculated by the following equations (5) to (8).
・ (Concentration of water that passed through the cooling tower in the n-1st control cycle)
(H 2 O') / {(H 2 O') + (CO 2 ') + (O 2 ') + (N 2 ')} × 100 ・ ・ ・ Equation (5)
・ (Concentration of carbon dioxide that passed through the cooling tower in the n-1st control cycle)
(CO 2 ') / {(H 2 O') + (CO 2 ') + (O 2 ') + (N 2 ')} × 100 ・ ・ ・ Equation (6)
・ (N-1 Oxygen concentration passed through the cooling tower in the first control cycle)
(O 2 ') / {(H 2 O') + (CO 2 ') + (O 2 ') + (N 2 ')} × 100 ・ ・ ・ Equation (7)
・ (N-1 Nitrogen concentration passed through the cooling tower in the first control cycle)
(N 2 ') / {(H 2 O') + (CO 2 ') + (O 2 ') + (N 2 ')} × 100 ・ ・ ・ Equation (8)

In Eq. (5) (moisture concentration that passed through the cooling tower in the n-1st control cycle) [%], the control cycle that outputs the primary air blow amount in the flowchart of FIG. 5 or 6 was set as the nth. When the amount of exhaust gas at the outlet of the incinerator at the control cycle n-1st,
Control cycle n-1 Water concentration [%] when the first cooling water spray amount [kg / h] × ((22.4L / mol) / (18.0g / mol)) is added. Here, the cooling water spray amount [kg / h] at the first control cycle n-1 is an actually measured value.
The gas concentration of the above equations (6) to (8) is cooled at the n-1th control cycle when the control cycle for outputting the primary air injection amount in the flowchart of FIG. 5 or 6 is the nth time. These are the carbon dioxide concentration, oxygen concentration, and nitrogen concentration in the exhaust gas that has passed through the tower.
Assuming that the control cycle for outputting the primary air injection amount in the above-mentioned flowchart of FIG. The reason for calculating the oxygen concentration from the nitrogen concentration is that the concentration of each component gas in the exhaust gas recirculation (EGR) after passing through the cooling tower flowing into the incinerator is necessary for calculating the oxygen concentration in the nth control cycle. This is because the component gas concentration uses the concentration of each component gas in the n-1th control cycle immediately before the nth control cycle.

In the calculation, the following values were used in the above equations (5) to (8).
(H 2 O') = (amount of water passed through the cooling tower in the n-1st control cycle) [m 3 N / h] = 9374.8,
(CO 2 ') = (amount of carbon dioxide that passed through the cooling tower in the n-1st control cycle) [m 3 N / h] = 2445,
(O 2 ') = (amount of oxygen passed through the cooling tower in the n-1st control cycle) [m 3 N / h] = 339.6
(N 2 ') = (n-1 amount of nitrogen passed through the cooling tower in the first control cycle) [m 3 N / h] = 3711.4
The calculated values calculated as a result are as follows.
・ (Concentration of water that passed through the cooling tower in the n-1st control cycle) [%] = 59.07
・ (Concentration of carbon dioxide that passed through the cooling tower in the n-1st control cycle) [%] = 15.41
・ (Oxygen concentration that passed through the cooling tower in the n-1st control cycle) [%] = 2.14
・ (Nitrogen concentration passed through the cooling tower in the n-1st control cycle) [%] = 23.38

Substituting the values of <1> and <2> and the values of waste quality 4 in the waste quality database in Table 2 <3> and <4> into the following equations (1) to (4) and equation (9) , Obtain an oxygen concentration of 3.10%.

・ Total amount of water (H 2 O) [m 3 N / h]
= (Garbage incineration amount) [kg / h]
× [(Ratio of hydrogen in garbage) [%] × ((22.4L / mol) / (2.0g / mol)) × (Combustible content in garbage) [%]
+ (Moisture in garbage) [%] × ((22.4L / mol) / (18.0g / mol))]
+ (Garbage sewage spray amount) [kg / h] × ((22.4L / mol) / (18.0g / mol))
+ EGR flow rate [m 3 N / h] × (moisture concentration passed through the cooling tower in the n-1st control cycle) [%]
+ (Auxiliary fuel input) [L / h] × (Moisture generated by combustion of auxiliary fuel: α1) [m 3 N / L]
+ (Urea spray amount) [kg / h] × ((22.4L / mol) / (18.0g / mol)) ・ ・ ・ Equation (1)

・ Total amount of carbon dioxide (CO 2 ) [m 3 N / h]
= (Garbage incineration amount) [kg / h] × ((22.4L / mol) / (12.0g / mol))
× [(Ratio of carbon in garbage) [%] × (Combustible content in garbage) [%]
− (Ashes in garbage) [%] × [1− (Fly ash rate β) [%]] × (Absorption weight loss γ) [%]]
+ EGR flow rate [m 3 N / h] × (concentration of carbon dioxide that passed through the cooling tower in the n-1st control cycle) [%]
+ (Auxiliary fuel input) [L / h] × (Carbon dioxide generated by combustion of auxiliary fuel: α2) [m 3 N / L]
・ ・ ・ Equation (2)

・ Total amount of oxygen (O 2 ) [m 3 N / h]
= (Primary air volume) [m 3 N / h] x 0.21 x [(Primary air excess: X) -1]
+ (Garbage sewage spray amount) [kg / h] × (Garbage sewage spray air amount: δ) [m 3 N / kg] × 0.21
+ EGR flow rate [m 3 N / h] × (n-1 Oxygen concentration passed through the cooling tower in the first control cycle) [%]
+ [(Theoretical amount of air for combustion of auxiliary fuel: ε) [m 3 N / L] × (Amount of auxiliary fuel input) [L / h]
× [(Enantiomeric excess of theoretical air volume for combustion of auxiliary fuel: ζ) − 1] × 0.21]
+ (Secondary air volume) [m 3 N / h] × 0.21
+ (Urea spray amount) [kg / h] × (Urea spray air amount: η) [m3N / kg] × 0.21
・ ・ ・ Equation (3)

・ Total amount of nitrogen (N 2 ) [m 3 N / h]
= (Primary air volume) [m 3 N / h] × 0.79
+ (Garbage incineration amount) [kg / h]
× (Ratio of nitrogen in garbage) [%] × ((22.4L / mol) / (28.0g / mol)) × (Combustible content in garbage) [%]
+ (Garbage sewage spray amount) [kg / h] × (Garbage sewage spray air amount: δ) [m 3 N / kg] × 0.79
+ EGR flow rate [m 3 N / h] × (n-1 Nitrogen concentration passed through the cooling tower in the first control cycle) [%]
+ (Auxiliary fuel input amount) [L / h] × [(Theoretical air amount for auxiliary fuel combustion: ε) [m 3 N / L]
× (Enantiomeric excess: ζ) × 0.79 + (Nitrogen generated by combustion of auxiliary fuel: α3) [m 3 N / L]]
+ (Secondary air volume) [m 3 N / h] × 0.79
+ (Urea spray amount) [kg / h] × (Urea spray air amount: η) [m 3 N / kg] × 0.79
・ ・ ・ Equation (4)

・ Formula for calculating oxygen concentration in exhaust gas
(O 2 ) / {(H 2 O) + (CO 2 ) + (O 2 ) + (N 2 )} × 100 ・ ・ ・ Equation (9)

〔ごみ質データベースから選ばれたごみ質の排気ガス中の二酸化炭素濃度の算出〕
前記ごみ質データベースから選ばれたごみ質が燃焼炉で燃焼されたときに、発生する二酸化炭素濃度の計算値を求める。ここでは、表2のごみ質4を例にして計算する。ただし、〈1〉実測値と〈2〉定数は〔0013〕と同様の値で与えられているものとする。
上記〈1〉と〈2〉の値、表2のごみ質データベースのごみ質4の値〈3〉及び〈4〉の値を〔0013〕の式(1)〜(4)と下式の(10)に代入すると、二酸化炭素濃度17.6%を得る。

・排ガス中の二酸化炭素濃度を求める式
(CO2)/{(H2O)+(CO2)+(O2)+(N2)}×100 ・・・式(10)
[Calculation of carbon dioxide concentration in exhaust gas of waste quality selected from waste quality database]
The calculated value of the carbon dioxide concentration generated when the waste material selected from the waste quality database is burned in the combustion furnace is obtained. Here, the calculation is performed using the waste quality 4 in Table 2 as an example. However, it is assumed that the <1> measured value and the <2> constant are given by the same values as in [0013].
The values of <1> and <2> above, and the values of waste quality 4 in the waste quality database in Table 2 <3> and <4> are the values of equations (1) to (4) of [0013] and (1) to (4) of the following equation. Substituting into 10), a carbon dioxide concentration of 17.6% is obtained.

・ Formula for calculating carbon dioxide concentration in exhaust gas
(CO 2 ) / {(H 2 O) + (CO 2 ) + (O 2 ) + (N 2 )} × 100 ・ ・ ・ Equation (10)

図5のフローチャートにより本発明に係るごみ焼却炉の〔0011〕の場合の自動燃焼制御方法を説明する。
本発明に係るごみ焼却炉の自動燃焼制御への切替えは、作業者が焼却炉を稼働させ焼却炉にごみを投入し、ごみ投入量を燃焼制御部11で当該ごみ投入量を計算し、一次空気量、ごみ汚水噴霧量、排ガス再循環量、補助燃料投入量、尿素水噴霧量等を計算し焼却炉へ供給したうえで、問題がない(定常状態)ことを確認してから行う。自動制御へ切り替えると、演算装置13のプログラムにより計算開始となる。
前記の工程において、投入されたごみのごみ質を特定するために、燃焼制御部11においてごみ質データベースの表1に基づきごみ質を選択し式(1)〜(4)と式(9)、(10)に基づき選択されたごみ質の排ガスに含まれる酸素濃度又は二酸化炭素濃度の計算値を求める(S−1)。一方で排ガスに含まれている酸素濃度又は二酸化炭素濃度を測定し実測値を求める。
燃焼制御部において酸素濃度又は二酸化炭素濃度の計算値と実測値を比較する(S−2)。
計算値と実測値がしきい値の範囲内で一致した場合は投入したごみ質が特定できたことになるので、燃焼制御部において前記特定されたごみ質に対応して焼却炉に吹き込む一次空気量を決めて送風機からごみ焼却炉へ吹き込むことで燃焼温度を最適に制御することができる(S−3、S−4)。
計算値と実測値が一致しない場合は、改めてごみ質データベースの表1から別のごみ質を選択し、一致するごみ質が特定されるまで上記のステップを繰り返す(S−5)。
The automatic combustion control method in the case of the waste incinerator [0011] according to the present invention will be described with reference to the flowchart of FIG.
In the switching of the waste incinerator according to the present invention to the automatic combustion control, the operator operates the incinerator, inputs the waste into the incinerator, calculates the amount of waste input by the combustion control unit 11, and performs the primary. Calculate the amount of air, the amount of waste sewage sprayed, the amount of exhaust gas recirculation, the amount of auxiliary fuel input, the amount of urea sprayed, etc. and supply it to the incinerator, and then confirm that there is no problem (steady state). When the automatic control is switched, the calculation is started by the program of the arithmetic unit 13.
In the above step, in order to specify the waste quality of the input waste, the combustion control unit 11 selects the waste quality based on Table 1 of the waste quality database, and formulas (1) to (4) and formulas (9), The calculated value of the oxygen concentration or the carbon dioxide concentration contained in the exhaust gas of the waste material selected based on (10) is obtained (S-1). On the other hand, the oxygen concentration or carbon dioxide concentration contained in the exhaust gas is measured to obtain the measured value.
The combustion control unit compares the calculated value of oxygen concentration or carbon dioxide concentration with the measured value (S-2).
If the calculated value and the measured value match within the threshold range, it means that the input waste quality can be specified. Therefore, the combustion control unit blows the primary air into the incinerator corresponding to the specified waste quality. The combustion temperature can be optimally controlled by determining the amount and blowing it from the blower into the waste incinerator (S-3, S-4).
If the calculated value and the measured value do not match, another waste quality is selected from Table 1 of the waste quality database, and the above steps are repeated until a matching waste quality is identified (S-5).

図6のフローチャートにより本発明に係るごみ焼却炉の〔0012〕の場合の自動燃焼制御方法を説明する。
本発明に係るごみ焼却炉の自動燃焼制御への切替えは、作業者が焼却炉を稼働させ焼却炉にごみを投入しごみ投入量を燃焼制御部11で当該ごみ投入量を計算し、一次空気量、ごみ汚水噴霧量、排ガス再循環量、補助燃料投入量、尿素水噴霧量等を計算し焼却炉へ供給したうえで、問題がない(定常状態)ことを確認してから行う。自動制御へ切り替えると、演算装置13のプログラムにより計算開始となる。
前記の工程において、投入されたごみのごみ質データベースのごみ質範囲を判定するために、燃焼制御部11においてごみ質データベースの表1に基づき表1の最小、中間及び最大のごみ質を選択し式(1)〜(4)と式(9)、(10)に基づき選択されたごみ質の排ガスに含まれる酸素濃度又は二酸化炭素濃度の各計算値を求める(S−1)。一方で排ガスに含まれている酸素濃度又は二酸化炭素濃度を測定し実測値を求める。
燃焼制御部において酸素濃度又は二酸化炭素濃度の計算値と実測値を比較し、実測値が(最小〜中間)と(中間〜最大)のどちらにあるかを判定し、実測値がある範囲を選択する(S−2)。
残りのごみ質データベースのごみ質が2又は3個であれば(S−3)、最小、中間及び最大の各計算値のうち最も実測値に近いごみ質を選択し、特定する(S−4)。
投入したごみ質が特定できたことになるので、制御部において前記特定されたごみ質に対応して焼却炉に吹き込む一次空気量を決めて送風機からごみ焼却炉へ吹き込むことで焼却炉の燃焼温度を最適に制御することができる(S−5)。
ごみ質データベースの残りのごみ質個数が4個以上の場合は、ごみ質データベースの選択範囲の最小、中間及び最大のごみ質を選択し式(1)〜(4)と式(9)、(10)に基づき選択されたごみ質の排ガスに含まれる酸素濃度又は二酸化炭素濃度の各計算値を求めるステップを繰り返す(S−6)。
The automatic combustion control method in the case of the waste incinerator [0012] according to the present invention will be described with reference to the flowchart of FIG.
In switching to the automatic combustion control of the waste incinerator according to the present invention, the operator operates the incinerator, inputs the waste into the incinerator, calculates the amount of waste input by the combustion control unit 11, and calculates the amount of the waste input into the primary air. After calculating the amount, waste sewage spray amount, exhaust gas recirculation amount, auxiliary fuel input amount, urea water spray amount, etc. and supplying them to the incinerator, confirm that there is no problem (steady state) before performing. When the control is switched to automatic control, the calculation is started by the program of the arithmetic unit 13.
In the above step, in order to determine the waste quality range of the input waste waste quality database, the combustion control unit 11 selects the minimum, intermediate and maximum waste quality of Table 1 based on Table 1 of the waste quality database. Calculated values of oxygen concentration or carbon dioxide concentration contained in the exhaust gas of the waste material selected based on the formulas (1) to (4) and the formulas (9) and (10) are obtained (S-1). On the other hand, the oxygen concentration or carbon dioxide concentration contained in the exhaust gas is measured to obtain the measured value.
The combustion control unit compares the calculated value of oxygen concentration or carbon dioxide concentration with the measured value, determines whether the measured value is (minimum to intermediate) or (intermediate to maximum), and selects a range with the measured value. (S-2).
If there are 2 or 3 waste materials in the remaining waste quality database (S-3), select and specify the waste quality closest to the measured value among the calculated values of minimum, intermediate and maximum (S-4). ).
Since the input waste quality can be specified, the control unit determines the amount of primary air to be blown into the incinerator according to the specified waste quality and blows it from the blower into the waste incinerator to generate the combustion temperature of the incinerator. Can be optimally controlled (S-5).
If the number of remaining waste materials in the waste quality database is 4 or more, select the minimum, intermediate and maximum waste quality in the selection range of the waste quality database, and formulas (1) to (4) and formulas (9), ( The step of obtaining each calculated value of the oxygen concentration or the carbon dioxide concentration contained in the exhaust gas of the waste material selected based on 10) is repeated (S-6).

上記本発明のごみ焼却炉の自動燃焼制御方法によれば、ごみが焼却炉内に投入される都度、当該投入されたごみ質を特定することができるので、焼却炉内に吹き込む一次空気量を調整することでごみ焼却炉内の燃焼温度と排ガス性状を最適に制御し、排ガス中の有害成分の発生を抑制することができる。 According to the automatic combustion control method of the waste incinerator of the present invention, the quality of the charged waste can be specified each time the waste is charged into the incinerator, so that the amount of primary air blown into the incinerator can be determined. By adjusting, the combustion temperature and exhaust gas properties in the waste incinerator can be optimally controlled, and the generation of harmful components in the exhaust gas can be suppressed.

図7及び図8は本発明を実施する他のごみ焼却施設の全体系統図である。
図7はボイラ付き焼却炉で、乾燥段・燃焼段・後燃焼段から成るストーカの下方から一次空気を供給するライン、焼却炉内の温度が一定以下なら補助燃料を投入する補助燃料供給装置、ごみ汚水噴霧装置、排ガスの一部を焼却炉内に戻し窒素酸化物生成を抑止する排ガス再循環、未燃ガスや未燃物を完全燃焼させる二次空気供給ラインで構成されていて、その他、ガス濃度測定部、ボイラ、エコノマイザ、バグフィルタ、誘引送風機、煙突を備えている。
図8は乾燥段・燃焼段・後燃焼段から成るストーカの下方から一次空気を供給するライン、焼却炉内の温度が一定以下なら補助燃料を投入する補助燃料供給装置、ごみ汚水噴霧装置、排ガスの一部を焼却炉内に戻し窒素酸化物生成を抑止する排ガス再循環、未燃ガスや未燃物を完全燃焼させる二次空気供給ラインで構成されていて、その他、ガス濃度測定部、ガス冷却塔、熱交換器、温水熱交換器、減温塔、バグフィルタ、誘引送風機、煙突を備えている。
7 and 8 are overall system diagrams of other waste incineration facilities that carry out the present invention.
Fig. 7 shows an incinerator with a boiler, a line that supplies primary air from below the stoker consisting of a drying stage, a combustion stage, and a post-combustion stage, and an auxiliary fuel supply device that inputs auxiliary fuel when the temperature inside the incinerator is below a certain level. It consists of a waste sewage sprayer, an exhaust gas recirculation that returns a part of the exhaust gas to the incinerator to suppress the generation of nitrogen oxides, and a secondary air supply line that completely burns unburned gas and unburned materials. It is equipped with a gas concentration measuring unit, boiler, economizer, bag filter, attracting blower, and chimney.
Fig. 8 shows a line that supplies primary air from below the stoker consisting of a drying stage, a combustion stage, and a post-combustion stage, an auxiliary fuel supply device that inputs auxiliary fuel when the temperature inside the incinerator is below a certain level, a waste sewage spraying device, and exhaust gas. It consists of an exhaust gas recirculation that returns a part of the gas to the incinerator to suppress the generation of nitrogen oxides, a secondary air supply line that completely burns unburned gas and unburned substances, and a gas concentration measuring unit and gas. It is equipped with a cooling tower, heat exchanger, hot water heat exchanger, incinerator, bug filter, attracting blower, and chimney.

1 ごみ焼却炉
2 ごみ燃焼室
3 ごみ供給ホッパ
4 ごみ
5 プッシャー
6 ストーカ
7 空気送風機
8 冷却塔
9 煙突
10 灰シュート
11 燃焼制御部
12 コントローラ
13 演算装置
1 Garbage incinerator 2 Garbage combustion chamber 3 Garbage supply hopper 4 Garbage 5 Pusher 6 Stoker 7 Air blower 8 Cooling tower 9 Chimney 10 Ash chute 11 Combustion control unit 12 Controller 13 Computing device

Claims (5)

ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉に投入されたごみ質を特定し、当該特定されたごみ質に応じてごみ焼却炉に供給する一次空気の吹き込み量を制御し、焼却炉の燃焼制御を行うことを特徴とするごみ焼却炉の自動燃焼制御方法。

ごみ焼却炉に投入され燃焼しているごみ質を次のステップに従って計算し推算する。
(R1)ごみ質データベースから任意のごみ質を選び焼却炉で燃焼されたときに、発生する酸素濃度を計算式に従って計算値を出す。
(R2)ごみ焼却炉から排気された酸素濃度を測定し実測値を出す。
(R3)前記酸素濃度の計算値と実測値を比較する。
(R4)前記酸素濃度の計算値と実測値が所定の範囲内で一致するときは、ごみ質の特定を終え、前記酸素濃度の計算値と実測値を比較し酸素濃度の計算値と実測値が所定の範囲で異なっているときは、前記ごみ質データベースから別のごみ質を選び前記(R1)から(R3)のステップに従って酸素濃度の計算値と実測値が所定の範囲内で一致するまで前記ごみ質を変えて計算し、ごみ質を特定する。
(R5)前記特定されたごみ質に応じてごみ焼却炉に供給する一次空気の吹き込み量を制御する。
In the process of incinerating waste in a waste incinerator, the quality of waste put into the incinerator is specified based on the following procedure, and the amount of primary air blown into the waste incinerator is determined according to the specified quality of waste. An automatic combustion control method for waste incinerators, which is characterized by controlling and controlling the combustion of an incinerator.

The quality of the waste that is put into the waste incinerator and burned is calculated and estimated according to the following steps.
(R1) Select an arbitrary waste quality from the waste quality database and calculate the oxygen concentration generated when it is burned in the incinerator according to the calculation formula.
(R2) Measure the oxygen concentration exhausted from the waste incinerator and obtain the measured value.
(R3) The calculated value of the oxygen concentration is compared with the measured value.
(R4) When the calculated value of the oxygen concentration and the measured value match within a predetermined range, the waste quality is specified, the calculated value of the oxygen concentration is compared with the measured value, and the calculated value and the measured value of the oxygen concentration are compared. If is different within a predetermined range, select another waste material from the waste quality database and follow the steps (R1) to (R3) until the calculated oxygen concentration value and the measured value match within the predetermined range. The waste quality is specified by changing the waste quality.
(R5) The amount of primary air blown into the waste incinerator is controlled according to the specified waste quality.
ごみ焼却炉でごみを焼却処理するプロセスにおいて、以下の手順に基づき焼却炉に投入されたごみ質を特定し、当該特定されたごみ質に応じてごみ焼却炉に供給する一次空気の吹き込み量を制御し、焼却炉の燃焼制御を行うことを特徴とするごみ焼却炉の自動燃焼制御方法。

ごみ焼却炉に投入され燃焼しているごみ質を次のステップに従って計算し推算する。
(S1)ごみ質データベースから任意のごみ質を選び焼却炉で燃焼されたときに、発生する二酸化炭素濃度を計算式に従って計算値を出す。
(S2)ごみ焼却炉から排気された二酸化炭素濃度を測定し実測値を出す。
(S3)前記二酸化炭素濃度の計算値と実測値を比較する。
(S4)前記二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは、ごみ質の特定を終え、前記二酸化炭素濃度の計算値と実測値を比較し二酸化炭素濃度の計算値と実測値が所定の範囲で異なっているときは、前記ごみ質データベースから別のごみ質を選び前記(S1)から(S3)のステップに従って二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するまで前記ごみ質を変えて計算し、ごみ質を特定する。
(S5)前記特定されたごみ質に応じてごみ焼却炉に供給する一次空気の吹き込み量を制御する。
In the process of incinerating waste in a waste incinerator, the quality of waste input into the incinerator is specified based on the following procedure, and the amount of primary air blown into the waste incinerator is determined according to the specified quality of waste. An automatic combustion control method for waste incinerators, which is characterized by controlling and controlling the combustion of an incinerator.

The quality of the waste that is put into the waste incinerator and burned is calculated and estimated according to the following steps.
(S1) Select an arbitrary waste quality from the waste quality database and calculate the carbon dioxide concentration generated when it is burned in the incinerator according to the calculation formula.
(S2) Measure the concentration of carbon dioxide exhausted from the waste incinerator and obtain the measured value.
(S3) The calculated value of the carbon dioxide concentration is compared with the measured value.
(S4) When the calculated value of the carbon dioxide concentration and the measured value match within a predetermined range, the identification of the waste quality is completed, the calculated value of the carbon dioxide concentration is compared with the measured value, and the calculated value of the carbon dioxide concentration is compared. If the measured value is different within the specified range, select another waste material from the waste quality database and follow the steps (S1) to (S3) above to keep the calculated and measured carbon dioxide concentration within the specified range. The waste quality is specified by changing the waste quality until they match.
(S5) The amount of primary air blown into the waste incinerator is controlled according to the specified waste quality.
前記ごみ質データベースから選ばれたごみ質が焼却炉で燃焼されたときに、発生する酸素及び二酸化炭素濃度の計算値を次の計算式に従って求めることを特徴とする請求項1又は2に記載のごみ焼却炉の自動燃焼制御方法。

酸素濃度及び二酸化炭素濃度の算出は、まず下記(A) 式(1)〜式(4)及び(B)式(5)〜式(8)に従い、制御サイクルn回目の焼却炉出口での水の総量:(H2O)、二酸化炭素の総量:(CO2)、酸素の総量:(O2)、窒素の総量:(N2)を求める。
その後、(C) 式(9)、式(10)を用いて排ガス中の酸素濃度、二酸化炭素濃度を求める。
なお、式中で用いる数値の〈1〉実測値、〈2〉定数、〈3〉ごみ質データベース値、〈4〉算出値の分類は以下の通りになる。
〈1〉実測値
・(ごみ焼却量) [kg/h]
・(一次空気量) [m3N/h]
・(ごみ汚水噴霧量) [kg/h]
・(補助燃料投入量) [L/h]
・(尿素水噴霧量) [kg/h]
・(二次空気量) [m3N/h]
・EGR流量 [m3N/h]
〈2〉定数
・(補助燃料の燃焼で生じる水分:α1) [m3N/L]
・(補助燃料の燃焼で生じる二酸化炭素:α2) [m3N/L]
・(補助燃料の燃焼で生じる窒素:α3) [m3N/L]
・(補助燃料燃焼用理論空気量:ε) [m3N/L]
・(飛灰率β)[%]
・(熱灼減量γ)[%]
・(ごみ汚水噴霧用空気量:δ) [m3N/kg]
・(補助燃料燃焼用理論空気量の空気過剰率:ζ)
・(尿素水噴霧用空気量:η) [m3N/kg]
・(一次空気量の空気過剰率:X)
〈3〉ごみ質データベース値
・(ごみ中の水分)[%]
・(ごみ中の可燃分)[%]
・(ごみ中の灰分)[%]
・(ごみ中の炭素の割合)[%]
・(ごみ中の水素の割合)[%]
・(ごみ中の窒素の割合)[%]
〈4〉算出値(詳細は(B)項で記述)
・(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]
・(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%]
・(n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%]
・(n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%]

(A)焼却炉出口での各排ガスの総排出量
(A)-1 水の総量
(H2O)[m3N/h]
= (ごみ焼却量) [kg/h]
× [ (ごみ中の水素の割合)[%] × ((22.4L/mol)/(2.0g/mol)) ×(ごみ中の可燃分)[%]
+(ごみ中の水分)[%] × ((22.4L/mol)/(18.0g/mol)) ]
+(ごみ汚水噴霧量) [kg/h] × ((22.4L/mol)/(18.0g/mol))
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]
+(補助燃料投入量) [L/h] × (補助燃料の燃焼で生じる水分:α1) [m3N/L]
+(尿素水噴霧量) [kg/h] × ((22.4L/mol)/(18.0g/mol)) ・・・式(1)
(A)-2 二酸化炭素の総量
(CO2)[m3N/h]
= (ごみ焼却量) [kg/h] × ((22.4L/mol)/(12.0g/mol))
× [ (ごみ中の炭素の割合)[%] × (ごみ中の可燃分)[%]
− (ごみ中の灰分)[%] × (1−(飛灰率β)[%]) × (熱灼減量γ)[%] ]
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%]
+ (補助燃料投入量) [L/h] × (補助燃料の燃焼で生じる二酸化炭素:α2) [m3N/L]
・・・式(2)
(A)-3 酸素の総量
(O2)[m3N/h]
= (一次空気量) [m3N/h] × 0.21 × [(一次空気量の空気過剰率:X)−1]
+(ごみ汚水噴霧量) [kg/h] × (ごみ汚水噴霧用空気量:δ) [m3N/kg] × 0.21
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%]
+ [ (補助燃料燃焼用理論空気量:ε) [m3N/L] × (補助燃料投入量) [L/h]
×[ (補助燃料燃焼用理論空気量の空気過剰率:ζ) − 1] × 0.21 ]
+ (二次空気量) [m3N/h] × 0.21
+ (尿素水噴霧量) [kg/h] × (尿素水噴霧用空気量:η) [m3N/kg] × 0.21
・・・式(3)
(A)-4 窒素の総量
(N2)[m3N/h]
=(一次空気量) [m3N/h] × 0.79
+(ごみ焼却量) [kg/h]
×(ごみ中の窒素の割合)[%] × ((22.4L/mol)/(28.0g/mol))× (ごみ中の可燃分)[%]
+(ごみ汚水噴霧量) [kg/h] × (ごみ汚水噴霧用空気量:δ) [m3N/kg] × 0.79
+ EGR流量[m3N/h] ×(n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%]
+ (補助燃料投入量) [L/h] ×[ (補助燃料燃焼用理論空気量:ε) [m3N/L] ×
(補助燃料燃焼用理論空気量の空気過剰率:ζ)× 0.79 + (補助燃料の燃焼で生じる窒素:α3) [m3N/L] ]
+ (二次空気量) [m3N/h] × 0.79
+ (尿素水噴霧量) [kg/h] × (尿素水噴霧用空気量:η) [m3N/kg] × 0.79
・・・式(4)

(B)( n-1回目の制御サイクルに冷却塔を通過したガス濃度) [%]について
[1](n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]
[2](n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度) [%]
[3](n-1回目の制御サイクルに冷却塔を通過した酸素濃度) [%]
[4](n-1回目の制御サイクルに冷却塔を通過した窒素濃度) [%]
[1](n-1回目の制御サイクルに冷却塔を通過した水分濃度) [%]は、一次空気吹込量を出力する制御サイクルをn回目としたとき、制御サイクルn-1回目の焼却炉出口での排ガス量に、
制御サイクルn-1回目の冷却水噴霧量 [kg/h]× ((22.4L/mol)/(18.0g/mol)) を加えたときの水分濃度[%]である。
ここで、制御サイクルn-1回目の冷却水噴霧量 [kg/h]は実測値である。
上記の[2]〜[4]のガス濃度は、一次空気吹込量が出力される制御サイクルのn-1回目で冷却塔を通過した排ガス中の二酸化炭素の濃度、酸素の濃度、窒素の濃度である。
それぞれの濃度は、
(H2O’)=(n-1回目の制御サイクルに冷却塔を通過した水分量) [m3N/h]
(CO2’)=(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素量) [m3N/h]
(O2’)=(n-1回目の制御サイクルに冷却塔を通過した酸素量) [m3N/h]
(N2’)=(n-1回目の制御サイクルに冷却塔を通過した窒素量) [m3N/h]
を用いて下式で計算される。
・(n-1回目の制御サイクルに冷却塔を通過した水分濃度)
(H2O’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(5)
・(n-1回目の制御サイクルに冷却塔を通過した二酸化炭素濃度)
(CO2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(6)
・(n-1回目の制御サイクルに冷却塔を通過した酸素濃度)
(O2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(7)
・(n-1回目の制御サイクルに冷却塔を通過した窒素濃度)
(N2’) /{(H2O’)+(CO2’)+(O2’)+(N2’)}×100 ・・・式(8)

(C)酸素濃度及び二酸化炭素濃度の算出
・酸素濃度
(O2)/{(H2O)+(CO2)+(O2)+(N2)}×100 ・・・式(9)
・二酸化炭素濃度
(CO2)/{(H2O)+(CO2)+(O2)+(N2)}×100 ・・・式(10)
The invention according to claim 1 or 2, wherein the calculated values of the oxygen and carbon dioxide concentrations generated when the waste material selected from the waste quality database is burned in the incinerator are obtained according to the following formula. Automatic combustion control method for waste incinerators.

To calculate the oxygen concentration and carbon dioxide concentration, first follow the following formulas (A) (1) to (4) and (B) formulas (5) to (8), and water at the incinerator outlet at the nth control cycle. Total amount of: (H 2 O), total amount of carbon dioxide: (CO 2 ), total amount of oxygen: (O 2 ), total amount of nitrogen: (N 2 ).
After that, the oxygen concentration and carbon dioxide concentration in the exhaust gas are obtained using Eqs. (C) (9) and (10).
The numerical values used in the formula are classified as follows: <1> measured value, <2> constant, <3> waste database value, and <4> calculated value.
<1> Measured value ・ (Garbage incineration amount) [kg / h]
・ (Primary air volume) [m 3 N / h]
・ (Garbage sewage spray amount) [kg / h]
・ (Auxiliary fuel input) [L / h]
・ (Urea spray amount) [kg / h]
・ (Secondary air volume) [m 3 N / h]
・ EGR flow rate [m 3 N / h]
<2> Constant ・ (Moisture generated by combustion of auxiliary fuel: α1) [m 3 N / L]
・ (Carbon dioxide generated by combustion of auxiliary fuel: α 2) [m 3 N / L]
・ (Nitrogen generated by combustion of auxiliary fuel: α3) [m 3 N / L]
・ (Theoretical air volume for combustion of auxiliary fuel: ε) [m 3 N / L]
・ (Fly ash rate β) [%]
・ (Heat loss γ) [%]
・ (Amount of air for spraying waste sewage: δ) [m 3 N / kg]
・ (Enantiomeric excess of theoretical air volume for combustion of auxiliary fuel: ζ)
・ (Amount of air for spraying urea water: η) [m 3 N / kg]
・ (Enantiomeric excess of primary air volume: X)
<3> Waste quality database value ・ (Moisture in waste) [%]
・ (Combustible content in garbage) [%]
・ (Ash in garbage) [%]
・ (Ratio of carbon in garbage) [%]
・ (Ratio of hydrogen in garbage) [%]
・ (Ratio of nitrogen in garbage) [%]
<4> Calculated value (Details are described in item (B))
・ (Concentration of water that passed through the cooling tower in the n-1st control cycle) [%]
・ (Concentration of carbon dioxide that passed through the cooling tower in the n-1st control cycle) [%]
・ (N-1 Oxygen concentration passed through the cooling tower in the first control cycle) [%]
・ (N-1 Nitrogen concentration passed through the cooling tower in the first control cycle) [%]

(A) Total emission of each exhaust gas at the incinerator outlet
(A) -1 Total amount of water (H 2 O) [m 3 N / h]
= (Garbage incineration amount) [kg / h]
× [(Ratio of hydrogen in garbage) [%] × ((22.4L / mol) / (2.0g / mol)) × (Combustible content in garbage) [%]
+ (Moisture in garbage) [%] × ((22.4L / mol) / (18.0g / mol))]
+ (Garbage sewage spray amount) [kg / h] × ((22.4L / mol) / (18.0g / mol))
+ EGR flow rate [m 3 N / h] × (moisture concentration passed through the cooling tower in the n-1st control cycle) [%]
+ (Auxiliary fuel input) [L / h] × (Moisture generated by combustion of auxiliary fuel: α1) [m 3 N / L]
+ (Urea spray amount) [kg / h] × ((22.4L / mol) / (18.0g / mol)) ・ ・ ・ Equation (1)
(A) -2 Total amount of carbon dioxide (CO 2 ) [m 3 N / h]
= (Garbage incineration amount) [kg / h] × ((22.4L / mol) / (12.0g / mol))
× [(Ratio of carbon in garbage) [%] × (Combustible content in garbage) [%]
− (Ash content in garbage) [%] × (1− (Fly ash rate β) [%]) × (Absorption weight loss γ) [%]
+ EGR flow rate [m 3 N / h] × (concentration of carbon dioxide that passed through the cooling tower in the n-1st control cycle) [%]
+ (Auxiliary fuel input) [L / h] × (Carbon dioxide generated by combustion of auxiliary fuel: α2) [m 3 N / L]
・ ・ ・ Equation (2)
(A) -3 Total amount of oxygen (O 2 ) [m 3 N / h]
= (Primary air volume) [m 3 N / h] × 0.21 × [(Primary air excess air ratio: X) −1]
+ (Garbage sewage spray amount) [kg / h] × (Garbage sewage spray air amount: δ) [m 3 N / kg] × 0.21
+ EGR flow rate [m 3 N / h] × (n-1 Oxygen concentration passed through the cooling tower in the first control cycle) [%]
+ [(Theoretical amount of air for combustion of auxiliary fuel: ε) [m 3 N / L] × (Amount of auxiliary fuel input) [L / h]
× [(Enantiomeric excess of theoretical air volume for combustion of auxiliary fuel: ζ) − 1] × 0.21]
+ (Secondary air volume) [m 3 N / h] × 0.21
+ (Urea spray amount) [kg / h] × (Urea spray air amount: η) [m 3 N / kg] × 0.21
・ ・ ・ Equation (3)
(A) -4 Total amount of nitrogen (N 2 ) [m 3 N / h]
= (Primary air volume) [m 3 N / h] × 0.79
+ (Garbage incineration amount) [kg / h]
× (Ratio of nitrogen in garbage) [%] × ((22.4L / mol) / (28.0g / mol)) × (Combustible content in garbage) [%]
+ (Garbage sewage spray amount) [kg / h] × (Garbage sewage spray air amount: δ) [m 3 N / kg] × 0.79
+ EGR flow rate [m 3 N / h] × (n-1 Nitrogen concentration passed through the cooling tower in the first control cycle) [%]
+ (Auxiliary fuel input amount) [L / h] × [(Theoretical air amount for auxiliary fuel combustion: ε) [m 3 N / L] ×
(Auxiliary fuel combustion theoretical air excess air ratio: ζ) × 0.79 + (Nitrogen generated by combustion of auxiliary fuel: α3) [m 3 N / L]]
+ (Secondary air volume) [m 3 N / h] × 0.79
+ (Urea spray amount) [kg / h] × (Urea spray air amount: η) [m 3 N / kg] × 0.79
・ ・ ・ Equation (4)

(B) (Gas concentration that passed through the cooling tower in the n-1st control cycle) [%] [1] (Moisture concentration that passed through the cooling tower in the n-1st control cycle) [%]
[2] (concentration of carbon dioxide that passed through the cooling tower in the n-1st control cycle) [%]
[3] (Oxygen concentration that passed through the cooling tower in the n-1st control cycle) [%]
[4] (Nitrogen concentration passed through the cooling tower in the n-1st control cycle) [%]
[1] (moisture concentration that passed through the cooling tower in the n-1st control cycle) [%] is the incinerator in the n-1th control cycle when the control cycle for outputting the primary air injection amount is the nth. For the amount of exhaust gas at the exit
Control cycle n-1 Water concentration [%] when the first cooling water spray amount [kg / h] x ((22.4L / mol) / (18.0g / mol)) is added.
Here, the cooling water spray amount [kg / h] at the first control cycle n-1 is an actually measured value.
The gas concentrations of [2] to [4] above are the concentration of carbon dioxide, the concentration of oxygen, and the concentration of nitrogen in the exhaust gas that passed through the cooling tower in the n-1th control cycle in which the amount of primary air blown is output. Is.
Each concentration is
(H 2 O') = (amount of water passed through the cooling tower in the n-1st control cycle) [m 3 N / h]
(CO 2 ') = (n-1 amount of carbon dioxide that passed through the cooling tower in the first control cycle) [m 3 N / h]
(O 2 ') = (amount of oxygen passed through the cooling tower in the n-1st control cycle) [m 3 N / h]
(N 2 ') = (n-1 amount of nitrogen passed through the cooling tower in the first control cycle) [m 3 N / h]
It is calculated by the following formula using.
・ (Concentration of water that passed through the cooling tower in the n-1st control cycle)
(H 2 O') / {(H 2 O') + (CO 2 ') + (O 2 ') + (N 2 ')} × 100 ・ ・ ・ Equation (5)
・ (Concentration of carbon dioxide that passed through the cooling tower in the n-1st control cycle)
(CO 2 ') / {(H 2 O') + (CO 2 ') + (O 2 ') + (N 2 ')} × 100 ・ ・ ・ Equation (6)
・ (N-1 Oxygen concentration passed through the cooling tower in the first control cycle)
(O 2 ') / {(H 2 O') + (CO 2 ') + (O 2 ') + (N 2 ')} × 100 ・ ・ ・ Equation (7)
・ (N-1 Nitrogen concentration passed through the cooling tower in the first control cycle)
(N 2 ') / {(H 2 O') + (CO 2 ') + (O 2 ') + (N 2 ')} × 100 ・ ・ ・ Equation (8)

(C) Calculation of oxygen concentration and carbon dioxide concentration ・ Oxygen concentration
(O 2 ) / {(H 2 O) + (CO 2 ) + (O 2 ) + (N 2 )} × 100 ・ ・ ・ Equation (9)
・ Carbon dioxide concentration
(CO 2 ) / {(H 2 O) + (CO 2 ) + (O 2 ) + (N 2 )} × 100 ・ ・ ・ Equation (10)
前記ごみ焼却炉の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を次の手順により特定することを特徴とする請求項1又は2のいずれかに記載されたごみ焼却炉の自動燃焼制御方法。

(T1)ごみ質データベースは、ごみの発熱量の順に並んでおり、発熱量が少ないごみ質はデータベースの左側、発熱量が多いごみ質はデータベースの右側に並べる。
ごみ質データベースに記載されている複数のごみ質の中心に近いごみ質を選び焼却炉で燃焼させたときに、発生する酸素濃度又は二酸化炭素濃度の計算値と実測値と比較し、酸素濃度の計算値と実測値が所定の範囲内で一致するとき又は二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉内に投入されたごみ質が選択したごみ質であると特定する。
(T2)酸素濃度の場合において、計算値と実測値が所定の範囲内で一致しなかった場合、前記計算値が前記実測値に対して高い場合と低い場合に分けて、ごみ質を選択しなおす。前記計算値が前記実測値に対して高い場合は、前記選んだ中心にあるごみ質と最も発熱量が大きい右にあるごみ質の間でごみ質選択範囲を狭め、前記計算値が前記実測値に対して低い場合は、前記選んだ中心にあるごみ質と最も発熱量が小さい左にあるごみ質の間でごみ質選択範囲を狭め、狭めた範囲内で中心に位置するごみ質を選び、選んだごみ質が焼却炉で燃焼したときに発生する酸素濃度を計算し、酸素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉に投入されたごみ質が、選択したごみ質であると特定する。
(T3)酸素濃度の場合において、前記により選んだごみ質を焼却炉で燃焼させたときに、発生する酸素濃度の計算値と実測値とが異なるときは再度上記手順に従ってごみ質を選び、選んだごみ質の酸素濃度の計算値と実測値が所定の範囲内で一致するまで上記(T2)の手順を繰り返す。
(T2’)二酸化炭素濃度の場合において、計算値と実測値が所定の範囲内で一致しなかった場合、前記計算値が前記実測値に対して高い場合と低い場合に分けて、ごみ質を選択しなおす。前記計算値が前記実測値に対して高い場合は、前記選んだ中心にあるごみ質と最も発熱量が小さい左にあるごみ質の間でごみ質選択範囲を狭め、前記計算値が前記実測値に対して低い場合は、前記選んだ中心にあるごみ質と最も発熱量が大きい右にあるごみ質の間でごみ質選択範囲を狭め、狭めた範囲内で中心に位置するごみ質を選び、選んだごみ質が焼却炉で燃焼したときに発生する二酸化炭素濃度を計算し、二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するときは前記焼却炉に投入されたごみ質が、選択したごみ質であると特定する。
(T3’)二酸化炭素濃度の場合において、前記により選んだごみ質を焼却炉で燃焼させたときに、発生する二酸化炭素濃度の計算値と実測値が異なるときは再度上記手順に従ってごみ質を選び、選んだごみ質の二酸化炭素濃度の計算値と実測値が所定の範囲内で一致するまで上記(T2’)の手順を繰り返す。
The waste incinerator according to claim 1 or 2, wherein the waste quality input to the incinerator is specified from the waste quality database in the automatic combustion control method of the waste incinerator by the following procedure. Automatic combustion control method.

(T1) The waste quality database is arranged in the order of the calorific value of the waste. The waste quality with a small calorific value is arranged on the left side of the database, and the waste quality with a large calorific value is arranged on the right side of the database.
When multiple waste materials listed in the waste quality database near the center of the waste quality are selected and burned in an incinerator, the calculated and measured values of the oxygen concentration or carbon dioxide concentration generated are compared with the measured values to determine the oxygen concentration. When the calculated value and the measured value match within a predetermined range, or when the calculated value of oxygen concentration and the measured value match within a predetermined range, the waste quality put into the incinerator is the selected waste quality. Identify as being.
(T2) In the case of oxygen concentration, when the calculated value and the measured value do not match within a predetermined range, the waste quality is selected according to the case where the calculated value is higher or lower than the measured value. fix. When the calculated value is higher than the measured value, the waste quality selection range is narrowed between the selected central waste material and the right waste material having the largest calorific value, and the calculated value is the measured value. If it is lower than the above, narrow the waste quality selection range between the selected central waste quality and the left waste quality with the smallest calorific value, and select the central waste quality within the narrowed range. The oxygen concentration generated when the selected waste quality is burned in the incinerator is calculated, and when the calculated value of the oxygen concentration and the measured value match within a predetermined range, the waste quality put into the incinerator is selected. Identify as waste quality.
(T3) In the case of oxygen concentration, if the calculated value and the measured value of the oxygen concentration generated when the waste quality selected above is burned in the incinerator are different, the waste quality is selected and selected again according to the above procedure. The above procedure (T2) is repeated until the calculated value and the measured value of the oxygen concentration of the waste material match within a predetermined range.
In the case of (T2') carbon dioxide concentration, when the calculated value and the measured value do not match within a predetermined range, the waste quality is classified into the case where the calculated value is higher than the measured value and the case where the measured value is lower than the measured value. Reselect. When the calculated value is higher than the measured value, the waste material selection range is narrowed between the selected central waste material and the left waste material having the smallest calorific value, and the calculated value is the measured value. If it is lower than the above, narrow the waste quality selection range between the selected central waste quality and the right waste material with the highest calorific value, and select the central waste quality within the narrowed range. Calculate the carbon dioxide concentration generated when the selected waste quality burns in the incinerator, and if the calculated value of the carbon dioxide concentration and the measured value match within a predetermined range, the waste quality put into the incinerator is the waste quality. , Identify the selected waste quality.
In the case of (T3') carbon dioxide concentration, if the calculated value and the measured value of the carbon dioxide concentration generated when the waste quality selected above is burned in the incinerator are different, select the waste quality again according to the above procedure. , The above procedure (T2') is repeated until the calculated value and the measured value of the carbon dioxide concentration of the selected waste material match within a predetermined range.
前記ごみ焼却炉の自動燃焼制御方法におけるごみ質データベースから焼却炉に投入されたごみ質を次の手順により特定することを特徴とする請求項1又は2のいずれかに記載されたごみ焼却炉の自動燃焼制御方法。

(U1)ごみ質データベースは、ごみの発熱量の順に並んでおり、発熱量が少ないごみ質はデータベースの左側、発熱量が多いごみ質はデータベースの右側に並べる。
ごみ質データベースに記載されている[1]最も左側のごみ質、[2]最も右側のごみ質及び[3]複数のごみ質の中心に近いごみ質を選び焼却炉で燃焼させたときに、発生する酸素濃度又は二酸化炭素濃度の計算値と実測値と比較し、実測値の含まれる範囲が[1]〜[2]か[2]〜[3]を判定する。
(U2)実測値が含まれる範囲において、残りのごみ質が2又は3個になるまで(U1)を繰り返す。
(U3)ごみ質が残り2又は3個になったら、各々のごみ質の計算値を算出し、実測値に近いごみ質を選んでごみ質を特定する。
The waste incinerator according to any one of claims 1 or 2, wherein the waste quality input to the incinerator is specified from the waste quality database in the automatic combustion control method of the waste incinerator by the following procedure. Automatic combustion control method.

(U1) The waste quality database is arranged in the order of the calorific value of the waste. The waste quality with a small calorific value is arranged on the left side of the database, and the waste quality with a large calorific value is arranged on the right side of the database.
When [1] the leftmost waste quality, [2] the rightmost waste quality, and [3] multiple waste quality near the center of the waste quality are selected and burned in the incinerator, they are listed in the waste quality database. By comparing the calculated value of the generated oxygen concentration or carbon dioxide concentration with the measured value, it is determined whether the range including the measured value is [1] to [2] or [2] to [3].
(U2) Repeat (U1) until the remaining waste quality becomes 2 or 3 in the range including the measured value.
(U3) When there are only 2 or 3 pieces of waste, calculate the calculated value of each waste, select the waste that is close to the measured value, and specify the waste.
JP2019037809A 2019-03-01 2019-03-01 Automatic combustion control method for garbage incinerator Active JP7237654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037809A JP7237654B2 (en) 2019-03-01 2019-03-01 Automatic combustion control method for garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037809A JP7237654B2 (en) 2019-03-01 2019-03-01 Automatic combustion control method for garbage incinerator

Publications (2)

Publication Number Publication Date
JP2020139720A true JP2020139720A (en) 2020-09-03
JP7237654B2 JP7237654B2 (en) 2023-03-13

Family

ID=72280231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037809A Active JP7237654B2 (en) 2019-03-01 2019-03-01 Automatic combustion control method for garbage incinerator

Country Status (1)

Country Link
JP (1) JP7237654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418070B1 (en) 2023-06-02 2024-01-19 Alchemist Material株式会社 Combustibles identification device, combustibles identification program, and combustibles identification method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240410A (en) * 1988-07-29 1990-02-09 Kubota Ltd Automatic combustion control of municipal waste incinerating furnace
JPH06265124A (en) * 1993-03-11 1994-09-20 N K K Plant Kensetsu Kk Method for controlling combustion of dust in dust incinerator
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JPH11264534A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Incinerating plant control device and operating method therefor
JP2000018549A (en) * 1998-06-25 2000-01-18 Hitachi Ltd Incineration plant operation control method and apparatus
JP2017026172A (en) * 2015-07-16 2017-02-02 株式会社タクマ Waste heat value measuring method and waste processing device using the same
JP2017145979A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240410A (en) * 1988-07-29 1990-02-09 Kubota Ltd Automatic combustion control of municipal waste incinerating furnace
JPH06265124A (en) * 1993-03-11 1994-09-20 N K K Plant Kensetsu Kk Method for controlling combustion of dust in dust incinerator
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JPH11264534A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Incinerating plant control device and operating method therefor
JP2000018549A (en) * 1998-06-25 2000-01-18 Hitachi Ltd Incineration plant operation control method and apparatus
JP2017026172A (en) * 2015-07-16 2017-02-02 株式会社タクマ Waste heat value measuring method and waste processing device using the same
JP2017145979A (en) * 2016-02-15 2017-08-24 日立造船株式会社 Stoker type incinerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418070B1 (en) 2023-06-02 2024-01-19 Alchemist Material株式会社 Combustibles identification device, combustibles identification program, and combustibles identification method
JP7433689B1 (en) 2023-06-02 2024-02-20 Alchemist Material株式会社 Combustion amount determination device, combustion amount determination program, and combustion amount determination method

Also Published As

Publication number Publication date
JP7237654B2 (en) 2023-03-13

Similar Documents

Publication Publication Date Title
KR100304244B1 (en) Combustion control method and apparatus for waste incinerators
JP5996762B1 (en) Waste combustion control method and combustion control apparatus to which the method is applied
JP6153090B2 (en) Waste incinerator and waste incineration method
JP3822328B2 (en) Method for estimating the lower heating value of combustion waste in refuse incinerators
JP2022092448A (en) Learned model generation device, learned model generation program, furnace interior temperature prediction device, furnace interior temperature prediction program, learned model, and incineration system
JP7237654B2 (en) Automatic combustion control method for garbage incinerator
JP5452906B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JP7028844B2 (en) Waste combustion equipment and waste combustion method
JP3466555B2 (en) Combustion control method and device for refuse incineration plant
JP7397627B2 (en) Incineration plant and its combustion control method
JP2006226674A (en) Combustion control system of refuse incinerator without boiler facility
JP5179163B2 (en) Combustion control system for combustion furnace and combustion control method thereof
JP2002022124A (en) Stoker furnace
KR100267146B1 (en) Combustion controlling method and dioxin removal method of stoker incinerator
JP2020098081A (en) Combustion control method
JP2004239508A (en) Combustion control method of refuse incinerator, and refuse incinerator
JP2020106243A (en) Waste supply speed estimation device and waste supply speed estimation method
KR100306291B1 (en) Control method of flue gas mixture discharged from garbage incinerator
JP3491126B2 (en) Method and apparatus for estimating grate combustion air flow rate of refuse incinerator
JP7093709B2 (en) Incinerator
JP2761187B2 (en) Garbage incinerator
JPH07217843A (en) Incinerator and method of controlling flame in same
JP2003329229A (en) Control method for stoker type incinerator
JPH09273730A (en) Restraining method of unburnt constituent in exhaust gas of incinerating furnace
JP2002228133A (en) Combustion control method for waste incinerator and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230301

R150 Certificate of patent or registration of utility model

Ref document number: 7237654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150