JP2020132469A - Multilayer structure quartz glass material and method of manufacturing the same - Google Patents

Multilayer structure quartz glass material and method of manufacturing the same Download PDF

Info

Publication number
JP2020132469A
JP2020132469A JP2019027719A JP2019027719A JP2020132469A JP 2020132469 A JP2020132469 A JP 2020132469A JP 2019027719 A JP2019027719 A JP 2019027719A JP 2019027719 A JP2019027719 A JP 2019027719A JP 2020132469 A JP2020132469 A JP 2020132469A
Authority
JP
Japan
Prior art keywords
quartz glass
transparent
layer
opaque
multilayer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019027719A
Other languages
Japanese (ja)
Other versions
JP7123827B2 (en
Inventor
英昭 岡田
Hideaki Okada
英昭 岡田
堀越 秀春
Hideharu Horikoshi
秀春 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohos SGM KK
Original Assignee
Tohos SGM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72262181&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020132469(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tohos SGM KK filed Critical Tohos SGM KK
Priority to JP2019027719A priority Critical patent/JP7123827B2/en
Publication of JP2020132469A publication Critical patent/JP2020132469A/en
Application granted granted Critical
Publication of JP7123827B2 publication Critical patent/JP7123827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

To provide a multilayer structure quartz glass material which has an opaque layer of low apparent density and is low in thermal conductivity of a multilayer quartz glass plate to thereby sufficiently block heat radiated or conducted from a heating furnace.SOLUTION: A multilayer structure quartz glass material has a transparent quartz glass layer, an opaque quartz glass layer and a transparent quartz glass layer in this order, and the opaque quartz glass layer has an apparent density of 2.0 g/cmor less. A method comprises: supporting a first transparent quartz glass plate and a second transparent glass plate in a forming mold with opposite surfaces substantially parallel with each other at a predetermined interval; filling a space between the first transparent quartz glass plate and second transparent glass plate with raw material powder for opaque transparent layer which is mixed powder of silica powder and silicon nitride powder; heating the first transparent quartz glass plate and second transparent glass plate in an electric furnace while placing a load in the opposition direction from outside to let the raw material powder melt and foam; and then cooling it to manufacture the multilayer structure quartz glass material.SELECTED DRAWING: None

Description

本発明は、不透明層と不透明層を両面から挟み込む2つの透明層とを有する多層構造石英ガラス材およびその製造方法に関する。 The present invention relates to a multilayer structure quartz glass material having an opaque layer and two transparent layers sandwiching the opaque layer from both sides, and a method for producing the same.

多層構造石英ガラス材は、断熱性が要求される分野への使用を主目的とした多層構造材料である。多層構造材料は、特に半導体製造用のベルジャー、拡散炉の炉芯管、ボート保持治具等を構成する熱処理用加熱炉の断熱材などに利用される。 The multilayer structure quartz glass material is a multilayer structure material mainly intended for use in fields where heat insulation is required. The multi-layer structure material is particularly used as a heat insulating material for a heating furnace for heat treatment, which constitutes a bell jar for semiconductor manufacturing, a core tube of a diffusion furnace, a boat holding jig, and the like.

シリコンウエハーの熱処理用加熱炉は、例えば図1に示すように、発熱体1と、炉芯管2と、シリコンウエハー3を支持するボート4と、保温筒5と、基台6とを有する。炉芯管2の下部にはフランジ9が設けられている。フランジ9は不透明石英ガラス製であり、透明ガラス製の炉芯管2と酸水素炎による溶接により一体に接合されている。フランジ9は熱遮断材として作用し、耐熱性に劣るパッキン7や基台6への熱の伝播を抑制している。またパッキン7を介してフランジ9 と基台6とのシールにより炉芯管内は所定の雰囲気に保たれる。 As shown in FIG. 1, for example, a heating furnace for heat treatment of a silicon wafer includes a heating element 1, a furnace core tube 2, a boat 4 that supports the silicon wafer 3, a heat insulating cylinder 5, and a base 6. A flange 9 is provided at the lower part of the furnace core tube 2. The flange 9 is made of opaque quartz glass, and is integrally joined to the furnace core tube 2 made of transparent glass by welding with an oxyhydrogen flame. The flange 9 acts as a heat blocking material and suppresses heat propagation to the packing 7 and the base 6 which are inferior in heat resistance. Further, the inside of the furnace core tube is maintained in a predetermined atmosphere by sealing the flange 9 and the base 6 via the packing 7.

フランジ部には、表面に透明部を有する不透明石英ガラス材が使用され、不透明部は均一に分散した気泡を含み、高温粘性及び熱遮断性に優れ、表面の透明部は、気泡由来の凹凸がない平滑な表面を有する。半導体製造における各種加熱処理装置の炉芯管のフランジ部材に適した不透明石英ガラス製リング材やその製造方法は、例えば特許文献1〜4に開示されている。 An opaque quartz glass material having a transparent part on the surface is used for the flange part, the opaque part contains evenly dispersed bubbles, which is excellent in high-temperature viscosity and heat blocking property, and the transparent part on the surface has irregularities derived from bubbles. Has no smooth surface. Patent Documents 1 to 4, for example, disclose an opaque quartz glass ring material suitable for a flange member of a core tube of various heat treatment devices in semiconductor manufacturing and a method for manufacturing the ring material.

特開平11-209135号公報Japanese Unexamined Patent Publication No. 11-209135 特開平11-116265号公報Japanese Unexamined Patent Publication No. 11-116265 特開平07-300326号公報Japanese Unexamined Patent Publication No. 07-300326 特開2004-067456号公報Japanese Unexamined Patent Publication No. 2004-067456

近年、このような半導体装置で用いられる不透明石英ガラス材途に対して、省エネルギー、加熱炉の温度分布の均一性の点から、加熱炉からの輻射や伝導による熱の遮断について、性能改善の要求がある。 In recent years, with respect to the opaque quartz glass material used in such semiconductor devices, there has been a demand for improved performance in terms of energy saving and uniformity of temperature distribution in the heating furnace, regarding heat insulation by radiation and conduction from the heating furnace. There is.

しかし、特許文献1〜3に記載の透明部を有する不透明石英ガラス材料は、材料の熱伝導率が高く、上記要求に応える物ではなかった。また、熱伝導率が高いことで、エネルギー損失が大きく、運転コストが増加し、あるいは、熱を遮蔽するために材料の厚みが増し、装置コストが増加するという課題があった。 However, the opaque quartz glass material having a transparent portion described in Patent Documents 1 to 3 has a high thermal conductivity of the material and does not meet the above requirements. Further, since the thermal conductivity is high, there is a problem that the energy loss is large and the operating cost is increased, or the thickness of the material is increased to shield the heat and the device cost is increased.

特許文献4には、不透明石英ガラス板を2枚の透明石英ガラス板の間にバーナー火炎により溶着する多層石英ガラス板の製造方法が記載されている。この方法では、各ガラス板が数mm程度と薄ければ接合が容易であるが、板が厚くなると溶着不良を招き、透明層と不透明層との間に隙間ができる。このため、不純物の進入や昇温・降温過程での透明層と不透明層との剥離が起こる懸念がある。また、この方法で製造できる多層石英ガラス板の不透明層は、見掛け密度が高く、多層石英ガラス板の熱伝導率も高く、加熱炉からの輻射や伝導による熱を十分に遮断できる物ではなかった。 Patent Document 4 describes a method for producing a multilayer quartz glass plate in which an opaque quartz glass plate is welded between two transparent quartz glass plates by a burner flame. In this method, if each glass plate is as thin as about several mm, joining is easy, but if the plate is thick, welding failure occurs and a gap is formed between the transparent layer and the opaque layer. For this reason, there is a concern that impurities may enter and the transparent layer and the opaque layer may peel off during the process of raising or lowering the temperature. In addition, the opaque layer of the multi-layer quartz glass plate that can be manufactured by this method has a high apparent density and high thermal conductivity of the multi-layer quartz glass plate, and cannot sufficiently block heat from radiation and conduction from the heating furnace. ..

本発明は、上記課題を解決するための多層構造石英ガラス材を提供することを目的とする。即ち、見掛け密度が低い不透明層を有し、多層石英ガラス板の熱伝導率も低く、その結果、加熱炉からの輻射や伝導による熱を十分に遮断できる多層構造石英ガラス材を提供することが本発明の目的である。 An object of the present invention is to provide a multilayer structure quartz glass material for solving the above problems. That is, it is possible to provide a multilayer structure quartz glass material having an opaque layer having a low apparent density and having a low thermal conductivity of the multilayer quartz glass plate, and as a result, sufficiently blocking heat due to radiation and conduction from a heating furnace. It is an object of the present invention.

本発明は以下の通りである。
[1]
透明石英ガラス層、不透明石英ガラス層及び透明石英ガラス層をこの順に有する多層石英ガラス材において、不透明石英ガラス層の見掛け密度が、2.0g/cm3以下である、多層構造石英ガラス材。
[2]
不透明石英ガラス層の見掛け密度が、0.5g/cm3以上、1.9g/cm3以下である、[1]に記載の多層構造石英ガラス材。
[3]
不透明石英ガラス層の見掛け密度が、0.7g/cm3以上、1.7g/cm3以下である、[1]に記載の多層構造石英ガラス材。
[4]
500℃における熱伝導率が、1.2 W/(m・K)以下である、[1]〜[3]のいずれかに記載の多層構造石英ガラス材。
[5]
500℃における熱伝導率が、0.2 W/(m・K)以上、1.1W/(m・K)以下である、[1]〜[3]のいずれかに記載の多層構造石英ガラス材。
[6]
不透明石英ガラス層が、直径1mm以上の泡を含まない、[1]〜[5]のいずれかに記載の多層構造石英ガラス材。
[7]
透明石英ガラス層と不透明石英ガラス層の接合境界部の平坦度が、100mm角の大きさで0.2mm以下である、[1]〜[6]のいずれかに記載の多層構造石英ガラス材。
[8]
第1の透明石英ガラス板と第2の透明石英ガラス板とを対向する面が所定間隔で略平行になるように成型用鋳型内に支持し、
第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間にシリカ粉末および窒化ケイ素粉末の混合粉末である不透明層用の原料粉末を充填し、
第1の透明石英ガラス板と第2の透明石英ガラス板の外側から対向する向きに荷重を掛けつつ電気炉内で加熱して原料粉末を溶融および発泡させ、その後に冷却して多層構造石英ガラス材を製造する方法。
[9]
成型用鋳型は少なくとも下型と上型からなり、
下型は一定の厚みの平板部材であり、第1の透明石英ガラス板を支持するために用いられる上面を有し、
上型は、平板部と平板部の少なくとも一部の周縁に立設された側壁部とからなり、平板部は第2の透明石英ガラス板を支持するために用いられる下面を有し、
上型側壁部の内周面は、下型の外側面と相対し、かつ略等しい寸法を有し、下型の外側面に側壁部の内周面が沿って、上型が上下に移動できる構造を有する[8]に記載の製造方法。
[10]
混合粉末における窒化ケイ素粉末の含有量は、0.002〜0.5質量%の範囲である[8]または[9]に記載の製造方法。
[11]
シリカ粉末の粒径は10〜500μmの範囲である[8]〜[10]のいずれかに記載の製造方法。
[12]
窒化ケイ素粉末の粒径は0.1〜5μmの範囲である[8]〜[11]のいずれかに記載の製造方法。
The present invention is as follows.
[1]
A multilayer structure quartz glass material having a transparent quartz glass layer, an opaque quartz glass layer, and a transparent quartz glass layer in this order, in which the apparent density of the opaque quartz glass layer is 2.0 g / cm 3 or less.
[2]
The multilayer structure quartz glass material according to [1], wherein the apparent density of the opaque quartz glass layer is 0.5 g / cm 3 or more and 1.9 g / cm 3 or less.
[3]
The multilayer structure quartz glass material according to [1], wherein the apparent density of the opaque quartz glass layer is 0.7 g / cm 3 or more and 1.7 g / cm 3 or less.
[4]
The multilayer structure quartz glass material according to any one of [1] to [3], which has a thermal conductivity at 500 ° C. of 1.2 W / (m · K) or less.
[5]
The multilayer structure quartz glass material according to any one of [1] to [3], which has a thermal conductivity at 500 ° C. of 0.2 W / (m · K) or more and 1.1 W / (m · K) or less.
[6]
The multilayer structure quartz glass material according to any one of [1] to [5], wherein the opaque quartz glass layer does not contain bubbles having a diameter of 1 mm or more.
[7]
The multilayer structure quartz glass material according to any one of [1] to [6], wherein the flatness of the joint boundary between the transparent quartz glass layer and the opaque quartz glass layer is 0.2 mm or less in a size of 100 mm square.
[8]
The first transparent quartz glass plate and the second transparent quartz glass plate are supported in the molding mold so that the facing surfaces are substantially parallel at predetermined intervals.
The space between the first transparent quartz glass plate and the second transparent quartz glass plate is filled with a raw material powder for an opaque layer, which is a mixed powder of silica powder and silicon nitride powder.
The raw material powder is melted and foamed by heating in an electric furnace while applying a load from the outside of the first transparent quartz glass plate and the second transparent quartz glass plate in opposite directions, and then cooled to make a multilayer structure quartz glass. How to make wood.
[9]
The molding mold consists of at least a lower mold and an upper mold,
The lower mold is a flat plate member of constant thickness, having an upper surface used to support the first transparent quartz glass plate.
The upper mold consists of a flat plate portion and a side wall portion erected on the peripheral edge of at least a part of the flat plate portion, and the flat plate portion has a lower surface used for supporting a second transparent quartz glass plate.
The inner peripheral surface of the upper side wall portion faces the outer surface of the lower mold and has substantially the same dimensions, and the inner peripheral surface of the side wall portion can move up and down along the outer peripheral surface of the lower mold. The production method according to [8], which has a structure.
[10]
The production method according to [8] or [9], wherein the content of the silicon nitride powder in the mixed powder is in the range of 0.002 to 0.5% by mass.
[11]
The production method according to any one of [8] to [10], wherein the silica powder has a particle size in the range of 10 to 500 μm.
[12]
The production method according to any one of [8] to [11], wherein the silicon nitride powder has a particle size in the range of 0.1 to 5 μm.

本発明によれば、不透明層の見掛け密度を2.0g/cm3以下にすることで、熱伝導率が1.2 W/(m・K)以下に改善した多層構造石英ガラス材を提供することができ、この多層構造石英ガラス材は、従来品に比べて断熱特性が向上した材料である。さらに、本発明では、所定の成型用鋳型を使用することで、製品形状に近い多層構造石英ガラス材の製造も可能である。 According to the present invention, by setting the apparent density of the opaque layer to 2.0 g / cm 3 or less, it is possible to provide a multilayer structure quartz glass material having an improved thermal conductivity of 1.2 W / (m · K) or less. , This multilayer structure quartz glass material is a material having improved heat insulating properties as compared with conventional products. Further, in the present invention, it is possible to manufacture a multilayer structure quartz glass material having a shape close to the product shape by using a predetermined molding mold.

シリコンウエハーの熱処理用加熱炉の断面概略図である。It is sectional drawing of the heating furnace for heat treatment of a silicon wafer. 本発明の成型用鋳型を用いる多層構造石英ガラス製造方法の説明図(平面図および側面断面図)である。It is explanatory drawing (plan view and side sectional view) of the multilayer structure quartz glass manufacturing method using the molding mold of this invention. 本発明の成型用鋳型を用いる多層構造石英ガラス製造における成型用鋳型の側面説明図であり、(A)が成型前、(B)は成型後(但し、粉末タップ密度>不透明層の密度)、(C)は形成後(但し、粉末タップ密度<不透明層の密度)である。It is a side view of the molding mold in the manufacturing of the multilayer structure quartz glass using the molding mold of this invention, (A) is before molding, (B) is after molding (however, powder tap density> density of an opaque layer). (C) is after formation (however, powder tap density <density of opaque layer). 特許文献3に記載の方法を応用した多層構造石英ガラス製造方法の説明図である。It is explanatory drawing of the multilayer structure quartz glass manufacturing method which applied the method described in Patent Document 3.

(多層構造石英ガラス材)
本発明の多層構造石英ガラス材は、透明石英ガラス層、不透明石英ガラス層及び透明石英ガラス層をこの順に有する多層石英ガラス材であって、不透明石英ガラス層の見掛け密度が、2.0g/cm3以下である。
(Multi-layer structure quartz glass material)
The multilayer structure quartz glass material of the present invention is a multilayer quartz glass material having a transparent quartz glass layer, an opaque quartz glass layer and a transparent quartz glass layer in this order, and the apparent density of the opaque quartz glass layer is 2.0 g / cm 3. It is as follows.

本発明の多層構造石英ガラス材は、表面層(第1層、第3層)が透明石英ガラス層であり、中間層(第2層)が不透明石英ガラス層で構成される。表面層を構成する透明石英ガラス層は、気泡を含まない透明性に優れたガラスからなる。表面層(第1層、第3層)の厚みは特に制限はないが、それぞれ独立に、例えば、1〜10mmの範囲であることができる。但し、この範囲に限定される意図ではなく、用途に応じて適宜決定できる。また、表面層(第1層、第3層)の密度は特に制限はないが、それぞれ独立に、例えば、2.0〜2.5g/cm3の範囲であることができる。中間層(第2層)の厚みも特に制限はないが、例えば、1〜10mmの範囲である。但し、この範囲に限定される意図ではなく、用途や必要とされる断熱特性に応じて適宜決定できる。 In the multilayer structure quartz glass material of the present invention, the surface layer (first layer, third layer) is a transparent quartz glass layer, and the intermediate layer (second layer) is an opaque quartz glass layer. The transparent quartz glass layer constituting the surface layer is made of highly transparent glass that does not contain air bubbles. The thickness of the surface layers (first layer and third layer) is not particularly limited, but can be independently, for example, in the range of 1 to 10 mm. However, it is not intended to be limited to this range, and can be appropriately determined according to the application. The density of the surface layers (first layer and third layer) is not particularly limited, but can be independently, for example, in the range of 2.0 to 2.5 g / cm 3 . The thickness of the intermediate layer (second layer) is also not particularly limited, but is, for example, in the range of 1 to 10 mm. However, it is not intended to be limited to this range, and can be appropriately determined according to the application and the required heat insulating properties.

不透明石英ガラス層は、石英ガラスに微細な気泡が分散しているガラスである。不透明石英ガラス層は、見掛け密度が、2.0g/cm3以下である。見掛け密度が、2.0g/cm3以下であることで、不透明石英ガラス層の熱伝導率を所望の低い値(例えば、500℃において1.2 W/(m・K)以下)にすることができる。不透明石英ガラス層の見掛け密度は、より低い熱伝導率を得るという観点からは0.7以上、1.7g/cm3以下であることが好ましい。この範囲の見掛け密度を有する不透明石英ガラス層は、石英ガラス中に分散している微細な気泡が大きすぎず、かつ十分な量で含まれる。見掛け密度がこの範囲であることで、500℃における熱伝導率を1.1 W/(m・K)以下にすることができる。500℃における熱伝導率は、好ましくは0.2以上1.1 W/(m・K)以下である。 The opaque quartz glass layer is a glass in which fine bubbles are dispersed in the quartz glass. The opaque quartz glass layer has an apparent density of 2.0 g / cm 3 or less. When the apparent density is 2.0 g / cm 3 or less, the thermal conductivity of the opaque quartz glass layer can be set to a desired low value (for example, 1.2 W / (m · K) or less at 500 ° C.). The apparent density of the opaque quartz glass layer is preferably 0.7 or more and 1.7 g / cm 3 or less from the viewpoint of obtaining a lower thermal conductivity. The opaque quartz glass layer having an apparent density in this range contains a sufficient amount of fine bubbles dispersed in the quartz glass without being too large. With the apparent density in this range, the thermal conductivity at 500 ° C can be 1.1 W / (m · K) or less. The thermal conductivity at 500 ° C. is preferably 0.2 or more and 1.1 W / (m · K) or less.

不透明石英ガラス層の熱伝導率を所望の低い値(例えば、500℃において1.1 W/(m・K)以下)にすることができるという観点からは、不透明石英ガラス層は、直径1mm以上の泡を含まないことが好ましい。 From the viewpoint that the thermal conductivity of the opaque quartz glass layer can be set to a desired low value (for example, 1.1 W / (m · K) or less at 500 ° C.), the opaque quartz glass layer is a bubble having a diameter of 1 mm or more. It is preferable not to contain.

本発明の多層構造石英ガラス材は、透明石英ガラス層と不透明石英ガラス層の接合境界部の平坦度が、100mm角の大きさで0.2mm以下であることが、全面に渡って均一な熱伝導
率を有すると言う観点から好ましい。前記平坦度は、100mm角の大きさで0.1mm以下であ
ることがより好ましい。
In the multilayer structure quartz glass material of the present invention, the flatness of the joint boundary between the transparent quartz glass layer and the opaque quartz glass layer is 0.2 mm or less in a size of 100 mm square, and the thermal conductivity is uniform over the entire surface. It is preferable from the viewpoint of having a rate. The flatness is more preferably 0.1 mm or less in the size of 100 mm square.

<多層構造石英ガラス材の製造方法>
本発明の多層構造石英ガラス材は、例えば、以下に示す製造方法により製造することかできる。
(1)第1の透明石英ガラス板と第2の透明石英ガラス板とを対向する面が所定間隔で略平行になるように成型用鋳型内に支持し、
(2)第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間にシリカ粉末および窒化ケイ素粉末の混合粉末である不透明層用の原料粉末を充填し、
(3)第1の透明石英ガラス板と第2の透明石英ガラス板の外側から対向する向きに荷重を掛けつつ電気炉内で加熱して原料粉末を溶融および発泡させ、その後に冷却して多層構造石英ガラス材を製造する。
<Manufacturing method of multilayer structure quartz glass material>
The multilayer structure quartz glass material of the present invention can be produced, for example, by the production method shown below.
(1) The first transparent quartz glass plate and the second transparent quartz glass plate are supported in the molding mold so that the facing surfaces are substantially parallel at predetermined intervals.
(2) The space between the first transparent quartz glass plate and the second transparent quartz glass plate is filled with a raw material powder for an opaque layer, which is a mixed powder of silica powder and silicon nitride powder.
(3) The raw material powder is melted and foamed by heating in an electric furnace while applying a load from the outside of the first transparent quartz glass plate and the second transparent quartz glass plate in opposite directions, and then cooled to form a multilayer. Structural Quartz glass material is manufactured.

工程(1)
第1の透明石英ガラス板と第2の透明石英ガラス板とを対向する面が所定間隔で略平行になるように成型用鋳型内に支持する。
Process (1)
The first transparent quartz glass plate and the second transparent quartz glass plate are supported in the molding mold so that the facing surfaces are substantially parallel at predetermined intervals.

成型用鋳型は、少なくとも下型と上型からなる。成型用鋳型の平面形状は特に制限はなく、多層構造石英ガラス材の形状に応じて適宜決定することができる。限定する意図ではないが、成型用鋳型の平面形状は、例えば、方形、円形、不定形などであることができる。下型は一定の厚みの平板部材であり、少なくとも上面は第1の透明石英ガラス板を支持するために用いられるので、平坦であり、好ましくは平滑である。上型は、少なくとも下面が、第2の透明石英ガラス板を支持するために用いられるために、平坦であり、好ましくは平滑である。上型は、平板部と平板部の少なくとも一部の周縁に立設された側壁部とからなり、側壁部は下方(下型方向)に延在する。側壁部の内周面は、下型の外側面と相対し、かつ略等しい寸法を有し、下型の外側面に側壁部の内周面が沿って、上型が上下に移動できる構造および寸法(スライド機能)を有する。成型用鋳型の材質は、特に制限はないが、耐熱性に優れると言う観点からは炭素材料が用いられる。但し、炭素材料に限定される意図ではない。 The molding mold consists of at least a lower mold and an upper mold. The planar shape of the molding mold is not particularly limited, and can be appropriately determined according to the shape of the multilayer structure quartz glass material. Although not intended to be limited, the planar shape of the molding mold can be, for example, square, circular, or amorphous. The lower mold is a flat plate member having a constant thickness, and at least the upper surface is used to support the first transparent quartz glass plate, so that it is flat and preferably smooth. The upper mold is flat, preferably smooth, because at least the lower surface is used to support the second transparent quartz glass plate. The upper mold is composed of a flat plate portion and a side wall portion erected on the peripheral edge of at least a part of the flat plate portion, and the side wall portion extends downward (downward mold direction). The inner peripheral surface of the side wall is opposed to the outer surface of the lower mold and has substantially the same dimensions, and the inner peripheral surface of the side wall is along the outer surface of the lower mold so that the upper mold can move up and down. Has dimensions (slide function). The material of the molding mold is not particularly limited, but a carbon material is used from the viewpoint of excellent heat resistance. However, it is not intended to be limited to carbon materials.

第1の透明石英ガラス板は、下型の上面に設置される。第1の透明石英ガラス板と下型の上面との間には、剥離材(例えば、炭素フェルト製)を設けることが、加熱後の両者の剥離を容易にするという観点から好ましい。第1の透明石英ガラス板の上面の周縁の少なくとも一部に第2の透明石英ガラス板との間の距離を規定するための一定の厚さを有するスペーサーを設ける。スペーサーは、耐熱性および剥離性に優れるという観点から炭素フェルトであることができる。スペーサーの高さは、第1の透明石英ガラス板と第2の透明石英ガラス板の間に投入する不透明層用の原料粉末量に応じて適宜決定する。スペーサーは、第1の透明石英ガラス板の上面の周縁の、不透明層用の原料粉末充填に用いる投入孔以外の全域に設けることが、2つの透明石英ガラス板の間隔を一定に保ち、かつガラスの成型型への融着を有効に防止できるという観点から好ましい。また、2つの透明石英ガラス板の間隔を一定に保つために、下型の外側面と側壁部の内周面とを、例えば、高分子接着剤で仮止めすることもできる。高分子接着剤は加熱の際には分解するので、溶融発泡の際の上型の上下動を妨げることはない。 The first transparent quartz glass plate is installed on the upper surface of the lower mold. It is preferable to provide a release material (for example, made of carbon felt) between the first transparent quartz glass plate and the upper surface of the lower mold from the viewpoint of facilitating the release of both after heating. At least a part of the peripheral edge of the upper surface of the first transparent quartz glass plate is provided with a spacer having a certain thickness for defining the distance from the second transparent quartz glass plate. The spacer can be carbon felt from the viewpoint of excellent heat resistance and peelability. The height of the spacer is appropriately determined according to the amount of raw material powder for the opaque layer to be put between the first transparent quartz glass plate and the second transparent quartz glass plate. The spacers may be provided on the periphery of the upper surface of the first transparent quartz glass plate in the entire area other than the input holes used for filling the raw material powder for the opaque layer to keep the distance between the two transparent quartz glass plates constant and to make the glass. It is preferable from the viewpoint that fusion to the molding die can be effectively prevented. Further, in order to keep the distance between the two transparent quartz glass plates constant, the outer surface of the lower mold and the inner peripheral surface of the side wall portion can be temporarily fixed with, for example, a polymer adhesive. Since the polymer adhesive decomposes when heated, it does not interfere with the vertical movement of the upper mold during melt foaming.

スペーサーを設けた第1の透明石英ガラス板の上に第2の透明石英ガラス板を設置する。第1の透明石英ガラス板と第2の透明石英ガラス板の平面形状は、略同一であることが適当である。第2の透明石英ガラス板を設置した後に第2の透明石英ガラス板の上から、上型を、第2の透明石英ガラス板の全面を覆うように設置する。その際、上型の側壁部の内周面は、第1の透明石英ガラス板、スペーサーおよび第2の透明石英ガラス板の外周面を覆い、かつ下型の外側面の少なくとも一部と対面するような寸法を有する。尚、上型の側壁部は、不透明層用の原料粉末充填用のスペーサーの孔に対応する部分は切欠きまたは孔を有する。 A second transparent quartz glass plate is installed on the first transparent quartz glass plate provided with a spacer. It is appropriate that the plane shapes of the first transparent quartz glass plate and the second transparent quartz glass plate are substantially the same. After installing the second transparent quartz glass plate, the upper mold is installed from above the second transparent quartz glass plate so as to cover the entire surface of the second transparent quartz glass plate. At that time, the inner peripheral surface of the side wall portion of the upper mold covers the outer peripheral surface of the first transparent quartz glass plate, the spacer and the second transparent quartz glass plate, and faces at least a part of the outer surface of the lower mold. It has such dimensions. The side wall of the upper die has a notch or a hole corresponding to the hole of the spacer for filling the raw material powder for the opaque layer.

工程(2)
工程(2)では、第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間にシリカ粉末および窒化ケイ素粉末の混合粉末である不透明層用の原料粉末を充填する。成型用鋳型内において、第1の透明石英ガラス板と第2の透明石英ガラス板との対向面が所定間隔で平行になるように支持されており、この2つ透明石英ガラス板の間の空隙に不透明層用の原料粉末を投入する。不透明層用の原料粉末の充填は、スペーサーを設けることなく形成した孔および上型の側壁部の切欠きまたは孔である、不透明層用の原料粉末充填用孔から行うことができる。
Process (2)
In the step (2), the space between the first transparent quartz glass plate and the second transparent quartz glass plate is filled with the raw material powder for the opaque layer, which is a mixed powder of silica powder and silicon nitride powder. In the molding mold, the facing surfaces of the first transparent quartz glass plate and the second transparent quartz glass plate are supported so as to be parallel at predetermined intervals, and the gap between the two transparent quartz glass plates is opaque. Add the raw material powder for the layer. The filling of the raw material powder for the opaque layer can be performed from the holes formed without providing the spacer and the notches or holes of the side wall portion of the upper mold, which are the holes for filling the raw material powder for the opaque layer.

不透明層用の原料粉末は、シリカ粉末および窒化ケイ素粉末の混合粉末である。シリカ粉末は溶融して石英ガラスとなり、窒化ケイ素粉末は、気泡形成の元となる。混合粉末における窒化ケイ素粉末の含有量は、不透明層中の所望の気泡量を考慮して適宜決定することができる。例えば、混合粉末中の窒化ケイ素粉末の含有量は、0.002〜0.5質量%の範囲であることができる。但し、この範囲に限定される意図ではない。 The raw material powder for the opaque layer is a mixed powder of silica powder and silicon nitride powder. The silica powder melts into quartz glass, and the silicon nitride powder becomes the source of bubble formation. The content of the silicon nitride powder in the mixed powder can be appropriately determined in consideration of the desired amount of air bubbles in the opaque layer. For example, the content of the silicon nitride powder in the mixed powder can be in the range of 0.002 to 0.5% by mass. However, it is not intended to be limited to this range.

シリカ粉末の粒径は、充填の容易さや、溶融時に形成される気泡のサイズ等を考慮して適宜決定できる。例えば、10〜500μmの範囲であることができ、好ましくは50〜250μmの範囲、より好ましくは100〜200μmの範囲である。 The particle size of the silica powder can be appropriately determined in consideration of the ease of filling, the size of bubbles formed during melting, and the like. For example, it can be in the range of 10 to 500 μm, preferably in the range of 50 to 250 μm, more preferably in the range of 100 to 200 μm.

窒化ケイ素粉末の粒径は、主に溶融時に形成される気泡のサイズ等を考慮して適宜決定できる。例えば、0.1〜5μmの範囲であることができ、好ましくは0.2〜3μmの範囲、より好ましくは0.5〜1.5μmの範囲である。 The particle size of the silicon nitride powder can be appropriately determined in consideration of the size of bubbles formed during melting and the like. For example, it can be in the range of 0.1 to 5 μm, preferably in the range of 0.2 to 3 μm, more preferably in the range of 0.5 to 1.5 μm.

原料粉末は、充填前にシリカ粉末と窒化ケイ素粉末とを常法により混合して調製することができる。 The raw material powder can be prepared by mixing silica powder and silicon nitride powder by a conventional method before filling.

工程(3)
工程(3)では、原料粉末を充填した後、成型用鋳型と共に電気炉内で加熱して、原料粉末を溶融および発泡させる。その際、上型の重量により、第1の透明石英ガラス板と第2の透明石英ガラス板の外側から対向する向きに荷重を掛ける。これにより、大きな泡の形成を抑制して泡の大きさをコントロールしつつスペーサーの高さに応じた厚さの不透明層を形成することができる。上型の重量により加えられる荷重は、例えば、1〜10g/cm2の範囲とすることができる。但し、この範囲に限定される意図ではない。上型側壁部の内周面は、下型の外側面と相対し、かつ略等しい寸法を有し、下型の外側面に側壁部の内周面が沿って、上型が上限に移動できる構造および寸法を有するので、溶融および発泡の際に、上型が上下に移動することができ、上型の重量と原料粉末の充填量や組成に応じた容量(厚み)の不透明層を容易に形成することができる。
Process (3)
In the step (3), after filling the raw material powder, it is heated in an electric furnace together with a molding mold to melt and foam the raw material powder. At that time, a load is applied from the outside of the first transparent quartz glass plate and the second transparent quartz glass plate in a direction facing each other by the weight of the upper mold. As a result, it is possible to form an opaque layer having a thickness corresponding to the height of the spacer while suppressing the formation of large bubbles and controlling the size of the bubbles. The load applied by the weight of the upper mold can be, for example, in the range of 1-10 g / cm 2 . However, it is not intended to be limited to this range. The inner peripheral surface of the upper side wall portion faces the outer surface of the lower mold and has substantially the same dimensions, and the inner peripheral surface of the side wall portion can move to the upper limit along the outer peripheral surface of the lower mold. Due to its structure and dimensions, the upper mold can move up and down during melting and foaming, making it easy to create an opaque layer with a volume (thickness) according to the weight of the upper mold and the filling amount and composition of the raw material powder. Can be formed.

電気炉内での加熱温度は、原料粉末が溶融し、かつ発泡し得る条件であれば良く、例えば、1700〜1850℃の範囲であることができる。加熱溶融時間には特に制限はなく、加熱温度や発泡の状況を考慮して適宜決定できる。例えば、10分から6時間の範囲で適宜決定できる。 The heating temperature in the electric furnace may be in the range of 1700 to 1850 ° C. as long as the raw material powder can be melted and foamed. The heating and melting time is not particularly limited and can be appropriately determined in consideration of the heating temperature and the foaming condition. For example, it can be appropriately determined in the range of 10 minutes to 6 hours.

加熱溶融、発泡が終了した後に、成型用鋳型を冷却し、冷却後に多層構造石英ガラス材を成型用鋳型から取り出す。 After the heating and melting and foaming are completed, the molding mold is cooled, and after cooling, the multilayer structure quartz glass material is taken out from the molding mold.

本発明の製造方法は、不透明石英ガラス層を原料粉末から直接形成することができる。さらに、不透明石英ガラス層の両面に透明石英ガラス層を配することで、不透明石英ガラス層の密度を下げることで生じる不透明石英ガラス層の強度不足を補完できる。 In the production method of the present invention, the opaque quartz glass layer can be formed directly from the raw material powder. Further, by arranging the transparent quartz glass layers on both sides of the opaque quartz glass layer, it is possible to supplement the lack of strength of the opaque quartz glass layer caused by lowering the density of the opaque quartz glass layer.

図2に本発明の製造方法に使用する成型用鋳型の一態様の説明図を示す。上部は上型の平面図であり、下部は、成型用鋳型内に第1の透明石英ガラス板と第2の透明石英ガラス板との対向面が所定間隔で平行になるようにスペーサーを介して支持し、原料粉末を充填した状態の断面説明図である。 FIG. 2 shows an explanatory diagram of one aspect of the molding mold used in the manufacturing method of the present invention. The upper part is a plan view of the upper mold, and the lower part is formed through a spacer so that the facing surfaces of the first transparent quartz glass plate and the second transparent quartz glass plate are parallel to each other at predetermined intervals in the molding mold. It is sectional drawing in the state of supporting and filling the raw material powder.

図3は、(A)が図2の断面説明図と同じ成型前の成型用鋳型の一態様の断面説明図であり、(B)は加熱溶融、発泡後であり、不透明層における発泡の度合が大きく上型の重量による押しつぶされ方は小さく、その結果、不透明層の密度が原料粉末の密度より小さくなった状態(粉末タップ密度>不透明層の密度)を示す。(C)は加熱溶融、発泡後であり、上型の重量により不透明層が押しつぶされて、不透明層の密度が原料粉末の密度より大きくなった状態(粉末タップ密度<不透明層の密度)を示す。この場合は、スペーサーも上型の重量により押しつぶされている。 3A and 3B are cross-sectional explanatory views of one aspect of the molding mold before molding, which is the same as the cross-sectional explanatory view of FIG. 2, and FIG. 3B is after heating and melting and foaming, and the degree of foaming in the opaque layer is shown in FIG. Is large and the crushing method by the weight of the upper mold is small, and as a result, the density of the opaque layer is smaller than the density of the raw material powder (powder tap density> density of the opaque layer). (C) shows a state in which the opaque layer is crushed by the weight of the upper mold after heating and melting and foaming, and the density of the opaque layer becomes higher than the density of the raw material powder (powder tap density <density of opaque layer). .. In this case, the spacer is also crushed by the weight of the upper mold.

本発明の多層構造石英ガラス材は、断熱性が要求される分野への使用を主目的とした多層構造材料である。特に半導体製造用のベルジャー、拡散炉の炉芯管、ボート保持治具等を構成する熱処理用加熱炉の断熱材、その製造に用いる成型用鋳型に関する。より詳しくは、半導体の熱処理炉の断熱材などの用途に使用する半導体の熱処理炉に適した断熱性を有する多層構造材料とその製造用鋳型に関する。 The multilayer structure quartz glass material of the present invention is a multilayer structure material mainly intended for use in fields where heat insulation is required. In particular, the present invention relates to a bell jar for semiconductor manufacturing, a core tube of a diffusion furnace, a heat insulating material for a heating furnace for heat treatment constituting a boat holding jig, and a molding mold used for the manufacture thereof. More specifically, the present invention relates to a multilayer structure material having heat insulating properties suitable for a semiconductor heat treatment furnace used for applications such as a heat insulating material for a semiconductor heat treatment furnace, and a mold for manufacturing the same.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are examples of the present invention, and the present invention is not intended to be limited to the examples.

実施例1〜7
石英粉末と窒化珪素(Si3N4)を所定濃度になるように計量し、均一に混合して原料粉末を製造。得られた粉末を成形型(内寸100mm角)に導入して熱処理して、多層構造石英ガラス材を製造した。
Examples 1-7
Quartz powder and silicon nitride (Si 3 N 4 ) are weighed to a predetermined concentration and mixed uniformly to produce a raw material powder. The obtained powder was introduced into a molding die (inner size 100 mm square) and heat-treated to produce a multilayer structure quartz glass material.

成形型は底面、スライド式の側壁、ストッパー、剥離材から構成されている。剥離材には、側面は黒鉛と石英ガラスの熱膨張差を緩和させるためクッション性のカーボン繊維質フェルトを、上・下面は平滑性を確保するためカーボンシートを使用した。 The molding die is composed of a bottom surface, a sliding side wall, a stopper, and a release material. As the release material, a cushioning carbon fiber felt was used on the side surface to reduce the difference in thermal expansion between graphite and quartz glass, and a carbon sheet was used on the upper and lower surfaces to ensure smoothness.

図2に示す成型用鋳型を用いた。鋳型の蓋(重石を兼ねる)は、第2層の不透明石英ガラスが所望する厚みになるように原料末の体積を算出し、原料粉末が投入可能な高さに仮止め材(高分子接着剤)で固定した。なお、上部透明石英ガラス板は、仮止め材で蓋の裏面に固定した。 The molding mold shown in FIG. 2 was used. For the lid of the mold (which also serves as a heavy stone), the volume of the raw material powder is calculated so that the opaque quartz glass of the second layer has the desired thickness, and the temporary fixing material (polymer adhesive) is set to a height at which the raw material powder can be put. ) Was fixed. The upper transparent quartz glass plate was fixed to the back surface of the lid with a temporary fixing material.

原料粉末は、鋳型側面の粉末導入口から振動を加えながら鋳型内に導入した。この鋳型を電気炉内に設置し熱処理を施した。 The raw material powder was introduced into the mold while applying vibration from the powder introduction port on the side surface of the mold. This mold was placed in an electric furnace and heat-treated.

500℃以上で仮止め材が分解し、成形型のスライド式側壁が機能(蓋の重量が石英ガラスに作用)する。この方式により、第2層の調合粉末と第1、第3層との密着性が向上する。また、蓋が垂直に降下するため平坦性が確保される。
表1に製造条件を示す。
The temporary fixing material decomposes at 500 ° C or higher, and the sliding side wall of the molding mold functions (the weight of the lid acts on the quartz glass). By this method, the adhesion between the compounded powder of the second layer and the first and third layers is improved. In addition, the lid descends vertically to ensure flatness.
Table 1 shows the manufacturing conditions.

[評価方法]
(平坦度)
ノギスを用いて、得られた100mm角の多層材の中心部と各コーナー部の厚さを測定し、最大値と最小値との差を平坦度とした。
[Evaluation method]
(Flatness)
Using a caliper, the thickness of the central portion and each corner portion of the obtained 100 mm square multilayer material was measured, and the difference between the maximum value and the minimum value was defined as the flatness.

(不透明層の見掛け密度)
製造した多層構造石英ガラス材から30mm×30mmの評価用サンプルを切り出し、乾燥後、全重量を秤量する。
ノギスを用いてサンプルの縦、横、厚さを計測する。
切断した断面をマイクロスコープにより、第1層、第2層、第3層の厚さを計測する。
透明石英ガラスの密度=2.2g/cm3
透明層の重量g=縦cm×横cm×(第1層の厚さ+第2層の厚さ)cm×2.2g/cm3
不透明層の体積cm3:縦cm×横cm×第2層の厚さcm
不透明層の見掛け密度g/cm3:(全重量−透明層の重量)g/不透明層の体積cm3
(Apparent density of opaque layer)
A 30 mm × 30 mm evaluation sample is cut out from the manufactured multilayer structure quartz glass material, dried, and then weighed in total.
Measure the length, width, and thickness of the sample using calipers.
The thickness of the first layer, the second layer, and the third layer is measured by measuring the cut cross section with a microscope.
Clear quartz glass density = 2.2g / cm 3
Weight of transparent layer g = length cm x width cm x (thickness of first layer + thickness of second layer) cm x 2.2 g / cm 3
Volume of opaque layer cm 3 : Length cm x width cm x thickness of second layer cm
Apparent density of opaque layer g / cm 3 : (total weight-weight of transparent layer) g / volume of opaque layer cm 3

(泡径)
製造した多層構造石英ガラス材の不透明部分から、直径10mm厚さ1mmの評価用サンプルを加工する。
マイクロスコープで泡径を測定する。
(Foam diameter)
From the opaque part of the manufactured multilayer structure quartz glass material, an evaluation sample with a diameter of 10 mm and a thickness of 1 mm is processed.
Measure the bubble diameter with a microscope.

(熱伝導率)
上記サンプルを用いて、JISR1611に従って熱拡散率を計測し、500℃における熱伝導率を算出する。
熱伝導率W/(m・K)=熱拡散率熱m2/s×密度kg/m3×比熱J/(kg・K)
表2に実施例の条件で製造した多層構造石英ガラス材の評価結果を示す。
(Thermal conductivity)
Using the above sample, measure the thermal diffusivity according to JIS R1611 and calculate the thermal conductivity at 500 ° C.
Thermal conductivity W / (m ・ K) = thermal diffusivity heat m 2 / s × density kg / m 3 × specific heat J / (kg ・ K)
Table 2 shows the evaluation results of the multilayer structure quartz glass material manufactured under the conditions of Examples.

実施例1〜7に示すように、表面平坦性に優れ、熱伝導率が低い多層構造石英ガラス材が得られた。多層構造とすることで、不透明石英ガラスの密度低下による強度不足は透明ガラスで補うことができる。本発明の多層構造石英ガラス材を半導体装置(熱拡散炉)等の部品材料に用いることで同装置の省エネルギーにつながる。 As shown in Examples 1 to 7, a multilayer structure quartz glass material having excellent surface flatness and low thermal conductivity was obtained. With the multi-layer structure, the lack of strength due to the decrease in density of the opaque quartz glass can be compensated for by the transparent glass. The use of the multilayer structure quartz glass material of the present invention as a component material for a semiconductor device (heat diffusion furnace) leads to energy saving of the device.

参考例1
特許文献3に記載の方法を参考に、さらに上部に第3層として透明石英ガラス板を配置して、多層構造石英ガラス材の製造を行った。図4に製造方法の概略図を示す。
Reference example 1
With reference to the method described in Patent Document 3, a transparent quartz glass plate was further arranged as a third layer on the upper portion to produce a multilayer structure quartz glass material. FIG. 4 shows a schematic view of the manufacturing method.

内寸が100mm角の黒鉛製の鋳型の底面及び側面に剥離材を配置し、底部に厚さ1mmの透明石英ガラス板を設置する。次に、特許文献3の実施例1に記載の方法で原料粉末を製造し、不透明層の厚さが3mmとなる重量の粉末を鋳型に充填した。その上に厚さ1mmの透明石英ガラス板を載せ、特許文献3に記載の条件で熱処理を施し、100mm角の多層構造石英ガラス材を製造した。 A release material is placed on the bottom and side surfaces of a graphite mold with an inner size of 100 mm square, and a transparent quartz glass plate with a thickness of 1 mm is placed on the bottom. Next, the raw material powder was produced by the method described in Example 1 of Patent Document 3, and the mold was filled with a powder having a weight such that the thickness of the opaque layer was 3 mm. A transparent quartz glass plate having a thickness of 1 mm was placed on the transparent quartz glass plate and heat-treated under the conditions described in Patent Document 3 to produce a 100 mm square multilayer structure quartz glass material.

この材は、透明層と不透明層との間に気泡径が0.5mm以上の大きな気泡が15個存在し、均質性が悪い。また、成型体の目標厚み5mmに対して、厚肉部と薄肉部とでの厚み差が2mmもあり、厚みの平坦性が極めて低かった。 This material has 15 large bubbles having a bubble diameter of 0.5 mm or more between the transparent layer and the opaque layer, and has poor homogeneity. Further, the thickness difference between the thick portion and the thin portion was as much as 2 mm with respect to the target thickness of 5 mm of the molded body, and the flatness of the thickness was extremely low.

不透明層の厚み分布及び、透明ガラス層と不透明ガラス層との間に気泡が生成し、半導体部品材に使用することが困難であることが明確になった。よって、特許文献3の製造方法を応用することで、目的とする多層構造石英ガラス材を製造することは出来なかった。 It was clarified that the thickness distribution of the opaque layer and the generation of bubbles between the transparent glass layer and the opaque glass layer make it difficult to use as a semiconductor component material. Therefore, the desired multilayer structure quartz glass material could not be produced by applying the production method of Patent Document 3.

比較例1
特許文献4に記載の方法で製造した多層構造石英ガラス材(信越石英製)を入手し、比較例1とした。本ガラス材は、表面に圧延によるうねりが見られるため、特許文献4に記載されているように、圧延で製造されていると思われる。平坦度は、0.3mm(100mm角)であり、厚さは、上下の透明層が、各0.7mm、不透明層が2.0mmである。不透明層の見掛け密度が2.2g/cm3と高く、熱伝導率が1.4 W/(m・K)であった。
Comparative Example 1
A multilayer structure quartz glass material (manufactured by Shinetsu Quartz) manufactured by the method described in Patent Document 4 was obtained and used as Comparative Example 1. Since the surface of this glass material has waviness due to rolling, it is considered that the glass material is manufactured by rolling as described in Patent Document 4. The flatness is 0.3 mm (100 mm square), and the thickness is 0.7 mm for each of the upper and lower transparent layers and 2.0 mm for the opaque layer. The apparent density of the opaque layer was as high as 2.2 g / cm 3 , and the thermal conductivity was 1.4 W / (m · K).

本発明によれば、半導体装置の部品材料の熱伝導率を、例えば、従来品の1/2以下にすることも可能であり、その結果、半導体装置の熱エネルギーの遮蔽性能が向上し、装置のランニングコストを低減できる。 According to the present invention, it is possible to reduce the thermal conductivity of the component material of the semiconductor device to, for example, 1/2 or less of that of the conventional product, and as a result, the thermal energy shielding performance of the semiconductor device is improved, and the device Running cost can be reduced.

また、特許文献4(比較例1)のように2枚の透明石英ガラス板の間に不透明石英ガラス板を溶着する方法では、製品サイズ・形状が限定されるが、本発明では成型用鋳型の形状と不透明層用の原料粉末の仕込み量を変更することで、任意の形状の製品を得ることが可能で、これにより、ニアネット形状の製品の製造が可能である。 Further, in the method of welding an opaque quartz glass plate between two transparent quartz glass plates as in Patent Document 4 (Comparative Example 1), the product size and shape are limited, but in the present invention, the shape of the molding mold is used. By changing the amount of the raw material powder charged for the opaque layer, it is possible to obtain a product having an arbitrary shape, which makes it possible to manufacture a product having a near net shape.

半導体向け部品製造に用いる素材に関連する分野に有用である。 It is useful in fields related to materials used in manufacturing parts for semiconductors.

Claims (12)

透明石英ガラス層、不透明石英ガラス層及び透明石英ガラス層をこの順に有する多層石英ガラス材において、不透明石英ガラス層の見掛け密度が、2.0g/cm3以下である、多層構造石英ガラス材。 A multilayer structure quartz glass material having a transparent quartz glass layer, an opaque quartz glass layer, and a transparent quartz glass layer in this order, in which the apparent density of the opaque quartz glass layer is 2.0 g / cm 3 or less. 不透明石英ガラス層の見掛け密度が、0.5g/cm3以上、1.9g/cm3以下である、請求項1に記載の多層構造石英ガラス材。 The multilayer structure quartz glass material according to claim 1, wherein the apparent density of the opaque quartz glass layer is 0.5 g / cm 3 or more and 1.9 g / cm 3 or less. 不透明石英ガラス層の見掛け密度が、0.7g/cm3以上、1.7g/cm3以下である、請求項1に記載の多層構造石英ガラス材。 The multilayer structure quartz glass material according to claim 1, wherein the apparent density of the opaque quartz glass layer is 0.7 g / cm 3 or more and 1.7 g / cm 3 or less. 500℃における熱伝導率が、1.2 W/(m・K)以下である、請求項1〜3のいずれかに記載の多層構造石英ガラス材。 The multilayer structure quartz glass material according to any one of claims 1 to 3, wherein the thermal conductivity at 500 ° C. is 1.2 W / (m · K) or less. 500℃における熱伝導率が、0.2 W/(m・K)以上、1.1W/(m・K)以下である、請求項1〜3のいずれかに記載の多層構造石英ガラス材。 The multilayer structure quartz glass material according to any one of claims 1 to 3, wherein the thermal conductivity at 500 ° C. is 0.2 W / (m · K) or more and 1.1 W / (m · K) or less. 不透明石英ガラス層が、直径1mm以上の泡を含まない、請求項1〜5のいずれかに記載の多層構造石英ガラス材。 The multilayer structure quartz glass material according to any one of claims 1 to 5, wherein the opaque quartz glass layer does not contain bubbles having a diameter of 1 mm or more. 透明石英ガラス層と不透明石英ガラス層の接合境界部の平坦度が、100mm角の大きさで0.2mm以下である、請求項1〜6のいずれかに記載の多層構造石英ガラス材。 The multilayer structure quartz glass material according to any one of claims 1 to 6, wherein the flatness of the joint boundary portion between the transparent quartz glass layer and the opaque quartz glass layer is 0.2 mm or less in a size of 100 mm square. 第1の透明石英ガラス板と第2の透明石英ガラス板とを対向する面が所定間隔で略平行になるように成型用鋳型内に支持し、
第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間にシリカ粉末および窒化ケイ素粉末の混合粉末である不透明層用の原料粉末を充填し、
第1の透明石英ガラス板と第2の透明石英ガラス板の外側から対向する向きに荷重を掛けつつ電気炉内で加熱して原料粉末を溶融および発泡させ、その後に冷却して多層構造石英ガラス材を製造する方法。
The first transparent quartz glass plate and the second transparent quartz glass plate are supported in the molding mold so that the facing surfaces are substantially parallel at predetermined intervals.
The space between the first transparent quartz glass plate and the second transparent quartz glass plate is filled with a raw material powder for an opaque layer, which is a mixed powder of silica powder and silicon nitride powder.
The raw material powder is melted and foamed by heating in an electric furnace while applying a load from the outside of the first transparent quartz glass plate and the second transparent quartz glass plate in opposite directions, and then cooled to make a multilayer structure quartz glass. How to make wood.
成型用鋳型は少なくとも下型と上型からなり、
下型は一定の厚みの平板部材であり、第1の透明石英ガラス板を支持するために用いられる上面を有し、
上型は、平板部と平板部の少なくとも一部の周縁に立設された側壁部とからなり、平板部は第2の透明石英ガラス板を支持するために用いられる下面を有し、
上型側壁部の内周面は、下型の外側面と相対し、かつ略等しい寸法を有し、下型の外側面に側壁部の内周面が沿って、上型が上下に移動できる構造を有する請求項8に記載の製造方法。
Molding molds consist of at least a lower mold and an upper mold,
The lower mold is a flat plate member of constant thickness, having an upper surface used to support the first transparent quartz glass plate.
The upper mold consists of a flat plate portion and a side wall portion erected on the peripheral edge of at least a part of the flat plate portion, and the flat plate portion has a lower surface used for supporting a second transparent quartz glass plate.
The inner peripheral surface of the upper side wall portion faces the outer surface of the lower mold and has substantially the same dimensions, and the inner peripheral surface of the side wall portion can move up and down along the outer peripheral surface of the lower mold. The manufacturing method according to claim 8, which has a structure.
混合粉末における窒化ケイ素粉末の含有量は、0.002〜0.5質量%の範囲である請求項8または9に記載の製造方法。 The production method according to claim 8 or 9, wherein the content of the silicon nitride powder in the mixed powder is in the range of 0.002 to 0.5% by mass. シリカ粉末の粒径は10〜500μmの範囲である請求項8〜10のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 10, wherein the particle size of the silica powder is in the range of 10 to 500 μm. 窒化ケイ素粉末の粒径は0.1〜5μmの範囲である請求項8〜11のいずれかに記載の製造方法。 The production method according to any one of claims 8 to 11, wherein the particle size of the silicon nitride powder is in the range of 0.1 to 5 μm.
JP2019027719A 2019-02-19 2019-02-19 Multilayer structure quartz glass material and its manufacturing method Active JP7123827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019027719A JP7123827B2 (en) 2019-02-19 2019-02-19 Multilayer structure quartz glass material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019027719A JP7123827B2 (en) 2019-02-19 2019-02-19 Multilayer structure quartz glass material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020132469A true JP2020132469A (en) 2020-08-31
JP7123827B2 JP7123827B2 (en) 2022-08-23

Family

ID=72262181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027719A Active JP7123827B2 (en) 2019-02-19 2019-02-19 Multilayer structure quartz glass material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7123827B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266181A (en) * 2020-11-17 2021-01-26 衡阳凌云特种材料有限公司 Heat-proof/insulation composite material and preparation method and application thereof
CN114364641A (en) * 2019-09-13 2022-04-15 信越石英株式会社 Reflecting member and method for manufacturing glass laminated member

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167742A (en) * 1996-12-17 1998-06-23 Tosoh Corp Production of opaque quartz glass cylinder
JPH11116265A (en) * 1997-10-16 1999-04-27 Tosoh Corp Opaque quartz glass having transparent part and its production
JP2004067456A (en) * 2002-08-07 2004-03-04 Shinetsu Quartz Prod Co Ltd Apparatus and method of manufacturing multilayer quartz glass plate
JP2004091314A (en) * 2002-07-08 2004-03-25 Shinetsu Quartz Prod Co Ltd Multilayer quartz glass sheet and tool made of quartz glass
JP2004307269A (en) * 2003-04-08 2004-11-04 Tokuyama Toshiba Ceramics Co Ltd Method of manufacturing bubble-containing silica glass
JP2011068522A (en) * 2009-09-28 2011-04-07 Covalent Materials Corp Silica glass crucible for pulling silicon single crystal
JP2015089539A (en) * 2013-11-06 2015-05-11 マツダ株式会社 Forming method of heat insulation layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167742A (en) * 1996-12-17 1998-06-23 Tosoh Corp Production of opaque quartz glass cylinder
JPH11116265A (en) * 1997-10-16 1999-04-27 Tosoh Corp Opaque quartz glass having transparent part and its production
JP2004091314A (en) * 2002-07-08 2004-03-25 Shinetsu Quartz Prod Co Ltd Multilayer quartz glass sheet and tool made of quartz glass
JP2004067456A (en) * 2002-08-07 2004-03-04 Shinetsu Quartz Prod Co Ltd Apparatus and method of manufacturing multilayer quartz glass plate
JP2004307269A (en) * 2003-04-08 2004-11-04 Tokuyama Toshiba Ceramics Co Ltd Method of manufacturing bubble-containing silica glass
JP2011068522A (en) * 2009-09-28 2011-04-07 Covalent Materials Corp Silica glass crucible for pulling silicon single crystal
JP2015089539A (en) * 2013-11-06 2015-05-11 マツダ株式会社 Forming method of heat insulation layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114364641A (en) * 2019-09-13 2022-04-15 信越石英株式会社 Reflecting member and method for manufacturing glass laminated member
CN112266181A (en) * 2020-11-17 2021-01-26 衡阳凌云特种材料有限公司 Heat-proof/insulation composite material and preparation method and application thereof
CN112266181B (en) * 2020-11-17 2022-08-02 衡阳凌云特种材料有限公司 Heat-proof/insulation composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP7123827B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP7123827B2 (en) Multilayer structure quartz glass material and its manufacturing method
RU2469860C2 (en) Frame for three-dimensional object manufacturing device, and three-dimensional object manufacturing device provided with such frame
JP2005197242A (en) Sealant for solid oxide fuel cell, and its manufacturing method
KR20160014530A (en) Process for producing an insulating board and a vacuum insulation panel
JP2013512854A (en) High-throughput recrystallization of semiconductor materials
US20110180229A1 (en) Crucible For Use In A Directional Solidification Furnace
KR100725028B1 (en) Preparation method of thermal conductive sheet using nanocomposite carbon fiber
WO2013064626A1 (en) Crucible and method for the production of a (near) monocrystalline semiconductor ingot
TWI564256B (en) Apparatus for thermal decoupling of a forming body in a glass making process
KR101071879B1 (en) Vacuum glass panel having spacer and manufacturing method thereof
JP7162395B2 (en) Manufacturing method for multilayer structure quartz glass material
KR101070605B1 (en) Ceramic heater for semiconductor wafer and a manufacturing method thereof
CN101597134B (en) Device and process for precisely annealing glass
TWI576318B (en) Method for manufacturing glass substrates
KR20130109754A (en) Seal composition for exhaust pipe of vacuum glazing
CN102995105A (en) Ingot-casting polycrystalline furnace and heat-dissipation bottom plate thereof
JP5449645B2 (en) A method of manufacturing a silicon plate for heat treatment.
CN209910380U (en) Large-sized dust-free ceramic heating furnace
CN202954140U (en) Radiating base plate of ingot casting polycrystalline furnace and ingot casting polycrystalline furnace comprising radiating base plate
CN111230117A (en) Forming cylinder temperature field control device suitable for additive manufacturing and application thereof
JPH03133160A (en) Gas-tight package and its manufacture
CN206245578U (en) It is a kind of can pinning boxlike composite brick
KR101769670B1 (en) Method of making glass substrate and glass substrate
WO2021132003A1 (en) Mixture member comprising sic and si, and method for manufacturing same
KR20180104136A (en) Characteristic edge - Heat-enhanced glass sheet with near-phase delay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220810

R150 Certificate of patent or registration of utility model

Ref document number: 7123827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150