JPH11116265A - Opaque quartz glass having transparent part and its production - Google Patents

Opaque quartz glass having transparent part and its production

Info

Publication number
JPH11116265A
JPH11116265A JP28350697A JP28350697A JPH11116265A JP H11116265 A JPH11116265 A JP H11116265A JP 28350697 A JP28350697 A JP 28350697A JP 28350697 A JP28350697 A JP 28350697A JP H11116265 A JPH11116265 A JP H11116265A
Authority
JP
Japan
Prior art keywords
opaque
powder
quartz glass
glass
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28350697A
Other languages
Japanese (ja)
Other versions
JP4191271B2 (en
Inventor
Hironari Osada
裕也 長田
Masayuki Kudo
正行 工藤
Koji Tsukuma
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Tosoh Corp
Original Assignee
Nippon Silica Glass Co Ltd
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Silica Glass Co Ltd, Tosoh Corp filed Critical Nippon Silica Glass Co Ltd
Priority to JP28350697A priority Critical patent/JP4191271B2/en
Priority to EP19980119541 priority patent/EP0909743B2/en
Priority to DE1998603643 priority patent/DE69803643T3/en
Priority to US09/173,685 priority patent/US6312775B1/en
Publication of JPH11116265A publication Critical patent/JPH11116265A/en
Priority to US09/942,779 priority patent/US6405563B1/en
Application granted granted Critical
Publication of JP4191271B2 publication Critical patent/JP4191271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a glass having uniformly dispersed bubbles, excellent in high temp. viscosity and heat insulating property and free from projecting and recessed parts originating from the bubbles on the surface by forming from an opaque part specified in apparent density, average bubble diameter and the quantity of the bubbles and a transparent part specified in apparent density and the quantity of the bubbles having a specific bubble diameter. SOLUTION: The glass is formed from the opaque part having 1.70-2.15 g/cm<3> apparent density, 10-100 μm average bubble diameter and 5×10<4> -5×10<6> /cm<2> quantity of the bubbles and the transparent part having 2.19-2.21 g/cm<3> and <=1×10<3> quantity of the bubbles having >=100 μm diameter. The glass is produced preferably by filling a raw material for the opaque part prepared by mixing and dispersing 100 pts.wt. silica powder having 10-500 μm particle diameter and 0.001-0.05 pts.wt. silicon nitride powder and the raw material for the transparent part consisting of a silica powder having 10-500 μm average particle diameter into a heat resistant mold with correspond to each position of the transparent part and the opaque part in the glass and heating the raw materials under vacuum at equal to above melting temp. to <=1900 deg.C to vitrify.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は不透明石英ガラス及
びその製造方法に関し、さらに詳しくは熱遮断性及び表
面平滑性に優れた透明部と不透明部とを有する不透明石
英ガラス及び出発原料を溶融して任意の形状に成形され
た不透明石英ガラスを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an opaque quartz glass and a method for producing the same, and more particularly, to a method of melting an opaque quartz glass having a transparent portion and an opaque portion having excellent heat insulation and surface smoothness, and a starting material. The present invention relates to a method for producing opaque quartz glass formed into an arbitrary shape.

【0002】[0002]

【従来の技術】従来の不透明石英ガラスの製造方法は、
硅酸質原料粉末を加熱溶融しガラス化する方法であり、
その加熱溶融の方式として、アルゴン−酸素プラズマ
炎、酸水素炎などの火炎中で溶融させるベルヌーイ法、
あるいは容器に充填し真空下で加熱溶融する真空溶融法
などがある。不透明石英ガラスの原料としては、従来よ
り、天然の硅石または低品位の水晶が用いられている。
これらの原料中には多数の微細な気泡が包含されてお
り、原料が溶融されたとき、気泡はそのままガラス中に
残留し、不透明石英ガラスが得られる。
2. Description of the Related Art A conventional method for producing opaque quartz glass is as follows.
It is a method of heating and melting the siliceous raw material powder to vitrify,
As a method of heating and melting, argon-oxygen plasma flame, Bernoulli method of melting in a flame such as oxyhydrogen flame,
Alternatively, there is a vacuum melting method in which a container is filled and heated and melted under vacuum. Conventionally, natural silica or low-grade quartz has been used as a raw material of opaque quartz glass.
Many fine bubbles are contained in these raw materials, and when the raw materials are melted, the bubbles remain in the glass as they are, and opaque quartz glass is obtained.

【0003】近年、半導体分野においてLSIの高集積
化が進むに伴い、使用する原材料に対する高純度化の要
求が厳しくなり、従来は低純度品が使用されていた分野
においても、高純度品が求められ始めた。その代表的な
分野がフランジ材であり、不透明でかつ高純度の石英ガ
ラス、すなわち高純度不透明石英ガラスの供給が望まれ
ていた。しかしながら、従来から用いられている不透明
石英ガラス製造用の天然原料は、微細な気泡と共に多量
の不純物を含有しており、これらの不純物を除去するこ
とは極めて困難であって、精製による高純度化は不可能
であるといわれている。一方、比較的高純度の水晶は、
結晶中に存在する気泡、特に微細気泡の量が少ないため
に溶融しても不透明度が高まらず、得られた石英ガラス
は半透明なものになるに過ぎないという問題点があっ
た。
In recent years, as the degree of integration of LSIs has increased in the field of semiconductors, the demand for higher purity of raw materials to be used has become stricter. In fields where low-purity products have been used conventionally, high-purity products are required. Began to be. A typical field is a flange material, and supply of opaque and high-purity quartz glass, that is, high-purity opaque quartz glass has been desired. However, the natural raw materials used in the production of opaque quartz glass, which are conventionally used, contain a large amount of impurities together with fine bubbles, and it is extremely difficult to remove these impurities. Is said to be impossible. On the other hand, relatively high purity crystal
Because of the small amount of bubbles, particularly fine bubbles, existing in the crystal, the opacity does not increase even when the glass is melted, and the resulting quartz glass is only translucent.

【0004】その改良方法として、アルカリ金属、アル
カリ土類金属、Fe、Alの各元素の含有量が低く、多
数の微細気泡を包含し、気化性成分としてシラノール基
を特定の範囲の濃度で均一に含有した高純度の非晶質シ
リカを火炎溶融することによる方法が提案されている
(特開平6−24771)。しかしながら、この方法に
よれば、IC封止材用シリカフィラーやシリカガラス粉
製造用の母材インゴットのような簡単な形状の石英ガラ
ス製品しか直接製造できず、フランジ状、円柱状、中空
円柱状、角柱状、中空角柱状のような複雑な形状を有す
る石英ガラス製品を製造するには、多大な削り出し等の
後加工が必要となり、石英ガラスの利用率が低くなり、
結果として製造コストの上昇を招くという問題点があっ
た。
As an improvement method, the content of each element of alkali metals, alkaline earth metals, Fe and Al is low, a large number of fine bubbles are contained, and silanol groups as vaporizable components are uniformly dispersed in a specific range of concentration. (Japanese Patent Laid-Open No. 6-24771) has been proposed. However, according to this method, only a silica glass product having a simple shape such as a silica filler for an IC encapsulant or a base material ingot for producing a silica glass powder can be directly manufactured, and a flange shape, a cylindrical shape, and a hollow cylindrical shape can be obtained. In order to manufacture a quartz glass product having a complicated shape such as a prismatic shape, a hollow prismatic shape, a large amount of post-processing such as shaving is required, and the utilization rate of the quartz glass decreases,
As a result, there has been a problem that the manufacturing cost is increased.

【0005】また、別の新しい不透明石英ガラスの製造
法として、高純度に精製された結晶質石英粉末をアンモ
ニア雰囲気中で加熱してアンモニア化し、不活性ガス雰
囲気下で加熱溶融する製造法により、気泡の径を小さく
するが、気泡の数量を多くし、不透明石英ガラスの単位
体積あたりの総気泡断面積を大きくして、断熱性が向上
した不透明石英ガラスの製造法が提案されている(特開
平7−61827及び特開平7−300341)。しか
しながら、この方法では、不透明石英ガラスの密度、気
泡径、気泡量は原料粉末の粒子径、粒子径分布、溶融容
器に充填した時の充填状態に非常に敏感に反応するため
に再現性良く気泡制御することが容易ではなく、表面と
内部で気泡径や気泡量が大きく異なるなどの問題があっ
た。
[0005] Further, as another new method for producing opaque quartz glass, a highly purified crystalline quartz powder is heated in an ammonia atmosphere to be ammoniated, and then heated and melted in an inert gas atmosphere. A method for producing opaque quartz glass with improved heat insulating properties by reducing the diameter of bubbles but increasing the number of bubbles and increasing the total bubble cross-sectional area per unit volume of opaque quartz glass has been proposed. Kaihei 7-61827 and JP-A-7-300341). However, in this method, the density, bubble diameter, and bubble amount of the opaque quartz glass are very sensitive to the particle size, particle size distribution of the raw material powder, and the state of filling when filled in the melting vessel, so that the bubbles with good reproducibility It is not easy to control, and there are problems such as a large difference in the bubble diameter and bubble amount between the surface and the inside.

【0006】他の不透明石英ガラスの製造法としては、
硅石、硅砂、α−クォ−ツ、クリストバライトなどの硅
酸質原料粉末に、発泡剤として炭素、窒化ケイ素などの
微粉末を添加して加熱溶融する方法が提案されている
(例えば、特開平4−65328)。しかしながら、こ
の方法では前記手法のような問題は回避し得るが、酸水
素炎で溶融するために、得られるガラスにOH基が取り
込まれやすくなって高温での粘性が低下し、高温で長時
間使用する半導体製造用治具などの用途には不利とな
り、また、固体粒子の混合や固相反応・分解反応などが
関与し、溶融体中に微細気泡を均一に分散させるように
制御することが困難であるという問題があった。さらに
この火炎溶融法では、火炎中での微粒子の滞留時間が極
めて短いため反応を完結することが困難であり、添加さ
れた発泡剤が溶融体中に異物として残留することがあ
り、また、硅酸質原料と発泡剤とが反応して溶融体が着
色する現象が起こるという問題点があった。
[0006] Other methods for producing opaque quartz glass include:
A method has been proposed in which fine powders such as carbon and silicon nitride are added to a siliceous raw material powder such as silica stone, silica sand, α-quartz and cristobalite as a foaming agent and heated and melted (see, for example, Japanese Patent Application Laid-Open No. Hei 4 (1994)). -65328). However, this method can avoid the problems as described above, but because it is melted by an oxyhydrogen flame, OH groups are easily taken into the obtained glass, and the viscosity at high temperatures decreases. It is disadvantageous for applications such as jigs for semiconductor manufacturing, and it involves mixing of solid particles, solid-phase reaction and decomposition reaction, etc., and it is necessary to control so that fine bubbles are uniformly dispersed in the melt. There was a problem that it was difficult. Furthermore, in this flame melting method, it is difficult to complete the reaction because the residence time of the fine particles in the flame is extremely short, and the added blowing agent may remain as a foreign substance in the molten material. There has been a problem that the acid material and the foaming agent react with each other to cause coloring of the melt.

【0007】さらに、石英ガラス製の半導体製造用治具
は使用後に洗浄処理が施されるが、従来の不透明石英ガ
ラスでは、その際表面に露出している気泡が削られ、不
透明石英ガラスの表面の一部が脱落する問題が指摘され
ていた。この問題を解決するために不透明石英ガラスの
表面に、予め所定の形状に加工した透明石英ガラスを酸
水素炎や電気炉で加熱して貼り合わせる手法が用いられ
ている。しかしながら、このような手法においては、不
透明部と透明部の接合が十分なものではなく経時的に剥
離していく問題があり、さらに不透明石英ガラスの形状
が複雑になってくると透明石英ガラスの加工が非常に繁
雑なものとなり、それに伴って一層接合が困難となって
しまうが、現状ではこれを改善する有効な手段は見出だ
されていない。
Further, the jig for manufacturing a semiconductor made of quartz glass is subjected to a cleaning treatment after use. In the case of the conventional opaque quartz glass, bubbles exposed on the surface are shaved, and the surface of the opaque quartz glass is cut off. It was pointed out that some of them were missing. In order to solve this problem, a method has been used in which transparent quartz glass previously processed into a predetermined shape is bonded to the surface of opaque quartz glass by heating in an oxyhydrogen flame or an electric furnace. However, in such a method, there is a problem that the bonding between the opaque portion and the transparent portion is not sufficient, and the opaque portion and the transparent portion are peeled off with time. Processing becomes very complicated, and with this, joining becomes more difficult. At present, however, no effective means for improving this has been found.

【0008】このように、上記記載のいずれの先行技術
においても、各々未だに解決されない課題を有してい
る。
[0008] As described above, any of the above-mentioned prior arts has a problem which has not been solved yet.

【0009】[0009]

【発明が解決しようとする課題】本願発明はこれらの課
題を解決することを目的としてなされたものであり、気
泡が均一に分散され、高温粘性及び熱遮断性に優れ、か
つ表面もしくは表面の一部に気泡由来の凹凸がない不透
明石英ガラスを容易に製造する方法を提供することにあ
る。また、フランジ状をはじめ、円柱状、中空円柱状、
角柱状又は中空角柱状のような複雑な形状に直接製造す
ることが可能である新規の不透明石英ガラスを提供する
ことも本願の目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve these problems, and has a structure in which bubbles are uniformly dispersed, excellent in high-temperature viscosity and heat-blocking properties, and has a surface or a surface. An object of the present invention is to provide a method for easily producing opaque quartz glass having no irregularities derived from bubbles in a portion. In addition to the flange shape, cylindrical, hollow cylindrical,
It is also an object of the present invention to provide a novel opaque quartz glass which can be directly manufactured in complex shapes such as prismatic or hollow prismatic.

【0010】[0010]

【課題を解決するための手段】本発明者等は上記の課題
を解決すべく鋭意検討を重ねた結果、上記の硅石、硅
砂、α−クォーツ、クリストバライトなどの硅酸質原料
粉末に、発泡剤として炭素、窒化ケイ素などの微粉末を
添加して加熱溶融する方法(特開平4−65328)と
類似の方法を採用し、不透明石英ガラスの主要部(以下
「不透明部」という)の原料として平均粒子径が10〜
500μmの比較的安価な粗いシリカ粉末に窒化ケイ素
粉末を、シリカ粉末100重量部に対して窒化ケイ素粉
末0.001〜0.05重量部を混合させたものを用
い、不透明石英ガラスの表面もしくは表面の一部を覆う
透明石英ガラス(以下「透明部」という)の原料として
平均粒子径が10〜500μmのシリカ粉末を用い、こ
れらを耐熱性の型に所望のガラスにおける不透明部及び
透明部の位置に対応させて各々の原料粉末を充填し、次
いでこれを真空雰囲気下で前記した出発原料が溶融する
温度以上1900℃以下の温度にて加熱してガラス化す
る製造方法を採用することにより、以下の知見を見出し
本発明を完成するに至った。
The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a blowing agent has been added to the siliceous raw material powder such as silica stone, silica sand, α-quartz, cristobalite and the like. A method similar to the method of adding a fine powder such as carbon or silicon nitride and melting by heating (Japanese Unexamined Patent Publication No. 4-65328) is adopted, and as a raw material of the main part of opaque quartz glass (hereinafter referred to as "opaque part"), Particle size is 10
A surface or surface of opaque quartz glass using a mixture of relatively inexpensive coarse silica powder of 500 μm, silicon nitride powder, and 0.001 to 0.05 parts by weight of silicon nitride powder per 100 parts by weight of silica powder. As a raw material of a transparent quartz glass (hereinafter, referred to as a “transparent part”) covering a part of the glass, silica powder having an average particle diameter of 10 to 500 μm is used, and these are placed in a heat-resistant mold. By filling each raw material powder in correspondence with the above, and then heating it at a temperature of not less than the temperature at which the starting material is melted to 1900 ° C. or less in a vacuum atmosphere to vitrify, Were found, and the present invention was completed.

【0011】1)不透明部においては気泡が均一に分散
され、高温粘性、熱遮断性に優れている。
1) Bubbles are uniformly dispersed in the opaque portion, and are excellent in high-temperature viscosity and heat insulation.

【0012】2)不透明石英ガラスの表面もしくは表面
の一部に保護層として強固な接合で透明部を形成でき、
得られるガラスにつき欠けなどの破損が生じにくくな
り、また表面が平滑となってその使用面において優れた
ものとなる。
2) A transparent portion can be formed as a protective layer on the surface or a part of the surface of the opaque quartz glass by strong bonding.
The resulting glass is less likely to break, such as chipping, and has a smooth surface, which is excellent in use.

【0013】3)任意の形状の耐熱性の型を用いて成形
できるため、鋳込み成形等の繁雑な粉末成形を行わず
に、フランジ状をはじめ、円柱状、中空円柱状、角柱状
又は中空角柱状のような複雑な形状を適宜選択して成形
することができ、成形されたガラスの製造が容易とな
る。
3) Since molding can be performed by using a heat-resistant mold having an arbitrary shape, complicated powder molding such as casting is not performed, and a cylindrical shape, a hollow cylindrical shape, a prismatic shape, or a hollow angle shape including a flange shape is performed. A complicated shape such as a column shape can be appropriately selected and molded, and the production of the molded glass becomes easy.

【0014】4)任意の形状の耐熱性の型を用い透明部
と不透明部を一体化して製造できるため、最終製品に近
いガラス体を直接製造することが可能であり、後加工が
必要であっても簡単で済む。
4) Since the transparent portion and the opaque portion can be integrally manufactured using a heat-resistant mold having an arbitrary shape, a glass body close to the final product can be directly manufactured, and post-processing is required. Even simpler.

【0015】なお、本発明でいう「熱遮断性」とは、本
発明の不透明石英ガラスは、主に、半導体製造における
シリコンウエハー熱処理工程に用いられる熱処理炉の断
熱部材のように高温で使用される場合に適したものであ
り、このような場合においては熱は主に熱線による輻射
熱として伝わるため不透明ガラスにより熱線の遮断が可
能となり熱の伝播による障害が減ぜられることを主に意
味している。
In the present invention, the term "heat-blocking property" means that the opaque quartz glass of the present invention is used at a high temperature mainly as a heat insulating member of a heat treatment furnace used in a silicon wafer heat treatment step in semiconductor production. In such a case, the heat is mainly transmitted as radiant heat due to the heat rays, which means that the opaque glass can cut off the heat rays and reduce the disturbance due to the heat propagation. I have.

【0016】以下、本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0017】[1]出発原料 出発原料としては、透明部用としてはシリカ粉末単独
で、不透明部用としてはシリカ粉末と窒化ケイ素粉末と
により得られる混合粉末が用いられる。
[1] Starting Material As the starting material, silica powder alone is used for the transparent portion, and a mixed powder obtained from silica powder and silicon nitride powder is used for the opaque portion.

【0018】(a)シリカ粉末 本発明で使用されるシリカ粉末としては、含有金属不純
物としてNa、K、Mg、Ca、Feが各々独立して1
ppm以下とした高純度な結晶質又は非晶質シリカ粉末
を用いることが好ましい。この理由としては、本発明の
方法により得られる不透明石英ガラスを加熱した時、蒸
気圧の高い不純物が飛散して汚染物の発生源となった
り、不透明石英ガラス自体が一部結晶化して破損しやす
くなったり、着色してしまったりするのを避けるためで
ある。このような高純度なシリカ粉末は、合成法によっ
たり、天然原料を精製したりすることにより得られる。
例えば、非晶質シリカ粉末を合成法により得るには、ア
ルカリ金属ケイ酸塩水溶液(水ガラス)を酸と反応させ
ることによりアルカリ金属を除去してシリカを得る方
法、SiCl4を加水分解してシリカとする方法、シリ
コンアルコキシドを加水分解してシリカとする方法など
が挙げられるが、工業的規模の生産には、Na、K、L
i等のアルカリ金属と二酸化ケイ素とからなるアルカリ
金属ケイ酸塩水溶液(水ガラス)を硫酸、硝酸、塩酸等
の無機酸と反応させる方法で得られるものが好適であ
る。また、結晶質シリカ粉末を天然原料より得るには、
天然水晶をフッ酸処理する方法などにより得ることがで
きる。
(A) Silica Powder As the silica powder used in the present invention, Na, K, Mg, Ca, and Fe are each independently contained as metal impurities.
It is preferable to use a high-purity crystalline or amorphous silica powder of not more than ppm. The reason is that when the opaque quartz glass obtained by the method of the present invention is heated, impurities having a high vapor pressure are scattered and become a source of contaminants, or the opaque quartz glass itself partially crystallizes and breaks. This is for avoiding easy coloring or coloring. Such high-purity silica powder can be obtained by a synthesis method or by purifying natural raw materials.
For example, in order to obtain amorphous silica powder by a synthesis method, a method in which an alkali metal silicate aqueous solution (water glass) is reacted with an acid to remove an alkali metal to obtain silica, and a method in which SiCl 4 is hydrolyzed. Examples include a method of converting silica, a method of hydrolyzing silicon alkoxide to form silica, and the like. Na, K, L
Those obtained by a method of reacting an aqueous solution of an alkali metal silicate (water glass) composed of an alkali metal such as i and silicon dioxide with an inorganic acid such as sulfuric acid, nitric acid, and hydrochloric acid are preferable. Also, to obtain crystalline silica powder from natural raw materials,
It can be obtained by a method of treating natural quartz with hydrofluoric acid.

【0019】シリカ粉末の平均粒子径としては、耐熱性
の型に充填しやすいように流動性を付与することが必要
であり、そのために10〜500μmの範囲が好まし
い。平均粒子径が10μm未満の場合では粉末の流動性
が低下し均一に粉末を充填することが困難となり、50
0μmを越える場合では粒子間の空隙が大きくなり不透
明部に300μm以上の巨大な気泡が発生する原因とな
り、不透明部、透明部共好ましくなく、特にシリカ粉末
のみを用いて得る透明部においては、500μm以上の
巨大な気泡が多量に発生することがあり好ましくない。
The average particle size of the silica powder needs to be imparted with fluidity so that it can be easily filled in a heat-resistant mold. For this reason, the average particle size is preferably in the range of 10 to 500 μm. When the average particle size is less than 10 μm, the fluidity of the powder decreases, making it difficult to uniformly fill the powder.
If it exceeds 0 μm, the voids between the particles become large and large bubbles of 300 μm or more are generated in the opaque portion. Both the opaque portion and the transparent portion are not preferable. Particularly, in the transparent portion obtained by using only silica powder, 500 μm The above huge bubbles are generated in large quantities, which is not preferable.

【0020】本発明の方法により得られる不透明石英ガ
ラス中の気泡径はシリカ粉末の平均粒子径に依存するた
め、平均粒子径を調整することで気泡径を制御すること
ができる。すなわち、より微細な気泡を得ようとする場
合には微粒子からなる粉末を、粗い気泡を得ようとする
場合には粗粒子からなる粉末を用いると良い。
Since the cell diameter in the opaque quartz glass obtained by the method of the present invention depends on the average particle diameter of the silica powder, the cell diameter can be controlled by adjusting the average particle diameter. That is, a powder composed of fine particles is used to obtain finer bubbles, and a powder composed of coarse particles is used to obtain coarse bubbles.

【0021】(b)窒化ケイ素粉末 窒化ケイ素粉末としては、四塩化ケイ素、シリコン、シ
リカ等を原料とし、それらを窒化することにより得られ
る高純度のものを使用することが好ましい。この理由と
しては、本発明の方法により得られる不透明石英ガラス
より不純物が飛散してしまったり、不透明石英ガラス自
体が一部結晶化して破損しやすくなったり、着色してし
まったりするのを避けるためである。
(B) Silicon Nitride Powder As silicon nitride powder, it is preferable to use silicon tetrachloride, silicon, silica, or the like as a raw material, and use a high-purity powder obtained by nitriding them. The reason is that impurities are scattered from the opaque quartz glass obtained by the method of the present invention, or the opaque quartz glass itself is partially crystallized to be easily damaged or to avoid being colored. It is.

【0022】また、窒化ケイ素粉末の量としては、シリ
カ粉末100重量部に対して窒化ケイ素粉末0.001
〜0.05重量部である。0.001重量部未満の場合
には発泡による気泡の生成量が少なくなり充分な熱遮断
性が得られず好ましくなく、0.05重量部を越える場
合には発泡による気泡が粗大化して得られる不透明石英
ガラスの機械強度が低下するため好ましくない。
The amount of the silicon nitride powder is 0.001 part by weight of the silica powder and 0.001 part by weight of the silicon nitride powder.
0.050.05 parts by weight. If the amount is less than 0.001 part by weight, the amount of bubbles generated by foaming becomes small, and sufficient heat barrier properties cannot be obtained, which is not preferable. If the amount exceeds 0.05 part by weight, bubbles due to foaming become coarse. This is not preferable because the mechanical strength of the opaque quartz glass decreases.

【0023】窒化ケイ素粉末の平均粒子径としては、
0.1〜1μmであることが好ましく、0.1〜0.5
μmであることがさらに好ましい。この理由は、平均粒
子径がこの範囲にあれば、気泡が粗大化したり、気泡量
が激減してしまうこともなく、さらに、粉末が凝集して
シリカ粉末との混合において均一に混合できなくなるの
を避けるためである。
The average particle diameter of the silicon nitride powder is as follows:
0.1 to 1 μm, preferably 0.1 to 0.5
More preferably, it is μm. The reason is that if the average particle diameter is in this range, the bubbles do not become coarse or the amount of the bubbles does not drastically decrease, and further, the powder is agglomerated and cannot be uniformly mixed with the silica powder. To avoid.

【0024】[2]混合分散 不透明部の原料を調製するためにシリカ粉末と窒化ケイ
素粉末を混合する。シリカ粉末と窒化ケイ素粉末とから
なる原料粉末中の窒化ケイ素粉末の分散の度合いは発泡
時の気泡径やその分布に影響を及ぼすため、窒化ケイ素
粉末が分散できるものであれば特に限定されない。例え
ば、乳鉢、ボ−ルミル等を用いて混合すればよい。さら
に、窒化ケイ素粉末のシリカ粉末中における分散性を良
好にするために分散媒を用いる湿式法が好ましく用いら
れる。分散媒としては、例えば、水や、エタノール、メ
タノールなどのアルコール等が例示できる。また、窒化
ケイ素粉末のシリカ粉末中における分散性をさらに良好
にするために、必要に応じて超音波発生器などにより振
動を与えつつ分散させてもよい。
[2] Mixing and Dispersing To prepare a raw material for the opaque portion, a silica powder and a silicon nitride powder are mixed. The degree of dispersion of the silicon nitride powder in the raw material powder composed of the silica powder and the silicon nitride powder affects the bubble diameter during foaming and its distribution, and is not particularly limited as long as the silicon nitride powder can be dispersed. For example, mixing may be performed using a mortar, a ball mill, or the like. Furthermore, in order to improve the dispersibility of the silicon nitride powder in the silica powder, a wet method using a dispersion medium is preferably used. Examples of the dispersion medium include water and alcohols such as ethanol and methanol. Further, in order to further improve the dispersibility of the silicon nitride powder in the silica powder, the silicon nitride powder may be dispersed while giving vibration by an ultrasonic generator or the like, if necessary.

【0025】[3]容器への充填 次に、得られた混合粉末及びシリカ粉末を耐熱性の型に
充填する。ここで、使用する耐熱性の型としては、本発
明の方法において実施される加熱温度において耐熱性を
有し、加熱工程中に材料を変質させないようなものであ
ればその材質、形状等は特に限定されるものではなく、
所望するガラスの形状によっては2個以上の耐熱性の型
を用いることもできる。例えば、その材質としては、シ
リカと反応しにくい性質を有するカーボン、窒化ホウ
素、炭化ケイ素等が好ましく用いられる。さらに耐熱性
の型の内面と原料粉末との滑りを良好にするためにカー
ボンフェルトやカーボンペーパー等を用いて、充填及び
加熱を実施することが好ましい。また、各々の原料粉末
の充填の方法としては、最終的に得る所望のガラスの形
状において、その不透明部及び透明部の位置に対応させ
て各々の原料粉末を充填する、すなわち不透明石英ガラ
ス中の不透明部に対してはシリカ粉末と窒化ケイ素粉末
の混合粉末を、透明部に対してはシリカ粉末を充填す
る。
[3] Filling into Container Next, the obtained mixed powder and silica powder are filled into a heat-resistant mold. Here, the heat-resistant mold used has heat resistance at the heating temperature performed in the method of the present invention, and its material, shape, etc. are particularly so long as the material does not deteriorate during the heating step. Not limited
Depending on the desired glass shape, two or more heat-resistant molds can be used. For example, as the material thereof, carbon, boron nitride, silicon carbide, or the like having a property of hardly reacting with silica is preferably used. Further, it is preferable to perform filling and heating using carbon felt, carbon paper, or the like in order to improve the slip between the inner surface of the heat resistant mold and the raw material powder. In addition, as a method of filling each raw material powder, in the desired glass shape to be finally obtained, each raw material powder is filled in correspondence with the position of the opaque part and the transparent part, that is, in the opaque quartz glass. The opaque portion is filled with a mixed powder of silica powder and silicon nitride powder, and the transparent portion is filled with silica powder.

【0026】これらの耐熱性の型の形状としては、ガラ
ス化、気泡生成後のガラスの形状が耐熱性の型の形状と
実質的に同じとなるため、所望の形状の不透明石英ガラ
スを得るように任意に選ぶことができる。例えば、得ら
れる不透明石英ガラスの形状がフランジ状の場合には、
図1のような形状の耐熱性の型を用いることで図2のよ
うな形状のガラスを得ることができる。同様に、円柱状
の場合には図3のような形状の耐熱性の型を用いること
で図4のような形状のガラスを、中空円柱状の場合には
図5のような形状の耐熱性の型を用いることで図6のよ
うな形状のガラスを、角柱状の場合には図7のような形
状の耐熱性の型を用いることで図8のような形状のガラ
スを、中空角柱状の場合には図9のような形状の耐熱性
の型を用いることで図10のような形状のガラスを、そ
れぞれ得ることができる。また、中空円柱状や中空角柱
状の場合には、一方を閉じた形状のガラスを得ることも
できる。さらに2個以上の型を用いる場合にはその組み
合わせを適宜選択すればよい。尚、これらの形状につい
ては図に示されたものだけでなく、その寸法を変えた
り、これら以外の形状を選ぶこともできる。
As the shape of these heat-resistant molds, the glass shape after vitrification and bubble formation is substantially the same as the heat-resistant mold shape, so that an opaque quartz glass having a desired shape is obtained. Can be arbitrarily selected. For example, when the obtained opaque quartz glass has a flange shape,
By using a heat-resistant mold having a shape as shown in FIG. 1, a glass having a shape as shown in FIG. 2 can be obtained. Similarly, in the case of a cylindrical shape, a heat-resistant mold having a shape as shown in FIG. 3 is used to obtain a glass having a shape as shown in FIG. The glass having the shape as shown in FIG. 6 can be obtained by using the mold shown in FIG. 6, and the glass having the shape as shown in FIG. 8 can be obtained by using the heat-resistant mold having the shape as shown in FIG. In the case of (1), a glass having a shape as shown in FIG. 10 can be obtained by using a heat-resistant mold having a shape as shown in FIG. Further, in the case of a hollow columnar shape or a hollow prismatic shape, it is possible to obtain a glass having one closed shape. When two or more molds are used, the combination may be appropriately selected. It should be noted that these shapes are not limited to those shown in the drawings, but their dimensions can be changed, and other shapes can be selected.

【0027】さらに、具体的な充填方法についていえ
ば、例えば、両底面の表面に透明部を有する円柱状の不
透明石英ガラスを得るには、空間形状が円柱の耐熱性の
型を用い、まず型の底面にシリカ粉末を敷き、次いでそ
の上に混合粉末を充填し、さらにその上にシリカ粉末を
敷いて処理すればよい。また、不透明部の全表面に透明
部を有する円柱状の不透明石英ガラスを得るには、空間
形状が円柱の耐熱性の型を用い、まず型の底面にシリカ
粉末を敷き、次いで用いた型の内径よりも若干小さい円
筒状の補助枠をシリカ粉末の上に乗せ、さらにこの補助
枠の外側にシリカ粉末を、内側に混合粉末を充填する。
その後補助枠を静かに抜き去り、充填されている粉末の
上に充填されている粉末の状態が乱れないように静かに
シリカ粉末を敷いて処理することでよい。
Further, regarding a specific filling method, for example, in order to obtain a cylindrical opaque quartz glass having transparent portions on both bottom surfaces, a heat-resistant mold having a cylindrical space is used. , A silica powder is spread on the bottom surface, and then the mixed powder is filled thereon, and then the silica powder is spread thereon. In addition, to obtain a cylindrical opaque quartz glass having a transparent portion on the entire surface of the opaque portion, use a heat-resistant mold having a space-shaped cylindrical shape, first lay silica powder on the bottom of the mold, and then use the mold of the used mold. A cylindrical auxiliary frame slightly smaller than the inner diameter is placed on the silica powder, and the outside of the auxiliary frame is filled with silica powder and the inside is filled with the mixed powder.
Thereafter, the auxiliary frame may be gently removed, and the silica powder may be gently spread over the charged powder so as not to disturb the state of the charged powder.

【0028】原料粉末の充填密度としては、耐熱性の型
に均一に充填するために0.7〜1.8g/cm3が好
ましく、また不透明部を均一に発泡させるために少なく
とも不透明部においてその充填密度が均一になるように
充填することが好ましい。
The packing density of the raw material powder is preferably from 0.7 to 1.8 g / cm 3 in order to uniformly fill the heat-resistant mold, and at least in the opaque part to uniformly foam the opaque part. It is preferable to perform filling so that the filling density becomes uniform.

【0029】このようにして、所望の形状の不透明石英
ガラスを充填することができる。
Thus, the opaque quartz glass having a desired shape can be filled.

【0030】[4]ガラス化及び気泡生成 混合粉末を窒化ケイ素を完全に分解、発泡させ不透明石
英ガラスとし、かつシリカ粉末を透明石英ガラスとする
ために、耐熱性の型に充填した原料粉末を加熱する。こ
の加熱処理において用いられる加熱装置としては、原料
粉末をガラス状態とするに要する加熱能力を有するもの
であれば特に限定されるものではなく、電気炉等が例示
できる。原料粉末は加熱装置内において原料が溶融しう
る温度以上1900℃以下の温度にて加熱される。原料
が溶融しうる温度とは、原料に非晶質シリカ粉末を使用
する場合は、クリストバライトを経由するので、常圧で
1713℃となるが、原料にクリストバライト以外の結
晶質シリカ粉末を使用すると、クリストバライトを経由
しにくいため、溶融温度はこの温度より低くなる。この
原料を溶融しうる温度未満の温度で加熱した場合、原料
が溶融せず、また、非晶質シリカ粉末を原料とした場合
には、加熱中、原料の一部もしくは全部が非晶質シリカ
から結晶質であるクリストバライトに転移していると、
クリストバライトが溶融しきれずに残り、ガラスが割れ
やすくなるため好ましくない。また、1900℃を越え
る温度で加熱すると、不透明部において、気泡が粗大化
するために得られるガラスの密度は低下し、所定の形
状、寸法に機械加工を施すのに必要な機械的強度が得ら
れないため好ましくない。また、加熱処理の時間として
は原料が全量溶融しガラス化できる時間であれば特に制
限はないが、加熱温度に左右され一定しないが、通常1
時間程度で十分である。
[4] Vitrification and Bubble Formation In order to completely decompose and foam silicon nitride to form an opaque quartz glass from the mixed powder and to make the silica powder into a transparent quartz glass, a raw material powder filled in a heat-resistant mold is used. Heat. The heating device used in this heat treatment is not particularly limited as long as it has a heating ability required to bring the raw material powder into a glassy state, and an electric furnace or the like can be exemplified. The raw material powder is heated in the heating device at a temperature of 1900 ° C. or higher at which the raw material can be melted. The temperature at which the raw material can be melted is, when using amorphous silica powder as the raw material, it passes through cristobalite, so it is 1713 ° C. at normal pressure, but when using crystalline silica powder other than cristobalite as the raw material, Since it does not easily pass through cristobalite, the melting temperature is lower than this temperature. When the raw material is heated at a temperature lower than a temperature at which the raw material can be melted, the raw material does not melt. From cristobalite, which is crystalline,
Cristobalite is not preferable because it remains without being completely melted and the glass is easily broken. Further, when heating is performed at a temperature exceeding 1900 ° C., the density of the glass obtained in the opaque part is reduced due to the coarsening of the bubbles, and the mechanical strength required for machining into a predetermined shape and size is obtained. It is not preferable because it cannot be performed. The time of the heat treatment is not particularly limited as long as the whole amount of the raw material can be melted and vitrified.
About an hour is enough.

【0031】加熱昇温過程においては、粉末充填体が開
気孔状態から閉気孔状態に転じるまで真空雰囲気とする
ことが好ましく、その真空度は10mmHg以下である
ことが好ましい。この理由として、不透明部において
は、原料粉末中の窒化ケイ素成分とシリカ成分との反応
により生成する固溶窒素の脱離ガス及び分解ガスのみを
独立気泡中に存在させることにより気泡をガラス中に均
一に分布させることができるからであり、一方、透明部
においては、ガラス中の残留気泡を取り除くことができ
るからである。
In the heating and heating process, a vacuum atmosphere is preferably used until the powder filler changes from an open pore state to a closed pore state, and the degree of vacuum is preferably 10 mmHg or less. The reason for this is that in the opaque part, only the desorption gas and decomposition gas of the dissolved nitrogen generated by the reaction between the silicon nitride component and the silica component in the raw material powder are present in the closed cells, so that the bubbles are introduced into the glass. This is because they can be uniformly distributed, while, on the other hand, in the transparent portion, residual bubbles in the glass can be removed.

【0032】真空雰囲気は加熱保持温度でガラスへの変
態が終了した時点で解除され、不活性ガスが導入され
る。不活性ガスとしては、本発明の方法において使用さ
れる容器、原料、生成物とは実質的に反応性を有しない
ものであれば特に制限なく用いることができ、例えば、
窒素、アルゴン、ヘリウム等が使用できる。特に、経済
性、気密性を考慮して窒素、アルゴンが好ましく用いら
れる。導入する不活性ガスの圧力としては、得られたガ
ラスを火炎加工など再加熱するにあたり、ガラス中の気
泡の膨脹、収縮など不安定な挙動を防ぐために通常常圧
が用いられるが、やや加圧された状態でもさしつかえな
い。所望によりやや減圧された状態にすることもでき
る。
The vacuum atmosphere is released when the transformation into glass at the heating holding temperature is completed, and an inert gas is introduced. As the inert gas, the container used in the method of the present invention, the raw materials, the product can be used without any particular limitation as long as it has substantially no reactivity, for example,
Nitrogen, argon, helium and the like can be used. Particularly, nitrogen and argon are preferably used in consideration of economy and airtightness. As the pressure of the inert gas to be introduced, normal pressure is usually used to prevent unstable behavior such as expansion and contraction of bubbles in the glass when the obtained glass is reheated by flame processing, etc. It can be done even if it is done. If desired, the pressure may be slightly reduced.

【0033】また、加熱処理が終了した後冷却される
が、冷却の条件としては上記記載の加熱処理時の温度よ
り1000℃程度まで加熱を停止して放冷したり、冷却
装置により冷却すればよく、通常1000℃/時間程度
の速度で冷却される。その後、室温まで冷却する。ここ
で注意する点としては、溶融処理終了後冷却する際に、
特に高温において冷却中に結晶が析出することであり、
これを回避するために高温においては比較的はやく冷却
する必要がある。低温においてはこのような問題は生じ
にくく、通常放冷により冷却される。さらに冷却時にお
いて、冷却速度をはやくするために溶融時において用い
た不活性ガスなどを導入してもよい。
Cooling is performed after the completion of the heat treatment. The cooling conditions are as follows: heating is stopped to about 1000 ° C. from the temperature at the time of the heat treatment described above, and cooling is performed. It is usually cooled at a rate of about 1000 ° C./hour. Then, it cools to room temperature. The point to note here is that when cooling after the end of the melting process,
The precipitation of crystals during cooling, especially at high temperatures,
In order to avoid this, it is necessary to cool relatively quickly at high temperatures. At low temperatures, such a problem hardly occurs, and cooling is usually performed by standing to cool. Further, at the time of cooling, an inert gas or the like used at the time of melting may be introduced to increase the cooling rate.

【0034】[5]不透明石英ガラス 上記工程で得られる不透明石英ガラスの特性としては、
機械的強度を高め加工性に優れるようにするには、不透
明部において、見掛密度としては1.70〜2.15g
/cm3、好ましくは1.80〜2.12g/cm3の範
囲であり、かつ平均気泡径としては10〜100μmの
範囲であることが好ましい。
[5] Opaque Quartz Glass The properties of the opaque quartz glass obtained in the above process include:
In order to increase the mechanical strength and improve the workability, the apparent density in the opaque portion is 1.70 to 2.15 g.
/ Cm 3 , preferably in the range of 1.80 to 2.12 g / cm 3 , and the average bubble diameter is preferably in the range of 10 to 100 μm.

【0035】本発明の不透明石英ガラスの製造方法にお
いて、不透明部中に含まれる独立気泡の径及び量を制御
する因子としては、窒化ケイ素粉末添加量、シリカ粉末
の粒子径及びその分布、溶融温度、導入ガス圧力が挙げ
られる。例えば、見掛密度1.95〜2.05g/cm
3、平均気泡径50〜70μm、気泡量7〜8×105
/cm3を有する熱遮断性に優れた不透明部を得るに
は、窒化ケイ素粉末添加量0.01〜0.02重量部
(シリカ粉末100重量部に対して)、シリカ粉末の平
均粒子径100〜200μm(粒子径分布:10〜60
0μm)、溶融温度1800〜1850℃、導入ガス圧
力1.0〜2.0kgf/cm2の範囲を選ぶと良い。
さらに、高い断熱性が得られる見掛密度2.05〜2.
12g/cm3、平均気泡径30〜50μm、気泡量1
〜2×106個/cm3を有する不透明石英ガラスを得る
には、窒化ケイ素粉末添加量0.005〜0.02重量
部(シリカ粉末100重量部に対して)、シリカ粉末の
平均粒子径50〜100μm(粒子径分布:10〜20
0μm)、溶融温度1750〜1850℃、導入ガス圧
力1.0〜2.0kgf/cm2の範囲を選ぶと良い。
気泡量を支配する最も大きい因子はシリカ粉末の粒子径
であり、より微細な粒度のシリカ粉末を用いることによ
り、気泡径が小さくかつ気泡量が多い熱遮断性に優れた
不透明石英ガラスとすることができる。
In the method for producing opaque quartz glass of the present invention, factors controlling the diameter and amount of the closed cells contained in the opaque part include the addition amount of silicon nitride powder, the particle diameter and distribution of silica powder, and the melting temperature. And the pressure of the introduced gas. For example, apparent density 1.95 to 2.05 g / cm
3. In order to obtain an opaque part having an average bubble diameter of 50 to 70 μm and a bubble amount of 7 to 8 × 10 5 cells / cm 3 and having excellent heat barrier properties, the addition amount of silicon nitride powder is 0.01 to 0.02 parts by weight. (Based on 100 parts by weight of silica powder), average particle size of silica powder 100 to 200 μm (particle size distribution: 10 to 60)
0 μm), a melting temperature of 1800 to 1850 ° C., and an introduced gas pressure of 1.0 to 2.0 kgf / cm 2 .
Furthermore, an apparent density of 2.05 to 2.
12 g / cm 3 , average bubble diameter 30-50 μm, bubble amount 1
In order to obtain an opaque quartz glass having an average particle size of 0.005 to 0.02 parts by weight (based on 100 parts by weight of silica powder), an opaque quartz glass having a particle size of 2 to 10 6 particles / cm 3 is obtained. 50 to 100 μm (particle size distribution: 10 to 20)
0 μm), a melting temperature of 1750 to 1850 ° C., and an introduced gas pressure of 1.0 to 2.0 kgf / cm 2 .
The largest factor that governs the amount of bubbles is the particle size of the silica powder, and by using silica powder with a finer particle size, the opaque quartz glass with a small bubble size and a large amount of bubbles is excellent in heat insulation. Can be.

【0036】このようにして得られた不透明石英ガラス
の特性としては、その不透明部の外観が白色であれば特
に限定されるものではないが、気泡が均一に分散されて
おり、例えば、波長300〜900nmの光を照射した
場合の直線透過率が低くなることで不透明となることが
確認できる。この直線透過率としては、熱遮断性を確保
するために、部材の厚み1mm以上において、300〜
900nmの光を照射した場合の直線透過率が5%以下
であることが好ましい。このような直線透過率を有する
不透明石英ガラスは気泡を有することでガラスの熱伝導
性が低くなるとともに熱線を散乱させることによりその
効果が増幅される。従って、直線透過率を低くすること
で熱線が散乱しやすくなり、熱遮断性に優れた不透明石
英ガラスとすることができる。
The characteristics of the opaque quartz glass obtained in this way are not particularly limited as long as the appearance of the opaque portion is white, but the bubbles are uniformly dispersed. It can be confirmed that opacity is caused by a decrease in linear transmittance when light of up to 900 nm is irradiated. The linear transmittance is 300 to 300 mm when the thickness of the member is 1 mm or more in order to secure the thermal barrier property.
The linear transmittance when irradiated with 900 nm light is preferably 5% or less. Since the opaque quartz glass having such a linear transmittance has bubbles, the thermal conductivity of the glass is reduced, and the effect is amplified by scattering heat rays. Therefore, by reducing the linear transmittance, heat rays are easily scattered, and an opaque quartz glass having excellent heat shielding properties can be obtained.

【0037】一方、不透明部の表面を保護する透明部に
おいては、見掛密度が2.19〜2.21g/cm3
あり、気泡径100μm以上の気泡量が1×103個/
cm3以下であることが好ましい。この理由としては、
このような範囲を逸脱する場合には透明部表面に多量の
気泡が露出して表面が欠けやすくなるため、結果的に不
透明部を保護する役割を果たすことができないからであ
る。逆にこの範囲内であれば、表面が極めて欠けにく
く、かつシール性の良い透明部とすることができる。
On the other hand, in the transparent portion for protecting the surface of the opaque portion, the apparent density is 2.19 to 2.21 g / cm 3 and the amount of bubbles having a bubble diameter of 100 μm or more is 1 × 10 3 /
cm 3 or less. This is because
If the thickness is outside such a range, a large amount of air bubbles will be exposed on the surface of the transparent portion and the surface will be easily chipped. As a result, the transparent portion cannot serve to protect the opaque portion. On the other hand, when the content is within this range, the surface can be made extremely transparent and a transparent portion having good sealing properties can be obtained.

【0038】さらに透明部の特性において、300〜9
00nmの光を照射した場合の直線透過率として、部材
の厚み1mm以下において90%以上であることが好ま
しい。このような特性の透明部を有した不透明石英ガラ
スであれば、その表面が極めて欠けにくく、かつシール
性の良いという効果をよりいっそう高めることができる
からである。
Further, in the characteristics of the transparent portion, 300 to 9
The linear transmittance when irradiated with light of 00 nm is preferably 90% or more when the thickness of the member is 1 mm or less. This is because an opaque quartz glass having a transparent portion having such characteristics can be further enhanced in the effect that the surface is hardly chipped and the sealing property is good.

【0039】本発明の方法は、上記に記載のように原料
を加熱溶融する工程においてガラスにOH基を取り込む
ものではなく、また加熱溶融中にOH基が揮散すること
も期待できるため、OH基の含有量を低くすることがで
き、高温における粘性が高く、すなわち高温粘性に優れ
た不透明石英ガラスとすることができるものである。
The method of the present invention does not incorporate OH groups into the glass in the step of heating and melting the raw material as described above, and it is expected that the OH groups volatilize during the heating and melting. Can be reduced, and opaque quartz glass having high viscosity at high temperature, that is, excellent high-temperature viscosity can be obtained.

【0040】[0040]

【実施例】本発明を以下の実施例によりさらに詳細に説
明するが、本発明はこれに限定されるものではない。な
お不純物の分析等は以下により行った。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. The analysis of impurities and the like were performed as follows.

【0041】〜不純物の分析〜 シリカ粉末をICP法により分析した。-Analysis of impurities-The silica powder was analyzed by the ICP method.

【0042】〜X線回折〜 ガラスの不透明部、透明部のそれぞれを切断機を用いて
20mm×10mm×2mm(厚み)の大きさに切断
し、測定用サンプルとした。これをX線回折装置(マッ
クサイエンス社製、型式:MXP3)を使用し、不透明
部、透明部のそれぞれにつきそのガラス状態を観察し
た。得られた回折パタ−ン中における石英、クリストバ
ライト等の結晶に起因する回折ピークの有無によりガラ
ス状態を確認した。
X-Ray Diffraction Each of the opaque portion and the transparent portion of the glass was cut into a size of 20 mm × 10 mm × 2 mm (thickness) using a cutting machine to obtain a sample for measurement. The glass state of each of the opaque part and the transparent part was observed using an X-ray diffractometer (model: MXP3, manufactured by Mac Science). The glass state was confirmed by the presence or absence of a diffraction peak attributable to crystals such as quartz and cristobalite in the obtained diffraction pattern.

【0043】〜見掛密度〜 ガラスの不透明部、透明部のそれぞれを切断機を用いて
30mm×30mm×10mm(厚み)の大きさに切断
し、測定用サンプルとした。これを電子天秤(メトラー
社製、型式:AT261)を使用し、アルキメデス法に
より不透明部、透明部のそれぞれにつきその密度を測定
した。
-Apparent Density-Each of the opaque portion and the transparent portion of the glass was cut into a size of 30 mm x 30 mm x 10 mm (thickness) using a cutting machine to obtain a measurement sample. Using an electronic balance (manufactured by Mettler, model: AT261), the density of each of the opaque portion and the transparent portion was measured by the Archimedes method.

【0044】〜気泡径及び気泡量〜 ガラスの不透明部、透明部のそれぞれを切断機を用いて
30mm×10mm×0.3mm(厚み)の大きさに切
断し、測定用サンプルとした。これを目盛り付レンズの
ある偏光顕微鏡(オリンパス社製、型式:BH−2)を
使用し、不透明部、透明部のそれぞれにつきその気泡径
及び気泡量を測定した。不透明部においては、平均気泡
径については、カウントした気泡を完全球体と見なして
その総体積を算出し、それを気泡数で除して得た平均気
泡体積からさらに平均直径を算出して平均気泡径とし
た。透明部においては、10mm×10mm×0.3m
m(深さ)の視野内の100μm以上の気泡数をカウン
トし、1cm3当たりに換算して気泡量とした。
-Bubble Diameter and Bubble Volume-Each of the opaque portion and the transparent portion of the glass was cut into a size of 30 mm x 10 mm x 0.3 mm (thickness) using a cutting machine to obtain a measurement sample. Using a polarizing microscope (Model: BH-2, manufactured by Olympus Corporation) with a graduated lens, the bubble diameter and bubble amount of each of the opaque portion and the transparent portion were measured. In the opaque part, regarding the average bubble diameter, the counted bubbles are regarded as a complete sphere, the total volume is calculated, and the average diameter is further calculated from the average bubble volume obtained by dividing it by the number of bubbles. Diameter. 10mm × 10mm × 0.3m in transparent part
The number of air bubbles of 100 μm or more in a visual field of m (depth) was counted, and converted to per 1 cm 3 to obtain the amount of air bubbles.

【0045】〜粒子径〜 原料粉末の粒子径分布及び平均粒子径はレーザー回折散
乱法COULTERLS−130(COULTER E
LECTRONICS社製)により測定した。
-Particle size- The particle size distribution and average particle size of the raw material powder are determined by laser diffraction scattering method COULTERLS-130 (COULTER E).
LECTRONICS).

【0046】〜充填密度〜 原料粉末の充填密度は、所定の重量の粉末を耐熱性の型
に充填し、その際の粉末が占める体積を測定し、粉末重
量をその体積で除して求めた。
Packing Density The packing density of the raw material powder was determined by filling a predetermined weight of powder into a heat-resistant mold, measuring the volume occupied by the powder at that time, and dividing the powder weight by the volume. .

【0047】〜空洞の確認〜 ガラスを切断機を用いて切断し、目視にて切断面を観察
した。
-Confirmation of Cavity- The glass was cut using a cutting machine, and the cut surface was visually observed.

【0048】〜光透過率〜 ガラスの不透明部、透明部のそれぞれを切断機を用いて
切断し、さらに厚み方向の両面を#1200のアルミナ
砥粒で研磨して30mm×10mm×1mm(厚み)の
大きさの測定用サンプルとした。これを分光光度計(日
立製作所社製、型式:ダブルビーム分光光度計220
型)を使用し、サンプルの厚み方向に300、500、
700、900nmの波長の光(バンドパス2nm)を
照射した時の直線透過率を測定した。
-Light transmittance-Each of the opaque and transparent portions of the glass is cut using a cutter, and both surfaces in the thickness direction are polished with # 1200 alumina abrasive grains to obtain 30 mm x 10 mm x 1 mm (thickness). Sample for measurement. A spectrophotometer (manufactured by Hitachi, Ltd., model: double beam spectrophotometer 220)
300), 500, in the thickness direction of the sample
The linear transmittance when irradiating light with a wavelength of 700 and 900 nm (band pass 2 nm) was measured.

【0049】〜気泡総断面積〜 気泡が完全球体であるとみなし、その直径を含む円の面
積の総和で定義され、平均気泡径から平均気泡断面積を
算出し、これに気泡量を乗じて算出した。
-Total bubble cross-sectional area- It is assumed that a bubble is a complete sphere, is defined by the sum of the areas of circles including its diameter, calculates the average bubble cross-sectional area from the average bubble diameter, and multiplies this by the bubble amount. Calculated.

【0050】実施例1 平均粒子径300μmで30〜500μmの範囲の粒子
径分布を有する天然水晶粉末(ユミニン製、商品名:I
OTA−5)をフッ酸処理により高純度化したもの(以
降、石英粉末という)を原料粉末として用いた。四塩化
ケイ素からアンモニア処理法により得られた窒化ケイ素
粉末(宇部興産製、商品名:SN−E10、平均粒子径
0.5μm)を、石英粉末100重量部に対して0.0
1重量部となるように秤取し、石英粉末100重量部に
対して50重量部のエタノールに投入した後、撹拌と同
時に超音波振動を与えて十分に分散させた。得られた窒
化ケイ素分散液に石英粉末を投入し、十分に撹拌し混合
した。次に、真空エバポレーターを用いてエタノールを
除去、乾燥して石英粉末と窒化ケイ素粉末の混合粉末を
作製し、不透明部用原料粉末(以降、混合粉末という)
を得た。また、透明部用原料として上記の石英粉末を用
いた。まず、石英粉末300gを、内面に厚さ2mmの
カ−ボンフェルトを貼付けたカーボン製るつぼ(外径:
130mm、内径:100mm、深さ:200mmの円
筒状)内に充填し、次いで、混合粉末900gを石英粉
末充填層の上に充填した。この時の充填密度を上記記載
の方法により測定したところ、いずれの充填層において
も1.4g/cm3であった。粉末充填の構成を図1
1、図12に示す。るつぼを電気炉内に入れ、1×10
-3mmHgの真空雰囲気にした後、室温から1800℃
まで300℃/時間の割合で昇温した。1800℃に1
0分間保持した後、電気炉内の圧力が常圧(1kgf/
cm2)に達するまで窒素ガスを導入し加熱を終了し
た。この後、電気炉の電源を切り、放冷した。炉内の温
度は50分程度で1000℃に到達し、その後は徐々に
低下し、最終的に室温となった。このようにして得られ
たガラスは一方の底面に透明層を有する円柱状の不透明
石英ガラスであった。得られたガラスの構成を図13、
図14に示す。このようにして得られた不透明石英ガラ
スを上記記載の方法によりそのX線回折を行い、不透明
部、透明部のいずれもがガラス状態であることを確認し
た。また、得られた不透明石英ガラスの不透明部を上記
記載の方法により評価し、その結果として、見掛密度、
平均気泡径、気泡量を表1に、気泡総断面積、光透過率
を表2に示した。また、透明部を上記記載の方法により
評価し、その結果として、見掛密度、100μm以上の
気泡量、光透過率を表3に示した。
Example 1 Natural quartz powder having an average particle diameter of 300 μm and a particle diameter distribution in the range of 30 to 500 μm (manufactured by Uminin, trade name: I
OTA-5) was purified by hydrofluoric acid treatment (hereinafter referred to as quartz powder) and used as the raw material powder. Silicon nitride powder (manufactured by Ube Industries, trade name: SN-E10, average particle size 0.5 μm) obtained from silicon tetrachloride by an ammonia treatment method was added to a quartz powder in an amount of 0.0
It was weighed so as to be 1 part by weight and poured into 50 parts by weight of ethanol with respect to 100 parts by weight of the quartz powder, and then sufficiently dispersed by applying ultrasonic vibration simultaneously with stirring. Quartz powder was added to the obtained silicon nitride dispersion liquid, sufficiently stirred and mixed. Next, ethanol is removed using a vacuum evaporator and dried to produce a mixed powder of quartz powder and silicon nitride powder, and a raw material powder for opaque part (hereinafter referred to as a mixed powder)
I got Further, the above quartz powder was used as a raw material for the transparent portion. First, 300 g of quartz powder was put on a carbon crucible having a 2 mm-thick carbon felt attached to the inner surface (outer diameter:
130 mm, inner diameter: 100 mm, depth: 200 mm), and then 900 g of the mixed powder was filled on the quartz powder packed layer. When the packing density at this time was measured by the method described above, it was 1.4 g / cm 3 in each of the packed layers. Figure 1 shows the structure of powder filling
1 and shown in FIG. Put the crucible in an electric furnace, 1 × 10
-3 mmHg vacuum atmosphere, then from room temperature to 1800 ° C
The temperature was raised at a rate of 300 ° C./hour up to 300 ° C. 1 at 1800 ° C
After holding for 0 minutes, the pressure in the electric furnace was reduced to normal pressure (1 kgf /
cm 2 ) and heating was terminated by introducing nitrogen gas. Thereafter, the electric furnace was turned off and allowed to cool. The temperature in the furnace reached 1000 ° C. in about 50 minutes, then gradually decreased, and finally reached room temperature. The glass thus obtained was a cylindrical opaque quartz glass having a transparent layer on one bottom surface. FIG. 13 shows the structure of the obtained glass.
As shown in FIG. The opaque quartz glass thus obtained was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. Further, the opaque portion of the obtained opaque quartz glass was evaluated by the method described above, and as a result, the apparent density,
Table 1 shows the average bubble diameter and bubble amount, and Table 2 shows the total bubble cross-sectional area and light transmittance. Further, the transparent portion was evaluated by the method described above, and as a result, the apparent density, the amount of air bubbles of 100 μm or more, and the light transmittance are shown in Table 3.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】実施例2 実施例1における石英粉末を乾式ボールミルを用いて粉
砕し、さらにふるいによる粒度調整を行い、平均粒子径
が50μmで10〜200μmの範囲の粒子径分布を有
するものを得た。この石英粉末を用い、窒化ケイ素粉末
の混合量を、石英粉末100重量部に対して0.03重
量部として混合粉末を得た。実施例1と同じカ−ボン製
るつぼ内に、実施例1と同様に、まず、上記石英粉末3
00gを充填し、次いで、混合粉末900gを石英粉末
充填層の上に充填した。この時の充填密度を上記記載の
方法により測定したところ、いずれの充填層においても
1.4g/cm3であった。これを実施例1と同様の条
件で加熱し、一方の底面に透明層を有する円柱状の不透
明石英ガラスを得た。この不透明石英ガラスを上記記載
の方法によりそのX線回折を行い、不透明部、透明部の
いずれもがガラス状態であることを確認した。このガラ
スの不透明部を上記記載の方法により評価し、その結果
として、見掛密度、平均気泡径、気泡量を表1に、気泡
総断面積、光透過率を表2に示した。また、透明部を上
記記載の方法により評価し、その結果として、見掛密
度、100μm以上の気泡量、光透過率を表3に示し
た。
Example 2 The quartz powder obtained in Example 1 was pulverized using a dry ball mill, and the particle size was adjusted by sieving to obtain a powder having an average particle size of 50 μm and a particle size distribution in the range of 10 to 200 μm. . Using this quartz powder, the mixed amount of the silicon nitride powder was 0.03 parts by weight based on 100 parts by weight of the quartz powder to obtain a mixed powder. In the same crucible made of carbon as in Example 1, as in Example 1,
00 g, and then 900 g of the mixed powder was filled on the quartz powder packed bed. When the packing density at this time was measured by the method described above, it was 1.4 g / cm 3 in each of the packed layers. This was heated under the same conditions as in Example 1 to obtain a columnar opaque quartz glass having a transparent layer on one bottom surface. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. The opaque portion of this glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2. Further, the transparent portion was evaluated by the method described above, and as a result, the apparent density, the amount of air bubbles of 100 μm or more, and the light transmittance are shown in Table 3.

【0055】実施例3 実施例1における石英粉末を乾式ボールミルを用いて粉
砕し、さらにふるいによる粒度調整を行い、平均粒子径
が50μmで10〜200μmの範囲の粒子径分布を有
するものとした。この石英粉末を用いて実施例1と同一
の条件で混合粉末を作製した。実施例1と同じカーボン
製るつぼ内に、実施例1と同様に、まず、上記石英粉末
300gを充填し、次いで、混合粉末900gを石英粉
末充填層の上に充填した。この時の充填密度を上記記載
の方法により測定したところ、いずれの充填層において
も1.2g/cm3であった。これを実施例1と同様の
条件で加熱し、一方の底面に透明層を有する円柱状の不
透明石英ガラスを得た。この不透明石英ガラスを上記記
載の方法によりそのX線回折を行い、不透明部、透明部
のいずれもがガラス状態であることを確認した。このガ
ラスの不透明部を上記記載の方法により評価し、その結
果として、見掛密度、平均気泡径、気泡量を表1に、気
泡総断面積、光透過率を表2に示した。また、透明部を
上記記載の方法により評価し、その結果として、見掛密
度、100μm以上の気泡量、光透過率を表3に示し
た。
Example 3 The quartz powder in Example 1 was pulverized using a dry ball mill, and the particle size was adjusted by sieving. The average particle diameter was 50 μm and the particle diameter distribution was in the range of 10 to 200 μm. Using this quartz powder, a mixed powder was produced under the same conditions as in Example 1. In the same manner as in Example 1, the same carbon crucible as in Example 1 was first filled with 300 g of the above quartz powder, and then 900 g of the mixed powder was charged on the quartz powder packed layer. When the packing density at this time was measured by the method described above, it was 1.2 g / cm 3 in each of the packed layers. This was heated under the same conditions as in Example 1 to obtain a columnar opaque quartz glass having a transparent layer on one bottom surface. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. The opaque portion of this glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2. Further, the transparent portion was evaluated by the method described above, and as a result, the apparent density, the amount of air bubbles of 100 μm or more, and the light transmittance are shown in Table 3.

【0056】実施例4 加熱温度を1850℃とした以外は実施例と同様の条件
にて実施し、一方の底面に透明層を有する円柱状の不透
明石英ガラスを得た。なお、この時の充填密度を上記記
載の方法により測定したところ、いずれの充填層におい
ても1.4g/cm3であった。この不透明石英ガラス
を上記記載の方法によりそのX線回折を行い、不透明
部、透明部のいずれもがガラス状態であることを確認し
た。このガラスの不透明部を上記記載の方法により評価
し、その結果として、見掛密度、平均気泡径、気泡量を
表1に、気泡総断面積、光透過率を表2に示した。ま
た、透明部を上記記載の方法により評価し、その結果と
して、見掛密度、100μm以上の気泡量、光透過率を
表3に示した。
Example 4 A cylindrical opaque quartz glass having a transparent layer on one bottom surface was obtained under the same conditions as those of the example except that the heating temperature was 1850 ° C. In addition, when the packing density at this time was measured by the method described above, it was 1.4 g / cm 3 in any of the packed layers. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. The opaque portion of this glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2. Further, the transparent portion was evaluated by the method described above, and as a result, the apparent density, the amount of air bubbles of 100 μm or more, and the light transmittance are shown in Table 3.

【0057】実施例5 1800℃に10分間保持した後、電気炉内の圧力が
2.0kgf/cm2に達するまで窒素ガスを導入し加
熱を終了した以外は実施例1と同様の条件にて実施し、
一方の底面に透明層を有する円柱状の不透明石英ガラス
を得た。なお、この時の充填密度を上記記載の方法によ
り測定したところ、いずれの充填層においても1.4g
/cm3であった。この不透明石英ガラスを上記記載の
方法によりそのX線回折を行い、不透明部、透明部のい
ずれもがガラス状態であることを確認した。このガラス
の不透明部を上記記載の方法により評価し、その結果と
して、見掛密度、平均気泡径、気泡量を表1に、気泡総
断面積、光透過率を表2に示した。また、透明部を上記
記載の方法により評価し、その結果として、見掛密度、
100μm以上の気泡量、光透過率を表3に示した。
Example 5 After holding at 1800 ° C. for 10 minutes, nitrogen gas was introduced until the pressure in the electric furnace reached 2.0 kgf / cm 2 , and heating was terminated under the same conditions as in Example 1. Conduct,
A columnar opaque quartz glass having a transparent layer on one bottom surface was obtained. In addition, when the packing density at this time was measured by the method described above, 1.4 g was obtained for each of the packed layers.
/ Cm 3 . The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. The opaque portion of this glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2. Further, the transparent portion was evaluated by the method described above, and as a result, the apparent density,
Table 3 shows the amount of air bubbles having a diameter of 100 μm or more and the light transmittance.

【0058】実施例6 ケイ酸ナトリウムと酸を反応させた後、加熱処理して得
た平均粒子径300μmで50〜1000μmの範囲の
粒子径分布を有する非晶質シリカ粉末(日東化学工業
製、商品名:シリカエースA)を乾式ボールミルを用い
て粉砕し、ふるいによる分級を行い、平均粒子径が18
0μmで10〜600μmの範囲の粒子径分布を有する
ものを得、これを原料粉末とした。実施例1と同じ窒化
ケイ素の混合量を、非晶質シリカ粉末100重量部に対
して0.01重量部として実施例1と同様の方法で混合
し、非晶質シリカ粉末と窒化ケイ素粉末の混合粉末を得
た。実施例1と同じカーボン製るつぼ内に、まず非晶質
シリカ粉末300gを充填し、次いで、非晶質シリカ粉
末充填層の上に混合粉末900gを充填した。この時の
充填密度を上記記載の方法により測定したところ、いず
れの充填層においても0.81g/cm3であった。る
つぼを電気炉内に入れ、1×10-3mmHgの真空雰囲
気にした後、室温から1800℃まで300℃/時間の
割合で昇温した。1800℃まで10分間保持した後、
電気炉内の圧力が常圧(1kgf/cm2)に達するま
で窒素ガスを導入し加熱を終了した。このようにして一
方の底面に透明層を有する円柱状の不透明石英ガラスを
得た。この不透明石英ガラスを上記記載の方法によりそ
のX線回折を行い、不透明部、透明部のいずれもがガラ
ス状態であることを確認した。このガラスの不透明部を
上記記載の方法により評価し、その結果として、見掛密
度、平均気泡径、気泡量を表1に、気泡総断面積、光透
過率を表2に示した。また、透明部を上記方法により評
価し、その結果として、見掛密度、100μm以上の気
泡量、光透過率を表3に示した。
Example 6 An amorphous silica powder having an average particle diameter of 300 μm and a particle diameter distribution in the range of 50 to 1000 μm obtained by reacting sodium silicate with an acid and then heat-treating (manufactured by Nitto Chemical Co., Ltd.) Product name: Silica Ace A) is pulverized using a dry ball mill, and classified by sieving to have an average particle size of 18
A powder having a particle size distribution of 0 μm and a range of 10 to 600 μm was obtained, and this was used as a raw material powder. The same amount of silicon nitride as in Example 1 was mixed in the same manner as in Example 1 as 0.01 part by weight with respect to 100 parts by weight of the amorphous silica powder, and mixed with the amorphous silica powder and silicon nitride powder. A mixed powder was obtained. First, 300 g of amorphous silica powder was filled in the same carbon crucible as in Example 1, and then 900 g of the mixed powder was filled on the amorphous silica powder packed layer. When the packing density at this time was measured by the method described above, it was 0.81 g / cm 3 in each of the packed layers. The crucible was placed in an electric furnace, and a vacuum atmosphere of 1 × 10 −3 mmHg was set. After holding at 1800 ° C for 10 minutes,
Heating was completed by introducing nitrogen gas until the pressure in the electric furnace reached normal pressure (1 kgf / cm 2 ). Thus, a columnar opaque quartz glass having a transparent layer on one bottom surface was obtained. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. The opaque portion of this glass was evaluated by the method described above. As a result, the apparent density, average cell diameter, and cell volume are shown in Table 1, and the total cell cross-sectional area and light transmittance are shown in Table 2. Further, the transparent portion was evaluated by the above method, and as a result, the apparent density, the amount of air bubbles of 100 μm or more, and the light transmittance are shown in Table 3.

【0059】実施例7 実施例6における非晶質シリカ原料粉末に対する窒化ケ
イ素粉末の混合量を、非晶質シリカ粉末100重量部に
対して0.02重量部として混合粉末を得た。実施例1
と同じカーボン製るつぼ内に、まず非晶質シリカ粉末3
00gを充填し、次いで、非晶質シリカ粉末充填層の上
に混合粉末900gを充填した。この時の充填密度を上
記記載の方法により測定したところ、いずれの充填層に
おいても0.81g/cm3であった。これを実施例1
と同様の条件で加熱した。このようにして一方の底面に
透明層を有する円柱状の不透明石英ガラスを得た。この
不透明石英ガラスを上記記載の方法によりそのX線回折
を行い、不透明部、透明部のいずれもがガラス状態であ
ることを確認した。このガラスの不透明部を上記記載の
方法により評価し、その結果として、見掛密度、平均気
泡径、気泡量を表1に、気泡総断面積、光透過率を表2
に示した。また、透明部を上記方法により評価し、その
結果として、見掛密度、100μm以上の気泡量、光透
過率を表3に示した。
Example 7 A mixed powder was obtained by setting the mixing amount of the silicon nitride powder to the amorphous silica raw material powder in Example 6 to 0.02 parts by weight with respect to 100 parts by weight of the amorphous silica powder. Example 1
Amorphous silica powder 3
Then, 900 g of the mixed powder was filled on the amorphous silica powder packed layer. When the packing density at this time was measured by the method described above, it was 0.81 g / cm 3 in each of the packed layers. Example 1
Heated under the same conditions as described above. Thus, a columnar opaque quartz glass having a transparent layer on one bottom surface was obtained. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. The opaque portion of this glass was evaluated by the method described above. As a result, the apparent density, the average cell diameter, and the cell amount were shown in Table 1, and the total cell cross-sectional area and light transmittance were shown in Table 2.
It was shown to. Further, the transparent portion was evaluated by the above method, and as a result, the apparent density, the amount of air bubbles of 100 μm or more, and the light transmittance are shown in Table 3.

【0060】実施例8 シリコンアルコキシドと水とを反応させた後、加熱処理
して得た平均粒子径170μmで30〜400μmの範
囲の粒子径分布を有する非晶質シリカ粉末(三菱化学
製、商品名:MKCシリカ PS300L)を原料粉末
として用いた。この非晶質シリカ粉末に対する窒化ケイ
素粉末(宇部興産製、商品名:SN−E10、平均粒子
径0.5μm)の混合量を、シリカ粉末100重量部に
対して0.01重量部として混合粉末を得た。実施例1
と同じカーボン製るつぼ内に、まず非晶質シリカ粉末3
00gを充填し、次いで、非晶質シリカ粉末充填層の上
に混合粉末900gを充填した。この時の充填密度を上
記記載の方法により測定したところ、いずれの充填層に
おいても0.81g/cm3であった。これを実施例1
と同様の条件で加熱した。このようにして一方の底面に
透明層を有する円柱状の不透明石英ガラスを得た。この
不透明石英ガラスを上記記載の方法によりそのX線回折
を行い、不透明部、透明部のいずれもがガラス状態であ
ることを確認した。このガラスの不透明部を上記記載の
方法により評価し、その結果として、見掛密度、平均気
泡径、気泡量を表1に、気泡総断面積、光透過率を表2
に示した。また、透明部を上記方法により評価し、その
結果として、見掛密度、100μm以上の気泡量、光透
過率を表3に示した。
Example 8 An amorphous silica powder having an average particle diameter of 170 μm and a particle diameter distribution in the range of 30 to 400 μm obtained by reacting silicon alkoxide with water and then heat-treating the product (manufactured by Mitsubishi Chemical Corporation; (MKC silica PS300L) was used as a raw material powder. The mixed amount of silicon nitride powder (manufactured by Ube Industries, trade name: SN-E10, average particle diameter 0.5 μm) with respect to this amorphous silica powder is 0.01 part by weight with respect to 100 parts by weight of silica powder. I got Example 1
Amorphous silica powder 3
Then, 900 g of the mixed powder was filled on the amorphous silica powder packed layer. When the packing density at this time was measured by the method described above, it was 0.81 g / cm 3 in each of the packed layers. Example 1
Heated under the same conditions as described above. Thus, a columnar opaque quartz glass having a transparent layer on one bottom surface was obtained. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. The opaque portion of this glass was evaluated by the method described above. As a result, the apparent density, the average cell diameter, and the cell amount were shown in Table 1, and the total cell cross-sectional area and light transmittance were shown in Table 2.
It was shown to. Further, the transparent portion was evaluated by the above method, and as a result, the apparent density, the amount of air bubbles of 100 μm or more, and the light transmittance are shown in Table 3.

【0061】比較例1 実施例1における石英粉末を、乾式ボールミルを用いて
粉砕し、さらにこれをエタノール中に分散させて沈降速
度の差異による粒度調整を行い、平均粒子径が5μmで
1〜10μmの範囲の粒子径分布を有するものを得た。
この石英粉末を用いて実施例1と同一の条件で混合粉末
を作製した。実施例1と同じカーボン製るつぼに、まず
石英粉末300gを充填し、次いで、石英粉末充填層の
上に混合粉末900gを充填した。この時の充填密度を
上記記載の方法により測定したところ、いずれの充填層
においても0.90g/cm3であった。これを実施例
1と同様の条件で加熱し、一方の底面に透明層を有する
円柱状の不透明石英ガラスを得た。この不透明石英ガラ
スを上記記載の方法によりそのX線回折を行い、不透明
部、透明部のいずれもがガラス状態であることを確認し
た。しかしながら、このガラスの不透明部の見掛密度は
1.2g/cm3と低く、ガラスを切断して内部を調べ
ると直径2〜5mm程度の空洞が点在していた。また、
透明部においては、見掛密度は2.15g/cm3と低
く、直径2mm程度の気泡が点在していた。
Comparative Example 1 The quartz powder in Example 1 was pulverized using a dry ball mill, and further dispersed in ethanol to adjust the particle size according to the difference in sedimentation speed. The average particle size was 5 μm and 1 to 10 μm. Having a particle size distribution in the range of
Using this quartz powder, a mixed powder was produced under the same conditions as in Example 1. First, 300 g of quartz powder was filled in the same crucible made of carbon as in Example 1, and then 900 g of the mixed powder was filled on the quartz powder packed layer. When the packing density at this time was measured by the method described above, it was 0.90 g / cm 3 in each of the packed layers. This was heated under the same conditions as in Example 1 to obtain a columnar opaque quartz glass having a transparent layer on one bottom surface. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. However, the apparent density of the opaque portion of this glass was as low as 1.2 g / cm 3, and when the glass was cut and the inside was examined, cavities having a diameter of about 2 to 5 mm were scattered. Also,
In the transparent part, the apparent density was as low as 2.15 g / cm 3, and bubbles having a diameter of about 2 mm were scattered.

【0062】比較例2 実施例5における非晶質シリカ原料粉末を、平均粒子径
が700μmで500〜1000μmの範囲の粒子径分
布を有するものとして実施した。。実施例1と同じカー
ボン製るつぼに、まず非晶質シリカ粉末300gを充填
し、次いで、非晶質シリカ粉末充填層の上に混合粉末9
00gを充填した。この時の充填密度を上記記載の方法
により測定したところ、いずれの充填層においても0.
78g/cm3であった。これを実施例1と同様の条件
で加熱し、一方の底面に透明層を有する円柱状の不透明
石英ガラスを得た。この不透明石英ガラスを上記記載の
方法によりそのX線回折を行い、不透明部、透明部のい
ずれもがガラス状態であることを確認した。しかしなが
ら、このガラスの不透明部の見掛密度は1.4g/cm
3と低く、ガラスを切断して内部を調べると直径0.5
〜1mm程度の空洞が点在していた。また、透明部にお
いては、見掛密度は2.17g/cm3と低く、直径1
mm程度の気泡が点在していた。
Comparative Example 2 The amorphous silica raw material powder in Example 5 was used as an average silica powder having an average particle diameter of 700 μm and a particle diameter distribution in the range of 500 to 1000 μm. . The same crucible made of carbon as in Example 1 was first filled with 300 g of amorphous silica powder, and then mixed powder 9 was placed on the amorphous silica powder packed layer.
00g was charged. The packing density at this time was measured by the method described above.
It was 78 g / cm 3 . This was heated under the same conditions as in Example 1 to obtain a columnar opaque quartz glass having a transparent layer on one bottom surface. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. However, the apparent density of the opaque part of this glass is 1.4 g / cm.
It is low, 3 and the diameter is 0.5
Cavities of about 1 mm were scattered. In the transparent part, the apparent density was as low as 2.17 g / cm 3 ,
Air bubbles of about mm were scattered.

【0063】比較例3 加熱温度を1950℃とした以外は実施例5と同様の条
件にて実施し、一方の底面に透明層を有する円柱状の不
透明石英ガラスを得た。なお、この時の充填密度を上記
記載の方法により測定したところ、いずれの充填層にお
いても1.4g/cm3であった。この不透明石英ガラ
スを上記記載の方法によりそのX線回折を行い、不透明
部、透明部のいずれもがガラス状態であることを確認し
た。しかしながら、このガラスの不透明部の見掛密度は
1.5g/cm3と低く、平均気泡径は200μmに達
しており、非常に脆いガラスであった。
Comparative Example 3 The procedure was carried out under the same conditions as in Example 5 except that the heating temperature was 1950 ° C., to obtain a columnar opaque quartz glass having a transparent layer on one bottom surface. In addition, when the packing density at this time was measured by the method described above, it was 1.4 g / cm 3 in any of the packed layers. The opaque quartz glass was subjected to X-ray diffraction by the method described above, and it was confirmed that both the opaque portion and the transparent portion were in a glass state. However, the apparent density of the opaque portion of this glass was as low as 1.5 g / cm 3 , the average cell diameter reached 200 μm, and the glass was very brittle.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空間形状がフランジ状の耐熱性の型を中心より
切断しその様子を示した断面の斜面図である。
FIG. 1 is a cross-sectional oblique view showing a state in which a heat-resistant mold having a space-shaped flange shape is cut from the center and the state is shown.

【図2】図1の耐熱性の型に原料粉末を充填して得られ
たフランジ状の不透明石英ガラスの状態を示した斜面図
である。
2 is a perspective view showing a state of a flange-shaped opaque quartz glass obtained by filling a raw material powder into the heat-resistant mold of FIG.

【図3】空間形状が円柱状の耐熱性の型を中心より切断
しその様子を示した断面の斜面図である。
FIG. 3 is a cross-sectional oblique view showing a state in which a heat-resistant mold having a columnar space shape is cut from the center and the state thereof is shown.

【図4】図3の耐熱性の型に原料粉末を充填して得られ
た円柱状の不透明石英ガラスの状態を示した斜面図であ
る。
4 is a perspective view showing a state of a cylindrical opaque quartz glass obtained by filling a raw material powder in the heat-resistant mold of FIG. 3;

【図5】空間形状が中空円柱状の耐熱性の型を中心より
切断しその様子を示した断面の斜面図である。
FIG. 5 is a cross-sectional oblique view showing a state in which a heat-resistant mold having a hollow cylindrical space shape is cut from the center.

【図6】図5の耐熱性の型に原料粉末を充填して得られ
た中空円柱状の不透明石英ガラスの状態を示した斜面図
である。
6 is a perspective view showing a state of a hollow cylindrical opaque quartz glass obtained by filling the raw material powder in the heat-resistant mold of FIG. 5;

【図7】空間形状が角柱状の耐熱性の型を中心より切断
しその様子を示した断面の斜面図である。
FIG. 7 is an oblique view of a cross section showing a state in which a heat-resistant mold having a prismatic space shape is cut from the center and the state is shown.

【図8】図7の耐熱性の型に原料粉末を充填して得られ
た角柱状の不透明石英ガラスの状態を示した斜面図であ
る。
8 is a perspective view showing a state of a prismatic opaque quartz glass obtained by filling the raw material powder into the heat resistant mold of FIG. 7;

【図9】空間形状が中空角柱状の耐熱性の型を中心より
切断しその様子を示した断面の斜面図である。
FIG. 9 is a perspective view of a cross section showing a state in which a heat-resistant mold having a hollow prismatic space shape is cut from the center and the state thereof is shown.

【図10】図9の耐熱性の型に原料粉末を充填して得ら
れた中空角柱状の不透明石英ガラスの状態を示した斜面
図である。
10 is a perspective view showing a state of a hollow prismatic opaque quartz glass obtained by filling the raw material powder in the heat-resistant mold of FIG. 9;

【図11】実施例1〜8及び比較例1〜3において、原
料粉末を耐熱性の型に充填した様子を示す平面図であ
る。
FIG. 11 is a plan view showing a state in which a raw material powder is filled in a heat-resistant mold in Examples 1 to 8 and Comparative Examples 1 to 3.

【図12】実施例1〜8及び比較例1〜3において、原
料粉末を耐熱性の型に充填した様子を示す斜面図であ
る。
FIG. 12 is a perspective view showing a state in which a raw material powder is filled in a heat-resistant mold in Examples 1 to 8 and Comparative Examples 1 to 3.

【図13】実施例1〜8及び比較例1〜3において、得
られた不透明石英ガラスの状態を示す平面図である。
FIG. 13 is a plan view showing a state of opaque quartz glass obtained in Examples 1 to 8 and Comparative Examples 1 to 3.

【図14】実施例1〜8及び比較例1〜3において、得
られた不透明石英ガラスの状態を示す斜面図である。
FIG. 14 is a perspective view showing the state of the obtained opaque quartz glass in Examples 1 to 8 and Comparative Examples 1 to 3.

【符号の説明】[Explanation of symbols]

1:図11、12における不透明部の原料粉末 2:図11、12における透明部の原料粉末 3:図11、12において一例として挙げた、カーボン
フェルト 4:図11、12において一例として挙げた、カーボン
製るつぼ 5:図13、14における不透明部 6:図13、14における透明部 7:図13、14における不透明部中の気泡
1: Raw material powder of an opaque part in FIGS. 11 and 12 2: Raw material powder of a transparent part in FIGS. 11 and 12 3: Carbon felt as an example in FIGS. 11 and 12 4: Carbon powder as an example in FIGS. Carbon crucible 5: opaque part in FIGS. 13 and 14 6: transparent part in FIGS. 13 and 14 7: air bubble in opaque part in FIGS.

【発明の効果】本発明の不透明石英ガラス及びその製造
方法によれば、以下の優れた点がある。 1)シリカ粉末に窒化ケイ素粉末を添加し加熱すること
により、シリカ粉末のガラス化及び窒化ケイ素粉末の分
解発泡に基ずくものであるため、アルカリ金属等の不純
物の混入を防止することができ、高純度で高温粘性に優
れたものを得ることができる。 2)シリカ粉末の粒子径や窒化ケイ素粉末の混合量を調
節したり加熱温度を調節することにより、得られる不透
明石英ガラスの気泡径や見掛密度を制御することがで
き、そのために熱遮断性に優れたものである。 3)本発明の不透明石英ガラスはその表面に透明石英ガ
ラスが強固に付与されて不透明石英ガラスを保護してい
るため、洗浄工程等でガラス表面が欠け落ちてしまうこ
とがない。 4)耐熱性の型の形状とほぼ同様の形状のガラスを得る
ことができるため、所望の形状に近似した耐熱性の型に
原料粉末を充填しガラス化することで、最終製品形状を
得るために行う研削等の機械加工工程を大幅に削減する
ことができる。
According to the opaque quartz glass of the present invention and the method for producing the same, there are the following advantages. 1) By adding silicon nitride powder to silica powder and heating it, it is based on vitrification of silica powder and decomposition and foaming of silicon nitride powder, so that contamination of impurities such as alkali metals can be prevented, A product having high purity and excellent high-temperature viscosity can be obtained. 2) By adjusting the particle size of the silica powder, the mixing amount of the silicon nitride powder, and the heating temperature, it is possible to control the bubble diameter and apparent density of the obtained opaque quartz glass, so that the thermal barrier properties It is excellent. 3) The opaque quartz glass of the present invention is provided with transparent quartz glass firmly on its surface to protect the opaque quartz glass, so that the glass surface does not chip off during a washing step or the like. 4) Since a glass having almost the same shape as the heat-resistant mold can be obtained, the final product shape can be obtained by filling the raw material powder into a heat-resistant mold having a shape similar to a desired shape and vitrifying the same. The number of machining steps such as grinding can be greatly reduced.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】透明部と不透明部からなる不透明石英ガラ
スにおいて、不透明部の見掛密度が1.70〜2.15
g/cm3であり、平均気泡径が10〜100μmであ
り、気泡量が5×104〜5×106個/cm3であり、
かつ透明部の見掛密度が2.19〜2.21g/cm3
であり、気泡径100μm以上の気泡量が1×103
/cm3以下であることを特徴とする不透明石英ガラ
ス。
1. An opaque quartz glass comprising a transparent portion and an opaque portion, wherein the apparent density of the opaque portion is 1.70 to 2.15.
g / cm 3 , the average bubble diameter is 10 to 100 μm, the bubble amount is 5 × 10 4 to 5 × 10 6 cells / cm 3 ,
And the apparent density of the transparent portion is 2.19 to 2.21 g / cm 3.
An opaque quartz glass, characterized in that the amount of bubbles having a bubble diameter of 100 μm or more is 1 × 10 3 / cm 3 or less.
【請求項2】波長300〜900nmの光を照射して直
線透過率を測定した場合において、不透明部に使用され
る部材の厚み1mm以上では5%以下となり、かつ透明
部に使用される部材の厚み1mm以下では90%以上と
なることを特徴とする請求項1に記載の不透明石英ガラ
ス。
2. When the linear transmittance is measured by irradiating light having a wavelength of 300 to 900 nm, when the thickness of the member used for the opaque portion is 1 mm or more, it becomes 5% or less, and the thickness of the member used for the transparent portion is 5% or less. The opaque quartz glass according to claim 1, wherein the thickness is 90% or more when the thickness is 1 mm or less.
【請求項3】平均粒子径10〜500μmのシリカ粉末
に該シリカ粉末100重量部に対して窒化ケイ素粉末
0.001〜0.05重量部を混合分散させた不透明部
用出発原料と、平均粒子径10〜500μmのシリカ粉
末である透明部用出発原料とを、所望のガラスにおける
透明部及び不透明部の位置に対応させて前記の各々の原
料粉末を耐熱性の型に充填し、その後真空雰囲気下にて
出発原料が溶融する温度以上1900℃以下の温度にて
加熱しガラス化させることを特徴とする請求項1又は請
求項2に記載の不透明石英ガラスの製造方法。
3. An opaque starting material obtained by mixing and dispersing 0.001 to 0.05 parts by weight of silicon nitride powder with respect to 100 parts by weight of silica powder in silica powder having an average particle diameter of 10 to 500 μm; The starting material for the transparent portion, which is a silica powder having a diameter of 10 to 500 μm, is filled in a heat-resistant mold with the respective raw material powders corresponding to the positions of the transparent portion and the opaque portion in the desired glass. The method for producing opaque quartz glass according to claim 1 or 2, wherein the glass is heated by heating at a temperature not lower than a temperature at which the starting material is melted and not higher than 1900 ° C.
【請求項4】請求項3に記載の不透明石英ガラスを製造
する方法において、得られる不透明石英ガラスの形状が
フランジ状、円柱状、中空円柱状、角柱状又は中空角柱
状であることを特徴とする不透明石英ガラスの製造方
法。
4. The method for producing opaque quartz glass according to claim 3, wherein the shape of the obtained opaque quartz glass is a flange, a cylinder, a hollow cylinder, a prism, or a hollow prism. Method for producing opaque quartz glass.
JP28350697A 1997-10-16 1997-10-16 Opaque quartz glass having a transparent part and method for producing the same Expired - Fee Related JP4191271B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP28350697A JP4191271B2 (en) 1997-10-16 1997-10-16 Opaque quartz glass having a transparent part and method for producing the same
EP19980119541 EP0909743B2 (en) 1997-10-16 1998-10-15 Opaque silica glass article having transparent portion and process for producing same
DE1998603643 DE69803643T3 (en) 1997-10-16 1998-10-15 Opaque silicate glass article with transparent area and process for its preparation
US09/173,685 US6312775B1 (en) 1997-10-16 1998-10-16 Opaque silica glass article having transparent portion and process for producing same
US09/942,779 US6405563B1 (en) 1997-10-16 2001-08-31 Opaque silica glass article having transparent portion and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28350697A JP4191271B2 (en) 1997-10-16 1997-10-16 Opaque quartz glass having a transparent part and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11116265A true JPH11116265A (en) 1999-04-27
JP4191271B2 JP4191271B2 (en) 2008-12-03

Family

ID=17666434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28350697A Expired - Fee Related JP4191271B2 (en) 1997-10-16 1997-10-16 Opaque quartz glass having a transparent part and method for producing the same

Country Status (1)

Country Link
JP (1) JP4191271B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209135A (en) * 1998-01-27 1999-08-03 Tosoh Corp Production of opaque quartz glass ring with transparent part
JP2001180955A (en) * 1999-12-22 2001-07-03 Shinetsu Quartz Prod Co Ltd Manufacturing method for opaque quartz glass
JP2001192212A (en) * 1999-12-28 2001-07-17 Samsung Electronics Co Ltd Method for manufacturing high purity silica glass with additive doped
JP2012036075A (en) * 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd Method for producing silicate glass
EP2785657A1 (en) * 2011-11-30 2014-10-08 Corning Inc. Two layers silica vessels and methods for forming same
US9120699B2 (en) 2010-05-31 2015-09-01 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 based crystallized glass and production method for the same
JP2020132469A (en) * 2019-02-19 2020-08-31 東ソ−・エスジ−エム株式会社 Multilayer structure quartz glass material and method of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209135A (en) * 1998-01-27 1999-08-03 Tosoh Corp Production of opaque quartz glass ring with transparent part
JP2001180955A (en) * 1999-12-22 2001-07-03 Shinetsu Quartz Prod Co Ltd Manufacturing method for opaque quartz glass
JP2001192212A (en) * 1999-12-28 2001-07-17 Samsung Electronics Co Ltd Method for manufacturing high purity silica glass with additive doped
US9120699B2 (en) 2010-05-31 2015-09-01 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 based crystallized glass and production method for the same
US9458053B2 (en) 2010-05-31 2016-10-04 Nippon Electric Glass Co., Ltd. Li2O-Al2O3-SiO2 based crystallized glass and production method for the same
JP2012036075A (en) * 2010-07-12 2012-02-23 Nippon Electric Glass Co Ltd Method for producing silicate glass
EP2785657A1 (en) * 2011-11-30 2014-10-08 Corning Inc. Two layers silica vessels and methods for forming same
JP2020132469A (en) * 2019-02-19 2020-08-31 東ソ−・エスジ−エム株式会社 Multilayer structure quartz glass material and method of manufacturing the same

Also Published As

Publication number Publication date
JP4191271B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
EP0816297B1 (en) Opaque quartz glass and process for production thereof
US9145325B2 (en) Silica container and method for producing the same
WO2013140706A1 (en) A silica container for pulling up monocrystalline silicon and method for manufacturing same
JP5250097B2 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JPH0465328A (en) Production of opaque quartz glass
JP4191271B2 (en) Opaque quartz glass having a transparent part and method for producing the same
JP2000504668A (en) Opaque quartz glass product and manufacturing method
JP3368547B2 (en) Opaque quartz glass and method for producing the same
EP0757665B1 (en) Method of producing a cristobalite-containing silica glass
EP0909743B1 (en) Opaque silica glass article having transparent portion and process for producing same
JP3966943B2 (en) Opaque quartz glass and manufacturing method thereof
JP4035793B2 (en) Method for producing opaque quartz glass ring having transparent portion
US6405563B1 (en) Opaque silica glass article having transparent portion and process for producing same
JP4035794B2 (en) Method for producing opaque quartz glass ring
JP3156732B2 (en) Opaque quartz glass
JPH0840735A (en) Production of synthetic quartz glass crucible
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass
JP2824883B2 (en) Quartz glass crucible manufacturing method
JPH0769674A (en) Production of opaque quartz glass
JP3050351B2 (en) Method for producing opaque quartz glass
JPS6033220A (en) Manufacture of porous silica glass
JPH0769661A (en) Production of opaque quartz glass
JPH08290926A (en) Production of opaque quartz glass
JPH03252387A (en) Synthetic quartz glass crucible and production thereof
JP2003246634A (en) Transparent silica glass and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees