JP7162395B2 - Manufacturing method for multilayer structure quartz glass material - Google Patents

Manufacturing method for multilayer structure quartz glass material Download PDF

Info

Publication number
JP7162395B2
JP7162395B2 JP2019141698A JP2019141698A JP7162395B2 JP 7162395 B2 JP7162395 B2 JP 7162395B2 JP 2019141698 A JP2019141698 A JP 2019141698A JP 2019141698 A JP2019141698 A JP 2019141698A JP 7162395 B2 JP7162395 B2 JP 7162395B2
Authority
JP
Japan
Prior art keywords
quartz glass
powder
glass plate
raw material
transparent quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019141698A
Other languages
Japanese (ja)
Other versions
JP2021024750A (en
Inventor
英昭 岡田
秀春 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Nippon Silica Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Silica Glass Co Ltd filed Critical Nippon Silica Glass Co Ltd
Priority to JP2019141698A priority Critical patent/JP7162395B2/en
Publication of JP2021024750A publication Critical patent/JP2021024750A/en
Application granted granted Critical
Publication of JP7162395B2 publication Critical patent/JP7162395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Description

本発明は、多層構造石英ガラス材の製造方法に関する。より詳細には、本願発明は、不透明層の両側に透明層を有する多層構造石英ガラス材の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for manufacturing a multilayer structure quartz glass material. More particularly, the present invention relates to a method of manufacturing a multi-layered quartz glass material having transparent layers on both sides of an opaque layer.

多層構造石英ガラス材は、断熱性が要求される分野への使用を主目的とした多層構造材料である。多層構造材料は、特に半導体製造用のベルジャー、拡散炉の炉芯管、ボート保持治具等を構成する熱処理用加熱炉の断熱材などに利用される。 A multi-layer structure quartz glass material is a multi-layer structure material mainly intended for use in fields where heat insulation is required. The multi-layer structure material is particularly used as a heat insulating material for a heating furnace for heat treatment that constitutes a bell jar for manufacturing semiconductors, a furnace core tube for a diffusion furnace, a boat holding jig, and the like.

シリコンウエハーの熱処理用加熱炉は、例えば図8に示すように、発熱体1と、炉芯管2と、シリコンウエハー3を支持するボート4と、保温筒5と、基台6とを有する。炉芯管2の下部にはフランジ9が設けられている。フランジ9は不透明石英ガラス製であり、透明ガラス製の炉芯管2と酸水素炎による溶接により一体に接合されている。フランジ9は熱遮断材として作用し、耐熱性に劣るパッキン7や基台6への熱の伝播を抑制している。またパッキン7を介してフランジ9 と基台6とのシールにより炉芯管内は所定の雰囲気に保たれる。 A heating furnace for heat-treating silicon wafers has, for example, a heating element 1, a furnace core tube 2, a boat 4 for supporting silicon wafers 3, a heat insulating cylinder 5, and a base 6, as shown in FIG. A flange 9 is provided at the bottom of the furnace core tube 2 . The flange 9 is made of opaque quartz glass and integrally joined to the core tube 2 made of transparent glass by welding with an oxyhydrogen flame. The flange 9 acts as a heat insulating material and suppresses the heat transfer to the packing 7 and the base 6 which are inferior in heat resistance. Further, the inside of the furnace core tube is kept at a predetermined atmosphere by sealing the flange 9 and the base 6 via the packing 7 .

フランジ部には、表面に透明部を有する不透明石英ガラス材が使用され、不透明部は均一に分散した気泡を含み、高温粘性及び熱遮断性に優れ、表面の透明部は、気泡由来の凹凸がない平滑な表面を有する。半導体製造における各種加熱処理装置の炉芯管のフランジ部材に適した不透明石英ガラス製リング材やその製造方法は、例えば特許文献1~4に開示されている。 Opaque quartz glass material with a transparent part on the surface is used for the flange part. The opaque part contains uniformly dispersed bubbles and has excellent high-temperature viscosity and heat shielding properties. have a smooth surface. A ring member made of opaque quartz glass suitable for a flange member of a furnace core tube of various heat treatment apparatuses in semiconductor manufacturing and a manufacturing method thereof are disclosed in Patent Documents 1 to 4, for example.

特開2004-067456号公報JP-A-2004-067456 特開平07-300326号公報JP-A-07-300326 特開平11-116265号公報JP-A-11-116265 特開平11-209135号公報JP-A-11-209135

近年、このような半導体装置で用いられる不透明石英ガラス材途に対して、省エネルギー、加熱炉の温度分布の均一性の点から、加熱炉からの輻射や伝導による熱の遮断について、性能改善の要求がある。 In recent years, from the standpoint of energy conservation and the uniformity of the temperature distribution in the heating furnace, the performance of opaque quartz glass materials used in such semiconductor devices has been required to be improved in terms of blocking heat from radiation and conduction from the heating furnace. There is

しかし、特許文献2~4に記載の透明部を有する不透明石英ガラス材料は、材料の熱伝導率が高く、上記要求に応える物ではなかった。また、熱伝導率が高いことで、エネルギー損失が大きく、運転コストが増加し、あるいは、熱を遮蔽するために材料の厚みが増し、装置コストが増加するという問題があった。 However, the opaque quartz glass materials having a transparent portion described in Patent Documents 2 to 4 have a high thermal conductivity and cannot meet the above requirements. In addition, the high thermal conductivity results in a large energy loss and an increase in operating costs, or the thickness of the material used for heat shielding increases, resulting in an increase in equipment costs.

特許文献1には、不透明石英ガラス板を2枚の透明石英ガラス板の間にバーナー火炎により溶着する多層石英ガラス板の製造方法が記載されている。この方法では、各ガラス板が数mm程度と薄ければ接合が容易であるが、板が厚くなると溶着不良を招き、透明層と不透明層との間に隙間ができる。このため、不純物の進入や昇温・降温過程での透明層と不透明層との剥離が起こる懸念がある。また、この方法で製造できる多層石英ガラス板の不透明層は、見掛け密度が高く、多層石英ガラス板の熱伝導率も高く、加熱炉からの輻射や伝導による熱を十分に遮断できる物ではなかった。さらに、長方形の多層構造石英ガラス材を製造するには有利であるが、 実際、半導体装置用途の場合は円形、リング形状が多く、製品化の際の歩留が低くなるという課題もある。 Patent Document 1 describes a method of manufacturing a multilayer quartz glass plate in which an opaque quartz glass plate is welded between two transparent quartz glass plates by a burner flame. In this method, if each glass plate is as thin as several millimeters, it is easy to join them. For this reason, there is a concern that impurities may enter and separation between the transparent layer and the opaque layer may occur during the process of raising or lowering the temperature. In addition, the opaque layer of the multilayer quartz glass plate that can be produced by this method has a high apparent density, and the thermal conductivity of the multilayer quartz glass plate is also high. . Furthermore, although it is advantageous for manufacturing a rectangular multi-layer structure quartz glass material, in practice, in the case of semiconductor device applications, there are many round and ring shapes, and there is also the problem of a low yield in commercialization.

本発明者らは、上記課題を解決するための多層構造石英ガラス材を提供することを目的として、2枚の透明石英ガラス板の間にシリカ粉末を充填し、その後加熱してシリカ粉末を溶融することで、透明石英ガラス板の間に不透明層を有する多層構造石英ガラス材を製造する方法を開発し、特許出願した。この方法によれば、見掛け密度が2.0g/cm3以下である不透明石英ガラス層を有する多層構造石英ガラス材を提供できた。 With the object of providing a multi-layered quartz glass material for solving the above-mentioned problems, the present inventors filled silica powder between two transparent quartz glass plates and then heated to melt the silica powder. developed a method for manufacturing a multi-layer quartz glass material having an opaque layer between transparent quartz glass plates, and filed a patent application. According to this method, it was possible to provide a multi-layered quartz glass material having an opaque quartz glass layer with an apparent density of 2.0 g/cm 3 or less.

本発明者らは、さらに、上記方法を用いて、大型の多層構造石英ガラス材の調製や円形やリング形状の多層構造石英ガラス材の直接調製を試みた。その結果、大型化したり、円形やリング形状の場合、2枚の透明石英ガラス板の間にシリカ粉末を均一に充填することは容易ではなく、シリカ粉末を均一に充填できないと、所望の性能を有する多層構造石英ガラス材が得られないことを見出した。 Furthermore, the present inventors have attempted to prepare a large-sized multi-layered silica glass material and directly prepare a circular or ring-shaped multi-layered silica glass material using the above method. As a result, it is not easy to evenly fill silica powder between two transparent quartz glass plates in the case of a large size or a circular or ring shape. It has been found that no structural fused silica material is obtained.

そこで本発明では、2枚の透明石英ガラス板の間にシリカ粉末が均一に充填できる方法を見出し、2枚の透明石英ガラス板の間に均一に充填できたシリカ粉末を溶融することで、所望の性能を有する、大型の多層構造石英ガラス材の調製や円形やリング形状の多層構造石英ガラス材の直接調製を提供することを課題とする。 Therefore, in the present invention, a method for uniformly filling silica powder between two transparent quartz glass plates is found, and by melting the silica powder uniformly filled between the two transparent quartz glass plates, desired performance can be obtained. The object of the present invention is to provide the preparation of large-sized multi-layered quartz glass materials and the direct preparation of circular or ring-shaped multi-layered quartz glass materials.

所望の性能とは、見掛け密度が低い不透明層を有し、多層石英ガラス板の熱伝導率も低く、その結果、加熱炉からの輻射や伝導による熱を十分に遮断できる性能である。 Desired performance is the performance of having an opaque layer with a low apparent density and having a low thermal conductivity of the multi-layer quartz glass plate, and as a result, being able to sufficiently block heat due to radiation and conduction from the heating furnace.

種々検討した結果、所定の角度に傾けた2枚の透明石英ガラス板の間に、2枚の透明石英ガラス板に振動を与えつつシリカ粉末を供給することで、シリカ粉末を2枚の透明石英ガラス板の間に均一に充填でき、このシリカ粉末を透明石英ガラス板の間で溶融することで、所望の性能を有する、大型の多層構造石英ガラス材の調製や円形やリング形状の多層構造石英ガラス材の直接調製を提供することを見出して、本発明を完成させた。 As a result of various investigations, it was found that by supplying silica powder between two transparent quartz glass plates tilted at a predetermined angle while vibrating the two transparent quartz glass plates, the silica powder was placed between the two transparent quartz glass plates. By melting this silica powder between transparent quartz glass plates, it is possible to prepare large-sized multi-layered quartz glass materials or directly prepare circular or ring-shaped multi-layered quartz glass materials with desired performance. The present invention was completed by discovering that it provides.

本発明の以下の通りである。
[1]
(1)第1の透明石英ガラス板と第2の透明石英ガラス板とを対向する面が所定間隔で略平行になるようにスペーサーを介して支持した仮組材を形成し、
(2)形成した仮組材の外周縁に、原料粉末投入部を有するシール材を配置し、仮組材及びシール材を上下から、下型及び上型で挟み込んで、原料粉末充填用の鋳型を形成し、
(3)前記シール材の原料粉末投入部が略上方に位置し、傾斜させた前記鋳型内の仮組材の第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間に、鋳型に連続的又は断続的に振動を与えつつ不透明層用の原料粉末を連続的又は断続的に充填して、2枚のガラス板の間に原料粉末層を有する多層構造体を調製し、
(4)仮組材から多層構造体を取り出し、取り出した多層構造体を加熱して原料粉末を溶融させ、その後に冷却して多層構造石英ガラス材を得る、
ことを含む多層構造石英ガラス材の製造方法。
[2]
仮組材の平面形状がリング状の場合、原料粉末充填用の鋳型は、仮組材のリング内の内周縁を密閉するシール材を設けた、[1]に記載の製造方法。
[3]
スペーサーは、耐熱性材料及び可燃性材料の多層構造を有する、[1]又は[2]に記載の製造方法。
[4]
鋳型の傾斜角度は、20~70°の範囲である[1]~[3]のいずれかに記載の製造方法。
[5]
原料粉末の充填は、振動フィーダーを用いて行う、[1]~[4]のいずれかに記載の製造方法。
[6]
仮組材から取り出した多層構造体は、原料粉末層の均一性を確認した後に、加熱溶融工程に付す、[1]~[5]のいずれかに記載の製造方法。
[7]
原料粉末は、シリカ粉末又はシリカ粉末及び窒化ケイ素粉末の混合粉末である[1]~[6]のいずれかに記載の製造方法。
[8]
多層構造体の加熱は、多層構造体の第1の透明石英ガラス板と第2の透明石英ガラス板の外側から対向する向きに荷重を掛けつつ行う、[1]~[7]のいずれかに記載の製造方法。
[9]
多層構造体の加熱は、電気炉を用いて行う、[1]~[8]のいずれかに記載の製造方法。
[10]
第1の透明石英ガラス板と第2の透明石英ガラス板の平面形状が、矩形、円形、またはリング状である[1]~[9]のいずれかに記載の製造方法。
[11]
第1の透明石英ガラス板と第2の透明石英ガラス板の平面形状がリング状であり、2枚のガラス板の間の内周縁を密閉した仮組材を用いる、[10]に記載の製造方法。
[12]
多層構造石英ガラス材は、不透明石英ガラス層の見掛け密度が、2.0g/cm3以下である、[1]~[11]のいずれかに記載の製造方法。
[13]
多層構造石英ガラス材は、500℃における熱伝導率が、1.1 W/(m・K)以下である、[1]~[12]のいずれかに記載の製造方法。
The present invention is as follows.
[1]
(1) Forming a temporary assembly in which the first transparent quartz glass plate and the second transparent quartz glass plate are supported via spacers so that the opposing surfaces of the transparent quartz glass plate and the second transparent quartz glass plate are substantially parallel at a predetermined interval,
(2) A sealing material having a raw material powder input portion is placed on the outer periphery of the formed temporary assembly material, and the temporary assembly material and the sealing material are sandwiched between a lower mold and an upper mold from above and below to form a mold for filling the raw material powder. to form
(3) In the space between the first transparent quartz glass plate and the second transparent quartz glass plate of the temporary assembled material in the inclined mold, the raw material powder input portion of the sealing material is positioned substantially above. , while continuously or intermittently vibrating the mold, the raw material powder for the opaque layer is continuously or intermittently filled to prepare a multilayer structure having a raw material powder layer between two glass plates;
(4) Taking out the multi-layered structure from the temporary assembly, heating the taken-out multi-layered structure to melt the raw material powder, and then cooling to obtain a multi-layered quartz glass material.
A method for manufacturing a multilayer structure quartz glass material, comprising:
[2]
The manufacturing method according to [1], wherein when the planar shape of the temporary assembled material is ring-shaped, the casting mold for filling the raw material powder is provided with a sealing material for sealing the inner peripheral edge of the ring of the temporary assembled material.
[3]
The manufacturing method according to [1] or [2], wherein the spacer has a multilayer structure of a heat-resistant material and a combustible material.
[4]
The manufacturing method according to any one of [1] to [3], wherein the inclination angle of the mold is in the range of 20 to 70°.
[5]
The production method according to any one of [1] to [4], wherein the filling of the raw material powder is performed using a vibrating feeder.
[6]
The manufacturing method according to any one of [1] to [5], wherein the multilayer structure removed from the temporary assembly is subjected to a heating and melting step after confirming the uniformity of the raw material powder layer.
[7]
The production method according to any one of [1] to [6], wherein the raw material powder is silica powder or a mixed powder of silica powder and silicon nitride powder.
[8]
Any one of [1] to [7], wherein the heating of the multilayer structure is performed while applying a load from the outside of the first transparent quartz glass plate and the second transparent quartz glass plate of the multilayer structure in opposing directions. Method of manufacture as described.
[9]
The manufacturing method according to any one of [1] to [8], wherein the multilayer structure is heated using an electric furnace.
[10]
The manufacturing method according to any one of [1] to [9], wherein the planar shapes of the first transparent quartz glass plate and the second transparent quartz glass plate are rectangular, circular, or ring-shaped.
[11]
The manufacturing method according to [10], wherein the planar shape of the first transparent quartz glass plate and the second transparent quartz glass plate is ring-shaped, and a temporary assembled material in which the inner periphery between the two glass plates is sealed is used.
[12]
The manufacturing method according to any one of [1] to [11], wherein the multilayer structure quartz glass material has an apparent density of the opaque quartz glass layer of 2.0 g/cm 3 or less.
[13]
The manufacturing method according to any one of [1] to [12], wherein the multilayer structure quartz glass material has a thermal conductivity of 1.1 W/(m·K) or less at 500°C.

本発明によれば、所定の角度に傾けた2枚の透明石英ガラス板の間に、2枚の透明石英ガラス板に振動を与えつつシリカ粉末を供給することで、シリカ粉末を2枚の透明石英ガラス板の間に均一に充填でき、このシリカ粉末を透明石英ガラス板の間で溶融することで、所望の性能を有する、大型の多層構造石英ガラス材の調製や円形やリング形状の多層構造石英ガラス材の直接調製を提供することができる。所望の性能とは、見掛け密度が低い不透明層を有し、多層石英ガラス板の熱伝導率も低く、その結果、加熱炉からの輻射や伝導による熱を十分に遮断できる性能である。 According to the present invention, silica powder is supplied between two transparent quartz glass plates tilted at a predetermined angle while vibrating the two transparent quartz glass plates, whereby the silica powder is spread between the two transparent quartz glass plates. Preparation of large-sized multi-layered silica glass material and direct preparation of circular or ring-shaped multi-layered silica glass material with desired performance by melting this silica powder between transparent silica glass plates, which can be uniformly filled between plates. can be provided. Desired performance is the performance of having an opaque layer with a low apparent density and having a low thermal conductivity of the multi-layer quartz glass plate, and as a result, being able to sufficiently block heat due to radiation and conduction from the heating furnace.

平面形状が円形の仮組材における、第1及び第2の透明石英ガラス板並びにスペーサーの配置の例を示す。An example of arrangement of first and second transparent quartz glass plates and spacers in a temporary assembly having a circular planar shape is shown. 平面形状がリング状である仮組材の場合の第1及び第2の透明石英ガラス板並びにスペーサーの配置の例を示す。An example of arrangement of the first and second transparent quartz glass plates and spacers in the case of a temporary assembly having a ring-shaped planar shape is shown. 外周縁用シール材50を上面に配置した下型40の例を示す。An example of a lower mold 40 having an outer peripheral edge sealing material 50 arranged on the upper surface thereof is shown. 外周縁用シール材50を上面に配置した下型40の外周縁用シール材50の内周縁51内に適合した平面形状の仮組材1を設置した例を示す。An example is shown in which a planar temporary assembly 1 that fits inside the inner peripheral edge 51 of the outer peripheral edge sealing material 50 of the lower mold 40 on which the outer peripheral edge sealing material 50 is arranged is shown. 下型40の上面に外周縁用シール材50を配置し、さらに外周縁用シール材50の内周縁51内に仮組材1を設置した後に、上型60を設けた状態を示す。The upper mold 60 is provided after the outer peripheral edge sealing material 50 is arranged on the upper surface of the lower mold 40 and the temporary assembled material 1 is set in the inner peripheral edge 51 of the outer peripheral edge sealing material 50 . 仮組材の2枚のガラス板の間に原料粉末を充填して、原料粉末層を有する多層構造体を調製する方法の説明図。FIG. 4 is an explanatory diagram of a method of filling a raw material powder between two glass plates of a temporary assembly to prepare a multilayer structure having a raw material powder layer. 原料粉末層の均一性の確認方法の例を示す。An example of a method for confirming the uniformity of the raw material powder layer will be shown. シリコンウエハーの熱処理用加熱炉の説明図。Explanatory drawing of the heating furnace for heat processing of a silicon wafer.

<多層構造石英ガラス材製造方法>
本発明の多層構造石英ガラス材製造方法は、以下の(1)~(4)の工程を含む。
(1)第1の透明石英ガラス板と第2の透明石英ガラス板とを対向する面が所定間隔で略平行になるようにスペーサーを介して支持した仮組材を形成し、
(2)形成した仮組材の周縁に、原料粉末投入部を有するシール材を配置し、仮組材及びシール材を上下から、下型及び上型で挟み込んで、原料粉末充填用の鋳型を形成し、
(3)前記シール材の原料粉末投入部が略上方に位置し、傾斜させた前記鋳型内の仮組材の第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間に、鋳型に連続的又は断続的に振動を与えつつ不透明層用の原料粉末を連続的又は断続的に充填して、2枚のガラス板の間に原料粉末層を有する多層構造体を調製し、
(4)仮組材から多層構造体を取り出し、取り出した多層構造体を加熱して原料粉末を溶融させ、その後に冷却して多層構造石英ガラス材を得る。
<Manufacturing method for multilayer structure quartz glass material>
A method of manufacturing a multilayered quartz glass material according to the present invention includes the following steps (1) to (4).
(1) Forming a temporary assembly in which the first transparent quartz glass plate and the second transparent quartz glass plate are supported via spacers so that the opposing surfaces of the transparent quartz glass plate and the second transparent quartz glass plate are substantially parallel at a predetermined interval,
(2) A sealing material having a raw material powder input part is placed around the periphery of the formed temporary assembly material, and the temporary assembly material and the sealing material are sandwiched between a lower mold and an upper mold from above and below to form a mold for filling the raw material powder. form,
(3) In the space between the first transparent quartz glass plate and the second transparent quartz glass plate of the temporary assembled material in the inclined mold, the raw material powder input portion of the sealing material is positioned substantially above. , while continuously or intermittently vibrating the mold, the raw material powder for the opaque layer is continuously or intermittently filled to prepare a multilayer structure having a raw material powder layer between two glass plates;
(4) Taking out the multi-layered structure from the temporary assembly, heating the taken-out multi-layered structure to melt the raw material powder, and then cooling to obtain a multi-layered quartz glass material.

(1)仮組材の形成
この工程では、第1の透明石英ガラス板と第2の透明石英ガラス板とを対向する面が所定間隔で略平行になるようにスペーサーを介して支持した仮組材を形成する。
第1及び第2の透明石英ガラス板は、多層構造石英ガラス材の表面層(第1層、第3層)である透明石英ガラス層となる材料である。第1及び第2の透明石英ガラス板は、気泡を含まない透明性に優れたガラスからなる。第1及び第2の透明石英ガラス板の厚みは特に制限はないが、それぞれ独立に、例えば、1~10mmの範囲であることができる。但し、この範囲に限定される意図ではなく、用途に応じて適宜決定できる。また、第1及び第2の透明石英ガラス板の密度は特に制限はないが、それぞれ独立に、例えば、2.0~2.5 g/cm3の範囲であることができる。
(1) Formation of Temporary Assembled Material In this step, the first transparent quartz glass plate and the second transparent quartz glass plate are temporarily assembled by supporting them via spacers so that the facing surfaces are substantially parallel with each other at a predetermined interval. form the material.
The first and second transparent quartz glass plates are materials that form transparent quartz glass layers, which are the surface layers (first layer and third layer) of the multilayer structure quartz glass material. The first and second transparent quartz glass plates are made of highly transparent glass containing no air bubbles. Although the thickness of the first and second transparent quartz glass plates is not particularly limited, they can each independently range, for example, from 1 to 10 mm. However, it is not intended to be limited to this range, and can be appropriately determined according to the application. The densities of the first and second transparent quartz glass plates are not particularly limited, but can be independently in the range of, for example, 2.0 to 2.5 g/cm 3 .

第1の透明石英ガラス板と第2の透明石英ガラス板の平面形状は、矩形、円形、またはリング状であることができる。 The planar shape of the first transparent quartz glass plate and the second transparent quartz glass plate can be rectangular, circular, or ring-shaped.

第1の透明石英ガラス板と第2の透明石英ガラス板とは、対向する面が所定間隔で略平行になるようにスペーサーを介して支持する。スペーサーは、耐熱性および剥離性に優れるという観点から炭素材料からなることが適当であり、例えば、炭素フェルトであることができる。スペーサーの高さは、第1の透明石英ガラス板と第2の透明石英ガラス板の間に投入する不透明層用の原料粉末量に応じて適宜決定する。スペーサーは、2つの透明石英ガラス板の間隔をほぼ一定に保つことができれば良く、第1及び第2の透明石英ガラス板の外周縁に複数箇所、例えば、3~12箇所、略等間隔に設けることができる。尚、第1及び第2の透明石英ガラス板の平面形状がリング状の場合、スペーサーは第1及び第2の透明石英ガラス板の外周縁のみならず、内周縁にも、複数箇所、例えば、3~12箇所、略等間隔に設けることができる。 The first transparent quartz glass plate and the second transparent quartz glass plate are supported via spacers so that the opposing surfaces are substantially parallel with a predetermined spacing. The spacer is suitably made of a carbon material from the viewpoint of excellent heat resistance and releasability, and may be, for example, carbon felt. The height of the spacer is appropriately determined according to the amount of raw material powder for the opaque layer to be put between the first transparent quartz glass plate and the second transparent quartz glass plate. The spacers need only be able to keep the distance between the two transparent quartz glass plates substantially constant, and are provided at a plurality of locations, for example 3 to 12 locations, at approximately equal intervals on the outer peripheral edges of the first and second transparent quartz glass plates. be able to. When the planar shape of the first and second transparent quartz glass plates is ring-shaped, spacers are provided not only on the outer peripheral edges of the first and second transparent quartz glass plates but also on the inner peripheral edges at a plurality of locations, for example, 3 to 12 locations can be provided at approximately equal intervals.

図1に平面形状が円形の仮組材における、第1及び第2の透明石英ガラス板並びにスペーサーの配置の例を示す説明図である。上側の図は平面図、下側の図はA-B断面図である。第1の透明石英ガラス板11と第2の透明石英ガラス板12とは、対向する面が所定間隔で略平行になるように複数のスペーサー20を介して支持される。図1の仮組材の例では、複数のスペーサー20は、第1及び第2の透明石英ガラス板11、12の外周縁に6箇所、略等間隔に設けられている。図2に平面形状がリング状である仮組材1aの場合の第1及び第2の透明石英ガラス板並びにスペーサーの配置の例を示す説明図である。上側の図は平面図、下側の図はA-B断面図である。第1の透明石英ガラス板11aと第2の透明石英ガラス板12aとは、対向する面が所定間隔で略平行になるように外周縁側の複数のスペーサー20a、内周縁側の複数のスペーサー20bを介して支持される。図2の仮組材の例では、第1及び第2の透明石英ガラス板11a、12aの外周縁6箇所にスペーサー20aが略等間隔に設けられ、第1及び第2の透明石英ガラス板11a、12aの内周縁6箇所にスペーサー20bが略等間隔に設けられている。 FIG. 2 is an explanatory diagram showing an example of arrangement of first and second transparent quartz glass plates and spacers in the temporary assembly having a circular planar shape shown in FIG. 1 ; The upper figure is a plan view, and the lower figure is a cross-sectional view along AB. The first transparent quartz glass plate 11 and the second transparent quartz glass plate 12 are supported via a plurality of spacers 20 so that their facing surfaces are substantially parallel with each other at a predetermined interval. In the example of the temporary assembly shown in FIG. 1, a plurality of spacers 20 are provided at six locations on the outer peripheral edges of the first and second transparent quartz glass plates 11 and 12 at approximately equal intervals. FIG. 2 is an explanatory diagram showing an example of arrangement of first and second transparent quartz glass plates and spacers in the case of a temporary assembly 1a having a ring-shaped planar shape. The upper figure is a plan view, and the lower figure is a cross-sectional view along AB. The first transparent quartz glass plate 11a and the second transparent quartz glass plate 12a are provided with a plurality of spacers 20a on the outer peripheral edge side and a plurality of spacers 20b on the inner peripheral edge side so that the opposing surfaces are substantially parallel at a predetermined interval. supported through In the example of the temporary assembly shown in FIG. 2, spacers 20a are provided at six locations on the outer peripheral edges of the first and second transparent quartz glass plates 11a and 12a at approximately equal intervals, so that the first and second transparent quartz glass plates 11a , 12a are provided with spacers 20b at approximately equal intervals.

スペーサーは、耐熱性材料及び可燃性材料の多層構造を有することができる。耐熱性材料は、例えば、炭素材料であることができ、可燃性材料は、例えば、有機高分子材料であることができる。耐熱性材料の厚みを、加熱溶融を経て形成される不透明層の所望の厚みに設定し、可燃性材料の厚みは、不透明層用の原料粉末の充填のし易さと、原料粉末の密度等を考慮して、適宜決定できる。可燃性材料は、加熱溶融時には揮発、飛散する。スペーサーは、2つの可燃性材料で耐熱性材料を挟んだサンドイッチ構造であることができる。 The spacer can have multiple layers of heat resistant and combustible materials. The heat-resistant material can be, for example, a carbon material, and the combustible material can be, for example, an organic polymeric material. The thickness of the heat-resistant material is set to the desired thickness of the opaque layer formed through heating and melting, and the thickness of the combustible material is determined according to the ease of filling the raw material powder for the opaque layer, the density of the raw material powder, etc. Consideration can be made as appropriate. Combustible materials volatilize and scatter when heated and melted. The spacer can be a sandwich structure of two combustible materials sandwiching a heat resistant material.

(2)原料粉末充填用の鋳型の形成
工程(1)で形成した仮組材の外周縁に、原料粉末投入部を有する外周縁用シール材を配置し、仮組材及び外周縁用シール材を上下から、下型及び上型で挟み込んで、原料粉末充填用の鋳型を形成する。下型及び上型は、仮組材及び外周縁用シール材を覆うことができる形状及び寸法を有するものであることができる。図3に外周縁用シール材50を上面に配置した下型40の例を示す。上側の図は平面図、下側の図はA-B断面図である。外周縁用シール材50は、仮組材の外周縁の形状に適合した内周縁51を有し、かつ原料粉末投入部52を有する。図4に外周縁用シール材50を上面に配置した下型40の外周縁用シール材50の内周縁51内に適合した平面形状の仮組材1を設置した例を示す。上側の図は平面図、下側の図はA-B断面図である。外周縁用シール材50は、仮組材1と略同一の厚みを有する。原料粉末投入部52は、原料粉末を仮組材1に充填するときに利用される。原料粉末投入部52は、仮組材1の間口の1/2から同等程度の幅を有することが、原料粉末の投入が容易であり、かつ原料粉末の均質な充填が可能になることから適当である。仮組材の平面形状がリング状など内部に空間がある場合には、外周縁用に加えて、内周縁を密閉するシール材も用いる。即ち、仮組材の平面形状がリング状等の場合、原料粉末充填用の鋳型は、外周縁用シール材に加えて、仮組材のリング内部に内周縁を密閉する内周縁用シール材も設ける。内周縁用シール材は、仮組材のリングの内径に略同一の外径を有することが適当である。
(2) Formation of mold for filling raw material powder An outer peripheral edge sealing material having a raw material powder input part is placed on the outer peripheral edge of the temporary assembled material formed in step (1), and the temporary assembled material and the outer peripheral edge sealing material are placed. is sandwiched from above and below by a lower mold and an upper mold to form a mold for filling raw material powder. The lower mold and the upper mold can have a shape and dimensions that can cover the temporary assembly and the peripheral edge sealing material. FIG. 3 shows an example of a lower die 40 having an outer peripheral edge sealing material 50 arranged on the upper surface thereof. The upper figure is a plan view, and the lower figure is a cross-sectional view along AB. The outer peripheral edge sealing material 50 has an inner peripheral edge 51 that conforms to the shape of the outer peripheral edge of the temporary assembly, and has a raw material powder input portion 52 . FIG. 4 shows an example in which a planar temporary assembly 1 that fits inside the inner peripheral edge 51 of the outer peripheral edge sealing material 50 of the lower mold 40 on which the outer peripheral edge sealing material 50 is arranged is shown. The upper figure is a plan view, and the lower figure is a cross-sectional view along AB. The peripheral edge sealing material 50 has substantially the same thickness as the temporary assembly 1 . The raw material powder input part 52 is used when filling the temporary assembly 1 with the raw material powder. It is suitable for the raw material powder introduction part 52 to have a width approximately equal to 1/2 of the width of the frontage of the temporary assembled member 1, because the raw material powder can be easily introduced and the raw material powder can be uniformly filled. is. When the planar shape of the temporary assembly is ring-shaped or the like and there is a space inside, a sealing material for sealing the inner peripheral edge is used in addition to the outer peripheral edge. That is, when the planar shape of the temporary assembled material is ring-shaped or the like, the mold for filling the raw material powder includes the inner peripheral edge sealing material for sealing the inner peripheral edge inside the ring of the temporary assembled material in addition to the outer peripheral edge sealing material. prepare. It is suitable that the inner peripheral edge sealing material has an outer diameter substantially equal to the inner diameter of the ring of the temporary assembly.

鋳型の上型及び下型は、平面形状には特に制限はなく、外周縁用シール材及び多層構造石英ガラス材の形状に応じて適宜決定することができる。限定する意図ではないが、鋳型の平面形状は、例えば、方形、円形、不定形などであることができる。下型は一定の厚みの平板部材であり、少なくとも上面は仮組材の第1の透明石英ガラス板を支持するために用いられるので、平坦であり、好ましくは平滑である。上型は、少なくとも下面が、仮組材の第2の透明石英ガラス板を支持するために用いられるために、平坦であり、好ましくは平滑である。下型40の上面に外周縁用シール材50を配置し、さらに外周縁用シール材50の内周縁51内に仮組材1を設置した後に、上型60を設ける。この状態を図5に示す。上側の図は平面図、下側の図はA-B断面図である。下型40と上型60とは、例えば、両型の周縁部において固定することがその後の原料粉末充填の便宜から適当である。両型の固定は例えば、ボルトなどを用いて行うことができるが、これに限定される意図ではない。 The planar shape of the upper mold and lower mold of the mold is not particularly limited, and can be appropriately determined according to the shape of the peripheral edge sealing material and the multilayer structure quartz glass material. Although not intended to be limiting, the planar shape of the mold can be, for example, rectangular, circular, irregular, and the like. The lower mold is a flat plate member having a constant thickness, and at least the upper surface thereof is flat and preferably smooth because it is used to support the first transparent quartz glass plate of the temporary assembly. The upper mold is flat, preferably smooth, so that at least the lower surface is used to support the second transparent quartz glass plate of the temporary assembly. After placing the outer peripheral edge sealing material 50 on the upper surface of the lower mold 40 and setting the temporary assembly 1 in the inner peripheral edge 51 of the outer peripheral edge sealing material 50, the upper mold 60 is provided. This state is shown in FIG. The upper figure is a plan view, and the lower figure is a cross-sectional view along AB. It is appropriate to fix the lower mold 40 and the upper mold 60, for example, at the peripheral edges of both molds for the convenience of subsequent filling of the raw material powder. Both types of fixation can be made using, for example, bolts or the like, but this is not intended to be limiting.

(3)原料粉末充填
仮組材の2枚のガラス板の間に原料粉末を充填して、原料粉末層を有する多層構造体を調製する。図6を参照しながら説明する。仮組材及び外周縁用シール材(リング状の場合は内周縁用シール材も)が鋳型の上型及び下型で固定された原料粉末充填用型70は、傾斜台80に設置される。粉末充填用型70は、外周縁用シール材の原料粉末投入部を略上方に位置させる。傾斜台80の傾斜角は、限定はないが、例えば、20~70°の範囲とすることができる。この角度に傾けた鋳型内の仮組材の第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間に、原料粉末を供給する。原料粉末の供給は、鋳型に連続的又は断続的に振動を与えつつ、かつ不透明層用の原料粉末を連続的又は断続的に供給することで行う。図6の例では、傾斜台80は、振動台81の上に設置される。本発明では、鋳型内の仮組材を例えば、20~70°の範囲に傾け、かつ鋳型に連続的又は断続的に振動を与えつつ原料粉末を供給することで、原料粉末が均一に第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間に充填される。鋳型の傾きは、例えば、25~65°の範囲、30~60°の範囲、35~55°の範囲、であることができ、40~50°の範囲であることもできる。鋳型に加えられる振動は、例えば、1~250Hz、好ましくは、50~150Hzの範囲である。但し、この範囲に限定される意図ではない。鋳型内の仮組材においては、第1の透明石英ガラス板と第2の透明石英ガラス板との対向面が所定間隔で平行になるように支持されており、この2つ透明石英ガラス板の間の空隙に不透明層用の原料粉末が充填される。
(3) Raw Material Powder Filling A raw material powder is filled between two glass plates of a temporary assembly to prepare a multilayer structure having a raw material powder layer. Description will be made with reference to FIG. A raw material powder filling mold 70 in which a temporary assembly member and an outer peripheral edge sealing material (or an inner peripheral edge sealing material in the case of a ring shape) are fixed by upper and lower molds is set on an inclined table 80 . The powder filling mold 70 positions the raw material powder input portion of the peripheral edge sealing material substantially upward. The tilt angle of the tilting table 80 is not limited, but can be, for example, in the range of 20 to 70 degrees. The raw material powder is supplied to the space between the first transparent quartz glass plate and the second transparent quartz glass plate of the temporary assembly in the mold inclined at this angle. The raw material powder is supplied by continuously or intermittently vibrating the mold and continuously or intermittently supplying the raw material powder for the opaque layer. In the example of FIG. 6, the tilting table 80 is installed on the shaking table 81 . In the present invention, the temporary assembly material in the mold is tilted, for example, in the range of 20 to 70°, and the raw material powder is supplied while continuously or intermittently vibrating the mold, so that the raw material powder is uniformly distributed to the first. and the second transparent quartz glass plate. The tilt of the mold can be, for example, in the range of 25-65°, 30-60°, 35-55°, or even 40-50°. The vibration applied to the mold is, for example, in the range of 1-250 Hz, preferably 50-150 Hz. However, it is not intended to be limited to this range. In the temporary assembly in the mold, the facing surfaces of the first transparent quartz glass plate and the second transparent quartz glass plate are supported so as to be parallel with each other at a predetermined interval. The gap is filled with raw material powder for the opaque layer.

原料粉末の充填は、例えば、振動フィーダーを用いて行うことができる。図6の例では、原料粉末は振動フィーダー82を介して、粉末充填用型70に供給される。原料粉末の供給速度に制限は無く、生産性の観点からは例えば、1kg/h以上とすることができる。ただし、供給速度が速すぎる(例えば10kg/h以上)と、原料粉末の種類によっては、粉末の供給が不安定となり充填にムラが生じる場合がある。 Filling of the raw material powder can be performed using, for example, a vibrating feeder. In the example of FIG. 6, the raw material powder is supplied to the powder filling mold 70 via the vibrating feeder 82 . There is no limit to the feed rate of the raw material powder, and from the viewpoint of productivity, it can be, for example, 1 kg/h or more. However, if the feed rate is too high (for example, 10 kg/h or more), depending on the type of raw material powder, the powder supply may become unstable and uneven filling may occur.

原料粉末は、例えば、シリカ粉末であるか、又はシリカ粉末及び窒化ケイ素粉末の混合粉末であることができる。シリカ粉末が天然石英由来の結晶質粉末である場合、不透明層用の原料粉末は、シリカ粉末および窒化ケイ素粉末の混合粉末であることが適当である。シリカ粉末が非晶質粉末である場合、窒化ケイ素粉末を併用せず、シリカ粉末のみであっても良い。非晶質粉末の製法は特に制限は無く、例えば、特開平06-287012に記載されている方法(天然石英粉をプラズマ溶融)で製造することができる。 The raw material powder can be, for example, silica powder or a mixed powder of silica powder and silicon nitride powder. When the silica powder is crystalline powder derived from natural quartz, the raw material powder for the opaque layer is suitably a mixed powder of silica powder and silicon nitride powder. When the silica powder is an amorphous powder, the silica powder alone may be used without using the silicon nitride powder. The method for producing the amorphous powder is not particularly limited, and it can be produced, for example, by the method (plasma melting of natural quartz powder) described in JP-A-06-287012.

シリカ粉末は溶融して石英ガラスとなり、窒化ケイ素粉末を含む場合、窒化ケイ素は、気泡形成の元となる。但し、非晶質シリカ粉末である場合は、石英の融点以上での溶融が必要でないため粉末自身の焼結度合いを制御することで気泡形成が可能である。混合粉末における窒化ケイ素粉末の含有量は、不透明層中の所望の気泡量を考慮して適宜決定することができる。例えば、混合粉末中の窒化ケイ素粉末の含有量は、0.002~0.5質量%の範囲であることができる。但し、この範囲に限定される意図ではない。 Silica powder melts into quartz glass, and when silicon nitride powder is included, silicon nitride is the source of bubble formation. However, in the case of amorphous silica powder, it is possible to form air bubbles by controlling the degree of sintering of the powder itself, because melting at a temperature higher than the melting point of quartz is not necessary. The content of silicon nitride powder in the mixed powder can be appropriately determined in consideration of the desired amount of air bubbles in the opaque layer. For example, the content of silicon nitride powder in the mixed powder can range from 0.002 to 0.5% by mass. However, it is not intended to be limited to this range.

シリカ粉末の粒径は、充填の容易さや、溶融時に形成される気泡のサイズ等を考慮して適宜決定できる。例えば、10~500μmの範囲であることができ、好ましくは50~250μmの範囲、より好ましくは100~200μmの範囲である。 The particle size of the silica powder can be appropriately determined in consideration of the ease of filling, the size of bubbles formed during melting, and the like. For example, it can range from 10 to 500 μm, preferably from 50 to 250 μm, more preferably from 100 to 200 μm.

窒化ケイ素粉末の粒径は、主に溶融時に形成される気泡のサイズ等を考慮して適宜決定できる。例えば、0.1~5μmの範囲であることができ、好ましくは0.2~3μmの範囲、より好ましくは0.5~1.5μmの範囲である。 The particle size of the silicon nitride powder can be appropriately determined mainly by considering the size of bubbles formed during melting. For example, it can range from 0.1 to 5 μm, preferably from 0.2 to 3 μm, more preferably from 0.5 to 1.5 μm.

原料粉末が混合粉末の場合は、充填前にシリカ粉末と窒化ケイ素粉末とを常法により混合して調製することができる。 When the raw material powder is a mixed powder, it can be prepared by mixing silica powder and silicon nitride powder by a conventional method before filling.

(4)加熱溶融
原料粉末充填後は、原料粉末充填用型から仮組材の2つ透明石英ガラス板の間の空隙に不透明層用の原料粉末が充填された多層構造体を取り出し、次いで、取り出した多層構造体を加熱して原料粉末を溶融させる。その後、冷却して多層構造石英ガラス材を得る。
(4) Heating and melting After filling the raw material powder, the multilayer structure in which the gap between the two transparent quartz glass plates of the temporary assembly was filled with the raw material powder for the opaque layer was taken out from the mold for filling the raw material powder, and then taken out. The multilayer structure is heated to melt the raw material powder. After that, it is cooled to obtain a multilayer structure quartz glass material.

鋳型から取り出した多層構造体は、原料粉末層の均一性を確認した後に、加熱溶融工程に付すことができる。原料粉末層の均一性の確認は、例えば図7に示す方法で、多層構造体面内での可視光の透過率の変動を測定することにより行うことができる。 After confirming the uniformity of the raw material powder layer, the multilayer structure removed from the mold can be subjected to a heating and melting process. The uniformity of the raw material powder layer can be confirmed, for example, by the method shown in FIG. 7, by measuring the variation of the transmittance of visible light within the plane of the multilayer structure.

多層構造体の加熱は、多層構造体の加熱は、電気炉を用いて行うことができ、多層構造体の第1の透明石英ガラス板と第2の透明石英ガラス板の外側から対向する向きに荷重を掛けつつ行うことが好ましい。 The heating of the multilayer structure can be performed using an electric furnace, and the first transparent quartz glass plate and the second transparent quartz glass plate of the multilayer structure are heated from outside in opposite directions. It is preferable to carry out while applying a load.

多層構造体は、例えば、電気炉内で加熱することで、原料粉末を溶融および発泡させる。その際、上型の重量により、第1の透明石英ガラス板と第2の透明石英ガラス板の外側から対向する向きに荷重を掛けることが適当である。これにより、大きな泡の形成を抑制して泡の大きさをコントロールしつつスペーサーの高さに応じた厚さの不透明層を形成することができる。上型の重量により加えられる荷重は、例えば、1~20g/cm2の範囲とすることができる。但し、この範囲に限定される意図ではない。溶融および発泡の際に、上型が上下に移動することができ、上型の重量と原料粉末の充填量や組成に応じた容量(厚み)の不透明層を容易に形成することができる。 For example, the multilayer structure is heated in an electric furnace to melt and foam the raw material powder. At this time, it is appropriate to apply a load from the outside of the first transparent quartz glass plate and the second transparent quartz glass plate in the direction facing each other by the weight of the upper die. This makes it possible to form an opaque layer having a thickness corresponding to the height of the spacer while suppressing the formation of large bubbles and controlling the size of the bubbles. The load applied by the weight of the upper mold can range, for example, from 1 to 20 g/cm 2 . However, it is not intended to be limited to this range. During melting and foaming, the upper mold can move up and down, and an opaque layer can be easily formed with a volume (thickness) corresponding to the weight of the upper mold and the filling amount and composition of the raw material powder.

電気炉内での加熱温度は、原料粉末が溶融し、かつ発泡し得る条件であれば良く、例えば、1500~1850℃の範囲であることができる。加熱溶融時間には特に制限はなく、加熱温度や発泡の状況を考慮して適宜決定できる。例えば、10分から6時間の範囲で適宜決定できる。 The heating temperature in the electric furnace may be any condition as long as the raw material powder can be melted and foamed. The heating and melting time is not particularly limited, and can be appropriately determined in consideration of the heating temperature and foaming conditions. For example, it can be determined appropriately within the range of 10 minutes to 6 hours.

より具体的には、高温真空炉における熱処理条件は、1,500~1,650℃(非晶質粉末の場合)あるいは1,700~1,850℃(結晶質粉末の場合)の温度で、15分から3時間、成型荷重:10~20g/cm2、窒素雰囲気の熱処理によって不透明石英ガラス層を合成すると同時に、透明石英ガラス板を溶着し、多層構造石英ガラス材を製造することができる。 More specifically, the heat treatment conditions in the high-temperature vacuum furnace are 1,500 to 1,650°C (in the case of amorphous powder) or 1,700 to 1,850°C (in the case of crystalline powder), 15 minutes to 3 hours, molding load: An opaque quartz glass layer is synthesized by heat treatment in a nitrogen atmosphere at 10 to 20 g/cm 2 , and a transparent quartz glass plate is welded at the same time to manufacture a multi-layered quartz glass material.

本発明の製造方法で得られる多層構造石英ガラス材は、不透明石英ガラス層の見掛け密度が、2.0g/cm3以下であることができる。見掛け密度が、2.0g/cm3以下であることで、不透明石英ガラス層の熱伝導率を所望の低い値(例えば、500℃において1.2 W/(m・K)以下)にすることができる。不透明石英ガラス層の見掛け密度は、より低い熱伝導率を得るという観点からは0.7以上、1.7g/cm3以下であることが好ましい。この範囲の見掛け密度を有する不透明石英ガラス層は、石英ガラス中に分散している微細な気泡が大きすぎず、かつ十分な量で含まれる。見掛け密度がこの範囲であることで、500℃における熱伝導率を1.1 W/(m・K)以下にすることができる。500℃における熱伝導率は、好ましくは0.2以上1.1 W/(m・K)以下である。 In the multilayered silica glass material obtained by the manufacturing method of the present invention, the apparent density of the opaque silica glass layer can be 2.0 g/cm 3 or less. When the apparent density is 2.0 g/cm 3 or less, the thermal conductivity of the opaque quartz glass layer can be made a desired low value (for example, 1.2 W/(m·K) or less at 500° C.). The apparent density of the opaque silica glass layer is preferably 0.7 or more and 1.7 g/cm 3 or less from the viewpoint of obtaining a lower thermal conductivity. An opaque quartz glass layer having an apparent density within this range contains fine bubbles dispersed in the quartz glass in a sufficient amount and not too large. When the apparent density is within this range, the thermal conductivity at 500°C can be 1.1 W/(m·K) or less. The thermal conductivity at 500°C is preferably 0.2 or more and 1.1 W/(m·K) or less.

以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.

実施例1
1)仮組立材とセット工程
・透明石英ガラス板材は円柱形のインゴットもしくは直方体のインゴットを切断・板加工した。本実施例では円柱形のインゴットから円板状の透明ガラス板材(φ=300mm、t=1mm)を作製した。
・透明ガラス板材の2枚の間にスペーサーを取り付けて透明ガラス板同志を貼り合せ、調合粉末を充填する空間を有する仮組材を形成した。
・スペーサーは、基材(石英ガラス)とその両面に高分子材料を貼り合せた構造とした。
・スペーサーの厚さは、熱処理後、不透明層が設定厚さになるように、基材厚さと高分子材料厚みで調整した。本実施例では、5mmとした。
Example 1
1) Temporary assembly material and setting process ・For the transparent quartz glass plate material, a cylindrical ingot or a rectangular parallelepiped ingot was cut and processed into a plate. In this example, a disk-shaped transparent glass plate (φ=300 mm, t=1 mm) was produced from a cylindrical ingot.
- A spacer was attached between two transparent glass plates, and the transparent glass plates were pasted together to form a temporary assembly having a space for filling the mixed powder.
・The spacer has a structure in which a base material (quartz glass) is laminated with polymer materials on both sides.
- The thickness of the spacer was adjusted by adjusting the thickness of the base material and the thickness of the polymer material so that the opaque layer had a set thickness after the heat treatment. In this embodiment, it is set to 5 mm.

・この仮組材を図3に示すシール材を設けた下型からなる粉末充填型に、図4に示すようにセットセットした。
・粉末充填型は一方向に調合粉末の供給口を設け、仮組立材の三方向を充填型付帯のシール材で封止し、さらに図5に示すように上型を固定した。
- This temporary assembly was set in a powder-filled mold consisting of a lower mold provided with a sealing material shown in Fig. 3, as shown in Fig. 4.
- The powder filling mold was provided with a supply port for the prepared powder in one direction, the three directions of the temporary assembly material were sealed with sealing materials attached to the filling mold, and the upper mold was fixed as shown in FIG.

2)調合粉末充填工程
・調合粉末として、天然石英粉末に対して0.06wt%の窒化珪素粉末を混合したものを使用した。
・粉末充填装置は、図6に示すように、調合粉末を入れるホッパー、弁、振動フィーダー(トラフ付き)、傾斜台及振動台から構成される。
・傾斜台80の角度を設定の角度(本実施例では45°)に固定し、その底部を振動台81によって振動させ、調合粉末の閉塞を防止しつつ充填した。
・充填型を傾斜台に固定し、底部の振動台を起動し、振動フィーダーから調合粉末を均等に広げながら連続的に安定供給できた。
振動台81の振動数:約120Hz
調合粉末供給時間:約40分
調合粉末供給量:約700g
2) Mixed powder filling step As the mixed powder, a mixture of natural quartz powder and 0.06 wt% silicon nitride powder was used.
・As shown in Fig. 6, the powder filling device consists of a hopper for putting the prepared powder, a valve, a vibrating feeder (with a trough), an inclined table and a vibrating table.
- The angle of the tilting table 80 was fixed at a set angle (45° in this embodiment), and the bottom thereof was vibrated by the vibrating table 81 to fill the prepared powder while preventing clogging.
・Fixing the filling mold on an inclined table, activating the vibration table at the bottom, it was possible to continuously and stably supply the mixed powder from the vibration feeder while spreading it evenly.
Vibration frequency of vibration table 81: about 120 Hz
Preparation powder supply time: about 40 minutes Preparation powder supply amount: about 700 g

・充填型に調合粉末を供給終了後、充填型の上型を取り外し、調合粉末が詰まった仮組材を取り出した。取り出した仮組材の調合粉末の充填状態を観察、確認した。
・図7に充填状態の均一性の確認方法を示す。粉末を充填した仮組材の裏面側に緑色レーザー光源を、表面側に光量測定用のフォトダイオードを設置し、仮組材の面内を縦横に20mm間隔で移動させて、透過光の光量の分布を測定することで、充填状態の均一性を評価した。
・充填状態の均一性は、光量の平均値を100とし、平均値からのズレの大きさにより評価した。
・表1に各種条件で充填した場合の、光量差の例を示す。光量差は、平均値を100とした場合の最大値と最小値との差を意味する。光量差が10未満(条件1及び2)であればガラス化後の品質の均一性に問題がないことを確認した。条件1が本実施例の充填条件である。
- After finishing supplying the mixed powder to the filling mold, the upper mold of the filling mold was removed, and the temporary assembled material filled with the mixed powder was taken out. The filled state of the mixed powder in the taken out temporary assembly was observed and confirmed.
・Fig. 7 shows a method for confirming the uniformity of the filling state. A green laser light source was placed on the back side of the powder-filled temporary assembly, and a photodiode for light intensity measurement was installed on the front side. The uniformity of the filling state was evaluated by measuring the distribution.
・The uniformity of the filling state was evaluated by the amount of deviation from the average value of the light amount, which was set to 100.
・Table 1 shows an example of the light amount difference when filled under various conditions. The light amount difference means the difference between the maximum value and the minimum value when the average value is 100. It was confirmed that if the light amount difference is less than 10 (conditions 1 and 2), there is no problem in the uniformity of quality after vitrification. Condition 1 is the filling condition of this embodiment.

Figure 0007162395000001
Figure 0007162395000001

3)熱処理工程
・仮組材を熱処理用成形型にセットした。
・500℃以上で仮組材のスペーサーの高分子材料と接着剤が熱分解し、第1層と第3層の透明石英ガラスと調合粉末が接しながら熱処理過程が進行した。
・熱処理条件は本実施例では、高温真空炉において、1,750℃で15分とした。
3) Heat treatment process ・The temporary assembly was set in the mold for heat treatment.
・At 500°C or higher, the spacer polymeric material and the adhesive of the temporary assembly were thermally decomposed, and the heat treatment progressed while the transparent quartz glass of the 1st and 3rd layers and the mixed powder were in contact with each other.
・In this example, the heat treatment was performed in a high-temperature vacuum furnace at 1,750° C. for 15 minutes.

実施例2
透明石英ガラス板材をリング状(外径=300mm、内径=200mm、t=1mm)とした以外は実施例1と同様に透明ガラス板材を作製した。さらに実施例1と同様に調合粉末充填工程及び熱処理工程を経て多層構造石英ガラス材を製造した。得られた多層構造石英ガラス材の見掛け比重、熱伝導率、赤外線透過率を測定した結果を表2に示す。
Example 2
A transparent glass plate material was produced in the same manner as in Example 1 except that the transparent quartz glass plate material was ring-shaped (outer diameter=300 mm, inner diameter=200 mm, t=1 mm). Furthermore, in the same manner as in Example 1, a multi-layered silica glass material was manufactured through the blended powder filling process and the heat treatment process. Table 2 shows the results of measuring the apparent specific gravity, thermal conductivity, and infrared transmittance of the obtained multilayer structure quartz glass material.

実施例3及び比較例1
原料粉末及び熱処理条件を表1に示す条件にした以外は実施例1と同様に多層構造石英ガラス材を製造し、実施例3及び比較例1とした。得られた多層構造石英ガラス材の見掛け比重、熱伝導率、赤外線透過率を測定した。表2に結果を示す。比較例1では、熱処理時間が長すぎたためガラス化が進行し、所望の物性値が得られなかった。
Example 3 and Comparative Example 1
A multilayer structure quartz glass material was produced in the same manner as in Example 1 except that the raw material powder and the heat treatment conditions were changed to the conditions shown in Table 1. Example 3 and Comparative Example 1 were produced. The apparent specific gravity, thermal conductivity, and infrared transmittance of the obtained multilayer structure quartz glass material were measured. Table 2 shows the results. In Comparative Example 1, since the heat treatment time was too long, vitrification progressed, and desired physical property values could not be obtained.

実施例4及び5
原料粉末として天然石英粉末をプラズマ溶融した非晶質粉末を使用し、表2に示す熱処理条件で処理した以外は、実施例1と同様に多層構造石英ガラス材を製造した。得られた多層構造石英ガラス材の見掛け比重、熱伝導率、赤外線透過率を測定した結果を表2に示す。
Examples 4 and 5
A multi-layered quartz glass material was produced in the same manner as in Example 1, except that an amorphous powder obtained by plasma-melting natural quartz powder was used as the raw material powder, and the treatment was performed under the heat treatment conditions shown in Table 2. Table 2 shows the results of measuring the apparent specific gravity, thermal conductivity, and infrared transmittance of the obtained multilayer structure quartz glass material.

Figure 0007162395000002
Figure 0007162395000002

[評価方法]
(見掛け密度)
製造した多層構造石英ガラス材から30mm×30mmの評価用サンプルを切り出し、乾燥後、全重量を秤量した。ノギスを用いてサンプルの縦、横、厚さを計測した。切断した断面をマイクロスコープにより、第1層、第2層、第3層の厚さを計測した。
[Evaluation method]
(apparent density)
A sample for evaluation of 30 mm×30 mm was cut out from the manufactured multilayer structure quartz glass material, dried, and the total weight was weighed. The length, width and thickness of the sample were measured using vernier calipers. The thicknesses of the first layer, the second layer, and the third layer were measured on the cut cross section with a microscope.

透明石英ガラスの密度=2.2 g/cm3
透明層の重量g=縦cm×横cm×(第1層の厚さ+第2層の厚さ)cm× 2.2 g/cm3
不透明層の体積cm3:縦cm×横cm×第2層の厚さcm
不透明層の見掛け密度g/cm3:(全重量-透明層の重量)g/不透明層の体積cm3
Density of transparent quartz glass = 2.2 g/cm 3
Weight of transparent layer g = length cm x width cm x (first layer thickness + second layer thickness) cm x 2.2 g/ cm3
Volume of opaque layer cm3 : length cm x width cm x second layer thickness cm
Apparent density of opaque layer g/cm 3 : (total weight - weight of transparent layer) g/volume cm 3 of opaque layer

(熱伝導率)
不透明層から、直径10mm厚さ1mmの評価用サンプルを加工した。JISR1611に従って熱拡散率を計測し、500℃における熱伝導率を算出する。
熱伝導率W/(m・K)=熱拡散率熱m2/s×密度kg/m3×比熱J/(kg・K)
(Thermal conductivity)
From the opaque layer, samples for evaluation with a diameter of 10 mm and a thickness of 1 mm were machined. Thermal diffusivity is measured according to JISR1611, and thermal conductivity at 500°C is calculated.
Thermal conductivity W/(m・K) = Thermal diffusivity heat m 2 /s × density kg/m 3 × specific heat J/(kg・K)

(透過率)
不透明層を厚さ2mmに加工し、島津製作所製UV-3150を用いて、赤外線領域(波長1~3μm)の透過率を測定した。
(Transmittance)
The opaque layer was processed to a thickness of 2 mm, and the transmittance in the infrared region (wavelength 1 to 3 μm) was measured using UV-3150 manufactured by Shimadzu Corporation.

表1に示す結果から、熱処理条件は特に制限は無く、使用する粉末の物性や大きさ等により、適宜適正な条件で行うことが出来ることが分かる。 From the results shown in Table 1, it can be seen that there are no particular restrictions on the heat treatment conditions, and the heat treatment can be performed under appropriate conditions depending on the physical properties and size of the powder to be used.

・天然石英粉を用いる場合、気泡を生成させるため、石英粉に窒化珪素を添加。添加濃度は、要求される密度となるよう調製。石英粉の重量に対して、0.05~0.15wt%。熱処理温度は、1,700~1,850℃が適切。温度が低いと長時間を要する。温度が高いと泡が成長。 ・When using natural quartz powder, add silicon nitride to the quartz powder to generate air bubbles. Addition concentration is adjusted to achieve the required density. 0.05-0.15wt% based on the weight of quartz powder. The appropriate heat treatment temperature is 1,700 to 1,850°C. If the temperature is low, it will take a long time. If the temperature is high, the bubbles will grow.

・溶融シリカ粉を用いる場合、セラミックスの焼結機構と同様、焼結過程で粒界に気泡が残存するため、添加剤は不要である。熱処理温度は、1,500~1,650℃が適切。処理温度が低いと処理時間が長くなり生産性が劣る。高いと短く出来るが、溶融が促進され残存気泡のコントロールが困難となる。 ・When fused silica powder is used, no additives are required because bubbles remain at the grain boundaries during the sintering process, similar to the sintering mechanism of ceramics. The appropriate heat treatment temperature is 1,500 to 1,650°C. If the treatment temperature is low, the treatment time will be long, resulting in poor productivity. If the time is high, the time can be shortened, but the melting is accelerated and the control of residual bubbles becomes difficult.

半導体向け部品製造に用いる素材に関連する分野に有用である。 It is useful in fields related to materials used in manufacturing parts for semiconductors.

Claims (12)

(1)第1の透明石英ガラス板と第2の透明石英ガラス板とを対向する面が所定間隔で略平行になるようにスペーサーを介して支持した仮組材を形成し、
(2)形成した仮組材の外周縁に、原料粉末投入部を有するシール材を配置し、仮組材及びシール材を上下から、下型及び上型で挟み込んで、原料粉末充填用の鋳型を形成し、
(3)前記シール材の原料粉末投入部が略上方に位置し、傾斜させた前記鋳型内の仮組材の第1の透明石英ガラス板と第2の透明石英ガラス板との間の空間に、鋳型に連続的又は断続的に振動を与えつつ不透明層用の原料粉末を連続的又は断続的に充填して、2枚のガラス板の間に原料粉末層を有する多層構造体を調製し、
(4)仮組材から多層構造体を取り出し、取り出した多層構造体を加熱して原料粉末を溶融させ、その後に冷却して、見掛け密度が2.0g/cm 3 以下である不透明石英ガラス層を有する多層構造石英ガラス材を得る、
ことを含む多層構造石英ガラス材の製造方法。
(1) Forming a temporary assembly in which the first transparent quartz glass plate and the second transparent quartz glass plate are supported via spacers so that the opposing surfaces of the transparent quartz glass plate and the second transparent quartz glass plate are substantially parallel at a predetermined interval,
(2) A sealing material having a raw material powder input portion is placed on the outer periphery of the formed temporary assembly material, and the temporary assembly material and the sealing material are sandwiched between a lower mold and an upper mold from above and below to form a mold for filling the raw material powder. to form
(3) In the space between the first transparent quartz glass plate and the second transparent quartz glass plate of the temporary assembled material in the inclined mold, the raw material powder input portion of the sealing material is positioned substantially above. , while continuously or intermittently vibrating the mold, the raw material powder for the opaque layer is continuously or intermittently filled to prepare a multilayer structure having a raw material powder layer between two glass plates;
(4) Taking out the multilayer structure from the temporary assembly, heating the taken-out multilayer structure to melt the raw material powder, and then cooling to obtain an opaque quartz glass layer having an apparent density of 2.0 g/cm 3 or less. obtaining a multilayered quartz glass material having
A method for manufacturing a multilayer structure quartz glass material, comprising:
仮組材の平面形状がリング状の場合、原料粉末充填用の鋳型は、仮組材のリング内の内周縁を密閉するシール材を設けた、請求項1に記載の製造方法。 2. The manufacturing method according to claim 1, wherein when the planar shape of the temporary assembled material is ring-shaped, the casting mold for filling the raw material powder is provided with a sealing member for sealing the inner peripheral edge of the ring of the temporary assembled material. スペーサーは、耐熱性材料及び可燃性材料の多層構造を有する、請求項1又は2に記載の製造方法。 3. The manufacturing method according to claim 1 or 2, wherein the spacer has a multilayer structure of heat resistant material and combustible material. 鋳型の傾斜角度は、20~70°の範囲である請求項1~3のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 3, wherein the inclination angle of the mold is in the range of 20 to 70°. 原料粉末の充填は、振動フィーダーを用いて行う、請求項1~4のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein the filling of the raw material powder is performed using a vibrating feeder. 仮組材から取り出した多層構造体は、原料粉末層の均一性を確認した後に、加熱溶融工程に付す、請求項1~5のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the multilayer structure removed from the temporary assembly is subjected to a heating and melting step after confirming the uniformity of the raw material powder layer. 原料粉末は、シリカ粉末又はシリカ粉末及び窒化ケイ素粉末の混合粉末である請求項1~6のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the raw material powder is silica powder or a mixed powder of silica powder and silicon nitride powder. 多層構造体の加熱は、多層構造体の第1の透明石英ガラス板と第2の透明石英ガラス板の外側から対向する向きに荷重を掛けつつ行う、請求項1~7のいずれかに記載の製造方法。 8. The multi-layer structure according to any one of claims 1 to 7, wherein the heating of the multi-layer structure is performed while a load is applied from outside the first transparent quartz glass plate and the second transparent quartz glass plate of the multi-layer structure in opposing directions. Production method. 多層構造体の加熱は、電気炉を用いて行う、請求項1~8のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 8, wherein the multilayer structure is heated using an electric furnace. 第1の透明石英ガラス板と第2の透明石英ガラス板の平面形状が、矩形、円形、またはリング状である請求項1~9のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 9, wherein the planar shapes of the first transparent quartz glass plate and the second transparent quartz glass plate are rectangular, circular, or ring-shaped. 第1の透明石英ガラス板と第2の透明石英ガラス板の平面形状がリング状であり、2枚のガラス板の間の内周縁を密閉した仮組材を用いる、請求項10に記載の製造方法。 11. The manufacturing method according to claim 10, wherein the planar shape of the first transparent quartz glass plate and the second transparent quartz glass plate is ring-shaped, and a temporary assembly is used in which the inner periphery between the two glass plates is sealed. 多層構造石英ガラス材は、500℃における熱伝導率が、1.1 W/(m・K)以下である、請求項1~11のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 11 , wherein the multilayer structure quartz glass material has a thermal conductivity of 1.1 W/(m·K) or less at 500°C.
JP2019141698A 2019-07-31 2019-07-31 Manufacturing method for multilayer structure quartz glass material Active JP7162395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019141698A JP7162395B2 (en) 2019-07-31 2019-07-31 Manufacturing method for multilayer structure quartz glass material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019141698A JP7162395B2 (en) 2019-07-31 2019-07-31 Manufacturing method for multilayer structure quartz glass material

Publications (2)

Publication Number Publication Date
JP2021024750A JP2021024750A (en) 2021-02-22
JP7162395B2 true JP7162395B2 (en) 2022-10-28

Family

ID=74663637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141698A Active JP7162395B2 (en) 2019-07-31 2019-07-31 Manufacturing method for multilayer structure quartz glass material

Country Status (1)

Country Link
JP (1) JP7162395B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657612B2 (en) * 1987-05-14 1994-08-03 信越石英株式会社 Synthetic quartz glass tube and manufacturing method thereof
JPH04362036A (en) * 1991-06-07 1992-12-15 Fujikura Ltd Heat-resistant silica-based glass plate or pipe and its production
JP3449654B2 (en) * 1994-09-30 2003-09-22 信越石英株式会社 Method for producing opaque quartz glass
JP3478616B2 (en) * 1994-10-19 2003-12-15 信越石英株式会社 Method for producing quartz glass block composite
DE69502268T2 (en) * 1995-02-22 1999-01-07 Heraeus Quarzglas Opaque quartz glass and process for its manufacture

Also Published As

Publication number Publication date
JP2021024750A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
KR102245507B1 (en) Method and apparatus for producing bulk silicon carbide using a silicon carbide seed
KR102245508B1 (en) Apparatus for producing bulk silicon carbide
KR102266585B1 (en) Method for producing bulk silicon carbide
JPH01305882A (en) Apparatus and method for growing plate/slab-shape large single crystal
JP7123827B2 (en) Multilayer structure quartz glass material and its manufacturing method
JP2019214511A (en) Production method and device of bulky silicon carbide from silicon carbide precursor
KR101806791B1 (en) Manufacturing method of quartz glass ingot with large area
JP7162395B2 (en) Manufacturing method for multilayer structure quartz glass material
JP2014521577A (en) Apparatus and method for producing polycrystalline material having large particle size
TWI595124B (en) Manufacturing method of polysilicon ingot
JP2019214512A (en) Bulky silicon carbide having low defect density
TW202121576A (en) Semiconductor manufacturing equipment component and method of making the same
JP2021104909A (en) Crucible and single crystal production apparatus
JPS6165422A (en) Method of producing silicon crystal for solar battery
KR102661148B1 (en) Mixing member and manufacturing method by SiC and Si
TW202216593A (en) Silicon carbide particle for silicon carbide ingot growth and fabricating method thereof
KR101283286B1 (en) Reaction container and vacuum heat treatment apparatus having the same
JP2000286244A (en) Joint structure for constituting member and method therefor, and member for semiconductor manufacturing apparatus
KR20120062572A (en) Vacuum heat treatment apparatus
JP2015074568A (en) Manufacturing method of single crystal
JPH03172699A (en) Heat insulating material and manufacture thereof
JPH0248833B2 (en) RUTSUBOOYOBISONOSEIZOHOHO

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7162395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150