JP2000286244A - Joint structure for constituting member and method therefor, and member for semiconductor manufacturing apparatus - Google Patents

Joint structure for constituting member and method therefor, and member for semiconductor manufacturing apparatus

Info

Publication number
JP2000286244A
JP2000286244A JP11092396A JP9239699A JP2000286244A JP 2000286244 A JP2000286244 A JP 2000286244A JP 11092396 A JP11092396 A JP 11092396A JP 9239699 A JP9239699 A JP 9239699A JP 2000286244 A JP2000286244 A JP 2000286244A
Authority
JP
Japan
Prior art keywords
joining
same
piece
pieces
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11092396A
Other languages
Japanese (ja)
Inventor
Akira Nakamura
村 明 中
Yoshihiro Yano
野 善博 矢
Isamu Masuda
田 勇 増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO QUARTZ KK
Original Assignee
TECHNO QUARTZ KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO QUARTZ KK filed Critical TECHNO QUARTZ KK
Priority to JP11092396A priority Critical patent/JP2000286244A/en
Publication of JP2000286244A publication Critical patent/JP2000286244A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate countermeasures to increase of scaling of members for a semiconductor manufacturing device or producing facilities accompanied by the enlarging of the diameter of a wafer, and to rationally and inexpensively manufacture the device or the constituting members, are to attain improvement in yield and simplification of the constitution and the improvement of quality, and to reduce generation of dust and wafer contamination. SOLUTION: Two constituting members 2 and 4, whose thermal expansion ratios are different are jointed through a joining member 3 arranged between them. First and second joint pieces whose quality is the same or almost the same as each constituting member 2 and 4 are arranged at both sides, and an intermediate member 9 is arranged between these first and second joint pieces 7 and 8, so that the joint member 3 can be constituted integrally. The intermediate member 9 is constituted of composition components whose quality is the same or almost the same as the first and second joint pieces 7 and 8, and the ratio of the composition components is continuously or changed stepwise in the directions of the joint pieces 7 and 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えばプラズマエッ
チング用電極やウエハ支持装置等の半導体製造装置用部
材に好適で、ウエハの大口径化に伴う半導体製造装置用
部材や生産設備等の大形化に対応し、それらの装置や構
成部品を合理的かつ安価に製作できるとともに、歩留ま
りの向上と構成の簡潔化並びに品質の向上を図れ、しか
も低ダスト化とウエハ汚染の低減を実現できるようにし
た、構成部材の接合構造およびその接合方法並びに半導
体製造装置用部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for a member for a semiconductor manufacturing apparatus such as an electrode for plasma etching and a wafer supporting apparatus, and the members for the semiconductor manufacturing apparatus and the production equipment etc. are enlarged as the diameter of the wafer is increased. In addition to being able to manufacture these devices and components rationally and inexpensively, it has been possible to improve the yield, simplify the configuration and quality, and achieve low dust and reduced wafer contamination. The present invention relates to a joining structure of components, a joining method thereof, and a member for a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】近時の半導体製造は、チップコスト低減
の要請に伴ってウエハが大口径化し、半導体製造に係わ
る製造装置や製造プロセス、生産ライン、生産設備等に
前記大口径化に対する対応が要請されている。
2. Description of the Related Art In recent semiconductor manufacturing, wafers have become larger in diameter in response to demands for chip cost reduction, and manufacturing equipment, manufacturing processes, production lines, production facilities, and the like related to semiconductor manufacturing have been required to cope with the larger diameter. Has been requested.

【0003】例えば、ウエハのエッチング工程に使用さ
れるプラズマエッチング用電極は、特公平7−4056
7号公報のように、単結晶シリコンによって比較的肉厚
の円板形に形成され、その片側の周面を面取り加工し、
その平坦な板面をレーザ加工して、多数の処理ガス貫通
孔を形成している。前記電極は別設の保持用リングを介
して、プラズマ反応装置に取り付けられ、該電極の直下
に間隙を介してウエハを対向配置し、該ウエハを保持器
で保持している。
For example, a plasma etching electrode used in a wafer etching process is disclosed in Japanese Patent Publication No. 7-4056.
No. 7, as disclosed in Japanese Unexamined Patent Publication No. 7 (1999), a relatively thick disk is formed of single-crystal silicon, and one peripheral surface is chamfered.
The flat plate surface is laser-processed to form a large number of processing gas through holes. The electrode is attached to the plasma reactor via a separate holding ring, and a wafer is disposed directly below the electrode with a gap therebetween, and the wafer is held by a holder.

【0004】したがって、この従来のプラズマエッチン
グ用電極は、電極と保持用リングを別々に製作する不合
理があり、またウエハが大口径化すると、電極と保持用
リングの接合部に隙間が生じ易くダスト発生の心配があ
る。しかも、前記電極は処理ガス貫通孔付近以外も高価
な単結晶シリコンで構成しているため、製造コストが上
昇するという問題がある。この場合、処理ガス貫通孔付
近とそれ以外とを、単結晶シリコンと他の部材の二部材
で一体に構成すれば、安価かつ低ダスト化を実現できる
が、現状の溶接技術や直接的な接合技術では、二部材の
熱膨張係数の差による熱応力の問題があって達成できな
い。
[0004] Therefore, in the conventional plasma etching electrode, it is unreasonable to separately manufacture the electrode and the holding ring, and when the diameter of the wafer is increased, a gap is likely to be formed at the joint between the electrode and the holding ring. There is a concern about dust generation. Moreover, since the electrode is made of expensive single-crystal silicon except for the vicinity of the processing gas through-hole, there is a problem that the manufacturing cost increases. In this case, if the vicinity of the processing gas through-hole and the other part are integrally formed of two members, that is, single crystal silicon and other members, it is possible to achieve low cost and low dust. The technique cannot be achieved due to the problem of thermal stress due to the difference in thermal expansion coefficient between the two members.

【0005】一方、ウエハの拡散工程に使用されるウエ
ハ支持装置は、例えば特開平4−188617号公報の
ように、上下に対向配置した一対の固定板と、これらの
固定板を連結する複数の保持ロッドからなり、該ロッド
の内側面にウエハを係止可能な保持溝を複数形成してい
る。しかし、この従来のウエハ支持装置は、固定板と保
持ロッドを高価なシリコン材で構成しているため、高価
になるという問題がある。
On the other hand, a wafer supporting device used in a wafer diffusion process is, for example, a pair of fixed plates arranged vertically opposed to each other and a plurality of fixed plates connecting these fixed plates as disclosed in Japanese Patent Application Laid-Open No. 4-188617. A holding rod is formed, and a plurality of holding grooves capable of locking the wafer are formed on the inner surface of the rod. However, this conventional wafer support apparatus has a problem that it is expensive because the fixing plate and the holding rod are made of an expensive silicon material.

【0006】そこで、例えば実公昭62−34439号
公報のように、保持ロッドをシリコン材で構成し、固定
板を石英ガラス板で構成すると、シリコンと石英ガラス
の熱膨張率の差が大きいため、熱応力によって固定板と
保持ロッドの嵌合部にクラックを生じたり割れたりし
て、パーティクルが発生するという問題がある。
Therefore, when the holding rod is made of a silicon material and the fixing plate is made of a quartz glass plate as disclosed in, for example, Japanese Utility Model Publication No. Sho 62-34439, the difference in thermal expansion coefficient between silicon and quartz glass is large. There is a problem that a crack is generated or broken at a fitting portion between the fixing plate and the holding rod due to thermal stress, and particles are generated.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような問
題を解決し、例えばプラズマエッチング用電極やウエハ
支持装置等の構成部品を含む半導体製造装置に好適で、
ウエハの大口径化に伴う半導体製造装置や生産設備等の
大形化に対応し、それらの装置や構成部品を合理的かつ
安価に製作できるとともに、歩留まりの向上と構成の簡
潔化並びに品質の向上を図れ、しかも低ダスト化とウエ
ハ汚染の低減を実現できるようにした、構成部材の接合
構造およびその接合方法並びに半導体製造装置用部材を
提供することを目的とする。
The present invention solves such a problem and is suitable for a semiconductor manufacturing apparatus including components such as a plasma etching electrode and a wafer supporting apparatus.
In response to the increase in size of semiconductor manufacturing equipment and production equipment due to the increase in wafer diameter, it is possible to manufacture such equipment and components in a reasonable and inexpensive manner, while improving yield, simplifying the configuration, and improving quality. It is an object of the present invention to provide a joining structure of constituent members, a joining method thereof, and a member for a semiconductor manufacturing apparatus, which can realize low dust and reduction of wafer contamination.

【0008】[0008]

【課題を解決するための手段】このため、請求項1の発
明は、熱膨張率の相違する二つの構成部材を、それらの
間に配置した接合部材を介して接合する構成部材の接合
構造において、前記各構成部材と同一若しくは略同質の
第1および第2接合片を両側に配置し、これら第1およ
び第2接合片の間に中間部材を配置して前記接合部材を
一体に構成するとともに、前記中間部材を前記第1およ
び第2接合片と同一若しくは略同質の組成成分で構成
し、かつその組成成分の比率を前記接合片方向に連続的
または段階的に変化させ、接合部材の構成を簡潔にする
とともに、構成部材間の熱膨張率の差による熱応力を前
記接合部材で吸収かつ緩和させ、例えば常温から700
℃程度の温度下における構成部材のクラックや割れの発
生を防止し、接合の品質向上と信頼性の向上を図れる。
SUMMARY OF THE INVENTION Accordingly, the invention of claim 1 is directed to a joining structure of components for joining two components having different coefficients of thermal expansion via a joining member disposed therebetween. A first and a second joining piece of the same or substantially the same quality as the respective constituent members are arranged on both sides, and an intermediate member is arranged between the first and the second joining pieces to integrally constitute the joining member. The intermediate member is composed of the same or substantially the same composition as the first and second joining pieces, and the ratio of the composition is continuously or stepwise changed in the direction of the joining piece to form the joining member. And the thermal stress due to the difference in the coefficient of thermal expansion between the constituent members is absorbed and reduced by the joining member.
It is possible to prevent cracks and cracks in the constituent members at a temperature of about ° C., thereby improving the quality and reliability of bonding.

【0009】請求項2の発明は、前記中間部材の組成成
分を対応する第1または第2接合片方向に漸増し、構成
部材間の熱膨張率の差と熱応力を漸減させて熱応力を緩
やかに吸収し、安定した接合構造を得られる。請求項3
の発明は、前記接合部材を前記二つの構成部材と同一若
しくは略同質の組成成分の粉末で焼結成形し、例えばこ
れを電気炉で成形することにより、従来のCVD法や溶
射法に比べて、大形の接合部材の製造が容易になり、例
えば半導体ウエハの大口径化に伴う半導体製造装置用部
材や生産設備等の大形化に対応し得るとともに、比較的
安価な設備で製造工程も単純化し得る。請求項4の発明
は、前記第1および第2接合片を対応する構成部材に直
接的に接合または溶接し、このような接合を前述の接合
部材による熱応力吸収作用によって可能にするととも
に、従来のような接合部の加工を要することなく、容易
かつ速やかに接合できる。
According to a second aspect of the present invention, the composition of the intermediate member is gradually increased in the direction of the corresponding first or second joining piece, and the difference in the coefficient of thermal expansion between the components and the thermal stress are gradually reduced to reduce the thermal stress. Absorbs gently and provides a stable joint structure. Claim 3
The invention is characterized in that the joining member is formed by sintering with a powder having the same or substantially the same composition as the two constituent members, and, for example, by molding this in an electric furnace, compared with the conventional CVD method or thermal spraying method. This makes it easy to manufacture large-sized joining members, for example, it is possible to cope with an increase in the size of semiconductor manufacturing equipment members and production equipment associated with an increase in the diameter of semiconductor wafers, and the manufacturing process can be performed with relatively inexpensive equipment. Can be simplified. According to a fourth aspect of the present invention, the first and second joining pieces are directly joined or welded to corresponding components, and such joining is made possible by the thermal stress absorbing action of the joining member. It is possible to join easily and quickly without the need for processing of the joining portion as described above.

【0010】請求項5の発明は、前記一方の構成部材を
単結晶シリコンで構成し、他方の構成部材を石英ガラス
で構成するとともに、前記第1接合片を多結晶または単
結晶シリコンで構成し、かつ前記第2接合片を石英ガラ
スで構成して、高価な単結晶シリコンの使用量を低減
し、歩留まりの向上と安価な接合構造を得られ、しかも
熱膨張率の相違する単結晶または多結晶シリコンと石英
ガラスの安定した接合構造を得られる。請求項6の発明
は、熱膨張率の相違する二つの構成部材を、それらの間
に配置した接合部材を介して接合する構成部材の接合方
法において、前記各構成部材と同一若しくは略同質の第
1および第2接合片を両側に配置し、これら第1および
第2接合片の間に中間部材を配置して一体に構成すると
ともに、前記中間部材を前記第1および第2接合片と同
一若しくは略同質の組成成分で構成し、かつその組成成
分の比率を前記接合片方向に連続的または段階的に変化
させ、接合部材の構成を簡潔にするとともに、構成部材
間の熱膨張率の差による熱応力を前記接合部材で吸収か
つ緩和させ、例えば常温から700℃程度の温度下にお
ける構成部材のクラックや割れの発生を防止し、接合の
品質向上と信頼性の向上を図れる。
According to a fifth aspect of the present invention, the one member is made of single-crystal silicon, the other member is made of quartz glass, and the first joining piece is made of polycrystalline or single-crystal silicon. In addition, the second bonding piece is made of quartz glass, so that the amount of expensive single crystal silicon used can be reduced, the yield can be improved and a low-cost bonding structure can be obtained. A stable bonding structure between crystalline silicon and quartz glass can be obtained. According to a sixth aspect of the present invention, there is provided a method for joining two constituent members having different coefficients of thermal expansion via a joining member disposed therebetween, wherein the first and second constituent members have the same or substantially the same quality. The first and second joining pieces are arranged on both sides, and an intermediate member is arranged between the first and second joining pieces to be integrally formed, and the intermediate member is the same as the first and second joining pieces or It is composed of substantially the same composition components, and the ratio of the composition components is changed continuously or stepwise in the direction of the joining piece to simplify the configuration of the joining members, and the difference in the coefficient of thermal expansion between the components. The thermal stress is absorbed and relaxed by the joining member, thereby preventing the occurrence of cracks and cracks in the constituent members at a temperature of, for example, from room temperature to about 700 ° C., thereby improving joining quality and reliability.

【0011】請求項7の発明は、前記中間部材の組成成
分を対応する第1または第2接合片方向に漸増し、構成
部材間の熱膨張率の差と熱応力を漸減させて熱応力を緩
やかに吸収し、接合の安定化を図れる。請求項8の発明
は、前記接合部材を前記二つの構成部材と同一若しくは
略同質の組成成分の粉末で焼結成形し、例えばこれを電
気炉で成形することにより、従来のCVD法や溶射法に
比べて、大形の接合部材の製造が容易になり、例えば半
導体ウエハの大口径化に伴う半導体製造装置用部材や生
産設備等の大形化に対応し得るとともに、比較的安価な
設備で製造工程も単純化し得る。請求項9の発明は、前
記第1および第2接合片を対応する構成部材に直接的に
加熱圧着または溶接し、このような接合を前述の接合部
材による熱応力吸収作用によって可能にするとともに、
従来のような接合部の加工を要することなく、容易かつ
速やかに接合できる。
According to a seventh aspect of the present invention, the composition of the intermediate member is gradually increased in the direction of the corresponding first or second joint piece, and the difference in the coefficient of thermal expansion between the constituent members and the thermal stress are gradually reduced to reduce the thermal stress. Absorbs gently and stabilizes bonding. The invention according to claim 8 is characterized in that the joining member is formed by sintering with a powder having the same or substantially the same composition as the two constituent members and, for example, by molding this in an electric furnace, the conventional CVD method or thermal spraying method. As compared with the above, the production of a large-sized joining member is facilitated, and for example, it is possible to cope with the enlargement of a member for a semiconductor manufacturing apparatus or a production facility accompanying the enlargement of the diameter of a semiconductor wafer, and at a relatively inexpensive facility. The manufacturing process can also be simplified. According to a ninth aspect of the present invention, the first and second joining pieces are directly heat-pressed or welded to the corresponding components, and such joining is enabled by the thermal stress absorbing action of the joining members,
The joining can be easily and quickly performed without the need for processing of the joining portion as in the related art.

【0012】請求項10の発明は、前記一方の構成部材
を単結晶シリコンで構成し、他方の構成部材を石英ガラ
スで構成するとともに、前記第1接合片を多結晶または
単結晶シリコンで構成し、前記第2接合片を石英ガラス
で構成して、高価な単結晶シリコンの使用量を低減し、
歩留まりの向上と安価な接合構造を得られ、しかも熱膨
張率の相違する単結晶または多結晶シリコンと石英ガラ
スの安定した接合を得られる。請求項11の発明は、前
記構成部材の接合面と接合部材の接合面とを鏡面状のテ
ーパ面に形成し、これら接合面を介して前記構成部材と
接合部材とを嵌合し、これらを加熱下で圧入固定して、
構成部材と接合部材との圧入を促し、これを円滑かつ確
実に行なえる。
According to a tenth aspect of the present invention, the one constituent member is made of single crystal silicon, the other constituent member is made of quartz glass, and the first joining piece is made of polycrystalline or single crystal silicon. The second joining piece is made of quartz glass to reduce the amount of expensive single crystal silicon,
An improved yield and an inexpensive bonding structure can be obtained, and a stable bonding between single crystal or polycrystalline silicon and quartz glass having different coefficients of thermal expansion can be obtained. According to an eleventh aspect of the present invention, the joining surface of the component and the joining surface of the joining member are formed as mirror-like tapered surfaces, and the component and the joining member are fitted through these joining surfaces. Pressing and fixing under heating,
The press-fitting of the component member and the joining member is promoted, and this can be performed smoothly and reliably.

【0013】請求項12の発明は、単結晶シリコン製の
構成部材と、石英ガラス製の構成部材とを接続した半導
体製造装置用部材において、前記各構成部材と同一若し
くは略同質の第1および第2接合片を両側に配置し、こ
れら第1および第2接合片の間に中間部材を配置して一
体に構成した接合部材を設け、該接合部材を前記構成部
材の間に配置して接続するとともに、前記中間部材を前
記第1および第2接合片と同一若しくは略同質の組成成
分で構成し、かつその組成成分の比率を前記接合片方向
に連続的または段階的に変化させ、第1および第2接合
片と中間部材を別設するものに比べて、部品点数が低減
し接合部材の構成の簡潔化を図れるとともに、隙間の発
生を防止して、低ダスト化とウエハ汚染の低減を実現す
る。しかも、構成部材間の熱膨張率の差による熱応力を
前記接合部材で吸収かつ緩和させ、例えば常温から70
0℃程度の温度下における構成部材のクラックや割れの
発生を防止し、低ダスト化とウエハ汚染の低減を増進す
る。
According to a twelfth aspect of the present invention, in a member for a semiconductor manufacturing apparatus in which a component member made of single-crystal silicon and a component member made of quartz glass are connected, first and second members having the same or substantially the same quality as the respective components are provided. Two joint pieces are arranged on both sides, an intermediate member is arranged between the first and second joint pieces to provide an integrally formed joint member, and the joint member is arranged and connected between the constituent members. In addition, the intermediate member is composed of the same or substantially the same composition as the first and second joining pieces, and the ratio of the composition is changed continuously or stepwise in the direction of the joining piece. Compared to the case where the second bonding piece and the intermediate member are separately provided, the number of parts is reduced, the structure of the bonding member can be simplified, and the generation of gaps is prevented, thereby reducing dust and reducing wafer contamination. I do. In addition, the thermal stress caused by the difference in the coefficient of thermal expansion between the constituent members is absorbed and relaxed by the joining member.
It prevents cracks and cracks in components at a temperature of about 0 ° C., and promotes reduction of dust and reduction of wafer contamination.

【0014】請求項13の発明は、前記中間部材の組成
成分を対応する第1または第2接合片方向に漸増し、構
成部材間の熱膨張率の差と熱応力を漸減させて熱応力を
緩やかに吸収し、構成部材のクラックや割れの発生を防
止して、低ダスト化とウエハ汚染の低減を実現する。請
求項14の発明は、前記接合部材を前記二つの構成部材
と同一若しくは略同質の組成成分の粉末で焼結成形し、
例えばこれを電気炉で成形することにより、従来のCV
D法や溶射法で製作したものに比べて、大形の接合部材
の製造が容易になり、例えば半導体ウエハの大口径化に
伴う半導体製造装置用部材、生産設備等の大形化に対応
し得るとともに、比較的安価な設備で製造工程も単純化
し得る請求項15の発明は、前記第1および第2接合片
を対応する構成部材に直接的に接合または溶接し、この
ような接合を前述の接合部材による熱応力吸収作用によ
って可能にするとともに、従来のような接合部の加工を
廃して、容易かつ速やかに接合できる。
According to a thirteenth aspect of the present invention, the composition of the intermediate member is gradually increased in the direction of the corresponding first or second joining piece, and the difference in the coefficient of thermal expansion between the constituent members and the thermal stress are gradually reduced to reduce the thermal stress. It absorbs gently and prevents cracks and cracks in the components, thereby realizing low dust and reduced wafer contamination. The invention according to claim 14, wherein the joining member is formed by sintering with a powder having the same or substantially the same composition as the two constituent members,
For example, by molding this in an electric furnace, the conventional CV
Compared to those manufactured by the D method or thermal spraying method, it is easier to manufacture large joining members. For example, it is possible to cope with the increase in the size of semiconductor manufacturing equipment members and production equipment as semiconductor wafers become larger in diameter. The invention according to claim 15, which is capable of simplifying the manufacturing process with relatively inexpensive equipment, directly joins or welds the first and second joint pieces to corresponding components, and performs such joint as described above. In addition to this, the joint member can be easily and quickly joined by eliminating the processing of the joint portion as in the related art.

【0015】請求項16の発明は、前記第1接合片を多
結晶または単結晶シリコンで構成し、前記第2接合片を
石英ガラスで構成し、高価な単結晶シリコンの使用量を
低減し、歩留まりの向上と半導体製造装置用部材ないし
該製造装置の製造コストの低減を図れ、しかも熱膨張率
の相違する単結晶または多結晶シリコンと石英ガラスの
安定した接合を得られ、それらのクラックや割れの発生
を防止して、低ダスト化とウエハ汚染の低減を図れる。
請求項17の発明は、前記半導体製造装置用部材がプラ
ズマエッチング用電極またはウエハ支持装置であり、高
価な単結晶シリコンの使用量を低減し、歩留まりの向上
と製造コストの低減を図れるとともに、クラックや割れ
を防止し、パーティクルの発生を防止する。
According to a sixteenth aspect of the present invention, the first joint piece is made of polycrystalline or single-crystal silicon, and the second joint piece is made of quartz glass, and the amount of expensive single-crystal silicon used is reduced. It is possible to improve the yield and reduce the production cost of the members for semiconductor manufacturing equipment or the manufacturing equipment, and obtain a stable bond between single crystal or polycrystalline silicon having different coefficients of thermal expansion and quartz glass, and crack or crack them. , And reduction of dust and reduction of wafer contamination can be achieved.
According to a seventeenth aspect of the present invention, the member for a semiconductor manufacturing apparatus is an electrode for plasma etching or a wafer supporting apparatus, which can reduce the amount of expensive single-crystal silicon used, improve the yield and reduce the manufacturing cost, and reduce cracks. Cracks and particles are prevented.

【0016】[0016]

【発明の実施の形態】以下、本発明を半導体製造装置用
部材として、プラズマエッチング装置に取り付けるプラ
ズマエッチング用電極に適用した図示の実施形態につい
て説明すると、図1乃至図10において1は直径300
mm、厚さ10mmの円板形のプラズマエッチング用電
極で、これは前記電極1の構成部材である外周リング2
と、リング状の接合部材3と、前記電極1の構成部材で
ある電極板4とからなり、これらを高温下で加圧し一体
に構成している。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a semiconductor manufacturing apparatus according to an embodiment of the present invention applied to a plasma etching electrode attached to a plasma etching apparatus. FIG.
mm, a disk-shaped electrode for plasma etching having a thickness of 10 mm.
, A ring-shaped joining member 3, and an electrode plate 4, which is a constituent member of the electrode 1, which are integrally formed by pressing at a high temperature.

【0017】前記外周リング2は石英ガラスで構成さ
れ、これは図3,4に示すように石英ガラスを中空円板
状に成形し、その内部に前記接合部材3を嵌合可能な通
孔5を形成している。前記通孔5の内周面5aは上方に
拡径するテーパ面状に形成され、その小径側内径は後述
の貫通穴と略同径に形成され、そのテーパ角は略60゜
に形成されていて、この内周面5aを鏡面状に研磨加工
している。
The outer peripheral ring 2 is made of quartz glass, which is formed by forming quartz glass into a hollow disk shape as shown in FIGS. 3 and 4, and through which a through hole 5 in which the joining member 3 can be fitted. Is formed. The inner peripheral surface 5a of the through hole 5 is formed in a tapered surface shape whose diameter increases upward, the smaller diameter inner diameter is formed to be substantially the same diameter as a through hole described later, and the taper angle is formed to approximately 60 °. The inner peripheral surface 5a is polished to a mirror surface.

【0018】前記接合部材3は図5のようにテーパリン
グ状に形成され、その大径側の外径が前記通孔5の大径
側より若干大径に形成されている。接合部材3の外周面
3aは上方に拡径するテーパ面状に形成され、そのテー
パ角は略60゜に形成され、この外周面3aを鏡面状に
研磨加工している。
The joining member 3 is formed in a tapered ring shape as shown in FIG. 5, and the outer diameter on the large diameter side is formed slightly larger than the large diameter side of the through hole 5. The outer peripheral surface 3a of the joining member 3 is formed in a tapered surface shape whose diameter increases upward, the taper angle is formed to be approximately 60 °, and the outer peripheral surface 3a is polished to a mirror surface.

【0019】前記接合部材3の内部に前記電極板4を嵌
合可能な通孔6が形成され、該孔6の内周面6aは上方
に拡径するテーパ面状に形成され、そのテーパ角は略6
0゜に形成されていて、この内周面6aを鏡面状に研磨
加工している。
A through hole 6 into which the electrode plate 4 can be fitted is formed inside the joining member 3, and an inner peripheral surface 6a of the hole 6 is formed in a tapered shape whose diameter increases upward, and its taper angle is set. Is about 6
The inner peripheral surface 6a is mirror-polished.

【0020】前記接合部材3は図5,6のように、外周
側に配置した石英ガラス製のリング状の第1接合片7
と、内周側に配置した多結晶シリコン製のリング状の第
2接合片8と、それらの間に配置した中間部材9とで一
体に構成されている。これら第1および第2接合片7,
8と中間部材9は、それらと同一若しくは略同質の成分
からなる数μmレベルの単結晶シリコンまたは石英ガラ
スの粉末を任意の割合で混合し、これを1300℃〜2
000℃の高温かつ所定圧力下で、熱間プレス(H
P)、熱間静水圧プレス(HIP)、放電プラズマ焼結
(SPS)等の加圧焼結法によって中空円板形に焼結成
形し、成形後図示の仮想線部の内外周面をテーパ面状に
切削し、鏡面状に研磨加工している。
As shown in FIGS. 5 and 6, the joining member 3 is a quartz glass ring-shaped first joining piece 7 disposed on the outer peripheral side.
And a ring-shaped second bonding piece 8 made of polycrystalline silicon disposed on the inner peripheral side, and an intermediate member 9 disposed therebetween. These first and second joining pieces 7,
8 and the intermediate member 9 are mixed with powder of single crystal silicon or quartz glass of several μm level composed of the same or substantially the same components at an arbitrary ratio, and then mixed at 1300 ° C. to 2 ° C.
Hot pressing (H
P), hot isostatic pressing (HIP), pressure plasma sintering (SPS) and other pressure sintering methods, sintering and molding into a hollow disk shape, and after molding, tapering the inner and outer peripheral surfaces of the imaginary line shown in the figure It is cut into a plane and polished into a mirror.

【0021】すなわち、前記第1接合片7は100%石
英ガラス製であり、第2接合片8は100%多結晶シリ
コン製であって、これらの接合片7,8は略同形の台形
断面形状に形成されている。また、中間部材9は単結晶
シリコン粉末と石英ガラス粉末の混合割合を内外方向へ
漸次任意の割合で変化させ、第1接合片7または第2接
合片8に向かって単結晶シリコンまたは石英ガラスの混
合割合を増減させ、第1接合片7で100%石英ガラス
に、第2接合片8で100%多結晶シリコンに設定して
いて、その断面形状を縦長矩形に形成している。
That is, the first joining piece 7 is made of 100% quartz glass, the second joining piece 8 is made of 100% polycrystalline silicon, and these joining pieces 7 and 8 have substantially the same trapezoidal cross section. Is formed. Further, the intermediate member 9 gradually changes the mixing ratio of the single crystal silicon powder and the quartz glass powder inward and outward at an arbitrary ratio, and moves the single crystal silicon or quartz glass toward the first bonding piece 7 or the second bonding piece 8. The mixing ratio is increased or decreased so that the first bonding piece 7 is set to 100% quartz glass and the second bonding piece 8 is set to 100% polycrystalline silicon, and the cross-sectional shape is formed into a vertically long rectangle.

【0022】実施形態では、前記単結晶シリコンと石英
ガラスとの混合割合の規定手段として、中間部材9の内
外方向を複数のスライス片10で区画し、これらのスラ
イス片10を重合して接合するとともに、各スライス片
10における単結晶シリコンと石英ガラスの重量比を、
例えば内側から外側に向かって9:1、8:2、6:
4、4:6、2:8、1:9のように連続的に変化させ
ている。この場合、前記単結晶シリコンと石英ガラスの
混合割合を段階的に変化させても良く、そのようにする
ことで中間部材9の区画数が低減し、粉末成形時の手間
が軽減する。
In the embodiment, as a means for defining the mixing ratio of the single crystal silicon and the quartz glass, the inside and outside directions of the intermediate member 9 are partitioned by a plurality of slice pieces 10, and these slice pieces 10 are superposed and joined. At the same time, the weight ratio of single crystal silicon and quartz glass in each slice piece 10 is
For example, from the inside to the outside, 9: 1, 8: 2, 6:
4, 4: 6, 2: 8, and 1: 9. In this case, the mixing ratio of the single crystal silicon and the quartz glass may be changed in a stepwise manner. By doing so, the number of sections of the intermediate member 9 is reduced, and the time required for powder molding is reduced.

【0023】前記電極板3は図7,8に示すように、単
結晶シリコンによって円錐台形板に成形され、その大径
側の外径を前記通孔6の大径側よりも若干大径に形成
し、その板面の全域に多数の透孔11を形成している。
電極板4の外周面4aは上方に拡径するテーパ面状に形
成され、そのテーパ角は略60゜に形成され、この外周
面4aを鏡面状に研磨加工している。
As shown in FIGS. 7 and 8, the electrode plate 3 is formed into a truncated conical plate using single crystal silicon, and its outer diameter is slightly larger than the larger diameter of the through hole 6. A large number of through-holes 11 are formed in the entire area of the plate surface.
The outer peripheral surface 4a of the electrode plate 4 is formed in a tapered surface shape whose diameter increases upward, the taper angle is formed to be approximately 60 °, and the outer peripheral surface 4a is polished to a mirror surface.

【0024】この他、図中12は石英ガラス製の円板形
の治具で、1000℃〜1300℃に加熱可能な電気炉
(図示略)内に上下動可能に設けられ、前記電極板4を
押圧可能にしている。13は石英ガラス製の治具で、前
記治具12より下方の電気炉内の定位置に設置され、そ
の上面に外周リング2を載置可能にしている。前記治具
13に大径の貫通穴14が形成され、該穴14に接合部
材3の小径側周面を受け入れ可能にしている。
In addition, reference numeral 12 in the figure denotes a disc-shaped jig made of quartz glass, which is vertically movable in an electric furnace (not shown) which can be heated to 1000 ° C. to 1300 ° C. Can be pressed. Reference numeral 13 denotes a jig made of quartz glass, which is installed at a fixed position in the electric furnace below the jig 12 so that the outer peripheral ring 2 can be mounted on the upper surface thereof. A large diameter through hole 14 is formed in the jig 13, and the small diameter side peripheral surface of the joining member 3 can be received in the hole 14.

【0025】このように構成したプラズマエッチング用
電極を製造する場合は、予め外周リング2と接合部材3
と電極板4とをそれらの接合前の形状寸法に作製して置
く。すなわち、外周リング2は石英ガラスで中空円板形
に成形し、その通孔5の内周面5aを上方に拡径するテ
ーパ面状に形成し、この内周面5aを鏡面状に研磨加工
して置く。この状況は図3,4のようである。
When manufacturing the electrode for plasma etching constituted as described above, the outer peripheral ring 2 and the joining member 3 are previously prepared.
And the electrode plate 4 are manufactured and placed in the shape and dimensions before joining. That is, the outer peripheral ring 2 is formed into a hollow disk shape with quartz glass, and the inner peripheral surface 5a of the through hole 5 is formed in a tapered surface shape that expands upward, and the inner peripheral surface 5a is polished into a mirror surface. And put. This situation is as shown in FIGS.

【0026】また、接合部材3は数μmレベルの単結晶
シリコンおよび石英ガラスの粉末を用意し、石英ガラス
100%の粉末を所定幅のリング状に整形配置し、この
内側に単結晶シリコン100%の粉末を前記石英ガラス
の粉末と略等幅のリング状に整形配置する。
The joining member 3 is prepared by preparing powder of single-crystal silicon and quartz glass having a level of several μm, arranging powder of 100% quartz glass in a ring shape having a predetermined width, and placing 100% of single-crystal silicon inside the ring. Is shaped and arranged in a ring shape having substantially the same width as the quartz glass powder.

【0027】そして、これら内外の粉末リングの間に、
単結晶シリコンと石英ガラスの各粉末を任意の割合に混
合した複数種の混合粉末リングを同心円状に整形配置す
る。実施形態では、単結晶シリコンの粉末と石英ガラス
の粉末の重量比が9:1、8:2、6:4、4:6、
2:8、1:9の6種類の混合粉末を作製し、これらを
内側から外側に向かって同心円状に配置し、その最内側
の混合粉末に隣接する第2接合片8で多結晶シリコン1
00%とし、最外側の混合粉末に隣接する第1接合片7
で石英ガラス100%としている。
And, between these inner and outer powder rings,
A plurality of types of mixed powder rings obtained by mixing single-crystal silicon and quartz glass powder in an arbitrary ratio are arranged concentrically. In the embodiment, the weight ratio of the single crystal silicon powder to the quartz glass powder is 9: 1, 8: 2, 6: 4, 4: 6,
Six kinds of mixed powders of 2: 8 and 1: 9 are produced, these are arranged concentrically from the inside to the outside, and the polycrystalline silicon 1 is attached to the second bonding piece 8 adjacent to the innermost mixed powder.
00%, and the first joining piece 7 adjacent to the outermost mixed powder
Is 100% quartz glass.

【0028】そして、前記粉末リングを電気炉に搬入
し、これを1300℃〜2000℃の高温かつ所定圧力
下で、前記外周リング2よりも若干肉厚の中空円板形に
焼結成形し、成形後内外周面をテーパ面状に切削して鏡
面状に研磨加工する。
Then, the above-mentioned powder ring is carried into an electric furnace and sintered at a high temperature of 1300 ° C. to 2000 ° C. and under a predetermined pressure to form a hollow disk slightly thicker than the outer peripheral ring 2. After the molding, the inner and outer peripheral surfaces are cut into a tapered surface and polished into a mirror surface.

【0029】このように、接合部材3は電気炉を利用し
て焼結成形しているから、例えばCVD法や溶射法等を
応用する場合に比べて、大形の成形品を容易かつ速やか
に製作でき、ウエハの大口径化に伴う半導体製造装置の
大型化に容易に対応できるとともに、設備費が比較的安
価な上に製造工程が単純で、これを安価に製作できる利
点がある。
As described above, since the joining member 3 is formed by sintering using an electric furnace, a large-sized molded product can be formed easily and promptly as compared with a case where, for example, a CVD method or a thermal spraying method is applied. It has the advantages that it can be manufactured and can easily cope with an increase in the size of a semiconductor manufacturing apparatus accompanying the increase in the diameter of a wafer, has relatively low equipment costs, has a simple manufacturing process, and can be manufactured at low cost.

【0030】こうして作製した接合部材3は図5,6の
ようで、外周リング2よりも肉厚のテーパリング状に形
成され、100%石英ガラス製の第1接合片7と、10
0%多結晶シリコン製の第2接合片8と、それらの間に
位置する中間部材9とからなり、該中間部材9は第1接
合片7側に向かって石英ガラスの含有成分が漸増し、単
結晶シリコンの含有成分が漸減する6つのスライス片1
0を有している。
As shown in FIGS. 5 and 6, the joining member 3 thus manufactured is formed in a tapered ring shape having a thickness greater than that of the outer peripheral ring 2 and includes first joining pieces 7 and 10 made of 100% quartz glass.
A second joining piece 8 made of 0% polycrystalline silicon, and an intermediate member 9 located therebetween; the intermediate member 9 gradually increases the content of quartz glass toward the first joining piece 7; Six slice pieces 1 in which the content of single crystal silicon gradually decreases
It has 0.

【0031】このように接合部材3は、熱膨張係数が大
きく相違する第1接合片7と第2接合片8を中間部材9
を介して接合し、それらの直接的な接合を回避してい
る。因みに、単結晶シリコンの熱膨張係数は、0.00
00023×(1/K)、石英ガラスの熱膨張係数は、
0.00000055×(1/K)である。したがっ
て、第1および第2接合片7,8の直接的な接合に伴う
加熱、冷却時の熱応力を中間部材9が吸収して、亀裂や
割れの発生を防止し、接合部材3の品質の安定化と生産
性の向上を図れる。
As described above, the joining member 3 is formed by connecting the first joining piece 7 and the second joining piece 8 having greatly different coefficients of thermal expansion to the intermediate member 9.
And avoid their direct joining. Incidentally, the thermal expansion coefficient of single crystal silicon is 0.00
00003 × (1 / K), the thermal expansion coefficient of quartz glass is
0.000000055 × (1 / K). Therefore, the intermediate member 9 absorbs the thermal stress during heating and cooling accompanying the direct joining of the first and second joining pieces 7 and 8, thereby preventing the occurrence of cracks and cracks and improving the quality of the joining member 3. Stabilization and improvement of productivity can be achieved.

【0032】この場合、中間部材9における単結晶シリ
コンと石英ガラスの混合割合を実施形態のように連続的
に変化すれば、熱膨張率が連続的に変化し、熱応力を緩
やかに吸収する。
In this case, if the mixing ratio of single crystal silicon and quartz glass in the intermediate member 9 changes continuously as in the embodiment, the coefficient of thermal expansion changes continuously, and the thermal stress is gradually absorbed.

【0033】一方、電極板4は単結晶シリコンで前記接
合部材3よりも厚肉の円錐台形板に形成し、その大径側
の外径を前記通孔6の大径側より若干大径に形成し、そ
の外周面4aを鏡面状に研磨加工するとともに、板面の
全域に多数の透孔11を形成する。この状況は図7,8
のようである。このように電極板4は全域を透孔11で
占有し、単結晶シリコンを有効かつ合理的に使用してい
るから、これを安価に製作できるとともに、歩留まりが
向上する。
On the other hand, the electrode plate 4 is made of single-crystal silicon and formed in a frustoconical plate thicker than the joining member 3, and the outer diameter of the large diameter side is made slightly larger than the large diameter side of the through hole 6. Then, the outer peripheral surface 4a is polished to a mirror surface, and a large number of through holes 11 are formed in the entire area of the plate surface. This situation is shown in FIGS.
It is like. As described above, the entire area of the electrode plate 4 is occupied by the through holes 11, and the single crystal silicon is effectively and rationally used. Therefore, the single crystal silicon can be manufactured at low cost and the yield is improved.

【0034】こうして作製した外周リング2と接合部材
3と電極板4を順次軽く嵌合して積み重ね、それらの上
下位置に治具13,12を配置する。すなわち、外周リ
ング2を治具13上に載せ、前記リング2の通孔5に接
合部材3を軽く嵌合し、該部材3の通孔6に電極板4を
軽く嵌合する。そして、前記電極板4上に治具12を載
せ、この状態を保持して電気炉に搬入する。
The outer ring 2 thus produced, the joining member 3 and the electrode plate 4 are sequentially lightly fitted and stacked, and jigs 13 and 12 are arranged above and below them. That is, the outer ring 2 is placed on the jig 13, the joining member 3 is lightly fitted into the through hole 5 of the ring 2, and the electrode plate 4 is lightly fitted into the through hole 6 of the member 3. Then, the jig 12 is placed on the electrode plate 4, and the jig 12 is kept in this state and is carried into the electric furnace.

【0035】前記電気炉は昇温速度30℃/min、炉
内温度を1000℃〜1300℃の間の所定温度に設定
し、この状態で治具12を押し下げ、各接合面となる内
外面3a,5aおよび4a,6aに対し0.5〜4.0
kg/cm2 の圧力を加え、当該押圧状態を一定時間保
持する。
The electric furnace is set at a heating rate of 30 ° C./min and the furnace temperature is set to a predetermined temperature between 1000 ° C. and 1300 ° C. In this state, the jig 12 is pushed down, and the inner and outer surfaces 3a to be the respective joining surfaces are set. , 5a and 4a, 6a for 0.5 to 4.0.
A pressure of kg / cm @ 2 is applied, and the pressed state is maintained for a certain time.

【0036】このようにすると、外周リング2と接合部
材3と電極板4とが加熱され、それらの嵌合と圧入を促
進する。この場合、接合部材3の第1および第2接合片
7,8間の熱応力は、熱膨張率の遷移部である中間部材
9で緩やかに吸収され、それらの割れや亀裂の発生を防
止する。
In this way, the outer ring 2, the joining member 3, and the electrode plate 4 are heated to promote their fitting and press-fitting. In this case, the thermal stress between the first and second joining pieces 7 and 8 of the joining member 3 is gradually absorbed by the intermediate member 9 which is a transition portion of the coefficient of thermal expansion, thereby preventing the generation of cracks and cracks. .

【0037】前記時間経過後、外周リング2と接合部材
3と電極板4とが十分に嵌合し接合されたところで、治
具12による押圧を解除し、炉内の冷却を開始する。実
施形態では安定した製品を得るために、冷却速度をコン
トロールした。この冷却時においても、接合部材3の第
1および第2接合片7,8間の熱応力は、熱膨張率の遷
移部である中間部材9で緩やかに吸収され、それらの割
れや亀裂の発生を防止する。
After the elapse of the time, when the outer ring 2, the joining member 3, and the electrode plate 4 are sufficiently fitted and joined, the pressing by the jig 12 is released, and the cooling in the furnace is started. In the embodiment, the cooling rate was controlled to obtain a stable product. Even during this cooling, the thermal stress between the first and second joining pieces 7 and 8 of the joining member 3 is gradually absorbed by the intermediate member 9 which is a transition portion of the coefficient of thermal expansion, and the generation of cracks and cracks thereof occurs. To prevent

【0038】冷却後、外周リング2と接合部材3と電極
板4とは、一種の焼きばめ状態によって一体に接合され
る。この状況は図10のようである。因みに、発明者が
電極板4と第2接合片8、外周リング2と第1接合片と
の各接合面の接合強度、つまり破壊強度を測定したとこ
ろ、単結晶シリコン、石英ガラス単独の破壊強度と略等
しく、前記接合法においても既設品と同等の強度を有す
ることが確認された。これは各接合面をテーパ状に形成
し、これを鏡面仕上げすることで、広い接合面積と緊密
な密着を得られたことによる。
After cooling, the outer ring 2, the joining member 3 and the electrode plate 4 are joined together in a kind of shrink fit. This situation is as shown in FIG. Incidentally, when the inventor measured the bonding strength of each bonding surface between the electrode plate 4 and the second bonding piece 8 and the bonding surface between the outer peripheral ring 2 and the first bonding piece, that is, the breaking strength, the breaking strength of single crystal silicon or quartz glass alone was measured. Approximately, and it was confirmed that the bonding method had the same strength as existing products. This is because a wide bonding area and close contact were obtained by forming each bonding surface in a tapered shape and mirror-finish the surfaces.

【0039】この後、前記接合品の上下面を平面研削
し、その凸凹部を除去して所定の平面度、平行度に加工
し、図1,2に示すプラズマエッチング用電極を得た。
Thereafter, the upper and lower surfaces of the joined product were ground, the projections and recesses were removed, and the flatness and parallelism were processed to obtain the electrodes for plasma etching shown in FIGS.

【0040】こうして製作したプラズマエッチング用電
極は、エッチングガスを導く透孔11を形成した電極板
4と、該電極板4を取り付ける外周リング2とを一体に
構成したから、これらを二部品で別々に構成する従来の
ものに比べて、部品点数が少なく構成の簡潔化を図れる
とともに、これをプラズマエッチング装置に取り付けた
際、電極板4と外周リング2との間に従来のような隙間
を生じないから、該隙間によるダストを低減し、ウエハ
の汚染を防止する。
The electrode for plasma etching manufactured in this way is constituted integrally with the electrode plate 4 in which the through hole 11 for introducing the etching gas is formed and the outer peripheral ring 2 to which the electrode plate 4 is attached. The number of parts is smaller than that of the conventional structure, and the structure can be simplified. When the structure is attached to the plasma etching apparatus, a gap is formed between the electrode plate 4 and the outer ring 2 as in the related art. Therefore, dust due to the gap is reduced, and contamination of the wafer is prevented.

【0041】また、エッチングガスを導く透孔11を形
成した電極板4のみを単結晶シリコンで構成したから、
電極全体を単結晶シリコンで構成する従来のものに比べ
て、高価な単結晶シリコンの使用量を低減し、これを安
価に製作できるとともに、歩留まりが向上する。
Also, since only the electrode plate 4 in which the through holes 11 for introducing the etching gas are formed is made of single crystal silicon,
Compared with a conventional electrode in which the entire electrode is made of single-crystal silicon, the amount of expensive single-crystal silicon used can be reduced, and this can be manufactured at low cost, and the yield can be improved.

【0042】また、中間部材9を第1および第2接合片
7,8と同一若しくは略同質の組成成分で構成し、かつ
その組成成分の比率を前記接合片7,8方向に連続的ま
たは段階的に変化させたから、構成部材2,4間の熱膨
張率の差による熱応力を前記中間部材9で吸収かつ緩和
し、例えば常温から700℃程度の温度下における構成
部材2,4のクラックや割れの発生を防止し、接合の品
質向上と信頼性の向上を図れる。
The intermediate member 9 is composed of the same or substantially the same composition as the first and second joining pieces 7 and 8, and the ratio of the composition is continuously or stepwise in the direction of the joining pieces 7 and 8. The thermal stress caused by the difference in the coefficient of thermal expansion between the constituent members 2 and 4 is absorbed and relaxed by the intermediate member 9, for example, cracks of the constituent members 2 and 4 at a temperature from normal temperature to about 700 ° C. The occurrence of cracks can be prevented, and the quality of joining and the reliability can be improved.

【0043】図11乃至図13は本発明の他の実施形態
を示し、前述の実施形態と対応する構成部分に同一の符
号を用いている。この実施形態は本発明をプラズマエッ
チング用電極の代わりに、半導体製造装置用部材とし
て、縦型のウエハ支持装置15に適用している。
FIGS. 11 to 13 show another embodiment of the present invention, in which the same reference numerals are used for components corresponding to those of the above-described embodiment. In this embodiment, the present invention is applied to a vertical wafer support device 15 as a member for a semiconductor manufacturing apparatus instead of a plasma etching electrode.

【0044】前記ウエハ支持装置15は、上下に離間し
て配置した構成部材である石英ガラス製の円板形の固定
板16,17と、それらの間に立設した構成部材である
単結晶シリコン製の三本の支持ロッド18と、該ロッド
18の上下端部と固定板16,17との間に配置した接
合部材3とで構成され、前記支持ロッド18の内側面に
ウエハ19を掛け止め可能な複数の係止溝20を形成し
ている。
The wafer support device 15 is composed of quartz glass disk-shaped fixing plates 16 and 17 which are components vertically separated from each other, and single crystal silicon which is a component standing upright between them. And three joining rods 3 disposed between the upper and lower ends of the rod 18 and the fixing plates 16 and 17. The wafer 19 is hooked on the inner surface of the supporting rod 18. A plurality of possible locking grooves 20 are formed.

【0045】前記接合部材3は支持ロッド18の断面形
状と同形の矩形板状に形成され、これは図12,13の
ように上下両端部に配置した石英ガラス製の第1接合片
7と、単結晶若しくは多結晶シリコン製の第2接合片8
と、これらの間に配置した中間部材9とで構成されてい
る。
The joining member 3 is formed in the shape of a rectangular plate having the same shape as the cross section of the support rod 18. The first joining piece 7 is made of quartz glass and disposed at both upper and lower ends as shown in FIGS. Second bonding piece 8 made of single crystal or polycrystalline silicon
And an intermediate member 9 disposed therebetween.

【0046】前記中間部材9は、平均粒径数μmの単結
晶シリコンまたは多結晶シリコン粉末と、平均粒径数μ
mの石英ガラス粉末を作製し、これらの粉末を内外方向
へ任意の割合で混合し、第1または第2接合片7,8方
向へ単結晶シリコンまたは石英ガラスの混合割合を増減
させ、第1接合片で100%石英ガラスに、第2接合片
8で100%多結晶シリコンに設定していて、これを高
温加熱し加圧して焼結成形する。
The intermediate member 9 is composed of a single crystal silicon or polycrystalline silicon powder having an average particle size of several μm,
m of quartz glass powder, and these powders are mixed at an arbitrary ratio inward and outward directions, and the mixing ratio of single crystal silicon or quartz glass is increased or decreased in the first or second joint pieces 7 and 8 directions. The joint piece is set to 100% quartz glass, and the second joint piece 8 is set to 100% polycrystalline silicon.

【0047】実施形態では、前記単結晶シリコンと石英
ガラスの混合割合の規定手段として、中間部材9を厚さ
方向に複数のスライス片10で区画し、これらのスライ
ス片10を積層して接合するとともに、各スライス片1
0における単結晶シリコンンと石英ガラスの重量比を、
例えば第2接合部材7から第1接合部材8方向へ9:
1、8:2、7:3、5:5、6:4、4:6、3:
7、2:8、1:9のように連続的に変化させている。
In the embodiment, the intermediate member 9 is divided into a plurality of slices 10 in the thickness direction, and these slices 10 are stacked and joined as means for defining the mixing ratio of the single crystal silicon and quartz glass. With each slice 1
The weight ratio of single crystal silicon to quartz glass at 0
For example, from the second joining member 7 to the first joining member 8 9:
1, 8: 2, 7: 3, 5: 5, 6: 4, 4: 6, 3:
7, 2: 8, 1: 9.

【0048】この場合、前記中間部材9の単結晶シリコ
ンと石英ガラスの混合割合を段階的に変化させても良
く、そのようにすることで中間部材9の区画数が低減
し、粉末成形時の手間が軽減する。
In this case, the mixing ratio of the single crystal silicon and the quartz glass of the intermediate member 9 may be changed in a stepwise manner, whereby the number of sections of the intermediate member 9 is reduced, and The hassle is reduced.

【0049】前記ウエハ支持装置15を組み立てる場合
は、固定板16,17と、支持ロッド18と、支持ロッ
ド18の断面形状に切断した接合部材3とを用意し、支
持ロッド18の両端面と接合部材3の第2接合片8の端
面を研磨し、これらを1000℃〜1200℃に加熱
し、約1kgf/cm2 で圧着して直接的に接合する。
When assembling the wafer support device 15, fixing plates 16 and 17, a support rod 18, and a joining member 3 cut into a sectional shape of the support rod 18 are prepared and joined to both end surfaces of the support rod 18. The end faces of the second joining pieces 8 of the member 3 are polished, heated to 1000 ° C. to 1200 ° C., and bonded directly by pressure bonding at about 1 kgf / cm 2.

【0050】上記接合後、当該接合部を研磨して段差を
なくし、付着物の残り易い凹部を除去する。次に接合部
材3の第1接合片7の端面を研磨し、これを固定板17
の所定位置に溶着するとともに、支持ロッド18の内側
面に係止溝20を溝切り加工する。
After the above-mentioned joining, the joining portion is polished to eliminate a step, and a concave portion where an adhered substance is apt to remain is removed. Next, the end face of the first joining piece 7 of the joining member 3 is polished, and this is fixed to the fixing plate 17.
And a groove 20 is formed in the inner surface of the support rod 18.

【0051】こうして組み立てたウエハ支持装置15
は、熱膨張率が大きく相違する固定板16,17と支持
ロッド18とを、接合部材3を介して直接接合している
から、支持ロッドを固定板に嵌合して取り付ける従来装
置のような嵌合部のクラックやパーティクルの発生を防
止するとともに、嵌合孔や嵌合凸部の複雑な加工を要し
ないから、その分容易かつ安価に製作できる。
The wafer supporting device 15 thus assembled
Since the fixing plates 16 and 17 having significantly different coefficients of thermal expansion and the support rods 18 are directly joined via the joining member 3, the support rods are fitted and fixed to the fixing plates as in the conventional device. Cracks and particles are prevented from being generated in the fitting portion, and complicated processing of the fitting hole and the fitting projection is not required.

【0052】また、接合部材3は一端部を支持ロッド1
8と同質の多結晶シリコンで構成し、他端部を固定板1
6,17と同質の石英ガラスで構成し、それら間に熱膨
張率が遷移する中間部材9を配置したから、固定板1
6,17に対する第1および第2接合片7,8の直接的
な接合に伴う加熱、冷却時の熱応力を吸収かつ緩和し
て、前記接合部の亀裂や割れの発生を防止し、接合部の
クラックやパーティクルの発生を防止するとともに、ウ
エハ支持装置15の品質の安定化と生産性の向上を図れ
る。
The joining member 3 has one end portion of the support rod 1.
8 made of polycrystalline silicon having the same quality as that of FIG.
6 and 17, and the intermediate member 9 having a coefficient of thermal expansion transition is arranged between them.
Absorbs and relaxes thermal stress during heating and cooling associated with the direct joining of the first and second joint pieces 7, 8 to the joints 6, 17, preventing cracks and cracks at the joints, Cracks and particles are prevented, and the quality of the wafer support device 15 can be stabilized and the productivity can be improved.

【0053】更に、ウエハ支持装置15は支持ロッド1
8を単結晶シリコンで構成し、固定板16,17を石英
ガラスで構成し、高価な単結晶シリコンの使用量を低減
したから、その分製作コストの低減を図れる。
Further, the wafer support device 15 is provided with the support rod 1
8 is made of single crystal silicon, and the fixing plates 16 and 17 are made of quartz glass, and the amount of expensive single crystal silicon used is reduced, so that the manufacturing cost can be reduced accordingly.

【0054】なお、前述の実施形態は何れも本発明を半
導体製造装置用部材であるプラズマエッチング用電極1
やウエハ支持装置15に適用しているが、この例に限ら
ず他の半導体製造装置用部材ないしは半導体製造装置、
他の製造装置等において、熱膨張率の相違する二部材の
接合法ないし接合構造に広く適応し得る。
In each of the above embodiments, the present invention is applied to a plasma etching electrode 1 which is a member for a semiconductor manufacturing apparatus.
Or the wafer support device 15, but is not limited to this example, and other members for a semiconductor manufacturing device or a semiconductor manufacturing device,
In other manufacturing apparatuses, it can be widely applied to a joining method or a joining structure of two members having different coefficients of thermal expansion.

【0055】[0055]

【発明の効果】請求項1の発明は、各構成部材と同一若
しくは略同質の第1および第2接合片を両側に配置し、
これら第1および第2接合片の間に中間部材を配置して
前記接合部材を一体に構成するとともに、前記中間部材
を前記第1および第2接合片と同一若しくは略同質の組
成成分で構成し、かつその組成成分の比率を前記接合片
方向に連続的または段階的に変化させたから、接合部材
の部品点数が低減して構成が簡潔になるとともに、構成
部材間の熱膨張率の差による熱応力を前記接合部材で吸
収かつ緩和させ、例えば常温から700℃程度の温度下
における構成部材のクラックや割れの発生を防止して、
接合の品質向上と信頼性の向上を図ることができる。請
求項2の発明は、前記中間部材の組成成分を対応する第
1または第2接合片方向に漸増したから、構成部材間の
熱膨張率の差と熱応力を漸減させて熱応力を緩やかに吸
収し、安定した接合構造を得ることができる。
According to the first aspect of the present invention, the first and second joining pieces of the same or substantially the same quality as the respective constituent members are arranged on both sides,
An intermediate member is arranged between the first and second joint pieces to integrally form the joint member, and the intermediate member is formed of the same or substantially the same composition as the first and second joint pieces. And, since the ratio of the composition component is changed continuously or stepwise in the direction of the joining piece, the number of parts of the joining member is reduced, the structure is simplified, and the heat due to the difference in the coefficient of thermal expansion between the constituent members is reduced. Absorbing and relaxing the stress by the joining member, for example, by preventing cracks and cracks of the component members at a temperature of about room temperature to about 700 ° C,
It is possible to improve the quality and reliability of bonding. According to the second aspect of the present invention, since the composition of the intermediate member is gradually increased in the corresponding first or second joining piece direction, the difference in the coefficient of thermal expansion between the constituent members and the thermal stress are gradually reduced to gradually reduce the thermal stress. Absorbing and a stable bonding structure can be obtained.

【0056】請求項3の発明は、前記接合部材を前記二
つの構成部材と同一若しくは略同質の組成成分の粉末で
焼結成形したから、例えばこれを電気炉で成形すること
により、従来のCVD法や溶射法に比べて、大形の接合
部材の製造が容易になり、例えば半導体ウエハの大口径
化に伴う半導体製造装置用部材や生産設備等の大形化に
対応し得るとともに、比較的安価な設備で製造工程も単
純化できる利点がある請求項4の発明は、前記第1およ
び第2接合片を対応する構成部材に直接的に接合または
溶接したから、この接合を前述の接合部材による熱応力
吸収作用によって実現するとともに、従来のような接合
部の複雑な加工を要することなく、容易かつ速やかに接
合することができる。
According to a third aspect of the present invention, since the joining member is formed by sintering with a powder having the same or substantially the same composition as those of the two constituent members, for example, by molding this in an electric furnace, the conventional CVD method is performed. It is easier to manufacture large-sized joining members as compared with the spraying method and the thermal spraying method. The invention according to claim 4 has the advantage that the manufacturing process can be simplified with inexpensive equipment, because the first and second joining pieces are directly joined or welded to the corresponding components, and this joining is performed by the joining member described above. And the joint can be easily and quickly joined without the need for complicated processing of the joining portion as in the related art.

【0057】請求項5の発明は、前記一方の構成部材を
単結晶シリコンで構成し、他方の構成部材を石英ガラス
で構成するとともに、前記第1接合片を多結晶または単
結晶シリコンで構成し、かつ前記第2接合片を石英ガラ
スで構成したから、高価な単結晶シリコンの使用量を低
減し、歩留まりの向上と安価な接合構造を得られ、しか
も熱膨張率の相違する単結晶または多結晶シリコンと石
英ガラスの安定した接合構造を得られる効果がある。請
求項6の発明は、各構成部材と同一若しくは略同質の第
1および第2接合片を両側に配置し、これら第1および
第2接合片の間に中間部材を配置して一体に構成すると
ともに、前記中間部材を前記第1および第2接合片と同
一若しくは略同質の組成成分で構成し、かつその組成成
分の比率を前記接合片方向に連続的または段階的に変化
させたから、接合部材の部品点数を低減し構成を簡潔に
するとともに、構成部材間の熱膨張率の差による熱応力
を前記接合部材で吸収かつ緩和させ、例えば常温から7
00℃程度の温度下における構成部材のクラックや割れ
の発生を防止して、接合の品質向上と信頼性の向上を図
ることができる。
According to a fifth aspect of the present invention, the one constituent member is made of single crystal silicon, the other constituent member is made of quartz glass, and the first joining piece is made of polycrystalline or single crystal silicon. In addition, since the second bonding piece is made of quartz glass, the amount of expensive single crystal silicon used can be reduced, the yield can be improved, and a low-cost bonding structure can be obtained. There is an effect that a stable bonding structure between crystalline silicon and quartz glass can be obtained. According to a sixth aspect of the present invention, the first and second joining pieces of the same or substantially the same quality as those of the constituent members are arranged on both sides, and an intermediate member is arranged between the first and second joining pieces to be integrally formed. In addition, the intermediate member is composed of the same or substantially the same composition as the first and second joining pieces, and the ratio of the composition is changed continuously or stepwise in the joining piece direction. In addition to reducing the number of parts, simplifying the configuration, the joining member absorbs and reduces the thermal stress caused by the difference in the coefficient of thermal expansion between the constituent members.
Cracks and cracks of the constituent members at a temperature of about 00 ° C. can be prevented from occurring, and the quality of the joint and the reliability can be improved.

【0058】請求項7の発明は、前記中間部材の組成成
分を対応する第1または第2接合片方向に漸増したか
ら、構成部材間の熱膨張率の差と熱応力を漸減させて熱
応力を緩やかに吸収し、接合の安定化を図ることができ
る。請求項8の発明は、前記接合部材を前記二つの構成
部材と同一若しくは略同質の組成成分の粉末で焼結成形
したから、例えばこれを電気炉で成形することにより、
従来のCVD法や溶射法に比べて、大形の接合部材の製
造が容易になり、例えば半導体ウエハの大口径化に伴う
半導体製造装置用部材や生産設備等の大形化に対応し得
るとともに、比較的安価な設備で製造工程も単純化でき
る利点がある請求項9の発明は、前記第1および第2接
合片を対応する構成部材に直接的に加熱圧着または溶接
したから、この接合を前述の接合部材による熱応力吸収
作用によって実現するとともに、従来のような接合部の
複雑な加工を要することなく、容易かつ速やかに接合す
ることができる。
According to a seventh aspect of the present invention, since the composition of the intermediate member is gradually increased in the direction of the corresponding first or second joint piece, the difference in the coefficient of thermal expansion between the constituent members and the thermal stress are gradually reduced to thereby reduce the thermal stress. Can be gradually absorbed to stabilize the bonding. According to the invention of claim 8, since the joining member is formed by sintering with a powder having the same or substantially the same composition as the two constituent members, for example, by molding this in an electric furnace,
Compared to the conventional CVD method and thermal spraying method, it is easy to manufacture a large-sized joining member, for example, and it is possible to cope with an increase in the size of a member for a semiconductor manufacturing apparatus or a production facility due to an increase in the diameter of a semiconductor wafer. According to the invention of claim 9, there is an advantage that the manufacturing process can be simplified with relatively inexpensive equipment, and the first and second joint pieces are directly heat-pressed or welded to the corresponding components, so that this joint is This is realized by the thermal stress absorbing action of the above-described joining member, and the joining can be easily and quickly performed without requiring complicated processing of the joining portion as in the related art.

【0059】請求項10の発明は、前記一方の構成部材
を単結晶シリコンで構成し、他方の構成部材を石英ガラ
スで構成するとともに、前記第1接合片を多結晶または
単結晶シリコンで構成し、前記第2接合片を石英ガラス
で構成したから、高価な単結晶シリコンの使用量を低減
し、歩留まりの向上と安価な接合構造を得られ、しかも
熱膨張率の相違する単結晶または多結晶シリコンと石英
ガラスの安定した接合を得られる効果がある。請求項1
1の発明は、前記構成部材の接合面と接合部材の接合面
とを鏡面状のテーパ面に形成し、これら接合面を介して
前記構成部材と接合部材とを嵌合し、これらを加熱下で
圧入固定したから、構成部材と接合部材との圧入を促
し、これを円滑かつ確実に行なうことができる。
According to a tenth aspect of the present invention, the one constituent member is made of single crystal silicon, the other constituent member is made of quartz glass, and the first joining piece is made of polycrystalline or single crystal silicon. Since the second joint piece is made of quartz glass, the amount of expensive single-crystal silicon used can be reduced, the yield can be improved and an inexpensive joint structure can be obtained, and a single crystal or polycrystal having a different coefficient of thermal expansion can be obtained. There is an effect that stable bonding between silicon and quartz glass can be obtained. Claim 1
According to a first aspect of the present invention, the joining surface of the constituent member and the joining surface of the joining member are formed as mirror-like tapered surfaces, and the constituent member and the joining member are fitted through these joining surfaces, and these are heated under heating. , Press-fitting of the component member and the joining member is promoted, and this can be performed smoothly and reliably.

【0060】請求項12の発明は、各構成部材と同一若
しくは略同質の第1および第2接合片を両側に配置し、
これら第1および第2接合片の間に中間部材を配置して
一体に構成した接合部材を設け、該接合部材を前記構成
部材の間に配置して接続するとともに、前記中間部材を
前記第1および第2接合片と同一若しくは略同質の組成
成分で構成し、かつその組成成分の比率を前記接合片方
向に連続的または段階的に変化させたから、第1および
第2接合片と中間部材を別設するものに比べて、部品点
数が低減し接合部材の構成の簡潔化を図れるとともに、
隙間の発生を防止して、低ダスト化とウエハ汚染の低減
を実現することができる。しかも、構成部材間の熱膨張
率の差による熱応力を前記接合部材で吸収かつ緩和でき
るから、例えば常温から700℃程度の温度下における
構成部材のクラックや割れの発生を防止し、低ダスト化
とウエハ汚染の低減を増進することができる。請求項1
3の発明は、前記中間部材の組成成分を対応する第1ま
たは第2接合片方向に漸増したから、構成部材間の熱膨
張率の差と熱応力を漸減させて熱応力を緩やかに吸収
し、構成部材のクラックや割れの発生を防止して、低ダ
スト化とウエハ汚染の低減を実現することができる。
According to a twelfth aspect of the present invention, the first and second joining pieces of the same or substantially the same quality as those of the constituent members are arranged on both sides,
An intermediate member is arranged between the first and second joint pieces to form an integrally formed joint member. The joint member is arranged and connected between the constituent members, and the intermediate member is connected to the first member. And the second joint piece is composed of the same or substantially the same compositional component as that of the second joint piece, and the ratio of the composition component is continuously or stepwise changed in the direction of the joint piece. Compared to a separately installed one, the number of parts is reduced and the structure of the joining member can be simplified,
The generation of gaps can be prevented, and low dust and reduced wafer contamination can be realized. In addition, since the thermal stress due to the difference in the coefficient of thermal expansion between the constituent members can be absorbed and reduced by the joining member, for example, cracks and cracks of the constituent members at a temperature from normal temperature to about 700 ° C. can be prevented, and the dust can be reduced. And the reduction of wafer contamination can be enhanced. Claim 1
According to the invention of the third aspect, since the composition of the intermediate member is gradually increased in the corresponding first or second joining piece direction, the difference in the coefficient of thermal expansion between the constituent members and the thermal stress are gradually reduced to absorb the thermal stress gradually. In addition, it is possible to prevent the occurrence of cracks and cracks in the constituent members, thereby realizing a reduction in dust and a reduction in wafer contamination.

【0061】請求項14の発明は、前記接合部材を前記
二つの構成部材と同一若しくは略同質の組成成分の粉末
で焼結成形したから、例えばこれを電気炉で成形するこ
とにより、従来のCVD法や溶射法で製作したものに比
べて、大形の接合部材の製造が容易になり、例えば半導
体ウエハの大口径化に伴う半導体製造装置用部材や生産
設備等の大形化に対応し得るとともに、比較的安価な設
備で製造工程も単純化し得る利点がある。請求項15の
発明は、前記第1および第2接合片を対応する構成部材
に直接的に接合または溶接したから、この接合を前述の
接合部材による熱応力吸収作用によって可能にするとと
もに、従来のような接合部の複雑な加工を廃して、容易
かつ速やかに接合することができる。
According to a fourteenth aspect of the present invention, since the joining member is formed by sintering with a powder having the same or substantially the same composition as the two constituent members, for example, by molding this in an electric furnace, the conventional CVD method is performed. It is easier to manufacture a large-sized joining member than that manufactured by a method or a thermal spraying method. For example, it is possible to cope with an increase in the size of a member for a semiconductor manufacturing apparatus or a production facility associated with an increase in the diameter of a semiconductor wafer. In addition, there is an advantage that the manufacturing process can be simplified with relatively inexpensive equipment. According to a fifteenth aspect of the present invention, since the first and second joining pieces are directly joined or welded to the corresponding components, the joining is enabled by the thermal stress absorbing action of the joining member, and the conventional technique is used. Complex processing of such a joint can be omitted, and the joint can be easily and quickly performed.

【0062】請求項16の発明は、前記第1接合片を多
結晶または単結晶シリコンで構成し、前記第2接合片を
石英ガラスで構成したから、高価な単結晶シリコンの使
用量を低減し、歩留まりの向上と半導体製造装置用部材
の製造コストの低減を図れるとともに、熱膨張率の相違
する単結晶または多結晶シリコンと石英ガラスの安定し
た接合を得られ、それらのクラックや割れの発生を防止
して、低ダスト化とウエハ汚染の低減を図ることができ
る。請求項17の発明は、前記半導体製造装置用部材が
プラズマエッチング用電極またはウエハ支持装置である
から、高価な単結晶シリコンの使用量を低減し、歩留ま
りの向上と製造コストの低減を図れるとともに、接合部
材によってクラックや割れを防止し、パーティクルの発
生を防止することができる。
According to a sixteenth aspect of the present invention, since the first joint piece is made of polycrystalline or single crystal silicon and the second joint piece is made of quartz glass, the amount of expensive single crystal silicon used can be reduced. In addition to improving the yield and reducing the manufacturing cost of semiconductor manufacturing equipment members, stable bonding between single crystal or polycrystalline silicon and quartz glass having different coefficients of thermal expansion can be obtained, and the occurrence of cracks and cracks Thus, dust can be reduced and wafer contamination can be reduced. According to the invention of claim 17, since the member for the semiconductor manufacturing apparatus is a plasma etching electrode or a wafer supporting apparatus, the amount of expensive single crystal silicon used can be reduced, and the yield can be improved and the manufacturing cost can be reduced. Cracks and cracks can be prevented by the joining member, and generation of particles can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明をプラズマエッチング用電極に適用した
実施の形態を示す斜視図である
FIG. 1 is a perspective view showing an embodiment in which the present invention is applied to a plasma etching electrode.

【図2】図1のA−A線に沿う拡大断面図である。FIG. 2 is an enlarged sectional view taken along the line AA of FIG.

【図3】図1のプラズマエッチング用電極に適用した構
成部材である外周リングの斜視図である。
FIG. 3 is a perspective view of an outer peripheral ring which is a constituent member applied to the electrode for plasma etching of FIG. 1;

【図4】図3のB−B線に沿う拡大断面図である。FIG. 4 is an enlarged sectional view taken along line BB of FIG. 3;

【図5】図1のプラズマエッチング用電極に適用した接
合部材を示す斜視図である。
FIG. 5 is a perspective view showing a bonding member applied to the electrode for plasma etching of FIG. 1;

【図6】図5のC−C線に沿う拡大断面図である。FIG. 6 is an enlarged sectional view taken along line CC of FIG. 5;

【図7】図1のプラズマエッチング用電極に適用した構
成部材である電極板を示す斜視図である。
FIG. 7 is a perspective view showing an electrode plate as a component applied to the electrode for plasma etching of FIG. 1;

【図8】図7のD−D線に沿う断面図である。FIG. 8 is a sectional view taken along line DD of FIG. 7;

【図9】図1のプラズマエッチング用電極の各構成部品
を電気炉で接合する際の状況を順に示す断面図である。
9 is a cross-sectional view sequentially showing a situation when components of the plasma etching electrode of FIG. 1 are joined by an electric furnace.

【図10】図1のプラズマエッチング用電極の各構成部
品を電気炉で接合した直後の状況を示す断面図である。
10 is a cross-sectional view showing a state immediately after the components of the electrode for plasma etching of FIG. 1 are joined by an electric furnace.

【図11】本発明をウエハ支持装置に適用した他の実施
形態を示す斜視図である。
FIG. 11 is a perspective view showing another embodiment in which the present invention is applied to a wafer support device.

【図12】図11の要部を拡大して示す斜視図で、支持
ロッドと固定板との間に配置した接合部材の取り付け状
況を示している。
FIG. 12 is an enlarged perspective view showing a main part of FIG. 11, showing an attachment state of a joining member arranged between a support rod and a fixing plate.

【図13】図11の接合部材を拡大して示す斜視図であ
る。
FIG. 13 is an enlarged perspective view showing a joining member of FIG. 11;

【符号の説明】[Explanation of symbols]

1 プラズマエッチング用電極
(半導体製造装置用部材) 2 構成部材(外周リング) 3 接合部材 3a,4a,5a,6a テーパ面 4 構成部材(電極板) 7 第1接合片 8 第2接合片 9 中間部材 15 ウエハ支持装置(半導体製
造装置用部材) 16,17 構成部材(固定板) 18 構成部材(支持ロッド)
Reference Signs List 1 electrode for plasma etching (member for semiconductor manufacturing equipment) 2 constituent member (outer ring) 3 bonding member 3a, 4a, 5a, 6a tapered surface 4 constituent member (electrode plate) 7 first bonding piece 8 second bonding piece 9 intermediate Member 15 Wafer support device (semiconductor manufacturing device member) 16, 17 Component member (fixed plate) 18 Component member (support rod)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 増 田 勇 山形県山形市蔵王松ヶ丘2−1−4 テク ノクオーツ株式会社内 Fターム(参考) 5F004 AA00 BB19 BB28 BC08  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Isamu Masuda 2-1-4, Zao Matsugaoka, Yamagata City, Yamagata Prefecture F-term (reference) 5F004 AA00 BB19 BB28 BC08

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 熱膨張率の相違する二つの構成部材を、
それらの間に配置した接合部材を介して接合する構成部
材の接合構造において、前記各構成部材と同一若しくは
略同質の第1および第2接合片を両側に配置し、これら
第1および第2接合片の間に中間部材を配置して前記接
合部材を一体に構成するとともに、前記中間部材を前記
第1および第2接合片と同一若しくは略同質の組成成分
で構成し、かつその組成成分の比率を前記接合片方向に
連続的または段階的に変化させたことを特徴とする構成
部材の接合構造。
1. Two components having different coefficients of thermal expansion,
In a joining structure of constituent members to be joined via a joining member disposed therebetween, first and second joining pieces having the same or substantially the same quality as those of the respective constituent members are arranged on both sides, and the first and second joining pieces are arranged. An intermediate member is arranged between the pieces to integrally form the joining member, and the intermediate member is made of the same or substantially the same composition as the first and second joining pieces, and a ratio of the composition component. Is continuously or stepwise changed in the direction of the joining piece.
【請求項2】 前記中間部材の組成成分を対応する第1
または第2接合片方向に漸増した請求項1記載の構成部
材の接合構造。
2. The method according to claim 1, wherein the composition of the intermediate member is a first component.
The joining structure of the component members according to claim 1, wherein the joining member gradually increases in a direction of the second joining piece.
【請求項3】 前記接合部材を前記二つの構成部材と同
一若しくは略同質の組成成分の粉末で焼結成形した請求
項1記載の構成部材の接合構造。
3. The joining structure according to claim 1, wherein said joining member is formed by sintering with a powder having the same or substantially the same composition as the two constituting members.
【請求項4】 前記第1および第2接合片を対応する構
成部材に直接的に接合または溶接した請求項1記載の構
成部材の接合構造。
4. The structure according to claim 1, wherein the first and second joining pieces are directly joined or welded to corresponding components.
【請求項5】 前記一方の構成部材を単結晶シリコンで
構成し、他方の構成部材を石英ガラスで構成するととも
に、前記第1接合片を多結晶または単結晶シリコンで構
成し、前記第2接合片を石英ガラスで構成した請求項1
または請求項3記載の構成部材の接合構造。
5. The method according to claim 1, wherein one of the constituent members is made of single-crystal silicon, the other constituent member is made of quartz glass, and the first joining piece is made of polycrystalline or single-crystal silicon. 2. The method according to claim 1, wherein the piece is made of quartz glass.
Or the joining structure of the constituent members according to claim 3.
【請求項6】 熱膨張率の相違する二つの構成部材を、
それらの間に配置した接合部材を介して接合する構成部
材の接合方法において、前記各構成部材と同一若しくは
略同質の第1および第2接合片を両側に配置し、これら
第1および第2接合片の間に中間部材を配置して一体に
構成するとともに、前記中間部材を前記第1および第2
接合片と同一若しくは略同質の組成成分で構成し、かつ
その組成成分の比率を前記接合片方向に連続的または段
階的に変化させたことを特徴とする構成部材の接合方
法。
6. Two components having different coefficients of thermal expansion,
In a method of joining constituent members to be joined via a joining member disposed therebetween, first and second joining pieces having the same or substantially the same quality as those of the respective constituent members are arranged on both sides, and the first and second joining pieces are joined. An intermediate member is arranged between the pieces to form an integral member, and the intermediate member is connected to the first and second members.
A method of joining constituent members, comprising a composition component having the same or substantially the same quality as that of a joining piece, and changing the ratio of the composition component continuously or stepwise in the joining piece direction.
【請求項7】 前記中間部材の組成成分を対応する第1
または第2接合片方向に漸増した請求項6記載の構成部
材の接合方法。
7. A first component corresponding to a composition component of the intermediate member.
7. The method for joining constituent members according to claim 6, wherein the number of members gradually increases in the direction of the second joining piece.
【請求項8】 前記接合部材を前記二つの構成部材と同
一若しくは略同質の組成成分の粉末で焼結成形した請求
項6記載の構成部材の接合方法。
8. The method for joining components according to claim 6, wherein the joining member is formed by sintering a powder having the same or substantially the same composition as the two components.
【請求項9】 前記第1および第2接合片を対応する構
成部材に直接的に加熱圧着または溶接した請求項6記載
の構成部材の接合方法。
9. The method for joining components according to claim 6, wherein the first and second joining pieces are directly heat-pressed or welded to the corresponding components.
【請求項10】 前記一方の構成部材を単結晶シリコン
で構成し、他方の構成部材を石英ガラスで構成するとと
もに、前記第1接合片を多結晶または単結晶シリコンで
構成し、前記第2接合片を石英ガラスで構成した請求項
6または請求項8記載の構成部材の接合方法。
10. The method according to claim 1, wherein one of the constituent members is made of single-crystal silicon, the other constituent member is made of quartz glass, and the first joint piece is made of polycrystalline or single-crystal silicon. 9. The method according to claim 6, wherein the piece is made of quartz glass.
【請求項11】 前記構成部材の接合面と接合部材の接
合面とを鏡面状のテーパ面に形成し、これら接合面を介
して前記構成部材と接合部材とを嵌合し、これらを加熱
下で圧入固定する請求項6記載の構成部材の接合方法。
11. A joining surface of the constituent member and a joining surface of the joining member are formed in a mirror-like tapered surface, and the constituent member and the joining member are fitted to each other through these joining surfaces, and these members are heated. 7. The method according to claim 6, wherein the fixing is performed by press-fitting.
【請求項12】 単結晶シリコン製の構成部材と、石英
ガラス製の構成部材とを接続した半導体製造装置用部材
において、前記各構成部材と同一若しくは略同質の第1
および第2接合片を両側に配置し、これら第1および第
2接合片の間に中間部材を配置して一体に構成した接合
部材を設け、該接合部材を前記構成部材の間に配置して
接続するとともに、前記中間部材を前記第1および第2
接合片と同一若しくは略同質の組成成分で構成し、かつ
その組成成分の比率を前記接合片方向に連続的または段
階的に変化させたことを特徴とする半導体製造装置用部
材。
12. A member for a semiconductor manufacturing apparatus in which a component member made of single crystal silicon and a component member made of quartz glass are connected to each other.
And a second joining piece are arranged on both sides, an intermediate member is arranged between the first and second joining pieces to provide an integrally constituted joining member, and the joining member is arranged between the constituent members. And connecting the intermediate member to the first and second members.
A member for a semiconductor manufacturing apparatus, comprising a composition component having the same or substantially the same quality as that of a joining piece, wherein the ratio of the composition component is changed continuously or stepwise in the direction of the joining piece.
【請求項13】 前記中間部材の組成成分を対応する第
1または第2接合片方向に漸増した請求項12記載の半
導体製造装置用部材。
13. The member for a semiconductor manufacturing apparatus according to claim 12, wherein a composition component of said intermediate member is gradually increased in a corresponding first or second bonding piece direction.
【請求項14】 前記接合部材を前記二つの構成部材と
同一若しくは略同質の組成成分の粉末で焼結成形した請
求項12記載の半導体製造装置用部材。
14. The member for a semiconductor manufacturing apparatus according to claim 12, wherein the joining member is formed by sintering with a powder having the same or substantially the same composition as the two constituent members.
【請求項15】 前記第1および第2接合片を対応する
構成部材に直接的に接合または溶接した請求項12記載
の半導体製造装置用部材。
15. The member for a semiconductor manufacturing apparatus according to claim 12, wherein said first and second joining pieces are directly joined or welded to corresponding constituent members.
【請求項16】 前記第1接合片を多結晶または単結晶
シリコンで構成し、前記第2接合片を石英ガラスで構成
した請求項12または請求項14記載の半導体製造装置
用部材。
16. The member for a semiconductor manufacturing apparatus according to claim 12, wherein said first joining piece is made of polycrystalline or single-crystal silicon, and said second joining piece is made of quartz glass.
【請求項17】 前記半導体製造装置用部材がプラズマ
エッチング用電極またはウエハ支持装置である請求項1
2記載の半導体製造装置用部材。
17. The semiconductor manufacturing apparatus member is a plasma etching electrode or a wafer support apparatus.
3. The member for a semiconductor manufacturing apparatus according to 2.
JP11092396A 1999-03-31 1999-03-31 Joint structure for constituting member and method therefor, and member for semiconductor manufacturing apparatus Pending JP2000286244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11092396A JP2000286244A (en) 1999-03-31 1999-03-31 Joint structure for constituting member and method therefor, and member for semiconductor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11092396A JP2000286244A (en) 1999-03-31 1999-03-31 Joint structure for constituting member and method therefor, and member for semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2000286244A true JP2000286244A (en) 2000-10-13

Family

ID=14053266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11092396A Pending JP2000286244A (en) 1999-03-31 1999-03-31 Joint structure for constituting member and method therefor, and member for semiconductor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2000286244A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081382A (en) * 2005-08-18 2007-03-29 Mitsubishi Materials Corp Silicon ring for use of plasma etcher
JP2008159773A (en) * 2006-12-22 2008-07-10 Mitsubishi Materials Corp Composite silicon electrode having small resistivity in in-plane variations and its manufacturing method
WO2010004863A1 (en) * 2008-07-10 2010-01-14 日鉱金属株式会社 Hybrid silicon wafer and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081382A (en) * 2005-08-18 2007-03-29 Mitsubishi Materials Corp Silicon ring for use of plasma etcher
JP4517370B2 (en) * 2005-08-18 2010-08-04 三菱マテリアル株式会社 Silicon ring for plasma etching equipment
JP2008159773A (en) * 2006-12-22 2008-07-10 Mitsubishi Materials Corp Composite silicon electrode having small resistivity in in-plane variations and its manufacturing method
WO2010004863A1 (en) * 2008-07-10 2010-01-14 日鉱金属株式会社 Hybrid silicon wafer and method for manufacturing same
US8236428B2 (en) 2008-07-10 2012-08-07 Jx Nippon Mining & Metals Corporation Hybrid silicon wafer and method for manufacturing same
JP5279828B2 (en) * 2008-07-10 2013-09-04 Jx日鉱日石金属株式会社 Hybrid silicon wafer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7247818B2 (en) Substrate heating apparatus and manufacturing method for the same
EP1713149B1 (en) Glaze soldered laser components and method of manufacturing
JP5202175B2 (en) Heater with shaft
KR20110134854A (en) Shadow frame and manufacturing method thereof
CN107946185A (en) Wafer bonding method
KR102336372B1 (en) ring electrode
KR102378968B1 (en) ring for electrode
JP2000286244A (en) Joint structure for constituting member and method therefor, and member for semiconductor manufacturing apparatus
TW201811714A (en) Method for producing semiconductor production device component, and semiconductor production device component
JP3223183B2 (en) Method of manufacturing holding device for semiconductor disk and holding device manufactured by the method
KR100976239B1 (en) Preparation method of multilayer quartz glass and apparatus for preparing multilayer quartz glass
JP2020136536A (en) Sample holding tool
JP2001168252A (en) Semiconductor device and manufacturing method thereof
JP2008300425A (en) Bonding method of silicon crystals, and silicon crystal product
KR102394257B1 (en) electrode plate
CN103165404A (en) Expanding device and method for manufacturing components
JP6176620B1 (en) Ring for electrode
KR101950371B1 (en) The thermoelectric device manufacturing method
JP2017224710A (en) Manufacturing method of holding device
JP2017191910A (en) Board holding device and manufacturing method thereof
JP2003188240A (en) Wafer-retaining device
JP2018006451A (en) Bonding method
JP2009147078A (en) Vacuum suction device, and manufacturing method thereof
JP2003257807A (en) Silicon processed goods and manufacturing method therefor
JP2004158547A (en) Heater

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011016