JP2020129535A - 発光デバイス、発光装置、電子機器、表示装置および照明装置 - Google Patents

発光デバイス、発光装置、電子機器、表示装置および照明装置 Download PDF

Info

Publication number
JP2020129535A
JP2020129535A JP2020016344A JP2020016344A JP2020129535A JP 2020129535 A JP2020129535 A JP 2020129535A JP 2020016344 A JP2020016344 A JP 2020016344A JP 2020016344 A JP2020016344 A JP 2020016344A JP 2020129535 A JP2020129535 A JP 2020129535A
Authority
JP
Japan
Prior art keywords
layer
organic compound
emitting device
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020016344A
Other languages
English (en)
Other versions
JP2020129535A5 (ja
Inventor
瀬尾 哲史
Tetsushi Seo
哲史 瀬尾
信晴 大澤
Nobuharu Osawa
信晴 大澤
山崎 舜平
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020129535A publication Critical patent/JP2020129535A/ja
Publication of JP2020129535A5 publication Critical patent/JP2020129535A5/ja
Priority to JP2024024458A priority Critical patent/JP2024056985A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • G09F9/335Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes being organic light emitting diodes [OLED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】寿命の良好な発光装置を提供する。【解決手段】第1の発光デバイスと、第1の色変換層とを有し、第1の色変換層は第1の物質を含み、第1の発光デバイスのEL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、第1の層は第1の有機化合物と第2の有機化合物を有し、第2の層は、第3の有機化合物を有し、第3の層は、第4の有機化合物を有し、発光層は、第5の有機化合物と第6の有機化合物を有し、第4の層は、第7の有機化合物を有し、第1の有機化合物は第2の有機化合物に電子受容性を示す有機化合物であり、第5の有機化合物は発光中心物質であり、第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm2/Vs以上5×10−5cm2/Vs以下である発光装置を提供する。【選択図】図1

Description

本発明の一態様は、発光素子、発光デバイス、ディスプレイモジュール、照明モジュール、表示装置、発光装置、電子機器及び照明装置に関する。なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
有機化合物を用いたエレクトロルミネッセンス(EL:Electroluminescence)を利用する発光デバイス(有機EL素子)の実用化が進んでいる。これら発光デバイスの基本的な構成は、一対の電極間に発光材料を含む有機化合物層(EL層)を挟んだものである。この素子に電圧を印加して、キャリアを注入し、当該キャリアの再結合エネルギーを利用することにより、発光材料からの発光を得ることができる。
このような発光デバイスは自発光型であるためディスプレイの画素として用いると、液晶に比べて視認性が高く、バックライトが不要である等の利点があり、フラットパネルディスプレイ素子として好適である。また、このような発光デバイスを用いたディスプレイは、薄型軽量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つである。
また、これらの発光デバイスは発光層を二次元に連続して形成することが可能であるため、面状に発光を得ることができる。これは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、照明等に応用できる面光源としての利用価値も高い。
当該発光デバイスをフルカラーディスプレイの画素として用いる場合、少なくとも赤、緑および青の三色の光を得る必要があるが、そのための代表的な方法は大きくわけて二種類ある。一つはそれぞれの発光色の発光を呈する発光デバイスを用いる方法であり、もう一つはすべての発光デバイスが同じ発光色の光を呈するが、当該発光を画素ごとに所望の波長の光に変える方法である。
前者は光のロスが少ないため、発光効率的に有利であり、後者は画素ごとに発光デバイスの作り分けが必要ないため、製造が容易であり歩留まりも上がりやすく、コスト的に有利である。
なお、上記発光を画素ごとに所望の波長の光に変える方法としては、代表的には、発光デバイスからの発光の一部をカットすることで所望の波長の光を得る方法と、当該光を変換することで所望の波長の光を得る方法とがあるが、単純に得られた発光の一部をカットする前者と比較して、後者は変換の効率にもよるが、エネルギーのロスが比較的少ないことから、消費電力の小さい発光装置を得やすい方法であると言える。
上記のように発光デバイスからの光を変換することで所望の波長の光を得る方法としては、フォトルミネッセンスを利用した色変換層が用いられている。当該色変換層には、光を吸収することで励起され発光する物質が含まれる。古くから有機化合物を利用した色変換層が存在していたが、近年、量子ドット(Quantum dot、QD)を用いた色変換層が実用化されている。
国際公開第2016/098570号パンフレット
そこで、本発明の一態様では、新規発光デバイスを提供することを目的とする。または、発光効率の良好な発光デバイスを提供することを目的とする。または、寿命の良好な発光デバイスを提供することを目的とする。または、駆動電圧の低い発光デバイスを提供することを目的とする。
または、本発明の他の一態様では、信頼性の高い発光装置、電子機器及び表示装置を各々提供することを目的とする。または、本発明の他の一態様では、消費電力の小さい発光装置、電子機器及び表示装置を各々提供することを目的とする。
本発明は上述の課題のうちいずれか一を解決すればよいものとする。
本発明の一態様は、第1の発光デバイスと、第1の色変換層とを有する発光装置であって、前記第1の色変換層は、光を吸収して発光する第1の物質を含み、前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、前記第1の発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線が極大値を有する発光装置である。
または、本発明の他の一態様は、第1の発光デバイスと、第1の色変換層とを有する発光装置であって、前記第1の色変換層は、光を吸収して発光する第1の物質を含み、前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第1の層は第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、前記第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下である発光装置である。
または、本発明の他の一態様は、第1の発光デバイスと、第1の色変換層とを有する発光装置であって、前記第1の色変換層は、光を吸収して発光する第1の物質を含み、前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第4の層は、前記発光層に接しており、前記第1の層は第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、前記第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、前記第7の有機化合物のHOMO準位が−6.0eV以上である発光装置である。
または、本発明の他の一態様は、第1の発光デバイスと、第1の色変換層とを有する発光装置であって、前記第1の色変換層は、光を吸収して発光する第1の物質を含み、前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第4の層は、前記発光層に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、前記第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、前記第7の有機化合物のHOMO準位が−6.0eV以上である発光装置である。
または、本発明の他の一態様は、第1の発光デバイスと、第1の色変換層とを有する発光装置であって、前記第1の色変換層は、光を吸収して発光する第1の物質を含み、前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第4の層は、前記発光層に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第2の有機化合物は、第1の正孔輸送性骨格を有し、前記第3の有機化合物は、第2の正孔輸送性骨格を有し、前記第4の有機化合物は、第3の正孔輸送性骨格を有し、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、前記第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、前記第7の有機化合物のHOMO準位が−6.0eV以上である発光装置である。
または、本発明の他の一態様は、第1の発光デバイスと、第1の色変換層とを有する発光装置であって、前記第1の色変換層は、光を吸収して発光する第1の物質を含み、前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第4の層は、前記発光層に接しており、前記第1の層は第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物と第8の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、前記第7の有機化合物は、アントラセン骨格を有する有機化合物であり、前記第8の有機化合物は、アルカリ金属またはアルカリ土類金属の有機錯体である発光装置である。
または、本発明の他の一態様は、第1の発光デバイスと、第1の色変換層とを有する発光装置であって、前記第1の色変換層は、光を吸収して発光する第1の物質を含み、前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第4の層は、前記発光層に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物と第8の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、前記第7の有機化合物は、アントラセン骨格を有する有機化合物であり、前記第8の有機化合物は、アルカリ金属またはアルカリ土類金属の有機錯体である発光装置である。
または、本発明の他の一態様は、上記構成において、前記第4の層における前記第8の有機化合物の濃度が、前記発光層側から前記陰極側に向かって低くなる発光装置である。
または、本発明の他の一態様は、第1の発光デバイスと、第1の色変換層とを有する発光装置であって、前記第1の色変換層は、光を吸収して発光する第1の物質を含み、前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、前記第1の層は、前記陽極に接しており、前記第4の層は、前記発光層に接しており、前記第1の層は、第1の有機化合物と第2の有機化合物を有し、前記第2の層は、第3の有機化合物を有し、前記第3の層は、第4の有機化合物を有し、前記発光層は、第5の有機化合物と第6の有機化合物を有し、前記第4の層は、第7の有機化合物と第8の有機化合物を有し、前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、前記第2の有機化合物は、第1の正孔輸送性骨格を有し、前記第3の有機化合物は、第2の正孔輸送性骨格を有し、前記第4の有機化合物は、第3の正孔輸送性骨格を有し、前記第5の有機化合物は発光中心物質であり、前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、前記第7の有機化合物は、アントラセン骨格を有する有機化合物であり、前記第8の有機化合物は、アルカリ金属またはアルカリ土類金属の有機錯体である発光装置である。
または、本発明の他の一態様は、上記構成において、前記第7の有機化合物の電子移動度が、前記第6の有機化合物の電子移動度よりも小さい発光装置である。
または、本発明の他の一態様は、上記構成において、前記第4の有機化合物のHOMO準位と、前記第3の有機化合物のHOMO準位との差が0.2eV以下である発光装置である。
または、本発明の他の一態様は、上記構成において、前記第4の有機化合物のHOMO準位が、前記第3の有機化合物のHOMO準位よりも深い発光装置である。
または、本発明の他の一態様は、上記構成において、前記第2の有機化合物が、ジベンゾフラン骨格を有する有機化合物である発光装置である。
または、本発明の他の一態様は、上記構成において、前記第2の有機化合物と前記第3の有機化合物とが同じ物質である発光装置である。
または、本発明の他の一態様は、上記構成において、前記第5の有機化合物が青色蛍光材料である発光装置である。
または、本発明の他の一態様は、上記構成において、前記第1の発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線が極大値を有する発光装置である。
または、本発明の他の一態様は、上記構成において、前記光を吸収して発光する第1の物質が量子ドットである発光装置である。
または、本発明の他の一態様は、上記構成において、前記第1の発光デバイスが微小共振構造を有する発光装置である。
または、本発明の他の一態様は、上記構成において、前記発光装置はさらに第2の発光デバイスと、第2の色変換層とを有し、前記第2の色変換層は、光を吸収して発光する第2の物質を含み、前記第2の発光デバイスからの光は前記第2の色変換層に入射し、前記第2の発光デバイスは、前記第1の発光デバイスと同じ構成を有し、前記第1の物質からの発光の波長と、前記第2の物質からの発光の波長が異なる発光装置である。
または、本発明の他の一態様は、上記構成において、前記第2の物質が量子ドットである発光装置である。
または、本発明の他の一態様は、上記構成において、前記第2の発光デバイスが微小共振構造を有する発光装置である。
または、本発明の他の一態様は、上記構成において、前記発光装置はさらに第3の発光デバイスを有し、前記第3の発光デバイスは、前記第1の発光デバイスと同じ構造を有し、前記第3の発光デバイスからの発光は色変換層を介さずに発光装置外に射出する発光装置である。
または、本発明の他の一態様は、上記構成において、前記発光装置はさらに第3の発光デバイスと光を散乱する機能を有する構造とを有し、前記第3の発光デバイスは、前記第1の発光デバイスと同じ構造を有し、前記第3の発光デバイスからの発光が前記光を散乱する機能を有する構造を介して発光装置外に射出する発光装置である。
または、本発明の他の一態様は、上記構成において、前記発光装置はさらに第3の発光デバイスと、第1の着色層と、第2の着色層と、樹脂層とを有し、前記第1の発光デバイスからの発光は、前記第1の色変換層と、前記第1の着色層と、を介して射出され、前記第2の発光デバイスからの発光は、前記第2の色変換層と、前記第2の着色層と、を介して射出され、前記第3の発光デバイスは、前記第1の発光デバイスと同じ構造を有し、前記第3の発光デバイスからの発光は、前記樹脂層を介して射出される発光装置である。
または、本発明の他の一態様は、上記構成において、前記第3の発光デバイスが微小共振構造を有する発光装置である。
または、本発明の他の一態様は、上記構成において、センサ、操作ボタン、スピーカ、または、マイクと、を有する電子機器である。
または、本発明の他の一態様は、上記構成において、トランジスタ、または、基板と、を有する発光装置である。
または、本発明の他の一態様は、上記構成において、筐体と、を有する照明装置である。
なお、本明細書中における発光装置とは、発光デバイスを用いた画像表示デバイスを含む。また、発光デバイスにコネクター、例えば異方導電性フィルム又はTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、又は発光デバイスにCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも、発光装置に含む場合がある。さらに、照明器具等は、発光装置を有する場合がある。
本発明の一態様では、新規発光デバイスを提供することができる。または、寿命の良好な発光デバイスを提供することができる。または、発光効率の良好な発光デバイスを提供することができる。または、駆動電圧の低い発光デバイスを提供することができる。
または、本発明の他の一態様では、信頼性の高い発光装置、電子機器及び表示装置を各々提供することができる。または、本発明の他の一態様では、消費電力の小さい発光装置、電子機器及び表示装置を各々提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
(A)、(B)発光装置の概略図。 (A)、(B)、(C)発光デバイスの概略図。 (A)、(B)発光デバイスの発光領域を説明する図。 (A)、(B)発光デバイスの発光領域を説明する図。 (A)、(B)、(C)発光装置の概略図。 (A)、(B)、(C)発光装置の概略図。 (A)、(B)発光装置の概略図。 (A)表示装置の上面図、(B)表示装置の断面図。 (A)、(B)発光装置の断面図。 発光装置の断面図。 (A)、(B1)、(B2)、(C)電子機器を表す図。 (A)、(B)、(C)電子機器を表す図。 車載表示装置及び照明装置を表す図。 (A)、(B)電子機器を表す図。 (A)、(B)、(C)電子機器を表す図。 電子オンリー素子の構造を示す図。 電子オンリー素子の電流密度−電圧特性を示す図。 直流電圧7.0VにおけるZADN:Liq(1:1)の算出されたキャパシタンスCの周波数特性を示す図。 直流電圧7.0VにおけるZADN:Liq(1:1)の−ΔBの周波数特性を示す図。 各有機化合物における電子移動度の電界強度依存特性を示す図。 発光装置の模式図。 (A)、(B)、(C)、(D)電子輸送層における濃度について説明する図。 半導体装置の構成例を示す斜視図。 (A)、(B)半導体装置の構成例を示す斜視図。 (A)、(B)トランジスタの構造例を示す断面図。 電子機器を説明する図。 実施例のデバイスの規格化輝度の経時変化を示すグラフ。 実施例のデバイスの規格化輝度の経時変化を示すグラフ。 実施例のデバイスの規格化輝度の経時変化を示すグラフ。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
近年、量子ドット(Quantum dot、QD)を用いた色変換技術が液晶ディスプレイなどの分野において実用化されている。QDは、数nmサイズの半導体ナノ結晶であり、1×10個から1×10個程度の原子から構成されている。QDは、電子や正孔、励起子がその内部に閉じ込められた結果、それらのエネルギー状態が離散的となり、また、サイズに依存してエネルギーシフトする。すなわち、同じ物質から構成されるQDであっても、サイズによって発光波長が異なるため、用いるQDのサイズを変更することによって容易に発光波長を調整することができる。
また、QDは、その離散性が位相緩和を制限するため発光スペクトルのピーク幅が狭く、色純度のよい発光を得ることができる。すなわち、QDを用いた色変換層を用いることによって、色純度の高い発光を得ることが可能であり、BT.2020規格やBT.2100規格に対応する色域であるRec.2020をカバーする発光を得る事も可能である。
QDを用いた色変換層は、有機化合物の発光物質を用いた色変換層と同様に、発光デバイスから発した光を吸収して再発光するフォトルミネッセンスによって当該発光デバイスの光をより長波長の光に変換している。そのため、ディスプレイ用途として色変換層を応用する場合、フルカラーを再現するために要求される三原色のうち最も波長の短い青色の光を発光デバイスから得、緑と赤の光を色変換により得る構成が採用されている。
すなわち、色変換方式が採用されたディスプレイでは用いられる青色発光デバイスの特性がその特性の多くを支配することになり、結果としてより特性の良好な青色発光デバイスが求められている。
本発明の一態様の発光装置は、図1(A)に示すように、発光デバイス207と色変換層205を有する画素208を有しており、発光デバイス207から射出した光は、色変換層205へ入射する構成となっている。発光デバイス207は第1の電極201と第2の電極203との間にEL層202を有している。また、色変換層205には、QDが含まれていることが好ましく、入射された光を吸収し、所定の波長の光を射出する機能を有する。色変換層205がQDを含む場合、発光スペクトルのピーク幅が狭く、色純度のよい発光を得ることができる。
上記色変換層205は、入射された光を吸収し、所定の波長の光を射出する機能を有する物質が含まれているが、当該入射された光を吸収し、所定の波長の光を射出する機能を有する物質としては、フォトルミネッセンスを呈する無機材料や有機材料等様々な発光物質を用いることが可能である。特に無機材料であるQDは、上述したように発光スペクトルのピーク幅が狭く、色純度の良好な発光を得られる。また、無機物質であるQDは本質的な安定性に優れる、理論的な内部量子効率はほぼ100%であるなどの理由からも好適である。
QDを含む色変換層205は、QDが分散された溶媒を塗布および乾燥、焼成することによって形成することができる。また、あらかじめQDが分散されたシートも開発されている。色ごとの塗り分けは、インクジェットなどの液滴吐出法や、印刷法で行う、または、QDが分散された溶媒を形成面に塗布し、乾燥や焼成、固化などの定着を行った後、フォトリソグラフィーなどを用いてエッチングすればよい。
QDとしては、第14族元素、第15族元素、第16族元素、複数の第14族元素からなる化合物、第4族から第14族に属する元素と第16族元素との化合物、第2族元素と第16族元素との化合物、第13族元素と第15族元素との化合物、第13族元素と第17族元素との化合物、第14族元素と第15族元素との化合物、第11族元素と第17族元素との化合物、酸化鉄類、酸化チタン類、カルコゲナイドスピネル類、各種半導体クラスター、金属ハロゲンペロブスカイト類などのナノサイズ粒子を挙げることができる。
具体的には、セレン化カドミウム(CdSe)、硫化カドミウム(CdS)、テルル化カドミウム(CdTe)、セレン化亜鉛(ZnSe)、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、テルル化亜鉛(ZnTe)、硫化水銀(HgS)、セレン化水銀(HgSe)、テルル化水銀(HgTe)、砒化インジウム(InAs)、リン化インジウム(InP)、砒化ガリウム(GaAs)、リン化ガリウム(GaP)、窒化インジウム(InN)、窒化ガリウム(GaN)、アンチモン化インジウム(InSb)、アンチモン化ガリウム(GaSb)、リン化アルミニウム(AlP)、砒化アルミニウム(AlAs)、アンチモン化アルミニウム(AlSb)、セレン化鉛(II)(PbSe)、テルル化鉛(II)(PbTe)、硫化鉛(II)(PbS)、セレン化インジウム(InSe)、テルル化インジウム(InTe)、硫化インジウム(In)、セレン化ガリウム(GaSe)、硫化砒素(III)(As)、セレン化砒素(III)(AsSe)、テルル化砒素(III)(AsTe)、硫化アンチモン(III)(Sb)、セレン化アンチモン(III)(SbSe)、テルル化アンチモン(III)(SbTe)、硫化ビスマス(III)(Bi)、セレン化ビスマス(III)(BiSe)、テルル化ビスマス(III)(BiTe)、ケイ素(Si)、炭化ケイ素(SiC)、ゲルマニウム(Ge)、錫(Sn)、セレン(Se)、テルル(Te)、ホウ素(B)、炭素(C)、リン(P)、窒化ホウ素(BN)、リン化ホウ素(BP)、砒化ホウ素(BAs)、窒化アルミニウム(AlN)、硫化アルミニウム(Al)、硫化バリウム(BaS)、セレン化バリウム(BaSe)、テルル化バリウム(BaTe)、硫化カルシウム(CaS)、セレン化カルシウム(CaSe)、テルル化カルシウム(CaTe)、硫化ベリリウム(BeS)、セレン化ベリリウム(BeSe)、テルル化ベリリウム(BeTe)、硫化マグネシウム(MgS)、セレン化マグネシウム(MgSe)、硫化ゲルマニウム(GeS)、セレン化ゲルマニウム(GeSe)、テルル化ゲルマニウム(GeTe)、硫化錫(IV)(SnS)、硫化錫(II)(SnS)、セレン化錫(II)(SnSe)、テルル化錫(II)(SnTe)、酸化鉛(II)(PbO)、フッ化銅(I)(CuF)、塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、ヨウ化銅(I)(CuI)、酸化銅(I)(CuO)、セレン化銅(I)(CuSe)、酸化ニッケル(II)(NiO)、酸化コバルト(II)(CoO)、硫化コバルト(II)(CoS)、四酸化三鉄(Fe)、硫化鉄(II)(FeS)、酸化マンガン(II)(MnO)、硫化モリブデン(IV)(MoS)、酸化バナジウム(II)(VO)、酸化バナジウム(IV)(VO)、酸化タングステン(IV)(WO)、酸化タンタル(V)(Ta)、酸化チタン(TiO、Ti、Ti、Tiなど)、酸化ジルコニウム(ZrO)、窒化ケイ素(Si)、窒化ゲルマニウム(Ge)、酸化アルミニウム(Al)、チタン酸バリウム(BaTiO)、セレンと亜鉛とカドミウムの化合物(CdZnSe)、インジウムと砒素とリンの化合物(InAsP)、カドミウムとセレンと硫黄の化合物(CdSeS)、カドミウムとセレンとテルルの化合物(CdSeTe)、インジウムとガリウムと砒素の化合物(InGaAs)、インジウムとガリウムとセレンの化合物(InGaSe)、インジウムとセレンと硫黄の化合物(InSeS)、銅とインジウムと硫黄の化合物(例えばCuInS)およびこれらの組合せなどを挙げることができるが、これらに限定されない。また、組成が任意の比率で表される、いわゆる合金型QDを用いても良い。例えば、CdSSe(1−x)(xは0から1の任意の数)で表される合金型QDは、xを変化させることで発光波長を変えることができるため、青色発光を得るには有効な手段の一つである。
QDの構造としては、コア型、コア−シェル型、コア−マルチシェル型などがあり、そのいずれを用いても良いが、コアを覆ってより広いバンドギャップを持つ別の無機材料でシェルを形成することによって、ナノ結晶表面に存在する欠陥やダングリングボンドの影響を低減することができる。これにより、発光の量子効率が大きく改善するためコア−シェル型やコア−マルチシェル型のQDを用いることが好ましい。シェルの材料の例としては、硫化亜鉛(ZnS)や酸化亜鉛(ZnO)が挙げられる。
また、QDは、表面原子の割合が高いことから、反応性が高く、凝集が起こりやすい。そのため、QDの表面には保護剤が付着している又は保護基が設けられていることが好ましい。当該保護剤が付着している又は保護基が設けられていることによって、凝集を防ぎ、溶媒への溶解性を高めることができる。また、反応性を低減させ、電気的安定性を向上させることも可能である。保護剤(又は保護基)としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン類、ポリオキシエチレンn−オクチルフェニルエーテル、ポリオキシエチレンn−ノニルフェニルエーテル等のポリオキシエチレンアルキルフェニルエーテル類、トリ(n−ヘキシル)アミン、トリ(n−オクチル)アミン、トリ(n−デシル)アミン等の第3級アミン類、トリプロピルホスフィンオキシド、トリブチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド、トリデシルホスフィンオキシド等の有機リン化合物、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のポリエチレングリコールジエステル類、また、ピリジン、ルチジン、コリジン、キノリン類等の含窒素芳香族化合物等の有機窒素化合物、ヘキシルアミン、オクチルアミン、デシルアミン、ドデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン等のアミノアルカン類、ジブチルスルフィド等のジアルキルスルフィド類、ジメチルスルホキシドやジブチルスルホキシド等のジアルキルスルホキシド類、チオフェン等の含硫黄芳香族化合物等の有機硫黄化合物、パルミチン酸、ステアリン酸、オレイン酸等の高級脂肪酸、アルコール類、ソルビタン脂肪酸エステル類、脂肪酸変性ポリエステル類、3級アミン変性ポリウレタン類、ポリエチレンイミン類等が挙げられる。
色変換層205に含まれる物質がQDであった場合、QDは自身の発光波長付近から短波長側に、短波長の光程吸収強度が高い連続した吸収スペクトルを有する。そのため、複数の発光色を必要とするディスプレイである場合、各色の画素の発光デバイスに含まれる発光中心物質は共通の物質で良く、図1(B)で示したように画素の色ごとに発光デバイスの作り分けを行わなくても良くなり、比較的安価に発光装置を作製することができる。
図1(B)では、例として、青、緑、赤の三色の光をそれぞれ呈する画素を示した。第1の画素208Bは青色発光を呈する。第1の画素208Bは第1の電極201Bと第2の電極203を有しており、それらはどちらか一方が反射電極、他方が半透過・半反射電極であり、且つ、どちらか一方が陽極で他方が陰極となっている。また、同様に、緑色の発光を呈する第2の画素208G、および赤色の発光を呈する第3の画素208Rが図示されており、それぞれ第1の電極201Gおよび第2の電極203、第1の電極201Rおよび第2の電極203を有している。図1(B)では、第1の電極201B、201Gおよび201Rが反射電極且つ陽極であり、第2の電極203が半透過・半反射電極である構成を例示している。第1の電極201B、201Gおよび201Rは絶縁体200上に形成される。また、隣り合う画素と光が混じるのを防ぐために画素と画素の間にはブラックマトリクス206が設けられていることが好ましい。ブラックマトリクス206は、インクジェット法などで色変換層を形成する際のバンクと兼ねていても良い。
また、第1の画素208B、第2の画素208G、第3の画素208Rにおける第1の電極201B、201G、201Rと第2の電極203との間には、EL層202が挟まれている。EL層202は第1の画素208B、第2の画素208G、第3の画素208Rにおいて共通であっても、分離していても良いが、複数の画素において共通している方が製造しやすくコスト的に有利である。また、EL層202は通常、機能分離された複数の層によって構成されるが、一部が複数の画素において共有されており、一部が各画素で独立していても良い。
第1の画素208B、第2の画素208G、第3の画素208Rは、第1の電極、第2の電極およびEL層から構成される第1の発光デバイス207B、第2の発光デバイス207G、第3の発光デバイス207Rを有している。なお、図1(B)では、第1の画素208B、第2の画素208G、第3の画素208Rは共通のEL層202を有する構成を例示した。
第1の発光デバイス207B、第2の発光デバイス207G、第3の発光デバイス207Rは、第1の電極と第2の電極のいずれか一方を反射電極とし、他方を半透過・半反射電極とすることで、微小共振構造を有する発光デバイスとすることができる。共振させることが可能な波長は、反射電極の表面と、半透過・半反射電極の表面との光学的距離209で決まる。この光学的距離209を、共振させたい波長をλとして、λ/2の整数倍とすることで、波長λの光を増幅することができる。光学的距離209の調整は、EL層の正孔注入層や、正孔輸送層、電極の一部として反射電極上に形成する透明電極層などで調節することが可能である。図1(B)の発光装置は、EL層が第1の発光デバイス207B、第2の発光デバイス207G、第3の発光デバイス207Rで共通であり、発光中心物質も同一であることから、発光デバイスの光学的距離209は第1の画素208B、第2の画素208G、第3の画素208Rで共通であるため、簡便に形成することができる。なお、それぞれの画素でEL層202を作り分けた場合は、当該EL層からの光に合わせて光学的距離209を形成すればよい。
保護層204は第2の電極203上に設けられる。また、第1の発光デバイス207B、第2の発光デバイス207G、第3の発光デバイス207Rに悪影響を及ぼす物質や環境から保護するために保護層204が設けられる。保護層204には、酸化物、窒化物、フッ化物、硫化物、三元化合物、金属またはポリマー等を用いることができ、例えば、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、酸化ランタン、酸化珪素、チタン酸ストロンチウム、酸化タンタル、酸化チタン、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化スズ、酸化イットリウム、酸化セリウム、酸化スカンジウム、酸化エルビウム、酸化バナジウムまたは酸化インジウム等を含む材料や、窒化アルミニウム、窒化ハフニウム、窒化珪素、窒化タンタル、窒化チタン、窒化ニオブ、窒化モリブデン、窒化ジルコニウムまたは窒化ガリウム等を含む材料、チタンおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む酸化物、アルミニウムおよび亜鉛を含む酸化物、マンガンおよび亜鉛を含む硫化物、セリウムおよびストロンチウムを含む硫化物、エルビウムおよびアルミニウムを含む酸化物、イットリウムおよびジルコニウムを含む酸化物等を含む材料を用いることができる。
第1の色変換層205Gは、第2の発光デバイス207Gの光を吸収して発光する物質が含まれている。第2の発光デバイス207Gからの発光は第1の色変換層205Gに入射し、波長の長い光に変換されて射出する。第2の色変換層205Rには第3の発光デバイス207Rからの光を吸収して発光する物質が含まれている。第3の発光デバイス207Rからの発光は、第2の色変換層205Rに入射し、波長の長い光に変換されて射出する。
なお、第1の画素208Bは、色変換層を介さない光を発するため、光の三原色の内、最もエネルギーの高い青色の光を発する画素であることが好ましい。また、同様の理由から、第1の画素208B、第2の画素208G、第3の画素208Rの発光を同じ色とする場合、青色発光であることが好ましい。この場合、これら発光デバイスに含まれる発光中心物質は同じ物質であることがコスト的に有利であるが、異なる発光中心物質を用いても良い。
また、このように画素の色ごとに発光デバイスを作り分けない場合、当該発光デバイスが有する発光中心物質は青色発光(発光のピーク波長が420nm乃至480nm程度。発光中心物質の発光としては、溶液状態のPLスペクトルで算出する。発光デバイスのEL層を構成する有機化合物の比誘電率は3程度であるため、発光デバイスの発光スペクトルとの齟齬を避ける目的で、前記発光中心物質を溶液状態にするための溶媒の比誘電率は、室温において1以上10以下であることが好ましく、より好ましくは2以上5以下である。溶媒の具体例としては、ヘキサン、ベンゼン、トルエン、ジエチルエーテル、酢酸エチル、クロロホルム、クロロベンゼン、ジクロロメタンが挙げられる。また、室温における比誘電率が2以上5以下で、溶解性が高く、汎用的な溶媒がより好ましい。例えば、トルエンやクロロホルムがより好ましい。)であることが好ましい。
なお、これらの画素は、各々カラーフィルタをさらに有していても良い。
発光デバイス207は、図2(A)乃至(C)のような構成を有する発光デバイスである。以下に本発明の一態様の発光装置に用いられる発光デバイスについて説明する。
図2(A)に、本発明の一態様の発光装置に用いられる発光デバイスを表す図を示す。本発明の一態様の発光装置に用いられる発光デバイスは、第1の電極101と、第2の電極102、EL層103を有しており、当該EL層は、正孔注入層111、正孔輸送層112、発光層113および電子輸送層114を有している。なお、図2(A)及び図2(B)における第1の電極101、第2の電極102およびEL層103は、図1(A)における第1の電極201、第2の電極203およびEL層202に相当する。
なお、図2(A)におけるEL層103には、これらに加えて電子注入層115が図示されているが、発光デバイスの構成はこれに限られることはない。上述の構成を有していれば、他の機能を有する層が含まれていても良い。
正孔注入層111には、第1の有機化合物と第2の有機化合物とが含まれる。第1の有機化合物は第2の有機化合物に対し、電子受容性を示す物質である。また、第2の有機化合物はそのHOMO準位が−5.7eV以上−5.4eV以下の比較的深いHOMO準位を有する物質である。第2の有機化合物が比較的深いHOMO準位を有することによって、正孔輸送層112への正孔の注入が容易となる。
第1の有機化合物は、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する有機化合物等を用いることができ、そのような物質の中から、上記第2の物質に対して電子受容性を示す物質を適宜選択すれば良い。このような有機化合物としては、例えば、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略量:HAT−CN)、1,3,4,5,7,8−ヘキサフルオロテトラシアノ−ナフトキノジメタン(略称:F6−TCNNQ)、2−(7−ジシアノメチレン−1,3,4,5,6,8,9,10−オクタフルオロ−7H−ピレン−2−イリデン)マロノニトリル等を挙げることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロ−3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。
第2の有機化合物は、正孔輸送性を有する有機化合物であることが好ましく、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれかを有していることが好ましい。特に、ジベンゾフラン環またはジベンゾチオフェン環を含む置換基を有する芳香族アミン、ナフタレン環を有する芳香族モノアミン、または9−フルオレニル基がアリーレン基を介してアミンの窒素に結合する芳香族モノアミンであっても良い。なお、これら第2の有機化合物が、N,N−ビス(4−ビフェニル)アミノ基を有する物質であると、寿命の良好な発光デバイスを作製することができるため好ましい。以上のような第2の有機化合物としては、具体的には、N−(4−ビフェニル)−6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BnfABP)、N,N−ビス(4−ビフェニル)−6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf)、4,4’−ビス(6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−イル−4’’−フェニルトリフェニルアミン(略称:BnfBB1BP)、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[1,2−d]フラン−6−アミン(略称:BBABnf(6))、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf(8))、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[2,3−d]フラン−4−アミン(略称:BBABnf(II)(4))、N,N−ビス[4−(ジベンゾフラン−4−イル)フェニル]−4−アミノ−p−ターフェニル(略称:DBfBB1TP)、N−[4−(ジベンゾチオフェン−4−イル)フェニル]−N−フェニル−4−ビフェニルアミン(略称:ThBA1BP)、4−(2−ナフチル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAβNB)、4−[4−(2−ナフチル)フェニル]−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAβNBi)、4,4’−ジフェニル−4’’−(6;1’−ビナフチル−2−イル)トリフェニルアミン(略称:BBAαNβNB)、4,4’−ジフェニル−4’’−(7;1’−ビナフチル−2−イル)トリフェニルアミン(略称:BBAαNβNB−03)、4,4’−ジフェニル−4’’−(7−フェニル)ナフチル−2−イルトリフェニルアミン(略称:BBAPβNB−03)、4,4’−ジフェニル−4’’−(6;2’−ビナフチル−2−イル)トリフェニルアミン(略称:BBA(βN2)B)、4,4’−ジフェニル−4’’−(7;2’−ビナフチル−2−イル)トリフェニルアミン(略称:BBA(βN2)B−03)、4,4’−ジフェニル−4’’−(4;2’−ビナフチル−1−イル)トリフェニルアミン(略称:BBAβNαNB)、4,4’−ジフェニル−4’’−(5;2’−ビナフチル−1−イル)トリフェニルアミン(略称:BBAβNαNB−02)、4−(4−ビフェニリル)−4’−(2−ナフチル)−4’’−フェニルトリフェニルアミン(略称:TPBiAβNB)、4−(3−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:mTPBiAβNBi)、4−(4−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:TPBiAβNBi)、4−フェニル−4’−(1−ナフチル)トリフェニルアミン(略称:αNBA1BP)、4,4’−ビス(1−ナフチル)トリフェニルアミン(略称:αNBB1BP)、4,4’−ジフェニル−4’’−[4’−(カルバゾール−9−イル)ビフェニル−4−イル]トリフェニルアミン(略称:YGTBi1BP)、4’−[4−(3−フェニル−9H−カルバゾール−9−イル)フェニル]トリス(1,1’−ビフェニル−4−イル)アミン(略称:YGTBi1BP−02)、4−ジフェニル−4’−(2−ナフチル)−4’’−{9−(4−ビフェニリル)カルバゾール)}トリフェニルアミン(略称:YGTBiβNB)、N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル] −N−[4−(1−ナフチル)フェニル]−9,9’−スピロビ(9H−フルオレン)−2−アミン(略称:PCBNBSF)、N,N−ビス(4−ビフェニリル)−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:BBASF)、N,N−ビス(1,1’−ビフェニル−4−イル)−9,9’−スピロビ[9H−フルオレン]−4−アミン(略称:BBASF(4))、N−(1,1’−ビフェニル−2−イル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9,9’−スピロ−ビ(9H−フルオレン)−4−アミン(略称:oFBiSF)、N−(4−ビフェニル)−N−(ジベンゾフラン−4−イル)−9,9−ジメチル−9H−フルオレン−2−アミン(略称:FrBiF)、N−[4−(1−ナフチル)フェニル]−N−[3−(6−フェニルジベンゾフラン−4−イル)フェニル]−1−ナフチルアミン(略称:mPDBfBNBN)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−[4−(9−フェニルフルオレン−9−イル)フェニル]トリフェニルアミン(略称:BPAFLBi)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、N−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCBBiF)等を挙げることができる。
正孔輸送層112は、第1の正孔輸送層112−1と第2の正孔輸送層112−2を有する。第1の正孔輸送層112−1は第2の正孔輸送層112−2よりも第1の電極101側に位置するものとする。なお、第2の正孔輸送層112−2は電子ブロック層の機能を同時に担う場合もある。
第1の正孔輸送層112−1は第3の有機化合物を、第2の正孔輸送層112−2は第4の有機化合物を有している。
第3の有機化合物および第4の有機化合物は正孔輸送性を有する有機化合物であることが好ましい。第3の有機化合物および第4の有機化合物は上記第2の有機化合物として用いることが可能な有機化合物を同様に用いることができる。
第2の有機化合物のHOMO準位と第3の有機化合物のHOMO準位では、第3の有機化合物のHOMO準位の方が深く、その差が0.2eV以下になるように各々材料を選択することが好ましい。なお、第2の有機化合物と第3の有機化合物は同じ物質であることがさらに好ましい。
また、第3の有機化合物のHOMO準位と、第4の有機化合物のHOMO準位では、第4の有機化合物のHOMO準位の方が深いほうが好ましい。さらに、その差が0.2eV以下になるように各々材料を選択するとよい。第2の有機化合物乃至第4の有機化合物のHOMO準位が以上のような関係であることによって、各層にスムーズに正孔が注入され、駆動電圧の上昇や発光層における正孔の過少状態を防ぐことができる。
なお、第2の有機化合物乃至第4の有機化合物は、各々正孔輸送性骨格を有することが好ましい。当該正孔輸送性骨格としては、これら有機化合物のHOMO準位が浅くなりすぎないカルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格が好ましい。また、これら正孔輸送性骨格が隣り合う層同士の材料(例えば第2の有機化合物と第3の有機化合物または第3の有機化合物と第4の有機化合物)で共通していると、正孔の注入がスムーズになるため好ましい。特にこれらの正孔輸送性骨格としては、ジベンゾフラン骨格が好ましい。
また、隣り合う層に含まれる材料(例えば第2の有機化合物と第3の有機化合物または第3の有機化合物と第4の有機化合物)が同じ材料であるとより正孔の注入がスムーズとなるため好ましい構成である。特に第2の有機化合物と第3の有機化合物が同じ材料である構成が好ましい。
発光層113は第5の有機化合物と第6の有機化合物を有している。第5の有機化合物は発光中心物質であり、第6の有機化合物は、第5の有機化合物を分散するためのホスト材料である。
発光中心材料は蛍光発光物質であっても、りん光発光物質であっても、熱活性化遅延蛍光(TADF)を示す物質であっても、その他の発光材料であっても構わない。また、単層であっても、異なる発光材料が含まれる複数の層からなっていても良い。なお、本発明の一態様は、発光層113が蛍光発光を呈する層、特に、青色の蛍光発光を呈する層である場合により好適に適用することができる。
発光層113において、蛍光発光物質として用いることが可能な材料としては、例えば以下のようなものが挙げられる。また、これ以外の蛍光発光物質も用いることができる。
5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、ペリレン、2,5,8,11−テトラ−tert−ブチルペリレン(略称:TBP)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、クマリン30、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCABPhA)、N−(9,10−ジフェニル−2−アントリル)−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPABPhA)、9,10−ビス(1,1’−ビフェニル−2−イル)−N−[4−(9H−カルバゾール−9−イル)フェニル]−N−フェニルアントラセン−2−アミン(略称:2YGABPhA)、N,N,9−トリフェニルアントラセン−9−アミン(略称:DPhAPhA)、クマリン545T、N,N’−ジフェニルキナクリドン、(略称:DPQd)、ルブレン、5,12−ビス(1,1’−ビフェニル−4−イル)−6,11−ジフェニルテトラセン(略称:BPT)、2−(2−{2−[4−(ジメチルアミノ)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCM1)、2−{2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’−テトラキス(4−メチルフェニル)テトラセン−5,11−ジアミン(略称:p−mPhTD)、7,14−ジフェニル−N,N,N’,N’−テトラキス(4−メチルフェニル)アセナフト[1,2−a]フルオランテン−3,10−ジアミン(略称:p−mPhAFD)、2−{2−イソプロピル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTI)、2−{2−tert−ブチル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTB)、2−(2,6−ビス{2−[4−(ジメチルアミノ)フェニル]エテニル}−4H−ピラン−4−イリデン)プロパンジニトリル(略称:BisDCM)、2−{2,6−ビス[2−(8−メトキシ−1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:BisDCJTM)、N,N’−ジフェニル−N,N’−(1,6−ピレン−ジイル)ビス[(6−フェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)、3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)、3,10−ビス[N−(ジベンゾフラン−3−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10FrA2Nbf(IV)−02)などが挙げられる。特に、1,6FLPAPrnや1,6mMemFLPAPrn、1,6BnfAPrn−03のようなピレンジアミン化合物に代表される縮合芳香族ジアミン化合物は、ホールトラップ性が高く、発光効率や信頼性に優れているため好ましい。
発光層113において、発光中心材料としてりん光発光物質を用いる場合、用いることが可能な材料としては、例えば以下のようなものが挙げられる。
トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:[Ir(mpptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])のような4H−トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属イリジウム錯体や、fac−トリス[(1−2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。これらは青色のりん光発光を示す化合物であり、440nmから520nmに発光のピークを有する化合物である。
また、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。これらは主に緑色のりん光発光を示す化合物であり、500nm〜600nmに発光のピークを有する。なお、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。
また、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。これらは、赤色のりん光発光を示す化合物であり、600nmから700nmに発光のピークを有する。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
また、以上で述べたりん光性化合物の他、公知のりん光性発光材料を選択し、用いてもよい。
TADF材料としてはフラーレン及びその誘導体、アクリジン及びその誘導体、エオシン誘導体等を用いることができる。またマグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。該金属含有ポルフィリンとしては、例えば、以下の構造式に示されるプロトポルフィリン−フッ化スズ錯体(SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(PtClOEP)等も挙げられる。
また、以下の構造式に示される2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)や、9−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(略称:PCCzTzn)、9−[4−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)フェニル]−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)、等のπ電子過剰型複素芳香環とπ電子不足型複素芳香環の一方または両方を有する複素環化合物も用いることができる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が共に高く、好ましい。中でも、π電子不足型複素芳香環を有する骨格のうち、ピリジン骨格、ジアジン骨格(ピリミジン骨格、ピラジン骨格、ピリダジン骨格)、およびトリアジン骨格は、安定で信頼性が良好なため好ましい。特に、ベンゾフロピリミジン骨格、ベンゾチエノピリミジン骨格、ベンゾフロピラジン骨格、ベンゾチエノピラジン骨格はアクセプター性が高く、信頼性が良好なため好ましい。また、π電子過剰型複素芳香環を有する骨格の中でも、アクリジン骨格、フェノキサジン骨格、フェノチアジン骨格、フラン骨格、チオフェン骨格、及びピロール骨格は、安定で信頼性が良好なため、当該骨格の少なくとも一を有することが好ましい。なお、フラン骨格としてはジベンゾフラン骨格が、チオフェン骨格としてはジベンゾチオフェン骨格が、それぞれ好ましい。また、ピロール骨格としては、インドール骨格、カルバゾール骨格、インドロカルバゾール骨格、ビカルバゾール骨格、3−(9−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール骨格が特に好ましい。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環の電子供与性とπ電子不足型複素芳香環の電子受容性が共に強くなり、S準位とT準位のエネルギー差が小さくなるため、熱活性化遅延蛍光を効率よく得られることから特に好ましい。なお、π電子不足型複素芳香環の代わりに、シアノ基のような電子吸引基が結合した芳香環を用いても良い。また、π電子過剰型骨格として、芳香族アミン骨格、フェナジン骨格等を用いることができる。また、π電子不足型骨格として、キサンテン骨格、チオキサンテンジオキサイド骨格、オキサジアゾール骨格、トリアゾール骨格、イミダゾール骨格、アントラキノン骨格、フェニルボランやボラントレン等の含ホウ素骨格、ベンゾニトリルまたはシアノベンゼン等のニトリル基またはシアノ基を有する芳香環や複素芳香環、ベンゾフェノン等のカルボニル骨格、ホスフィンオキシド骨格、スルホン骨格等を用いることができる。このように、π電子不足型複素芳香環およびπ電子過剰型複素芳香環の少なくとも一方の代わりにπ電子不足型骨格およびπ電子過剰型骨格を用いることができる。
なお、TADF材料とは、S1準位とT1準位との差が小さく、逆項間交差によって三重項励起エネルギーから一重項励起エネルギーへエネルギーを変換することができる機能を有する材料である。そのため、三重項励起エネルギーをわずかな熱エネルギーによって一重項励起エネルギーにアップコンバート(逆項間交差)が可能で、一重項励起状態を効率よく生成することができる。また、三重項励起エネルギーを発光に変換することができる。
また、2種類の物質で励起状態を形成する励起錯体(エキサイプレックス、エキシプレックスまたはExciplexともいう)は、S1準位とT1準位との差が極めて小さく、三重項励起エネルギーを一重項励起エネルギーに変換することが可能なTADF材料としての機能を有する。
なお、T1準位の指標としては、低温(例えば77Kから10K)で観測される燐光スペクトルを用いればよい。TADF材料としては、その蛍光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをS1準位とし、燐光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをT1準位とした際に、そのS1とT1の差が0.3eV以下であることが好ましく、0.2eV以下であることがさらに好ましい。
また、TADF材料を発光中心材料として用いる場合、ホスト材料のS1準位はTADF材料のS1準位より高い方が好ましい。また、ホスト材料のT1準位はTADF材料のT1準位より高いことが好ましい。
発光層のホスト材料としては、電子輸送性を有する材料や正孔輸送性を有する材料、上記TADF材料など様々なキャリア輸送材料を用いることができる。
正孔輸送性を有する材料としては、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。また、上記第2の有機化合物の例として挙げた有機化合物も用いることができる。
電子輸送性を有する材料としては、例えば、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)などのポリアゾール骨格を有する複素環化合物や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス〔3−(4−ジベンゾチエニル)フェニル〕ピリミジン(略称:4,6mDBTP2Pm−II)などのジアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。
ホスト材料として用いることが可能なTADF材料としては、先に挙げたものを同様に用いることができる。TADF材料をホスト材料として用いると、TADF材料で生成した三重項励起エネルギーが、逆項間交差によって一重項励起エネルギーに変換され、さらに発光中心物質へエネルギー移動することで、発光デバイスの発光効率を高めることができる。このとき、TADF材料がエネルギードナーとして機能し、発光中心物質がエネルギーアクセプターとして機能する。
これは、上記発光中心物質が蛍光発光物質である場合に、非常に有効である。また、このとき、高い発光効率を得るためには、TADF材料のS1準位は、蛍光発光物質のS1準位より高いことが好ましい。また、TADF材料のT1準位は、蛍光発光物質のS1準位より高いことが好ましい。したがって、TADF材料のT1準位は、蛍光発光物質のT1準位より高いことが好ましい。
また、蛍光発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈するTADF材料を用いることが好ましい。そうすることで、TADF材料から蛍光発光物質への励起エネルギーの移動がスムーズとなり、効率よく発光が得られるため、好ましい。
また、効率よく三重項励起エネルギーから逆項間交差によって一重項励起エネルギーが生成されるためには、TADF材料でキャリア再結合が生じることが好ましい。また、TADF材料で生成した三重項励起エネルギーが蛍光発光物質の三重項励起エネルギーに移動しないことが好ましい。そのためには、蛍光発光物質は、蛍光発光物質が有する発光団(発光の原因となる骨格)の周囲に保護基を有すると好ましい。該保護基としては、π結合を有さない置換基が好ましく、飽和炭化水素が好ましく、具体的には炭素数3以上10以下のアルキル基、置換もしくは無置換の炭素数3以上10以下のシクロアルキル基、炭素数3以上10以下のトリアルキルシリル基が挙げられ、保護基が複数あるとさらに好ましい。π結合を有さない置換基は、キャリアを輸送する機能に乏しいため、キャリア輸送やキャリア再結合に影響をほとんど与えずに、TADF材料と蛍光発光物質の発光団との距離を遠ざけることができる。ここで、発光団とは、蛍光発光物質において発光の原因となる原子団(骨格)を指す。発光団は、π結合を有する骨格が好ましく、芳香環を含むことが好ましく、縮合芳香環または縮合複素芳香環を有すると好ましい。縮合芳香環または縮合複素芳香環としては、フェナントレン骨格、スチルベン骨格、アクリドン骨格、フェノキサジン骨格、フェノチアジン骨格等が挙げられる。特にナフタレン骨格、アントラセン骨格、フルオレン骨格、クリセン骨格、トリフェニレン骨格、テトラセン骨格、ピレン骨格、ペリレン骨格、クマリン骨格、キナクリドン骨格、ナフトビスベンゾフラン骨格を有する蛍光発光物質は蛍光量子収率が高いため好ましい。
蛍光発光物質を発光中心物質として用いる場合、ホスト材料としては、アントラセン骨格を有する材料が好適である。アントラセン骨格を有する物質を蛍光発光物質のホスト材料として用いると、発光効率、耐久性共に良好な発光層を実現することが可能である。ホスト材料として用いるアントラセン骨格を有する物質としては、ジフェニルアントラセン骨格、特に9,10−ジフェニルアントラセン骨格を有する物質が化学的に安定であるため好ましい。また、ホスト材料がカルバゾール骨格を有する場合、正孔の注入・輸送性が高まるため好ましいが、カルバゾールにベンゼン環がさらに縮合したベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなるためより好ましい。特に、ホスト材料がジベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなる上に、正孔輸送性にも優れ、耐熱性も高くなるため好適である。したがって、さらにホスト材料として好ましいのは、9,10−ジフェニルアントラセン骨格およびカルバゾール骨格(あるいはベンゾカルバゾール骨格やジベンゾカルバゾール骨格)を同時に有する物質である。なお、上記の正孔注入・輸送性の観点から、カルバゾール骨格に換えて、ベンゾフルオレン骨格やジベンゾフルオレン骨格を用いてもよい。このような物質の例としては、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)ビフェニル−4’−イル}アントラセン(略称:FLPPA)、9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)等が挙げられる。特に、CzPA、cgDBCzPA、2mBnfPPA、PCzPAは非常に良好な特性を示すため、好ましい選択である。
なお、ホスト材料は複数種の物質を混合した材料であっても良く、混合したホスト材料を用いる場合は、電子輸送性を有する材料と、正孔輸送性を有する材料とを混合することが好ましい。電子輸送性を有する材料と、正孔輸送性を有する材料を混合することによって、発光層113の輸送性を容易に調整することができ、再結合領域の制御も簡便に行うことができる。正孔輸送性を有する材料と電子輸送性を有する材料の含有量の重量比は、正孔輸送性を有する材料:電子輸送性を有する材料=1:19〜19:1とすればよい。
なお、上記混合された材料の一部として、りん光発光物質を用いることができる。りん光発光物質は、発光中心材料として蛍光発光物質を用いる際に蛍光発光物質へ励起エネルギーを供与するエネルギードナーとして用いることができる。
また、これら混合された材料同士で励起錯体を形成しても良い。当該励起錯体は発光材料の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光が得られるため好ましい。また、当該構成を用いることで駆動電圧も低下するため好ましい。
なお、励起錯体を形成する材料の少なくとも一方は、りん光発光物質であってもよい。そうすることで、三重項励起エネルギーを逆項間交差によって効率よく一重項励起エネルギーへ変換することができる。
効率よく励起錯体を形成する材料の組み合わせとしては、正孔輸送性を有する材料のHOMO準位が電子輸送性を有する材料のHOMO準位以上であると好ましい。また、正孔輸送性を有する材料のLUMO準位が電子輸送性を有する材料ののLUMO準位以上であると好ましい。なお、材料のLUMO準位およびHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位および酸化電位)から導出することができる。
なお、励起錯体の形成は、例えば正孔輸送性を有する材料の発光スペクトル、電子輸送性を有する材料の発光スペクトル、およびこれら材料を混合した混合膜の発光スペクトルを比較し、混合膜の発光スペクトルが、各材料の発光スペクトルよりも長波長シフトする(あるいは長波長側に新たなピークを持つ)現象を観測することにより確認することができる。あるいは、正孔輸送性を有する材料の過渡フォトルミネッセンス(PL)、電子輸送性を有する材料の過渡PL、及びこれら材料を混合した混合膜の過渡PLを比較し、混合膜の過渡PL寿命が、各材料の過渡PL寿命よりも長寿命成分を有する、あるいは遅延成分の割合が大きくなるなどの過渡応答の違いを観測することにより、確認することができる。また、上述の過渡PLは過渡エレクトロルミネッセンス(EL)と読み替えても構わない。すなわち、正孔輸送性を有する材料の過渡EL、電子輸送性を有する材料の過渡EL及びこれらの混合膜の過渡ELを比較し、過渡応答の違いを観測することによっても、励起錯体の形成を確認することができる。
電子輸送層114は、発光層113に接して設けられる。また、電子輸送層114は、電子輸送性を有し、且つそのHOMO準位が−6.0eV以上の第7の有機化合物を有している。第7の有機化合物は電子輸送性を有する有機化合物であり、アントラセン骨格を含むことが好ましい。また、電子輸送層114はさらにアルカリ金属またはアルカリ土類金属の有機錯体である第8の有機化合物を含んでいても良い。すなわち、電子輸送層114は、第7の有機化合物単体で構成されていても良いし、第7の有機化合物と第8の有機化合物の混合材料のように、第7の有機化合物とその他の物質からなる混合材料から構成されていても良い。
なお、上記第7の有機化合物は、アントラセン骨格と複素環骨格を含むことがさらに好ましく、当該複素環骨格としては、含窒素5員環骨格が好ましい。含窒素5員環骨格としては、ピラゾール環、イミダゾール環、オキサゾール環、チアゾール環のように2つの複素原子を環に含む含窒素5員環骨格を有することが特に好ましい。
その他第7の有機化合物として用いることが可能な電子輸送性を有する有機化合物としては、上記ホスト材料に用いることが可能な電子輸送性を有する有機化合物、または上記蛍光発光物質のホスト材料として用いることが可能な有機化合物として挙げたものを用いることができる。
また、上記アルカリ金属またはアルカリ土類金属の有機錯体としては、リチウムの有機錯体が好ましく、特に、8−ヒドロキシキノリナトリチウム(略称:Liq)が好ましい。
また、電子輸送層114を構成する材料は、その電界強度[V/cm]の平方根が600である場合における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であることが好ましい。
また、電子輸送層114を構成する材料の電界強度[V/cm]の平方根が600である場合における電子移動度が第6の有機化合物または発光層113を構成する材料の電界強度[V/cm]の平方根が600である場合における電子移動度よりも小さいことが好ましい。電子輸送層における電子の輸送性を落とすことにより発光層への電子の注入量を制御することができ、発光層が電子過多の状態になることを防ぐことができる。
発光層が電子過多の状態になると、図3(A)に示したように発光領域120が一部に限定されることによりその部分の負担が大きくなり、劣化が促進されてしまう。また、再結合できずに発光層を電子が通過してしまうことでも、寿命や発光効率が低下する。本発明の一態様では、電子輸送層114における電子の輸送性を落とすことにより、図3(B)のように発光領域120を広げ、発光層113を構成する材料への負担を分散させることで、寿命が長く発光効率の良好な発光デバイスを提供することができる。
また、このような構成を有する発光デバイスでは、電流密度一定の条件における駆動試験によって得られた輝度の劣化曲線において、極大値を有する形状を示す場合がある。すなわち、本発明の一態様の発光装置に用いられる発光デバイスの劣化曲線は、時間の経過に従って輝度が上昇する部分を有する形状となる場合がある。このような劣化挙動を示す発光デバイスは、いわゆる初期劣化と呼ばれる駆動初期の急激な劣化を当該輝度上昇により相殺することが可能となり、初期劣化が小さく、且つ非常に良好な駆動寿命を有する発光デバイスとすることが可能となる。
なおこのような、極大値を有する劣化曲線の微分を取ると、その値が0である部分が存在するため、換言すると、劣化曲線の微分に0となる部分が存在する本発明の一態様の発光装置に用いられる発光デバイスは初期劣化が小さく、非常に寿命が良好な発光デバイスとすることができる。
なお、この現象は、図4(A)に示したように、発光に寄与しない再結合が非発光再結合領域121で生じることが原因で現れる現象と考えられる。上述の構成を有する本発明の発光デバイスでは、駆動初期では正孔の注入障壁が小さいこと、および電子輸送層114の電子輸送性が比較的低いことにより、発光領域120(すなわち再結合領域)が電子輸送層114側に寄った状態で形成される。また、電子輸送層114に含まれる第7の有機化合物のHOMO準位が−6.0eV以上と比較的高いことから、正孔が一部、電子輸送層114まで達しており、電子輸送層114でも再結合が起こり、非発光再結合領域121が形成される。なお、この現象は、第6の有機化合物と第7の有機化合物のHOMO準位の差が0.2eV以内である場合にも起こる場合がある。
ここで、駆動時間が経過することによって、キャリアバランスが変化するにしたがって、図4(B)のように発光領域120(再結合領域)が正孔輸送層112側に移動してゆく。非発光再結合領域121が減少することで、再結合したキャリアのエネルギーを有効に発光に寄与させることが可能となり、駆動初期と比較して輝度の上昇が起こる。この輝度上昇が発光デバイスの駆動初期に現れる急激な輝度低下、いわゆる初期劣化を相殺することで初期劣化が小さく、また駆動寿命の長い発光デバイスを提供することが可能となるのである。なお、本明細書等において、上記の発光デバイスをRecombination−Site Tailoring Injection構造(ReSTI構造)と呼称する場合がある。
なお、初期劣化を抑えることが可能であることで、有機ELデバイスの大きな弱点の一つとして未だ論われる焼き付きの問題、その低減のためになされる出荷前のエイジングの手間を大きく低減することが可能となる。
また、上記の輝度の上昇は、電子輸送層内部に電子輸送性の有機化合物と電子供与性の物質の混合比を変えた領域を形成することにより顕著に起こるようになる。すなわち、第2の電極側から第1の電極に向かって電子供与性の物質の濃度が上昇するように電子輸送層114を形成する。この構成を実現する構造としては、濃度勾配を持つような構造、または電子輸送性の有機化合物と電子供与性の物質の混合比が異なる層を複数積層する構造などが挙げられる。
図22(A)、(B)、(C)、(D)に、電子輸送層114における電子供与性の物質の濃度を説明する図を示す。図22(A)、(B)は、電子供与性の物質の濃度が連続的に変化する場合の模式図であり、図22(C)、(D)は、電子供与性の物質の濃度が階段状に変化する場合の模式図である。また、図22(A)、(B)においては、電子輸送層114が1層の中で濃度勾配を有する構成を例示しており、図22(C)においては、電子輸送層114が2層の積層構造であり、2つの層のそれぞれで濃度勾配を有する構成を例示しており、図22(D)においては、電子輸送層114が3層の積層構造であり、3つの層のそれぞれで濃度勾配を有する構成を例示している。
なお、図22(A)、(B)、(C)、(D)に示すように、電子輸送層114において、陽極側、すなわち発光層113側の電子供与性の物質の濃度が高い方が、初期劣化を抑制することができるため好適である。ただし、本発明の一態様の発光装置はこれに限定されず、陽極側、すなわち発光層113側の電子供与性の物質の濃度が低くてもよい。
以上のような構成を有する本発明の一態様の発光装置に用いられる発光デバイスは、寿命の良好な発光デバイスとすることが可能である。
続いて、上述の発光デバイスにおけるその他の構造や材料の例について説明する。本発明の一態様の発光装置に用いられる発光デバイスは、上述のように第1の電極101と第2の電極102の一対の電極間に複数の層からなるEL層103を有し、当該EL層103は少なくとも第1の電極101側より、正孔注入層111、第1の正孔輸送層112−1、第2の正孔輸送層112−2、発光層113および電子輸送層114を含む。
EL層103に含まれる上記以外の層については特に限定はなく、正孔注入層、正孔輸送層、電子輸送層、電子注入層、キャリアブロック層、励起子ブロック層、電荷発生層など、様々な層構造を適用することができる。
第1の電極101は、仕事関数の大きい(具体的には4.0eV以上)金属、合金、導電性化合物、およびこれらの混合物などを用いて形成することが好ましい。具体的には、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法により成膜されるが、ゾル−ゲル法などを応用して作製しても構わない。作製方法の例としては、酸化インジウム−酸化亜鉛は、酸化インジウムに対し1〜20wt%の酸化亜鉛を加えたターゲットを用いてスパッタリング法により形成する方法などがある。また、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対し酸化タングステンを0.5〜5wt%、酸化亜鉛を0.1〜1wt%含有したターゲットを用いてスパッタリング法により形成することもできる。この他、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。グラフェンも用いることができる。なお、ここでは仕事関数が大きく、陽極を形成する材料として代表的な物質を列挙したが、本発明の一態様では、正孔注入層111に、正孔輸送性を有する有機化合物と、当該有機化合物に対し電子受容性を示す物質とを含む複合材料を用いるため、仕事関数に関わらず電極材料を選択することができる。
EL層103の積層構造については、本実施の形態では、図2(A)に示すように、正孔注入層111、第1の正孔輸送層112−1、第2の正孔輸送層112−2、発光層113、電子輸送層114に加えて電子注入層115を有する構成、及び図2(B)に示すように、正孔注入層111、第1の正孔輸送層112−1、第2の正孔輸送層112−2、発光層113、電子輸送層114に加えて電荷発生層116を有する構成の2種類の構成について説明する。各層を構成する材料について以下に具体的に示す。
正孔注入層111、正孔輸送層112(第1の正孔輸送層112−1、第2の正孔輸送層112−2)、発光層113および電子輸送層114に関しては、上述したため、繰り返しとなる記載を省略する。上記を参照されたい。
電子輸送層114と第2の電極102との間に、電子注入層115として、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)等のようなアルカリ金属又はアルカリ土類金属又はそれらの化合物を含む層を設けても良い。電子注入層115は、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させたものや、エレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。
また、電子注入層115の代わりに電子輸送層114と第2の電極102との間に電荷発生層116を設けても良い(図2(B))。電荷発生層116は、電位をかけることによって当該層の陰極側に接する層に正孔を、陽極側に接する層に電子を注入することができる層のことである。電荷発生層116には、少なくともP型層117が含まれる。P型層117は、上述の正孔注入層111を構成することができる材料として挙げた複合材料を用いて形成することが好ましい。またP型層117は、複合材料を構成する材料として上述したアクセプター材料を含む膜と正孔輸送材料を含む膜とを積層して構成しても良い。P型層117に電位をかけることによって、電子輸送層114に電子が、陰極である第2の電極102に正孔が注入され、発光デバイスが動作する。
なお、電荷発生層116はP型層117の他に電子リレー層118及び電子注入バッファ層119のいずれか一又は両方がもうけられていることが好ましい。
電子リレー層118は少なくとも電子輸送性を有する物質を含み、電子注入バッファ層119とP型層117との相互作用を防いで電子をスムーズに受け渡す機能を有する。電子リレー層118に含まれる電子輸送性を有する物質のLUMO準位は、P型層117における電子受容性物質のLUMO準位と、電子輸送層114における電荷発生層116に接する層に含まれる物質のLUMO準位との間であることが好ましい。電子リレー層118に用いられる電子輸送性を有する物質におけるLUMO準位の具体的なエネルギー準位は−5.0eV以上、好ましくは−5.0eV以上−3.0eV以下とするとよい。なお、電子リレー層118に用いられる電子輸送性を有する物質としてはフタロシアニン系の材料又は金属−酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
電子注入バッファ層119には、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))等の電子注入性の高い物質を用いることが可能である。
また、電子注入バッファ層119が、電子輸送性を有する物質と電子供与性物質を含んで形成される場合には、電子供与性物質として、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセン等の有機化合物を用いることもできる。なお、電子輸送性を有する物質としては、先に説明した電子輸送層114を構成する材料と同様の材料を用いて形成することができる。
第2の電極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。このような陰極材料の具体例としては、リチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等の元素周期表の第1族または第2族に属する元素、およびこれらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。しかしながら、第2の電極102と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ等様々な導電性材料を第2の電極102として用いることができる。
これら導電性材料は、真空蒸着法やスパッタリング法などの乾式法、インクジェット法、スピンコート法等を用いて成膜することが可能である。また、ゾル−ゲル法を用いて湿式法で形成しても良いし、金属材料のペーストを用いて湿式法で形成してもよい。
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用いることができる。例えば、真空蒸着法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット法またはスピンコート法など用いても構わない。
また上述した各電極または各層を異なる成膜方法を用いて形成しても構わない。
なお、第1の電極101と第2の電極102との間に設けられる層の構成は、上記のものには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる金属とが近接することによって生じる消光が抑制されるように、第1の電極101および第2の電極102から離れた部位に正孔と電子とが再結合する発光領域を設けた構成が好ましい。
また、発光層113に接する正孔輸送層や電子輸送層、特に発光層113における再結合領域に近いキャリア輸送層は、発光層で生成した励起子からのエネルギー移動を抑制するため、そのバンドギャップが発光層を構成する発光材料もしくは、発光層に含まれる発光材料が有するバンドギャップより大きいバンドギャップを有する物質で構成することが好ましい。
続いて、複数の発光ユニットを積層した構成の発光デバイス(積層型素子、タンデム型素子ともいう)の態様について、図2(C)を参照して説明する。この発光デバイスは、陽極と陰極との間に、複数の発光ユニットを有する発光デバイスである。一つの発光ユニットは、図2(A)で示したEL層103とほぼ同様な構成を有する。つまり、図2(C)で示す発光デバイスは複数の発光ユニットを有する発光デバイスであり、図2(A)又は図2(B)で示した発光デバイスは、1つの発光ユニットを有する発光デバイスであるということができる。
図2(C)において、第1の電極151と第2の電極152との間には、第1の発光ユニット161と第2の発光ユニット162が積層されており、第1の発光ユニット161と第2の発光ユニット162との間には電荷発生層163が設けられている。第1の電極151と第2の電極152はそれぞれ図2(A)における第1の電極101と第2の電極102に相当し、図2(A)の説明で述べたものと同じものを適用することができる。また、第1の発光ユニット161と第2の発光ユニット162は同じ構成であっても異なる構成であってもよい。
電荷発生層163は、第1の電極151と第2の電極152に電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入する機能を有する。すなわち、図2(C)において、陽極の電位の方が陰極の電位よりも高くなるように電圧を印加した場合、電荷発生層163は、第1の発光ユニット161に電子を注入し、第2の発光ユニット162に正孔を注入するものであればよい。
電荷発生層163は、図2(B)にて説明した電荷発生層116と同様の構成で形成することが好ましい。有機化合物と金属酸化物の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができる。なお、発光ユニットの陽極側の面が電荷発生層163に接している場合は、電荷発生層163が発光ユニットの正孔注入層の役割も担うことができるため、発光ユニットは正孔注入層を設けなくとも良い。
また、電荷発生層163に電子注入バッファ層119を設ける場合、当該電子注入バッファ層119が陽極側の発光ユニットにおける電子注入層の役割を担うため、陽極側の発光ユニットには必ずしも電子注入層を形成する必要はない。
図2(C)では、2つの発光ユニットを有する発光デバイスについて説明したが、3つ以上の発光ユニットを積層した発光デバイスについても、同様に適用することが可能である。図2(C)の発光デバイスのように、一対の電極間に複数の発光ユニットを電荷発生層163で仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿命な素子を実現できる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
図21は、図2(C)と同様に、複数の発光ユニットを有する発光デバイスを適用した場合の本発明の一態様の発光装置の模式図である。基板100上に第1の電極151が形成され、第1の発光層113−1を有する第1の発光ユニット161と、第2の発光層113−2を有する第2の発光ユニット162が電荷発生層163を介して積層している構成である。発光デバイスから発した光は、色変換層205を介してまたはそのまま射出する。なお、さらにカラーフィルタ225R、225G、225Bを介して色純度を向上させても良い。なお、図21においては、カラーフィルタ225Bを設ける構成を例示したがこれに限定されない。例えば、図21において、カラーフィルタ225Bの代わりに、オーバーコート層を設ける構成としてもよい。オーバーコート層としては、有機樹脂材料、代表的には、アクリル系樹脂、ポリイミド系樹脂を用いれば良い。なお、本明細書等において、カラーフィルタ層は着色層と、オーバーコート層は樹脂層と、それぞれ呼称する場合がある。よって、カラーフィルタ225Rを第1の着色層と、カラーフィルタ225Gを第2の着色層と、それぞれ呼称しても良い。
また、上述のEL層103や第1の発光ユニット161、第2の発光ユニット162及び電荷発生層などの各層や電極は、例えば、蒸着法(真空蒸着法を含む)、液滴吐出法(インクジェット法ともいう)、塗布法、グラビア印刷法等の方法を用いて形成することができる。また、それらは低分子材料、中分子材料(オリゴマー、デンドリマーを含む)、または高分子材料を含んでも良い。
ここで、フルカラーディスプレイの色再現性に注目すると、より豊かな色域を表現するためには、色純度の良好な光を得る事が肝要である。有機化合物からの発光は、無機化合物からの発光と比較して、ブロードなスペクトルを有していることが多く、十分な色純度を有する発光を得るために微小共振構造(マイクロキャビティ構造)を利用したスペクトルの狭線化が行われることが好ましい。
実際に、適切なドーパントを用いて、適切に微小共振構造を適用した発光デバイスでは、前述のBT.2020規格に準ずる青色発光を得る事ができる。この際、発光デバイスが有する微小共振構造が、青色の光を強める構成を有することで色純度が良好で、効率も高い発光装置を得ることができる。
微小共振構造を有する発光デバイスは、発光デバイスの一対の電極を、反射電極と半透過・半反射電極とから構成することにより得られる。反射電極と半透過・半反射電極は上述の第1の電極101と第2の電極102に相当し、どちらか一方を反射電極、他方を半透過・半反射電極とすればよい。
微小共振構造を有する発光デバイスは、EL層に含まれる発光層から全方向に射出される発光が、反射電極と半透過・半反射電極とによって反射され、共振することで、ある波長の光を増幅し、また当該光は指向性を有する光となる。
反射電極は、可視光の反射率が40%乃至100%、好ましくは70%乃至100%であり、かつ抵抗率が1×10−2Ωcm以下であるとする。反射電極を形成する材料としては、アルミニウム(Al)またはAlを含む合金等が挙げられる。Alを含む合金としては、AlとL(Lは、チタン(Ti)、ネオジム(Nd)、ニッケル(Ni)、及びランタン(La)の一つまたは複数を表す)とを含む合金等が挙げられ、例えばAlとTi、またはAlとNiとLaを含む合金等である。アルミニウムは、抵抗値が低く、光の反射率が高い。また、アルミニウムは、地殻における存在量が多く、安価であるため、アルミニウムを用いることによる発光デバイスの作製コストを低減することができる。また、銀(Ag)、またはAgとN(Nは、イットリウム(Y)、Nd、マグネシウム(Mg)、イッテルビウム(Yb)、Al、Ti、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、タングステン(W)、マンガン(Mn)、スズ(Sn)、鉄(Fe)、Ni、銅(Cu)、パラジウム(Pd)、イリジウム(Ir)、または金(Au)の一つまたは複数を表す)とを含む合金等を用いても良い。銀を含む合金としては、例えば、銀とパラジウムと銅を含む合金、銀と銅を含む合金、銀とマグネシウムを含む合金、銀とニッケルを含む合金、銀と金を含む合金、銀とイッテルビウムを含む合金等が挙げられる。その他、タングステン、クロム(Cr)、モリブデン(Mo)、銅、チタンなどの遷移金属を用いることができる。
なお、反射電極とEL層103との間に光透過性を有する導電材料で光路長調整層として透明電極層を形成し、反射電極と透明電極層の2層で第1の電極101とすることもできる。透明電極層を用いることで、微小共振構造の光路長(キャビティ長)を調整することもできる。光透過性を有する導電材料としては、インジウム錫酸化物(Indium Tin Oxide、以下ITO)、珪素または酸化珪素を含むインジウム錫酸化物(略称:ITSO)、酸化インジウム−酸化亜鉛(Indium Zinc Oxide)、チタンを含有した酸化インジウム−錫酸化物、インジウム−チタン酸化物、酸化タングステン及び酸化亜鉛を含有した酸化インジウムなどの金属酸化物を挙げることができる。
半透過・半反射電極は、可視光の反射率が20%乃至80%、好ましくは40%乃至70%であり、抵抗率が1×10−2Ωcm以下であるとする。半透過・半反射電極としては、導電性を有する金属、合金、導電性化合物などを1種又は複数種用いて形成することができる。具体的には、例えば、インジウム錫酸化物(Indium Tin Oxide、以下ITO)、珪素または酸化珪素を含むインジウム錫酸化物(略称:ITSO)、酸化インジウム−酸化亜鉛(Indium Zinc Oxide)、チタンを含有した酸化インジウム−錫酸化物、インジウム−チタン酸化物、酸化タングステン及び酸化亜鉛を含有した酸化インジウムなどの金属酸化物を用いることができる。また、光を透過する程度(好ましくは、1nm以上30nm以下の厚さ)の金属薄膜を用いることができる。金属としては、例えば、Ag、またはAgとAl、AgとMg、AgとAu、AgとYbなどの合金等を用いることができる。
反射電極と、半透過・半反射電極は、第1の電極101、第2の電極102のどちらであっても良い。また、陽極、陰極のどちらであっても構わない。
なお、トップエミッション構造を有する発光デバイスである場合、第2の電極102のEL層103に接する面と反対の面に有機キャップ層を設けることで光取出し効率を向上させることができる。有機キャップ層を設けることによって、電極と空気界面における屈折率差を低減できるため、光取出し効率を向上させることができる。有機キャップ層の膜厚は5nm以上120nm以下が好ましい。より好ましくは30nm以上90nm以下である。また、有機キャップ層は分子量300以上1200以下の有機化合物層を用いると良い。また、導電性を有する有機材料であることが好ましい。半透過・半反射電極は、ある程度の透光性を維持するため膜厚を薄くする必要があり、薄いと導電性が悪化する場合がある。ここで有機キャップ層に導電性を有する材料を用いることで、光取出し効率を向上させつつ、導電性を確保し、発光デバイス作製の歩留まりを向上させることができる。なお、可視光領域の光の吸収が少ない有機化合物を好適に用いることができる。有機キャップ層には、EL層103に用いた有機化合物を用いることもできる。この場合、EL層103を成膜した成膜装置若しくは成膜室で有機キャップ層を成膜できるため、簡便に有機キャップ層を成膜することができる。
当該発光デバイスは、上述の反射電極に接して設けられた透明電極や、正孔注入層、正孔輸送層などキャリア輸送層の厚みを変え反射電極と半透過・半反射電極の間の光学的距離(キャビティ長)を変えることができる。これにより、反射電極と半透過・半反射電極との間において、共振する波長の光を強め、共振しない波長の光を減衰させることができる。
なお、微小共振構造(マイクロキャビティ構造)は、反射電極のEL層側の界面と、半透過・半反射電極のEL層側の界面との間の光学的距離(光路長)が、増幅したい波長をλnmとすると、λ/2の整数倍であることが好ましい。
また、発光のうち、反射電極によって反射されて戻ってきた光(第1の反射光)は、発光層から半透過・半反射電極に直接入射する光(第1の入射光)と大きな干渉を起こすため、反射電極と発光層の光学的距離を(2n−1)λ/4(ただし、nは1以上の自然数、λは増幅したい発光の波長)に調節することが好ましい。当該光学的距離を調節することにより、第1の反射光と第1の入射光との位相を合わせ発光層からの発光をより増幅させることができる。
マイクロキャビティ構造を有することで、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。また、色変換層へ入る光の確率も高めることができる。
ところで、マイクロキャビティ構造を介して狭線化された光は、画面に対して垂直方向に強い指向性を有する光となることが知られている。一方で、上記QDを用いた色変換層を介した光は、QDや発光性の有機化合物からの発光は全方向に射出されることから指向性は殆ど有さない。基本的に、色変換層を介すことで発光デバイスからの発光は多少ロスするので、色変換層を用いたディスプレイにおいては、最も短波長の光である青色発光を発光デバイスから直接得て、緑と赤の光は色変換層を介して得る構成になる。そのため、緑色の画素および赤色の画素と、青色の画素との間に、配光特性の違いが生じてしまう。このような配光特性の大きな違いは、視野角依存性を生み、表示品質の悪化に直結する。特に、テレビなどのように大画面、大人数で視聴される場合、その影響が大きい。
そこで、本発明の一態様の発光装置では、色変換層を介さない画素に光を散乱する機能を有する構造を設ける、または、色変換層を介した画素に指向性を付与する構造を有していても良い。
光を散乱する機能を有する構造は、発光デバイスから発する光が発光装置の外部に出てゆく光路上に設けられていれば良い。微小共振構造を有する発光デバイスから発する光は、強い指向性を有するが、当該光を散乱する機能を有する構造によって散乱されることによってそれを弱めることができ、または、散乱された光を指向性を有する光とすることができ、色変換層を介した光と介さない光とを同様の配光特性を有する光とすることができる。これにより上記視野角依存性を低減させることができる。
図5(A)乃至(C)には、第1の画素208Bに、第1の発光デバイス207Bから発する光を散乱する機能を有する構造205Bを設けた構成を示した。第1の発光デバイス207Bから発する光を散乱する機能を有する構造205Bは、図5(A)および図5(B)のように第1の発光デバイスからの発する光を散乱する物質を含む層であっても、図5(C)のように第1の発光デバイスからの発する光を散乱する構造体を有する構成であっても良い。
図6(A)乃至(C)には、変形例をしめした。図6(A)は、図5(A)における光を散乱する機能を有する構造205Bの代わりに、さらに青色のカラーフィルタの機能を兼ねた層215Bを有している。また、図6(B)、(C)は、光を散乱する機能を有する構造205Bと青色のカラーフィルタ225Bを共に有する態様を示した。なお、青色のカラーフィルタ225Bは図6(B)、(C)のように、光を散乱する機能を有する構造205Bと接して形成しても良いが、封止基板など、他の構造体に形成しても良い。これにより、当該発光装置は指向性を有した光を散乱しつつ色純度がさらに向上する。また、外光の反射も抑制することができるため、より良好な表示を得る事ができる。
第1の画素208Bからの光は、第1の発光デバイス207Bからの光を構造205Bを介して射出させたことで、指向性の小さい光とすることが可能となる。これにより、色による配光特性の違いが緩和され、表示品質の高い発光装置とすることが可能となる。
また、図7(A)および(B)に示す本発明の一態様の発光装置では、第1の色変換層から発する光に指向性を付与する手段210Gおよび210Rが設けられている。第1の色変換層から発する光に指向性を付与する手段は、どのような手段でも良いが、例えば色変換層を挟むように半透過半反射層を形成し、微小共振構造を形成すれば良い。なお、図7(A)は色変換層の上下に半透過半反射層を形成した態様、図7(B)は色変換層の発光デバイス側の半透過半反射層を発光デバイスの第2の電極(半透過・半反射電極)と兼用した態様である。
第2の画素208Gおよび第3の画素208Rからの光は、色変換層から発する光に指向性を付与する手段210Gおよび210Rを設けることにより指向性の大きい光とすることが可能となる。これにより、色による配光特性の違いが緩和され、表示品質の高い発光装置とすることができる。
(実施の形態2)
本実施の形態では、実施の形態1に記載の発光装置を用いた表示装置について説明する。
本実施の形態では、実施の形態1に記載の発光装置を用いて作製された表示装置について図8を用いて説明する。なお、図8(A)は、表示装置を示す上面図、図8(B)は図8(A)をA−BおよびC−Dで切断した断面図である。この表示装置は、発光装置の発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回路)601、画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また、604は封止基板、605はシール材であり、シール材605で囲まれた内側は、空間607になっている。
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
次に、断面構造について図8(B)を用いて説明する。素子基板610上には駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601と、画素部602中の一つの画素が示されている。
素子基板610はガラス、石英、有機樹脂、金属、合金、半導体などからなる基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いて作製すればよい。
画素や駆動回路に用いられるトランジスタの構造は特に限定されない。例えば、逆スタガ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよい。また、トップゲート型のトランジスタでもボトムゲート型トランジスタでもよい。トランジスタに用いる半導体材料は特に限定されず、例えば、シリコン、ゲルマニウム、炭化シリコン、窒化ガリウム等を用いることができる。または、In−Ga−Zn系金属酸化物などの、インジウム、ガリウム、亜鉛のうち少なくとも一つを含む酸化物半導体を用いてもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
ここで、上記画素や駆動回路に設けられるトランジスタの他、後述するタッチセンサ等に用いられるトランジスタなどの半導体装置には、酸化物半導体を適用することが好ましい。特にシリコンよりもバンドギャップの広い酸化物半導体を適用することが好ましい。シリコンよりもバンドギャップの広い酸化物半導体を用いることで、トランジスタのオフ状態における電流を低減できる。
上記酸化物半導体は、少なくともインジウム(In)又は亜鉛(Zn)を含むことが好ましい。また、In−M−Zn系酸化物(MはAl、Ti、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)で表記される酸化物を含む酸化物半導体であることがより好ましい。
ここで、本発明の一態様に用いることができる酸化物半導体について、以下に説明を行う。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nano crystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、および非晶質酸化物半導体などがある。
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損(V:oxygen vacancyともいう)など)の少ない酸化物半導体ともいえる。したがって、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
なお、インジウムと、ガリウムと、亜鉛と、を有する酸化物半導体の一種である、インジウム−ガリウム−亜鉛酸化物(以下、IGZO)は、上述のナノ結晶とすることで安定な構造をとる場合がある。特に、IGZOは、大気中では結晶成長がし難い傾向があるため、大きな結晶(ここでは、数mmの結晶、または数cmの結晶)よりも小さな結晶(例えば、上述のナノ結晶)とする方が、構造的に安定となる場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
また、上述の酸化物半導体以外として、CAC(Cloud−Aligned Composite)−OSを用いてもよい。
CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。CAC−OSにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC−OSは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。
すなわち、CAC−OSは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
半導体層として上述の酸化物半導体材料を用いることで、電気特性の変動が抑制され、信頼性の高いトランジスタを実現できる。
また、上述の半導体層を有するトランジスタはその低いオフ電流により、トランジスタを介して容量に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、各表示領域に表示した画像の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された電子機器を実現できる。
トランジスタの特性安定化等のため、下地膜を設けることが好ましい。下地膜としては、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜などの無機絶縁膜を用い、単層で又は積層して作製することができる。下地膜はスパッタリング法、CVD(Chemical Vapor Deposition)法(プラズマCVD法、熱CVD法、MOCVD(Metal Organic CVD)法など)、ALD(Atomic Layer Deposition)法、塗布法、印刷法等を用いて形成できる。なお、下地膜は、必要で無ければ設けなくてもよい。
なお、FET623はソース線駆動回路601に形成されるトランジスタの一つを示すものである。また、駆動回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路で形成すれば良い。また、本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を基板上ではなく外部に形成することもできる。
また、画素部602はスイッチング用FET611と、電流制御用FET612とそのドレインに電気的に接続された陽極613とを含む複数の画素により形成されているが、これに限定されず、3つ以上のFETと、容量素子とを組み合わせた画素部としてもよい。
なお、陽極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ型の感光性アクリルを用いることにより形成することができる。
また、後に形成するEL層等の被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性アクリルを用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm〜3μm)を有する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも使用することができる。
陽極613上には、EL層616、および陰極617がそれぞれ形成されている。ここで、陽極613に用いる材料としては、仕事関数の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したインジウム錫酸化物膜、2〜20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタン膜とアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる。
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法等の種々の方法によって形成される。EL層616は、図2で説明したような構成を含んでいる。また、EL層616を構成する他の材料としては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。
さらに、EL層616上に形成された陰極617に用いる材料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化合物(MgAg、MgIn、AlLi等)等)を用いることが好ましい。なお、EL層616で生じた光が陰極617を透過させる場合には、陰極617として、膜厚を薄くした金属薄膜と、透明導電膜(ITO、2〜20wt%の酸化亜鉛を含む酸化インジウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いるのが良い。
なお、陽極613、EL層616、陰極617でもって、発光デバイスが形成されている。当該発光デバイスは実施の形態1に記載の発光デバイスである。なお、画素部は複数の発光デバイスが形成されてなっているが、本実施の形態における発光装置では、実施の形態1に記載の発光デバイスと、それ以外の構成を有する発光デバイスの両方が含まれていても良い。
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光デバイス618が備えられた構造になっている。なお、空間607には、充填材が充填されており、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材で充填される場合もある。封止基板には凹部を形成し、そこに乾燥材を設けことで水分の影響による劣化を抑制することができ、好ましい構成である。
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。
図8には示されていないが、陰極上に保護膜を設けても良い。保護膜は有機樹脂膜や無機絶縁膜で形成すればよい。また、シール材605の露出した部分を覆うように、保護膜が形成されていても良い。また、保護膜は、一対の基板の表面及び側面、封止層、絶縁層、等の露出した側面を覆って設けることができる。
保護膜には、水などの不純物を透過しにくい材料を用いることができる。したがって、水などの不純物が外部から内部に拡散することを効果的に抑制することができる。
保護膜を構成する材料としては、酸化物、窒化物、フッ化物、硫化物、三元化合物、金属またはポリマー等を用いることができ、例えば、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、酸化ランタン、酸化珪素、チタン酸ストロンチウム、酸化タンタル、酸化チタン、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化スズ、酸化イットリウム、酸化セリウム、酸化スカンジウム、酸化エルビウム、酸化バナジウムまたは酸化インジウム等を含む材料や、窒化アルミニウム、窒化ハフニウム、窒化珪素、窒化タンタル、窒化チタン、窒化ニオブ、窒化モリブデン、窒化ジルコニウムまたは窒化ガリウム等を含む材料、チタンおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む酸化物、アルミニウムおよび亜鉛を含む酸化物、マンガンおよび亜鉛を含む硫化物、セリウムおよびストロンチウムを含む硫化物、エルビウムおよびアルミニウムを含む酸化物、イットリウムおよびジルコニウムを含む酸化物等を含む材料を用いることができる。
保護膜は、段差被覆性(ステップカバレッジ)の良好な成膜方法を用いて形成することが好ましい。このような手法の一つに、原子層堆積(ALD:Atomic Layer Deposition)法がある。ALD法を用いて形成することができる材料を、保護膜に用いることが好ましい。ALD法を用いることで緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える保護膜を形成することができる。また、保護膜を形成する際に加工部材に与える損傷を、低減することができる。
例えばALD法を用いて保護膜を形成することで、複雑な凹凸形状を有する表面や、タッチパネルの上面、側面及び裏面にまで均一で欠陥の少ない保護膜を形成することができる。
以上のようにして、実施の形態1に記載の発光装置を用いて作製された表示装置を得ることができる。
本実施の形態における表示装置は、実施の形態1に記載の発光装置を用いているため、良好な特性を備えた表示装置とすることができる。具体的には、実施の形態1に記載の発光装置は寿命の長い発光装置であるため、信頼性の良好な表示装置とすることができる。また、実施の形態1に記載の発光装置を用いた表示装置は発光効率が良好なため、消費電力の小さい表示装置とすることが可能である。
図9には青色発光を呈する発光デバイスを形成し、色変換層を設けることによってフルカラー化した発光装置の例を示す。図9(A)には基板1001、下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、駆動回路部1041、発光デバイスの第1の電極1024R、1024G、1024B、隔壁1025、EL層1028、発光デバイスの第2の電極1029、封止基板1031、シール材1032などが図示されている。
また、図9(A)では色変換層(赤色の色変換層1034R、緑色の色変換層1034G)は透明な基材1033に設けている。また、ブラックマトリクス1035をさらに設けても良い。色変換層及びブラックマトリクスが設けられた透明な基材1033は、位置合わせし、基板1001に固定する。なお、色変換層及びブラックマトリクス1035は、オーバーコート層1036で覆われていても良い。
図9(B)では色変換層(赤色の色変換層1034R、緑色の色変換層1034G)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例を示した。このように、着色層は基板1001と封止基板1031の間に設けられていても良い。
また、以上に説明した発光装置では、FETが形成されている基板1001側に光を取り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を取り出す構造(トップエミッション型)の発光装置としても良い。トップエミッション型の発光装置の断面図を図10に示す。この場合、基板1001は光を通さない基板を用いることができる。FETと発光デバイスの陽極とを接続する接続電極を作製するまでは、ボトムエミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を電極1022を覆って形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の公知の材料を用いて形成することができる。
発光デバイスの第1の電極1024R、1024G、1024Bはここでは陽極とするが、陰極であっても構わない。また、図10のようなトップエミッション型の発光装置である場合、第1の電極を反射電極とすることが好ましい。EL層1028の構成は、青色の発光が得られるような素子構造とする。
図10のようなトップエミッションの構造では色変換層(赤色の色変換層1034R、緑色の色変換層1034G)を設けた封止基板1031で封止を行うことができる。封止基板1031には画素と画素との間に位置するようにブラックマトリクス1035を設けても良い。色変換層(赤色の色変換層1034R、緑色の色変換層1034G)やブラックマトリックスはオーバーコート層1036によって覆われていても良い。なお封止基板1031は透光性を有する基板を用いることとする。また、色変換層(赤色の色変換層1034R、緑色の色変換層1034G)は第2の電極1029上(または第2の電極1029上に設けられた保護膜上)に直接設けられていても良い。
なお、上記構成においては、EL層に複数の発光層を有する構造であっても、単一の発光層を有する構造であっても良く、例えば、上述のタンデム型発光デバイスの構成と組み合わせて、一つの発光デバイスに電荷発生層を挟んで複数のEL層を設け、それぞれのEL層に単数もしくは複数の発光層を形成する構成に適用してもよい。
トップエミッション型の発光装置では、マイクロキャビティ構造の適用が好適に行える。マイクロキャビティ構造を有する発光デバイスは、陽極を反射電極、陰極を半透過・半反射電極とすることにより得られる。反射電極と半透過・半反射電極との間には少なくともEL層を有し、少なくとも発光領域となる発光層を有している。
なお、反射電極は、可視光の反射率が40%乃至100%、好ましくは70%乃至100%であり、かつその抵抗率が1×10−2Ωcm以下の膜であるとする。また、半透過・半反射電極は、可視光の反射率が20%乃至80%、好ましくは40%乃至70%であり、かつその抵抗率が1×10−2Ωcm以下の膜であるとする。
EL層に含まれる発光層から射出される発光は、反射電極と半透過・半反射電極とによって反射され、共振する。
当該発光デバイスは、透明導電膜や上述の複合材料、キャリア輸送材料などの厚みを変えることで反射電極と半透過・半反射電極の間の光学的距離を変えることができる。これにより、反射電極と半透過・半反射電極との間において、共振する波長の光を強め、共振しない波長の光を減衰させることができる。
なお、反射電極によって反射されて戻ってきた光(第1の反射光)は、発光層から半透過・半反射電極に直接入射する光(第1の入射光)と大きな干渉を起こすため、反射電極と発光層の光学的距離を(2n−1)λ/4(ただし、nは1以上の自然数、λは増幅したい発光の波長)に調節することが好ましい。当該光学的距離を調節することにより、第1の反射光と第1の入射光との位相を合わせ発光層からの発光をより増幅させることができる。
なお、上記構成においては、EL層に複数の発光層を有する構造であっても、単一の発光層を有する構造であっても良く、例えば、上述のタンデム型発光デバイスの構成と組み合わせて、一つの発光デバイスに電荷発生層を挟んで複数のEL層を設け、それぞれのEL層に単数もしくは複数の発光層を形成する構成に適用してもよい。
(実施の形態3)
本実施の形態では、実施の形態1および実施の形態2に記載の発光デバイスをその一部に含む電子機器の例について説明する。実施の形態1および実施の形態2に記載の発光デバイスは寿命が良好であり、信頼性の良好な発光デバイスである。その結果、本実施の形態に記載の電子機器は、信頼性の良好な発光部を有する電子機器とすることが可能である。
上記発光デバイスを適用した電子機器として、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。これらの電子機器の具体例を以下に示す。
図11(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体7101に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐体7101を支持した構成を示している。表示部7103により、映像を表示することが可能であり、表示部7103は、実施の形態1および実施の形態2に記載の発光デバイスをマトリクス状に配列して構成されている。
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7110により行うことができる。リモコン操作機7110が備える操作キー7109により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110から出力する情報を表示する表示部7107を設ける構成としてもよい。
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図11(B1)はコンピュータであり、本体7201、筐体7202、表示部7203、キーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む。なお、このコンピュータは、実施の形態1および実施の形態2に記載の発光デバイスをマトリクス状に配列して表示部7203に用いることにより作製される。図11(B1)のコンピュータは、図11(B2)のような形態であっても良い。図11(B2)のコンピュータは、キーボード7204、ポインティングデバイス7206の代わりに第2の表示部7210が設けられている。第2の表示部7210はタッチパネル式となっており、第2の表示部7210に表示された入力用の表示を指や専用のペンで操作することによって入力を行うことができる。また、第2の表示部7210は入力用表示だけでなく、その他の画像を表示することも可能である。また表示部7203もタッチパネルであっても良い。二つの画面がヒンジで接続されていることによって、収納や運搬をする際に画面を傷つける、破損するなどのトラブルの発生も防止することができる。
図11(C)は、携帯端末の一例を示している。携帯電話機は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機は、実施の形態1および実施の形態2に記載の発光デバイスをマトリクス状に配列して作製された表示部7402を有している。
図11(C)に示す携帯端末は、表示部7402を指などで触れることで、情報を入力することができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作成するなどの操作は、表示部7402を指などで触れることにより行うことができる。
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好ましい。
また、携帯端末内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、携帯端末の向き(縦か横か)を判断して、表示部7402の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モードから表示モードに切り替えるように制御してもよい。
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部7402に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
なお、本実施の形態に示す構成は、実施の形態1および実施の形態2に示した構成を適宜組み合わせて用いることができる。
以上の様に実施の形態1および実施の形態2に記載の発光デバイスを備えた発光装置の適用範囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。実施の形態1および実施の形態2に記載の発光デバイスを用いることにより信頼性の高い電子機器を得ることができる。
図12(A)は、掃除ロボットの一例を示す模式図である。
掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。また、ディスプレイ5101の表示をスマートフォンなどの携帯電子機器で確認することもできる。
本発明の一態様の発光装置はディスプレイ5101に用いることができる。
図12(B)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。また、ディスプレイ2105は取り外しのできる情報端末であっても良く、ロボット2100の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。本発明の一態様の発光装置はディスプレイ2105に用いることができる。
図12(C)はゴーグル型ディスプレイの一例を表す図である。ゴーグル型ディスプレイは、例えば、筐体5000、表示部5001、スピーカ5003、LEDランプ5004、接続端子5006、センサ5007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン5008、表示部5002、支持部5012、イヤホン5013等を有する。
本発明の一態様の発光装置は表示部5001および表示部5002に用いることができる。
実施の形態1および実施の形態2に記載の発光デバイスは、自動車のフロントガラスやダッシュボードにも搭載することができる。図13に実施の形態1および実施の形態2に記載の発光デバイスを自動車のフロントガラスやダッシュボードに用いる一態様を示す。表示領域5200乃至表示領域5203は実施の形態1および実施の形態2に記載の発光デバイスを用いて設けられた表示である。
表示領域5200と表示領域5201は自動車のフロントガラスに設けられた実施の形態1および実施の形態2に記載の発光デバイスを搭載した表示装置である。実施の形態1および実施の形態2に記載の発光デバイスは、陽極と陰極を透光性を有する電極で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすることができる。シースルー状態の表示であれば、自動車のフロントガラスに設置したとしても、視界の妨げになることなく設置することができる。なお、駆動のためのトランジスタなどを設ける場合には、有機半導体材料による有機トランジスタや、酸化物半導体を用いたトランジスタなど、透光性を有するトランジスタを用いると良い。
表示領域5202はピラー部分に設けられた実施の形態1および実施の形態2に記載の発光デバイスを搭載した表示装置である。表示領域5202には、車体に設けられた撮像手段からの映像を映し出すことによって、ピラーで遮られた視界を補完することができる。また、同様に、ダッシュボード部分に設けられた表示領域5203は車体によって遮られた視界を、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。見えない部分を補完するように映像を映すことによって、より自然に違和感なく安全確認を行うことができる。
表示領域5203はまたナビゲーション情報、速度計や回転計、走行距離、燃料計、ギア状態、エアコンの設定などを表示することで、様々な情報を提供することができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更することができる。なお、これら情報は表示領域5200乃至表示領域5202にも設けることができる。また、表示領域5200乃至表示領域5203は照明装置として用いることも可能である。
また、図14(A)、(B)に、折りたたみ可能な携帯情報端末5150を示す。折りたたみ可能な携帯情報端末5150は筐体5151、表示領域5152および屈曲部5153を有している。図14(A)に展開した状態の携帯情報端末5150を示す。図14(B)に折りたたんだ状態の携帯情報端末を示す。携帯情報端末5150は、大きな表示領域5152を有するにも関わらず、折りたためばコンパクトで可搬性に優れる。
表示領域5152は屈曲部5153により半分に折りたたむことができる。屈曲部5153は伸縮可能な部材と複数の支持部材とで構成されており、折りたたむ場合は、伸縮可能な部材が伸び。屈曲部5153は2mm以上、好ましくは3mm以上の曲率半径を有して折りたたまれる。
なお、表示領域5152は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。本発明の一態様の発光装置を表示領域5152に用いることができる。
また、図15(A)〜(C)に、折りたたみ可能な携帯情報端末9310を示す。図15(A)に展開した状態の携帯情報端末9310を示す。図15(B)に展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。図15(C)に折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示パネル9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示パネル9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示パネル9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示パネル9311に用いることができる。
<参考例>
本参考例では、各実施例で用いた有機化合物のHOMO準位、LUMO準位および電子移動度の算出方法について説明する。
HOMO準位およびLUMO準位はサイクリックボルタンメトリ(CV)測定を元に算出することができる。
測定装置としては電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600Aまたは600C)を用いた。CV測定における溶液は、溶媒として脱水ジメチルホルムアミド(DMF)((株)アルドリッチ製、99.8%、カタログ番号;22705−6)を用い、支持電解質である過塩素酸テトラ−n−ブチルアンモニウム(n−Bu4NClO4)((株)東京化成製、カタログ番号;T0836)を100mmol/Lの濃度となるように溶解させ、さらに測定対象を2mmol/Lの濃度となるように溶解させて調製した。また、作用電極としては白金電極(ビー・エー・エス(株)製、PTE白金電極)を、補助電極としては白金電極(ビー・エー・エス(株)製、VC−3用Ptカウンター電極(5cm))を、参照電極としてはAg/Ag+電極(ビー・エー・エス(株)製、RE7非水溶媒系参照電極)をそれぞれ用いた。なお、測定は室温(20〜25℃)で行った。また、CV測定時のスキャン速度は、0.1V/secに統一し、参照電極に対する酸化電位Ea[V]および還元電位Ec[V]を測定した。Eaは酸化−還元波の中間電位とし、Ecは還元−酸化波の中間電位とした。ここで、本参考例で用いる参照電極の真空準位に対するポテンシャルエネルギーは、−4.94[eV]であることが分かっているため、HOMO準位[eV]=−4.94−Ea、LUMO準位[eV]=−4.94−Ecという式から、HOMO準位およびLUMO準位をそれぞれ求めることができる。
電子移動度はインピーダンス分光法(Impedance Spectroscopy:IS法)により測定することが可能である。
EL材料のキャリア移動度の測定は、過渡光電流法(Time−of−flight:TOF法)や空間電荷制限電流(Space−charge−limited current:SCLC)のI−V特性から求める方法(SCLC法)などが古くから知られている。TOF法は実際の有機EL素子と比較してかなり厚い膜厚の試料が必要となる。SCLC法ではキャリア移動度の電界強度依存性が得られないなどの欠点がある。IS法では、測定に必要とする有機膜の膜厚が数百nm程度と薄いため、比較的少量のEL材料でも成膜することが可能であり、実際のEL素子に近い膜厚で移動度を測定できることが特徴であり、キャリア移動度の電界強度依存性も得ることができる。
IS法では、EL素子に微小正弦波電圧信号(V=V[exp(jωt)])を与え、その応答電流信号(I=Iexp[j(ωt+φ)])の電流振幅と入力信号との位相差より、EL素子のインピーダンス(Z=V/I)を求める。高周波電圧から低周波電圧まで変化させて素子に印加させれば、インピーダンスに寄与する様々な緩和時間を有する成分を分離、測定することができる。
ここで、インピーダンスの逆数であるアドミタンスY(=1/Z)は、下記式(1)のようにコンダクタンスGとサセプタンスBで表すことができる。
さらに、単一電荷注入(single injection)モデルにより、それぞれ下記式(2)および(3)を算出することができる。ここで、g(式(4))は微分コンダクタンスである。なお、式中Cは静電容量(キャパシタンス)、θはωtであり走行角、ωは角周波数を表す。tは走行時間である。解析には電流の式、ポアソンの式、電流連続の式を用い、拡散電流およびトラップ準位の存在を無視している。
静電容量の周波数特性から移動度を算出する方法が−ΔB法である。また、コンダクタンスの周波数特性から移動度を算出する方法がωΔG法である。
実際には、まず、電子移動度を求めたい材料の電子オンリー素子を作製する。電子オンリー素子とは、キャリアとして電子のみが流れるように設計された素子である。本明細書では、静電容量の周波数特性から移動度を算出する方法(−ΔB法)を説明する。用いた電子オンリー素子の模式図を図16に示す。
今回、測定用に作製した電子オンリー素子の構造は、図16に示したように第1の電極1201と第2の電極1202との間に第1の層1210と第2の層1211と第3の層1212を有する。電子移動度を求めたい材料は第2の層1211の材料として用いれば良い。今回は2−{4−[9,10−ジ(ナフタレン−2−イル)−2−アントリル]フェニル}−1−フェニル−1H−ベンゾイミダゾール(略称:ZADN)とLiqの1:1(重量比)の共蒸着膜についてその電子移動度を測定した例を挙げて説明する。具体的な構成例は以下の表にまとめた。
ZADNとLiqの共蒸着膜を第2の層1211として作製した電子オンリー素子の電流密度−電圧特性を図17に示す。
インピーダンス測定は、5.0V〜9.0Vの範囲で直流電圧を印加しながら、交流電圧が70mV、周波数が1Hz〜3MHzの条件で測定を行った。ここで得られたインピーダンスの逆数であるアドミタンス(前述の(1)式)からキャパシタンスを算出する。印加電圧7.0Vにおける算出されたキャパシタンスCの周波数特性を図18に示す。
キャパシタンスCの周波数特性は、微小電圧信号により注入されたキャリアによる空間電荷が微小交流電圧に完全には追従できず、電流に位相差が生じることにより得られる。ここで、膜中のキャリアの走行時間は、注入されたキャリアが対向電極に到達する時間Tで定義され、以下の式(5)で表される。
負サセプタンス変化(−ΔB)は、静電容量変化−ΔCに角周波数ωを乗じた値(−ωΔC)に対応する。その最も低周波側のピーク周波数f’max(=ωmax/2π)と走行時間Tとの間には、式(3)より、以下の式(6)の関係があることが導出される。
上記測定から算出した(すなわち直流電圧が7.0Vの時の)−ΔBの周波数特性を図19に示す。図19より求まる最も低周波側のピーク周波数f’maxは、図中の矢印で示した。
以上の測定および解析から得られるf’maxから、走行時間Tが求まるため(上記式(6)参照)、上記式(5)より、今回で言えば電圧7.0Vにおける電子移動度を求めることができる。同様の測定を、直流電圧5.0V〜9.0Vの範囲で行うことで、各電圧(電界強度)での電子移動度が算出できるため、移動度の電界強度依存性も測定できる。
以上のような算出法により、各有機化合物の最終的に得られた電子移動度の電界強度依存性を図20に、図から読み取った電界強度[V/cm]の平方根が600[V/cm]1/2の時の電子移動度の値を表10にそれぞれ示す。
以上のように電子移動度を算出することが可能である。なお、詳しい測定方法に関しては、Takayuki Okachi 他 ”Japanese Journal of Applied Physics” Vol. 47, No. 12, 2008, pp. 8965−8972を参照されたい。
(実施の形態4)
<半導体装置の構成例>
本発明の一態様について、図面を用いて説明する。図23は、HMD(Head Mounted Display(ヘッドマウントディスプレイ))に用いることができる半導体装置400の外観を示す斜視図である。
半導体装置400は、表示モジュール401(表示モジュール401Rおよび表示モジュール401L)、表示制御部402、電源部403、操作部404、スピーカ405、外部入出力端子406、固定具407、およびレンズ408を有する。
表示モジュール401は、表示制御部402から供給される信号に基づいて表示を行う。表示制御部402は、CPU(Central Processing Unit)およびGPU(Graphics Processing Unit)などの演算回路を備え、外部より供給される映像信号の処理を行う。電源部403は、半導体装置400を駆動するための電源電圧の生成および供給を行う。操作部404は、ユーザが半導体装置400を操作する際に用いる。スピーカ405は、外部入出力端子406を介して外部より供給される音声信号に応じて動作する。外部入出力端子406は、外部より供給される映像信号および音声信号などの各種信号が入出力される。固定具407は、半導体装置400をユーザの頭部に固定するために用いる。レンズ408は、表示モジュール401を拡大して視認するために用いる。
ユーザは、レンズを介して表示モジュール401を視認する。拡大された表示モジュール401の画像を視認するため、ユーザは高い没入感を得ることができる。
<表示モジュールの構成例>
表示モジュール401を拡大して視認するため、表示モジュール401に適用する表示パネルは、精細度の高い表示モジュールを適用することが好ましい。図24(A)、(B)に、表示モジュール401の斜視図を示す。
図24(A)に示す表示モジュール401は、表示装置411と、FPC412(Flexible Printed Circuit)と、を有する。表示装置411としては、本発明の一態様の発光装置を適用することができる。
表示モジュール401は、基板421、基板422を有する。表示モジュール401は、表示部431を有する。
図24(B)に、基板421側の構成を模式的に示した斜視図を示す。表示部431は、基板421上に、回路部441と、画素回路部442と、画素部443と、がこの順で積層された構成を有する。また、表示部431の外側には、基板421上に、FPC412と接続するための端子部444が設けられている。端子部444は、複数の配線により構成される配線部445を介して回路部441と電気的に接続されている。
画素部443は、マトリクス状に配列した複数の画素443aを有する。図24(B)の右側に、1つの画素443aの拡大図を示している。画素443aは、R(赤)、G(緑)、B(青)、及びW(白)の4色の副画素を有する。なお、本実施の形態においては、画素443aは、4色の副画素を有する構成について例示したがこれに限定されない。例えば、R(赤)、G(緑)、及びB(青)の3色の副画素を有する構成でもよい。
画素回路部442は、マトリクス状に配列した複数の画素回路442aを有する。1つの画素回路442aは、1つの画素443aが有する4つの副画素の発光を制御する回路である。1つの画素回路442aは、1つの副画素の発光を制御する回路が4つ設けられる構成としてもよい。例えば、画素回路442aは、1つの副画素につき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースまたはドレインの一方にはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示装置が実現されている。
回路部441は、画素回路部442の各画素回路442aを駆動する回路を有する。例えば、ゲートドライバ及びソースドライバの一方又は双方を有することが好ましい。このほか、演算回路やメモリ回路、電源回路等を有していてもよい。
FPC412は、外部から回路部441にビデオ信号や電源電位を供給するための配線として機能する。また、FPC412上にICが実装されていてもよい。
表示モジュール401は、画素部443の下側に画素回路部442や回路部441等が積層された構成とすることができるため、表示部431の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部431の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素443aを極めて高密度に配置することが可能で、表示部431の精細度を極めて高くすることができる。例えば、表示部431には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素443aが配置されることが好ましい。
高精細な表示モジュール401は、図23に示すHMDなどのVR(Virtual Reality)向け機器、またはメガネ型のAR(Augmented Reality)向け機器に適用可能な半導体装置400に好適に用いることができる。高精細な表示モジュール401は、レンズを通して表示部を視認する機器に用いても、レンズで拡大された表示部の画素が使用者に視認されにくく、没入感の高い表示を行うことができる。また、表示モジュール401は比較的小型の表示部を有する電子機器にも好適に用いることができる。例えばスマートウォッチなどの装着型の電子機器の表示部に好適に用いることができる。
<トランジスタの構成例>
高精細な表示モジュール401では、微細加工が可能なトランジスタを画素回路部442等のトランジスタとして適用することが好ましい。図25(A)、(B)に、表示装置411に適用可能なトランジスタの断面図を示す。
図25(A)は表示装置411に適用可能なトランジスタ500のチャネル長方向の断面図であり、図25(B)はトランジスタ500のチャネル幅方向の断面図である。
図25(A)、(B)に示すように、トランジスタ500は、絶縁体512、絶縁体512上に設けられた絶縁体514および絶縁体516と、絶縁体514及び絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516及び導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542a及び導電体542bと、導電体542a及び導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面及び側面に配置された酸化物530cと、酸化物530cの形成面に配置された絶縁体550と、絶縁体550の形成面に配置された導電体560と、を有する。
また、図25(A)、(B)に示すように、酸化物530a、酸化物530b、導電体542a、及び導電体542bと、絶縁体580との間に絶縁体544を配置することが好ましい。また、図25(A)、(B)に示すように、導電体560は、絶縁体550の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図25(A)、(B)に示すように、絶縁体580、導電体560、及び絶縁体550の上に絶縁体574が配置されることが好ましい。
なお、以下において、酸化物530a、酸化物530b、及び酸化物530cをまとめて酸化物530という場合がある。
なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、酸化物530b、及び酸化物530cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、酸化物530bと酸化物530aの2層構造、酸化物530bと酸化物530cの2層構造、又は4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500では、導電体560を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体560が単層構造であってもよいし、3層以上の積層構造であってもよい。また図25(A)、(B)に示すトランジスタ500は一例であり、その構造に限定されず、回路構成や駆動方法に応じて適切なトランジスタを用いればよい。
ここで、導電体560は、トランジスタ500のゲート電極として機能し、導電体542a及び導電体542bは、それぞれソース電極又はドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542a、及び導電体542bの配置は、絶縁体580の開口に対して自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542a又は導電体542bと重畳する領域を有さない。これにより、導電体560と、導電体542a及び導電体542bと、の間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度が向上し、高い周波数特性を有することができる。
導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
導電体503は、酸化物530、及び導電体560と重なる領域を有するように配置する。これにより、導電体560、及び導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。本明細書等において、第1のゲート電極、及び第2のゲート電極の電界によってチャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(s−channel)構造という。
また、導電体503は、絶縁体514及び絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503a及び導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、又は3層以上の積層構造として設ける構成にしてもよい。
ここで、導電体503aは、水素原子、水素分子、水分子、銅原子等の不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子等の少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書等において、不純物、又は酸素の拡散を抑制する機能とは、上記不純物、又は上記酸素のいずれか一、又は全ての拡散を抑制する機能とする。
例えば、導電体503aが酸素の拡散を抑制する機能を有することにより、導電体503bが酸化して導電率が低下することを抑制することができる。
また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、又はアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。その場合、導電体503aは、必ずしも設けなくともよい。なお、導電体503bを単層で図示したが、積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層としてもよい。
絶縁体520、絶縁体522、及び絶縁体524は、第2のゲート絶縁膜としての機能を有する。
ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体524には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損を低減し、トランジスタ500の信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、又は3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、又は100℃以上400℃以下の範囲が好ましい。
また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、又はRF処理のいずれか一又は複数の処理を行ってもよい。当該処理を行うことで、酸化物530中の水、又は水素を除去することができる。例えば、酸化物530において、VHの結合が切断される反応が起きる、別言すると「VH→V+H」という反応が起きることにより、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、又は酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542に拡散又は捕獲(ゲッタリングともいう)される場合がある。
また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、又は、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができる。また、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、又は酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば酸素及びアルゴンを用い、酸素流量比(O/(O+Ar))は50%以下、好ましくは10%以上30%以下とするとよい。
また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、又は酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。又は、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、又は10%以上含む雰囲気で行ってもよい。又は、酸化性ガスを10ppm以上、1%以上、又は10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行ってもよい。
なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「V+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素と、酸化物530に供給された酸素と、が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
また、絶縁体524が過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子等)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
絶縁体522が、酸素や不純物の拡散を抑制する機能を有することで、酸化物530が有する酸素が絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524や酸化物530が有する酸素と反応することを抑制することができる。
絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、又は(Ba,Sr)TiO(BST)等のいわゆるhigh−k材料を含む絶縁体を単層又は積層で用いることが好ましい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流等の問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
特に、不純物、及び酸素等の拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方又は双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、又はアルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出や、トランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
又は、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。又はこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコン、又は窒化シリコンを積層して用いてもよい。
また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコン及び酸化窒化シリコンは、熱的に安定であるため好適である。また、high−k材料の絶縁体を酸化シリコン、又は酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構造の絶縁体520を得ることができる。
なお、図25(A)、(B)のトランジスタ500では、3層の積層構造からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、及び絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、又は4層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物530として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウム等から選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物530として適用できるIn−M−Zn酸化物は、CAAC−OS(C−Axls Aligned Crystal Oxide Semiconductor)、またはCAC−OS(Cloud−Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物530として、In−Ga酸化物、In−Zn酸化物を用いてもよい。CAAC−OS及びCAC−OSについては後述する。なお、トランジスタ500のオン電流を高めたい場合においては、酸化物530にIn−Zn酸化物を用いると好適である。酸化物530にIn−Zn酸化物を用いる場合、例えば、酸化物530aにIn−Zn酸化物を用い、酸化物530bおよび酸化物530cにIn−M−Zn酸化物を用いる積層構造、または、酸化物530aにIn−M−Zn酸化物を用い、酸化物530bおよび酸化物530cのいずれか一方にIn−Zn酸化物を用いる積層構造などが挙げられる。
また、トランジスタ500には、キャリア濃度の低い金属酸化物を用いることが好ましい。金属酸化物のキャリア濃度を低くする場合においては、金属酸化物中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性又は実質的に高純度真性という。なお、金属酸化物中の不純物としては、例えば、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
特に、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、金属酸化物中に酸素欠損を形成する場合がある。また、酸化物530中の酸素欠損に水素が入った場合、酸素欠損と水素とが結合しVHを形成する場合がある。VHはドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。したがって、水素が多く含まれている金属酸化物を用いたトランジスタは、ノーマリーオン特性となりやすい。また、金属酸化物中の水素は、熱、電界等のストレスによって動きやすいため、金属酸化物に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性又は実質的に高純度真性にすることが好ましい。このように、VHが十分低減された金属酸化物を得るには、金属酸化物中の水分、水素等の不純物を除去すること(脱水、脱水素化処理と記載する場合がある。)と、金属酸化物に酸素を供給して酸素欠損を補填すること(加酸素化処理と記載する場合がある。)が重要である。VH等の不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
酸素欠損に水素が入った欠陥は、金属酸化物のドナーとして機能しうる。しかしながら、当該欠陥を定量的に評価することは困難である。そこで、金属酸化物においては、ドナー濃度ではなく、キャリア濃度で評価される場合がある。よって、本明細書等では、金属酸化物のパラメータとして、ドナー濃度ではなく、電界が印加されない状態を想定したキャリア濃度を用いる場合がある。つまり、本明細書等に記載の「キャリア濃度」は、「ドナー濃度」と言い換えることができる場合がある。
よって、金属酸化物を酸化物530に用いる場合、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。水素等の不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
また、酸化物530に金属酸化物を用いる場合、チャネル形成領域の金属酸化物のキャリア濃度は、1×1018cm−3以下であることが好ましく、1×1017cm−3未満であることがより好ましく、1×1016cm−3未満であることがさらに好ましく、1×1013cm−3未満であることがさらに好ましく、1×1012cm−3未満であることがさらに好ましい。なお、チャネル形成領域の金属酸化物のキャリア濃度の下限値については、特に限定は無いが、例えば、1×10−9cm−3とすることができる。
また、酸化物530に金属酸化物を用いる場合、導電体542(導電体542a、及び導電体542b)と酸化物530とが接することで、酸化物530中の酸素が導電体542へ拡散し、導電体542が酸化する場合がある。導電体542が酸化することで、導電体542の導電率が低下する蓋然性が高い。なお、酸化物530中の酸素が導電体542へ拡散することを、導電体542が酸化物530中の酸素を吸収する、と言い換えることができる。
また、酸化物530中の酸素が導電体542(導電体542a、及び導電体542b)へ拡散することで、導電体542aと酸化物530bとの間、及び導電体542bと酸化物530bとの間に異層が形成される場合がある。当該異層は、導電体542よりも酸素を多く含むため、当該異層は絶縁性を有すると推定される。このとき、導電体542と、当該異層と、酸化物530bとの3層構造は、金属−絶縁体−半導体からなる3層構造とみなすことができ、MIS(Metal−Insulator−Semiconductor)構造という、又はMIS構造を主としたダイオード接合構造という場合がある。
なお、上記異層は、導電体542と酸化物530bとの間に形成されることに限られない。例えば、異層が、導電体542と酸化物530cとの間に形成される場合がある。又は、導電体542と酸化物530bとの間、及び導電体542と酸化物530cとの間に形成される場合がある。
また、酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構造物から、酸化物530bへ不純物が拡散することを抑制することができる。また、酸化物530b上に酸化物530cを有することで、酸化物530cよりも上方に形成された構造物から、酸化物530bへ不純物が拡散することを抑制することができる。
なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の積層構造を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物530cは、酸化物530a又は酸化物530bに用いることができる金属酸化物を用いることができる。
具体的には、酸化物530aとして、In:Ga:Zn=1:3:4[原子数比]の金属酸化物、または1:1:0.5[原子数比]の金属酸化物を用いればよい。また、酸化物530bとして、In:Ga:Zn=4:2:3[原子数比]の金属酸化物、または1:1:1[原子数比]の金属酸化物を用いればよい。また、酸化物530cとして、In:Ga:Zn=1:3:4[原子数比]の金属酸化物、Ga:Zn=2:1[原子数比]の金属酸化物、またはGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。また、酸化物530cを積層構造とする場合の具体例としては、In:Ga:Zn=4:2:3[原子数比]の金属酸化物と、In:Ga:Zn=1:3:4[原子数比]の金属酸化物との積層構造、Ga:Zn=2:1[原子数比]の金属酸化物と、In:Ga:Zn=4:2:3[原子数比]の金属酸化物との積層構造、Ga:Zn=2:5[原子数比]の金属酸化物と、In:Ga:Zn=4:2:3[原子数比]の金属酸化物との積層構造、酸化ガリウムと、In:Ga:Zn=4:2:3[原子数比]の金属酸化物との積層構造などが挙げられる。
また、酸化物530a及び酸化物530cの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a及び酸化物530cの電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
ここで、酸化物530a、酸化物530b、及び酸化物530cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530a、酸化物530b、及び酸化物530cの接合部における伝導帯下端のエネルギー準位は、連続的に変化又は連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物530aと酸化物530b、及び酸化物530bと酸化物530cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530a及び酸化物530cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウム等を用いるとよい。
このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530a、及び酸化物530cを上述の構成とすることで、酸化物530aと酸化物530bとの界面、及び酸化物530bと酸化物530cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
なお、酸化物530に用いることができる半導体材料は、上述の金属酸化物に限られない。酸化物530として、バンドギャップを有する半導体材料(ゼロギャップ半導体ではない半導体材料)を用いてもよい。例えば、シリコンなどの単体元素の半導体、ヒ化ガリウムなどの化合物半導体、半導体として機能する層状物質(原子層物質、2次元材料などともいう。)などを半導体材料に用いることが好ましい。特に、半導体として機能する層状物質を半導体材料に用いると好適である。
ここで、本明細書等において、層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合やイオン結合によって形成される層が、ファンデルワールス力のような、共有結合やイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
層状物質として、グラフェン、シリセン、カルコゲン化物などがある。カルコゲン化物は、カルコゲンを含む化合物である。また、カルコゲンは、第16族に属する元素の総称であり、酸素、硫黄、セレン、テルル、ポロニウム、リバモリウムが含まれる。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。
酸化物530として、例えば、半導体として機能する遷移金属カルコゲナイドを用いることが好ましい。酸化物530として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
酸化物530b上には、ソース電極、及びドレイン電極として機能する導電体542a、及び導電体542bが設けられる。導電体542a、及び導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、又は上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物等を用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、又は酸素を吸収しても導電性を維持する材料であるため好ましい。更に、窒化タンタル等の金属窒化物膜は、水素又は酸素に対するバリア性があるため好ましい。
また、図25(A)、(B)では、導電体542a、及び導電体542bを単層構造として示したが、2層以上の積層構造としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
また、チタン膜又は窒化チタン膜と、そのチタン膜又は窒化チタン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にチタン膜又は窒化チタン膜を形成する三層構造、モリブデン膜又は窒化モリブデン膜と、そのモリブデン膜又は窒化モリブデン膜上に重ねてアルミニウム膜又は銅膜を積層し、さらにその上にモリブデン膜又は窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫又は酸化亜鉛を含む透明導電材料を用いてもよい。
また、図25(A)に示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として領域543a、及び領域543bが形成される場合がある。このとき、領域543aはソース領域又はドレイン領域の一方として機能し、領域543bはソース領域又はドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア濃度が増加し、領域543a(領域543b)は、低抵抗領域となる。
絶縁体544は、導電体542a、及び導電体542bを覆うように設けられ、導電体542a、及び導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタン、マグネシウム等から選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコン又は窒化シリコン等も用いることができる。
特に、絶縁体544として、アルミニウム、又はハフニウムの一方又は双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、又はアルミニウム及びハフニウムを含む酸化物(ハフニウムアルミネート)等を用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、及び導電体542bが耐酸化性を有する材料、又は酸素を吸収しても著しく導電性が低下しない場合、絶縁体544は必須の構成ではない。求めるトランジスタ特性により適宜設計すればよい。
絶縁体544を有することで、絶縁体580に含まれる水、及び水素等の不純物が、酸化物530c及び絶縁体550を介して酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体560が酸化することを抑制することができる。
絶縁体550は、第1のゲート絶縁膜として機能する。絶縁体550は、酸化物530cの内側(上面、及び側面)と接するように配置することが好ましい。絶縁体550は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、及び酸化窒化シリコンは熱に対し安定であるため好ましい。
加熱により酸素が放出される絶縁体を、絶縁体550として酸化物530cの上面に接して設けることにより、酸化物530cを通じて、絶縁体550から酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体550中の水又は水素等の不純物濃度が低減されていることが好ましい。絶縁体550の膜厚は、1nm以上20nm以下とすることが好ましい。
また、絶縁体550が有する過剰酸素を効率的に酸化物530へ供給するために、絶縁体550と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体550から導電体560への酸素拡散を抑制する機能を有することが好ましい。酸素の拡散を抑制する機能を有する金属酸化物を設けることで、絶縁体550から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
なお、絶縁体550は、第2のゲート絶縁膜と同様に、積層構造としてもよい。トランジスタの微細化、及び高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流等の問題が生じる場合がある。このため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構造とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位を低減することが可能となる。また、熱的に安定かつ比誘電率の高い積層構造とすることができる。
第1のゲート電極として機能する導電体560は、図25(A)、(B)では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。
導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NO等)、銅原子等の不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。又は、酸素(例えば、酸素原子、酸素分子等の少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を有することで、絶縁体550に含まれる酸素により導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、又は酸化ルテニウム等を用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極ということができる。
また、導電体560bは、タングステン、銅、又はアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。また、導電体560bは積層構造としてもよく、例えば、チタン又は窒化チタンと上記導電性材料との積層構造としてもよい。
絶縁体580は、絶縁体544を介して、導電体542a、及び導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、及び窒素を添加した酸化シリコン、空孔を有する酸化シリコン、又は樹脂等を有することが好ましい。特に、酸化シリコン、及び酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、及び空孔を有する酸化シリコンは、後の工程で容易に過剰酸素領域を形成することができるため好ましい。
絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を、酸化物530cと接する領域を有するように設けることで、絶縁体580中の酸素を、酸化物530cを通じて、酸化物530a及び酸化物530bへと効率良く供給することができる。なお、絶縁体580中の水又は水素等の不純物濃度が低減されていることが好ましい。
絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、及び導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。
半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく導電体560を形成することができる。
絶縁体574は、絶縁体580の上面、導電体560の上面、及び絶縁体550の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体550、及び絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、又はマグネシウム等から選ばれた一種、又は二種以上が含まれた金属酸化物を用いることができる。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、及び窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素等の不純物のバリア膜としての機能も有することができる。
また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524等と同様に、膜中の水又は水素等の不純物濃度が低減されていることが好ましい。
また、絶縁体581、絶縁体574、絶縁体580、及び絶縁体544に形成された開口に、導電体540a、及び導電体540bを配置する。導電体540a及び導電体540bは、導電体560を挟んで対向して設ける。
本構造を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化又は高集積化を図ることができる。
<表示モジュールを適用可能な電子機器の構成例>
次に、上記表示モジュール401を適用可能な電子機器の例について図26を用いて説明を行う。
表示モジュール401は、TV装置(テレビジョン受像装置)7000、スマートウォッチ7010、スマートフォン7020、デジタルカメラ7030、メガネ型情報端末7040、ノート型PC(パーソナルコンピュータ)7050、PC7060、ゲーム機7070、等の表示部に組み込むことができる。
TV装置7000、スマートウォッチ7010、スマートフォン7020、デジタルカメラ7030、メガネ型情報端末7040、ノート型PC7050、PC7060、ゲーム機7070などの表示部に表示モジュール401を適用することで、高精細な画像を表示させることができる。したがって、ユーザは、臨場感のある映像を視認することができる。
本実施の形態は、他の実施の形態などに記載した構成と適宜組み合わせて実施することが可能である。
本実施例では、本発明の一態様が適用された発光デバイスを作製し、信頼性試験を行った結果について説明する。なお、本実施例の発光デバイスは図2(A)に示す構成に相当する。
本実施例では、本発明の一態様が適用された発光デバイスとして、デバイス1、デバイス2、デバイス3、デバイス4の4つを作製した。4つのデバイスは、全て、青色の光を発する発光デバイスである。
また、本実施例では、比較用の発光デバイスとして、デバイス11、デバイス12、デバイス13、デバイス14、デバイス15、デバイス16、デバイス17、デバイス18の8つを用いた。8つのデバイスは、全て、青色の光を発する発光デバイスである。
図27に、比較用の発光デバイスである、デバイス11及びデバイス12の信頼性試験の結果を示す。図27において、縦軸は初期輝度を100%としたときの規格化輝度を示し、横軸はデバイスの駆動時間を示す。
デバイス11及びデバイス12の駆動には、同じストレス条件を用いた。換算ストレス輝度=初期輝度÷円偏光板の透過率÷開口率の式により、換算ストレス輝度を算出した。円偏光板の透過率は約40%と仮定した。デバイス11及びデバイス12の開口率は、約4.87%であった。デバイス11及びデバイス12の換算ストレス輝度は、約2300cd/mであった。
デバイス11及びデバイス12の色度(x、y)は、(0.145〜0.146、0.045〜0.047)であった。
図27から、デバイス11のLT95(輝度が初期輝度の95%まで低下する時間)は、242hrであり、デバイス12のLT95は、106hrであることがわかった。
図28に、本発明の一態様が適用された発光デバイスである、デバイス1及びデバイス2、並びに、比較用の発光デバイスである、デバイス13、デバイス14、デバイス15、及びデバイス16の信頼性試験の結果を示す。図28において、縦軸は初期輝度を100%としたときの規格化輝度を示し、横軸はデバイスの駆動時間を示す。
デバイス1、デバイス2、デバイス13、デバイス14、デバイス15、及びデバイス16の駆動には、同じストレス条件を用いた。6つのデバイスの換算ストレス輝度は、約1300cd/mであった。なお、円偏光板の透過率は約40%と仮定した。デバイス13、デバイス14、デバイス15、及びデバイス16の開口率は、約7.29%であった。
デバイス13、デバイス14、デバイス15、及びデバイス16の色度(x、y)は、(0.142〜0.144、0.047〜0.051)であった。
図28から、本発明の一態様が適用されたデバイス1及びデバイス2のLT95は、400hr以上であることがわかった。また、図28から、デバイス13のLT95は、17hrであり、デバイス14のLT95は、55hrであり、デバイス15のLT95は、103hrであり、デバイス16のLT95は、62hrであることがわかった。
図29に、本発明の一態様が適用された発光デバイスである、デバイス3及びデバイス4、並びに、比較用の発光デバイスである、デバイス17及びデバイス18の信頼性試験の結果を示す。図29において、縦軸は初期輝度を100%としたときの規格化輝度を示し、横軸はデバイスの駆動時間を示す。
デバイス3、デバイス4、デバイス17、及びデバイス18の駆動には、同じストレス条件を用いた。4つのデバイスの換算ストレス輝度は、約1450cd/mであった。なお、円偏光板の透過率は約40%と仮定した。デバイス17及びデバイス18の開口率は、約6.78%であった。
デバイス17及びデバイス18の色度(x、y)は、(0.140〜0.141、0.055〜0.057)であった。
図29から、本発明の一態様が適用されたデバイス3及びデバイス4のLT95は、400hr以上であることがわかった。また、図29から、デバイス17のLT95は、67hrであり、デバイス18のLT95は、92hrであることがわかった。
以上のように、本発明の一態様が適用された発光デバイスのLT95は400hr以上であった。本実施例の結果から、本発明の一態様が適用された発光デバイスは、比較用の発光デバイスに比べて、寿命が極めて長いことがわかった。
100 基板
101 電極
102 電極
103 EL層
111 正孔注入層
112 正孔輸送層
112−1 正孔輸送層
112−2 正孔輸送層
113 発光層
113−1 発光層
113−2 発光層
114 電子輸送層
115 電子注入層
116 電荷発生層
117 P型層
118 電子リレー層
119 電子注入バッファ層
120 発光領域
121 非発光再結合領域
151 電極
152 電極
161 発光ユニット
162 発光ユニット
163 電荷発生層
200 絶縁体
201 電極
201B 電極
201G 電極
201R 電極
202 EL層
203 電極
204 保護層
205 色変換層
205B 構造
205G 色変換層
205R 色変換層
206 ブラックマトリクス
207 発光デバイス
207B 発光デバイス
207G 発光デバイス
207R 発光デバイス
208 画素
208B 画素
208G 画素
208R 画素
209 光学的距離
210G 手段
215B 層
225B カラーフィルタ
225G カラーフィルタ
225R カラーフィルタ
400 半導体装置
401 表示モジュール
402 表示制御部
403 電源部
404 操作部
405 スピーカ
406 外部入出力端子
407 固定具
408 レンズ
411 表示装置
412 FPC
421 基板
422 基板
431 表示部
441 回路部
442 画素回路部
442a 画素回路
443 画素部
443a 画素
444 端子部
445 配線部
500 トランジスタ
503 導電体
503a 導電体
503b 導電体
512 絶縁体
514 絶縁体
516 絶縁体
520 絶縁体
522 絶縁体
524 絶縁体
530 酸化物
530a 酸化物
530b 酸化物
530c 酸化物
540a 導電体
540b 導電体
542 導電体
542a 導電体
542b 導電体
543a 領域
543b 領域
544 絶縁体
550 絶縁体
560 導電体
560a 導電体
560b 導電体
574 絶縁体
580 絶縁体
581 絶縁体
601 ソース線駆動回路
602 画素部
603 ゲート線駆動回路
604 封止基板
605 シール材
607 空間
608 配線
610 素子基板
611 スイッチング用FET
612 電流制御用FET
613 陽極
614 絶縁物
616 EL層
617 陰極
618 発光デバイス
623 FET
1001 基板
1002 下地絶縁膜
1003 ゲート絶縁膜
1006 ゲート電極
1007 ゲート電極
1008 ゲート電極
1020 層間絶縁膜
1021 層間絶縁膜
1022 電極
1024B 電極
1024G 電極
1024R 電極
1025 隔壁
1028 EL層
1029 電極
1031 封止基板
1032 シール材
1033 基材
1034G 変換層
1034R 色変換層
1035 ブラックマトリクス
1036 オーバーコート層
1037 層間絶縁膜
1040 画素部
1041 駆動回路部
1042 周辺部
1201 電極
1202 電極
1210 層
1211 層
1212 層
2100 ロボット
2101 照度センサ
2102 マイクロフォン
2103 上部カメラ
2104 スピーカ
2105 ディスプレイ
2106 下部カメラ
2107 障害物センサ
2108 移動機構
2110 演算装置
5000 筐体
5001 表示部
5002 表示部
5003 スピーカ
5004 LEDランプ
5006 接続端子
5007 センサ
5008 マイクロフォン
5012 支持部
5013 イヤホン
5100 掃除ロボット
5101 ディスプレイ
5102 カメラ
5103 ブラシ
5104 操作ボタン
5120 ゴミ
5140 携帯電子機器
5150 携帯情報端末
5151 筐体
5152 表示領域
5153 屈曲部
5200 表示領域
5201 表示領域
5202 表示領域
5203 表示領域
7000 TV装置
7010 スマートウォッチ
7020 スマートフォン
7030 デジタルカメラ
7040 メガネ型情報端末
7070 ゲーム機
7101 筐体
7103 表示部
7105 スタンド
7107 表示部
7109 操作キー
7110 リモコン操作機
7201 本体
7202 筐体
7203 表示部
7204 キーボード
7205 外部接続ポート
7206 ポインティングデバイス
7210 表示部
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
9310 携帯情報端末
9311 表示パネル
9313 ヒンジ
9315 筐体

Claims (28)

  1. 第1の発光デバイスと、
    第1の色変換層とを有する発光装置であって、
    前記第1の色変換層は、光を吸収して発光する第1の物質を含み、
    前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、
    前記第1の発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線が極大値を有する発光装置。
  2. 第1の発光デバイスと、
    第1の色変換層とを有する発光装置であって、
    前記第1の色変換層は、光を吸収して発光する第1の物質を含み、
    前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、
    前記第1の発光デバイスは、
    陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第1の層は第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、
    前記第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下である発光装置。
  3. 第1の発光デバイスと、
    第1の色変換層とを有する発光装置であって、
    前記第1の色変換層は、光を吸収して発光する第1の物質を含み、
    前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、
    前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第4の層は、前記発光層に接しており、
    前記第1の層は第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、
    前記第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、
    前記第7の有機化合物のHOMO準位が−6.0eV以上である発光装置。
  4. 第1の発光デバイスと、
    第1の色変換層とを有する発光装置であって、
    前記第1の色変換層は、光を吸収して発光する第1の物質を含み、
    前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、
    前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第4の層は、前記発光層に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、
    前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、
    前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、
    前記第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、
    前記第7の有機化合物のHOMO準位が−6.0eV以上である発光装置。
  5. 第1の発光デバイスと、
    第1の色変換層とを有する発光装置であって、
    前記第1の色変換層は、光を吸収して発光する第1の物質を含み、
    前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、
    前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第4の層は、前記発光層に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第2の有機化合物は、第1の正孔輸送性骨格を有し、
    前記第3の有機化合物は、第2の正孔輸送性骨格を有し、
    前記第4の有機化合物は、第3の正孔輸送性骨格を有し、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、
    前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、
    前記第7の有機化合物は、電界強度[V/cm]の平方根が600における電子移動度が1×10−7cm/Vs以上5×10−5cm/Vs以下であり、
    前記第7の有機化合物のHOMO準位が−6.0eV以上である発光装置。
  6. 第1の発光デバイスと、
    第1の色変換層とを有する発光装置であって、
    前記第1の色変換層は、光を吸収して発光する第1の物質を含み、
    前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、
    前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第4の層は、前記発光層に接しており、
    前記第1の層は第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物と第8の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、
    前記第7の有機化合物は、アントラセン骨格を有する有機化合物であり、
    前記第8の有機化合物は、アルカリ金属またはアルカリ土類金属の有機錯体である発光装置。
  7. 第1の発光デバイスと、
    第1の色変換層とを有する発光装置であって、
    前記第1の色変換層は、光を吸収して発光する第1の物質を含み、
    前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、
    前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第4の層は、前記発光層に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物と第8の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、
    前記第3の有機化合物と前記第2の有機化合物とのHOMO準位の差は0.2eV以下であり、
    前記第3の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位と同じまたは深く、
    前記第7の有機化合物は、アントラセン骨格を有する有機化合物であり、
    前記第8の有機化合物は、アルカリ金属またはアルカリ土類金属の有機錯体である発光装置。
  8. 請求項7において、
    前記第4の層における前記第8の有機化合物の濃度が、前記発光層側から前記陰極側に向かって低くなる発光装置。
  9. 第1の発光デバイスと、
    第1の色変換層とを有する発光装置であって、
    前記第1の色変換層は、光を吸収して発光する第1の物質を含み、
    前記第1の発光デバイスからの発光は、前記第1の色変換層に入射し、
    前記第1の発光デバイスは、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、陽極側から順に第1の層と、第2の層と、第3の層と、発光層と、第4の層を有し、
    前記第1の層は、前記陽極に接しており、
    前記第4の層は、前記発光層に接しており、
    前記第1の層は、第1の有機化合物と第2の有機化合物を有し、
    前記第2の層は、第3の有機化合物を有し、
    前記第3の層は、第4の有機化合物を有し、
    前記発光層は、第5の有機化合物と第6の有機化合物を有し、
    前記第4の層は、第7の有機化合物と第8の有機化合物を有し、
    前記第1の有機化合物は前記第2の有機化合物に電子受容性を示す有機化合物であり、
    前記第2の有機化合物は、第1の正孔輸送性骨格を有し、
    前記第3の有機化合物は、第2の正孔輸送性骨格を有し、
    前記第4の有機化合物は、第3の正孔輸送性骨格を有し、
    前記第5の有機化合物は発光中心物質であり、
    前記第2の有機化合物のHOMO準位は−5.7eV以上−5.4eV以下であり、
    前記第1の正孔輸送性骨格、前記第2の正孔輸送性骨格および前記第3の正孔輸送性骨格は、各々独立に、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれか一であり、
    前記第7の有機化合物は、アントラセン骨格を有する有機化合物であり、
    前記第8の有機化合物は、アルカリ金属またはアルカリ土類金属の有機錯体である発光装置。
  10. 請求項1乃至請求項9のいずれか一項において、
    前記第7の有機化合物の電子移動度が、前記第6の有機化合物の電子移動度よりも小さい発光装置。
  11. 請求項1乃至請求項10のいずれか一項において、
    前記第4の有機化合物のHOMO準位と、前記第3の有機化合物のHOMO準位との差が0.2eV以下である発光装置。
  12. 請求項1乃至請求項11のいずれか一項において、
    前記第4の有機化合物のHOMO準位が、前記第3の有機化合物のHOMO準位よりも深い発光装置。
  13. 請求項1乃至請求項12のいずれか一項において、
    前記第2の有機化合物が、ジベンゾフラン骨格を有する有機化合物である発光装置。
  14. 請求項1乃至請求項13のいずれか一項において、
    前記第2の有機化合物と前記第3の有機化合物とが同じ物質である発光装置。
  15. 請求項1乃至請求項14のいずれか一項において、
    前記第5の有機化合物が青色蛍光材料である発光装置。
  16. 請求項2乃至請求項15のいずれか一項において、
    前記第1の発光デバイスに一定の電流を流した際に得られる発光の輝度変化で表される劣化曲線が極大値を有する発光装置。
  17. 請求項1乃至請求項16のいずれか一項において、
    前記光を吸収して発光する第1の物質が量子ドットである発光装置。
  18. 請求項1乃至請求項17のいずれか一項において、
    前記第1の発光デバイスが微小共振構造を有する発光装置。
  19. 請求項1乃至請求項18のいずれか一項において、
    前記発光装置はさらに第2の発光デバイスと、第2の色変換層とを有し、
    前記第2の色変換層は、光を吸収して発光する第2の物質を含み、
    前記第2の発光デバイスからの光は前記第2の色変換層に入射し、
    前記第2の発光デバイスは、前記第1の発光デバイスと同じ構成を有し、
    前記第1の物質からの発光の波長と、前記第2の物質からの発光の波長が異なる発光装置。
  20. 請求項19において、
    前記第2の物質が量子ドットである発光装置。
  21. 請求項19または請求項20において、前記第2の発光デバイスが微小共振構造を有する発光装置。
  22. 請求項19乃至請求項21のいずれか一項において、
    前記発光装置はさらに第3の発光デバイスを有し、
    前記第3の発光デバイスは、前記第1の発光デバイスと同じ構造を有し、
    前記第3の発光デバイスからの発光は色変換層を介さずに発光装置外に射出する発光装置。
  23. 請求項19乃至請求項21のいずれか一項において、
    前記発光装置はさらに第3の発光デバイスと光を散乱する機能を有する構造とを有し、
    前記第3の発光デバイスは、前記第1の発光デバイスと同じ構造を有し、
    前記第3の発光デバイスからの発光が前記光を散乱する機能を有する構造を介して発光装置外に射出する発光装置。
  24. 請求項19乃至請求項21のいずれか一項において、
    前記発光装置はさらに第3の発光デバイスと、第1の着色層と、第2の着色層と、樹脂層とを有し、
    前記第1の発光デバイスからの発光は、前記第1の色変換層と、前記第1の着色層と、を介して射出され、
    前記第2の発光デバイスからの発光は、前記第2の色変換層と、前記第2の着色層と、を介して射出され、
    前記第3の発光デバイスは、前記第1の発光デバイスと同じ構造を有し、
    前記第3の発光デバイスからの発光は、前記樹脂層を介して射出される発光装置。
  25. 請求項23または請求項24において、
    前記第3の発光デバイスが微小共振構造を有する発光装置。
  26. 請求項1乃至請求項25のいずれか一項に記載の発光装置と、
    センサ、操作ボタン、スピーカまたはマイクと、
    を有する電子機器。
  27. 請求項1乃至請求項25のいずれか一項に記載の発光装置を有する表示装置。
  28. 請求項1乃至請求項25のいずれか一項に記載の発光装置と、
    トランジスタと、を有し、
    前記トランジスタは、酸化物半導体を有する、電子機器。
JP2020016344A 2019-02-06 2020-02-03 発光デバイス、発光装置、電子機器、表示装置および照明装置 Withdrawn JP2020129535A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024024458A JP2024056985A (ja) 2019-02-06 2024-02-21 発光装置、表示装置及および電子機器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019020055 2019-02-06
JP2019020055 2019-02-06
JP2019028345 2019-02-20
JP2019028345 2019-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024024458A Division JP2024056985A (ja) 2019-02-06 2024-02-21 発光装置、表示装置及および電子機器

Publications (2)

Publication Number Publication Date
JP2020129535A true JP2020129535A (ja) 2020-08-27
JP2020129535A5 JP2020129535A5 (ja) 2023-01-27

Family

ID=71947585

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020016344A Withdrawn JP2020129535A (ja) 2019-02-06 2020-02-03 発光デバイス、発光装置、電子機器、表示装置および照明装置
JP2024024458A Pending JP2024056985A (ja) 2019-02-06 2024-02-21 発光装置、表示装置及および電子機器

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024024458A Pending JP2024056985A (ja) 2019-02-06 2024-02-21 発光装置、表示装置及および電子機器

Country Status (7)

Country Link
US (1) US20220123253A1 (ja)
JP (2) JP2020129535A (ja)
KR (1) KR20210123306A (ja)
CN (1) CN113412438A (ja)
DE (1) DE112020000691T5 (ja)
TW (1) TW202045962A (ja)
WO (1) WO2020161575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285911A1 (ja) * 2021-07-15 2023-01-19 株式会社半導体エネルギー研究所 発光装置、表示装置、電子機器および照明装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210249619A1 (en) * 2018-10-10 2021-08-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, light-emitting apparatus, electronic device, and lighting device
JPWO2020174305A1 (ja) * 2019-02-26 2020-09-03
CN110797384B (zh) * 2019-11-22 2021-09-03 深圳市华星光电半导体显示技术有限公司 阵列基板、显示面板及阵列基板的制作方法
KR20210083678A (ko) * 2019-12-27 2021-07-07 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN113066939B (zh) * 2021-03-23 2022-08-02 合肥维信诺科技有限公司 显示面板和显示装置
KR102537613B1 (ko) * 2021-03-25 2023-05-26 국민대학교산학협력단 초박형 led 소자를 이용한 풀-컬러 led 디스플레이 및 이의 제조방법
WO2022267054A1 (zh) * 2021-06-25 2022-12-29 京东方科技集团股份有限公司 显示基板、显示面板和显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169613A (ja) * 2011-01-28 2012-09-06 Semiconductor Energy Lab Co Ltd 複合材料、発光素子、発光装置、照明装置、電子機器及びフルオレン誘導体
JP2012227524A (ja) * 2011-04-07 2012-11-15 Semiconductor Energy Lab Co Ltd 発光素子
JP2016122606A (ja) * 2014-12-25 2016-07-07 シャープ株式会社 波長変換方式発光装置並びにこれを備えた表示装置、照明装置および電子機器
WO2017103732A1 (ja) * 2015-12-17 2017-06-22 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置、照明システムおよび誘導システム
JP2017139457A (ja) * 2016-01-29 2017-08-10 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
JP2017168803A (ja) * 2015-07-23 2017-09-21 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
WO2018123805A1 (ja) * 2016-12-28 2018-07-05 Dic株式会社 発光素子およびそれを用いた画像表示素子
JP2019006768A (ja) * 2017-06-23 2019-01-17 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638583B (zh) * 2007-09-27 2018-10-11 半導體能源研究所股份有限公司 發光元件,發光裝置,與電子設備
KR102079188B1 (ko) * 2012-05-09 2020-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기
KR20170094166A (ko) 2014-12-15 2017-08-17 제이에스알 가부시끼가이샤 유기 el 소자, 경화성 수지 조성물, 파장 변환부의 형성 방법 및 유기 el 장치
JP2019020055A (ja) 2017-07-18 2019-02-07 一龍 前田 燃焼装置
JP7047277B2 (ja) 2017-08-01 2022-04-05 ブラザー工業株式会社 ドラムユニットおよび画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169613A (ja) * 2011-01-28 2012-09-06 Semiconductor Energy Lab Co Ltd 複合材料、発光素子、発光装置、照明装置、電子機器及びフルオレン誘導体
JP2012227524A (ja) * 2011-04-07 2012-11-15 Semiconductor Energy Lab Co Ltd 発光素子
JP2016122606A (ja) * 2014-12-25 2016-07-07 シャープ株式会社 波長変換方式発光装置並びにこれを備えた表示装置、照明装置および電子機器
JP2017168803A (ja) * 2015-07-23 2017-09-21 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
WO2017103732A1 (ja) * 2015-12-17 2017-06-22 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置、照明システムおよび誘導システム
JP2017139457A (ja) * 2016-01-29 2017-08-10 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
WO2018123805A1 (ja) * 2016-12-28 2018-07-05 Dic株式会社 発光素子およびそれを用いた画像表示素子
JP2019006768A (ja) * 2017-06-23 2019-01-17 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285911A1 (ja) * 2021-07-15 2023-01-19 株式会社半導体エネルギー研究所 発光装置、表示装置、電子機器および照明装置

Also Published As

Publication number Publication date
JP2024056985A (ja) 2024-04-23
TW202045962A (zh) 2020-12-16
DE112020000691T5 (de) 2021-10-21
KR20210123306A (ko) 2021-10-13
CN113412438A (zh) 2021-09-17
US20220123253A1 (en) 2022-04-21
WO2020161575A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JP6929625B2 (ja) 発光素子、発光装置、電子機器及び照明装置
US20220123253A1 (en) Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, Display Device, and Lighting Device
TWI471383B (zh) 發光元件,發光裝置,電子裝置,和照明裝置
WO2019234562A1 (ja) 発光装置、表示装置および電子機器
JP2021077639A (ja) 発光装置、電子機器および照明装置
JP2024061839A (ja) 発光デバイス、発光装置、電子機器及び照明装置
JP2017038049A (ja) 発光素子、発光装置、電子機器、表示装置及び照明装置
US11974447B2 (en) Light-emitting device, light-emitting apparatus, electronic device, and lighting device
US20220209128A1 (en) Light-emitting device, light-emitting apparatus, electronic device, and lighting device
WO2020229913A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
US20220231238A1 (en) Light-emitting device, light-emitting apparatus, electronic device, and lighting device
TWI842812B (zh) 發光器件、發光裝置、電子裝置及照明設備
WO2020136507A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2022238804A1 (ja) 発光デバイス、発光装置、表示装置、電子機器、照明装置
JP2018206981A (ja) 発光素子、発光装置、電子機器及び照明装置
US20230138085A1 (en) Light-emitting device, light-emitting apparatus, electronic device and lighting device
JP2020141136A (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2020136504A (ja) 発光デバイス、発光装置、電子機器および照明装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231221

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20240227