JP2020128571A - 成膜装置および成膜方法 - Google Patents

成膜装置および成膜方法 Download PDF

Info

Publication number
JP2020128571A
JP2020128571A JP2019021298A JP2019021298A JP2020128571A JP 2020128571 A JP2020128571 A JP 2020128571A JP 2019021298 A JP2019021298 A JP 2019021298A JP 2019021298 A JP2019021298 A JP 2019021298A JP 2020128571 A JP2020128571 A JP 2020128571A
Authority
JP
Japan
Prior art keywords
target
substrate
partition
oxidizing gas
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019021298A
Other languages
English (en)
Other versions
JP7134112B2 (ja
Inventor
健一 今北
Kenichi Imakita
健一 今北
小野 一修
Kazunao Ono
一修 小野
亨 北田
Toru Kitada
亨 北田
圭祐 佐藤
Keisuke Sato
圭祐 佐藤
五味 淳
Atsushi Gomi
淳 五味
宏行 横原
Hiroyuki Yokohara
宏行 横原
浩 曽根
Hiroshi Sone
浩 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2019021298A priority Critical patent/JP7134112B2/ja
Priority to KR1020217027082A priority patent/KR20210118157A/ko
Priority to US17/428,597 priority patent/US20220098717A1/en
Priority to PCT/JP2019/036980 priority patent/WO2020161957A1/ja
Priority to CN201980090999.4A priority patent/CN113366139A/zh
Priority to TW109102772A priority patent/TW202039893A/zh
Publication of JP2020128571A publication Critical patent/JP2020128571A/ja
Application granted granted Critical
Publication of JP7134112B2 publication Critical patent/JP7134112B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0068Reactive sputtering characterised by means for confinement of gases or sputtered material, e.g. screens, baffles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0073Reactive sputtering by exposing the substrates to reactive gases intermittently
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】金属膜の堆積と堆積された金属膜の酸化処理とを同一の処理容器内で行う際に、金属ターゲットの酸化を抑制する。【解決手段】成膜装置は、処理容器と、処理容器内で基板を保持する基板保持部と、基板保持部の上方に配置され、金属からなるターゲットを保持し、電源からの電力をターゲットに給電するターゲット電極と、基板に酸化ガスを供給する酸化ガス導入機構と、ターゲット配置空間に不活性ガスを供給するガス供給部とを具備する。ターゲットからその構成金属がスパッタ粒子として放出されて基板上に金属膜が堆積され、酸化ガス導入機構から導入された酸化ガスにより金属膜が酸化されて金属酸化膜が成膜される。ガス供給部は、酸化ガスが導入される際に、ターゲット配置空間に不活性ガスを供給して処理空間の圧力よりも陽圧になるようにする。【選択図】図6

Description

本開示は、成膜装置および成膜方法に関する。
MRAM(Magnetoresistive Random Access Memory)やHDD(hard disk drive)等の磁気デバイスには、磁性膜と金属酸化膜とからなる磁気抵抗素子が用いられる。このような金属酸化膜を成膜する成膜装置として、特許文献1には、処理容器と、処理容器内で被処理体を保持する保持部と、金属のターゲットと、保持部に向けて酸素ガスを供給する導入部とを有するものが記載されている。特許文献1の成膜装置では、スパッタリングによる金属膜の堆積と、金属膜の酸化・結晶化とを一つの処理容器内で行うので、金属酸化膜の成膜を短時間で行うことができる。
特開2016−33244号公報
本開示は、金属膜の堆積と堆積された金属膜の酸化処理とを同一の処理容器内で行う際に、金属ターゲットの酸化を抑制することができる成膜装置および成膜方法を提供する。
本開示の一態様に係る成膜装置は、基板に酸化膜を成膜する成膜装置であって、処理容器と、前記処理容器内で基板を保持する基板保持部と、前記基板保持部の上方に配置され、金属からなるターゲットを保持し、電源からの電力を前記ターゲットに給電するターゲット電極と、前記基板保持部に保持された基板に酸化ガスを供給する酸化ガス導入機構と、前記ターゲットが配置されるターゲット配置空間に不活性ガスを供給するガス供給部と、を具備し、前記ターゲット電極を介して給電された前記ターゲットからその構成金属がスパッタ粒子として放出されて前記基板上に金属膜が堆積され、前記酸化ガス導入機構から導入された酸化ガスにより前記金属膜が酸化されて金属酸化膜が成膜され、前記ガス供給部は、前記酸化ガスが導入される際に、前記ターゲット配置空間に不活性ガスを供給して、前記ターゲット配置空間の圧力を前記基板が配置される処理空間の圧力よりも陽圧になるように不活性ガスを導入する。
本開示によれば、金属膜の堆積と堆積された金属膜の酸化処理とを同一の処理容器内で行う際に、金属ターゲットの酸化を抑制することができる成膜装置および成膜方法が提供される。
第1の実施形態に係る成膜装置を示す断面図である。 第1の実施形態に係る成膜装置において実施可能な一実施形態の成膜方法を示すフローチャートである。 第1の実施形態に係る成膜装置の金属膜堆積時の状態を示す断面図である。 図3の状態の第1の実施形態に係る成膜装置において、ターゲットからスパッタ粒子を放出した状態を示す断面図である。 酸化ガス供給時に不活性ガスを供給しない場合の酸化ガスの流れを説明するための断面図である。 酸化ガス供給時に不活性ガスを供給した場合の状態を説明するための断面図である。 第1の実施形態において、酸化処理の際に不活性ガスとしてArガスを供給することによる、Oガスの侵入防止効果を確認した実験結果を示す図である。 第1の実施形態において、酸化処理の際に、OガスとともにArガスを供給した場合の効果について確認した実験結果を示す図である。 第2の実施形態に係る成膜装置の一部を示す断面図である。 図9の成膜装置において、仕切り部(第1の仕切り板)を上昇させた状態を示す図である。 第2の実施形態に係る成膜装置において実施可能な一実施形態の成膜方法を示すフローチャートである。 第2の実施形態に係る成膜装置において実施可能な他の実施形態の成膜方法を示すフローチャートである。 図12の成膜方法における特徴部分を説明する断面図である。 第2の実施形態に係る成膜装置において実施可能なさらに他の実施形態の成膜方法を示すフローチャートである。 第2の実施形態に係る成膜装置の変形例を示す断面図である。
以下、添付図面を参照して実施形態について具体的に説明する。
<第1の実施形態>
まず、第1の実施形態について説明する。
図1は、第1の実施形態に係る成膜装置を示す断面図である。本実施形態の成膜装置1は、基板W上にスパッタリングによって金属膜を堆積した後、酸化処理を行って金属酸化膜を成膜するものである。基板Wとしては、例えばAlTiC、Si、ガラス等からなるウエハを挙げることができるがこれに限定されない。
成膜装置1は、処理容器10と、基板保持部20と、ターゲット電極30a,30bと、ガス供給部40と、酸化ガス導入機構50と、仕切り部60と、制御部70とを備える。
処理容器10は、例えばアルミニウム製であり、基板Wの処理を行う処理室を画成する。処理容器10は、接地電位に接続されている。処理容器10は、上部が開口された容器本体10aと、容器本体10aの上部開口を塞ぐように設けられた蓋体10bとを有する。蓋体10bは、円錐台状をなしている。
処理容器10の底部には排気口11が形成され、排気口11には排気装置12が接続されている。排気装置12は、圧力制御弁、および真空ポンプを含んでおり、排気装置12により、処理容器10内が所定の真空度まで真空排気されるようになっている。
処理容器10の側壁には、隣接する搬送室(図示せず)との間で基板Wを搬入出するための搬入出口13が形成されている。搬入出口13はゲートバルブ14により開閉される。
基板保持部20は、略円板状をなし、処理容器10内の底部近傍に設けられ、基板Wを水平に保持するようになっている。基板保持部20は、本実施形態では、ベース部21および静電チャック22を有する。ベース部21は例えばアルミニウムからなる。静電チャック22は、誘電体からなり、内部に電極23が設けられている。電極23には直流電源(図示せず)から直流電圧が印加され、これによる静電気力により基板Wが静電チャック22の表面に静電吸着される。図示の例では静電チャック22は双極型であるが単極型であってもよい。
また、基板保持部20の内部には、ヒーター24が設けられている。ヒーター24は、例えば加熱抵抗素子を有し、ヒーター電源(図示せず)から給電されることにより発熱して基板Wを加熱する。ヒーター24は、基板Wの表面に堆積した金属膜を酸化させる際の第1ヒーターとして用いられる。金属がMgである場合には、ヒーター24は、50〜300℃の範囲内の温度に基板Wを加熱する。図1では、ヒーター24が静電チャック22内に設けられているが、ベース部21に設けられていてもよい。
基板保持部20は、駆動部25に接続されている。駆動部25は、駆動装置26と支軸27とを有する。駆動装置26は、処理容器10の下方に設けられている。支軸27は駆動装置26から処理容器10の底壁を貫通して延び、その先端が基板保持部20の底面中央に接続されている。駆動装置26は、支軸27を介して基板保持部20を回転および昇降するようになっている。支軸27と処理容器10の底壁との間は、封止部材28により封止されている。封止部材28を設けることにより、処理容器10内を真空状態に保ったまま支軸27が回転および昇降動作することが可能となる。封止部材28として、例えば磁性流体シールを挙げることができる。
ターゲット電極30a,30bは、それぞれ、基板保持部20の上方に設けられるターゲット31a,31bに電気的に接続されるものであり、ターゲット31a,31bを保持する。ターゲット電極30a,30bは、絶縁性部材32a,32bを介して、処理容器10の蓋体10bの傾斜面に、基板Wに対して斜めに取り付けられている。ターゲット31a,31bは、堆積しようとする金属膜を構成する金属からなり、成膜しようとする金属酸化膜の種類に応じて適宜選択され、例えばMgやAl等が用いられる。なお、ターゲットの個数を2個として説明しているが、これに限らず、1個以上の任意の個数であってよく、例えば4個設置される。
ターゲット電極30a,30bには、それぞれ電源33a、33bが接続されている。本例では電源33a,33bは直流電源であるが、交流電源であってもよい。電源33a,33bからの電力は、ターゲット電極30a,30bを介してターゲット31a,31bに供給される。ターゲット電極30a,30bのターゲット31a,31bとは反対側には、それぞれ、カソードマグネット34a,34bが設けられている。カソードマグネット34a,34bには、それぞれ、マグネット駆動部35a,35bが接続されている。ターゲット31a,31bの表面の外周部分には、それぞれ、スパッタ粒子の放出方向を規制するリング状部材36a,36bが設けられている。リング状部材36a,36bは接地されている。
ガス供給部40は、本実施形態では、ガス供給源41と、ガス供給源41から延びるガス供給配管42と、ガス供給配管42に設けられたマスフローコントローラのような流量制御器43と、ガス導入部材44とを有している。ガス供給源41からは、処理容器10内において励起されるガスとして不活性ガス、例えば、Ar、He、Ne、Kr、He等の希ガスが、ガス供給配管42およびガス導入部材44を介して処理容器10内に供給される。
ガス供給部40は、スパッタリングガス供給機構として用いられるとともに、後述する酸化ガスがターゲット31a,31bに到達することを抑制する酸化ガス到達抑制機構として機能する。
ガス供給部40がスパッタリングガス供給機構として機能する場合、ガス供給部40からのガスは、スパッタリングによる金属膜の堆積の際にスパッタリングガスとして処理容器10内に供給される。供給されたガスは、電源33a,33bからターゲット電極30a,30bを介してターゲット31a,31bに電圧が印加されることにより励起され、プラズマを生成する。一方、カソードマグネット34a,34bがマグネット駆動部35a,35bによって駆動されると、ターゲット31a,31bの周囲に磁界が発生し、これにより、ターゲット31a,31bの近傍にプラズマが集中する。そして、プラズマ中の正イオンがターゲット31a,31bに衝突することで、ターゲット31a,31bからその構成金属がスパッタ粒子として放出され、放出された金属は基板W上に堆積される。
なお、電源33a,33bの両方から、ターゲット31a,31bの両方へ電圧を印加して、ターゲット31a,31bの両方からスパッタ粒子を放出してもよいし、いずれか一方のみに電圧を印加してスパッタ粒子を放出するようにしてもよい。
ガス供給部40が酸化ガス到達抑制機構として機能する場合についての詳細は後述する。
酸化ガス導入機構50は、ヘッド部51、移動機構52、および酸化ガス供給部57とを有する。ヘッド部51は略円板状をなす。移動機構52は、駆動装置53と支軸54とを有する。駆動装置53は、処理容器10の下方に設けられている。支軸54は駆動装置53から処理容器10の底壁を貫通して延び、その先端が連結部55の底部に接続されている。連結部55はヘッド部51に結合されている。
支軸54と処理容器10の底壁との間は、封止部材54aにより封止されている。封止部材54aとして、例えば磁性流体シールを挙げることができる。駆動装置53は、支軸54を回転させることにより、ヘッド部51を、基板保持部20直上の処理空間Sに存在する酸化処理位置と、図中破線で示す処理空間Sから離れた退避位置との間で旋回させることが可能となっている。
ヘッド部51の内部には、円状をなすガス拡散空間51aと、ガス拡散空間51aから下方に延び、開口する複数のガス吐出孔51bとが形成されている。支軸54および連結部55にはガスライン56が形成されており、ガスライン56の一端はガス拡散空間51aに接続されている。ガスライン56の他端は処理容器10の下方に存在しており、酸化ガス供給部57が接続されている。酸化ガス供給部57は、ガス供給源58と、ガス供給源58から延び、ガスライン56に接続されるガス供給配管59と、ガス供給配管59に設けられたマスフローコントローラのような流量制御器59aとを有している。ガス供給源58からは、酸化ガス、例えば酸素ガス(Oガス)が供給される。酸化ガスは、基板保持部20が酸化処理位置にあるときに、ガス供給配管59、ガスライン56、ガス拡散空間51a、ガス吐出孔51bを介して基板保持部20に保持された基板Wに供給される。
ヘッド部51には、ヒーター51cが設けられている。ヒーター51cは、抵抗加熱、ランプ加熱、誘導加熱、マイクロ波加熱等の種々の加熱方式が適用可能である。ヒーター51cはヒーター電源(図示せず)から給電されることによって発熱する。ヒーター51cは、基板に形成された金属酸化膜を結晶化させる際の第2ヒーターとして用いられる。金属がMgである場合には、ヒーター51cは、250〜400℃の範囲内の温度に基板Wを加熱する。ヒーター51cは、ヘッド部51から酸化ガス(例えばOガス)を供給する際に、当該酸化ガスを加熱する用途にも適用することができる。これにより、金属の酸化に要する時間をより短縮することが可能となる。
仕切り部60は、ターゲット31a,31bを遮蔽する遮蔽部材として機能し、ターゲット31a,31bが配置される空間(ターゲット配置空間)と基板が存在する処理空間Sとを仕切るものである。仕切り部60は、第1の仕切り板61と、第1の仕切り板61の下方に設けられた第2の仕切り板62とを有している。第1の仕切り板61および第2の仕切り板62は、いずれも処理容器10の蓋部10bに沿った円錐台状をなし、上下に重なるように設けられている。第1の仕切り板61および第2の仕切り板62には、ターゲット31a,31bに対応する大きさの開口部が形成されている。また、第1の仕切り板61および第2の仕切り板62は、回転機構63によりそれぞれ独立して回転可能となっている。そして、第1の仕切り板61および第2の仕切り板62は、回転されることにより、開口部がターゲット31a,31bに対応する位置となる開状態と、開口部がターゲット31a,31bに対応する位置以外の位置にされる閉状態(仕切り状態)とをとることが可能となっている。第1の仕切り板61および第2の仕切り板62が開状態のときは、ターゲット31a,31bの中心と開口部の中心とが一致した状態とする。第1の仕切り板61および第2の仕切り板62が開状態となった際に、仕切り部60による遮蔽が解除されてスパッタリングによる金属膜の堆積が可能となる。一方、第1の仕切り板61および第2の仕切り板62が閉状態となった際に、ターゲット配置空間と処理空間Sとが仕切られる。
なお、第2の仕切り板62は、第1の仕切り板61を開状態としてターゲット31a,31bをスパッタ洗浄する際に閉状態となり、ターゲットターゲット31a,31bのスパッタ洗浄の際にスパッタ粒子が処理空間に放射されないように遮蔽する。
基板保持部20の上方には、基板保持部20の上面外端部から仕切り部60の下端近傍まで達するように、遮蔽部材65が設けられている。遮蔽部材65は、酸化ガス導入機構50から供給される酸化ガスがターゲット31a,31b側へ拡散することを抑制する機能を有する。
制御部70は、コンピュータからなり、成膜装置1の各構成部、例えば、電源33a,33b、排気装置12、駆動部25、ガス供給部40、酸化ガス導入機構50、仕切り部60等を制御する、CPUからなる主制御部を有する。また、その他に、キーボードやマウス等の入力装置、出力装置、表示装置、記憶装置を有する。制御部70の主制御部は、記憶装置に処理レシピが記憶された記憶媒体をセットすることにより、記憶媒体から呼び出された処理レシピに基づいて成膜装置1に所定の動作を実行させる。
次に、以上のように構成される第1の実施形態に係る成膜装置において実施可能な一実施形態の成膜方法について、図2のフローチャートを参照して説明する。
図2の成膜方法は、工程ST1、工程ST2、工程ST3、および工程ST4を含む。
まず、成膜方法の実施に先立って、ゲートバルブ14を開け、処理容器10に隣接する搬送室(図示せず)から、搬送装置(図示せず)により基板Wを処理容器10内に搬入し、基板保持部20に保持させる。
工程ST1では、基板保持部20上の基板W上にスパッタリングにより金属膜、例えばMg膜、Al膜等を堆積させる。このとき、金属膜の堆積に先立って、成膜装置1において、図3に示すように、仕切り部60を開状態とする。具体的には第1および第2の仕切り板61,62を、それらの開口部61a,62aがターゲット31a,31bに対応する位置となる開状態とする(開口部61a,62aの中心と、ターゲット31a,31bの中心を一致させる)。また、酸化ガス導入機構50のヘッド部51は退避位置に存在する状態とする。
工程ST1のスパッタリングは、具体的には以下のように行われる。まず、排気装置12により処理容器10内を所定の圧力に調圧しつつ、ガス供給部40から処理容器10内へ不活性ガス、例えばArガスを導入する。次いで、電源33a,33bからターゲット電極30a,30bを介してターゲット31a,31bに印加することによりプラズマを生成するとともに、カソードマグネット34a,34bを駆動させ磁界を発生させる。これにより、プラズマ中の正イオンがターゲット31a,31bに衝突し、図4に示すように、ターゲット31a,31bからその構成金属からなるスパッタ粒子Pが放出される。放出されたスパッタ粒子Pにより基板W上に金属膜が堆積される。なお、このとき、上述したように、ターゲット31a,31bの両方からスパッタ粒子の放出してもよいし、いずれか一方からのみスパッタ粒子を放出するようにしてもよい。図4では、ターゲット31aからスパッタ粒子Pが放出する状態を示している。工程ST1の圧力は、1×10−5〜1×10−2Torr(1.3×10−3〜1.3Pa)の範囲が好ましい。
工程ST2では、ターゲット31a,31bが配置されたターゲット配置空間にガス供給部40から不活性ガス、例えば、Ar、He、Ne、Kr、He等の希ガスを供給し、ターゲット配置空間の圧力を基板W近傍の処理空間Sの圧力よりも陽圧状態とする。このとき、第1の仕切り板61および第2の仕切り板61を回転して仕切り部60を閉状態とする。
工程ST3では、ターゲット配置空間に不活性ガスを供給したまま、基板保持部20に保持された基板Wに酸化ガス、例えばOガスを供給し、基板W上に堆積された金属膜を酸化して金属酸化膜を成膜する。このとき、酸化ガス導入機構50のヘッド部51を基板保持部20直上の酸化処理位置に移動させ、酸化ガス導入機構50のヘッド部51から基板Wに酸化ガスを供給する。また、ヒーター24により基板Wを例えば50〜300℃の温度で加熱する。工程ST3においては、酸化膜の形成の後、ヒーター51cにより基板Wをさらに例えば250〜400℃の温度に加熱して金属酸化膜を結晶化させてもよい。なお、工程ST3の際の圧力は、1×10−7〜2×10−2Torr(1.3×10−5〜2.6Pa)
の範囲が好ましい。
工程ST4では、工程ST2で供給した不活性ガスと工程ST3で供給した酸化ガスを、真空排気により処理容器10から排出する。
以上の工程ST1〜ST4を1回以上の所定回数繰り返すことにより所望の膜厚の金属酸化膜を成膜する。
なお、必要に応じて、工程ST1の金属膜の堆積に先立って、第1の仕切り板61を開状態とし、第2の仕切り板62を閉状態として、ターゲット31a,31bに電圧を印加し、ターゲット31a,31bをスパッタ洗浄してもよい。これにより、ターゲット31a,31bの表面の自然酸化膜は除去される。この際、スパッタ粒子は第2の仕切り板62に堆積される。スパッタ洗浄終了後、仕切り板62を開状態とすることにより遮蔽部60を開状態とされ、工程ST1の金属膜の堆積が行われる。
本実施形態によれば、金属膜の堆積と、金属膜の酸化処理とを一つの処理容器内で行うことができるので、特許文献1の技術と同様、金属酸化膜の成膜を短時間で行うことができる。
しかし、特許文献1の技術では、同じ処理容器内で酸化処理が行われるため、図5に示すように、酸化処理の際に酸化ガス(Oガス)がターゲット31a,31bに到達し、ターゲット31a,31bの表面が自然酸化してしまう。特に周縁部分で局所的な酸化が生じやすい。
ターゲット31a,31bの表面に自然酸化膜が形成されると、スパッタレートの低下を引き起こす。また、表面酸化による放電電圧の変化が生じ、さらに、自然酸化膜とターゲット31a,31bの表面、あるいは自然酸化膜と処理容器の内壁等との間でアーク放電が発生し、金属膜の厚みも変化する。その結果、複数枚の基板Wに対して金属酸化膜を成膜すると、金属酸化膜の厚みが低下して、同じ特性を有する素子を安定に製造することが困難となる。
従来から、スパッタリングのターゲットに不純物が存在する場合には、不純物の局所的な帯電がアーク発生の原因となることが知られており、本実施形態の場合も、酸化物部分の局所的な帯電によりマイクロアークが発生するものと考えられる。この場合、ターゲット(カソード)に印加する電圧を、一時的に反転させるパルス状のものとすることにより、ターゲット表面に電子を浴びせて蓄積した電荷を取り除き、アークの発生を抑制することができることが知られている。
しかし、このような手法でアークの発生を抑制することができたとしても、ターゲット表面の自然酸化を防ぐことはできず、根本的な解決にはならない。
そこで、本実施形態では、金属膜を堆積した後、ターゲット配置空間にガス供給部40から不活性ガスを供給し、ターゲット配置空間の圧力を基板W近傍の処理空間Sの圧力よりも陽圧状態とした上で、酸化処理を行う。これにより、図6に示すように、酸化ガス(Oガス)がターゲット31a,31bに到達することが抑制される。
このためターゲット31a,31bの表面の酸化を抑制することができ、スパッタリングによる金属膜の堆積の際に、スパッタレートの低下や、放電電圧の変化、およびアーク放電の発生を抑制することができる。また、金属膜の厚みの変化も抑制される。その結果、同じ特性を有する素子を安定に製造することが可能となる。
次に、第1の実施形態に関する実験例について説明する。
最初に、酸化処理の際に不活性ガスとしてArガスを供給することによる、Oガスの侵入防止効果を確認した。ここでは、Oガスのみを1000sccmで供給した場合、OガスとArガスを1000sccmずつ供給した場合、Arガスのみを1000sccmで供給した場合について、供給終了後からの圧力変化を調査した。その結果を図7に示す。
図7に示すように、Oガスのみを供給した場合は、ターゲット近傍にOガスが侵入するため、600sec以上の時間真空排気しないと十分に圧力が低下しない(十分に排出されない)。これに対し、Oガス供給している間、Arガスも合わせて供給することにより、排気時間はArガスのみを流した場合と同等となった。このことから、Oガスの供給時にArガスを供給することにより、ターゲット近傍へのOガスの侵入が抑制できることが確認された。
次に、酸化処理の際に、OガスとともにArガスを供給した場合の効果について確認した。ここでは、ターゲットとしてMgを用い、供給電力:700W、Arガス流量:400sccm、時間:4secの条件でプラズマを着火してスパッタリングを行い、その後酸化処理を行った。酸化処理は、共通条件を、Oガス流量:2000sccm、時間:30secとし、酸化処理の際にArガスを供給しない場合とArガスを1000sccmで供給した場合の2種類の条件で行った。なお、処理の際の圧力は2×10−2Torr、温度は室温とした。以上のような条件での処理を繰り返して、着火時放電電圧と、マイクロアークの発生回数を把握した。その結果を図8に示す。
図8に示すように、Oガスのみの場合は、着火時放電電圧が着火サイクルの増加とともに上昇する傾向が見られ、マイクロアークについては着火サイクルがある回数から急激に上昇する。これに対して、OガスとArガスの両方を供給した場合は、ターゲット表面酸化が抑制された結果、スパッタリング時の放電電圧が安定し、かつマイクロアークの急激な上昇も見られないことが確認された。
<第2の実施形態>
次に、第2の実施形態について説明する。
図9は、第2の実施形態に係る成膜装置の一部を示す断面図である。第2の実施形態に係る成膜装置1´の基本構成は、第1の実施形態に係る成膜装置と同様であるが、図1の回転機構63の代わりに回転・昇降機構163を有している点のみが相違する。他の部分は第1の実施形態と同じであるため、説明を省略する。
回転・昇降機構163は、仕切り部60を開状態および閉状態との間で切り替えるとともに、仕切り部60を昇降させて仕切り部60をターゲット31a,31bに対し近接または離隔させるものである。より詳しくは、回転・昇降機構163は、図1の回転機構63と同様の構造の回転機構164と、回転機構164から延び、第1の仕切り板61を支持する螺棒からなる回転シャフト165とを有する。また、回転シャフト165とは別に第2の仕切り板62を支持する回転シャフト(図示せず)を有する。回転・昇降機構163は、回転機構164により螺棒からなる回転シャフト165を回転させることにより、第1の仕切り板61を回転させて開状態または閉状態とすると同時に、第1の仕切り板61を昇降させる。第1の仕切り板61とともに第2の仕切り板62を昇降させるようにしてもよい。
回転・昇降機構163により、仕切り部60をターゲット31a,31bに近接させることができる。すなわち、仕切り部60の第1の仕切り板61を上昇させることにより、第1の仕切り板61をターゲット31a,31bに近接させることができる。このように仕切り部60(第1の仕切り板61)をターゲット31a,31bに近接させることにより、ターゲット31a,31bの酸化ガスの侵入経路を狭くすることができ、ターゲット31a,31bへ酸化ガスが到達することを抑制することができる。特に、図10に示すように、第1の仕切り板61をリング状部材36a,36bに密着させると、ターゲット31a,31bと仕切り板61とリング状部材36a,36bとで囲まれた空間がほぼ閉鎖空間となる。これにより、ターゲット31a,31b表面への酸化ガスの侵入をより一層効果的に抑制することができる。また、回転・昇降機構163を用いることにより、開状態から閉状態への切り替えと、仕切り部60(仕切り板61)のターゲット31a,31bへの近接とを一度の動作で行うことができる。
次に、以上のように構成される第2の実施形態に係る成膜装置において実施可能な一実施形態の成膜方法について、図11のフローチャートを参照して説明する。
図11の成膜方法は、工程ST11、工程ST12、工程ST13、工程ST14、工程ST15、および工程ST16を含む。
まず、成膜方法の実施に先立って、ゲートバルブ14を開け、処理容器10に隣接する搬送室(図示せず)から、搬送装置(図示せず)により基板Wを処理容器10内に搬入し、基板保持部20に保持させる。
工程ST11では、仕切り部60を開状態とする。具体的には第1および第2の仕切り板61,62を、それらの開口部61a,62aがターゲット31a,31bに対応する位置となる開状態とする。この状態では、開口部61a,62aの中心と、ターゲット31a,31bの中心を一致させる。このとき、酸化ガス導入機構50のヘッド部51は退避位置に存在する状態とする。
工程ST12では、基板保持部20上の基板W上にスパッタリングにより金属膜、例えばMg膜、Al膜等を堆積させる。この工程は、第1の実施形態の工程ST1と同様に行われる。
工程ST13では、仕切り部60を閉状態とする。具体的には、まず、第2の仕切り板62を回転させてターゲット閉状態とし、次に、第1の仕切り板61を回転させて閉状態とする。
工程ST14では、仕切り部60を上昇させて、仕切り部60をターゲット31a,31bに近接させる。具体的には、第1の仕切り板61を上昇させることにより、第1の仕切り板61をターゲット31a,31bに近接させる。好ましくは、図10に示すように、仕切り部60(第1の仕切り板61)をリング状部材36a,36bに密着させる。このとき、第1の仕切り板61の回転と、上昇を同時に実施することができる。
工程ST15では、基板Wに酸化ガス、例えばOガスを供給し、基板W上に堆積された金属膜を酸化して金属酸化膜を成膜する。このとき、酸化ガス導入機構50のヘッド部51を基板保持部20直上の酸化処理位置に移動させ、酸化ガス導入機構50のヘッド部51から基板Wに酸化ガスを供給する。工程ST15の酸化処理は、第1の実施形態の工程ST3と同様に行われる。
工程ST16では、工程ST3で供給した酸化ガスを、真空排気により処理容器10から排出する。
以上の工程ST11〜ST16を1回以上の所定回数繰り返すことにより所望の膜厚の金属酸化膜を成膜する。
本実施形態によれば、金属膜の堆積と、金属膜の酸化処理とを一つの処理容器内で行うことができるので、特許文献1の技術と同様、金属酸化膜の成膜を短時間で行うことができる。また、仕切り部60(第1の仕切り板61)をターゲット31a,31bに近接させるので、酸化ガスの侵入経路が狭くなり、酸化処理の際に、ターゲット31a,31bへ酸化ガスが到達することを抑制することができる。特に、第1の仕切り板61をリング状部材36a,36bに密着させると、ターゲット31a,31bと仕切り板61とリング状部材36a,36bとで囲まれた空間がほぼ閉鎖空間となる。これにより、ターゲット31a,31b表面への酸化ガスの到達をより一層効果的に抑制することができる。
このためターゲット31a,31bの表面の酸化を抑制することができ、スパッタリングによる金属膜の堆積の際に、スパッタレートの低下や、放電電圧の変化、およびアーク放電の発生を抑制することができる。また、金属膜の厚みの変化も抑制される。その結果、同じ特性を有する素子を安定に製造することが可能となる。
第2の実施形態において、図12に示すように、工程ST14の後に、工程ST15の酸化処理に先立って、工程ST17を行ってもよい。工程ST17では、図13に示すように、ターゲット配置空間にガス供給部40から不活性ガス、例えば、Ar、He、Ne、Kr、He等の希ガスを供給し、ターゲット配置空間の圧力を基板W近傍の処理空間Sの圧力よりも陽圧状態とする。これにより、ターゲット31a,31bへの酸化ガスの到達をさらに抑制することができ。ターゲット31a,31bの表面の酸化をさらに一層効果的に抑制することができる。この場合は、工程ST16の排気工程において、処理容器10から酸化ガスの他に不活性ガスも排出される。
また、第2の実施形態において、図14に示すように、工程ST11に先立って、工程ST18および工程ST19を行ってもよい。工程ST18では、第1の仕切り板61を開状態とし、第2の仕切り板62を閉状態とする。工程ST19では、ターゲット31a,31bに電圧を印加し、ターゲット31a,31bをスパッタ洗浄する。これにより、ターゲット31a,31bの表面の自然酸化膜は除去される。この際、スパッタ粒子は第2の仕切り板62に堆積され、基板Wへは到達しない。工程ST19の後、仕切り板62を開状態とすることにより工程S11の状態となる。このように、ターゲット31a,31bの自然酸化膜をスパッタ除去することにより、ターゲット31a,31bの自然酸化膜の影響をより低減することができる。
仕切り部60をターゲット31a,31bに近接させる機構としては、図15に示すものを用いることもできる。図15では、回転機構164の回転シャフト166をネジが形成されていないものとし、昇降機構167を別途設けて、昇降機構167により仕切り部60(第1の仕切り板61)を昇降させる。これにより、昇降機構167により仕切り部60(第1の仕切り板61)を上昇させることにより、仕切り部60(仕切り板61)をターゲット31a,31bに近接させることができる。
<他の適用>
以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、上記実施形態において金属膜を成膜するスパッタリング手法は例示であり、他の手法のスパッタリングであってもよく、本開示とは異なる方法でスパッタ粒子を放出させてもよい。また、酸化ガスを基板の上方のヘッド部から基板に供給したが、これに限るものではない。
1;成膜装置
10;処理容器
10a;容器本体
10b;蓋体
20;基板保持部
30a,30b;ターゲット電極
31a,31b;ターゲット
33a,33b;電源
40;ガス供給部(酸化ガス到達抑制機構)
50;酸化ガス導入機構
51;ヘッド部
57;酸化ガス供給部
60;仕切り部
61;第1の仕切り板
163;回転・昇降機構(酸化ガス到達抑制機構)
167;昇降機構(酸化ガス到達抑制機構)
W;基板

Claims (16)

  1. 基板に金属酸化膜を成膜する成膜装置であって、
    処理容器と、
    前記処理容器内で基板を保持する基板保持部と、
    前記基板保持部の上方に配置され、金属からなるターゲットを保持し、電源からの電力を前記ターゲットに給電するターゲット電極と、
    前記基板保持部に保持された基板に酸化ガスを供給する酸化ガス導入機構と、
    前記ターゲットが配置されるターゲット配置空間に不活性ガスを供給するガス供給部と、
    を具備し、
    前記ターゲット電極を介して給電された前記ターゲットからその構成金属がスパッタ粒子として放出されて前記基板上に金属膜が堆積され、前記酸化ガス導入機構から導入された酸化ガスにより前記金属膜が酸化されて金属酸化膜が成膜され、
    前記ガス供給部は、前記酸化ガスが導入される際に、前記ターゲット配置空間に不活性ガスを供給して、前記ターゲット配置空間の圧力を前記基板が配置される処理空間の圧力よりも陽圧になるように不活性ガスを供給する、成膜装置。
  2. 前記ターゲット配置空間と前記処理空間との間に設けられ、前記酸化ガスが導入される際に前記ターゲット配置空間と前記処理空間を仕切る閉状態とされ、前記金属膜を堆積する際には開状態とされる仕切り部と、
    前記仕切り部を開状態または閉状態にする開閉機構と、
    をさらに具備する、請求項1に記載の成膜装置。
  3. 基板に酸化膜を成膜する成膜装置であって、
    処理容器と、
    前記処理容器内で、基板を保持する基板保持部と、
    前記基板保持部の上方に配置され、金属からなるターゲットを保持し、電源からの電力を前記ターゲットに給電するターゲット電極と、
    前記基板保持部に保持された基板に酸化ガスを供給する酸化ガス導入機構と、
    前記ターゲットが配置されるターゲット配置空間と前記基板が配置される処理空間との間に設けられ、前記酸化ガスが導入される際に前記ターゲット配置空間と前記処理空間を仕切る閉状態とされ、前記金属膜を堆積する際には開状態とされる仕切り部と、
    前記仕切り部を開状態または閉状態にする開閉機構と、
    前記仕切り部を前記ターゲットに対して移動させる移動機構と、
    を具備し、
    前記ターゲット電極を介して給電された前記ターゲットからその構成金属がスパッタ粒子として放出されて前記基板上に金属膜が堆積され、前記酸化ガス導入機構から導入された酸化ガスにより前記金属膜が酸化されて金属酸化膜が成膜され、
    前記移動機構は、前記酸化ガスが導入される際に、前記仕切り部を前記ターゲットに近接させる、成膜装置。
  4. 前記ターゲットの表面の外周部分にリング状部材が設けられ、前記移動機構は、前記酸化ガスが導入される際に、前記仕切り部を前記リング状部材に密着させる、請求項3に記載の成膜装置。
  5. 前記仕切り部は前記ターゲットに対応する開口部を有し、前記開閉機構は、前記仕切り部を回転させることにより、前記開口部が前記ターゲットに対応する位置となる開状態、または前記開口部が前記ターゲットに対応しない位置となる閉状態とし、前記移動機構は前記仕切り部を昇降させることにより前記仕切り部を前記ターゲットに対し近接または離隔させる、請求項3または請求項4に記載の成膜装置。
  6. 前記開閉機構および前記移動機構が一体となった回転・昇降機構を有し、前記回転・昇降機構は、前記仕切り部に取り付けられた螺棒からなる回転シャフトと、前記回転シャフトを回転させる回転機構とを有し、前記回転機構により前記回転シャフトを回転させることにより、前記仕切り部を回転させると同時に昇降させる、請求項5に記載の成膜装置。
  7. 前記仕切り部は、上下に重なるように設けられ、それぞれ独立して回転可能な、前記ターゲット側の第1の仕切り板および前記処理空間側の第2の仕切り板を有し、前記第1の仕切り板および前記第2の仕切り板は、前記ターゲットに対応する開口部を有し、前記開閉機構は、前記第1の仕切り板および前記第2の仕切り板を回転させることにより、前記第1の仕切り板および前記第2の仕切り板を、前記開口部が前記ターゲットに対応する位置となる開状態、または前記開口部が前記ターゲットに対応しない位置となる閉状態とし、
    前記第1の仕切り板および前記第2の仕切り板が両方開状態のときに、前記基板上に前記金属膜の堆積が行われ、
    前記第1の仕切り板および前記第2の仕切り板が両方閉状態のときに前記金属膜の酸化が行われ、
    前記第1の仕切り板が開状態で、前記第2の仕切り板が閉状態のときに前記ターゲット電極を介して前記ターゲットに給電されることにより、前記ターゲット表面のスパッタ洗浄が行われる、請求項5または請求項6に記載の成膜装置。
  8. 前記ターゲットが配置されるターゲット配置空間に不活性ガスを供給するガス供給部をさらに具備し、
    前記ガス供給部は、前記酸化ガスが導入される際に、前記ターゲット配置空間に不活性ガスを供給して、前記ターゲット配置空間の圧力を前記基板が配置される処理空間の圧力よりも陽圧になるように不活性ガスを導入する、請求項3から請求項7のいずれか1項に記載の成膜装置。
  9. 前記酸化ガス導入機構は、ヘッド部を有し、前記ヘッド部は、前記処理空間に存在する酸化処理位置と、前記処理空間から離れた退避位置との間で移動可能に設けられ、前記酸化処理位置にあるときに、前記基板に前記酸化ガスを供給する、請求項1から請求項8のいずれか1項に記載の成膜装置。
  10. 成膜装置により基板に金属酸化膜を成膜する成膜方法であって、
    前記成膜装置は、
    処理容器と、
    前記処理容器内で、基板を保持する基板保持部と、
    前記基板保持部の上方に配置され、金属からなるターゲットを保持し、電源からの電力を前記ターゲットに給電するターゲット電極と、
    前記基板保持部に保持された基板に酸化ガスを供給する酸化ガス導入機構と、
    前記ターゲットが配置されるターゲット配置空間に不活性ガスを供給するガス供給部と、
    を具備し、
    前記ターゲット電極に保持されたターゲットに給電して前記ターゲットからその構成金属をスパッタ粒子として放出させて、前記基板に金属膜を堆積させる工程と、
    前記ターゲット配置空間に前記ガス供給部から不活性ガスを供給し、前記ターゲット配置空間の圧力を前記基板が配置される処理空間の圧力よりも陽圧になるようにする工程と、
    前記ターゲット配置空間を陽圧に保ったまま、前記酸化ガス導入機構から前記基板に前記酸化ガスを供給して前記金属膜を酸化させる工程と、
    前記不活性ガスと前記酸化ガスとを前記処理容器から排出する工程と、
    を含み、
    これらの工程を1回または複数回繰り返す、成膜方法。
  11. 前記成膜装置は、前記ターゲット配置空間と前記処理空間との間に設けられ、前記酸化ガスが導入される際に前記ターゲット配置空間と前記処理空間を仕切る閉状態とされ、前記金属膜を堆積する際には開状態とされる仕切り部をさらに具備し、
    前記仕切り部は、前記金属膜を堆積させる工程の際に開状態となり、前記金属膜を酸化させる工程の際に閉状態となる、請求項10に記載の成膜方法。
  12. 成膜装置により基板に金属酸化膜を成膜する成膜方法であって、
    前記成膜装置は、
    処理容器と、
    前記処理容器内で、基板を保持する基板保持部と、
    前記基板保持部の上方に配置され、金属からなるターゲットを保持し、電源からの電力を前記ターゲットに給電するターゲット電極と、
    前記基板保持部に保持された基板に酸化ガスを供給する酸化ガス導入機構と、
    前記ターゲットが配置されるターゲット配置空間と前記基板が配置される処理空間との間に設けられ、前記酸化ガスが導入される際に前記ターゲット配置空間と前記処理空間を仕切る閉状態とされ、前記金属膜を堆積する際には開状態とされる仕切り部と、
    を具備し、
    前記仕切り部を開状態とする工程と、
    前記ターゲット電極に保持されたターゲットに給電して前記ターゲットからその構成金属をスパッタ粒子として放出させて、前記基板に金属膜を堆積させる工程と、
    前記仕切り部を閉状態とする工程と、
    前記仕切り部を前記ターゲットに近接させる工程と、
    前記酸化ガス導入機構から前記基板に前記酸化ガスを供給して前記金属膜を酸化させる工程と、
    前記酸化ガスを前記処理容器から排出する工程と、
    を含み、
    これらの工程を1回または複数回繰り返す、成膜方法。
  13. 前記成膜装置は、前記ターゲットの表面の外周部分にリング状部材が設けられ、前記仕切り部を前記ターゲットに近接させる工程は、前記仕切り部を前記リング状部材に密着させる、請求項12に記載の成膜方法。
  14. 前記仕切り部は、前記ターゲットに対応する開口部を有し、前記仕切り部を回転させることにより、前記開口部が前記ターゲットに対応する位置となる開状態、または前記開口部が前記ターゲットに対応しない位置となる閉状態となり、前記仕切り部を上昇させることにより前記仕切り部が前記ターゲットに対し近接される、請求項12または請求項13に記載の成膜方法。
  15. 前記仕切り部は、上下に重なるように設けられ、それぞれ独立して回転可能な、前記ターゲット側の第1の仕切り板および前記処理空間側の第2の仕切り板を有し、前記第1の仕切り板および前記第2の仕切り板は、前記ターゲットに対応する開口部を有し、
    前記第1の仕切り板および前記第2の仕切り板を回転させることにより、前記第1の仕切り板および前記第2の仕切り板が、前記開口部が前記ターゲットに対応する位置となる開状態、または前記開口部が前記ターゲットに対応しない位置となる閉状態となり、
    前記仕切り部を開状態とする工程では、前記第1の仕切り板および前記第2の仕切り板が両方開状態とされ、
    前記仕切り部材を閉状態とする工程では、前記第1の仕切り板および前記第2の仕切り板が両方閉状態とされ、
    前記仕切り部を開状態とする工程に先立って行われる、
    前記前記第1の仕切り板を開状態とし、前記第2の仕切り板を閉状態とする工程と、
    前記ターゲット電極を介して前記ターゲットに給電し、前記ターゲットの表面のスパッタ洗浄を行う工程と、
    をさらに有する、請求項14に記載の成膜方法。
  16. 前記成膜装置は、前記ターゲットが配置されるターゲット配置空間に不活性ガスを供給するガス供給部をさらに具備し、
    前記仕切り部を前記ターゲットに近接させる工程と、前記酸化ガス導入部から前記基板に前記酸化ガスを供給して前記金属膜を酸化させる工程との間に行われる、前記ターゲット配置空間に前記ガス供給部から不活性ガスを供給し、前記ターゲット配置空間の圧力を前記基板が配置される処理空間の圧力よりも陽圧になるようにする工程をさらに有する、請求項12から請求項15のいずれか1項に記載の成膜方法。
JP2019021298A 2019-02-08 2019-02-08 成膜装置および成膜方法 Active JP7134112B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019021298A JP7134112B2 (ja) 2019-02-08 2019-02-08 成膜装置および成膜方法
KR1020217027082A KR20210118157A (ko) 2019-02-08 2019-09-20 성막 장치 및 성막 방법
US17/428,597 US20220098717A1 (en) 2019-02-08 2019-09-20 Film forming apparatus and film forming method
PCT/JP2019/036980 WO2020161957A1 (ja) 2019-02-08 2019-09-20 成膜装置および成膜方法
CN201980090999.4A CN113366139A (zh) 2019-02-08 2019-09-20 成膜装置和成膜方法
TW109102772A TW202039893A (zh) 2019-02-08 2020-01-30 成膜裝置及成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019021298A JP7134112B2 (ja) 2019-02-08 2019-02-08 成膜装置および成膜方法

Publications (2)

Publication Number Publication Date
JP2020128571A true JP2020128571A (ja) 2020-08-27
JP7134112B2 JP7134112B2 (ja) 2022-09-09

Family

ID=71947526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019021298A Active JP7134112B2 (ja) 2019-02-08 2019-02-08 成膜装置および成膜方法

Country Status (6)

Country Link
US (1) US20220098717A1 (ja)
JP (1) JP7134112B2 (ja)
KR (1) KR20210118157A (ja)
CN (1) CN113366139A (ja)
TW (1) TW202039893A (ja)
WO (1) WO2020161957A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420975A (en) * 1977-07-19 1979-02-16 Fujitsu Ltd Sputtering device
JPH06101019A (ja) * 1992-09-18 1994-04-12 Fujitsu Ltd アルミナ膜形成方法
WO2010074076A1 (ja) * 2008-12-26 2010-07-01 キヤノンアネルバ株式会社 基板処理方法及び基板処理装置
JP2013249517A (ja) * 2012-05-31 2013-12-12 Tokyo Electron Ltd 真空処理装置、真空処理方法及び記憶媒体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033198A1 (ja) * 2010-09-10 2012-03-15 株式会社 アルバック スパッタ装置
WO2013001714A1 (ja) * 2011-06-30 2013-01-03 キヤノンアネルバ株式会社 成膜装置
JP6101019B2 (ja) 2012-08-27 2017-03-22 国立研究開発法人 海上・港湾・航空技術研究所 土質系変形追随性遮水材及びその製造方法
WO2014167615A1 (ja) * 2013-04-10 2014-10-16 キヤノンアネルバ株式会社 スパッタリング装置
JP6405314B2 (ja) * 2013-10-30 2018-10-17 東京エレクトロン株式会社 成膜装置及び成膜方法
JP2015086438A (ja) * 2013-10-31 2015-05-07 東京エレクトロン株式会社 成膜装置
JP6305864B2 (ja) * 2014-07-31 2018-04-04 東京エレクトロン株式会社 成膜装置及び成膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420975A (en) * 1977-07-19 1979-02-16 Fujitsu Ltd Sputtering device
JPH06101019A (ja) * 1992-09-18 1994-04-12 Fujitsu Ltd アルミナ膜形成方法
WO2010074076A1 (ja) * 2008-12-26 2010-07-01 キヤノンアネルバ株式会社 基板処理方法及び基板処理装置
JP2013249517A (ja) * 2012-05-31 2013-12-12 Tokyo Electron Ltd 真空処理装置、真空処理方法及び記憶媒体

Also Published As

Publication number Publication date
JP7134112B2 (ja) 2022-09-09
KR20210118157A (ko) 2021-09-29
WO2020161957A1 (ja) 2020-08-13
TW202039893A (zh) 2020-11-01
CN113366139A (zh) 2021-09-07
US20220098717A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
WO2020017328A1 (ja) プラズマ処理装置およびプラズマ処理方法
JP4344019B2 (ja) イオン化スパッタ方法
KR101813420B1 (ko) 성막 장치 및 성막 방법
JP5834944B2 (ja) マグネトロンスパッタ装置及び成膜方法
JP5767570B2 (ja) Cu配線の形成方法およびCu膜の成膜方法、ならびに成膜システム
JP2016111347A (ja) Cu配線の形成方法および成膜システム、記憶媒体
US9362166B2 (en) Method of forming copper wiring
KR20160016644A (ko) 성막 장치 및 성막 방법
TW201432079A (zh) 用於物理氣相沉積的射頻直流開放/封閉迴路可選式之磁控管
KR20170070852A (ko) 플라즈마 처리 방법
US20200048760A1 (en) High power impulse magnetron sputtering physical vapor deposition of tungsten films having improved bottom coverage
JP2019099882A (ja) Pvd処理方法およびpvd処理装置
JP2019189908A (ja) 成膜装置および成膜方法
JP7361497B2 (ja) 成膜装置
JP2007197840A (ja) イオン化スパッタ装置
JP7134112B2 (ja) 成膜装置および成膜方法
JP5719212B2 (ja) 成膜方法およびリスパッタ方法、ならびに成膜装置
US20170346001A1 (en) Method of manufacturing magnetoresistive device and magnetoresistive device manufacturing system
JP2010212321A (ja) 半導体製造装置
JP7325278B2 (ja) スパッタ方法およびスパッタ装置
US20220415634A1 (en) Film forming apparatus, processing condition determination method, and film forming method
JP2024056319A (ja) 成膜装置および成膜方法
JP2023084589A (ja) スパッタ装置及び制御方法
JP2021130829A (ja) カソードユニットおよび成膜装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220830

R150 Certificate of patent or registration of utility model

Ref document number: 7134112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150