JP2020121559A - 立体造形装置および立体造形方法 - Google Patents

立体造形装置および立体造形方法 Download PDF

Info

Publication number
JP2020121559A
JP2020121559A JP2020056237A JP2020056237A JP2020121559A JP 2020121559 A JP2020121559 A JP 2020121559A JP 2020056237 A JP2020056237 A JP 2020056237A JP 2020056237 A JP2020056237 A JP 2020056237A JP 2020121559 A JP2020121559 A JP 2020121559A
Authority
JP
Japan
Prior art keywords
unit
powder
modeling
powder layer
restart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020056237A
Other languages
English (en)
Other versions
JP6879405B2 (ja
Inventor
広太 松原
Kota Matsubara
広太 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JP2020121559A publication Critical patent/JP2020121559A/ja
Application granted granted Critical
Publication of JP6879405B2 publication Critical patent/JP6879405B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】立体造形物の強度低下を抑制する。【解決手段】供給部18は、粉体20を供給する。平坦化部16は、供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、粉体層24を形成する。吐出部26は、粉体層24の表面における造形対象物に応じた位置に造形液28を吐出してドット30を形成する。制御部14Bは、粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理を繰り返すように、供給部18、平坦化部16、および吐出部26を制御する。制御部14Bは、停止信号を受付けたときに一連の処理を停止し、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域の少なくとも一部上に造形液28を吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御する。【選択図】図6

Description

本発明は、立体造形装置、立体造形方法、立体造形プログラム、および情報処理装置に関する。
インクジェット方式を用いた立体造形装置が知られている。例えば、粉体を供給し、粉体の表面を均して粉体層を形成し、粉体層に対して造形液を吐出してドットを形成する、といった一連の処理を繰り返し実行することで、立体造形物を造形する立体造形装置が知られている。
ここで、一連の処理中に動作停止した後に動作再開すると、一連の処理の停止前に粉体層上に吐出された造形液によるドットと、一連の処理の再開後に新たに形成された粉体層上に吐出された造形液によるドットと、が結合せずに不連続となる場合がある。この場合、造形された立体造形物における、動作再開前後に造形された領域は、他の領域に比べて強度が低下する場合があった。すなわち、従来では、立体造形物の強度低下が生じていた。
上述した課題を解決し、目的を達成するために、本発明は、粉体を供給する供給部と、供給された粉体の表面を第1の方向に均すことによって平坦化させ、粉体層を形成する平坦化部と、前記粉体層の表面における造形対象物に応じた位置に造形液を吐出してドットを形成する吐出部と、前記粉体の供給、前記粉体層の形成、および前記造形液の吐出、の一連の処理を繰り返すように、前記供給部、前記平坦化部、および前記吐出部を制御することによって、前記造形対象物に対応する立体造形物を造形する制御部と、動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける受付部と、を備え、前記制御部は、前記停止信号を受付けたときに前記一連の処理を停止し、前記停止信号を受付けた後に前記再開信号を受付けたときに、最表面に位置する前記粉体層の表面における、該粉体層に形成されたドットによるドット領域の少なくとも一部上に前記造形液を吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御する、立体造形装置である。
本発明によれば、立体造形物の強度低下を抑制することができる、という効果を奏する。
図1は、立体造形装置の一例を示す模式図である。 図2は、一連の処理の流れの一例を示す模式図である。 図3は、立体造形物の造形の流れの一例を示す模式図である。 図4は、粉体層間のドットが不連続となる現象の一例を示す模式図である。 図5は、立体造形装置の機能ブロック図である。 図6は、立体造形物の造形の流れの一例を示す模式図である。 図7は、ドットの状態の説明図である。 図8は、造形液の吐出領域の説明図である。 図9は、待機時間と吐出量との関係の一例を示す説明図である。 図10は、粉体層の状態の一例を示す模式図である。 図11は、造形処理の手順の一例を示すフローチャートである。 図12は、割込み処理の手順の一例を示すフローチャートである。 図13は、情報処理装置のハードウェア構成図である。
以下に添付図面を参照して、立体造形装置、立体造形方法、立体造形プログラム、および情報処理装置の実施の形態を詳細に説明する。
図1は、立体造形装置10の一例を示す模式図である。
立体造形装置10は、造形装置12と、情報処理装置14と、UI(ユーザインタフェース)部36と、を備える。造形装置12とUI部36は、情報処理装置14にデータや信号授受可能に接続されている。
UI部36は、ユーザによる各種操作指示を受付けると共に、各種情報を表示する。UI部36は、例えば、キーボード、タッチパネル付のディスプレイ等である。なお、UI部36は、ユーザからの操作指示を受付ける操作部と、各種情報を表示する表示部と、を別体とした構成であってもよい。
情報処理装置14は、造形装置12を制御する。造形装置12は、情報処理装置14の制御によって、立体造形物を造形する。造形装置12は、供給部18と、平坦化部16と、吐出部26と、造形部22と、メンテナンス部29と、を備える。
供給部18は、造形部22へ供給する粉体20を貯留する。本実施の形態では、供給部18と造形部22とは、第1の方向(図1中、矢印X方向参照、以下、第1の方向Xと称する場合がある)に連続して配列されている。なお、本実施の形態では、第1の方向Xは、水平面における1つの方向であるものとして説明する。また、本実施の形態では、第1の方向Xは、連続して配列された供給部18および造形部22の内、供給部18側を上流側とし、造形部22側を下流側とする方向であるものとして説明する。
供給部18は、供給槽18Aと、ステージ18Cと、支持部材18Bと、を含む。供給槽18Aは、内側に粉体20を貯留する。供給槽18Aは、反鉛直方向(図1中、矢印ZA方向)に開口している。本実施の形態では、供給槽18Aは、造形部22における造形槽22A(詳細後述)の開口と同じ形状および同じ面積の開口を有し、造形部22に対して第1の方向Xに連続して配置されている。
供給槽18Aには、供給槽18A内の粉体20の貯留量が予め定めた量以下となったときに、所定量の粉体20が供給槽18A内に貯留されるように、別途設けられた粉体供給機構から粉体20が供給される。
ステージ18Cは、供給槽18Aの内側の底部を構成する。ステージ18Cは、支持部材18Bによって支持されている。支持部材18Bは、水平方向に対して直交する方向(図1中、矢印Z方向参照)に移動可能となるように、ステージ18Cを支持する。
本実施の形態では、支持部材18Bは、情報処理装置14の制御によって、ステージ18Cを反鉛直方向(図1中、矢印ZA方向参照)に予め定めた所定量ずつ移動させる。これによって、供給槽18Aの開口側に、供給槽18A内に貯留された粉体20の一部が突出した状態となる。なお、供給槽18Aに粉体供給機構から粉体を供給する場合、支持部材18Bは、情報処理装置14の制御によって、ステージ18Cを鉛直方向(図1中、矢印ZB方向)へ移動させればよい。
造形部22には、立体造形物が造形される。造形部22は、造形槽22Aと、支持部材22Bと、ステージ22Cと、を備える。
造形槽22Aは、供給部18から供給された粉体20を貯留する。造形槽22A内に貯留された粉体20に造形液28が吐出されることで、造形槽22A内に立体造形物が造形される。造形槽22Aは、反鉛直方向(図1中、矢印ZA方向)に開口している。造形槽22Aの開口は、供給槽18Aの開口に対して第1の方向Xに連続して配置されている。
ステージ22Cは、造形槽22Aの内側の底部を構成する。ステージ22Cは、支持部材22Bによって支持されている。支持部材22Bは、水平方向に対して直交する方向(図1中、矢印Z方向参照)に移動可能となるように、ステージ22Cを支持する。
本実施の形態では、支持部材22Bは、情報処理装置14の制御によって、ステージ22Cを鉛直方向(図1中、矢印ZB方向参照)に予め定めた所定量ずつ移動させる。これによって、造形槽22Aの開口側に、供給部18から新たに供給される粉体20を保持するための空間が形成されることとなる。
平坦化部16は、供給槽18Aの開口における、供給部18と造形部22との配列方向である第1の方向Xに対して直交する方向(図1中、Y方向)に長い部材である。平坦化部16は、例えば、円柱状、板状である。
平坦化部16は、第1の方向Xの上流側および下流側に向かって往復移動可能に支持されている。平坦化部16は、情報処理装置14の制御によって、第1の方向Xの上流側および下流側に向かって往復移動する。
平坦化部16は、供給部18より第1の方向Xの上流側を初期位置とし、情報処理装置14の制御によって、第1の方向Xの下流側へ向かって第1の方向Xに移動する。これにより、供給槽18Aの開口から突出した粉体20は、造形部22側へと供給され、造形部22に供給される。
そして、さらに、平坦化部16は、情報処理装置14の制御によって、第1の方向Xの下流側へと移動する。これによって、平坦化部16は、造形部22に供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、層厚Jの粉体層24を造形槽22Aに形成する。
なお、平坦化部16は、供給部18より第1の方向Xの上流側から、造形部22より第1の方向Xの下流側へ移動することで、粉体層24を形成した後に、第1の方向Xの上流側へと移動し、上記基準位置に戻る。
なお、本実施の形態では、供給部18は、造形部22へ供給する粉体20を貯留し、平坦化部16が第1の方向Xへ移動することで、供給部18に貯留された粉体20を造形部22へ供給すると共に、粉体層24を形成する場合を説明する。しかし、供給部18が造形部22へ粉体20を供給し、造形部22へ供給された粉体20の表面を平坦化部16が均すことで粉体層24を形成する構成であってもよい。
吐出部26は、粉体層24の表面における、造形対象物に応じた位置に造形液28を吐出してドット30を形成する。
吐出部26は、公知のインクジェット方式を用いた機構を備える。吐出部26は、第1の方向Xと、水平方向に直交する方向(図1中、矢印Z方向)と、第1の方向および矢印Z方向に直交する方向(図1中、矢印Y方向)と、の各々に移動可能に支持されている。
吐出部26は、制御部14Bの制御によって、粉体層24の表面における、造形対象物に応じた位置に造形液28を吐出することで、ドット30を形成する。具体的には、吐出部26は、複数のノズルの各々から造形液28の液滴を吐出することで、ドット30を形成する。
メンテナンス部29は、吐出部26の維持回復を行う機構である。メンテナンス部29は、吐出部26における造形液28の吐出不良を回復させる機構を有する。メンテナンス部29は、インクジェットヘッドに用いられる公知のメンテナンス機構であればよい。例えば、メンテナンス部29は、吐出部26のノズルから造形液28を吸引する機構や、吐出部26のノズル面をワイピング(払拭)する機構などを備えた構成であればよい。
情報処理装置14は、粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理をこの順に繰り返すように、供給部18、平坦化部16、および吐出部26を制御することによって、造形対象物に対応する立体造形物を造形する。
ここで、粉体20は、粒子状の基材の表面を被覆層で覆った構成である(詳細後述)。造形液28は、この被覆層を溶解させた後に固化させる機能を有する液体である(詳細後述)。
このため、粉体層24における、造形液28が吐出されてドット30の形成された領域内の粉体20は、粉体20の被覆層の少なくとも一部が溶解して互いに結合する。そして、粉体層24の形成と造形液28の吐出によるドット30の形成が繰り返されることで、各粉体層24に形成されたドット30によるドット領域が連続して固化し、立体造形物として造形されることとなる。
図2は、上記一連の粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理の流れの一例を示す模式図である。以下の一連の処理は、情報処理装置14による制御によって行われる。
供給部18および平坦化部16によって粉体20が造形部22へ供給され、平坦化部16によって第1の方向Xに平坦化されることで、例えば、1層目の粉体層24(粉体層24)が形成される(図2(A)参照)。
すると、吐出部26が、粉体層24の表面における、造形対象物に応じた位置に造形液28を吐出する(図2(A)参照)。これにより、粉体層24上には、造形液28によるドット30が形成される(図2(B)参照)。
次に、情報処理装置14の制御によって、支持部材22Bが、ステージ22Cを鉛直方向(矢印ZB方向)に所定量移動させる(図2(C)参照)。これにより、造形槽22Aの開口側に、供給部18から新たに供給される粉体20を保持するための空間が形成されることとなる。なお、この所定量は、形成される粉体層24の層厚J以上の量であればよい。
粉体層24の層厚Jは、例えば、吐出部26から吐出された1滴の造形液28が、1層の粉体層24の厚み方向の一端部から他端部まで浸透する厚みであればよい。層厚Jは、粉体20の種類や造形液28の種類や吐出部26の吐出特性などによって異なる。層厚Jは、例えば、数十〜100μmである。
次に、情報処理装置14の制御によって、支持部材18Bがステージ18Cを反鉛直方向(矢印ZA方向)に予め定めた所定量移動させる。この所定量は、層厚Jの粉体層24を造形部22に形成するために必要な量の粉体20を、供給槽18Aの開口側に突出させることの可能な量であればよい。これによって、供給槽18Aの開口側には、供給槽18A内に貯留された粉体20の一部が突出した状態となる(図2(C)参照)。
そして、平坦化部16が、情報処理装置14の制御によって、供給部18より第1の方向Xの上流側の初期位置から第1の方向Xの下流側へ向かって第1の方向Xに移動する。これにより、供給槽18Aの開口から突出した粉体20は、造形部22側へと供給され、造形部22に供給される(図2(C)、図2(D)参照)。
そして、さらに、平坦化部16が、第1の方向Xの下流側へと移動する。これによって、平坦化部16は、造形部22に供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、層厚Jの粉体層24を形成する(図2(D)参照)。これにより、前回の一連の処理によってドット30の形成された粉体層24上に、今回の一連の処理によって粉体層24が積層される。
そして、情報処理装置14は、図2(A)〜図2(D)に示す一連の処理を繰り返すように、造形装置12を制御する。なお、情報処理装置14は、前回の一連の処理(図2(C)、図2(D)、図2(A)、図2(B)の一連の処理)によって粉体層24に形成されたドット30の表面が乾燥する前に、次の一連の処理によって新たな粉体層24の形成および該粉体層24への造形液28の吐出が行われるように、一連の処理の繰り返しのタイミングを制御する。
情報処理装置14が上記一連の処理を繰り返すように造形装置12を制御することで、造形部22にはドット30の形成された粉体層24が積層され、粉体層24におけるドット30の形成された領域が結合し、立体造形物31として形成されることとなる。
次に、立体造形物の造形の流れを、更に詳細に説明する。図3は、立体造形物の造形の流れの一例を示す模式図である。
平坦化部16によって形成された粉体層24に造形液28が吐出されると、粉体層24にはドット30(ドット30)が形成される(図3(A)参照)。そして、ドット30の形成された粉体層24上に更に粉体層24が形成され(図3(B)参照)、粉体層24に造形液28が吐出されてドット30が形成される(図3(C)参照)。
さらに、ドット30の形成された粉体層24上に粉体層24が形成され、粉体層24に造形液28が吐出されてドット30が形成される(図3(D)参照)。
各粉体層24(粉体層24〜粉体層24)の各々に吐出された造形液28によるドット30(ドット30〜ドット30)に含まれる粉体20は、粉体20の被覆層の少なくとも一部が溶解して互いに結合する。このため、粉体層24に形成されたドット30の表面が乾燥する前に、次の粉体層24の形成および該粉体層24へのドット30の形成が行われることで、各粉体層24に形成されたドット30によるドット領域は連続して固化した領域となる。この連続して固化した領域(図3では、ドット30〜ドット30による領域)が、立体造形物31となる。
なお、図3(A)〜図3(D)には、1つのドット30を粉体層24の厚み方向に重ねて形成する場合を一例として示した。しかし、造形対象物に応じて、粉体層24の水平方向(第1の方向XおよびY方向による平面)に沿って複数のドット30を形成してもよい(図3(E)参照)。
ここで、粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理が繰り返されているときに、情報処理装置14が、動作停止を示す停止信号を受付ける場合がある。
動作停止の原因は、様々である。動作停止の原因は、例えば、メンテナンス部29による吐出部26のメンテナンスや、ユーザによるUI部36の操作指示などによって緊急停止が指示されたとき、などである。
情報処理装置14は、停止信号を受付けると一連の処理を停止する。そして、停止信号によって示される動作停止の原因が解消されると、情報処理装置14は、一連の処理を再開する。
このとき、一連の処理の停止前に粉体層24に吐出された造形液28によるドット30と、一連の処理の再開後に新たに形成された粉体層24上に吐出された造形液28によるドット30と、が結合せずに不連続となる場合がある。
図4は、粉体層24間のドット30が不連続となる現象の一例を示す模式図である。
例えば、平坦化部16によって形成された粉体層24に造形液28が吐出されると、粉体層24にはドット30(ドット30)が形成される(図4(A)参照)。この粉体層24上に更に粉体層24が形成され(図4(B)参照)、粉体層24に造形液28が吐出されてドット30が形成される(図4(C)参照)。
この段階で、情報処理装置14が、一連の処理を停止するように制御したとする。すると、動作停止前に粉体層24に形成されたドット30の表面が、動作再開後に形成される粉体層24のドット30と不連続となる程度に、粉体層24へ浸透または乾いた状態となる場合がある(図4(D)参照)。
この状態で、情報処理装置14が一連の処理を再開するように制御し、粉体層24上に粉体層24を形成し、粉体層24にドット30を形成するように制御したと仮定する。すると、動作停止前に粉体層24に形成されたドット30と、動作再開後に粉体層24に形成されたドット30と、が結合せず、これらのドット30(ドット30およびドット30)の間に隙間Pが生じ、これらのドット30が不連続となる場合がある(図4(E)参照)。
このように、一連の処理の停止前に粉体層24上に吐出された造形液28によるドット30と、一連の処理の再開後に新たに形成された粉体層24上に吐出された造形液28によるドット30と、が結合せずに不連続となる場合がある。このため、従来では、立体造形物31の造形のための一連の処理中に動作停止すると、造形された立体造形物31の強度の低下が発生していた。
そこで、本実施の形態の立体造形装置10では、情報処理装置14が特有の制御を行う。
図5は、本実施の形態の立体造形装置10の機能ブロック図である。立体造形装置10は、UI部36と、記憶部38と、情報処理装置14と、造形装置12と、を備える。UI部36、記憶部38、および造形装置12は、情報処理装置14にデータや信号授受可能に接続されている。記憶部38は、各種データを記憶する。
情報処理装置14は、CPU(Central Processing Unit)などを含んで構成されるコンピュータであり、立体造形装置10全体を制御する。なお、情報処理装置14は、汎用のCPU以外で構成してもよい。例えば、情報処理装置14は、回路などで構成してもよい。
情報処理装置14は、受付部14Aと、制御部14Bと、を含む。受付部14Aおよび制御部14Bの一部またはすべては、例えば、CPUなどの処理装置にプログラムを実行させること、すなわち、ソフトウェアにより実現してもよいし、IC(Integrated Circuit)などのハードウェアにより実現してもよいし、ソフトウェアおよびハードウェアを併用して実現してもよい。
受付部14Aは、動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける。
例えば、情報処理装置14は、所定時間ごとに、メンテナンス部29による吐出部26のメンテナンスを実行するように、吐出部26およびメンテナンス部29を制御する。この所定時間は、吐出部26の機構、造形液28の種類、立体造形装置10の設置環境などに応じて、適宜定めればよい。また、この所定時間は、ユーザによるUI部36の操作指示によって変更可能としてもよい。
そして、情報処理装置14の制御によってメンテナンス部29が吐出部26のメンテナンスを開始するときに、メンテナンス部29が情報処理装置14へ動作停止を示す停止信号を送信すればよい。この場合、受付部14Aは、メンテナンス部29から停止信号を受付ける。
また、メンテナンス部29は、吐出部26のメンテナンスが終了したときに、動作再開を示す再開信号を情報処理装置14へ送信する。この場合、受付部14Aは、メンテナンス部29から動作再開信号を受付ける。
また、受付部14Aは、UI部36から停止信号を受付けてもよい。ユーザは、UI部36における、一連の処理の停止を指示するための予め定めたボタンなどを操作する。すると、UI部36は、停止信号を情報処理装置14へ送信する。この場合、情報処理装置14の受付部14Aでは、UI部36から停止信号を受付ける。
また、受付部14Aは、UI部36から動作再開を示す再開信号を受付ける。ユーザは、UI部36における、動作再開を指示するための予め定めたボタンなどを操作する。すると、UI部36は、再開信号を情報処理装置14へ送信する。この場合、情報処理装置14の受付部14Aでは、UI部36から再開信号を受付ける。
本実施の形態では、受付部14Aは、メンテナンス部29またはUI部36から、停止信号や再開信号を受付けるものとして説明する。
制御部14Bは、粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理を繰り返すように、供給部18、平坦化部16、および吐出部26を制御する。制御部14Bの制御によって、造形対象物に対応する立体造形物31が造形される。
詳細には、制御部14Bは、造形対象物を示す画像データから、造形装置12で立体造形物31を造形可能な印刷データを生成する。印刷データの生成には、公知の方法を用いればよい。制御部14Bは、外部装置などから通信回線を介して画像データを取得してもよいし、記憶部38から画像データを取得してもよい。そして、制御部14Bは、取得した画像データを用いて印刷データを生成すればよい。
制御部14Bは、印刷データを用いて、印刷データに応じて上記一連の処理を繰り返すように造形装置12を制御することで、造形対象物に対応する立体造形物31を造形するように造形装置12を制御する。
本実施の形態では、制御部14Bは、受付部14Aが停止信号を受付けたときに、一連の処理を停止する。また、制御部14Bは、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域の少なくとも一部上に造形液28を吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御する。
図6は、本実施の形態の立体造形装置10における、一連の処理を停止した後に再開したときの、立体造形物の造形の流れの一例を示す模式図である。
供給部18および平坦化部16によって粉体20が造形部22へ供給され、平坦化部16によって第1の方向Xに平坦化されることで、例えば、1層目の粉体層24(粉体層24)が形成されたとする(図6(A)参照)。
すると、吐出部26が、粉体層24の表面における、造形対象物に応じた位置に造形液28を吐出する(図6(A)参照)。これにより、粉体層24上には、造形液28によるドット30が形成される(図6(B)参照)。
ここで、受付部14Aが停止信号を受付けたとする。
すると、制御部14Bは、一連の処理を停止する。このため、造形部22には、粉体層24にドット30が形成された状態で、造形が一時停止される(図6(B)参照)。
そして、受付部14Aが再開信号を受付ける。すると、制御部14Bは、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域の少なくとも一部上に、造形液28を吐出するように吐出部26を制御する(図6(C)参照)。
すなわち、制御部14Bは、一連の処理を停止した後に再開信号を受付けると、次の粉体層24の形成を行う前に、既に形成されている最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域の少なくとも一部上に、造形液28を吐出する。これにより、ドット30上に、新たな造形液28の吐出によるドット32を形成する(図6(D)参照)。
このため、一連の処理の停止前に形成された、最表面に位置する粉体層24の表面には、造形対象物の印刷データに応じたドット30上に、該印刷データには示されないドット32が重ねて形成されることとなる(図6(D)参照)。
そして、制御部14Bは、造形液28の吐出によるドット32を形成した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御する。
すなわち、制御部14Bの制御によって、支持部材22Bが、ステージ22Cを鉛直方向(矢印ZB方向)に所定量(例えば、層厚Jに相当する量)移動させる(図6(E)参照)。これによって、造形槽22Aの開口側に、供給部18から新たに供給される粉体20を保持するための空間が形成される。また、制御部14Bの制御によって、支持部材18Bがステージ18Cを反鉛直方向(矢印ZA方向)に予め定めた所定量(例えば、層厚Jに相当する量)移動させる。これによって、供給槽18Aの開口側には、供給槽18A内に貯留された粉体20の一部が突出した状態となる(図6(E)参照)。
そして、平坦化部16が、制御部14Bの制御によって、供給部18より第1の方向Xの上流側の初期位置から第1の方向Xの下流側へ向かって第1の方向Xに移動する。これにより、供給槽18Aの開口から突出した粉体20が、造形部22に供給される(図6(E)、図6(F)参照)。
そして、さらに、平坦化部16が、第1の方向Xの下流側へと移動する。これによって、平坦化部16は、造形部22に供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、層厚Jの粉体層24を形成する(図6(F)参照)。そして、図6(A)と同様にして、粉体層24に造形液28が吐出され、一連の処理が繰り返される。
図7は、本実施の形態の立体造形装置10における、一連の処理を停止した後に再開したときの、ドット30およびドット32の状態の説明図である。
形成された粉体層24に造形液28が吐出されると、粉体層24にはドット30(ドット30)が形成される(図7(A)参照)。この粉体層24上に更に粉体層24が形成され(図7(B)参照)、粉体層24に造形液28が吐出されてドット30が形成される(図7(C)参照)。
この段階で、制御部14Bが、一連の処理を停止するように制御したとする。すると、動作停止中に、粉体層24に形成されたドット30が、次に形成される粉体層24に吐出される造形液28によるドット30と不連続となる程度に、粉体層24へ浸透または乾いた状態となる場合がある(図7(D)参照)。
上述したように、本実施の形態では、制御部14Bは、動作再開時には、一連の処理の再開前に、粉体層24のドット30上に更に造形液28を吐出し、ドット32を形成する(図7(E)参照)。
このとき、ドット32形成のために吐出する造形液28の吐出量は、0より大きく且つ粉体層24の層厚J以下の厚みTの造形液28による液滴(ドット32)が、動作再開時に粉体層24(動作停止前の最表面の粉体層24)の表面上に存在する量であればよい。
なお、ドット32形成のために吐出する造形液28の吐出量は、上記厚みTの造形液28による液滴(ドット32)が、動作再開直後の一連の処理において形成される新たな粉体層24に造形液28が吐出される時に、粉体層24(動作停止前の最表面の粉体層24)の表面上に存在する量であることが好ましい。
そして、制御部14Bは、一連の処理を再開するように制御する。このため、ドット32上に、新たな粉体層24およびドット30が形成されることとなる(図7(F)参照)。
このため、一連の処理の停止前に粉体層24に吐出された造形液28によるドット30(図7ではドット30)と、一連の処理の再開後に新たに形成された粉体層24に吐出された造形液28によるドット30(図7ではドット30)と、が、一連の処理の停止後で且つ一連の処理の再開前に吐出された造形液28によるドット32を介して結合し、連続した状態となる。
このため、本実施の形態の造形装置12では、造形中に一連の処理が停止した場合であっても、造形される立体造形物31の強度低下を抑制することができる。
なお、停止信号を受付けた後に再開信号を受付けたときに吐出する、造形液28の吐出領域は、既に形成されている最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域の少なくとも一部上であればよい。
図8は、停止信号を受付けた後に再開信号を受付けたときに吐出する、造形液28の吐出領域の説明図である。
例えば、制御部14Bが停止信号を受付けたときに、既に形成されている最表面に位置する粉体層24nには、ドット30nによるドット領域Qが形成されていたとする(図8(A)参照)。
この場合、一連の処理を停止した後に再開信号を受付けたときに、制御部14Bは、例えば、最表面に位置する粉体層24nの表面における、該粉体層24nに形成されたドット30nによるドット領域Qの一部の領域QA上に、造形液28を吐出すればよい(図8(B)参照)。
なお、制御部14Bは、一連の処理を停止した後に再開信号を受付けたときに、最表面に位置する粉体層24nの表面における、該粉体層24nに形成されたドット30nによるドット領域Qの外周より内側の領域QB上に、造形液28を吐出することが好ましい(図8(C)参照)。
例えば、最表面に位置する粉体層24nの表面における、該粉体層24nに形成されたドット30nによるドット領域Qが、水平面(XY平面)に沿って複数のドット30nにより形成された領域であるとする。この場合、制御部14Bは、ドット領域Qの外周に沿って一列に配列されたドット30nより内側のドット30n上に、造形液28を吐出することが好ましい。
なお、制御部14Bは、一連の処理を停止した後に再開信号を受付けたときに、最表面に位置する粉体層24nの表面における、該粉体層24nに形成されたドット30nによるドット領域Q上(すなわち、ドット領域Qに一致する領域)に、造形液28を吐出してもよい。
なお、制御部14Bは、一連の処理を停止した後に再開信号を受付けたときに、最表面に位置する粉体層24nの表面に吐出する造形液28の吐出量は、上述したように、0より大きく且つ層厚J以下の厚みTの造形液28による液滴(ドット32)が、動作再開時に該表面上に存在する量であればよい。
更に、制御部14Bは、このような厚みTを満たすように、停止信号を受付けてから該再開信号を受付けるまでの待機時間に応じて、造形液28の吐出量を調整することが好ましい。
例えば、制御部14Bは、待機時間と、停止信号を受付けた後に最表面の粉体層24nへ吐出する造形液28の吐出量と、の関係を予め記憶部38に記憶する。この吐出量は、停止信号を受付けた後に最表面の粉体層24nへ吐出する造形液28の、ノズルから吐出する1回の吐出あたりの吐出量である。
造形装置12は、停止信号を受付けてから再開信号を受付けるまでの待機時間と、上記厚みTを実現するための造形液28の吐出量と、を予め立体造形装置10を用いて測定する。そして、造形装置12の制御部14Bは、この待機時間と、吐出量と、を対応づけて予め記憶部38に記憶すればよい。
図9は、待機時間と吐出量の関係の一例の説明図である。図9(A)は、待機時間と吐出量との関係の一例を示す線図60である。なお、図9(A)中、t1、t2、t3は、待機時間tを示す。また、t1、t2、t3は0<t1<t2<t3の関係にある。
例えば、待機時間が有る一定の時間となるまでは、上記厚みTを実現するために必要な造形液28の吐出量は増加する。しかし、ある時間を超えると、上記厚みTを実現するための吐出量は少ない吐出量でよい。
詳細には、図9(A)中、待機時間tが0以上t1未満の期間、制御部14Bは、粉体層24の表面上に造形液28の液滴(ドット32)がまだ存在していると判断する。このため、この期間(0≦t<t1)には、制御部14Bは、供給部18および平坦化部16を制御し、造形液28の吐出を行わずに、粉体層24上に粉体20を供給させる。
そして、待機時間tがt1以上t2未満の期間、制御部14Bは、粉体層24の表面上に造形液28の液滴(ドット32)が存在していないと判断する。詳細には、制御部14Bは、厚みTの造形液28による液滴(ドット32)が、動作停止前の最表面の粉体層24の表面上に存在していないと判断する。
ここで、粉体層24の表面(粉面)は乾燥していく。このため、制御部14Bは、次の粉体層24の形成前に、造形液28の吐出を行うように、吐出部26を制御する。また、この待機時間tが長いと、乾燥する領域(粉体層24の厚み方向の領域)が増える。粉体層24における、この乾燥した領域に対して、厚みTの造形液28による液滴(ドット32)を存在させるためには、造形液28の吐出量を増やす必要がある。このため、制御部14Bは、待機時間t1から待機時間t2に向かって、待機時間tが長くなるほど、造形液28の吐出量を増やすように、吐出部26を制御する。
しかし、待機時間tが待機時間t2を超えると、粉体20と造形液28とが反応し、固化し始める。図9(B)は、粉体20と造形液28が反応し、固化し始めた状態の説明図である。図9(B)に示すように、粉体20間(粉体20Aと粉体20Bとの間)で、造形液28が液架橋している。この液架橋した状態で固化すると、粉体20の表面が壁のようになる。すなわち、粉体層24の表面付近では、液架橋の壁ができる。
このように、粉体層24の表面付近で液架橋の壁ができるため、粉体層24上に多くの造形液28が吐出されても、造形液28は粉体層24に浸透しなくなる。言い換えると、待機時間t2を超えると、液架橋の壁が出来る領域が次第に増えていく。このため、粉体層24の表面上に、厚みTの造形液28による液滴(ドット32)を存在させるために必要な吐出量は、待機時間t2から待機時間t3に向かって減っていく。よって、制御部14Bは、待機時間t2以上待機時間t3未満の期間では、造形液28の吐出量を減らすように、吐出部26を制御する。
そして、待機時間tが待機時間t3以上となると、粉体20と造形液28との反応が完了する。このため、図9(A)に示すように、粉体層24の表面上に、厚みTの造形液28の液滴(ドット32)を存在させるために必要な吐出量は、略一定となる。よって、制御部14Bは、待機時間t3以上の期間では、造形液28の吐出量を略一定とするように、吐出部26を制御する。
なお、待機時間t1、t2、t3は、予め測定しておけばよい。また、造形装置12の制御部14Bは、図9(A)の線図60によって表される、待機時間と、吐出量と、を対応づけて、予め記憶部38に記憶すればよい。そして、制御部14Bは、待機時間に対応する吐出量を記憶部38から読取り、一連の処理を停止した後に再開信号を受付けたときに最表面に位置する粉体層24の表面に吐出する造形液28の吐出量として用いればよい。
また、制御部14Bは、一連の処理を停止した後に再開信号を受付けたときに、最表面に位置する粉体層24の表面に吐出する造形液28を、複数回に分けて吐出するように、吐出部26を制御することが好ましい。
図10は、造形液28が吐出されたときの粉体層24の状態の一例を示す模式図である。粉体層24の表面では、吐出部26が吐出した造形液28が粉体層24の表面に到達することで、粉体層24の粉体20が舞い上がる場合がある。これは、吐出される吐出部26の1回あたりの吐出量が多いほど、舞い上がる粉体20の量は多くなる。
具体的には、大滴の造形液28が粉体層24に吐出されたときに舞い上がる粉体20の量は(図10(A)参照)、小滴の造形液28が粉体層24に吐出されたときに舞い上がる粉体20の量(図10(B)参照)より多い。
このため、制御部14Bは、一連の処理を停止した後に再開信号を受付けたときに、最表面に位置する粉体層24の表面に吐出する造形液28を、複数回に分けて吐出するように、吐出部26を制御することが好ましい。
次に、本実施の形態の情報処理装置14で実行する造形処理の手順を説明する。図11は、造形処理の手順の一例を示すフローチャートである。
まず、制御部14Bが、造形対象物を示す画像データから、造形装置12で立体造形物を造形可能な印刷データを生成する(ステップS102)。そして、制御部14Bは、印刷データを用いて造形装置12を制御することで、造形対象物に対応する立体造形物31を造形するように、造形装置12を制御する。
詳細には、制御部14Bは、粉体20の供給を行うように、供給部18を制御する(ステップS104)。本実施の形態では、制御部14Bは、平坦化部16の駆動、供給部18の支持部材18Bの駆動、および支持部材22Bの駆動を制御することで、粉体20の供給を行うように制御する。ステップS104の処理によって、造形部22に粉体20が供給される。
次に、制御部14Bは、粉体層24を形成するように平坦化部16を制御する(ステップS106)。本実施の形態では、制御部14Bは、平坦化部16を制御することによって、造形部22に供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、層厚Jの粉体層24を形成するように制御する。ステップS106の処理によって、粉体層24が形成される。
次に、制御部14Bは、造形液28を吐出するように吐出部26を制御する(ステップS108)。本実施の形態では、制御部14Bは、ステップS102で生成された印刷データに応じて、粉体層24の表面における造形対象物に応じた位置に造形液28を吐出してドット30を形成するように、吐出部26を制御する。ステップS108の処理によって、粉体層24に造形液28が吐出され、ドット30が形成される。
次に、制御部14Bは、ステップS104〜ステップS108の一連の処理を終了するか否かを判断する(ステップS110)。制御部14Bは、ステップS102で生成した印刷データに応じた立体造形物の形成に必要な回数、一連の処理を繰り返したか否かを判別することで、ステップS110の判断を行う。
ステップS110で否定判断すると(ステップS110:No)、上記ステップS104へ戻る。一方、ステップS110で肯定判断すると(ステップS110:Yes)、本ルーチンを終了する。
本実施の形態の情報処理装置14では、図11に示す処理の実行中に、図12に示す割込処理を実行する。図12は、割込処理の手順の一例を示すフローチャートである。
まず、受付部14Aが、動作停止を示す停止信号を受付けたか否かを判断する(ステップS200)。ステップS200で否定判断すると(ステップS200:No)、本ルーチンを終了する。
一方、ステップS200で肯定判断すると(ステップS200:Yes)、ステップS202へ進む。ステップS202では、制御部14Bは、現在処理中の一連の処理における、吐出部26による造形液28の吐出制御まで終了するように、造形装置12を制御する(ステップS202)。
次に、制御部14Bが、待機時間のタイマをスタートする(ステップS204)。なお、待機時間は、上述したように、停止信号を受付けてから再開信号を受付けるまでの待機時間である。本ルーチンでは、一例として、待機時間は、停止信号を受付けた後に、現在処理中の一連の処理を終了したときから、再開信号を受付けるまでの時間であるものとして説明する。
次に、制御部14Bは、一連の処理を停止するように、造形装置12を制御する(ステップS206)。
次に、制御部14Bは、ステップS200で受付けた停止信号が、メンテナンスによる停止信号であるか否かを判断する(ステップS208)。ステップS208では、制御部14Bは、メンテナンス部29から停止信号を受付けたか否かを判別することで、ステップS208の判断を行う。
ステップS208で肯定判断すると(ステップS208:Yes)、ステップS210へ進む。そして、制御部14Bは、吐出部26のメンテナンスを開始するように、メンテナンス部29を制御する(ステップS210)。ステップS210の処理によって、メンテナンス部29による吐出部26のメンテナンスが開始される。そして、ステップS212へ進む。
一方、ステップS208で否定判断すると(ステップS208:No)、ステップS212へ進む。
ステップS212では、受付部14Aが、再開信号を受付けたと判断するまで(ステップS212:Yes)、否定判断(ステップS212:No)を繰り返す。ステップS212で肯定判断すると(ステップS212:Yes)、ステップS214へ進む。
ステップS214では、制御部14Bは、ステップS204でスタートしたタイマをストップする(ステップS214)。次に、制御部14Bは、ステップS204でタイマをスタートしてからステップS214でタイマをストップするまでの経過時間を算出することによって、待機時間を算出する(ステップS216)。
次に、制御部14Bは、ステップS216で算出した待機時間に対応する吐出量を記憶部38から読取る(ステップS218)。そして、制御部14Bは、既に形成されている最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域の少なくとも一部上に、ステップS218で読取った吐出量の造形液28を吐出する(ステップS220)。
そして、制御部14Bは、一連の処理を再開するように、造形装置12を制御する(ステップS222)。ステップS222の処理は、図11におけるステップS104〜ステップS110の処理である。そして、本ルーチンを終了する。
以上説明したように、本実施の形態の立体造形装置10は、供給部18と、平坦化部16と、吐出部26と、制御部14Bと、受付部14Aと、を備える。供給部18は、粉体20を供給する。平坦化部16は、供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、粉体層24を形成する。吐出部26は、粉体層24の表面における造形対象物に応じた位置に造形液28を吐出してドット30を形成する。
制御部14Bは、粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理を繰り返すように、供給部18、平坦化部16、および吐出部26を制御することによって、造形対象物に対応する立体造形物31を造形する。受付部14Aは、動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける。
制御部14Bは、停止信号を受付けたときに一連の処理を停止し、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域Qの少なくとも一部上に造形液28を吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御する。
このように、本実施の形態の立体造形装置10では、再開信号の受付けによって一連の処理を再開する前に、既に形成されている最表面の粉体層24に形成されたドット30によるドット領域Qの少なくとも一部上に、造形液28を吐出した後に、一連の処理を再開する。
このため、一連の処理の停止前に粉体層24に形成されたドット30と、一連の処理の再開後に新たに形成された粉体層24上に吐出された造形液28によるドット30と、が、一連の処理の停止後で且つ一連の処理の再開前に吐出された造形液28によるドット32を介して結合し、連続した状態となる(図7参照)。
このため、本実施の形態の造形装置12では、立体造形物31の造形中に一連の動作が停止した後に再開した場合であっても、造形される立体造形物31の強度低下を抑制することができる。
従って、本実施の形態の造形装置12は、立体造形物31の強度低下を抑制することができる。
また、制御部14Bは、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域Qの少なくとも一部上に、造形液28を複数回吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御することが好ましい。
また、制御部14Bは、停止信号を受付けた後に再開信号を受付けたときに、0より大きく且つ層厚J以下の厚みの造形液28による液滴が動作再開時に該表面上に存在する吐出量の造形液28を、該粉体層24に形成されたドット30によるドット領域Qの少なくとも一部上に吐出した後に一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御することが好ましい。
また、制御部14Bは、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域Qの少なくとも一部上に、該停止信号を受付けてから該再開信号を受付けるまでの待機時間に応じた吐出量の造形液28を吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御することが好ましい。
また、制御部14Bは、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域Qの外周より内側の領域上に、造形液28を吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御することが好ましい。
また、本実施の形態の立体造形方法は、粉体20を供給する供給部18と、供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、粉体層24を形成する平坦化部16と、粉体層24の表面における造形対象物に応じた位置に造形液28を吐出してドット30を形成する吐出部26と、を備えた立体造形装置10で実行する立体造形方法である。本実施の形態の立体造形方法は、粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理を繰り返すように、供給部18、平坦化部16、および吐出部26を制御することによって、造形対象物に対応する立体造形物31を造形する制御ステップと、動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける受付ステップと、を含む。制御ステップは、停止信号を受付けたときに一連の処理を停止するステップと、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域Qの少なくとも一部上に造形液28を吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御するステップと、を含む。
また、本実施の形態の立体造形プログラムは、粉体20を供給する供給部18と、供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、粉体層24を形成する平坦化部16と、粉体層24の表面における造形対象物に応じた位置に造形液28を吐出してドット30を形成する吐出部26と、を備えた造形装置12を制御するコンピュータに実行させる立体造形プログラムである。本実施の形態の立体造形プログラムは、粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理を繰り返すように、供給部18、平坦化部16、および吐出部26を制御することによって、造形対象物に対応する立体造形物31を造形する制御ステップと、動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける受付ステップと、を含む。制御ステップは、停止信号を受付けたときに一連の処理を停止するステップと、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域Qの少なくとも一部上に造形液28を吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御するステップと、を含む。
また、本実施の形態の情報処理装置14は、粉体20を供給する供給部18と、供給された粉体20の表面を第1の方向Xに均すことによって平坦化させ、粉体層24を形成する平坦化部16と、粉体層24の表面における造形対象物に応じた位置に造形液28を吐出してドット30を形成する吐出部26と、を備えた造形装置12を制御する情報処理装置14である。情報処理装置14は、受付部14Aと、制御部14Bと、を備える。
制御部14Bは、粉体20の供給、粉体層24の形成、および造形液28の吐出、の一連の処理を繰り返すように、供給部18、平坦化部16、および吐出部26を制御することによって、造形対象物に対応する立体造形物31を造形する。受付部14Aは、動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける。
制御部14Bは、停止信号を受付けたときに一連の処理を停止し、停止信号を受付けた後に再開信号を受付けたときに、最表面に位置する粉体層24の表面における、該粉体層24に形成されたドット30によるドット領域Qの少なくとも一部上に造形液28を吐出した後に、一連の処理を再開するように、供給部18、平坦化部16、および吐出部26を制御する。
次に、本実施の形態で用いる粉体20および造形液28について、具体的に説明する。
<粉体>
粉体20は、粒子状の基材の表面を被覆層で覆った構成である。なお、粉体20は、更に他の成分などを含んだ構成であってもよい。
―基材―
まず、基材について説明する。基材は、粉末状または粒子状である。基材の材質は、例えば、金属、セラミックス、カーボン、ポリマー、木材、生体親和材料、砂などである。より強度の高い立体造形物31を製造する観点からは、基材には、焼結処理の可能な金属や、セラミックスを用いることが好ましい。
金属は、例えば、ステンレス(SUS)鋼、鉄、銅、チタン、銀などである。ステンレス(SUS)鋼は、例えば、SUS316Lなどである。セラミックスは、例えば、金属酸化物などである。具体的には、セラミックスは、シリカ(SiO)、アルミナ(Al)、ジルコニア(ZrO)、チタニア(TiO)などである。カーボンは、例えば、グラファイト、グラフェン、カーボンナノチューブ、カーボンナノホーン、フラーレンなどである。
ポリマーは、例えば、水に不溶な公知の樹脂などである。木材は、例えば、ウッドチップ、セルロースなどである。生体親和材料は、例えば、ポリ乳酸、リン酸カルシウムなどである。
基材は、上記材料の内の1種から構成してもよいし、上記材料の複数種を混合した構成であってもよい。
また、基材には、上記材料で構成された市販品の粒子や粉末を使用してもよい。例えば、市販品としては、SUS316L(山陽特殊製鋼株式会社製、PSS316L)、SiO(株式会社トクヤマ製、エクセリカSE−15K)、AlO(大明化学工業株式会社製、タイミクロンTM−5D)、ZrO(東ソー株式会社製、TZ−B53)などが挙げられる。
基材の表面には、基材の表面を覆う後述する被覆層との親和性を高める観点などから、公知の表面(改質)処理を施してもよい。
基材の平均粒子径は、目的に応じて適宜選択することができ、特に制限されない。基材の平均粒子径は、例えば、0.1μm以上500μm以下が好ましく、5μm以上300μm以下がより好ましく、15μm以上250μm以下が更に好ましい。
基材の平均粒子径が、0.1μm以上500μm以下であると、立体造形物31の製造効率に優れ、取扱性やハンドリング性が良好である。基材の平均粒子径が、500μm以下であると、粉体20を用いて粉体層24を形成したときに、粉体層24における粉体20の充填率が向上し、得られる立体造形物31に空隙等が生じ難い。
基材の平均粒子径は、公知の粒径測定装置、例えば、マイクロトラックHRA(日機装株式会社製)などを用いて、公知の方法に従って測定することができる。
基材の粒度分布は、目的に応じて適宜選択することができ、特に制限されない。基材の外形、表面積、円形度、流動性、濡れ性等についても、目的に応じて適宜選択することができ、特に制限されない。
―被覆層―
次に、基材の表面を覆う被覆層について説明する。被覆層は、造形液28によって溶解された後に固化する機能を有する層であればよく、造形液28の種類によって調整すればよい。
例えば、被覆層は、有機材料で構成することが好ましい。
有機材料としては、造形液28に溶解し、造形液28に含まれる架橋剤などの作用により架橋可能な性質を有するものであることが好ましい。
造形液28に溶解する、とは、例えば、30℃の造形液28の溶媒100gに有機材料を1g混合して撹拌したときに、有機材料の90質量%以上が溶解することを意味する。
また、被覆層に用いる有機材料は、有機材料の4質量%(w/w%)溶液の20℃における粘度が40mPa・s以下であることが好ましく、1mPa・s以上35mPa・s以下がより好ましく、5mPa・s以上30mPa・s以下が特に好ましい。
被覆層に用いる有機材料の上記粘度が40mPa・s以下であると、粉体20に吐出した造形液28によるドット30から形成される立体造形物31の強度や寸法精度が向上する。なお、粘度は、例えば、JISK7117に準拠して測定すればよい。
被覆層に用いる有機材料は、造形液28によって溶解された後に固化する機能を有する材料であればよく、目的や造形液28の種類などに応じて適宜選択すればよい。ただし、被覆層に用いる有機材料は、取り扱い性や環境負荷などの観点から、水溶性であることが好ましい。このような有機材料は、例えば、水溶性樹脂、水溶性プレポリマー、などである。
被覆層として水溶性の有機材料を採用した粉体20を用いる場合、造形液28には、水性媒体を用いることができる。また、被覆層として水溶性の有機材料を採用すると、粉体20の廃棄やリサイクル時に、水処理によって有機材料と基材とを分離することができる。
水溶性樹脂は、例えば、ポリビニルアルコール樹脂、ポリアクリル酸樹脂、セルロース樹脂、デンプン、ゼラチン、ビニル樹脂、アミド樹脂、イミド樹脂、アクリル樹脂、ポリエチレングリコール、などである。
これらの水溶性樹脂は、水溶性を示す限りにおいて、ホモポリマー(単独重合体)であってもよいし、ヘテロポリマー(共重合体)であってもよく、また、変性されていてもよい。また、水溶性樹脂には、公知の官能基が導入されていてもよく、また塩の形態であってもよい。
例えば、被覆層にポリビニルアルコール樹脂を用いる場合、ポリビニルアルコールや、アセトアセチル基、アセチル基、シリコーン等による変性ポリビニルアルコール(アセトアセチル基変性ポリビニルアルコール、アセチル基変性ポリビニルアルコール、シリコーン変性ポリビニルアルコールなど)や、ブタンジオールビニルアルコール共重合体等を用いればよい。
また、被覆層にポリアクリル酸樹脂を用いる場合、ポリアクリル酸や、ポリアクリル酸ナトリウム等の塩を用いればよい。また、被覆層にセルロース樹脂を用いる場合、セルロースや、カルボキシメチルセルロース(CMC)等を用いればよい。また、被覆層にアクリル樹脂を用いる場合、例えば、ポリアクリル酸、アクリル酸/無水マレイン酸共重合体などを用いればよい。
被覆層に水溶性プレポリマーを用いる場合、例えば、止水剤等に含まれる接着性の水溶性イソシアネートプレポリマー、などを用いればよい。
被覆層を構成可能な、水溶性以外の有機材料や樹脂としては、例えば、アクリル、マレイン酸、シリコーン、ブチラール、ポリエステル、ポリ酢酸ビニル、塩化ビニル/酢酸ビニル共重合体、ポリエチレン、ポリプロピレン、ポリアセタール、エチレン/酢酸ビニル共重合体、エチレン/(メタ)アクリル酸共重合体、α−オレフィン/無水マレイン酸系共重合体、α−オレフィン/無水マレイン酸系共重合体のエステル化物、ポリスチレン、ポリ(メタ)アクリル酸エステル、α−オレフィン/無水マレイン酸/ビニル基含有モノマー共重合体、スチレン/無水マレイン酸共重合体、スチレン/(メタ)アクリル酸エステル共重合体、ポリアミド、エポキシ樹脂、キシレン樹脂、ケトン樹脂、石油樹脂、ロジン又はその誘導体、クマロンインデン樹脂、テルペン樹脂、ポリウレタン樹脂、スチレン/ブタジエンゴム、ポリビニルブチラール、ニトリルゴム、アクリルゴム、エチレン/プロピレンゴム等の合成ゴム、ニトロセルロースなどが挙げられる。
なお、被覆層には、架橋性官能基を有する有機材料を用いることが好ましい。架橋性官能基は、目的に応じて適宜選択することができ、特に制限されない。架橋性官能基は、例えば、水酸基、カルボキシル基、アミド基、リン酸基、チオール基、アセトアセチル基、エーテル結合、などである。
被覆層に、架橋性官能基を有する有機材料を用いることで、有機材料が容易に架橋し硬化物としての立体造形物31を形成し得る観点から好ましい。
被覆層に用いる有機材料としては、平均重合度が400以上1,100以下のポリビニルアルコール樹脂を用いることが好ましい。更に、被覆層に用いる有機材料には、上記したように架橋性の官能基を分子内に導入した変性ポリビニルアルコール樹脂を用いることが好ましい。特に、被覆層には、アセトアセチル基変性のポリビニルアルコール樹脂を用いることが好ましい。
例えば、アセトアセチル基を有するポリビニルアルコール樹脂を被覆層に用いる場合、造形液28に含まれる架橋剤中の金属の作用により、アセトアセチル基が金属を介して複雑な三次元ネットワーク構造(架橋構造)を容易に形成し得る(架橋反応性に優れる)。このため、造形された立体造形物31は、曲げ強度に非常に優れたものとなる。
アセトアセチル基を有するポリビニルアルコール樹脂(アセトアセチル基変性ポリビニルアルコール樹脂)としては、粘度、けん化度等の特性が異なるものを1種単独で使用してもよいし、2種以上を併用してもよい。また、被覆層には、平均重合度が400以上1,100以下のアセトアセチル基変性ポリビニルアルコール樹脂を用いることがより好ましい。
被覆層に用いる有機材料としては、上記に挙げた材料を1種単独で使用してもよいし、2種以上を併用してもよく、また、適宜合成したものであってもよいし、市販品であってもよい。
被覆層に用いる市販品としては、例えば、ポリビニルアルコール(株式会社クラレ製、PVA−205C、PVA−220C)、ポリアクリル酸(東亞合成株式会社製、ジュリマーAC−10)、ポリアクリル酸ナトリウム(東亞合成株式会社製、ジュリマーAC−103P)、アセトアセチル基変性ポリビニルアルコール(日本合成化学工業株式会社製、ゴーセネックスZ−300、ゴーセネックスZ−100、ゴーセネックスZ−200、ゴーセネックスZ−205、ゴーセネックスZ−210、ゴーセネックスZ−220)、カルボキシ基変性ポリビニルアルコール(日本合成化学工業株式会社製、ゴーセネックスT−330、ゴーセネックスT−350、ゴーセネックスT−330T)、ブタンジオールビニルアルコールコポリマー(日本合成化学工業株式会社製、ニチゴーG−ポリマーOKS−8041)、ダイアセトンアクリルアミド変性ポリビニルアルコール(日本酢ビ・ポバール株式会社製、DF−05)、カルボキシメチルセルロースナトリウム(第一工業製薬株式会社製、セロゲン5A、セロゲン6A)、デンプン(三和澱粉工業株式会社製、ハイスタードPSS−5)、ゼラチン(新田ゼラチン株式会社製、ビーマトリックスゼラチン)などが挙げられる。
被覆層の厚みは限定されないが、例えば、平均厚みが5nm以上1,000nm以下が好ましく、5nm以上500nm以下が好ましく、50nm以上300nm以下が更に好ましく、100nm以上200nm以下が特に好ましい。
被覆層の平均厚みが、5nm以上であると、粉体20に吐出した造形液28によるドット30から形成される立体造形物31の強度が向上する。また、被覆層の平均厚みが1,000nm以下であると、粉体20に吐出した造形液28によるドット30から形成される立体造形物31の寸法精度が向上する。
被覆層の平均厚みは、例えば、粉体20をアクリル樹脂等に包埋した後、エッチング等を行って基材の表面を露出させた後、走査型トンネル顕微鏡STM、原子間力顕微鏡AFM、走査型電子顕微鏡SEMなどを用いることにより、測定することができる。
なお、被覆層の厚みは、被覆層として架橋剤を含む材料を用いることで、架橋剤を含まない場合より薄くすることが可能である。すなわち、架橋剤による硬化作用を利用することで、被覆層の厚みを薄くすることが可能であり、造形される立体造形物31の強度と精度の両立を実現することができる。
被覆層による基材の表面の被覆率(面積率)は、目的に応じて適宜調整すればよく、特に制限はない。被覆層による基材の表面の被覆率は、例えば、15%以上が好ましく、50%以上がより好ましく、80%以上が特に好ましい。
被覆率が、15%以上であると、粉体20に吐出した造形液28によるドット30から形成される立体造形物31の強度が向上する。また、被覆率が15%以上であると、粉体20に吐出した造形液28によるドット30から形成される立体造形物31の寸法精度が向上する。
被覆層による基材の表面の被覆率は、例えば、粉体20の電子顕微鏡写真を観察し、該写真に写る該粉体20について、基材の表面の全面積に対する、被覆層により被覆された部分の面積の割合(%)の平均値を算出する。そして、この平均値を被覆率として用いてもよい。また、粉体20の基材における被覆層で被覆された部分について、SEM−EDS等のエネルギー分散型X線分光法による元素マッピングを行うことにより、被覆率を測定してもよい。
なお、粉体20は、そのほかの成分を含んでいてもよい。その他の成分は、目的に応じて適宜選択すればよく、特に制限はない。例えば、そのほかの成分としては、流動化剤、フィラー、レベリング剤、焼結助剤、などが挙げられる。
粉体20を、流動化剤を含む構成とすることで、粉体層24を容易にかつ効率よく形成することができる。粉体20を、フィラーを含む構成とすることで、造形された立体造形物31に空隙の発生を抑制することができる。また、粉体20をレベリング剤を含む構成とすることで、粉体20の濡れ性が向上し、ハンドリングを容易とすることができる。粉体20を焼結助剤を含む構成とすることで、造形された立体造形物31を焼結する場合に、より低温で焼結することが可能となる。
―粉体の製造方法―
粉体20の製造方法は、目的に応じて適宜選択すればよく、特に制限されない。
例えば、基材の粒子(または粉末)の表面を、公知の被覆方法を用いて被覆層で被覆すればよい。公知の被覆方法としては、例えば、転動流動コーティング法、スプレードライ法、撹拌混合添加法、ディッピング法、ニーダーコート法などが挙げられる。また、これらの被覆方法は、公知の市販の各種コーティング装置、造粒装置などを用いて実施することができる。
―粉体の物性―
粉体20の平均粒子径は、目的に応じて適宜調整すればよく、制限されない。粉体20の平均粒子径は、例えば、3μm以上250μm以下が好ましく、3μm以上200μm以下がより好ましく、5μm以上150μm以下が更に好ましく、10μm以上85μm以下が特に好ましい。
粉体20の平均粒子径が3μm以上であると、粉末20の流動性が向上し、粉体層24が形成しやすく、且つ粉体層24の表面の平滑性が向上する。このため、立体造形物31の造形効率の向上や、立体造形物31のハンドリング性や寸法精度の向上を図ることができる。
粉体20の平均粒子径が250μm以下であると、粉体層24における粉体20間の空間の大きさを小さくすることができる。このため、立体造形物31の空間率を小さくすることができ、立体造形物31の強度向上を図ることができる。これらの観点から、粉体20の平均粒子径は、3μm以上250μm以下であることが、寸法精度と強度の両立の観点から好ましい。
粉体20の粒度分布は、目的に応じて適宜選択することができ、特に制限されない。
粉体20の安息角は、60度以下が好ましく、50度以下がより好ましく、40度以下が更に好ましい。粉体20の安息角が60度以下であると、粉体20を所望の場所に効率よく安定して配置させることができる。なお、安息角は、例えば、粉体特性測定装置(パウダテスタPT−N型、ホソカワミクロン株式会社製)などを用いて測定することができる。
<造形液>
次に、本実施の形態で用いた造形液28について説明する。造形液28は、粉体20の被覆層を溶解させた後に固化させる機能を有する液体であればよい。
このため、造形液28は、造形に用いる粉体20の被覆層の材質に応じて適宜調整すればよい。例えば、造形液28は、粉体20の被覆層を溶解させる溶媒を含む。
造形液28を構成する溶媒は、粉体20の被覆層を溶解可能であればよく、限定されない。例えば、溶媒は、水、エタノール等のアルコール、エーテル、ケトンなどの親水性溶媒、脂肪族炭化水素、グリコールエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、メチルエチルケトン等のケトン系溶媒、高級アルコールなどである。
これらの中でも、環境負荷や造形液28の吐出安定性の観点から、親水性溶媒を用いることが好ましく、水がより好ましい。なお、親水性溶媒としては、水と、アルコール等の水以外の成分と、を混合した溶媒であってもよい。また、造形液28に親水性溶媒を用いる場合、粉体20の被覆層の構成材料は、水溶性有機材料を主成分としたものであることが好ましい。
造形液28に用いる親水性溶媒は、例えば、水、エタノール等のアルコール、エーテル、ケトン、などである。なお、親水性溶媒は、アルコール等の水以外の成分を含有する有機溶剤であってもよい。
なお、造形液28は、粉体20の被覆層を構成する材料を架橋する架橋剤を含有することが好ましい。また、造形液28は、粉体20の被覆層を溶解する溶媒や、該溶媒による溶解を促進させる成分や、造形液28の保存安定性を保つ安定化剤などを含有してもよい。また、造形液28は、必要に応じて、更にその他の成分を含有した構成であってもよい。
架橋剤を含む造形液28を用いる場合、粉体20に造形液28を吐出することで、粉体20の被覆層(に含まれる樹脂など)が造形液28に溶解すると共に、造形液28に含まれる架橋剤によって架橋する。これにより、粉体20における、造形液28の吐出された領域は、粉体20の被覆層が互いに連結して固化した状態となる。
造形液28に含まれる架橋剤は、粉体20の被覆層に含まれる有機材料などの樹脂を架橋可能な性質を有するものであれば特に制限はなく、目的に応じて適宜選択することができる。架橋剤は、例えば、金属塩、金属錯体、有機ジルコニウム系化合物、有機チタン系化合物、キレート剤、などである。
有機ジルコニウム系化合物は、例えば、酸塩化ジルコニウム、炭酸ジルコニウムアンモニウム、乳酸ジルコニウムアンモニウムなどである。
有機チタン系化合物は、例えば、チタンアシレート、チタンアルコキシドなどである。
金属塩は、例えば、2価以上の陽イオン金属を水中で電離するものなどである。金属塩は、具体的には、オキシ塩化ジルコニウム八水和物(4価)、水酸化アルミニウム(3価)、水酸化マグネシウム(2価)、チタンラクテートアンモニウム塩(4価)、塩基性酢酸アルミニウム(3価)、炭酸ジルコニウムアンモニウム塩(4価)、チタントリエタノールアミネート(4価)などである。
なお、金属塩として、市販品を使用してもよい。市販品としては、例えば、オキシ塩化ジルコニウム八水和物(第一稀元素化学工業株式会社製、酸塩化ジルコニウム)、水酸化アルミニウム(和光純薬工業株式会社製)、水酸化マグネシウム(和光純薬工業株式会社製)、チタンラクテートアンモニウム塩(マツモトファインケミカル株式会社製、オルガチックスTC−300)、ジルコニウムラクテートアンモニウム塩(マツモトファインケミカル株式会社製、オルガチックスZC−300)、塩基性酢酸アルミニウム(和光純薬工業株式会社製)、ビスビニルスルホン化合物(富士フイルムファインケミカルズ株式会社製、VSB(K−FJC))、炭酸ジルコニウムアンモニウム塩(第一稀元素化学工業株式会社製、ジルコゾールAC−20)、チタントリエタノールアミネート(マツモトファインケミカル株式会社製、オルガチックスTC−400)などが挙げられる。
これらの中でも、得られる立体造形物31の強度に優れる点で炭酸ジルコニウムアンモニウム塩がより好ましい。
造形液28は、1種類の架橋剤を含む構成であってもよいし、複数種類の架橋剤を含む構成であってもよい。造形液28に含まれる架橋剤は、上記の中でも、金属塩がより好ましい。
また、造形液28は、界面活性剤を含むことが好ましい。界面活性材を含むことで、造形液28の表面張力を調整することができる。
界面活性剤は、例えば、アニオン系界面活性剤またはノニオン系界面活性剤、両性界面活性剤である。なお、湿潤剤、水溶性有機溶剤の組合せによって、分散安定性を損なわない界面活性剤を選択することが好ましい。
造形液28の粘度は限定されないが、例えば、25℃における粘度が25mPa・s以下が好ましく、3mPa・s以上20mPa・s以下がより好ましい。造形液28の25℃における粘度が25mPa・s以下であると、吐出部26が造形液28を安定して吐出可能であることから、好ましい。
また、造形液28は、50℃で3日間放置した前後の粘度変化率が20%未満であることが好ましい。造形液28の粘度変化率が20%以上になると、吐出部26による造形液28の吐出が不安定になることがある。
次に、本実施の形態における情報処理装置14のハードウェア構成を説明する。
図13は、情報処理装置14のハードウェア構成図である。情報処理装置14は、CPU300、ROM(Read Only Memory)302、RAM(Random Access Memory)304、およびI/F(Interface)306を有する。CPU300、ROM302、RAM304、およびI/F306は、バス308により相互に接続されており、通常のコンピュータを利用したハードウェア構成となっている。
本実施の形態の情報処理装置14で実行される造形処理を実行するためのプログラムは、ROM302などに予め組み込んで提供される。
なお、本実施の形態の情報処理装置14で実行される造形処理を実行するためのプログラムは、これらの装置にインストール可能な形式または実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)などのコンピュータで読み取り可能な記録媒体に記録されて提供するように構成してもよい。
また、本実施の形態の情報処理装置14で実行される造形処理を実行するためのプログラムを、インターネットなどのネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、本実施の形態の情報処理装置14で実行される造形処理を実行するためのプログラムを、インターネットなどのネットワーク経由で提供または配布するように構成してもよい。
本実施の形態の情報処理装置14で実行される造形処理を実行するためのプログラムは、上述した各部を含むモジュール構成となっている。実際のハードウェアとしてはCPU300がROM302等の記憶媒体から各プログラムを読み出して実行することにより上記各部が主記憶装置上にロードされ、主記憶装置上に生成されるようになっている。
なお、上記には、本実施の形態を説明したが、上記実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。上記新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。上記実施の形態は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10 立体造形装置
14 情報処理装置
14A 受付部
14B 制御部
16 平坦化部
18 供給部
20 粉体
22 造形部
26 吐出部
特開2000−15613号公報
本発明は、立体造形装置および立体造形方法に関する。
上述した課題を解決し、目的を達成するために、本発明は、粉体層を形成する粉体層形成部と、前記粉体層の表面造形液を吐出してドットを形成する吐出部、を備え、前記粉体層の形成または前記造形液の吐出にかかる動作が停止されて再開するとき、前記動作が停止される前に最表面の前記粉体層に形成されたドットによるドット領域の少なくとも一部上に前記吐出部から前記造形液吐出されてから前記粉体層が形成される、立体造形装置である。
以下に添付図面を参照して、立体造形装置および立体造形方法の実施の形態を詳細に説明する。

Claims (8)

  1. 粉体を供給する供給部と、
    供給された粉体の表面を第1の方向に均すことによって平坦化させ、粉体層を形成する平坦化部と、
    前記粉体層の表面における造形対象物に応じた位置に造形液を吐出してドットを形成する吐出部と、
    前記粉体の供給、前記粉体層の形成、および前記造形液の吐出、の一連の処理を繰り返すように、前記供給部、前記平坦化部、および前記吐出部を制御することによって、前記造形対象物に対応する立体造形物を造形する制御部と、
    動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける受付部と、
    を備え、
    前記制御部は、
    前記停止信号を受付けたときに前記一連の処理を停止し、
    前記停止信号を受付けた後に前記再開信号を受付けたときに、最表面に位置する前記粉体層の表面における、該粉体層に形成されたドットによるドット領域の少なくとも一部上に前記造形液を吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御する、
    立体造形装置。
  2. 前記制御部は、
    前記停止信号を受付けた後に前記再開信号を受付けたときに、最表面に位置する前記粉体層の表面における、該粉体層に形成されたドットによるドット領域の少なくとも一部上に、前記造形液を複数回吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御する、
    請求項1に記載の立体造形装置。
  3. 前記制御部は、
    前記停止信号を受付けた後に前記再開信号を受付けたときに、0より大きく且つ前記粉体層の層厚以下の厚みの前記造形液による液滴が動作再開時に該表面上に存在する吐出量の前記造形液を、該粉体層に形成されたドットによるドット領域の少なくとも一部上に吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御する、
    請求項1または請求項2に記載の立体造形装置。
  4. 前記制御部は、
    前記停止信号を受付けた後に前記再開信号を受付けたときに、最表面に位置する前記粉体層の表面における、該粉体層に形成されたドットによるドット領域の少なくとも一部上に、該停止信号を受付けてから該再開信号を受付けるまでの待機時間に応じた吐出量の前記造形液を吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御する、
    請求項1〜請求項3の何れか1項に記載の立体造形装置。
  5. 前記制御部は、
    前記停止信号を受付けた後に前記再開信号を受付けたときに、最表面に位置する前記粉体層の表面における、該粉体層に形成されたドットによるドット領域の外周より内側の領域上に、前記造形液を吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御する、
    請求項1〜請求項4の何れか1項に記載の立体造形装置。
  6. 粉体を供給する供給部と、供給された粉体の表面を第1の方向に均すことによって平坦化させ、粉体層を形成する平坦化部と、前記粉体層の表面における造形対象物に応じた位置に造形液を吐出してドットを形成する吐出部と、を備えた立体造形装置で実行する立体造形方法であって、
    前記粉体の供給、前記粉体層の形成、および前記造形液の吐出、の一連の処理を繰り返すように、前記供給部、前記平坦化部、および前記吐出部を制御することによって、前記造形対象物に対応する立体造形物を造形する制御ステップと、
    動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける受付ステップと、
    を含み
    前記制御ステップは、
    前記停止信号を受付けたときに前記一連の処理を停止するステップと、
    前記停止信号を受付けた後に前記再開信号を受付けたときに、最表面に位置する前記粉体層の表面における、該粉体層に形成されたドットによるドット領域の少なくとも一部上に前記造形液を吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御するステップと、
    を含む、立体造形方法。
  7. 粉体を供給する供給部と、供給された粉体の表面を第1の方向に均すことによって平坦化させ、粉体層を形成する平坦化部と、前記粉体層の表面における造形対象物に応じた位置に造形液を吐出してドットを形成する吐出部と、を備えた造形装置を制御するコンピュータに実行させる立体造形プログラムであって、
    前記粉体の供給、前記粉体層の形成、および前記造形液の吐出、の一連の処理を繰り返すように、前記供給部、前記平坦化部、および前記吐出部を制御することによって、前記造形対象物に対応する立体造形物を造形する制御ステップと、
    動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける受付ステップと、
    を含み
    前記制御ステップは、
    前記停止信号を受付けたときに前記一連の処理を停止するステップと、
    前記停止信号を受付けた後に前記再開信号を受付けたときに、最表面に位置する前記粉体層の表面における、該粉体層に形成されたドットによるドット領域の少なくとも一部上に前記造形液を吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御するステップと、
    を含む、立体造形プログラム。
  8. 粉体を供給する供給部と、供給された粉体の表面を第1の方向に均すことによって平坦化させ、粉体層を形成する平坦化部と、前記粉体層の表面における造形対象物に応じた位置に造形液を吐出してドットを形成する吐出部と、を備えた造形装置を制御する情報処理装置であって、
    前記粉体の供給、前記粉体層の形成、および前記造形液の吐出、の一連の処理を繰り返すように、前記供給部、前記平坦化部、および前記吐出部を制御することによって、前記造形対象物に対応する立体造形物を造形する制御部と、
    動作停止を示す停止信号と、動作再開を示す再開信号と、を受付ける受付部と、
    を備え、
    前記制御部は、
    前記停止信号を受付けたときに前記一連の処理を停止し、
    前記停止信号を受付けた後に前記再開信号を受付けたときに、最表面に位置する前記粉体層の表面における、該粉体層に形成されたドットによるドット領域の少なくとも一部上に前記造形液を吐出した後に、前記一連の処理を再開するように、前記供給部、前記平坦化部、および前記吐出部を制御する、
    情報処理装置。
JP2020056237A 2015-06-22 2020-03-26 立体造形装置および立体造形方法 Active JP6879405B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015125091 2015-06-22
JP2015125091 2015-06-22

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016020140A Division JP6682887B2 (ja) 2015-06-22 2016-02-04 立体造形装置、立体造形方法、立体造形プログラム、および情報処理装置

Publications (2)

Publication Number Publication Date
JP2020121559A true JP2020121559A (ja) 2020-08-13
JP6879405B2 JP6879405B2 (ja) 2021-06-02

Family

ID=57760556

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016020140A Active JP6682887B2 (ja) 2015-06-22 2016-02-04 立体造形装置、立体造形方法、立体造形プログラム、および情報処理装置
JP2020056237A Active JP6879405B2 (ja) 2015-06-22 2020-03-26 立体造形装置および立体造形方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016020140A Active JP6682887B2 (ja) 2015-06-22 2016-02-04 立体造形装置、立体造形方法、立体造形プログラム、および情報処理装置

Country Status (1)

Country Link
JP (2) JP6682887B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015613A (ja) * 1998-06-29 2000-01-18 Asupekuto:Kk 立体造形装置および立体造形方法
JP2015221516A (ja) * 2014-05-22 2015-12-10 株式会社ミマキエンジニアリング 三次元構造物の形成装置および形成方法
JP2016150458A (ja) * 2015-02-16 2016-08-22 株式会社リコー 立体造形装置、立体造型方法
JP2016150534A (ja) * 2015-02-18 2016-08-22 セイコーエプソン株式会社 三次元造形物製造装置および三次元造形物
JP2017019226A (ja) * 2015-07-13 2017-01-26 株式会社ミマキエンジニアリング 三次元造形物の製造方法及び製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010015451A1 (de) * 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
JP6471863B2 (ja) * 2015-02-20 2019-02-20 株式会社リコー 立体造形装置、立体造型方法、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015613A (ja) * 1998-06-29 2000-01-18 Asupekuto:Kk 立体造形装置および立体造形方法
JP2015221516A (ja) * 2014-05-22 2015-12-10 株式会社ミマキエンジニアリング 三次元構造物の形成装置および形成方法
JP2016150458A (ja) * 2015-02-16 2016-08-22 株式会社リコー 立体造形装置、立体造型方法
JP2016150534A (ja) * 2015-02-18 2016-08-22 セイコーエプソン株式会社 三次元造形物製造装置および三次元造形物
JP2017019226A (ja) * 2015-07-13 2017-01-26 株式会社ミマキエンジニアリング 三次元造形物の製造方法及び製造装置

Also Published As

Publication number Publication date
JP6682887B2 (ja) 2020-04-15
JP6879405B2 (ja) 2021-06-02
JP2017007325A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5862739B1 (ja) 立体造形用粉末材料、硬化液、及び立体造形用キット、並びに、立体造形物の製造方法及び製造装置
EP3050697B1 (en) Stereoscopic modeling apparatus, method of manufacturing stereoscopic modeled product, and carrier means
JP4624626B2 (ja) 材料システム及び3次元印刷法
US9694542B2 (en) Method and apparatus for molding three-dimensional object and molding data generation method for three-dimensional object
JP2016128547A (ja) 立体造形用硬化液及び立体造形用材料セット、並びに、立体造形物の製造方法及び製造装置
US20160243765A1 (en) Stereoscopic modeling apparatus and stereoscopic modeling method
JP2017100292A (ja) 立体造形装置および立体造形方法
US8715832B2 (en) Method for the layered construction of plastic models
US10030154B2 (en) Powder material for three-dimensional modeling, material set for 3D modeling, method of manufacturing three-dimensional object, device for manufacturing three-dimensional object, and three-dimensional object
US11104067B2 (en) Three-dimensional shaping apparatus, three-dimensional shaping method, and information processing device
JP6941271B2 (ja) 積層造形用粉末材料、積層造形装置、積層造形用セット及び積層造形方法
JP6471863B2 (ja) 立体造形装置、立体造型方法、プログラム
JP2018080359A (ja) 立体造形用粉末材料、立体造形材料セット、立体造形物製造装置、及び立体造形物の製造方法
JP6565370B2 (ja) 立体造形装置、立体造形方法、立体造形プログラム、および情報処理装置
JP6879405B2 (ja) 立体造形装置および立体造形方法
JP6536122B2 (ja) 立体造形装置、立体造形物の生産方法、プログラム
JP7027692B2 (ja) 粉末材料、立体造形用キット、粉末積層造形方法、及び粉末積層造形装置
JP2008279418A (ja) 立体形状自由成型技術による3次元構造体の作製方法
US11123922B2 (en) Method of manufacturing solid freeform fabrication object and device for manufacturing solid freeform fabrication object
JP6433447B2 (ja) 三次元立体造形用粉体および三次元立体造形物
JP2016060197A (ja) 立体造形方法、立体造形装置、立体造形のデータ作成方法、プログラム
Sastri Bredt et a1.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200409

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210412

R151 Written notification of patent or utility model registration

Ref document number: 6879405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151