JP2020121289A - 粉塵捕集用網状構造体 - Google Patents

粉塵捕集用網状構造体 Download PDF

Info

Publication number
JP2020121289A
JP2020121289A JP2019015991A JP2019015991A JP2020121289A JP 2020121289 A JP2020121289 A JP 2020121289A JP 2019015991 A JP2019015991 A JP 2019015991A JP 2019015991 A JP2019015991 A JP 2019015991A JP 2020121289 A JP2020121289 A JP 2020121289A
Authority
JP
Japan
Prior art keywords
fiber
long
nonwoven fabric
net
uniaxially oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019015991A
Other languages
English (en)
Inventor
智行 岡村
Tomoyuki Okamura
智行 岡村
伊林 邦彦
Kunihiko Ibayashi
邦彦 伊林
健 清田
Ken Kiyota
健 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2019015991A priority Critical patent/JP2020121289A/ja
Publication of JP2020121289A publication Critical patent/JP2020121289A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Woven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)

Abstract

【課題】捕集性能及び通気性が良好で、かつ、機械強度に優れた粉塵捕集用網状構造体の提供。【解決手段】網状構造体と、前記網状構造体上に形成された長繊維層とを含み、前記網状構造体は、熱可塑性樹脂層と、少なくとも片面に積層された接着層とをを含む多層フィルムの一軸配向体を2以上含み、前記網状構造体は、前記2以上の一軸配向体の配向軸が交差するように、前記2以上の一軸配向体を前記接着層を介して積層もしくは織成してなる、粉塵捕集用網状構造体。【選択図】図1

Description

本発明は、粉塵捕集用網状構造体に関する。
建物の窓枠に展張される窓用フィルターには、塵埃や花粉等の有害粉塵を捕集すると同時に、良好な通気性を確保することが求められる。
また、窓用フィルターには、風圧や雨等の外部圧力に耐えられる機械的強度も求められる。
例えば、特許文献1には、平均繊維径及び面密度の異なる2種の不織布からなる2層のフィルターを備えた多層集塵フィルターが記載れている。
特開2002−1027号公報
一般的に、フィルターの捕集性能と通気性とは、トレードオフの関係にある。そのため、従来のフィルターは、捕集性能と通気性との両立に未だ改善の余地があった。
また、近年、窓用フィルターには薄型化も求められている。しかしながら、窓用フィルターの集塵性能及び通気性を向上すると共に薄型化を図ると、窓用フィルターの機械的強度が不十分となり、製造時に破れたりたわみやしわが生じたりする等の問題があった。
本発明は、上記事情に鑑みてなされたものであって、捕集性能及び通気性が良好で、かつ、機械強度に優れた粉塵捕集用網状構造体を提供することを課題とする。
本発明の第一の態様は、網状構造体と、前記網状構造体上に形成された長繊維層とを含む粉塵捕集用網状構造体であって、前記網状構造体は、熱可塑性樹脂層と、少なくとも片面に積層された接着層とをを含む多層フィルムの一軸配向体を2以上含み、前記網状構造体は、前記2以上の一軸配向体の配向軸が交差するように、前記2以上の一軸配向体を前記接着層を介して積層もしくは織成してなる、粉塵捕集用網状構造体である。
本発明によれば、捕集性能及び通気性が良好で、かつ、機械強度に優れた粉塵捕集用網状構造体が提供出来る。
本発明の一実施形態に係る粉塵捕集用網状構造体の一例を示す断面模式図である。 本発明の一実施形態における第1の網状構造体を示す平面図である。 図2に示した網状構造体を構成する一軸配向体の構成例を示す斜視図である。 図2に示した網状構造体を構成する一軸配向体の構成例を示す斜視図である。 図3に示した一軸配向体の製造方法を示す斜視図である。 本発明の一実施形態における網状不織布の第1の製造方法を示す斜視図である。 本発明の一実施形態における第2の網状構造体を示す平面図である。 本発明の一実施形態における網状不織布の第2の製造方法を示す斜視図である。 本発明の一実施形態における第3の網状構造体を示す平面図である。 本発明の一実施形態における第3の網状構造体を示す平面図である。 本発明の一実施形態における縦配列長繊維不織布を製造するための不織布製造装置の一例を示す概念図である。 本発明の一実施形態における横配列長繊維不織布を製造するための不織布製造装置の一例を示す概念図である。 本発明の一実施形態における横配列長繊維不織布を製造するための不織布製造装置の他の一例を示す概念図である。(A)は、横配列長繊維不織布の製造装置の正面図(一部断面図)、(B)は、横配列長繊維不織布の製造装置のの側面図(一部断面図)である。
<粉塵捕集用網状構造体>
本実施形態にかかる粉塵捕集用網状構造体は、網状構造体と、前記網状構造体上に形成された長繊維層とを含む。
図1は、本実施形態における粉塵捕集用網状構造体の一例を示す断面模式図である。本実施形態において、粉塵捕集用網状構造体100は、網状構造体1と、網状構造体1上に形成された長繊維層2とを含む。
本実施形態にかかる粉塵捕集用網状構造体は、目付が20〜90g/mであることが好ましく、20〜60g/mであることがより好ましく、22〜58g/mであることが更に好ましく、24〜56g/mであることが特に好ましい。
粉塵捕集用網状構造体の目付が上記範囲の下限値以上である場合、十分な捕集性能が得られやすい。一方、粉塵捕集用網状構造体の目付が上記範囲の上限値以下である場合、十分な通気性が確保しやすい。
本実施形態にかかる粉塵捕集用網状構造体は、JIS L 1096に準拠して測定した通気度が10〜100cm/cm・sであることが好ましく、10〜50cm/cm・sであることがより好ましく、12〜45cm/cm・sであることが更に好ましく、15〜40cm/cm・sであることが特に好ましい。
粉塵捕集用網状構造体の通気度が上記範囲の下限値以上である場合、排熱や外気の取入れがしやすくなる。一方、粉塵捕集用網状構造体の通気度が上記範囲の上限値以下である場合、捕集性能を維持しやすい。
本実施形態にかかる粉塵捕集用網状構造体は、JIS K 6550:1994に準拠して測定した引裂強度が、MD方向及びCD方向において、6以上であることが好ましく、8N以上であることがより好ましく、10N以上であることが更に好ましい。
粉塵捕集用網状構造体の引裂強度が上記範囲の下限値以上である場合、製造時に破れにくく、取り扱い性を向上しやすい。一方、粉塵捕集用網状構造体の引裂強度の上限値は特に限定されないが、実用上、MD方向及びCD方向において100N以下であることが好ましい。
本実施形態にかかる粉塵捕集用網状構造体は、JIS L 1913:2010に準拠して測定した剛軟度が、MD方向及びCD方向において0.8〜30mN・cmであることが好ましく、0.9〜7.0mN・cmであることがより好ましく、1.0〜6.9mN・cmであることが更に好ましい。
粉塵捕集用網状構造体の剛軟度が上記範囲の下限値以上である場合、製造時のたわみやしわの発生を抑制しやすい。一方、剛軟度が上記範囲の上限値以下である場合、施工時に取り付けやすく、皺になり難い。
本実施形態の粉塵捕集用網状構造体は、例えば、ボーケン規格BQE A 030−2011に準拠して測定した花粉透過率が0.1%未満という高い捕集性能を発揮する。
以下、本実施形態にかかる粉塵捕集用網状構造体を構成する網状構造体及び長繊維層について説明する。
<網状構造体>
本実施形態の粉塵捕集用網状構造体において、網状構造体は、熱可塑性樹脂層と、該熱可塑性樹脂層の少なくとも片面に積層された接着層とを含む多層フィルムの一軸配向体を2以上含み、前記2以上の一軸配向体の配向軸が交差するように、前記2以上の一軸配向体を、前記接着層を介して積層もしくは織成してなる。
本実施形態にかかる粉塵捕集用網状構造体は、網状構造体を備えることにより、十分な機械的強度を確保することができる。
まず、本実施形態における網状構造体を構成する一軸配向体の層構成及び各層の組成について説明する。一軸配向体は、熱可塑性樹脂層と、該熱可塑性樹脂層の少なくとも片面に積層された接着層とを含む多層フィルムを一軸配向したものである。
熱可塑性樹脂層は、熱可塑性樹脂を主成分としてなる層である。熱可塑性樹脂としては、割繊性の良好な、ポリエチレン、ポリプロピレン等のポリオレフィンおよびこれらの共重合体を挙げることができる。
熱可塑性樹脂層の厚みは、特には限定されず、接着層の厚みを後述する所望の範囲とした場合に、所定の目付を達成するように当業者が適宜決定することができる。熱可塑性樹脂層の厚みは、10〜70μmが好ましく、10〜30μmがより好ましい。なお、この厚みは、一軸配向した後の層厚みである。
接着層は、熱可塑性樹脂層と同種又は異種の熱可塑性樹脂(以下、「接着層樹脂」といいう場合がある。)を主成分としてなる層である。
接着層樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィンおよびこれらの共重合体を挙げることができる。
ただし、製造上の理由から、接着層樹脂の融点は、熱可塑性樹脂の融点のより5℃以上低いことが好ましく、10〜50℃低いことがより好ましい。接着層樹脂の融点が熱可塑性樹脂の融点のより5℃以上低いと、所望の物性を有する網状構造体を製造することができる。
接着層の厚みは、2〜10μmであり、好ましくは2〜9μm、更に好ましくは2〜7μmである。この厚みが2μm未満であれば、満足な接着力を得ることができない。一方、10μmを越えると、その結果、引張強度が低下し、柔らかくなり、十分な補強材としての効果が得られない。なお、この厚みは、一軸配向した後の層厚みである。
熱可塑性樹脂層、接着層のそれぞれを構成する樹脂には、その特性を損なわない範囲で、ポリプロピレンやポリエチレンなどの上記主成分以外の樹脂が含まれていてもよく、公知の添加剤を含有させてもよい。添加剤としては、例えば、酸化防止剤、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、フィラー等が挙げられる。
一軸配向体は、このような組成及び層構成を有する多層フィルムを一軸配向することにより得られる。一軸配向体は、例えば、一軸配向網状フィルムや、一軸配向テープであってよい。これらの詳細な態様及び製法については後述する。本実施形態における網状構造体は、少なくとも2つの一軸配向体を積層もしくは織成してなり、少なくとも2つの一軸配向体は、その配向軸が交差するように積層もしくは織成されている。このとき、2つの一軸配向体は、同一の組成及び層構成であってもよく、異なる組成及び層構成であってもよい。一軸配向体の特性によって、網状構造体は、網状不織布である場合も、織布である場合もあり得る。また、配向軸が交差する態様は、ほぼ直交するものであってもよく、所定の角度で交差するものであってもよい。一軸配向体を3以上積層する場合も、3以上の配向体の配向軸が、所定の角度で交差するものであってよい。以下に、一軸配向体の態様とその組み合わせによる網状構造体の実施形態について、説明する。
[第1の網状構造体:スプリットウェブとスリットウェブとを積層してなる不織布]
第1の網状構造体は、縦方向一軸延伸多層フィルムを割繊後、拡幅して得られた一軸配向体と、多層フィルムに、幅方向にスリットを形成した後、幅方向に一軸延伸して得られた一軸配向体とを、配向方向が略直交するように積層してなる不織布である。図2は、本発明の実施形態に係る網状構造体の一例である網状不織布を示している。網状構造体10(以下、「網状不織布10」ともいう。)は、一軸配向体の一例であるスプリットウェブ12の配向軸Lと、一軸配向体の別の例であるスリットウェブ13の配向軸Tとが互いに交差するように経緯積層されて形成されている。そして、隣接するスプリットウェブ12とスリットウェブ13の接触部位同士が面接着で接合されている。
図3及び図4はそれぞれ、図2に示した網状不織布10を構成するスプリットウェブ12とスリットウェブ13を示している。図3(A)に示すスプリットウェブ12は、熱可塑性樹脂層の片面もしくは両面に接着層を積層してなる多層フィルムを縦方向(スプリットウェブ12の配向軸Lの軸方向)に一軸延伸させて、縦方向に割繊し、かつ拡幅させて形成される一軸配向網状フィルムである。
網状フィルムからなる一軸配向体の一例であるスプリットウェブ12は、多層インフレーション成形、多層Tダイ法等の製造方法により製造することができる。具体的には、熱可塑性樹脂層の両面に接着層を積層した多層フィルムを形成する。この多層フィルムを、縦方向に少なくとも3倍に延伸させた後、同方向に千鳥掛けにスプリッターを用いて割繊(スプリット処理)して網状のフィルムとし、更に所定幅に拡幅させて形成する。拡幅によって幹繊維121と枝繊維122が形成され、図示するような網状体となる。このスプリットウェブ12は、幅方向全体にわたって縦方向に比較的高い強度を有する。
図3(B)は、図3(A)の一点鎖線で囲んだ領域Bの拡大斜視図であり、スプリットウェブ12は、熱可塑性樹脂層12aの両面に、この熱可塑性樹脂層12aより融点が低い接着層12b,12cが積層された3層構造になっている。接着層12b,12cの一方は、網状不織布10の形成時にスリットウェブ13と共に経緯積層される際のウェブ相互の接着層として機能する。
図4(A)に示すスリットウェブ13は、熱可塑性樹脂層の両面に接着層が積層された多層フィルムに、横方向(スリットウェブ13の配向軸Tの軸方向)に多数のスリットを入れた後に、横方向に一軸延伸させて形成される網状フィルムである。詳しくは、スリットウェブ13は、上記多層フィルムの両耳部を除く部分に、横方向(幅方向)に、例えば熱刃などにより平行に千鳥掛け等の断続したスリットを形成した後、横方向に延伸させて形成される。このスリットウェブ13は、横方向に比較的高い強度を有する。
図4(B)は、図4(A)の一点鎖線で囲んだ領域Bの拡大斜視図であり、スリットウェブ13は、熱可塑性樹脂層13aの両面に、この熱可塑性樹脂より融点が低い接着層13b,13cが積層された3層構造からなる。これらの接着層13b,13cの一方は、網状不織布10の形成時にスプリットウェブ12と共に経緯積層される際のウェブ相互の接着層として機能する。
なお、図3及び4に示す一軸配向体の3層構造は一例であり、例えば、スプリットウェブ12において、接着層12bは省略することができ、熱可塑性樹脂層12aと接着層12cの2層構造でも良い。また、スリットウェブ13において、接着層13bは省略することができ、熱可塑性樹脂層13aと接着層13cの2層構造でも良い。したがって、網状不織布は、これらの2層もしくは3層のスプリットウェブとスリットウェブの任意の組み合わせであってよい。
次に、図2に示す網状不織布10の製造方法について、図5及び図6を用いて説明する。図5は、スプリットウェブ12の製造工程の概略を示している。また、図6はスプリットウェブ12にスリットウェブ13を積層して網状不織布10を製造する工程の概略を示している。
図5において、(1)多層フィルムの製膜工程では、主押出機111に熱可塑性樹脂を供給し、2台の副押出機112に接着層樹脂を供給して、主押出機111から押出される熱可塑性樹脂を中心層とし、2台の副押出機112、112から押出される接着層樹脂を内層および外層として、多層環状ダイ113を通して下吹出し水冷インフレーション114により多層フィルムを作製する。ここで、熱可塑性樹脂は、図3に示す熱可塑性樹脂層12aを構成し、接着層樹脂は、図3に示す接着層12b、12cを構成するものである。
(2)配向工程では、上記製膜した環状多層フィルムを2枚のフィルムF、F'に切り裂き、オーブン115内を通過させ、所定温度に加熱しながら、鏡面処理された冷却ローラを用いて、初期寸法に対し配向倍率3〜15でロール配向を行うことができる。
(3)スプリット(割繊)工程では、上記配向した多層フィルムを高速で回転するスプリッター(回転刃)116に摺動接触させて、フィルムにスプリット処理(割繊化)を行う。
このように割繊して形成したフィルムは、所望により拡幅した後、熱処理117を経て、(4)巻取工程118において所定の長さに巻き取り、網状不織布10用原反の一方の一軸配向体であるスプリットウェブ12として供給する。
図6は、本願の一実施態様による網状不織布10の製造方法を示す概略図である。
図6において、(1)多層フィルムの製膜工程では、主押出機311に熱可塑性樹脂を供給し、副押出機312に接着層樹脂を供給して、主押出機311から押出される熱可塑性樹脂を内層とし、副押出機312から押出される接着層樹脂を外層として、多層環状ダイ313を通して下吹出し水冷インフレーション314により2層フィルムを作製する。ここで、熱可塑性樹脂は、図4に示す熱可塑性樹脂層13aを構成し、接着層樹脂は、図4に示す接着層13b、13cを構成するものである。
(2)スリット工程では、上記製膜した多層フィルムをピンチして扁平化し、次いで圧延により微配向し、走行方向に対して概ね直角に、千鳥掛けに横スリット315を入れる。
(3)配向工程では、上記スリット処理を行った多層フィルムに幅方向に一軸配向316を施す。配向温度等の条件は前記図5の例の場合と同様である。
上記で得られた一軸配向体であるスリットウェブ13(横ウェブ)は、(4)熱圧着工程317に搬送される。一方、図5に示す方法で製造された一軸配向体であるスプリットウェブ12(縦ウェブ)を原反繰出しロール210から繰出して、拡幅工程211に送り、前述の拡幅機により数倍に拡幅し、必要により熱処理を行う。縦ウェブ12及び横ウェブ13を、熱圧着工程317において、外周面が鏡面である熱シリンダ317aと鏡面ロール317b、317cとの間に順次導いてニップ圧を加えることにより互いに熱圧着させて一体化させる。これにより、隣接する縦ウェブ12と横ウェブ13との接触部位同士が全面的に面接着する。その後、巻取工程318に搬送して網状不織布10の巻取体(製品)とすることができる。
[第2の網状構造体:スプリットウェブを経緯積層してなる不織布]
第2の網状構造体は、網状不織布であって、縦方向一軸延伸多層フィルムを割繊後、拡幅して得られた一軸配向体を、配向方向が交差するように、好ましくは配向方向が略直交するように、経緯積層してなる。すなわち、図7に示されるように、第2の網状構造体20においては、積層される一軸配向体が、両者とも、第1の網状構造体において説明したスプリットウェブ12同士を互いの延伸方向が略直交するように積層接着した網状基材22からなる網状不織布である。
図8は、第2の網状構造体である不織布の製造方法について説明する概念図である。この網状不織布は、図3に示したスプリットウェブ2を2枚、経緯積層したものである。図8において、図5に示したようにして製造したスプリットウェブ2−1(縦ウェブ)を、原反繰出しロール410から繰出し、所定の供給速度で走行させて拡幅工程411に送り、拡幅機(図示せず)により数倍に拡幅し、必要により熱処理を行う。
別のスプリットウェブ2−2(横ウェブ)を、縦ウェブと同様に原反繰出しロール510から繰出し、所定の供給速度で走行させて拡幅工程511に送り、拡幅機(図示せず)により数倍に拡幅し、必要により熱処理した後、縦ウェブ2−1の幅に等しい長さに切断、縦ウェブの走行フィルムに対し直角の方向から供給して、積層工程412において各接着層を介して各ウェブの配向軸が互いに直交するように経緯積層させる。経緯積層した縦ウェブ2−1及び横ウェブ2−2を、熱圧着工程417において、外周面が鏡面である熱シリンダ417aと鏡面ロール417b,417cとの間に順次導いてニップ圧を加える。これにより、縦ウェブ2−1と横ウェブ2−2とが互いに熱圧着されて一体化される。また、隣接する縦ウェブ2−1と横ウェブ2−2との接触部位同士が全面的に面接着する。このようにして一体化された縦ウェブ2−1及び横ウェブ2−2は巻取工程418にて巻き取られて、経緯積層網状不織布の巻取体になる。
上記のようにして製造した第2の網状構造体も、目付、縦方向及び横方向の両方の引張強度、接着層の厚み、接着力の点で、第1の網状構造体と同様の数値特性を備え、同様の効果を奏する。
[第3の網状構造体:一軸配向テープからなる網状不織布・織布]
第3の網状構造体は、一軸配向テープを経緯積層してなる不織布もしくは織成してなる織布である。すなわち、第3の網状構造体は、2つの一軸配向体の両者が、複数の一軸配向テープ群から構成される。そして、不織布の場合には、複数の一軸配向テープ群が、延伸方向が概ね直交するように経緯積層され、溶着もしくは接着されている。織布の場合には、複数の一軸配向テープ群が経糸、複数の一軸配向テープ群が緯糸になるように、任意の織り方で織成され、溶着もしくは接着されている。
不織布から構成される網状構造体の一例を図9に示す。このような一軸配向テープを積層してなる不織布から構成される網状構造体30においては、経糸に該当する複数の一軸配向テープ302(一軸配向テープ群302)を一定の間隔をあけて平行に並べ、これが一方の一軸配向体に該当する。それに対し、他方の一軸配向体は、緯糸に該当する別の複数の一軸配向テープ303(一軸配向テープ群303)を同様に一定の間隔をあけて平行に並べ、一軸配向テープ群に積層したものである。経糸と緯糸との接触面を加熱溶着することにより、第3の網状構造体である網状不織布が形成されている。
一軸配向テープを織成してなる織布の一例を図10に示す。織布40は、複数の一軸配向テープ402を、積層することに替えて、織成したこと以外は、同様にして製造することができる。
このような不織布の市販品の例としては、積水フィルム(株)製のソフ(商品名)HN55、HN66が利用できる。織布の市販品の例としては、萩原工業(株)製のメルタック(商品名)なども利用できる。
[第4の網状構造体:スプリットウェブと、一軸配向テープとの網状不織布]
第4の網状構造体は、互いに平行に延びる幹繊維と、隣接する前記幹繊維同士を繋ぐ枝繊維とを備えた一軸配向体と、一軸配向テープ群層とを積層してなる不織布である。
第4の網状構造体の説明においては、3層の一軸配向体を積層してなる形態について説明する。すなわち、本発明の第4の網状構造体は、典型的には、第1の一軸配向体がスプリットウェブ12であって、第2の一軸配向体が、複数の一軸配向テープ群から構成され、さらに、前記第2の一軸配向体を構成する一軸配向テープ群に斜交する複数の一軸配向テープ群から構成される第3の一軸配向体を含んでなる。
第4の網状構造体を構成するスプリットウェブ、一軸配向テープの製造方法については、第1、第3の網状構造体について説明したとおりであり、同様にして製造することができる。これらを積層し、接触部を溶着もしくは接着することにより、第4の網状構造体を得ることができる。
<長繊維層>
本実施形態の粉塵捕集用網状構造体において、長繊維層(以下、「長繊維不織布」という場合がある。)は、長繊維フィラメントからなる不織布であれば特に限定されない。長繊維不織布としては、メルトブローン不織布であってもよいし、複数の長繊維フィラメントを一方向に沿って配列し、次いで、配列された複数の長繊維フィラメントを前記一方向に好ましくは3〜6倍に延伸して得られる縦配列不織布もしくは横配列維不織布であってもよい。長繊維不織布の平均繊維径は5μm以下であることが好ましく、0.8〜5μmであることがより好ましい。
本実施形態にかかる粉塵捕集用網状構造体は、上記のように構成された長繊維層を備えることにより、十分な通気度を確保しつつ、捕集性能を向上することができる。
メルトブローン不織布は、例えば、熱可塑性樹脂を溶融し、それを紡糸口金から押し出した後、押し出された溶融樹脂からなる糸状に加熱高速ガス流体等を吹き当てて繊維状に細化し、細化された繊維を移動するコンベア上に捕集してシート状にすることにより得られる。
「長繊維フィラメントを一方向に沿って配列し」とは、複数の長繊維フィラメントをそれぞれの長さ方向(軸方向)が概ね前記一方向となるように、換言すれば、それぞれが前記一方向に延びる複数の長繊維フィラメントを概ね平行に配列することをいう。例えば、長繊維不織布を長尺シートとして製造する場合、前記一方向は、長尺シートの長手方向もしくは長手方向を基準とした傾きの角度、又は、長尺シートの幅方向もしくは幅方向を基準とした傾きの角度で表され得る。ある実施形態において、複数の長繊維フィラメントは、長尺シートの長手方向(縦方向ともいう)に沿って配列されるか、又は、長尺シートの幅方向(横方向ともいう)に沿って配列される。しかし、これに限られるものではなく、複数の長繊維フィラメントは、前記縦方向又は前記横方向から傾斜した方向に沿って配列されてもよい。また、前記一方向に沿って配列された長繊維フィラメントを前記一方向に延伸することにより、長繊維フィラメントを構成する分子が、延伸方向、すなわち、長繊維フィラメントの軸方向(繊維軸方向)と平行な方向に配列する。
[第1実施形態:縦配列長繊維不織布]
以下に説明する第1実施形態においては、複数の長繊維フィラメントを各長繊維フィラメントの長さ方向(軸方向)が概ね縦方向となるように配列し、次いで、配列された複数の長繊維フィラメントを縦方向に延伸する。その結果、各長繊維フィラメントを構成する分子が縦方向に配向する。このようにして得られた長繊維不織布を「縦配列長繊維不織布」という。また、以下に説明する第2実施形態においては、複数の長繊維フィラメントを各長繊維フィラメントの長さ方向(軸方向)が概ね横方向となるように配列し、次いで、配列された複数の長繊維フィラメントを横方向に延伸する。その結果、各長繊維フィラメントを構成する分子が横方向に配向する。このようにして得られた長繊維不織布を「横配列長繊維不織布」という。なお、本明細書において、「縦方向」とは、本発明に係る長繊維不織布を製造する際の機械方向(MD方向)、すなわち、送り方向(不織布の長さ方向に相当)を意味し、「横方向」とは、前記縦方向と垂直な方向(TD方向)、すなわち、送り方向に直交する方向(不織布の幅方向に相当)を意味する。また、本発明に係る長繊維不織布は、以下の各実施形態の構成(例えば、長繊維フィラメント、長繊維フィラメントの配列、長繊維フィラメントを構成する分子の配向方向)に限定されるものではない。
好ましい本実施形態において、長繊維不織布は、熱可塑性樹脂を主成分とする複数の長繊維フィラメントを縦方向に沿って配列し、配列した複数の長繊維フィラメントを縦方向に延伸してなる縦配列長繊維不織布であり、前記延伸の倍率が好ましくは3〜6倍であり、前記長繊維不織布を構成する長繊維フィラメントの平均繊維径が0.8〜5μmであり、繊維径分布の変動係数が好ましくは0.1〜0.3である。
長繊維フィラメントは実質的に長繊維であれば良く、例えば平均長が100mmを越えている繊維(フィラメント)であり得る。前記長繊維不織布を構成する長繊維フィラメントの平均繊維径とは、後述の製造方法において、好ましくは3〜6倍に延伸された後、不織布となった状態における前記複数の長繊維フィラメントの平均直径をいうものとする。上述のように、本実施形態に係る長繊維不織布を構成する長繊維の平均繊維径は、0.8〜5μmであり、より好ましくは1〜3μmである。平均繊維径が前記範囲内にあればよく、本実施形態に係る長繊維不織布は、繊維径が0.8μm未満の長繊維及び/又は繊維径が5μmを超える長繊維を含み得る。また、繊維径分布の変動係数は、前記不織布となった状態における前記複数の長繊維フィラメントの繊維径の標準偏差を平均繊維径で割った値をいうものとする。上述のように、本実施形態に係る長繊維不織布の繊維径分布の変動係数は、好ましくは0.1〜0.3であり、より好ましくは0.15〜0.25である。主に前記長繊維不織布のきめの細かい外観および製品強度を得るためである。なお、本実施形態において、長繊維フィラメントの長さ及び繊維径は、走査型電子顕微鏡により撮影された前記長繊維不織布の写真から測定するものとし、測定値を50点の算術計算により平均繊維径及び標準偏差を求め、標準偏差を平均繊維径で除算して繊維径分布の変動係数を求める。
本実施形態に係る長繊維不織布において、長繊維フィラメントの折り畳み幅は、300mm以上であることが好ましい。フィラメントが長繊維として機能するには、折り畳み幅もある程度大きい必要があるからである。なお、長繊維フィラメントの折り畳み幅とは、紡糸された長繊維フィラメントが、縦方向に振動されてコンベア上で折り返して配置される場合における折り返し点間の略直線の部分の平均長さであって、延伸された後、不織布となった状態において目視で観察され得る長さをいうものとする。このような折り畳み幅は、後述の製造方法において、例えば、高速気流の流速及び/又は気流振動機構の回転速度に依存して変化させることができる。
本実施形態に係る長繊維不織布において、長繊維フィラメントは、上述のように熱可塑性樹脂を主成分とし、前記熱可塑性樹脂を溶融紡糸して得られる。前記熱可塑性樹脂としては、ポリエステル、特に、固有粘度IVが0.43〜0.63、好ましくは、0.48〜0.58であるポリエチレンテレフタレートが好ましい。これらは、メルトブロー法での紡糸性が良好なためである。なお、主成分以外の成分として、例えば、酸化防止剤、耐候剤、着色剤などの添加剤が、0.01〜2重量%程度含まれてもよい。
本実施形態に係る長繊維不織布(すなわち、縦配列長繊維不織布)においては、複数の長繊維フィラメントが縦方向に沿って配列されており、かつ、縦方向に延伸されている。
本実施形態に係る長繊維不織布(縦配列長繊維不織布)は、例えば、特開2018−012896号公報の段落[0021]−[0035]に開示された方法により製造できる。
図11は、縦配列長繊維不織布の製造方法に用い得る、メルトブロー法による不織布製造装置の一例を示す概略構成図である。
本実施形態においては、メルトブローダイス71に送られた溶融樹脂72が、コンベア77の進行方向に垂直に並べられた多数のノズル73から押し出されることで、多数のフィラメント81が形成される。また、ポリエステルを主成分とする前記熱可塑性樹脂の融点以上に加熱された高圧加熱エアが、エア溜75a,75bを介してスリット76a,76bから噴出される。これにより、ノズル73の下方には、ノズル73からのフィラメント81の押し出し方向とほぼ平行な高速気流が形成される。この高速気流によって、ノズル73から押し出されたフィラメント81はドラフト可能な溶融状態に維持され、また、高速気流の摩擦力によりフィラメント81にドラフトが与えられてフィラメント81が細径化される。
フィラメント81は、前記高速気流に沿って流れる。前記高速気流は、スリット76aa,76bから噴出された高圧加熱エアが合流して、コンベア77の搬送面とほぼ垂直な方向に流れる。また、高速気流の流域に配置された流振動機構79の支持軸79aが回転されることにより、コアンダ効果を利用してフィラメント81の流れる向きを変えることができる。なお、気流振動機構79の回転速度は、周壁面79bにおける振動数を、フィラメント81の振れ幅を最大とする振動数とすればよい。
スプレーノズル78より、前記高速気流中に霧状の水を噴霧することにより、フィラメント81が冷却され、急速に凝固される。
凝固したフィラメント81は、縦方向に振られながらコンベア77上に集積し、縦方向に部分的に折り畳まれて連続的に捕集される。コンベア77上のフィラメント81は、コンベア77によって図11における右方向に搬送され、延伸シリンダ82a、押さえローラ84、延伸シリンダ82b、押えゴムローラ85を介して、縦方向に部分的に折り畳まれた状態のまま、隣接するフィラメント同士が融着したウェブとなる。
延伸シリンダ82a,82bを介して得られたウェブは、さらに、引取ニップローラ88a,88bで引き取られ、ウェブは縦方向に延伸され、縦配列長繊維不織布88が得られる。
[第2実施形態:横配列長繊維不織布]
本発明の第2実施形態である長繊維不織布について説明する。本実施形態に係る長繊維不織布は、熱可塑性樹脂を主成分とする複数の長繊維フィラメントを横方向に沿って配列し、配列された複数の長繊維フィラメントを横方向に延伸してなる横配列長繊維不織布であって、前記延伸の倍率が、3〜6倍であり、延伸後の前記長繊維フィラメントの繊維径が0.8〜5μmであり、繊維径分布の変動係数が0.1〜0.3である。
本実施形態に係る長繊維不織布(横配列長繊維不織布)において、長繊維フィラメントの定義、好ましい平均長、繊維径、並びに折り畳み幅などは、第1実施形態に係る長繊維不織布(縦配列長繊維不織布)に関して説明したのと同様であって良い。また、長繊維フィラメントの材料についても、第1実施形態に係る縦配列長繊維不織布に関して説明したのと同様であって良い。本実施形態に係る長繊維不織布(横配列長繊維不織布)においては、複数の長繊維フィラメントが横方向に沿って配列されており、かつ、横方向に延伸されている。
本実施形態に係る長繊維不織布(横配列長繊維不織布)は、例えば、特開2018−092131号公報の段落[0043]−[0053]に開示された方法や、特開2018−092131号公報の段落[0054]−[0065]に開示された方法により製造できる。
図12は、横配列長繊維不織布の製造方法に用い得る、メルトブロー法による不織布製造装置の概略正面図である。
本実施形態においては、メルトブローダイス701に送られた溶融樹脂が、コンベア707の進行方向に平行に列状に並べられた多数のノズル703から押し出されることで、多数のフィラメント712が形成される。また、ポリエステルを主成分とする前記熱可塑性樹脂の融点以上に加熱された高圧加熱エアが、エア溜705a,705bを介してスリット706a,706bから噴出される。これにより、ノズル703の下方には、ノズル703からのフィラメント712の押し出し方向とほぼ平行な高速気流が形成される。この高速気流によって、ノズル703から押し出されたフィラメント711はドラフト可能な溶融状態に維持され、また、高速気流の摩擦力によりフィラメント711にドラフトが与えられてフィラメント711が細径化される。
フィラメント711は、前記高速気流に沿って流れる。前記高速気流は、スリット706a,706bから噴出された高圧加熱エアが合流して、コンベア707の搬送面とほぼ垂直な方向に流れる。また、高速気流の流域に配置された流振動機構709の支持軸709aが回転されることにより、コアンダ効果を利用してフィラメント711の流れる向きを変えることができる。なお、気流振動機構709の回転速度は、周壁面709bにおける振動数を、フィラメント711の振れ幅を最大とする振動数とすればよい。
得られたウェブ720は、コンベア707により紙面手前もしくは紙面奥に搬送され、図示しない延伸装置によって横方向に延伸される。このような延伸の工程を経て、本実施形態に係る長繊維不織布(横配列長繊維不織布)が得られる。
図13は、前記横配列長繊維不織布の製造装置の他の例(以下「第2製造装置」という)の要部構成を示す図である。図13(A)は、前記横配列長繊維不織布の第2製造装置の正面図であり、図13(B)は、前記横配列長繊維不織布の第2製造装置の側面図である。
紡糸ヘッド910は、エアー噴出部906と、エアー噴出部906の内部に配置された円筒状の紡糸ノズル部905とを含む。本実施形態においては、紡糸ヘッド910に供給された溶融樹脂が、紡糸ノズル部905内部に設けられた紡糸ノズル901から押し出されることによってフィラメント911が形成(紡糸)される。
エアー噴出部906には、一次エアースリット902、二次エアー噴出口904a,904b、斜面908a,908b、及び複数の小孔903が形成されている。
一次エアースリット902から一次エアーが高速で噴出されることで、紡糸ノズル部905の下端面の下方で減圧部分が生じ、この減圧によって紡糸ノズル901から押し出されたフィラメント911が振動する。
二次エアー噴出口904a,904bのそれぞれからは、水平な方向よりも僅かに下向きに二次エアーが噴出される。そして、二次エアー噴出口904aから噴出された二次エアーと、二次エアー噴出口904bから噴出された二次エアーとは、紡糸ノズル901の下方で衝突してコンベアベルト919の幅方向に広がる。これにより、振動しながら落下するフィラメント911がコンベアベルト919の幅方向に広がる。
また、複数の小孔903より高温のエアーを下方に向けて噴出することにより、フィラメント911の紡糸が安定する。
各冷却ノズル920は、コンベアベルト919に到達する前のフィラメント911に霧状の水等を噴霧し、これにより、フィラメント911が冷却されて凝固する。
凝固したフィラメント911は、コンベアベルト919の幅方向に配列されてコンベアベルと919上に集積され、これにより、複数のフィラメント911が幅方向に沿って配列された不織布ウェブ918がコンベアベルト919上に作製される。
そして、コンベアベルト919上に作製された不織布ウェブ918は、コンベアベルト919によって図13(A)における矢印方向に搬送され、その後、図示省略の前記延伸装置によって横方向に3〜6倍に延伸される。このようにして、前記横配列長繊維不織布が製造される。
[第3実施形態:積層体]
本発明の第3実施形態である積層体について説明する。第3実施形態に係る積層体は、延伸された複数の長繊維フィラメントが一方向に沿って配列された長繊維不織布からなる第1の繊維層と、第2の繊維層とを含み、前記第1の繊維層と前記第2の繊維層とが積層され且つ熱溶着されている。すなわち、第3実施形態に係る積層体は、前記第1の繊維層と前記第2の繊維層とを積層し、これらを熱溶着することによって形成される。前記第1の繊維層は、例えば、第1実施形態に係る縦配列長繊維不織布又は第2実施形態に係る横配列長繊維不織布である。前記第2の繊維層は、a)ポリエステルを主成分とする複数の長繊維フィラメントが前記第1の繊維層を構成する複数の長繊維に略直交するように配列されたポリエステル長繊維不織布、b)ポリプロピレンを主成分とする複数の長繊維フィラメントが前記第1の繊維層を構成する複数の長繊維に略直交するように配列されたポリプロピレン長繊維不織布、c)網状構造体、のうちのいずれか1つの繊維層又は2つ以上の繊維層の組み合わせである。以下、それぞれの典型的な態様例について説明する。なお、本実施形態において、第1、第2の繊維層という用語は、二つの異なる繊維層を区別するために用いられるものであって、積層順などを限定するものではなく、場合により互換的に用いられ得る。
本実施形態において、長繊維不織布は、熱可塑性樹脂を主成分とする複数の長繊維フィラメントを横方向に沿って配列し、配列された複数の長繊維フィラメントを横方向に延伸してなる横配列長繊維不織布であってもよい。
また、本実施形態において、長繊維不織布は、延伸された複数の長繊維フィラメントが一方向に沿って配列された長繊維不織布からなる第1の繊維層と、第2の繊維層とを含む積層体であってもよい。
しかしながら、本実施形態においては、粉塵捕集用網状構造体の通気性を向上する観点から、長繊維不織布としては縦配列長繊維不織布が好ましい。
<粉塵捕集用網状構造体の製造方法>
本実施形態にかかる粉塵捕集用網状構造体は、網状構造体1と、長繊維層2とを、熱圧着法によって接合することによって製造できる。これらの層の接合は、それぞれの層を個別に製造した後、熱圧着法によって一気に行うことができる。この場合、熱圧着の条件は、例えば、115〜140℃、好ましくは、120〜130℃の温度条件で、例えば線圧150〜260N/cm、好ましくは、線圧200〜250N/cmの圧力条件とすることができる。具体的な熱圧着の方法は、スチーム加熱ロールや誘電加熱ロールにより実施することができるが、これらの方法には限定されない。
本実施形態にかかる粉塵捕集用網状構造体は、上記のような網状構造体と長繊維層とを備えるため、十分な通気度を確保しつつ、高い捕集性能を発揮する。本実施形態の粉塵捕集用網状構造体は、例えば、ボーケン規格BQE A 030−2011に準拠して測定した花粉透過率が0.1%未満という高い捕集性能を発揮する。また、本実施形態にかかる粉塵捕集用網状構造体は、PM2.5(粒径が2.5μm以下の粒子状物質)などの大気汚染物質に対しても高い捕集性能を発揮する。
また、本実施形態にかかる粉塵捕集用網状構造体は、引裂強度や剛軟度等の機械的強度に優れるため、破損やたわみ、しわ等の不具合を生じることなく製造することができ、取り扱い性にも優れる。
そのため、本実施形態にかかる粉塵捕集用網状構造体は、例えば花粉や黄砂が多い時期、梅雨時等、窓が開けづらい季節に一時的に網戸等に着脱可能に設置することで、塵埃や花粉等の有害粉塵を捕集しつつ、排熱や外気の取入れを促進することができる。また、本実施形態にかかる粉塵捕集用網状構造体は、機械的強度が向上しているため、風圧等による異音の発生が抑制される。
次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。また、実施例及び比較例中における各値は下記の方法で求めた。
(網状構造体)
網状構造体として、以下を用いた。
網状構造体(1):4S(T)(目付:15g/m)(JX ANCI株式会社製)
網状構造体(2):HS(T)90104(目付:36g/m)(JX ANCI株式会社製)
(縦配列長繊維不織布の製造例1)
図11に示した不織布製造装置と同様の装置を用いて縦配列長繊維不織布(1)(長繊維層)を作製した。前記装置において、メルトブローダイスは、ノズル径が0.15mm、ノズルピッチが0.5mm、L/D(ノズル孔長/ノズル孔直径)=20、紡糸幅が500mmの紡糸ノズルを有するものを用い、これをコンベアの進行方向と垂直に配置した。フィラメントの原料としては、固有粘度IVが0.53、融点が260℃のポリエチレンテレフタレート(CHUNG SHING TEXTILE CO.,LTD.)を用いた。このメルトブローダイスより、1ノズル当たりの吐出量を40g/min、ダイスの温度を295℃としてフィラメントを押し出した。ノズルから押し出されたフィラメントにドラフトをかけて細径化するための高速気流は、温度を400℃、流量を0.4m3/minとした。また、スプレーノズルからは霧状の水を噴霧してフィラメントを冷却した。気流振動機構としては、図11に示すような、断面が楕円形の楕円柱部と、楕円柱部の両端のそれぞれから延びる支持軸とを有する気流振動機構を用いた。この気流振動機構は、支持軸が回転自在に支持され、不図示の駆動源で支持軸を回転させることにより、楕円柱部が支持軸を中心に回転する。このような気流振動機構についての詳細は、例えば特開2001−140159号公報に詳述されている。気流振動機構は、メルトブローダイスのノズルの延長線との距離が最小で20mmとなるように配置した。この気流振動機構を900rpm(気流振動機構の周壁面での振動数が15.0Hz)で回転させ、フィラメントを縦方向に沿って配列させた状態でコンベア上に捕集した。そして、コンベア上に捕集されたフィラメント群からなるウェブを延伸シリンダで加熱し、縦方向に4.5倍に延伸して、縦配列長繊維不織布(1)を得た。縦配列長繊維不織布(1)の目付は10g/mであった。
(縦配列長繊維不織布の製造例2)
目付が15g/mとなるように調整した以外は、「縦配列長繊維不織布の製造例1」と同様にして、縦配列長繊維不織布(2)を得た。
(縦配列長繊維不織布の製造例3)
目付が20g/mとなるように調整した以外は、「縦配列長繊維不織布の製造例1」と同様にして、縦配列長繊維不織布(3)を得た。
(縦配列長繊維不織布の製造例4)
目付が40g/mとなるように調整した以外は、「縦配列長繊維不織布の製造例1」と同様にして、縦配列長繊維不織布(4)を得た。
(実施例1〜4)
表1に示す網状構造体と縦配列長繊維不織布とを、123℃、線圧200N/cmの条件で熱圧着により接合し、粉塵捕集用網状構造体(1)〜(4)を得た。
(比較例1)
経緯整列繊維積層布(1)として、TY1010FE(目付:20g/m)(JX ANCI株式会社製)を用いた。
(比較例2)
経緯整列繊維積層布(2)として、TY1515FE(目付:30g/m)(JX ANCI株式会社製)を用いた。
Figure 2020121289
(目付)
実施例1〜4の各粉塵捕集用網状構造体及び比較例1〜2の各経緯整列繊維積層布について、1m当たりの重さを測定した。結果を表2に示す。
(剛軟度)
実施例1〜4の各粉塵捕集用網状構造体及び比較例1〜2の各経緯整列繊維積層布について、JIS L 1913:2010に準拠して、41.5°カンチレバー法により剛軟度(単位:mN・cm)を測定した。結果を表2に示す。
(引裂強度)
実施例1〜4の各粉塵捕集用網状構造体及び比較例1〜2の各経緯整列繊維積層布について、JIS K 6550:1994に準拠して、C法(トラペゾイド法)により引裂強度(単位:N)を測定した。結果を表2に示す。
(花粉透過率)
実施例1〜4の各粉塵捕集用網状構造体及び比較例1〜2の各経緯整列繊維積層布について、ボーケン規格BQE A 030−2011に準拠して、スギ花粉0.05g、12L/minの流量(直径約2cm)で吸引して、各粉塵捕集用網状構造体に残った花粉量から花粉透過率(単位:%)を算出した。結果を表2に示す。
(通気度)
実施例1〜4の各粉塵捕集用網状構造体及び比較例1〜2の各経緯整列繊維積層布について、JIS L 1096に準拠して、A法(フラジール形法)により通気度(単位:cm/cm・s)を測定した。結果を表2に示す。
Figure 2020121289
表2に示される結果から、本願発明を適用した実施例1〜4の粉塵捕集用網状構造体は、比較例1〜2の各経緯整列繊維積層布と比べて、同等以上の花粉透過率を維持しつつ、通気度が向上していることが確認された。
また、本願発明を適用した実施例1〜4の粉塵捕集用網状構造体は、比較例1〜2の各経緯整列繊維積層布と比べて、剛軟度及び引裂強度が向上していることが確認された。
(フィルター初期性能の評価)
実施例2、3及び5の各粉塵捕集用網状構造体について、フィルター性能試験機(東京ダイレック株式会社製DFT−4)により、表3に示す粒子径範囲に含まれる粒子を捕集対象とした場合の粒子捕集効率(%)を評価した。試験粒子種は大気塵を使用した。試験風速は10cm/sとした。捕集効率は光散乱法式のパーティクルカウンタ(TSI Model 3330)を用いて算出した。結果を表3に示す。
Figure 2020121289
表3に示す結果から、本願発明を適用した実施例2、3及び5の粉塵捕集用網状構造体は、PM2.5(粒径が2.5μm以下の粒子状物質)などの大気汚染物質に対して高い捕集性能を発揮できることが確認された。
1 網状構造体
12 スプリットウェブ
121 幹繊維
122 枝繊維
2 不織布
2−1 スプリットウェブ(縦ウェブ)
2−2 スプリットウェブ(横ウェブ)
13 スリットウェブ
12a,13a 熱可塑性樹脂層
12b,13b 接着層
12c,13c 接着層
L、T 配向軸
71 メルトブローダイス
72 溶融樹脂
73 ノズル
75a,75b, エア溜
76a,76b スリット
77 コンベア
78 スプレーノズル
79 気流振動機構
79a 回転軸
79b 周壁面
81 フィラメント
82a,82b 延伸シリンダ
83 コンベアローラ
84 押さえローラ
85 押さえゴムローラ
86a,86b 引取ニップローラ
88 縦配列伸縮性長繊維不織布
700 気流軸

Claims (6)

  1. 網状構造体と、前記網状構造体上に形成された長繊維層とを含む粉塵捕集用網状構造体であって、
    前記網状構造体は、熱可塑性樹脂層と、少なくとも片面に積層された接着層とをを含む多層フィルムの一軸配向体を2以上含み、
    前記網状構造体は、前記2以上の一軸配向体の配向軸が交差するように、前記2以上の一軸配向体を前記接着層を介して積層もしくは織成してなる、
    粉塵捕集用網状構造体。
  2. 前記長繊維層は、延伸された複数の長繊維フィラメントが一方向に沿って配列されて形成されており、構成繊維の平均繊維径が0.8〜5μmである、請求項1に記載の粉塵捕集用網状構造体。
  3. 目付が20〜90g/mである、請求項1又は2に記載の粉塵捕集用網状構造体。
  4. JIS L 1096に準拠して測定した通気度が10〜100cm/cm・sである、請求項1〜3のいずれか一項に記載の粉塵捕集用網状構造体。
  5. JIS K 6550:1994に準拠して測定した引裂強度が、MD方向及びCD方向において6〜100Nである、請求項1〜4のいずれか一項に記載の粉塵捕集用網状構造体。
  6. JIS L 1913:2010に準拠して測定した剛軟度が、MD方向及びCD方向において0.8〜30mN・cmである、請求項1〜5のいずれか一項に記載の粉塵捕集用網状構造体。
JP2019015991A 2019-01-31 2019-01-31 粉塵捕集用網状構造体 Pending JP2020121289A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015991A JP2020121289A (ja) 2019-01-31 2019-01-31 粉塵捕集用網状構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015991A JP2020121289A (ja) 2019-01-31 2019-01-31 粉塵捕集用網状構造体

Publications (1)

Publication Number Publication Date
JP2020121289A true JP2020121289A (ja) 2020-08-13

Family

ID=71993305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015991A Pending JP2020121289A (ja) 2019-01-31 2019-01-31 粉塵捕集用網状構造体

Country Status (1)

Country Link
JP (1) JP2020121289A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797758A (ja) * 1993-09-24 1995-04-11 Nippon Petrochem Co Ltd 強化メルトブロー不織布
JP2003236964A (ja) * 2002-02-20 2003-08-26 Nippon Petrochemicals Co Ltd 強化延伸不織布
WO2013147051A1 (ja) * 2012-03-29 2013-10-03 株式会社クラレ 不織繊維シート及びその製造方法並びにフィルター
JP2015113539A (ja) * 2013-12-11 2015-06-22 Jx日鉱日石エネルギー株式会社 網状不織布及び強化積層体
JP2017002428A (ja) * 2015-06-10 2017-01-05 Jxエネルギー株式会社 網状構造体
JP2018012896A (ja) * 2016-07-19 2018-01-25 Jxtgエネルギー株式会社 長繊維不織布
JP2019005939A (ja) * 2017-06-21 2019-01-17 Jxtgエネルギー株式会社 吸音材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797758A (ja) * 1993-09-24 1995-04-11 Nippon Petrochem Co Ltd 強化メルトブロー不織布
JP2003236964A (ja) * 2002-02-20 2003-08-26 Nippon Petrochemicals Co Ltd 強化延伸不織布
WO2013147051A1 (ja) * 2012-03-29 2013-10-03 株式会社クラレ 不織繊維シート及びその製造方法並びにフィルター
JP2015113539A (ja) * 2013-12-11 2015-06-22 Jx日鉱日石エネルギー株式会社 網状不織布及び強化積層体
JP2017002428A (ja) * 2015-06-10 2017-01-05 Jxエネルギー株式会社 網状構造体
JP2018012896A (ja) * 2016-07-19 2018-01-25 Jxtgエネルギー株式会社 長繊維不織布
JP2019005939A (ja) * 2017-06-21 2019-01-17 Jxtgエネルギー株式会社 吸音材

Similar Documents

Publication Publication Date Title
CN101495189B (zh) 具有单组分过滤/加固单层的平折式呼吸器
US4107364A (en) Random laid bonded continuous filament cloth
US4209563A (en) Method for making random laid bonded continuous filament cloth
JP5021740B2 (ja) 単一成分の濾過/補強単一層を有する折り畳み式マスク
US8308833B2 (en) Nonwoven fabric for filters
JP2015007303A (ja) 複合不織布ウェブ並びにこれの製造及び使用方法
KR101918913B1 (ko) 공-혼합된 구조물을 형성하기 위한 멀티-다이 멜트 블로잉 시스템 및 이의 형성 방법
JPWO2019031286A1 (ja) メルトブローン不織布、それを用いた積層体、メルトブローン不織布の製造方法およびメルトブロー装置
US20200139282A1 (en) Spunbond non-woven fabric for filter and method of manufacturing said fabric
JPS6233343B2 (ja)
JP6694241B2 (ja) 伸縮性長繊維不織布
JP6968614B2 (ja) 不織布製吸音材
JP3657415B2 (ja) 不織布及びその製造方法
JP6811685B2 (ja) 吸音材
JP6716380B2 (ja) 長繊維不織布
JP2009068133A (ja) 空気浄化用フィルター及び空気浄化用フィルター組立体
JP2020121289A (ja) 粉塵捕集用網状構造体
EP1288362A2 (en) Composite nonwoven fabric having high strength and superior printability and fabrication method of the same
WO2018097326A1 (ja) 吸音材用不織布及びそれを用いた吸音材
JP4431466B2 (ja) 複合不織布及びエアフィルター
WO2020203357A1 (ja) 吸音材
CN110024022A (zh) 吸声材料用无纺布及使用该无纺布的吸声材料
JP2006296463A (ja) カーテン用基布およびカーテン
JPH01201567A (ja) 嵩高スパンボンド不織布の製造方法
US11795593B2 (en) Filter medium, filter element and use thereof and filter arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131