JP2020113588A - Electrostatic chuck - Google Patents

Electrostatic chuck Download PDF

Info

Publication number
JP2020113588A
JP2020113588A JP2019001552A JP2019001552A JP2020113588A JP 2020113588 A JP2020113588 A JP 2020113588A JP 2019001552 A JP2019001552 A JP 2019001552A JP 2019001552 A JP2019001552 A JP 2019001552A JP 2020113588 A JP2020113588 A JP 2020113588A
Authority
JP
Japan
Prior art keywords
plate
base member
electrostatic chuck
supply port
shaped member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019001552A
Other languages
Japanese (ja)
Other versions
JP7308035B2 (en
Inventor
翔太 齊藤
Shota Saito
翔太 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2019001552A priority Critical patent/JP7308035B2/en
Publication of JP2020113588A publication Critical patent/JP2020113588A/en
Application granted granted Critical
Publication of JP7308035B2 publication Critical patent/JP7308035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

To sufficiently improve uniformity of a temperature distribution of a front face of a plate-like member of an electrostatic chuck.SOLUTION: An electrostatic chuck comprises: a plate-like member having a first front face almost orthogonal to a first direction and a second front face on the side opposite to the first front face; a base member having a third front face, and arranged so that the third front face is opposite to the second front face of the plate-like member; and a joint part that is arranged between the second front face of the plate-like member and the third front face of the base member, and joints the plate-like member and the base member, and is a device for holding an object onto the first front face of the plate-like member. The base member is provided with a supply port that opens to a side face of the base member, and a coolant passage communicated with the supply port, and a whole of the supply port is arranged on an outer side from an outer peripheral edge of the first front face of the plate-like member in a view of a first direction.SELECTED DRAWING: Figure 3

Description

本明細書に開示される技術は、静電チャックに関する。 The technology disclosed in this specification relates to an electrostatic chuck.

例えば半導体を製造する際にウェハを保持するために、静電チャックが用いられる。静電チャックは、所定の方向(以下、「第1の方向」という)に略垂直な略平面状の表面(以下、「吸着面」という)を有する板状部材と、ベース部材と、板状部材とベース部材とを接合する接合部と、板状部材の内部に設けられたチャック電極とを備えている。静電チャックは、チャック電極に電圧が印加されることにより発生する静電引力を利用して、板状部材の吸着面にウェハを吸着して保持する。 Electrostatic chucks are used, for example, to hold wafers during semiconductor manufacturing. The electrostatic chuck includes a plate-shaped member having a substantially planar surface (hereinafter, referred to as “adsorption surface”) substantially perpendicular to a predetermined direction (hereinafter, referred to as “first direction”), a base member, and a plate-shaped member. A joining portion that joins the member and the base member, and a chuck electrode provided inside the plate-shaped member are provided. The electrostatic chuck uses an electrostatic attractive force generated by applying a voltage to the chuck electrode to attract and hold the wafer on the attracting surface of the plate-shaped member.

静電チャックの吸着面に保持されたウェハの温度分布が不均一になると、ウェハに対する各処理(成膜、エッチング等)の精度が低下するおそれがあるため、静電チャックにはウェハの温度分布をできるだけ均一にする性能が求められる。そのため、ベース部材には、側面(板状部材に対向する表面における外縁と、当該面とは反対側の表面における外縁とを繋ぐ表面)に開口する供給口および排出口と、供給口と排出口との間を結ぶ冷媒流路とが形成されており、冷媒流路に冷媒を供給することによって板状部材の吸着面の温度制御が行われる(例えば、特許文献1参照)。 If the temperature distribution of the wafer held on the attracting surface of the electrostatic chuck becomes uneven, the accuracy of each process (deposition, etching, etc.) on the wafer may decrease. Is required to be as uniform as possible. Therefore, in the base member, a supply port and a discharge port, a supply port and a discharge port that are opened on a side surface (a surface that connects the outer edge of the surface facing the plate member and the outer edge of the surface opposite to the surface). And a refrigerant flow path connecting between the refrigerant flow path and the refrigerant flow path are formed, and the temperature of the adsorption surface of the plate-shaped member is controlled by supplying the refrigerant to the refrigerant flow path (for example, see Patent Document 1).

特開2008−251681号公報JP, 2008-251681, A

冷媒流路内の冷媒の温度は、冷媒が供給される供給口において最も低い。また、ベース部材に形成された供給口から供給される冷媒は、その供給口付近において乱流が発生しやすい。このため、従来の静電チャックでは、上記第1の方向視で板状部材の吸着面における供給口付近に重なる位置が低温の温度特異点となりやすく、吸着面の温度分布の均一性を十分に向上させることができない、という課題がある。 The temperature of the refrigerant in the refrigerant channel is the lowest at the supply port to which the refrigerant is supplied. Further, the refrigerant supplied from the supply port formed in the base member is likely to generate turbulent flow near the supply port. Therefore, in the conventional electrostatic chuck, the position overlapping the vicinity of the supply port on the suction surface of the plate-shaped member in the first direction is likely to be a low temperature singular point, and the temperature distribution on the suction surface is sufficiently uniform. There is a problem that it cannot be improved.

本明細書では、上述した課題を解決することが可能な技術を開示する。 This specification discloses a technique capable of solving the above-mentioned problems.

本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。 The technology disclosed in this specification can be implemented, for example, in the following modes.

(1)本明細書に開示される静電チャックは、第1の方向に略直交する第1の表面と、前記第1の表面とは反対側の第2の表面と、を有する板状部材と、第3の表面を有し、前記第3の表面が前記板状部材の前記第2の表面に対向するように配置されたベース部材と、前記板状部材の前記第2の表面と前記ベース部材の前記第3の表面との間に配置され、前記板状部材と前記ベース部材とを接合する接合部と、を備え、前記板状部材の前記第1の表面上に対象物を保持する静電チャックにおいて、前記ベース部材には、前記ベース部材の側面に開口する供給口と、前記供給口に連通する冷媒流路と、が形成されており、前記第1の方向視で、前記供給口の全体は、前記板状部材の前記第1の表面の外周縁より外側に配置されている。ここで、ベース部材に形成された冷媒流路内の冷媒の温度は、冷媒が供給される供給口において最も低い。また、ベース部材に形成された供給口から供給される冷媒は、その供給口付近において乱流が発生しやすい。また、供給口がベース部材の下面に形成されている構成では、第1の方向視で、冷媒流路の内の供給口付近において、冷媒の滞留時間が比較的長くなる。このため、板状部材の第1の表面において、第1の方向視で供給口に重なる領域は低温の温度特異点になりやすい。本静電チャックでは、ベース部材の側面に供給口が開口しており、かつ、供給口に連通する冷媒流路がベース部材に形成されている。また、第1の方向視で、供給口の全体が、板状部材の第1の表面の外周縁より外側に配置されている。このため、本静電チャックによれば、供給口の存在に起因して板状部材の第1の表面に低温の温度特異点が発生することを抑制することができ、その結果、板状部材の第1の表面における温度分布の均一性を向上させることができる。 (1) An electrostatic chuck disclosed in the present specification is a plate-shaped member having a first surface substantially orthogonal to a first direction and a second surface opposite to the first surface. A base member having a third surface, the third surface being arranged so as to face the second surface of the plate member; the second surface of the plate member; A joint portion arranged between the third surface of the base member and joining the plate member and the base member, and holding an object on the first surface of the plate member. In the electrostatic chuck, the base member is provided with a supply port that opens to a side surface of the base member, and a coolant flow path that communicates with the supply port. The entire supply port is arranged outside the outer peripheral edge of the first surface of the plate-shaped member. Here, the temperature of the refrigerant in the refrigerant passage formed in the base member is the lowest at the supply port to which the refrigerant is supplied. Further, the refrigerant supplied from the supply port formed in the base member is likely to generate turbulent flow near the supply port. Further, in the configuration in which the supply port is formed on the lower surface of the base member, the staying time of the refrigerant becomes relatively long in the vicinity of the supply port in the refrigerant flow path in the first direction. Therefore, on the first surface of the plate-shaped member, the region overlapping the supply port in the first direction tends to be a low temperature singular point. In this electrostatic chuck, the supply port is opened on the side surface of the base member, and the coolant channel communicating with the supply port is formed in the base member. Further, when viewed in the first direction, the entire supply port is arranged outside the outer peripheral edge of the first surface of the plate-shaped member. Therefore, according to the present electrostatic chuck, it is possible to suppress the occurrence of a low temperature singularity on the first surface of the plate-shaped member due to the presence of the supply port, and as a result, the plate-shaped member The uniformity of the temperature distribution on the first surface of can be improved.

(2)上記静電チャックにおいて、前記供給口から、前記冷媒流路の延伸方向における前記冷媒流路の全長の3分の1までの部分は、前記第1の方向視で、変曲点を含まない形状である構成としてもよい。このような構成の静電チャックでは、冷媒流路の内、冷媒の温度が比較的低い供給口付近の部分においても、乱流の発生を抑止することができる。従って、本静電チャックによれば、供給口付近の冷媒の乱流に起因して板状部材第1の表面に低温の温度特異点が発生することを抑制することができ、その結果、板状部材の第1の表面における温度分布の均一性を更に効果的に向上させることができる。 (2) In the electrostatic chuck, a portion from the supply port to one-third of the entire length of the refrigerant channel in the extending direction of the refrigerant channel has an inflection point in the first direction view. A configuration that does not include the shape may be used. With the electrostatic chuck having such a configuration, it is possible to suppress the occurrence of turbulent flow even in the vicinity of the supply port where the temperature of the refrigerant is relatively low in the refrigerant flow path. Therefore, according to the present electrostatic chuck, it is possible to suppress the occurrence of a low temperature singularity point on the first surface of the plate-shaped member due to the turbulent flow of the refrigerant near the supply port, and as a result, the plate The uniformity of the temperature distribution on the first surface of the strip-shaped member can be improved more effectively.

(3)上記静電チャックにおいて、前記ベース部材には、前記冷媒流路に連通し、かつ、前記ベース部材の側面に開口する排出口、が形成されており、前記第1の方向視で、前記排出口の全体は、前記板状部材の前記第1の表面の外周縁より外側に配置されている、ことを特徴とする構成としてもよい。ここで、ベース部材の冷媒流路に供給された冷媒は、その排出口においても乱流が発生しやすい。このため、板状部材の第1の表面において、第1の方向視で排出口に重なる領域は低温の温度特異点となりやすい。上記構成の静電チャックでは、上述の通り、第1の方向視において、排出口の全体が、板状部材の第1の表面の外周縁より外側に配置されている。このため、本実施形態の静電チャックによれば、排出口の存在に起因して板状部材の第1の表面に低温の温度特異点が発生することを抑制することができ、その結果、板状部材の第1の表面における温度分布の均一性を更に効果的に向上させることができる。 (3) In the electrostatic chuck, the base member is formed with a discharge port that communicates with the coolant channel and that opens to a side surface of the base member. When viewed in the first direction, The entire discharge port may be arranged outside the outer peripheral edge of the first surface of the plate-shaped member. Here, the refrigerant supplied to the refrigerant passage of the base member is likely to cause turbulent flow even at its outlet. For this reason, on the first surface of the plate-shaped member, the region overlapping the outlet in the first direction tends to be a low temperature singular point. In the electrostatic chuck having the above configuration, as described above, the entire discharge port is arranged outside the outer peripheral edge of the first surface of the plate-shaped member in the first direction. Therefore, according to the electrostatic chuck of the present embodiment, it is possible to suppress the occurrence of a low temperature singularity point on the first surface of the plate-shaped member due to the existence of the discharge port, and as a result, The uniformity of temperature distribution on the first surface of the plate member can be improved more effectively.

なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、保持装置、静電チャック、真空チャック、それらの製造方法等の形態で実現することが可能である。 The technology disclosed in the present specification can be realized in various forms, for example, a holding device, an electrostatic chuck, a vacuum chuck, a manufacturing method thereof, or the like. is there.

第1実施形態における静電チャック100の外観構成を概略的に示す斜視図である。It is a perspective view which shows the external appearance structure of the electrostatic chuck 100 in 1st Embodiment roughly. 第1実施形態における静電チャック100のXZ断面構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the XZ cross-section structure of the electrostatic chuck 100 in 1st Embodiment. 第1実施形態における静電チャック100のXY断面構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the XY cross-section structure of the electrostatic chuck 100 in 1st Embodiment. 第1実施形態における静電チャック100の一部分の断面構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the cross-sectional structure of a part of electrostatic chuck 100 in 1st Embodiment. 第1実施形態における静電チャック100の一部分の断面構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the cross-sectional structure of a part of electrostatic chuck 100 in 1st Embodiment. 第2実施形態の静電チャック100aの構成を概略的に示す説明図である。It is explanatory drawing which shows roughly the structure of the electrostatic chuck 100a of 2nd Embodiment.

A.第1実施形態:
A−1.静電チャック100の構成:
図1は、第1実施形態における静電チャック100の外観構成を概略的に示す斜視図であり、図2は、第1実施形態における静電チャック100のXZ断面構成を概略的に示す説明図であり、図3は、第1実施形態における静電チャック100のXY断面構成を概略的に示す説明図である。図2には、図3のII−IIの位置における静電チャック100のXZ断面構成が示されており、図3には、図2のIII−IIIの位置における静電チャック100のXY断面構成が示されている。また、図4および図5は、第1実施形態における静電チャック100の一部分の断面構成を概略的に示す説明図である。図4には、図3のIV−IVの位置における静電チャック100の一部分のZ軸に平行な断面構成が示されており、図5には、図3のV−Vの位置における静電チャック100の一部分のZ軸に平行な断面構成が示されている。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向といい、Z軸負方向を下方向というものとするが、静電チャック100は実際にはそのような向きとは異なる向きで設置されてもよい。上下方向は、特許請求の範囲における第1の方向に相当する。
A. First embodiment:
A-1. Structure of the electrostatic chuck 100:
FIG. 1 is a perspective view schematically showing an external configuration of the electrostatic chuck 100 according to the first embodiment, and FIG. 2 is an explanatory diagram schematically showing an XZ sectional configuration of the electrostatic chuck 100 according to the first embodiment. FIG. 3 is an explanatory diagram schematically showing the XY cross-sectional structure of the electrostatic chuck 100 in the first embodiment. 2 shows an XZ sectional configuration of the electrostatic chuck 100 at a position II-II in FIG. 3, and FIG. 3 shows an XY sectional configuration of the electrostatic chuck 100 at a position III-III in FIG. It is shown. 4 and 5 are explanatory views schematically showing a sectional configuration of a part of the electrostatic chuck 100 in the first embodiment. FIG. 4 shows a cross-sectional structure of a portion of the electrostatic chuck 100 at the position IV-IV in FIG. 3 parallel to the Z axis, and FIG. 5 shows electrostatic discharge at the position VV in FIG. A cross-sectional configuration of a portion of chuck 100 parallel to the Z-axis is shown. In each drawing, XYZ axes that are orthogonal to each other for specifying directions are shown. In this specification, the Z-axis positive direction is referred to as an upward direction and the Z-axis negative direction is referred to as a downward direction for convenience sake, but the electrostatic chuck 100 is actually installed in a direction different from such an orientation. May be done. The up-down direction corresponds to the first direction in the claims.

静電チャック100は、対象物(例えば半導体ウェハW)を静電引力により吸着して保持する装置であり、例えば半導体製造装置の真空チャンバ内で半導体ウェハW(以下、「ウェハW」という)を固定するために使用される。静電チャック100は、所定の配列方向(本実施形態では上下方向(Z軸方向))に並べて配置された板状部材10およびベース部材20を備える。板状部材10とベース部材20とは、板状部材10の下面S2(図2参照)とベース部材20の上面S3とが、後述する接合部30を挟んで上記配列方向に対向するように配置される。すなわち、ベース部材20は、ベース部材20の上面S3が板状部材10の下面S2側に位置するように配置される。 The electrostatic chuck 100 is a device that attracts and holds an object (for example, a semiconductor wafer W) by electrostatic attraction, and holds a semiconductor wafer W (hereinafter, referred to as “wafer W”) in a vacuum chamber of a semiconductor manufacturing apparatus, for example. Used to fix. The electrostatic chuck 100 includes a plate-shaped member 10 and a base member 20, which are arranged side by side in a predetermined arrangement direction (the vertical direction (Z-axis direction in this embodiment)). The plate-shaped member 10 and the base member 20 are arranged such that the lower surface S2 (see FIG. 2) of the plate-shaped member 10 and the upper surface S3 of the base member 20 face each other in the above-mentioned arrangement direction with a joint portion 30 described later interposed therebetween. To be done. That is, the base member 20 is arranged such that the upper surface S3 of the base member 20 is located on the lower surface S2 side of the plate member 10.

板状部材10は、上述した配列方向(Z軸方向)に略直交する略円形平面状の上面(以下、「吸着面」という)S1を有する部材であり、例えばセラミックスにより形成されている。セラミックスとしては、強度や耐摩耗性、耐プラズマ性等の観点から、例えば、酸化アルミニウム(アルミナ、Al)または窒化アルミニウム(AlN)を主成分とするセラミックスを用いることが好ましい。なお、ここでいう主成分とは、含有割合(重量割合)の最も多い成分を意味する。板状部材10の直径は例えば50mm〜500mm程度(通常は200mm〜350mm程度)であり、板状部材10の厚さは例えば1mm〜10mm程度である。なお、板状部材10の吸着面S1は、特許請求の範囲における第1の表面に相当し、板状部材10の下面S2は、特許請求の範囲における第2の表面に相当し、Z軸方向は、特許請求の範囲における第1の方向に相当する。また、本明細書では、Z軸方向に直交する方向を「面方向」という。 The plate-shaped member 10 is a member having a substantially circular planar upper surface (hereinafter, referred to as “adsorption surface”) S1 that is substantially orthogonal to the arrangement direction (Z-axis direction) described above, and is made of, for example, ceramics. From the viewpoint of strength, wear resistance, plasma resistance, etc., it is preferable to use, for example, ceramics containing aluminum oxide (alumina, Al 2 O 3 ) or aluminum nitride (AlN) as a main component. In addition, the main component here means a component with the largest content ratio (weight ratio). The plate member 10 has a diameter of, for example, about 50 mm to 500 mm (usually about 200 mm to 350 mm), and the plate member 10 has a thickness of, for example, about 1 mm to 10 mm. The suction surface S1 of the plate member 10 corresponds to the first surface in the claims, and the lower surface S2 of the plate member 10 corresponds to the second surface in the claims in the Z-axis direction. Corresponds to the first direction in the claims. Further, in this specification, a direction orthogonal to the Z-axis direction is referred to as a “plane direction”.

図2に示すように、板状部材10の内部には、導電性材料(例えば、タングステン、モリブデン、白金等)により形成されたチャック電極40が配置されている。Z軸方向視でのチャック電極40の形状は、例えば略円形である。チャック電極40に電源(図示せず)から電圧が印加されると、静電引力が発生し、この静電引力によってウェハWが板状部材10の吸着面S1に吸着固定される。 As shown in FIG. 2, inside the plate-shaped member 10, a chuck electrode 40 formed of a conductive material (for example, tungsten, molybdenum, platinum, etc.) is arranged. The shape of the chuck electrode 40 as viewed in the Z-axis direction is, for example, a substantially circular shape. When a voltage is applied to the chuck electrode 40 from a power source (not shown), electrostatic attraction is generated, and the electrostatic attraction causes the wafer W to be attracted and fixed to the attraction surface S1 of the plate-shaped member 10.

板状部材10の内部には、また、導電性材料(例えば、タングステン、モリブデン、白金等)を含む抵抗発熱体により構成されたヒータ電極50が配置されている。ヒータ電極50に電源(図示せず)から電圧が印加されると、ヒータ電極50が発熱することによって板状部材10が温められ、板状部材10の吸着面S1に保持されたウェハWが温められる。これにより、ウェハWの温度分布の制御が実現される。 Inside the plate-shaped member 10, a heater electrode 50 composed of a resistance heating element containing a conductive material (for example, tungsten, molybdenum, platinum, etc.) is also arranged. When a voltage is applied to the heater electrode 50 from a power source (not shown), the heater electrode 50 generates heat to warm the plate-shaped member 10 and warm the wafer W held on the suction surface S1 of the plate-shaped member 10. To be Thereby, control of the temperature distribution of the wafer W is realized.

ベース部材20は、例えば板状部材10と同径の、または、板状部材10より径が大きい円形平面の板状部材であり、例えば金属(アルミニウムやアルミニウム合金等)により形成されている。ベース部材20の直径は例えば220mm〜550mm程度(通常は220mm〜350mm)であり、ベース部材20の厚さは例えば20mm〜40mm程度である。なお、ベース部材20の上面S3は、特許請求の範囲における第3の表面に相当する。 The base member 20 is, for example, a circular flat plate member having the same diameter as the plate member 10 or a diameter larger than that of the plate member 10, and is made of, for example, metal (aluminum, aluminum alloy, or the like). The diameter of the base member 20 is, for example, about 220 mm to 550 mm (normally 220 mm to 350 mm), and the thickness of the base member 20 is, for example, about 20 mm to 40 mm. The upper surface S3 of the base member 20 corresponds to the third surface in the claims.

ベース部材20は、板状部材10の下面S2とベース部材20の上面S3との間に配置された接合部30によって、板状部材10に接合されている。接合部30は、例えばシリコーン系樹脂やアクリル系樹脂、エポキシ系樹脂等の樹脂材料(接着材料)により構成されている。接合部30の厚さは、例えば0.1mm〜1mm程度である。なお、接合部30は、板状部材10の下面S2の全面に配置されていてもよく、または、下面S2の一部のみに配置されていてもよい。 The base member 20 is joined to the plate member 10 by the joint portion 30 arranged between the lower surface S2 of the plate member 10 and the upper surface S3 of the base member 20. The joint portion 30 is made of a resin material (adhesive material) such as silicone resin, acrylic resin, or epoxy resin. The thickness of the joint portion 30 is, for example, about 0.1 mm to 1 mm. The joining portion 30 may be arranged on the entire lower surface S2 of the plate-shaped member 10, or may be arranged only on a part of the lower surface S2.

ベース部材20の内部には冷媒流路200が形成されている。冷媒流路200に冷媒(例えば、フッ素系不活性液体や水等)が流されると、ベース部材20が冷却され、接合部30を介したベース部材20と板状部材10との間の伝熱(熱引き)により板状部材10が冷却され、板状部材10の吸着面S1に保持されたウェハWが冷却される。これにより、ウェハWの温度分布の制御が実現される。 A coolant channel 200 is formed inside the base member 20. When a coolant (for example, a fluorine-based inert liquid, water, etc.) is flown through the coolant channel 200, the base member 20 is cooled, and heat is transferred between the base member 20 and the plate-shaped member 10 via the joint portion 30. The plate member 10 is cooled by (heat extraction), and the wafer W held on the suction surface S1 of the plate member 10 is cooled. Thereby, control of the temperature distribution of the wafer W is realized.

ベース部材20の冷媒流路200に関する構成について、さらに詳細に説明する。図3に示すように、ベース部材20の側面S5には、供給口201と排出口202とが開口している。より詳細には、供給口201と排出口202とは、Z軸方向視で、その全体が、板状部材10の吸着面S1の外周縁より外側に配置されている。なお、ベース部材20の側面S5とは、ベース部材20の上面S3における外縁と下面S4における外縁とを繋ぐ面である。 The configuration of the coolant flow path 200 of the base member 20 will be described in more detail. As shown in FIG. 3, a supply port 201 and a discharge port 202 are opened on the side surface S5 of the base member 20. More specifically, the supply port 201 and the discharge port 202 are entirely arranged outside the outer peripheral edge of the suction surface S1 of the plate-shaped member 10 when viewed in the Z-axis direction. The side surface S5 of the base member 20 is a surface that connects the outer edge of the upper surface S3 and the outer edge of the lower surface S4 of the base member 20.

冷媒流路200は、供給口201と排出口202とを結ぶように形成されている。より詳細には、冷媒流路200は、主流路220と、供給側流路211と、排出側流路212とを有している。主流路220は、ベース部材20の上面S3に略平行な方向に延び、供給側流路211と排出側流路212との間を結ぶように形成されている。本実施形態の静電チャック100では、主流路220は、Z軸方向視において、ベース部材20の中心付近で折り返された螺旋形状に形成されている。また、供給側流路211は、Z軸方向視において、主流路220の内の供給側流路211に接続する周辺部分における延伸方向D(以下、「供給側周辺延伸方向Df」という)に延び、Y軸方向視において、供給口201からベース部材20の上面S3に略平行な方向(本実施形態ではX軸方向)に形成されている。より詳細には、供給側流路211は、Z軸方向視において、供給側流路211の長手方向に沿った直線L1と、ベース部材20の接線L2とのなす角θiが45°以下となるよう形成されている。また、排出側流路212は、Z軸方向視において、主流路220の内の排出側流路212に接続する周辺部分における延伸方向D(以下、「排出側周辺延伸方向De」という)に延び、Y軸方向視において、排出口202からベース部材20の上面S3に略平行な方向(本実施形態ではX軸方向)に形成されている。すなわち、供給側流路211および排出側流路212は、Z軸方向視およびY軸方向視において、変曲点を含まない形状である。 The coolant channel 200 is formed so as to connect the supply port 201 and the discharge port 202. More specifically, the refrigerant flow path 200 has a main flow path 220, a supply-side flow path 211, and a discharge-side flow path 212. The main flow channel 220 extends in a direction substantially parallel to the upper surface S3 of the base member 20 and is formed so as to connect the supply side flow channel 211 and the discharge side flow channel 212. In the electrostatic chuck 100 of the present embodiment, the main flow path 220 is formed in a spiral shape that is folded back near the center of the base member 20 when viewed in the Z-axis direction. In addition, the supply-side flow passage 211 extends in a stretching direction D (hereinafter, referred to as “supply-side peripheral stretching direction Df”) in a peripheral portion of the main flow passage 220 that is connected to the supply-side flow passage 211 when viewed in the Z-axis direction. , As viewed in the Y-axis direction, it is formed in a direction substantially parallel to the upper surface S3 of the base member 20 from the supply port 201 (the X-axis direction in this embodiment). More specifically, in the supply-side flow passage 211, an angle θi formed by a straight line L1 along the longitudinal direction of the supply-side flow passage 211 and a tangent line L2 of the base member 20 is 45° or less when viewed in the Z-axis direction. Are formed. Further, the discharge-side flow passage 212 extends in a stretching direction D (hereinafter, referred to as “discharge-side peripheral stretching direction De”) in a peripheral portion of the main flow passage 220 that is connected to the discharge-side flow passage 212 when viewed in the Z-axis direction. , As viewed in the Y-axis direction, it is formed in a direction substantially parallel to the upper surface S3 of the base member 20 from the discharge port 202 (X-axis direction in the present embodiment). That is, the supply-side flow path 211 and the discharge-side flow path 212 have a shape that does not include an inflection point when viewed in the Z-axis direction and the Y-axis direction.

また、図3に示すように、Z軸方向視で、主流路220の一部分は、板状部材10の吸着面S1の外周縁より外側に配置されている。具体的には、供給口201から延びる供給側流路211に隣接する(つながる)主流路220の一部分(図3のX1部)と、排出口202から延びる排出側流路212に隣接する(つながる)主流路220の一部分(図3のX2部)とが、板状部材10の吸着面S1の外周縁より外側に配置されている。なお、本実施形態では、供給側流路211と主流路220との接続箇所、および、排出側流路212と主流路220との接続箇所も、板状部材10の吸着面S1の外周縁より外側に配置されている。 Further, as shown in FIG. 3, a part of the main flow path 220 is arranged outside the outer peripheral edge of the suction surface S1 of the plate-shaped member 10 when viewed in the Z-axis direction. Specifically, a part (X1 portion in FIG. 3) of the main flow channel 220 adjacent to (connected to) the supply-side flow path 211 extending from the supply port 201 and a discharge-side flow path 212 extending from the discharge port 202 (connected). ) A part of the main flow path 220 (X2 portion in FIG. 3) is arranged outside the outer peripheral edge of the suction surface S1 of the plate member 10. In the present embodiment, the connection between the supply-side flow passage 211 and the main flow passage 220 and the connection between the discharge-side flow passage 212 and the main flow passage 220 are also closer to the outer peripheral edge of the suction surface S1 of the plate member 10. It is located outside.

また、図4に示すように、Z軸方向に平行であり、供給口201の中心を通り、かつ、供給口201から延びる供給側流路211に隣接する(つながる)主流路220の一部分を通る断面(例えば、図4に示す断面)において、供給側流路211は、Z軸方向において、主流路220の高さ方向の略中央において主流路220に接続されている。同様に、図5に示すように、Z軸方向に平行であり、排出口202の中心を通り、かつ、排出口202から延びる排出側流路212に隣接する(つながる)主流路220の一部分を通る断面(例えば、図5に示す断面)において、排出側流路212は、Z軸方向において、主流路220の高さ方向の略中央において主流路220に接続されている。このため、供給口201から供給される冷媒は、供給側流路211、主流路220、排出側流路212におけるそれぞれの内部において、吸着面S1に略平行な面方向に流れ、排出口202から排出される。また、図3に示すように、供給側流路211および排出側流路212は、Z軸方向視において、主流路220の幅方向の略中央においてそれぞれ主流路220に接続されている。 Further, as shown in FIG. 4, it passes through the center of the supply port 201 and passes through a part of the main flow channel 220 adjacent to (connected to) the supply-side flow channel 211 extending from the supply port 201, as shown in FIG. In the cross section (for example, the cross section shown in FIG. 4 ), the supply-side flow passage 211 is connected to the main flow passage 220 at approximately the center in the height direction of the main flow passage 220 in the Z-axis direction. Similarly, as shown in FIG. 5, a part of the main flow channel 220 that is parallel to the Z-axis direction and passes through the center of the discharge port 202 and is adjacent to (connects to) the discharge-side flow channel 212 extending from the discharge port 202. In the cross section (for example, the cross section shown in FIG. 5) that passes through, the discharge-side flow passage 212 is connected to the main flow passage 220 at approximately the center in the height direction of the main flow passage 220 in the Z-axis direction. Therefore, the refrigerant supplied from the supply port 201 flows in the supply-side flow passage 211, the main flow passage 220, and the discharge-side flow passage 212 in a plane direction substantially parallel to the adsorption surface S1, and then from the discharge outlet 202. Is discharged. Further, as shown in FIG. 3, the supply-side flow passage 211 and the discharge-side flow passage 212 are connected to the main flow passage 220 at substantially the center in the width direction of the main flow passage 220 when viewed in the Z-axis direction.

上述のように、本実施形態の静電チャック100において、主流路220は、Z軸方向視において、螺旋形状に形成されており、その螺旋形状はベース部材20の中心付近に変曲点IPを含んでいる。本実施形態において、上記螺旋形状の曲率半径は、好ましくは、10mm以上であり、より好ましくは、20mm以上である。また、本実施形態において、冷媒流路200の全長Lt(すなわち、Z軸方向視において、供給口201から排出口202までの延伸方向における長さ)において、供給口201から変曲点IPまでの長さLfは、排出口202から変曲点IPまでの長さLeより長いことが好ましい。換言すれば、長さLfは全長Ltの2分の1以上であることが好ましく、より好ましくは全長Ltの3分の1以上である。すなわち、供給口201から、冷媒流路200の延伸方向における冷媒流路200の全長Ltの好ましくは2分の1(より好ましくは3分の1)までの部分は、Z軸方向視で、変曲点IPを含まない形状である。 As described above, in the electrostatic chuck 100 of the present embodiment, the main flow path 220 is formed in a spiral shape when viewed in the Z-axis direction, and the spiral shape has an inflection point IP near the center of the base member 20. Contains. In the present embodiment, the radius of curvature of the spiral shape is preferably 10 mm or more, and more preferably 20 mm or more. Further, in the present embodiment, in the entire length Lt of the refrigerant flow path 200 (that is, the length in the extending direction from the supply port 201 to the discharge port 202 in the Z-axis direction), from the supply port 201 to the inflection point IP. The length Lf is preferably longer than the length Le from the outlet 202 to the inflection point IP. In other words, the length Lf is preferably ½ or more of the total length Lt, and more preferably ⅓ or more of the total length Lt. That is, a portion from the supply port 201 to preferably ½ (more preferably ⅓) of the total length Lt of the refrigerant channel 200 in the extending direction of the refrigerant channel 200 is changed in the Z-axis direction when viewed. The shape does not include the bending point IP.

本実施形態において、主流路220の寸法は、Z軸方向視における延伸方向に略直交する方向における幅が、10mm以上、30mm以下であることが好ましく、Z軸方向における高さが、10mm以上、30mm以下であることが好ましく、Z軸方向視における、主流路220の延伸方向に沿った長さが、2000mm以上、6000mm以下であることが好ましい。また、供給側流路211および排出側流路212の寸法は、Z軸方向視における延伸方向に略直交する方向における幅が、10mm以上、25mm以下であることが好ましく、Z軸方向における高さが、10mm以上、25mm以下であることが好ましく、Z軸方向視における、供給側流路211および排出側流路212の延伸方向に沿った長さが、15mm以上、50mm以下であることが好ましい。 In the present embodiment, the main flow channel 220 has a dimension such that the width in the direction substantially orthogonal to the stretching direction when viewed in the Z-axis direction is 10 mm or more and 30 mm or less, and the height in the Z-axis direction is 10 mm or more, The length is preferably 30 mm or less, and the length along the extending direction of the main flow path 220 as viewed in the Z-axis direction is preferably 2000 mm or more and 6000 mm or less. Further, regarding the dimensions of the supply-side flow passage 211 and the discharge-side flow passage 212, the width in the direction substantially orthogonal to the stretching direction when viewed in the Z-axis direction is preferably 10 mm or more and 25 mm or less, and the height in the Z-axis direction. Is preferably 10 mm or more and 25 mm or less, and the length along the extending direction of the supply-side flow passage 211 and the discharge-side flow passage 212 in the Z-axis direction is preferably 15 mm or more and 50 mm or less. ..

このような構成のベース部材20は、例えば、一の金属部材(例えば、アルミニウム部材)に、主流路220、供給側流路211、排出側流路212に対応する形状の溝を形成し、当該金属部材と、いずれの孔も形成されていない他の金属部材(例えば、アルミニウム部材)とを例えば溶接により接合することにより、作製することができる。 In the base member 20 having such a configuration, for example, a groove having a shape corresponding to the main flow channel 220, the supply-side flow channel 211, and the discharge-side flow channel 212 is formed in one metal member (for example, an aluminum member), and It can be manufactured by joining a metal member and another metal member (for example, an aluminum member) in which any hole is not formed by, for example, welding.

A−2.第1実施形態の効果:
以上説明したように、本実施形態の静電チャック100は、Z軸方向に略直交する吸着面S1と、吸着面S1とは反対側の下面S2と、を有する板状部材10と、上面S3を有し、上面S3が板状部材10の下面S2に対向するように配置されたベース部材20と、板状部材10の下面S2とベース部材20の上面S3との間に配置され、板状部材10とベース部材20とを接合する接合部30とを備え、板状部材10の吸着面S1上に対象物(例えばウェハW)を保持する静電チャック100である。また、本実施形態の静電チャック100では、ベース部材20には、ベース部材20の側面S5に開口する供給口201と、供給口201に連通する冷媒流路200とが形成されており、Z軸方向視で、供給口201の全体は、板状部材10の吸着面S1の外周縁より外側に配置されている。
A-2. Effects of the first embodiment:
As described above, the electrostatic chuck 100 of this embodiment has the plate-shaped member 10 having the attraction surface S1 that is substantially orthogonal to the Z-axis direction and the lower surface S2 opposite to the attraction surface S1, and the upper surface S3. A base member 20 having an upper surface S3 facing the lower surface S2 of the plate member 10, and a lower surface S2 of the plate member 10 and an upper surface S3 of the base member 20. The electrostatic chuck 100 includes a bonding portion 30 that bonds the member 10 and the base member 20, and holds an object (for example, a wafer W) on the attraction surface S1 of the plate-shaped member 10. Further, in the electrostatic chuck 100 of the present embodiment, the base member 20 is provided with the supply port 201 opening to the side surface S5 of the base member 20 and the coolant flow path 200 communicating with the supply port 201, and Z When viewed in the axial direction, the entire supply port 201 is arranged outside the outer peripheral edge of the suction surface S1 of the plate member 10.

ここで、ベース部材20に形成された冷媒流路200内の冷媒の温度は、冷媒が供給される供給口201付近において最も低い。また、ベース部材20に形成された供給口201から供給される冷媒は、その供給口201付近において乱流が発生しやすい。また、供給口201がベース部材20の下面S4に形成されている構成では、Z軸方向視で、冷媒流路200の内の供給口201付近において、冷媒の滞留時間が比較的長くなる。このため、板状部材10の吸着面S1において、Z軸方向視で供給口201に重なる領域は低温の温度特異点になりやすい。本実施形態の静電チャック100では、ベース部材20の側面S5に供給口201が開口しており、かつ、供給口201に連通する冷媒流路200がベース部材20に形成されている。また、Z軸方向視で、供給口201の全体が、板状部材10の吸着面S1の外周縁より外側に配置されている。従って、本実施形態の静電チャック100によれば、供給口201の存在に起因して板状部材10の吸着面S1に低温の温度特異点が発生することを抑制することができ、その結果、板状部材10の吸着面S1における温度分布の均一性を向上させることができる。 Here, the temperature of the coolant in the coolant channel 200 formed in the base member 20 is the lowest near the supply port 201 to which the coolant is supplied. Further, the refrigerant supplied from the supply port 201 formed in the base member 20 is likely to cause turbulent flow near the supply port 201. Further, in the configuration in which the supply port 201 is formed on the lower surface S4 of the base member 20, the residence time of the refrigerant becomes relatively long in the vicinity of the supply port 201 inside the refrigerant flow path 200 when viewed in the Z-axis direction. Therefore, in the suction surface S1 of the plate-shaped member 10, the region overlapping the supply port 201 when viewed in the Z-axis direction is likely to be a low temperature singular point. In the electrostatic chuck 100 of the present embodiment, the supply port 201 is opened on the side surface S5 of the base member 20, and the coolant flow path 200 communicating with the supply port 201 is formed in the base member 20. Further, when viewed in the Z-axis direction, the entire supply port 201 is arranged outside the outer peripheral edge of the suction surface S1 of the plate-shaped member 10. Therefore, according to the electrostatic chuck 100 of the present embodiment, it is possible to suppress the occurrence of a low temperature singular point on the adsorption surface S1 of the plate-shaped member 10 due to the presence of the supply port 201, and as a result, The uniformity of the temperature distribution on the suction surface S1 of the plate member 10 can be improved.

また、本実施形態の静電チャック100では、供給口201から、冷媒流路200の延伸方向Dにおける冷媒流路200の全長Ltの3分の1までの部分は、Z軸方向視で、変曲点IPを含まない形状である。このため、冷媒流路200の内、冷媒の温度が比較的低い供給口201付近の部分においても、乱流の発生を抑止することができる。従って、本実施形態の静電チャック100によれば、供給口201付近の冷媒の乱流に起因して板状部材10の吸着面S1に低温の温度特異点が発生することを抑制することができ、その結果、板状部材10の吸着面S1における温度分布の均一性を更に効果的に向上させることができる。 Further, in the electrostatic chuck 100 of the present embodiment, the portion from the supply port 201 to one-third of the total length Lt of the refrigerant flow channel 200 in the extending direction D of the refrigerant flow channel 200 is changed in the Z axis direction. The shape does not include the bending point IP. Therefore, it is possible to suppress the occurrence of turbulent flow even in the portion of the coolant flow path 200 near the supply port 201 where the coolant temperature is relatively low. Therefore, according to the electrostatic chuck 100 of the present embodiment, it is possible to suppress the occurrence of a low temperature singular point on the adsorption surface S1 of the plate member 10 due to the turbulent flow of the refrigerant near the supply port 201. As a result, the uniformity of the temperature distribution on the suction surface S1 of the plate member 10 can be improved more effectively.

また、本実施形態の静電チャック100では、ベース部材20には、冷媒流路200に連通し、かつ、ベース部材20の側面S5に開口する排出口202が形成されており、Z軸方向視で、排出口202の全体は、板状部材10の吸着面S1の外周縁より外側に配置されている。ここで、ベース部材20の冷媒流路200に供給された冷媒は、その排出口202においても乱流が発生しやすい。このため、板状部材10の吸着面S1において、Z軸方向視で排出口202に重なる領域は低温の温度特異点となりやすい。本実施形態の静電チャック100では、上述の通り、Z軸方向視において、排出口202の全体が、板状部材10の吸着面S1の外周縁より外側に配置されている。このため、本実施形態の静電チャック100によれば、排出口202の存在に起因して板状部材10の吸着面S1に低温の温度特異点が発生することを抑制することができ、その結果、板状部材10の吸着面S1における温度分布の均一性を更に効果的に向上させることができる。 Further, in the electrostatic chuck 100 of the present embodiment, the base member 20 is formed with the discharge port 202 communicating with the coolant flow path 200 and opening to the side surface S5 of the base member 20. The entire discharge port 202 is arranged outside the outer peripheral edge of the suction surface S1 of the plate member 10. Here, the refrigerant supplied to the refrigerant flow path 200 of the base member 20 is likely to cause turbulent flow even at the outlet 202 thereof. For this reason, in the suction surface S1 of the plate-shaped member 10, the region overlapping the outlet 202 when viewed in the Z-axis direction is likely to be a low temperature singular point. In the electrostatic chuck 100 of this embodiment, as described above, the entire discharge port 202 is arranged outside the outer peripheral edge of the suction surface S1 of the plate-shaped member 10 when viewed in the Z-axis direction. Therefore, according to the electrostatic chuck 100 of the present embodiment, it is possible to suppress the occurrence of a low temperature singular point on the suction surface S1 of the plate-shaped member 10 due to the existence of the discharge port 202. As a result, the uniformity of the temperature distribution on the suction surface S1 of the plate member 10 can be improved more effectively.

B.第2実施形態:
図6は、第2実施形態の静電チャック100aの構成を概略的に示す説明図である。図6には、上述した図3の断面に対応する第2実施形態の静電チャック100aのXY断面構成が示されている。以下では、第2実施形態の静電チャック100aの構成の内、上述した第1実施形態の静電チャック100の構成と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
B. Second embodiment:
FIG. 6 is an explanatory diagram schematically showing the configuration of the electrostatic chuck 100a of the second embodiment. FIG. 6 shows an XY cross-sectional structure of the electrostatic chuck 100a according to the second embodiment, which corresponds to the cross section of FIG. 3 described above. In the following, of the configurations of the electrostatic chuck 100a of the second embodiment, the same configurations as the configurations of the electrostatic chuck 100 of the first embodiment described above will be denoted by the same reference numerals, and description thereof will be appropriately omitted. ..

図6に示すように、第2実施形態の静電チャック100aの構成は、上述した第1実施形態の静電チャック100の構成と比較して、Z軸方向視におけるベース部材20の形状が異なっている。具体的には、第2実施形態の静電チャック100aでは、Z軸方向視において、ベース部材20には、その外周の一部において部分的に欠損している。なお、Z軸方向視において、当該欠損している部分(以下、「欠損部分」という)は、板状部材10における吸着面S1の外側に位置しており、当該欠損部分は吸着面S1に重ならない。 As shown in FIG. 6, the configuration of the electrostatic chuck 100a of the second embodiment is different from the configuration of the electrostatic chuck 100 of the first embodiment described above in the shape of the base member 20 when viewed in the Z-axis direction. ing. Specifically, in the electrostatic chuck 100a of the second embodiment, the base member 20 is partially defective in a part of its outer periphery when viewed in the Z-axis direction. In the Z-axis direction, the defective portion (hereinafter referred to as “defective portion”) is located outside the suction surface S1 of the plate-shaped member 10, and the defective portion overlaps the suction surface S1. It doesn't happen.

ベース部材20に形成された供給口201は、ベース部材20の側面S5の内、上記欠損部分に対向する領域に開口している。また、本実施形態の静電チャック100aでは、側面S5の内の供給口201が開口している領域と、冷媒流路200(具体的には、供給側流路211)の延伸方向に略直交する断面とは、略平行である。なお、供給口201および排出口202については、第1実施形態の静電チャック100と同様に、Z軸方向視で、板状部材10の吸着面S1の外周縁より外側に配置されている。 The supply port 201 formed in the base member 20 opens in a region of the side surface S5 of the base member 20 that faces the defective portion. Further, in the electrostatic chuck 100a of the present embodiment, the region of the side surface S5 where the supply port 201 is opened is substantially orthogonal to the extending direction of the refrigerant flow path 200 (specifically, the supply-side flow path 211). The cross section to be performed is substantially parallel. Note that the supply port 201 and the discharge port 202 are arranged outside the outer peripheral edge of the attraction surface S1 of the plate-shaped member 10 as viewed in the Z-axis direction, as in the electrostatic chuck 100 of the first embodiment.

以上説明したように、第2実施形態の静電チャック100aでは、Z軸方向視で、供給口201および排出口202の全体が板状部材10の吸着面S1の外周縁より外側に配置されているため、供給口201および排出口202の存在に起因して板状部材10の吸着面S1に低温の温度特異点が発生することを抑制することができ、その結果、板状部材10の吸着面S1における温度分布の均一性を向上させることができる。また、第2実施形態の静電チャック100aでは、Z軸方向視において、ベース部材20の側面S5の内の供給口201が開口している領域と、冷媒流路200(具体的には、供給側流路211)の延伸方向に略直交する断面とが、略平行であるため、供給口201と冷媒の供給源(図示せず)とを接続する際の取り付けが容易である。 As described above, in the electrostatic chuck 100a of the second embodiment, when viewed in the Z-axis direction, the entire supply port 201 and discharge port 202 are arranged outside the outer peripheral edge of the suction surface S1 of the plate-shaped member 10. Therefore, it is possible to suppress the occurrence of a low temperature singular point on the adsorption surface S1 of the plate member 10 due to the existence of the supply port 201 and the discharge port 202, and as a result, the adsorption of the plate member 10 The uniformity of the temperature distribution on the surface S1 can be improved. Further, in the electrostatic chuck 100a of the second embodiment, when viewed in the Z-axis direction, a region of the side surface S5 of the base member 20 in which the supply port 201 is opened and the coolant flow path 200 (specifically, the supply flow path). Since the cross section of the side flow passage 211) that is substantially orthogonal to the extending direction is substantially parallel, it is easy to attach when the supply port 201 and the coolant supply source (not shown) are connected.

C.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
C. Modification:
The technology disclosed in the present specification is not limited to the above-described embodiment, and can be modified into various forms without departing from the gist thereof, for example, the following modifications are also possible.

上記実施形態では、ベース部材20に形成された排出口202は、ベース部材20の側面S5に開口する構成を採用しているが、これに限定されず、ベース部材20の下面S4に開口する構成を採用していてもよい。このような構成において、排出口202は、Z軸方向視において、ベース部材20の下面S4の内の吸着面S1の外周縁よりも外側の領域に開口していることが好ましい。 In the above-described embodiment, the discharge port 202 formed in the base member 20 adopts a configuration that opens on the side surface S5 of the base member 20, but the configuration is not limited to this, and a configuration that opens on the lower surface S4 of the base member 20. May be adopted. In such a configuration, the discharge port 202 is preferably opened in a region outside the outer peripheral edge of the suction surface S1 in the lower surface S4 of the base member 20 when viewed in the Z-axis direction.

上記実施形態では、板状部材10として、吸着面S1を有する略円柱形状を採用しているが、これに限定されず、板状部材の外周に沿って切り欠きが形成された部分である外周部と、外周部の内側に位置する内側部とから構成される形状を採用していてもよい。換言すれば、当該形状は、板状部材における内側部の厚さ(Z軸方向における厚さであり、以下同様)が、外周部に形成された切り欠きの分だけ、外周部の厚さより厚くなっている形状であり、板状部材の外周部と内側部との境界の位置で、板状部材の厚さが変化している形状である。板状部材10が上記形状である構成において、ベース部材20に形成される供給口201は、Z軸方向視において、内側部の外周縁より外側に配置され、より好ましくは、外側部の外周縁より外側に配置される。 In the above-described embodiment, the plate-shaped member 10 adopts a substantially columnar shape having the suction surface S1. However, the plate-shaped member 10 is not limited to this and has an outer periphery that is a portion where a notch is formed along the outer periphery of the plate-shaped member. A shape composed of a portion and an inner portion located inside the outer peripheral portion may be adopted. In other words, the shape is such that the thickness of the inner portion of the plate member (thickness in the Z-axis direction, the same applies hereinafter) is greater than the thickness of the outer peripheral portion by the amount of the notch formed in the outer peripheral portion. The shape of the plate-shaped member changes at the position of the boundary between the outer peripheral portion and the inner portion of the plate-shaped member. In the configuration in which the plate-shaped member 10 has the above-described shape, the supply port 201 formed in the base member 20 is arranged outside the outer peripheral edge of the inner part in the Z axis direction, and more preferably, the outer peripheral edge of the outer part. It is placed outside.

上記実施形態では、ベース部材20に形成された冷媒流路200は、Z軸方向視において、1つの変曲点IPを含んでいるが、2つ以上の変曲点を含んでいてもよい。また、上記実施形態において、冷媒流路200は、供給口201から、冷媒流路200の延伸方向Dにおける冷媒流路200の全長Ltの3分の1までの部分に、Z軸方向視で、変曲点を含む形状であってもよい。 In the above-described embodiment, the coolant channel 200 formed in the base member 20 includes one inflection point IP when viewed in the Z-axis direction, but may include two or more inflection points. Further, in the above-described embodiment, the refrigerant flow path 200 has a portion from the supply port 201 to one-third of the total length Lt of the refrigerant flow path 200 in the extending direction D of the refrigerant flow path 200 when viewed in the Z-axis direction, The shape may include an inflection point.

上記実施形態では、板状部材10の内部にヒータ電極50が配置されているが、必ずしも板状部材10の内部にヒータ電極50が配置されている必要はない。 In the above embodiment, the heater electrode 50 is arranged inside the plate-shaped member 10, but the heater electrode 50 does not necessarily have to be arranged inside the plate-shaped member 10.

上記実施形態では、板状部材10の内部に1つのチャック電極40が設けられた単極方式が採用されているが、板状部材10の内部に一対のチャック電極40が設けられた双極方式が採用されてもよい。 In the above-described embodiment, the monopolar method in which one chuck electrode 40 is provided inside the plate-shaped member 10 is adopted, but the bipolar method in which the pair of chuck electrodes 40 is provided inside the plate-shaped member 10 is adopted. It may be adopted.

10:板状部材 20:ベース部材 30:接合部 40:チャック電極 50:ヒータ電極 100:静電チャック 100a:静電チャック 200:冷媒流路 201:供給口 202:排出口 211:供給側流路 212:排出側流路 220:主流路 D:延伸方向 De:排出側周辺延伸方向 Df:供給側周辺延伸方向 IP:変曲点 L1:直線 L2:接線 Le:長さ Lf:長さ Lt:全長 S1:吸着面 S2:下面 S3:上面 S4:下面 S5:側面 W:半導体ウェハ 10: Plate-shaped member 20: Base member 30: Joining part 40: Chuck electrode 50: Heater electrode 100: Electrostatic chuck 100a: Electrostatic chuck 200: Refrigerant flow path 201: Supply port 202: Discharge port 211: Supply side flow path 212: Discharge side flow path 220: Main flow path D: Stretching direction De: Discharge side peripheral stretch direction Df: Supply side peripheral stretch direction IP: Inflection point L1: Straight line L2: Tangent line Le: Length Lf: Length Lt: Total length S1: Adsorption surface S2: Lower surface S3: Upper surface S4: Lower surface S5: Side surface W: Semiconductor wafer

Claims (3)

第1の方向に略直交する第1の表面と、前記第1の表面とは反対側の第2の表面と、を有する板状部材と、
第3の表面を有し、前記第3の表面が前記板状部材の前記第2の表面に対向するように配置されたベース部材と、
前記板状部材の前記第2の表面と前記ベース部材の前記第3の表面との間に配置され、前記板状部材と前記ベース部材とを接合する接合部と、
を備え、前記板状部材の前記第1の表面上に対象物を保持する静電チャックにおいて、
前記ベース部材には、前記ベース部材の側面に開口する供給口と、前記供給口に連通する冷媒流路と、が形成されており、
前記第1の方向視で、前記供給口の全体は、前記板状部材の前記第1の表面の外周縁より外側に配置されている、
ことを特徴とする静電チャック。
A plate-shaped member having a first surface substantially orthogonal to the first direction and a second surface opposite to the first surface;
A base member having a third surface, the base member being arranged so that the third surface faces the second surface of the plate-shaped member;
A joint portion arranged between the second surface of the plate member and the third surface of the base member, for joining the plate member and the base member;
And an electrostatic chuck for holding an object on the first surface of the plate-shaped member,
The base member is provided with a supply port that opens to a side surface of the base member, and a coolant channel that communicates with the supply port,
In the first direction view, the entire supply port is arranged outside the outer peripheral edge of the first surface of the plate-shaped member,
An electrostatic chuck characterized in that
請求項1に記載の静電チャックにおいて、
前記供給口から、前記冷媒流路の延伸方向における前記冷媒流路の全長の3分の1までの部分は、前記第1の方向視で、変曲点を含まない形状である、
ことを特徴とする静電チャック。
The electrostatic chuck according to claim 1,
A portion from the supply port to one-third of the entire length of the refrigerant channel in the extending direction of the refrigerant channel has a shape that does not include an inflection point in the first direction view,
An electrostatic chuck characterized in that
請求項1または請求項2に記載の静電チャックにおいて、
前記ベース部材には、前記冷媒流路に連通し、かつ、前記ベース部材の側面に開口する排出口、が形成されており、
前記第1の方向視で、前記排出口の全体は、前記板状部材の前記第1の表面の外周縁より外側に配置されている、
ことを特徴とする静電チャック。
The electrostatic chuck according to claim 1 or 2,
The base member is formed with a discharge port that communicates with the refrigerant flow path and that opens to a side surface of the base member,
When viewed in the first direction, the entire discharge port is arranged outside the outer peripheral edge of the first surface of the plate-shaped member,
An electrostatic chuck characterized in that
JP2019001552A 2019-01-09 2019-01-09 electrostatic chuck Active JP7308035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019001552A JP7308035B2 (en) 2019-01-09 2019-01-09 electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001552A JP7308035B2 (en) 2019-01-09 2019-01-09 electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2020113588A true JP2020113588A (en) 2020-07-27
JP7308035B2 JP7308035B2 (en) 2023-07-13

Family

ID=71667207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001552A Active JP7308035B2 (en) 2019-01-09 2019-01-09 electrostatic chuck

Country Status (1)

Country Link
JP (1) JP7308035B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317761A (en) * 1999-03-01 2000-11-21 Toto Ltd Electrostatic chuck and attracting method
JP2008251681A (en) * 2007-03-29 2008-10-16 Hitachi High-Technologies Corp Wafer stage
WO2013179936A1 (en) * 2012-05-30 2013-12-05 京セラ株式会社 Flow path member, and adsorption device and refrigeration device employing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898556B2 (en) 2007-05-23 2012-03-14 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP2009037391A (en) 2007-08-01 2009-02-19 Nikon Corp Temperature control device, exposure device, actuator device, holding device, and device manufacturing method
JP6240028B2 (en) 2014-05-20 2017-11-29 京セラ株式会社 Sample holder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317761A (en) * 1999-03-01 2000-11-21 Toto Ltd Electrostatic chuck and attracting method
JP2008251681A (en) * 2007-03-29 2008-10-16 Hitachi High-Technologies Corp Wafer stage
WO2013179936A1 (en) * 2012-05-30 2013-12-05 京セラ株式会社 Flow path member, and adsorption device and refrigeration device employing same

Also Published As

Publication number Publication date
JP7308035B2 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
US10026634B2 (en) Electrostatic chuck and base member for use in the same
JP6865145B2 (en) Holding device
JP6850138B2 (en) Holding device
JP6730861B2 (en) Holding device
JP6758175B2 (en) Electrostatic chuck
JP6678458B2 (en) Electrostatic chuck
JP7077006B2 (en) Holding device
JP6703647B2 (en) HOLDING DEVICE MANUFACTURING METHOD, AND HOLDING DEVICE
JP2020113588A (en) Electrostatic chuck
JP6650808B2 (en) Holding device
JP7164979B2 (en) electrostatic chuck
JP6762432B2 (en) Holding device
JP7071130B2 (en) Holding device
JP2023061985A (en) holding device
JP7139165B2 (en) holding device
JP6994953B2 (en) Holding device
JP6993835B2 (en) Holding device and manufacturing method of holding device
JP7164974B2 (en) holding device
JP6703646B2 (en) Holding device manufacturing method
JP7023157B2 (en) Holding device
JP6943774B2 (en) Holding device
JP7017957B2 (en) Holding device
JP6703645B2 (en) Holding device and method of manufacturing holding device
JP7278049B2 (en) holding device
JP7379171B2 (en) holding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230703

R150 Certificate of patent or registration of utility model

Ref document number: 7308035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150