JP2020110079A - 魚監視システム - Google Patents

魚監視システム Download PDF

Info

Publication number
JP2020110079A
JP2020110079A JP2019003327A JP2019003327A JP2020110079A JP 2020110079 A JP2020110079 A JP 2020110079A JP 2019003327 A JP2019003327 A JP 2019003327A JP 2019003327 A JP2019003327 A JP 2019003327A JP 2020110079 A JP2020110079 A JP 2020110079A
Authority
JP
Japan
Prior art keywords
fish
unit
camera
detected
monitoring server
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019003327A
Other languages
English (en)
Other versions
JP6530152B1 (ja
Inventor
智紀 佐藤
Tomonori Sato
智紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FullDepth Co Ltd
Original Assignee
FullDepth Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2019003327A priority Critical patent/JP6530152B1/ja
Application filed by FullDepth Co Ltd filed Critical FullDepth Co Ltd
Publication of JP6530152B1 publication Critical patent/JP6530152B1/ja
Application granted granted Critical
Priority to TW109100282A priority patent/TW202032969A/zh
Priority to EP20738472.8A priority patent/EP3909424A4/en
Priority to NO20210908A priority patent/NO20210908A1/en
Priority to AU2020207707A priority patent/AU2020207707A1/en
Priority to PCT/JP2020/000414 priority patent/WO2020145336A1/ja
Priority to MX2021008271A priority patent/MX2021008271A/es
Publication of JP2020110079A publication Critical patent/JP2020110079A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/60Floating cultivation devices, e.g. rafts or floating fish-farms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/90Sorting, grading, counting or marking live aquatic animals, e.g. sex determination
    • A01K61/95Sorting, grading, counting or marking live aquatic animals, e.g. sex determination specially adapted for fish
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30128Food products
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Signal Processing (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Quality & Reliability (AREA)
  • Human Resources & Organizations (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Studio Devices (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Analysis (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Mechanical Means For Catching Fish (AREA)

Abstract

【課題】生け簀内で死魚や瀕死魚が発生した場合に、その旨を管理者に通知するシステムを提供する。【解決手段】生け簀で飼育される魚を監視するための魚監視システムは、カメラユニット1と、監視サーバ3と、ユーザ端末4を備える。カメラユニット1は、カメラにより撮影された魚眼画像を監視サーバ3に送信する。監視サーバ3は、魚眼画像に対して歪み補正処理を行って矩形画像を生成し、生成した矩形画像に対して、機械学習により生成された識別モデルを適用することで、死魚と瀕死魚を検出し、死魚が検出されると、死魚が検出されたことをユーザ端末4に通知し、瀕死魚が検出されると、瀕死魚が検出されたことをユーザ端末4に通知する。【選択図】図1

Description

本発明は、生け簀で飼育される魚を監視するためのシステムに関する。
特許文献1には、水面に浮かべられて水中を撮影する水中監視ユニットと、水中監視ユニットを遠隔制御するパソコンを備える水中監視システムが記載されている。この水中監視システムによれば、利用者は、水中監視ユニットによって撮影される水中の映像をパソコンを通して見ることができる。
特開2003−37755号公報
しかし、特許文献1に記載の水中監視システムは、単に水中の様子を観察可能にするものにすぎず、生け簀内で死魚や瀕死魚が発生した場合に、その旨を管理者に通知するものではない。
本発明は、このような事情に鑑みてなされたものであり、生け簀内で死魚や瀕死魚が発生した場合に、その旨を管理者に通知するシステムを提供することを目的とする。
上記の課題を解決するため、本発明に係る魚監視システムは、生け簀で飼育される魚を監視するための魚監視システムであって、前記生け簀の底に固定される平板状のカメラユニットと、前記カメラユニットと通信ケーブルを介して接続され、水上に設置される通信ユニットと、前記通信ユニットと通信ネットワークを介して接続される監視サーバと、前記監視サーバと前記通信ネットワークを介して接続されるユーザ端末とを備え、前記カメラユニットは、前記生け簀の水面に向けられた魚眼レンズを備えるカメラと、前記カメラにより撮影された魚眼画像を、前記通信ユニットを介して前記監視サーバに送信する送信部とを備え、前記監視サーバは、前記魚眼画像に対して歪み補正処理を行って矩形画像を生成する補正部と、前記矩形画像に対して、機械学習により生成された識別モデルを適用することで、死魚と瀕死魚を検出する検出部と、前記検出部により死魚が検出されると、死魚が検出されたことを前記ユーザ端末に通知し、前記検出部により瀕死魚が検出されると、瀕死魚が検出されたことを前記ユーザ端末に通知する通知部とを備える。
前記カメラユニットは、白色ライト及び青色又は赤色ライトと、前記カメラによる撮影時に、天気に応じて前記白色ライトと前記青色又は赤色ライトのいずれかを点灯させるライト制御部とをさらに備えてもよい。
前記検出部は、前記矩形画像に対して前記識別モデルを適用することで、前記魚の天敵魚をさらに検出し、前記通知部は、前記検出部により天敵魚が検出されると、天敵魚が検出されたことを前記ユーザ端末に通知するようにしてもよい。
前記カメラユニットは、マイクをさらに備え、前記送信部は、前記マイクにより収音された水中の音声を、前記通信ユニットを介して前記監視サーバに送信し、前記監視サーバは、前記音声の音量が所定の閾値を超えたか否かを判定する判定部と、前記判定部により肯定的な判定がなされた場合に、前記カメラユニットに対する撮影指示を前記通信ユニットに送信するデータ取得部とをさらに備え、前記送信部は、前記撮影指示が前記カメラユニットにより受信されたことを契機として、前記カメラにより撮影された魚眼画像を、前記通信ユニットを介して前記監視サーバに送信するようにしてもよい。
前記監視サーバは、前記検出部により天敵魚が検出されると、前記矩形画像における当該天敵魚の位置を、所定の変換テーブルを用いて、前記生け簀内の位置に変換する変換部をさらに備え、前記通知部は、前記変換部により特定された前記生け簀内の位置を前記ユーザ端末に通知するようにしてもよい。
前記魚監視システムは、複数のカメラユニットを備え、前記変換部は、前記検出部により死魚が検出されると、前記矩形画像における当該死魚の位置を、前記変換テーブルを用いて、前記生け簀内の位置に変換し、前記複数のカメラユニットのうちの第1カメラユニットから送信された魚眼画像に基づいて検出された死魚の前記生け簀内の位置と、前記複数のカメラユニットのうちの第2カメラユニットから送信された魚眼画像に基づいて検出された死魚の前記生け簀内の位置とが所定の範囲内に収まる場合に、前記通知部は死魚が検出されたことを前記ユーザ端末に通知するようにしてもよい。
本発明によれば、生け簀内で死魚や瀕死魚が発生した場合に、その旨を管理者に通知することができる。
魚監視システムの構成の一例を示す図 カメラユニット1の外観の一例を示す図 カメラユニット1の電気的構成の一例を示すブロック図 監視サーバ3の電気的構成の一例を示すブロック図 矩形画像の一例を示す図 ユーザ端末4の電気的構成の一例を示すブロック図 リアルタイム監視動作の一例を示すシーケンス図 定期監視動作の一例を示すシーケンス図
1.実施形態
1−1.構成
本発明の一実施形態に係る魚監視システムについて図面を参照して説明する。この魚監視システムは、生け簀で飼育される魚を監視するためのシステムである。図1は、この魚監視システムの構成の一例を示す図である。同図に示す魚監視システムは、生け簀LBの底中央に固定されるカメラユニット1と、カメラユニット1とケーブルCを介して接続され、水上に設置される通信ユニット2と、通信ユニット2と通信ネットワークNWを介して接続される監視サーバ3と、監視サーバ3と通信ネットワークNWを介して接続されるユーザ端末4とを備える。以下、各構成要素について説明する。
カメラユニット1は、水中画像を撮影するための装置である。図2は、カメラユニット1の外観の一例を示す図である。図2(a)は平面図であり、図2(b)は側面図である。同図に示すカメラユニット1は、円板形状を有し、上面中央に開口を有する筺体101と、筺体101の上記開口を塞ぐ蓋部102と、筺体101の外周に沿って等間隔に形成される4つの孔部103と、筺体101の側面に開口するケーブル引き出し口104とを備える。これらの構成要素のうち、筺体101は、その上面が、その端部から開口にかけてなだらかに隆起するようにテーパ状に形成される。蓋部102は、透明な樹脂により半球状に構成され、後述する魚眼レンズを収容する。筺体101と蓋部102には、防藻用コーティングが施されている。孔部103は、生け簀LBを形成する養殖網Nにカメラユニット1を固定するためのフックが通される孔である。ケーブル引き出し口104には、ケーブルCが挿入される。
次に、図3は、カメラユニット1の電気的構成の一例を示すブロック図である。同図に示すカメラユニット1は、カメラ11と、ライト12と、水温センサ13と、水圧センサ14と、温度センサ15と、加速度センサ16と、制御部17とを備える。これらの構成要素のうち、カメラ11は、魚眼レンズを備える。この魚眼レンズは、筺体101の軸方向を向くように配置される。そのため、カメラユニット1が海底において水平に設置されると、魚眼レンズは海面の方向を向く。しかし、魚眼レンズは画角が180度以上であるため、カメラユニット1の水平方向に位置する物体(言い換えると、海底に存在する物体)も撮影可能である。このカメラ11は、撮影時に加速度センサ16の出力値に基づいて周知のシフトブレ補正を行う。そのため、撮影時にカメラユニット1が海流により揺動しても、像ブレが軽減される。次に、ライト12は、具体的には白色LEDライトであり、カメラ11による撮影時に使用される。温度センサ15は、カメラユニット1の筺体101内の温度を測定するためのセンサである。制御部17は、マイクロプロセッサとメモリを備える。制御部17が備えるマイクロプロセッサが、メモリに記憶される制御プログラムを実行すると、データ出力部171という機能が提供される。
このデータ出力部171は、監視サーバ3から送信されるデータ出力指示を受け付けると、ライト12を点灯させ、カメラ11に撮影指示を出力し、カメラ11により撮影された動画を表す画像データを取得する。また、水温センサ13、水圧センサ14及び温度センサ15から、水温データ、水圧データ及び筺体内温度データを取得する。そして、取得した各データを含むセンサデータを、監視サーバ3に送信するために通信ユニット2に出力する。
次に、通信ユニット2は、カメラユニット1と監視サーバ3の間でデータ通信を可能にする通信装置である。この通信ユニット2とカメラユニット1を接続するケーブルCは、通信ケーブルと電源ケーブルを有する。通信ユニット2はバッテリを備え、電源ケーブルを介してカメラユニット1に電力を供給する。一方、通信ユニット2と監視サーバ3を通信可能に接続する通信ネットワークNWは、移動体通信網、インターネット又はこれらの組み合わせである。
次に、監視サーバ3は、カメラユニット1から出力されるセンサデータ、又はこのセンサデータの解析結果をユーザ端末4に提供するための装置である。図4は、監視サーバ3の電気的構成の一例を示すブロック図である。同図に示す監視サーバ3は、CPU等のプロセッサ31と、DRAM等の揮発性メモリ32と、HDD等の不揮発性メモリ33と、ネットワークカード34とを備える。この監視サーバ3が備えるプロセッサ31が、不揮発性メモリ33に記憶される制御プログラムを実行すると、データ取得部311と、補正部312と、検出部313と、通知部314の各機能が提供される。
これらの機能のうち、データ取得部311は、ユーザ端末4から送信されるデータ取得指示を受けて又は定期的に、通信ユニット2に対してデータ出力指示を送信する。そして、カメラユニット1から出力されるセンサデータを取得する。
補正部312は、データ取得部311により取得されたセンサデータのうち、画像データにより表される円形の魚眼画像に対して、周知の歪み補正処理を行って、矩形画像を生成する。
検出部313は、補正部312により生成された矩形画像に対して、機械学習により生成された識別器(言い換えると、識別モデル)を適用して、死魚又は瀕死魚を検出する。ここで、識別器は、死魚及び瀕死魚の正例データと負例データ(言い換えると、正常な生魚の正例データ)の特徴量を学習させることにより生成する。学習させる特徴量は、例えば、Harr-like特徴量、LBP特徴量又はHOG特徴量である。
死魚は一般に、海底で横転又は反転して静止している。瀕死魚は一般に、海底で横転又は反転しつつ、えらを開閉させながらわずかに移動している。そのため、検出部313は、補正部312により生成された矩形画像のうち、海底付近に相当する上端及び下端の領域のみから死魚又は瀕死魚を検出する。図5は、補正部312により生成される矩形画像の一例を示す図である。同図に示す矩形画像では、海底付近に相当する領域R1及びR2のみから死魚又は瀕死魚が検出される。このように検出範囲を絞ることで、誤検出の可能性が低減される。
検出部313は、死魚又は瀕死魚を検出すると、検出した死魚又は瀕死魚の動体追跡(object tracking)を行って、検出した物体の移動量を算出する。そして、算出した移動量が第1閾値以下の場合には、当該物体を死魚と判定し、算出した移動量が第2閾値以下の場合には、当該物体を瀕死魚と判定する。ここで、第1閾値は、死魚を判別するために予め設定される閾値であって、海流に起因する死魚の移動量を考慮して設定される。第2閾値は、瀕死魚を判別するために予め設定される閾値であって、第1閾値よりも大きい値に設定される。
次に、通知部314は、ユーザ端末4からの指示を受けてカメラユニット1からセンサデータが取得された場合には、魚眼画像に代えて、補正部312により生成された矩形画像の画像データを含むセンサデータをユーザ端末4に送信する。一方、定期的に取得された魚眼画像から検出部313により死魚が検出された場合には、その旨を示す死魚検出通知をユーザ端末4に送信し、瀕死魚が検出された場合には、その旨を示す瀕死魚検出通知をユーザ端末4に送信する。
次に、ユーザ端末4は、生け簀LBの管理者により使用される通信端末であって、監視サーバ3からセンサデータや各種通知を受信するための通信端末である。具体的には、例えば、スマートフォンやPCである。図6は、ユーザ端末4の電気的構成の一例を示すブロック図である。同図に示すユーザ端末4は、CPU等のプロセッサ41と、DRAM等の揮発性メモリ42と、フラッシュメモリ等の不揮発性メモリ43と、ネットワークカード44と、液晶ディスプレイ等のディスプレイ45と、タッチパネル46とを備える。このユーザ端末4が備えるプロセッサ41が、不揮発性メモリ43に記憶される制御プログラムを実行すると、データ取得部411と、画面生成部412の各機能が提供される。
データ取得部411は、利用者によりセンサデータの表示が指示されると、監視サーバ3に対してデータ取得指示を送信し、監視サーバ3から送信されるセンサデータを取得する。また、データ取得部411は、監視サーバ3から送信される死魚検出通知又は瀕死魚検出通知を取得する。
画面生成部412は、データ取得部411により取得されるセンサデータに基づいて、センサデータ表示画面を生成し、ディスプレイ45に表示させる。このセンサデータ表示画面には、生け簀LBの水中画像、水温及び水圧、そしてカメラユニット1の筺体内温度が表示される。表示される水中画像は、センサデータに含まれる矩形画像のうちの一部であり、利用者はユーザ端末4上でパンチルトズーム操作を行うことで、矩形画像全体を観察することができる。また、画面生成部412は、データ取得部411により取得される死魚検出通知に基づいて、死魚の検出を通知する死魚検出通知画面を生成し、ディスプレイ45に表示させる。また、画面生成部412は、データ取得部411により取得される瀕死魚検出通知に基づいて、瀕死魚の検出を通知する瀕死魚検出通知画面を生成し、ディスプレイ45に表示させる。
1−2.動作
次に、魚監視システムの動作について説明する。具体的には、ユーザ端末4の利用者の指示を受けて実行されるリアルタイム監視動作と、ユーザ端末4の利用者の指示によらず自動的に実行される定期監視動作について説明する。
図7は、リアルタイム監視動作の一例を示すシーケンス図である。
ユーザ端末4の利用者によりセンサデータの表示が指示されると、ユーザ端末4のデータ取得部411は、監視サーバ3に対してデータ取得指示を送信する(ステップSa1)。監視サーバ3のデータ取得部311は、ユーザ端末4から送信されたデータ取得指示を受け付けると、通信ユニット2に対してデータ出力指示を送信する(ステップSa2)。カメラユニット1のデータ出力部171は、監視サーバ3から送信されたデータ出力指示を、通信ユニット2を介して受け付けると(ステップSa3)、ライト12を点灯させ、カメラ11に撮影指示を出力し、カメラ11により撮影された動画を表す画像データを取得する。また、水温センサ13、水圧センサ14及び温度センサ15から、水温データ、水圧データ及び筺体内温度データを取得する。そして、取得した各データを含むセンサデータを生成し(ステップSa4)、監視サーバ3に送信するために通信ユニット2に出力する(ステップSa5)。
監視サーバ3のデータ取得部311は、カメラユニット1から出力されたセンサデータを、通信ユニット2を介して取得する(ステップSa6)。監視サーバ3の補正部312は、データ取得部311により取得されたセンサデータのうち、画像データにより表される円形の魚眼画像に対して、周知の歪み補正処理を行って、矩形画像を生成する(ステップSa7)。監視サーバ3の通知部314は、カメラユニット1から取得されたセンサデータのうち、魚眼画像に代えて、補正部312により生成された矩形画像の画像データを含むセンサデータをユーザ端末4に送信する(ステップSa8)。
ユーザ端末4のデータ取得部411は、監視サーバ3から送信されたセンサデータを取得する。ユーザ端末4の画面生成部412は、データ取得部411により取得されたセンサデータに基づいて、センサデータ表示画面を生成し、ディスプレイ45に表示させる(ステップSa9)。このセンサデータ表示画面には、生け簀LBの水中画像、水温及び水圧、そしてカメラユニット1の筺体内温度が表示される。この画面を参照することで、ユーザ端末4の利用者は、生け簀LB内の現在の様子を知ることができる。
以上が、リアルタイム監視動作についての説明である。
図8は、定期監視動作の一例を示すシーケンス図である。
監視サーバ3のデータ取得部311は、定期的に通信ユニット2に対してデータ出力指示を送信する(ステップSb1)。カメラユニット1のデータ出力部171は、監視サーバ3から送信されたデータ出力指示を、通信ユニット2を介して受け付けると(ステップSb2)、ライト12を点灯させ、カメラ11に撮影指示を出力し、カメラ11により撮影された動画を表す画像データを取得する。また、水温センサ13、水圧センサ14及び温度センサ15から、水温データ、水圧データ及び筺体内温度データを取得する。そして、取得した各データを含むセンサデータを生成し(ステップSb3)、監視サーバ3に送信するために通信ユニット2に出力する(ステップSb4)。
監視サーバ3のデータ取得部311は、カメラユニット1から出力されたセンサデータを、通信ユニット2を介して取得する(ステップSb5)。監視サーバ3の補正部312は、データ取得部311により取得されたセンサデータのうち、画像データにより表される円形の魚眼画像に対して、周知の歪み補正処理を行って、矩形画像を生成する(ステップSb6)。監視サーバ3の検出部313は、補正部312により生成された矩形画像に対して、機械学習により生成された識別器を適用して、死魚又は瀕死魚を検出する(ステップSb7)。検出部313は、死魚又は瀕死魚を検出すると、検出した死魚又は瀕死魚の動体追跡を行って、検出した物体の移動量を算出する(ステップSb8)。そして、算出した移動量が第1閾値以下の場合には、当該物体を死魚と判定し、算出した移動量が第2閾値以下の場合には、当該物体を瀕死魚と判定する(ステップSb9)。監視サーバ3の通知部314は、検出部313により死魚が検出された場合には、その旨を示す死魚検出通知をユーザ端末4に送信し、瀕死魚が検出された場合には、その旨を示す瀕死魚検出通知をユーザ端末4に送信する(ステップSb10)。
ユーザ端末4のデータ取得部411は、監視サーバ3の死魚検出通知又は瀕死魚検出通知を取得する。ユーザ端末4の画面生成部412は、データ取得部411により死魚検出通知が取得された場合には、死魚の検出を通知する死魚検出通知画面をディスプレイ45に表示させる一方、データ取得部411により瀕死魚検出通知が取得された場合には、瀕死魚の検出を通知する瀕死魚検出通知画面をディスプレイ45に表示させる(ステップSb11)。死魚検出通知を受けたユーザ端末4の利用者は、死魚を迅速に生け簀LBから取り除くことで、死魚を媒介とする病気の蔓延を防止することができる。また、瀕死魚検出通知を受けることで、瀕死魚が死んでしまう前に、当該魚を捕獲して販売することができる。
以上が、定期監視動作についての説明である。
2.変形例
上記の実施形態は、下記のように変形してもよい。なお、下記の変形例は互いに組み合わせてもよい。
2−1.変形例1
上記の魚監視システムは、魚(言い換えると、魚類)を監視対象としているが、魚以外の水生動物を監視するために利用されてもよい。
2−2.変形例2
カメラユニット1は、生け簀LBの底中央以外の場所に固定されてもよい。例えば、有底筒状をなす養殖網Nの側面に固定されてもよい。
2−3.変形例3
カメラユニット1の外観は、必ずしも図2に示す例に限られない。カメラユニット1を構成する各構成要素の形状、素材、数及び配置は、使用される環境に応じて適宜変更されてよい。
2−4.変形例4
カメラユニット1と通信ユニット2の間の通信を、周知の水中通信技術を用いて無線で行うようにしてもよい。
または、カメラユニット1と監視サーバ3を、周知の水中通信技術を用いて直接通信可能としてもよい。
2−5.変形例5
カメラユニット1に搭載するレンズは、必ずしも魚眼レンズに限られない。魚眼レンズに代えて、画角40度から60度の標準レンズを搭載させてもよい。その場合、当該レンズは、カメラユニット1が海中に固定されたときに、海底付近を撮影可能なように配置される。
2−6.変形例6
カメラユニット1のライト12の色は、必ずしも白色に限られない。ライト12の色は、生け簀LBの環境、飼育される魚の習性等に応じて適宜決定されてよい。
また、カメラユニット1に、それぞれ色の異なる複数のライトを備えさせ、状況に応じて使用するライトを切り替えさせてもよい。具体的には、例えば、カメラユニット1に、濁水中でも減衰しにくい青色又は赤色のLEDライトをさらに備えさせ、撮影時の天気が晴れ又は曇りのときには白色LEDライトを使用させ、雨のときには青色又は赤色のLEDライトを使用させるようにしてもよい。その場合、監視サーバ3は、カメラユニット1に対してデータ出力指示を送信する際に、天気情報も併せて送信し、カメラユニット1は、受信した天気情報に応じて使用するライトの色を選択する。
2−7.変形例7
カメラユニット1は、加速度センサ16の出力値もセンサデータとして監視サーバ3に送信するようにしてもよい。監視サーバ3は、加速度センサ16の出力値からカメラユニット1の傾きを検出し、検出した傾きが所定の閾値を超えたか否かを判定する。ここで所定の閾値は、カメラユニット1の転倒を検出する上で適切な値(例えば、プラスマイナス45度)に設定される。そして、検出した傾きが所定の閾値を超える場合には、ユーザ端末4に対し、転倒通知を送信する。この転倒通知を受信したユーザ端末4の利用者は、カメラユニット1が転倒してしまったことに気付くことができる。
2−8.変形例8
監視サーバ3の検出部313は、検出精度を高めるために矩形画像内の検出範囲を絞っているが、必ずしも絞らなくてもよい。検出部313は、矩形画像全体から死魚又は瀕死魚を検出するようにしてもよい。
2−9.変形例9
瀕死魚は一般に、死魚と異なり、えらを開閉させる。そこで、魚のえらの動きに着目して、死魚と瀕死魚を識別するようにしてもよい。具体的には、監視サーバ3の検出部313は、死魚と瀕死魚の識別精度を向上させるために、動体追跡の結果、死魚と判定された物体について、えら部分の移動量の変化を特定し、特定した変化が、瀕死魚を判別するための所定のパターンに合致するときには、当該物体を瀕死魚と判定し、特定した変化が所定のパターンに合致しないときには、当該物体を死魚と判定するようにしてもよい。
2−10.変形例10
生け簀LBで飼育される魚が静止画だけで死魚と瀕死魚を識別可能な種類の魚である場合には、動体追跡の処理は省略されてもよい。この場合、監視サーバ3の検出部313は、補正部312により生成された矩形画像に対して、機械学習により生成された識別器(言い換えると、識別モデル)を適用して、死魚及び瀕死魚を検出する。ここで使用される識別器は、死魚の正例データと瀕死魚の正例データと正常な生魚の正例データの特徴量を学習させることにより生成する。学習させる特徴量は、例えば、Harr-like特徴量、LBP特徴量又はHOG特徴量である。
2−11.変形例11
監視サーバ3の検出部313は、必ずしも死魚と瀕死魚の両方を検出可能でなくてもよい。魚監視システムの利用者のニーズによっては、死魚と瀕死魚の一方のみを検出可能であってもよい。
2−12.変形例12
生け簀LB内に、飼育されている魚の天敵である魚(例えば鮫)が侵入することがある。侵入した天敵魚を放置しておくと、飼育されている魚が捕食されてしまう可能性がある。そこで、監視サーバ3は、侵入した天敵魚を検出し、その旨をユーザ端末4に通知するようにしてもよい。その場合、具体的には、監視サーバ3の検出部313は、補正部312により生成された矩形画像に対して、機械学習により生成された識別器(言い換えると、識別モデル)を適用して、死魚又は瀕死魚と天敵魚とを検出する。ここで使用される識別器は、死魚及び瀕死魚の正例データと天敵魚の正例データと正常な生魚の正例データの特徴量を学習させることにより生成する。学習させる特徴量は、例えば、Harr-like特徴量、LBP特徴量又はHOG特徴量である。検出部313により天敵魚が検出されると、監視サーバ3の通知部314は、その旨を示す天敵魚検出通知をユーザ端末4に送信する。この天敵魚検出通知を受信したユーザ端末4の利用者は、天敵魚の侵入に気付くことができる。
天敵魚は一般に、養殖網Nの破れ目から侵入する。養殖網Nの破れ目は、さらなる天敵魚の侵入と、飼育している魚の流出を避けるために、補修する必要がある。そこで、天敵魚を検出した際に、天敵魚が通過した破れ目に近いと思われるその検出位置をユーザ端末4の利用者に通知するようにしてよい。その場合、具体的には、監視サーバ3は、検出部313により天敵魚が検出されると、その天敵魚が検出された矩形画像における当該天敵魚の位置を、所定の変換テーブルを用いて、生け簀LB内の位置に変換する。ここで使用される所定の変換テーブルは、矩形画像における平面座標と魚のサイズ値の組と、生け簀LBの空間座標とを対応付けるテーブルである。この変換テーブルを用いて天敵魚の生け簀LB内の位置が特定されると、監視サーバ3の通知部314は、特定された位置を通知する天敵魚検出通知をユーザ端末4に送信する。この天敵魚検出通知を受信したユーザ端末4の利用者は、天敵魚が通過した破れ目に近いと思われる生け簀LB内の位置を知ることができる。
2−13.変形例13
天敵魚は一般に、飼育されている魚よりも体長が大きく、そのため遊泳音が飼育されている魚よりも大きい。そこで、カメラユニット1にマイクを備えさせて、マイクにより天敵魚の遊泳音が収音されたときに、変形例12に記載の検出処理を行うようにしてもよい。検出処理の頻度を減らすことで、カメラユニット1における画像撮影に伴う電力消費を抑えることができる。この場合、具体的には、カメラユニット1のデータ出力部171は、監視サーバ3から定期的に送信される音声データ出力指示を受けて、マイクにより収音された水中の音声データを監視サーバ3に送信する。監視サーバ3は、カメラユニット1から送信された音声データの音量が、所定の閾値を超えたか否かを判定する。ここで所定の閾値は、天敵魚の遊泳音を判別するために予め設定される。音声データの音量が所定の閾値を超えると、監視サーバ3のデータ取得部311は、カメラユニット1からセンサデータを取得する。取得されたセンサデータに含まれる画像データは、上記の通り、検出処理の対象となる。
2−14.変形例14
カメラユニット1、監視サーバ3及びユーザ端末4の各機能の配置は、本発明の実施環境に応じて適宜変更されてもよい。例えば、ユーザ端末4の画面生成部412により生成される画面は、監視サーバ3において生成し、生成した画面をユーザ端末4に表示させるようにしてもよい。
2−15.変形例15
1つの生け簀LB内で複数のカメラユニット1を使用してもよい。複数のカメラユニット1を使用する場合、死魚の検出精度を高めるために、複数のカメラユニット1の撮影画像から死魚が検出されたことをもって、死魚の検出を断定するようにしてもよい。仮に2台のカメラユニット1A及び1Bを使用する場合には、監視サーバ3は、カメラユニット1Aの矩形画像から死魚が検出されると、その死魚が検出された矩形画像における当該死魚の位置を、変形例12に記載した変換テーブルを用いて、生け簀LB内の位置に変換する。なお、この変換テーブルでは、生け簀LBの空間座標はカメラユニット1Aの固定位置に応じて予め決定される。また、監視サーバ3は、カメラユニット1Bの矩形画像から死魚が検出されると、その死魚が検出された矩形画像における当該死魚の位置を、変形例12に記載した変換テーブルを用いて、生け簀LB内の位置に変換する。なお、この変換テーブルでは、生け簀LBの空間座標はカメラユニット1Bの固定位置に応じて予め決定される。監視サーバ3は、特定した2つの位置が所定の範囲内に収まる場合には、検出した死魚が同一の死魚であると判定し、死魚の検出を断定する。
なお、上記の説明は、死魚の検出時に複数のカメラユニット1を利用する場合の説明であるが、瀕死魚の検出時や天敵魚の検出時にも複数のカメラユニット1を利用して検出精度を高めてもよい。
2−16.変形例16
補正部312による歪み補正処理は省略されてもよい。
2−17.変形例17
検出部313は、機械学習により生成された識別器を用いない方法で、死魚及び/又は瀕死魚を検出してもよい。
1…カメラユニット、2…通信ユニット、3…監視サーバ、4…ユーザ端末、11…カメラ、12…ライト、13…水温センサ、14…水圧センサ、15…温度センサ、16…加速度センサ、17…制御部、31…プロセッサ、32…揮発性メモリ、33…不揮発性メモリ、34…ネットワークカード、41…プロセッサ、42…揮発性メモリ、43…不揮発性メモリ、44…ネットワークカード、45…ディスプレイ、46…タッチパネル、101…筺体、102…蓋部、103…孔部、104…ケーブル引き出し口、171…データ出力部、311…データ取得部、312…補正部、313…検出部、314…通知部、411…データ取得部、412…画面生成部、LB…生け簀、C…ケーブル、N…養殖網、NW…通信ネットワーク、R…検出領域

Claims (6)

  1. 生け簀で飼育される魚を監視するための魚監視システムであって、
    前記生け簀の底に固定される平板状のカメラユニットと、
    前記カメラユニットと通信ケーブルを介して接続され、水上に設置される通信ユニットと、
    前記通信ユニットと通信ネットワークを介して接続される監視サーバと、
    前記監視サーバと前記通信ネットワークを介して接続されるユーザ端末と
    を備え、
    前記カメラユニットは、
    前記生け簀の水面に向けられた魚眼レンズを備えるカメラと、
    前記カメラにより撮影された魚眼画像を、前記通信ユニットを介して前記監視サーバに送信する送信部と
    を備え、
    前記監視サーバは、
    前記魚眼画像に対して歪み補正処理を行って矩形画像を生成する補正部と、
    前記矩形画像に対して、機械学習により生成された識別モデルを適用することで、死魚と瀕死魚を検出する検出部と、
    前記検出部により死魚が検出されると、死魚が検出されたことを前記ユーザ端末に通知し、前記検出部により瀕死魚が検出されると、瀕死魚が検出されたことを前記ユーザ端末に通知する通知部と
    を備えることを特徴とする魚監視システム。
  2. 前記カメラユニットは、
    白色ライト及び青色又は赤色ライトと、
    前記カメラによる撮影時に、天気に応じて前記白色ライトと前記青色又は赤色ライトのいずれかを点灯させるライト制御部と
    をさらに備えることを特徴とする、請求項1に記載の魚監視システム。
  3. 前記検出部は、前記矩形画像に対して前記識別モデルを適用することで、前記魚の天敵魚をさらに検出し、
    前記通知部は、前記検出部により天敵魚が検出されると、天敵魚が検出されたことを前記ユーザ端末に通知する
    ことを特徴とする、請求項1又は2に記載の魚監視システム。
  4. 前記カメラユニットは、マイクをさらに備え、
    前記送信部は、前記マイクにより収音された水中の音声を、前記通信ユニットを介して前記監視サーバに送信し、
    前記監視サーバは、
    前記音声の音量が所定の閾値を超えたか否かを判定する判定部と、
    前記判定部により肯定的な判定がなされた場合に、前記カメラユニットに対する撮影指示を前記通信ユニットに送信するデータ取得部と
    をさらに備え、
    前記送信部は、前記撮影指示が前記カメラユニットにより受信されたことを契機として、前記カメラにより撮影された魚眼画像を、前記通信ユニットを介して前記監視サーバに送信する
    ことを特徴とする、請求項3に記載の魚監視システム。
  5. 前記監視サーバは、前記検出部により天敵魚が検出されると、前記矩形画像における当該天敵魚の位置を、所定の変換テーブルを用いて、前記生け簀内の位置に変換する変換部をさらに備え、
    前記通知部は、前記変換部により特定された前記生け簀内の位置を前記ユーザ端末に通知する
    ことを特徴とする、請求項3又は4に記載の魚監視システム。
  6. 複数のカメラユニットを備え、
    前記変換部は、前記検出部により死魚が検出されると、前記矩形画像における当該死魚の位置を、前記変換テーブルを用いて、前記生け簀内の位置に変換し、
    前記複数のカメラユニットのうちの第1カメラユニットから送信された魚眼画像に基づいて検出された死魚の前記生け簀内の位置と、前記複数のカメラユニットのうちの第2カメラユニットから送信された魚眼画像に基づいて検出された死魚の前記生け簀内の位置とが所定の範囲内に収まる場合に、前記通知部は死魚が検出されたことを前記ユーザ端末に通知する
    ことを特徴とする、請求項5に記載の魚監視システム。
JP2019003327A 2019-01-11 2019-01-11 魚監視システム Active JP6530152B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019003327A JP6530152B1 (ja) 2019-01-11 2019-01-11 魚監視システム
TW109100282A TW202032969A (zh) 2019-01-11 2020-01-06 魚監視系統及相機單元
MX2021008271A MX2021008271A (es) 2019-01-11 2020-01-09 Sistema de monitoreo de peces y unidad de camara.
EP20738472.8A EP3909424A4 (en) 2019-01-11 2020-01-09 FISH MONITORING SYSTEM AND CAMERA UNIT
NO20210908A NO20210908A1 (en) 2019-01-11 2020-01-09 Fish Monitoring System and Camera Unit
AU2020207707A AU2020207707A1 (en) 2019-01-11 2020-01-09 Fish monitoring system and camera unit
PCT/JP2020/000414 WO2020145336A1 (ja) 2019-01-11 2020-01-09 魚監視システム及びカメラユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019003327A JP6530152B1 (ja) 2019-01-11 2019-01-11 魚監視システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019092001A Division JP2020110138A (ja) 2019-05-15 2019-05-15 魚監視システム及びカメラユニット

Publications (2)

Publication Number Publication Date
JP6530152B1 JP6530152B1 (ja) 2019-06-12
JP2020110079A true JP2020110079A (ja) 2020-07-27

Family

ID=66821720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019003327A Active JP6530152B1 (ja) 2019-01-11 2019-01-11 魚監視システム

Country Status (7)

Country Link
EP (1) EP3909424A4 (ja)
JP (1) JP6530152B1 (ja)
AU (1) AU2020207707A1 (ja)
MX (1) MX2021008271A (ja)
NO (1) NO20210908A1 (ja)
TW (1) TW202032969A (ja)
WO (1) WO2020145336A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110250053A (zh) * 2019-07-25 2019-09-20 广东中科英海科技有限公司 一种用于斑马鱼研究的视动反应测试系统
JP2023508860A (ja) * 2020-01-06 2023-03-06 エックス デベロップメント エルエルシー 魚の現存量、形状、サイズ、または健康状態の決定
KR20230065673A (ko) * 2021-11-05 2023-05-12 주식회사 부상 양식 어류의 실시간 질병 감지시스템 및 그 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243986B2 (ja) * 2019-10-24 2023-03-22 中央電子株式会社 水産物識別方法、水産物識別プログラム、及び水産物識別システム
US11657498B2 (en) * 2020-04-10 2023-05-23 X Development Llc Multi-chamber lighting controller for aquaculture
US20220000079A1 (en) * 2020-07-06 2022-01-06 Ecto, Inc. Acoustics augmentation for monocular depth estimation
CN112450146A (zh) * 2020-11-26 2021-03-09 澜途集思生态科技集团有限公司 适于水产养殖的控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205958008U (zh) * 2016-06-01 2017-02-15 湖南理工学院 一种用于水产养殖的死鱼监控装置
CN106550223A (zh) * 2017-01-13 2017-03-29 湖南理工学院 一种用于水产养殖的死鱼监控装置及监控方法
CN206370898U (zh) * 2017-01-13 2017-08-01 湖南理工学院 一种用于水产养殖的死鱼监控装置
JP6401411B1 (ja) * 2018-02-13 2018-10-10 株式会社Aiハヤブサ 人工知能による漁獲物識別システム、管理システム及び物流システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037755A (ja) 2001-07-26 2003-02-07 Fuji Photo Optical Co Ltd 水中監視システム
JP3700849B2 (ja) * 2002-11-26 2005-09-28 Necエンジニアリング株式会社 養殖魚介類盗難防止装置
CA2479051A1 (en) * 2003-08-26 2005-02-26 Sociedad Comercial E Industrial Equa Limitada Method for monitoring and controlling in real-time the non-consumed food in fish farms
JP2007187575A (ja) * 2006-01-13 2007-07-26 Shikoku Res Inst Inc 水質監視装置および水質監視方法
JP3160730U (ja) * 2010-01-05 2010-07-08 山本 隆洋 魚類監視水槽
WO2016065294A1 (en) * 2014-10-24 2016-04-28 Wahoo Technologies, LLC System and method for providing underwater video
WO2018061926A1 (ja) * 2016-09-30 2018-04-05 日本電気株式会社 計数システムおよび計数方法
CN107423745A (zh) * 2017-03-27 2017-12-01 浙江工业大学 一种基于神经网络的鱼类活性分类方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205958008U (zh) * 2016-06-01 2017-02-15 湖南理工学院 一种用于水产养殖的死鱼监控装置
CN106550223A (zh) * 2017-01-13 2017-03-29 湖南理工学院 一种用于水产养殖的死鱼监控装置及监控方法
CN206370898U (zh) * 2017-01-13 2017-08-01 湖南理工学院 一种用于水产养殖的死鱼监控装置
JP6401411B1 (ja) * 2018-02-13 2018-10-10 株式会社Aiハヤブサ 人工知能による漁獲物識別システム、管理システム及び物流システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110250053A (zh) * 2019-07-25 2019-09-20 广东中科英海科技有限公司 一种用于斑马鱼研究的视动反应测试系统
CN110250053B (zh) * 2019-07-25 2021-09-14 广东中科英海科技有限公司 一种用于斑马鱼研究的视动反应测试系统
JP2023508860A (ja) * 2020-01-06 2023-03-06 エックス デベロップメント エルエルシー 魚の現存量、形状、サイズ、または健康状態の決定
JP7275396B2 (ja) 2020-01-06 2023-05-17 エックス デベロップメント エルエルシー 魚の現存量、形状、サイズ、または健康状態の決定
US11756324B2 (en) 2020-01-06 2023-09-12 X Development Llc Fish biomass, shape, size, or health determination
KR20230065673A (ko) * 2021-11-05 2023-05-12 주식회사 부상 양식 어류의 실시간 질병 감지시스템 및 그 방법
KR102622793B1 (ko) 2021-11-05 2024-01-09 주식회사 부상 양식 어류의 실시간 질병 감지시스템 및 그 방법

Also Published As

Publication number Publication date
JP6530152B1 (ja) 2019-06-12
AU2020207707A1 (en) 2021-07-29
TW202032969A (zh) 2020-09-01
EP3909424A4 (en) 2022-10-19
EP3909424A1 (en) 2021-11-17
MX2021008271A (es) 2021-09-30
NO20210908A1 (en) 2021-07-14
WO2020145336A1 (ja) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2020145336A1 (ja) 魚監視システム及びカメラユニット
JP2020110138A (ja) 魚監視システム及びカメラユニット
US9609206B2 (en) Image processing apparatus, method for controlling image processing apparatus and storage medium
AU2016421610B2 (en) Feeding system and feeding method
CN110934572A (zh) 体温监测方法及装置、可读存储介质
KR101858924B1 (ko) 물고기의 종류를 감지하는 스마트 낚시찌
US20230270078A1 (en) Bird station
CN105959581A (zh) 具有动态控制闪光灯的用于图像捕捉的电子设备及相关的控制方法
KR101514061B1 (ko) 노인 관리용 무선 카메라 장치 및 이를 통한 노인 관리 시스템
US10904448B2 (en) Controlling flash behavior during capture of image data
JPWO2019045091A1 (ja) 情報処理装置、計数システム、計数方法およびコンピュータプログラム
JP6625786B2 (ja) 異常検知システム、異常検知方法及びプログラム
CN110072078A (zh) 监控摄像机、监控摄像机的控制方法和存储介质
CN111601501B (zh) 养鸡系统、养鸡方法以及记录介质
JP2014042160A (ja) 表示端末、動体検知の対象領域の設定方法及びプログラム
JP6508314B2 (ja) 撮像装置、撮像方法、及びプログラム
CN112233353A (zh) 一种基于人工智能的防钓监控系统及其监控方法
CN110267009B (zh) 图像处理方法、装置、服务器及存储介质
JP7371076B2 (ja) 情報処理装置、情報処理システム、情報処理方法及びプログラム
US20210088656A1 (en) Fish finder
CN113763362A (zh) 水下图像智能检测处理系统
CN211883760U (zh) 体温监测装置
JP2017153055A (ja) 吊下式カメラ装置
TWI614698B (zh) 四足動物發情偵測方法
JP7353864B2 (ja) 情報処理装置、情報処理装置の制御方法およびプログラム、撮像システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190515

R150 Certificate of patent or registration of utility model

Ref document number: 6530152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250