JP2020109777A - コイル装置 - Google Patents

コイル装置 Download PDF

Info

Publication number
JP2020109777A
JP2020109777A JP2017069919A JP2017069919A JP2020109777A JP 2020109777 A JP2020109777 A JP 2020109777A JP 2017069919 A JP2017069919 A JP 2017069919A JP 2017069919 A JP2017069919 A JP 2017069919A JP 2020109777 A JP2020109777 A JP 2020109777A
Authority
JP
Japan
Prior art keywords
coil
core
core portion
region
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017069919A
Other languages
English (en)
Inventor
直輝 大村
Naoteru Omura
直輝 大村
賢二 西村
Kenji Nishimura
賢二 西村
健太郎 降矢
Kentaro Furuya
健太郎 降矢
正一 原
Shoichi Hara
正一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2017069919A priority Critical patent/JP2020109777A/ja
Priority to PCT/JP2018/008822 priority patent/WO2018180313A1/ja
Publication of JP2020109777A publication Critical patent/JP2020109777A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Abstract

【課題】フェライト量を低減しつつ、所望の磁気特性を得ることができるコイル装置を提供する。【解決手段】コイル装置1は、導線7を含むコイル10と、コイル10に隣接するフェライトコア20と、を備える。フェライトコア20は、磁束の向きに平行な第1方向に連続して延在する第1コア部21と、第1コア部21の両側に形成されると共に第1コア部21に沿って延在し、第1コア部21の透磁率よりも低い透磁率を有するギャップ部25と、を含む。フェライトコア20には、Z方向にコイル10が投影された領域内において、第1コア部21の占積率が一定以上である第1領域C1と、第1領域C1における占積率よりも第1コア部21の占積率が低い第2領域C2と、が形成されている。【選択図】図1

Description

本開示は、コイル装置に関する。
コイル装置として、特許文献1〜4に記載の装置が知られている。特許文献1に記載の装置では、コイルが巻回されるコアユニットは、磁束方向および交差方向に配列された複数の分割コアを有する。交差方向において隣り合う分割コアの間には位置決めガイド壁が設けられ、磁束方向において隣り合う分割コアの間にはギャップ板が設けられる。特許文献2に記載の装置では、コアユニットは、渦巻型コイルの径方向に延びるように形成された溝部を有し、渦巻型コイルの引出線は、その溝部に配置されている。
特開2015-15417号公報 特開2015-142019号公報
上記特許文献1に記載の装置では、位置決めガイド壁やギャップ板等により、分割コアが互いに接触することを防ぎつつ、コイルのインダクタンスの変動や分割コアの破損を防ぐことが試みられている。しかしながら、特許文献1では、分割コアが配置される向きが検討されているに過ぎない。ソレノイド型のコイルに対して、コイルが設けられた領域のほぼ全域に、均等に分割コアが配置されている。特許文献1では、更に詳細な配置は検討されていない。
本開示は、フェライト量を低減しつつ、所望の磁気特性を得ることができるコイル装置を説明する。
本開示の一態様に係るコイル装置は、導線を含むコイルと、コイルに隣接するフェライトコアと、を備え、フェライトコアは、コイルの周りに発生する磁束の向きに平行な第1方向に連続して延在する磁性体であるコア部と、第1方向に直交する第2方向におけるコア部の両側に形成されると共にコア部に沿って延在し、コア部の透磁率よりも低い透磁率を有するギャップ部と、を含み、コア部の第1方向における長さは、コア部の第2方向における長さよりも長く、フェライトコアには、第1方向および第2方向の両方に垂直な第3方向にコイルが投影された領域内において、コア部の占積率が一定以上である第1領域と、少なくともギャップ部を含み、第1領域における占積率よりもコア部の占積率が低い第2領域と、が形成されている。
このコイル装置によれば、磁性体であるコア部は、磁束の向きに平行な第1方向に連続して延在する。コア部の両側には、コア部に沿って延在するギャップ部が設けられる。コア部は、第1方向においてより長くなっている。コイルの周りに発生する磁束はコア部に集中し得る。コア部の占積率が一定以上である第1領域に磁束を集中させることにより、磁束量を制御でき、所望の磁気特性を得ることができる。コア部の占積率が低い第2領域は、フェライト量の低減に寄与する。このコイル装置では、磁束の向きに着目し、磁束の向きにより長いコア部が密に配置される第1領域と、コア部が疎に配置される第2領域とが設定されている。これにより、フェライト量の低減の度合いに比して、磁気特性の低下の度合いは抑えられている。このように、コア部の配置に疎密をつけることにより、磁気特性の制御が可能になっている。その結果として、フェライト量を低減しつつ、所望の磁気特性を得ることができる。
いくつかの態様において、フェライトコアには、第3方向にコイルが投影された領域内において、コア部の占積率が0%である第2領域が形成されている。この場合、この第2領域にはコア部が設けられないため、当該第2領域は、フェライト量の低減に大きく寄与する。
いくつかの態様において、コイルは、巻軸を囲むようにして導線が渦巻状に巻回されたサーキュラー型のコイルであり、第1領域は、巻軸に対して径方向に延在する。サーキュラー型のコイルにおける磁束密度は巻軸に対して径方向の領域で大きくなり得る。径方向に延在する第1領域によれば、サーキュラー型のコイルに適した磁気特性の確保が可能である。また、第1領域において所望の磁気特性を確保した上で第2領域を適切に設け、それによってフェライト量の効率的な低減を図ることもできる。
いくつかの態様において、第2方向に隣り合うコア部の間のギャップ部は、コイルの導線に対して交差するように延在する。この場合、漏れ磁界の抑制効果によるインダクタンスの低下を防ぎ、第1領域の磁束密度が上昇することによる特定方向への位置ズレに対する結合係数の上昇もしくは指向性を持たせることができる。
いくつかの態様において、第2領域のうちコア部が設けられない領域には、コア部よりも高強度であり、かつ、コア部の透磁率よりも低い透磁率を有する補強部材が設けられる。この場合、磁束量を抑えた第2領域にて機械強度を高めるための補強部材が設けられるので、構造面(機械強度)で有利である。
本開示のいくつかの態様によれば、フェライト量を低減しつつ、所望の磁気特性を得ることができる。
本開示の第1実施形態に係るコイル装置を示す分解斜視図である。 図1中のフェライトコアおよびコイルを示す平面図である。 図2のフェライトコアにおけるコア部の占積率に基づく領域区分を示す図である。 図2のフェライトコアの磁束密度分布を示す図である。 実施例および比較例におけるインダクタンスおよび結合係数を示す図である。 変形例に対応するフェライトコアの磁束密度分布を示す図である。 他の変形例に対応するフェライトコアの磁束密度分布を示す図である。 第2実施形態に係るコイル装置のフェライトコアおよびコイルを示す平面図である。 比較例1に対応するフェライトコアの磁束密度分布を示す図である。 比較例2に対応するフェライトコアの磁束密度分布を示す図である。
以下、本開示の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。
まず、図1を参照して、第1実施形態に係るコイル装置1を説明する。コイル装置1は、たとえば、非接触給電システムにおける受電装置または送電装置に用いられる。非接触給電システムは、たとえば電気自動車やハイブリッド自動車等の車両に搭載されたバッテリを充電するためのシステムである。コイル装置1は、受電装置および送電装置の両方に用いられてもよい。
コイル装置1が受電装置に用いられる場合、受電コイル装置としてのコイル装置1は、たとえば車両のシャシー等に固定される。コイル装置1には、受電回路および充電回路などを介して、バッテリが接続される。コイル装置1が送電装置に用いられる場合、送電コイル装置としてのコイル装置1は、たとえば路面に固定される。コイル装置1には、送電回路および整流回路などを介して、外部電源が接続される。
送電コイル装置と受電コイル装置とが上下方向において対向し、内部のコイル同士が電磁気的に結合して電磁結合回路を形成することにより、送電コイル装置のコイルから受電コイル装置のコイルへと非接触給電が行われる。言い換えれば、受電コイル装置は、送電コイル装置から非接触で電力を受け取る。電磁結合回路は、「電磁誘導方式」で給電を行う回路であってもよく、「磁界共鳴方式」で給電を行う回路であってもよい。
コイル装置1は、たとえば扁平な形状をなす。コイル装置1は、筐体2と、筐体2内に収容されるコイル10、ボビン6、およびフェライトコア20とを備える。筐体2は、ベース4と、ベース4に固定されるカバー3とを含む。
ベース4は、コイル10の裏面側に配置された板状部材であり、コイル装置1の全体としての剛性を確保する。ベース4は、たとえば、非磁性材料であって導電性を有する材料からなる。ベース4は、剛性の高い材料であって、透磁率の低い金属(たとえばアルミニウム等)からなる。これにより、ベース4は、漏えい磁束の外部流出を遮蔽し得る。言い換えれば、ベース4は、絶縁プレートである。
カバー3は、コイル10の表面側に配置された箱体であり、コイル10を含む内装部品を保護する。カバー3は、たとえば、非磁性かつ非導電性の材料(たとえばGFRP(ガラス繊維強化樹脂)等)からなる。カバー3は、いわば外装カバーである。
これらのカバー3およびベース4によって、コイル10を収容する収容空間が形成されている。コイル装置1が送電コイル装置および受電コイル装置の両方に適用される場合、これらのいずれか一方である第1コイル装置のカバー3と、いずれか他方である第2コイル装置のカバー3とが、所定の離間距離をもって対面する。第1コイル装置のベース4と、第2コイル装置のベース4とは、それぞれのコイル10に対して、他のコイル装置に対向する側とは反対側に設けられる。ベース4は、車両や路面に固定される側に配置される。コイル装置1の扁平な各部において、対向する他のコイル装置に近い面を「表面」といい、他のコイル装置から遠い面、すなわち表面とは反対側の面を「裏面」という。
コイル10、ボビン6、およびフェライトコア20は、一体になって、筐体2内に取り付けられている。筐体2内において、コイル10およびボビン6は、たとえば表面側に配置されており、フェライトコア20は、たとえば裏面側に配置されている。
図1および図2に示されるように、コイル10は、導線7を含む。コイル10は、たとえば、同一平面内で略矩形の渦巻状に巻回された導線7によって形成される。コイル10が受電装置に設けられる場合、コイル10は、誘導電流を発生させる。コイル10が送電装置に設けられる場合、コイル10は、磁束を発生させる。コイル10は、たとえばサーキュラー型のコイルである。サーキュラー型のコイルにおいて、導線7は、巻軸A(図2参照)を囲むようにして、巻線方向に導線7が巻かれている。この場合、巻線方向は渦巻状に延びる方向であり、巻軸A(Z方向)に垂直な平面(XY平面)に沿った方向である。導線7としては、たとえば、互いに絶縁された複数の導体素線が撚り合わされたリッツ線が用いられる。導線7としては、表皮効果による高周波抵抗を抑えたリッツ線が用いられる。導線7は、銅もしくはアルミニウムの単線であってもよい。
ボビン6は、コイル10を保持する。ボビン6は、ボビン6に対して導線7が巻回されることで導線7を保持する平板状の部材である。ボビン6は、たとえば表面側に形成された溝を有している。この溝内に導線7が配置されることで、ボビン6は導線7を保持する。ボビン6は、非磁性かつ非導電性の材料(たとえばシリコーンやポリフェニレンサルファイド樹脂等)からなる。
フェライトコア20は、ボビン6の裏面側、すなわちボビン6とベース4との間に配置されている。フェライトコア20は、コイル10に隣接する。フェライトコア20は、ボビン6の大きさに略等しくてもよく、ボビン6より大きくてもよい。フェライトコア20およびコイル10の間にはボビン6が介在するため、フェライトコア20およびコイル10は当接しない。なお、フェライトコア20およびコイル10が当接する構成であってもよい。フェライトコア20は、磁性体であるフェライトからなる。コイル10が受電装置に設けられる場合、フェライトコア20は、コイル10の周囲に発生した磁場の方向付けおよび集約を行う。コイル10が送電装置に設けられる場合、フェライトコア20は、コイル10から発生した磁場の方向付けおよび集約を行う。
以下、フェライトコア20の構成について詳細に説明する。本実施形態のコイル装置1は、磁気特性の制御を可能とする構成を備えている。ここで言う磁気特性とは、たとえば、送受電コイルのインピーダンス及び結合係数である。フェライトコア20は、一例として、フェライトが十字状に配置された構成を有する。フェライトコア20は、巻軸A上に配置された矩形板状の第2コア部22と、第2コア部22の周囲に配置された複数の第1コア部(コア部)21とを含む。第2コア部22は、たとえば正方形状をなす。第2コア部22の各辺に近接するようにして、たとえば各3枚(合計12枚)の第1コア部21が設けられている。各第1コア部21は、長方形板状をなす。複数の第1コア部21と1枚の第2コア部22とは、同一平面上(XY平面上)に延在する。
フェライトコア20は、コイル10とベース4の表面側との間に設けられる。例えばフェライトコア20は、ベース4の表面側に固定されてもよいし、ボビン6の裏面側に固定されてもよい。フェライトコア20は、フェライトコア20用の保持部材(図示せず)に固定されてもよい。フェライトコア20は、公知の取付構造により、コイル10の近傍に取り付けられ得る。その際、第1コア部21および第2コア部22の位置関係が保持されるように、フェライトコア20は取り付けられる。なお、ボビン6が省略されて、フェライトコア20がコイル10を保持してもよい。すなわち、フェライトコア20にコイル10が巻回されてもよい。
第1コア部21および第2コア部22は、いずれもフェライト(すなわち磁性体)であり、高透磁率を有する。第1コア部21および第2コア部22は、それぞれ一定の厚みを有してもよい。第1コア部21および第2コア部22の厚みが異なってもよい。第1コア部21および第2コア部22の少なくとも一方が、不均一な厚みを有してもよい。なお、第2コア部22は設けなくてもよいが、この場合、巻軸A付近に発生する磁束の一部は、第1コア部21ではなく、ベース4に鎖交することになる。第2コア部22が存在することにより、巻軸A付近の磁束を第2コア部22を介して第1コア部21へ通すことができる。つまり、第2コア部22が存在することにより、ベース4に鎖交する磁束が減り、第1コア部21を通る磁束が増え、第2コア部22が存在しない場合よりもインダクタンスが増える。
図2に示されるように、フェライトコア20の各第1コア部21は、コイル10の周囲に発生する磁束B1,B2の方向を考慮して配列されている。各第1コア部21は、磁束B1,B2の向きに平行な第1方向に連続して延在する。「第1コア部21が第1方向に連続して延在する」とは、第1コア部21に、第1方向に交差する(遮る)隙間や空隙が設けられないことを意味する。図2には、理解を容易にするために4本の磁束B1および4本の磁束B2のみが示されている。当業者であれば理解し得ることであるが、コイル10の周囲には無数の磁束が形成され得る。
本明細書において磁束の向きとは、立体的に形成され得る磁束密度が巻軸Aの方向(Z方向:フェライトの厚み方向)に沿ってX−Y平面に投影された場合のX−Y平面内(フェライトの面方向)での向きを意味する。
第1コア部21の第1方向における長さは、第1コア部21の第2方向における長さよりも長い。言い換えれば、第1コア部21は、長辺と短辺とを有し得る。第1コア部21の長辺は、第1方向に沿って設けられており、第1コア部21の短辺は、第2方向に沿って設けられている。或いは、第1コア部21の長辺は、第2方向よりも第1方向に近い方向に向けられている。第1コア部21の短辺は、第1方向よりも第2方向に近い方向に向けられている。なお、第1コア部21は、全体として細長い形状をなしていればよい。第1コア部21は、矩形状に限られない。
第1コア部21関して、より詳細に説明する。第2コア部22の各辺に近接するように設けられた3枚の第1コア部21のうち、中央の第1コア部21は、第1方向(磁束B1の向き)に沿って配置されている。両側の第1コア部21,21は、第1方向(図示されない磁束の向き)に対して所定の鋭角(45度未満)をなすように配置されている。ここで、あるコア部に対して「磁束の向き」とは、そのコア部を通る「磁束の向き」を意味する。両側の第1コア部21,21に関しても、これらの第1コア部21,21は、磁束の向きに平行な第1方向に延在する。各第1コア部21が配置される向きは、たとえば、各第1コア部21の中心線を基準に定められ得る。複数の第1コア部21は、巻軸Aおよび磁束B1を通る平面に関して面対称をなすように設けられている。
各第1コア部21において、第1方向に直交する第2方向の両側には、ギャップ部25が形成されている。図2に示されるように、隣り合う第1コア部21,21の2つの長辺の間には、長細いギャップ部25が形成されている。これらのギャップ部25は、第1コア部21に沿って延在する。また、両側の第1コア部21,21の一側方には、フェライトコア20の四隅に位置する矩形状(たとえば正方形状)のギャップ部25が形成されている。
これらのギャップ部25は、磁性体が配置されない隙間であってよい。ギャップ部25の透磁率は、第1コア部21の透磁率よりも著しく低い。言い換えれば、ギャップ部25の磁気抵抗は、第1コア部21の磁気抵抗よりも著しく大きい。ギャップ部25は、いわば、エアギャップまたは磁気ギャップである。なお、ギャップ部25には、第1コア部21の透磁率よりも低い透磁率を有する部材が設けられてもよい。
各第1コア部21の短辺と第2コア部22の間に、隙間が設けられてもよい。なお、隙間が設けられず、これらの位置に磁性体が配置されてもよい。
第2方向に隣り合う第1コア部21の間のギャップ部25は、コイル10の導線7に交差するように延在することが好ましい。言い換えれば、ギャップ部25の軸線(ギャップ部25の長手軸)は、コイル10の導線7を横切ることが好ましい。ギャップ部25の軸線は、導線7に平行ではないことが好ましい。つまり、ギャップ部25の軸線は、磁束B1の方向と平行、もしくは磁束B1に対して所定の鋭角(45度未満)をなすことが好ましい。
磁束B1に対して45度ずれた磁束B2を中心とする4方向では、四隅に位置するギャップ部25の存在により、第1コア部21に沿うように磁束B3(一点鎖線の矢印参照)の方向に磁路が形成される。その結果、磁束B1を中心とする4方向に磁束密度が高くなる。全体として、フェライトコア20による磁気特性の制御が可能になっている。
フェライトコア20における磁気特性の制御を可能とするためには、第1コア部21の占積率に疎密をつけることが必要である。以下、図3を参照して、占積率の疎密について説明する。図3は、フェライトコア20における第1コア部21の占積率に基づく領域区分を示す図である。第1コア部21の占積率は、Z方向(第1方向および第2方向の両方に垂直な第3方向)にコイル10が投影された領域を基準として定められ得る。占積率は、その投影領域内の一定範囲に存在する第1コア部21の体積(厚みの概念を含む体積)に基づいて定められ得る。一定範囲とは、たとえばコイル10の投影領域の少なくとも10分の1程度の面積を有する範囲である。一定範囲とは、第1コア部21,21の間のギャップ部25のような小さな範囲ではなく、それよりも大きな範囲である。
フェライトコア20には、第1コア部21の占積率が一定以上である第1領域C1と、第1領域C1における占積率よりも第1コア部21の占積率が低い第2領域C2と、が形成されている。第2領域C2は、少なくともギャップ部25を含む。
図3に示されるように、複数の第1コア部21が存在する領域のうち、コイル10の投影領域に重なる一定範囲が、第1領域C1である。また、四隅に位置するギャップ部25のうち、コイル10の投影領域に重なる一定範囲が、扇状の第2領域C2である。第1領域C1では、第1コア部21の占積率は、たとえば80%以上である。第2領域C2では、第1コア部21が存在せず、第1コア部21の占積率は0%である。第2領域C2は、たとえばコイル10の曲部領域に相当する。第1領域C1における第1コア部21の占積率、および、第2領域C2における第1コア部21の占積率は、それぞれ、上記とは違ってもよい。たとえば、第1領域C1における第1コア部21の占積率は、たとえば70%以上であってもよいし、60%であってもよい。第2領域C2における第1コア部21の占積率は、第1領域C1における第1コア部21の占積率よりも小さければよい。
また、第2コア部22が存在する領域は、矩形状の第3領域C3である。第3領域C3は、巻軸Aを含む。第2コア部22は磁束に対する方位性をもった形状をなしていないため、第2コア部22は、特許請求の範囲に記載の「コア部」に相当しない。したがって、この第3領域C3では、第1コア部21が存在せず、第1コア部21の占積率は0%である。
サーキュラー型のコイル10において、第1コア部21の占積率が高い第1領域C1は、巻軸Aに対して径方向に延在することが好ましい。たとえば、フェライトコア20のように、フェライトが十字状に配置されてもよい。
続いて、図4以降を参照して、上記したコイル装置1のフェライトコア20によって実現される磁気特性について考察する。条件は以下のとおりである。
(i)コイル、シールド材の形状は、地上(送電側)と車載(受電側)で同じとする。
(ii)片側のフェライト形状(ここでは地上側のフェライト形状)のみを変化させて、コイルの磁気特性を考察する。
(iii)ギャップの設置案(図4に示される第1モデルM1)を用い、十字状の領域で磁束を集中(制御)するパターンを作成した。
(iV)ギャップの配置を変えることにより、
a)フェライトコア中の磁束密度分布、及び
b)送電コイルのインダクタンス、結合係数を評価パラメータとした。
以下、図4,6,7,9,10において示される濃淡は、磁束密度分布を示す。色が濃いほど磁束密度が高いことを意味する。
図9に示されるように、比較例1に相当するモデルM200では、フェライトコアが、複数の分割片P2によって構成されている。正方形状の分割片P2は、X方向およびY方向に規則正しく配列されている。分割片P2,P2の間には隙間(ギャップ)が設けられており、全体として、格子状の隙間が形成されている。このように、モデルM200では、第1コア部21のような細長のコア部は設けられておらず、磁束に対するフェライトの方位性は存在しない。分割片P2は、巻軸A周りの全方位に均等に配置されている。
図9に示されるように、モデルM200では、ギャップの影響により、全体的に磁束密度が低下している。このように、モデルM200に相当するフェライトコアは、磁気特性の観点では不利であると言える。なお、機械強度を持たせる部材が設けられれば、モデルM200に相当するフェライトコアは、構造面での優位性を持ちうる。
図10に示されるように、比較例2に相当するモデルM100では、フェライトコアが、1枚のフェライト板P100によって構成されている。正方形状のフェライト板P100には、隙間や空隙(ギャップ)は形成されていない。
図10に示されるように、モデルM100では、ギャップが無いので、磁束は等方に広がっている。このように、モデルM100に相当するフェライトコアは、良好な磁気特性を実現し得ると言える。一方、機械強度を持たせる部材が設けられ得ないため、構造面では不利である。
これらのモデルに対し、実施例であるフェライトコア20に相当する第1モデルM1(図4参照)では、上述のモデルM200を改変し、磁束の向きに垂直な隙間(ギャップ)の一部に、磁性体が敷き詰められている。言い換えれば、いくつかの結合片P1が結合され、一体の磁性体に変更されている。この変更により、磁束の方向に延在する複数の結合片P1が設けられている。なお、四隅に位置する複数の結合片P1は、モデルM200から変更されていない。第1モデルM1において、エアギャップはX方向およびY方向に均等に設けられている。かつ、磁束の向きに対し垂直成分のエアギャップが埋められている。
図4に示されるように、実施例であるフェライトコア20に相当する第1モデルM1では、ギャップの最適化により、十字状の領域に磁束が集中している。なお、フェライトコア20と第1モデルM1とでは、ギャップに関して厳密に同一ではないが、第1モデルM1を用いたシミュレーションにより、磁束が集中する傾向は正しく把握され得る。なお、四隅に位置する分割片P2における磁束密度が小さいことは、第2領域C2に第1コア部21を配置する意義が低いことを意味している。
図5は、実施例および比較例1,2におけるインダクタンス(L)および結合係数(k)を示す図である。図5に示されるように、第1モデルM1では、エアギャップ無しのモデルM100に比して、インダクタンスおよび結合係数のいずれもが9割以上の値を実現しており、磁気特性が確保されている。一方、ギャップが等間隔に設けられたモデルM200では、モデルM100に比して、インダクタンスは6割以下、磁気特性も8割以下に低下している。なお、図示されないが、抵抗値(R)に関しても、第1モデルM1では、モデルM100に比して約3割の増加に抑えられた。一方で、モデルM200では、モデルM100に比して約6割もの増加が見られた。これは、第1モデルM1ではモデルM200に比べギャップからの漏れ磁界によるシールド材に生じる渦電流損が抑制されていることを意味する。
本実施形態のコイル装置1によれば、磁性体である第1コア部21は、磁束の向きに平行な第1方向に連続して延在する。第1コア部21の両側には、第1コア部21に沿って延在するギャップ部25が設けられる。ギャップ部25に囲まれた(挟まれた)第1コア部21は、第1方向においてより長くなっている。コイル10の周りに発生する磁束は第1コア部21に集中し得る(図4参照)。第1コア部21の占積率が一定以上である第1領域C1に磁束を集中させることにより、磁束量を制御でき、所望の磁気特性を得ることができる。第1コア部21の占積率が低い第2領域C2は、フェライト量の低減に寄与する。このコイル装置1では、磁束の向きに着目し、磁束の向きにより長い第1コア部21が密に配置される第1領域C1と、第1コア部21が疎に配置される第2領域C2とが設定されている。これにより、フェライト量の低減の度合いに比して、磁気特性の低下の度合いは抑えられている(図5参照)。このように、第1コア部21の配置に疎密をつけることにより、磁気特性の制御が可能になっている。その結果として、フェライト量を低減しつつ、所望の磁気特性、すなわちコイルのインピーダンスや結合係数、さらにコイル装置1の指向性についても持たせ得ることができる。
別の観点から本実施形態に係るフェライトコア20を説明する。本実施形態では、コイル10(送電コイル)、フェライトコア20(高透磁率を有する磁性材)、ベース4(シールド材すなわち磁気シールド特性を有する導電体)からなり、コイル10の導線7に平行なエアギャップで囲んだエリアと、コイル10の導線7に垂直なエアギャップで囲んだエリアとのどちらか一方もしくは双方からなるフェライトコアの分割方法が採られている。上記の垂直なエアギャップで囲んだエリアでは磁束密度は増加し、上記の平行なエアギャップで囲んだエリアでは磁束密度は減少する。さらに、磁束を特定方向に集中させることにより、コイル装置1に指向性を持たせることも可能と考えられる。また、コイル形状に合わせたギャップを設けることにより、磁束密度分布を制御または調整し、磁気特性を保ったままフェライトの占積率を下げることも可能と考えられる。
第1コア部21の占積率が0%である第2領域C2が形成された場合、その第2領域C2には、第1コア部21が設けられない。よって、その第2領域C2は、フェライト量の低減に大きく寄与する。
上記実施形態のように十字状の第1領域C1は、径方向に延在している。径方向に延在する第1領域C1によれば、サーキュラー型のコイル10に適した磁気特性の確保が可能である。また、第1領域C1において所望の磁気特性を確保した上で、第2領域C2を適切に設け、それによってフェライト量の効率的な低減を図ることもできる。
第1コア部21,21の間のギャップ部25は、コイル10の導線7に対して交差するように延在する。この場合、漏れ磁界の抑制効果によるインダクタンスおよび結合係数の低下を防ぐことができる。ベース4(シールド材)によって渦電流の損失が抑制され、送電コイル抵抗値の低減効果が得られる。その結果、非接触給電システムの給電効率が上昇する。
本開示の実施形態について説明したが、本発明は上記実施形態に限定されない。
第1コア部21の配置は、適宜、変更または設定され得る。たとえば、図6に示される第2モデルM2のように、Y方向のギャップのみが設けられた形態が採用されてもよい。この場合、コイル装置1に指向性を持たせることができる。すなわちこの場合モデルM200と比較したとき、Y方向への位置ズレに対し結合係数を高くすることが出来る。この場合に、ギャップ部を含む第2領域、すなわち図中において磁束密度が低くなっている領域に非磁性材を配置することも可能である。X方向のギャップのみが設けられた形態が採用されてもよい。
また、図7に示される第3モデルM3のように、斜めにギャップが設けられた形態、すなわちX方向およびY方向に対して45度(若しくは45度以外の鋭角)に延在する結合片P4(コア部)が設けられた形態が採用されてもよい。この場合も、モデルM200と比較したとき、XY方向(斜め方向)への位置ズレに対し結合係数を高くすることが出来る。この場合に、ギャップ部を含む第2領域、すなわち図中において磁束密度が低くなっている領域に非磁性材を配置することも可能である。
図8に示される第2実施形態に係るフェライトコア20Aのように、X方向およびY方向に十字状に配列された複数の分割コア26を備えた形態が採用されてもよい。この場合、隙間なく並べられた分割コア26によって、第1コア部21Aが形成されている。言い換えれば、本開示におけるコア部は、一体のコア部であってもよいし、別体の分割コアが集合されてなるコア部であってもよい。このようなフェライトコア20Aによっても、第1実施形態のフェライトコア20と同様の作用・効果が奏される。
上記の各態様において、第2領域C2のうち第1コア部21が設けられない領域には、第1コア部21よりも高強度であって、かつ、第1コア部21の透磁率よりも低い透磁率を有する補強部材が設けられてもよい。たとえば、図1および図2に示されるフェライトコア20や、図8に示されるフェライトコア20Aに対して、四隅のギャップ部25に補強部材が設けられてもよい。巻軸Aの位置に設けられたコア部に代えて、巻軸Aの位置に、補強部材が設けられてもよい。この場合、第1コア部21には高透磁率材料が用いられ、補強部材には低透磁率材料が用いられ得る。高透磁率材料として、たとえばFe_Co系アモルファス磁性材、PC−パーマロイ、またはMn_Zn系フェライト材などが挙げられる。一般に、導電率が高いと、渦電流損によりコイルの抵抗値も上昇してしまうので、低導電率であるフェライト材が、非接触給電システムには適する。
補強部材が設けられたフェライトコアでは、磁束量を抑えた第2領域C2にて機械強度を高めるための補強部材が設けられるので、構造面(機械強度)で有利である。たとえば、ギャップ無しのフェライト板(図10のモデルM100に相当)に比べても、有利である。
特許文献1に記載されたような従来の技術では、フェライトコアの間にギャップ板が設けられているが、フェライトコアの配置に疎密は設定されていない。ギャップ板に構造上の強度をもたせているが、機械強度と磁気特性がトレードオフの関係になっていた。すなわち、特許文献1に記載された均一な配置では、フェライトコアの占積率を上げればギャップは減り、フェライトコアの占積率を下げればギャップは増えるに過ぎない。
第2領域C2に補強部材が設けられた本開示の形態によれば、磁気特性をさほど低下させずに機械強度を向上させることができる。言い換えれば、エアギャップを用いてフェライトコア中の磁束を制御し、磁束密度の大小に合わせた2つの領域に分け、高透磁率材料及び低透磁率材料を使い分けることにより、磁気特性および機械強度性能を制御可能である。エアギャップに、導線7に垂直に延びるリブなどを設けることにより、エアギャップ無しの場合に比べて、構造面(機械強度)においても有利に働く。コア部間の間隔、及び、コイル10の導線7に平行なエアギャップで囲んだエリア(磁束量を抑えた領域)により、低比重の樹脂等の構造物を入れることで、軽量化、コストメリットにつながる。エアギャップを等間隔に配置し、かつエアギャップを幅広に設けるほど、機械強度に対しては有利になる。
フェライトコアは、矩形(正方形や長方形等)に限定されず、円形等の他の形状であってもよい。フェライトコアは、上記した形状の要件(方位性)を満たしさえすれば、単一のフェライト板によって形成されてもよい。
ソレノイド型のコイルに対して、本開示のコイル装置が適用されてもよい。その場合でも、コイルが設けられた領域(投影領域)に対して、コア部が密に配置された第1領域と、コア部が疎に配置された第2領域とを形成することで、磁気特性の制御が可能である。また、ギャップ部は、導線に対して交差するように延在することが好ましい。
水中航走体といった車両以外の移動体のバッテリを充電するための非接触給電システムに、本開示のコイル装置が適用されてもよい。また、モータやセンサー等の電力を消費する部品に電力を直接的に供給するシステムに、本開示のコイル装置が適用されてもよい。誘導加熱システムや渦流探傷システムに、本開示のコイル装置が適用されてもよい。
「電磁誘導方式」または「磁界共鳴方式」を用いた送受信アンテナに、本開示のコイル装置が適用されてもよい。
1 コイル装置
3 カバー
4 ベース
6 ボビン
7 導線
10 コイル
20 フェライトコア
21 第1コア部(コア部)
21A 第1コア部(コア部)
22 第2コア部
25 ギャップ部
A 巻軸
B1 磁束
B2 磁束
C1 第1領域
C2 第2領域

Claims (5)

  1. 導線を含むコイルと、
    前記コイルに隣接するフェライトコアと、を備え、
    前記フェライトコアは、
    前記コイルの周りに発生する磁束の向きに平行な第1方向に連続して延在する磁性体であるコア部と、
    前記第1方向に直交する第2方向における前記コア部の両側に形成されると共に前記コア部に沿って延在し、前記コア部の透磁率よりも低い透磁率を有するギャップ部と、を含み、
    前記コア部の前記第1方向における長さは、前記コア部の前記第2方向における長さよりも長く、
    前記フェライトコアには、前記第1方向および前記第2方向の両方に垂直な第3方向に前記コイルが投影された領域内において、前記コア部の占積率が一定以上である第1領域と、少なくとも前記ギャップ部を含み、前記第1領域における占積率よりも前記コア部の占積率が低い第2領域と、が形成されている、コイル装置。
  2. 前記フェライトコアには、前記第3方向に前記コイルが投影された領域内において、前記コア部の占積率が0%である前記第2領域が形成されている、請求項1に記載のコイル装置。
  3. 前記コイルは、巻軸を囲むようにして前記導線が渦巻状に巻回されたサーキュラー型のコイルであり、
    前記第1領域は、前記巻軸に対して径方向に延在する、請求項1または2に記載のコイル装置。
  4. 前記第2方向に隣り合う前記コア部の間の前記ギャップ部は、前記コイルの前記導線に対して交差するように延在する、請求項1〜3のいずれか一項に記載のコイル装置。
  5. 前記第2領域のうち前記コア部が設けられない領域には、前記コア部よりも高強度であり、かつ、前記コア部の透磁率よりも低い透磁率を有する補強部材が設けられる、請求項1〜4のいずれか一項に記載のコイル装置。
JP2017069919A 2017-03-31 2017-03-31 コイル装置 Pending JP2020109777A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017069919A JP2020109777A (ja) 2017-03-31 2017-03-31 コイル装置
PCT/JP2018/008822 WO2018180313A1 (ja) 2017-03-31 2018-03-07 コイル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017069919A JP2020109777A (ja) 2017-03-31 2017-03-31 コイル装置

Publications (1)

Publication Number Publication Date
JP2020109777A true JP2020109777A (ja) 2020-07-16

Family

ID=63676986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017069919A Pending JP2020109777A (ja) 2017-03-31 2017-03-31 コイル装置

Country Status (2)

Country Link
JP (1) JP2020109777A (ja)
WO (1) WO2018180313A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799071B (zh) * 2020-06-19 2024-04-05 广西电网有限责任公司南宁供电局 一种线圈拓补结构及充电设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104842808B (zh) * 2007-05-10 2018-08-07 奥克兰联合服务有限公司 多电源电气车辆
US9160205B2 (en) * 2012-03-20 2015-10-13 Qualcomm Incorporated Magnetically permeable structures
US10250071B2 (en) * 2014-04-08 2019-04-02 Nissan Motor Co., Ltd. Wireless power supply coil

Also Published As

Publication number Publication date
WO2018180313A1 (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
JP7194091B2 (ja) 誘導電力伝達装置
US10186373B2 (en) Wireless power transfer systems with shield openings
CN108431913B (zh) 线圈装置
US11170922B2 (en) Coil device and holder
JP4356844B2 (ja) 非接触給電装置
US9842687B2 (en) Wireless power transfer systems with shaped magnetic components
CN108140478B (zh) 线圈装置
US20160341573A1 (en) Integration of solenoid positioning antennas in wireless inductive charging power applications
US10199163B2 (en) Ground-side coil unit
US20210151238A1 (en) Coil device
JP2017212880A (ja) ワイヤレス電力伝送装置
US11211189B2 (en) Coil device
JP6111645B2 (ja) コイル装置及びそれを用いたワイヤレス電力伝送システム
JP2020109777A (ja) コイル装置
JP5918020B2 (ja) 非接触給電用コイル
JP6881083B2 (ja) コイル装置
JP2014063768A (ja) 非接触給電システムに用いられるコイルユニット
EP3669389B1 (en) Topology of a ferrite shield for inductive coils
JP6968391B1 (ja) 非接触給電用コイルユニットおよび非接触給電システム
KR102503650B1 (ko) 무선전력 송신모듈
KR20200052034A (ko) 무선 충전 패드 및 무선 충전 장치
US11817720B2 (en) Transmitter assembly and methods for making and using the same
JP2016220264A (ja) アンテナ装置