JP2020098109A - 検査装置および検査方法 - Google Patents

検査装置および検査方法 Download PDF

Info

Publication number
JP2020098109A
JP2020098109A JP2018235310A JP2018235310A JP2020098109A JP 2020098109 A JP2020098109 A JP 2020098109A JP 2018235310 A JP2018235310 A JP 2018235310A JP 2018235310 A JP2018235310 A JP 2018235310A JP 2020098109 A JP2020098109 A JP 2020098109A
Authority
JP
Japan
Prior art keywords
vibration
unit
observation surface
inspection
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018235310A
Other languages
English (en)
Other versions
JP7215134B2 (ja
Inventor
貴秀 畠堀
Takahide Hatakebori
貴秀 畠堀
田窪 健二
Kenji Takubo
健二 田窪
康紀 吉田
Yasunori Yoshida
康紀 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2018235310A priority Critical patent/JP7215134B2/ja
Priority to US16/371,250 priority patent/US11181510B2/en
Priority to EP19167258.3A priority patent/EP3671202A1/en
Priority to CN201910309937.XA priority patent/CN111323479B/zh
Publication of JP2020098109A publication Critical patent/JP2020098109A/ja
Application granted granted Critical
Publication of JP7215134B2 publication Critical patent/JP7215134B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/045Analysing solids by imparting shocks to the workpiece and detecting the vibrations or the acoustic waves caused by the shocks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/346Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with amplitude characteristics, e.g. modulated signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2672Spot welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2677Lapp welding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

【課題】接合体における部材同士の接合状態を迅速に検査することができる検査装置および検査方法を提供する。【解決手段】検査装置1は、互いに重なり合う複数の板部材91をリベット92を介して接合された接合体9において、板部材91同士の接合状態を検査する装置である。この検査装置1は、接合体9の観察面93に対して、位相、振幅の空間分布および/または周波数が異なる複数の振動条件の弾性波を付与する加振部2と、加振部2による加振中に、観察面93における板部材91とリベット92との接合部94またはその近傍における振動変位に関する物理量の空間分布を検出する検出部3と、検出部3が検出した物理量の空間分布を処理する処理部4と、を有する。【選択図】図1

Description

本発明は、検査装置および検査方法に関する。
自動車部品等の分野において、複数の板部材同士を接合して接合体を得ることがある。この場合、板部材同士の接合には、リベットが用いられる。そして、リベットによる板部材同士の接合部の良不良の検査方法としては、例えば、特許文献1に記載された方法が知られている。この特許文献1に記載された方法は、次の手順で行われる。
まず、2枚の板部材のうちの一方の板部材のリベット近傍に、パルス波発信用の探触子(以下「第1探触子」と言う)を接触させる。また、リベットのかしめ部に、パルス波受信用の探触子(以下「第2探触子」と言う)を接触させた状態とする。
この状態で、第1探触子からパルス波を発信すると、パルス波は、第2探触子で受信される。このとき、リベットのかしめ部と一方の板部材との密着の程度、すなわち、板部材同士の接合部の良不良に応じて、第2探触子で受信されるパルス波の波形に変化が生じる。
このように、特許文献1に記載された方法では、パルス波の波形を記録して、この波形に基づいて、接合部の良不良の判断を行うことができる。しかしながら、この方法では、第1探触子と第2探触子との間における接合部の接合状態しか検査することができない。
従って、リベットのかしめ部の全周にわたって、接合部の接合状態を十分に検査する場合には、一方の板部材上での第1探触子の配置位置をリベットのかしめ部の全周にわたって変更していき、その都度、パルス波を記録する必要がある。そのため、検査完了までの時間が多大に費やされてしまう。
特開平10−249474号公報
この発明は、上記のような課題(検査完了までに時間を要すること)を解決するためになされたものであり、その1つの目的は、例えば、接合体における部材同士の接合状態を迅速に検査することができる検査装置および検査方法を提供することである。
上記目的を達成するために、この発明の一の局面における検査装置は、互いに重なり合って接合された複数の部材を含む接合体において、部材同士の接合状態を検査する検査装置であって、
接合体の観察面に対して、位相、振幅の空間分布および/または周波数が異なる複数の振動条件の弾性波を付与する加振部と、
加振部による加振中に、観察面における部材同士の接合部またはその近傍における弾性波により生じる振動(以下単に振動という)の変位に関する物理量の空間分布を一括検出する検出部と、
検出部が検出した物理量の空間分布を、記憶または表示する処理部と、を有する。
この発明の一の局面による検査装置では、接合体の観察面における振動変位に関する物理量の空間分布の一括イメージングを利用し、この一括イメージングを、複数の振動条件の振動を接合体に付与することにより行う。ここで、一括イメージングする振動は、加振部から連続的に弾性波が付与されることにより観察面において空間的に定常状態となっている。振動が定常状態となった観察面においては、振動の振幅が極端に小さくなる領域(振動の節)が生じる。このため、部材同士の接合状態とは無関係に振動の節となってしまった箇所においては、接合状態を検査することができない。そこで、本発明では、複数の振動条件において振動の一括イメージングを行うことで、観察面における全ての箇所で接合状態を検査することが可能となる。これにより、簡単な構成で、接合体の検査を迅速に行うことができる。
上記一の局面による検査装置において、好ましくは、加振部は、振動条件として周波数が異なる複数の振動を異なるタイミングで付与する。
上記一の局面による検査装置において、好ましくは、加振部は、振動条件として周波数が異なる複数の振動を同じタイミングで付与する。
上記一の局面による検査装置において、好ましくは、加振部は、観察面に振動子を接触させて振動の付与を行い、観察面における振動子の接触位置を変更することにより振動の位相、振幅の空間分布を変化させる。
上記一の局面による検査装置において、好ましくは、加振部は、観察面に複数の振動子を接触させて振動の付与を行い、各振動子で付与する振動条件を変更することにより振動の位相、振幅の空間分布を変化させる。
以上のように構成すれば、比較的簡単な操作で振動の振動条件を変更することができる。
上記一の局面による検査装置において、好ましくは、検出部は、加振部による加振中に、観察面に対して光を照射する光照射部を備える。
上記光照射部を備える検査装置において、好ましくは、光照射部は、加振部が付与する振動の周期と同期して、光としてパルスレーザ光を照射する。
上記パルスレーザ光を照射する検査装置において、好ましくは、光照射部は、加振部による振動の位相とは少なくとも3つの異なる位相差を持つパルスレーザ光を照射する。
以上のように構成すれば、観察面における振動変位による物理量の空間分布を検出し易くなる。
上記一の局面による検査装置において、好ましくは、検出部は、物理量の空間分布として光干渉法によって観察される干渉画像を取得する。
上記一の局面による検査装置において、好ましくは、処理部は、各振動条件に関わらず、接合部またはその近傍における物理量の変化が、接合部またはその近傍を除く領域における物理量の変化より小さい場合には、接合部での接合状態が良と判定する。
上記一の局面による検査装置において、好ましくは、処理部は、物理量を所定値と比較することで接合状態の良否を判定する。
以上のように構成すれば、部材同士の接合状態の良否の判定を円滑に行うことができる。
また、この発明の一の局面における検査方法は、上記検査装置を用いて、互いに重なり合って接合された複数の部材を含む接合体において、部材同士の接合状態を検査する検査方法であって、接合体の観察面に対して、位相、振幅の空間分布および/または周波数が異なる複数の振動条件の振動を付与しつつ、観察面における部材同士の接合部またはその近傍における振動変位に関する物理量の空間分布を検出することにより、接合状態の良否を判定する。
この発明の一の局面による検査方法では、上記のように、互いに重なり合って接合された複数の部材を含む接合体に対して、異なる複数の振動モードの振動を付与し、この振動による変位に関する物理量の空間分布を検出することで、部材同士の接合状態を検査する。これにより、簡単な構成で、接合体の検査を迅速に行うことができる。
本発明によれば、接合体の接合状態を検査する際には、各振動条件下で接合体を加振して、その加振中に変化する接合体の物理量の空間分布を検出することができる。そして、この検出された物理量の空間分布に基づいて、接合体の接合状態の良否の判定がなされ、接合体の検査を迅速に行うことができる。
このように、接合体への振動条件を変更して、物理量の空間分布を検出するという簡単な構成で、接合体を検査する検査時間を短縮することができる。
本発明の検査装置の第1実施形態を示す概略構成図である。 図1に示す検査装置における制御部の制御プログラムを示すフローチャートである。 図1に示す検査装置により物理量の空間分布を検出する原理を説明するためのグラフである。 図1に示す検査装置の検査対象となる接合体を示す平面図である。 図4中のA−A線断面図である。 第1振動条件下での接合体(接合状態:良)の振動状態を模式的に示す側面図である。 第2振動条件下での接合体(接合状態:良)の振動状態を模式的に示す側面図である。 第1振動条件下での接合体の振動状態(接合状態:不良)を模式的に示す側面図である。 第2振動条件下での接合体の振動状態(接合状態:不良)を模式的に示す側面図である。 接合体(接合状態:良)の濃淡画像を模式的に示す図である。 接合体(接合状態:不良)の濃淡画像を模式的に示す図である。 本発明の検査装置(第2実施形態)の検査対象となる接合体を示す平面図である。
以下、本発明の検査装置および検査方法を添付図面に示す好適な実施形態に基づいて詳細に説明する。
<第1実施形態>
図1〜図11を参照して本発明の検査装置および検査方法の第1実施形態について説明する。
図1に示す検査装置10は、その被検査物体Sである接合体9の接合状態(以下単に「接合状態」と言うことがある)の検査に用いられる。
接合体9としては、特に限定されず、図4に示す接合体9を一例に挙げることができる。図4に示すように、接合体9は、図中の左右方向に沿った長い形状をなす板部材91を複数枚有している。そして、これらの板部材91は、図4中の左右方向に沿って並べられ、端部同士が互いに板厚方向に重なり合って重なり部911を形成している。また、各重なり部911は、リベット92を介して接合されている。
図5に示すように、リベット92は、頭部921が裏側に位置する。また、リベット92の表側には、板部材91同士の接合時に、かしめにより塑性変形したかしめ部922が形成される。
このように、接合体9は、複数枚の板部材91と、板部材91同士を接合する接合部材としての複数のリベット92とを含む。そして、検査装置10は、板部材91同士の接合状態を検査することができる。また、この検査では、接合体9の表側の面が、前記接合状態を検査する際に観察される観察面93となる。図5では、観察面93の理解を容易にするために、符号「93」を付した二点鎖線で示す。
また、本発明の検査方法は、本発明の検査装置10を用いて、接合体9における板部材91同士の接合状態を検査する方法である。
図1に示すように、検査装置10は、接合体9に対して振動を付与する加振部2と、加振部2による加振中に接合体9の観察面93で生じる物理量の空間分布を一括して検出する検出部3と、検出部3が検出した物理量の空間分布を記憶または表示する処理部4とを有している。加振部2は、信号発生器11および振動子12を備えている。検出部3は、パルスレーザ光源13、照明光レンズ14およびスペックル・シェアリング干渉計15を備えている。処理部4は、制御部16、記憶部17および表示部18を備えている。以下、各部の構成について説明する。
信号発生器11は、ケーブルで振動子12に接続されており、交流電気信号を発生させて該振動子12に送信する。
振動子12は、接合体9の観察面93に接触させて用いられ、信号発生器11から交流電気信号を受信して機械的振動に変換し、該機械的振動を接合体9に付与する。これにより、該接合体9に弾性波を励起する。
なお、観察面93に対する振動子21の接触位置としては、特に限定されない。例えば、図4に示すように、板部材91が平面視での形状が長方形の場合、板部材91の短辺方向の中央部とすることができる。また、振動子21の接触位置は、重なり部911上であってもよいし、重なり部911上から外れた位置であってもよい。また、振動子21の接触位置は、リベット92上であってもよいし、リベット92上から外れた位置であってもよい。
また、加振部2は、接合体9の観察面93に対して、周波数が異なる複数の振動条件(振動モード)の振動を付与することができる。本実施形態では、第1周波数で振動を与える第1振動条件と、第1周波数よりも高い第2周波数で振動を与える第2振動条件とがある。そして、加振部2は、第1振動条件の振動と、第2振動条件の振動とを異なるタイミングで付与する。これにより、第1振動条件および第2振動条件の各条件下で観察面93に生じる振動振幅の空間分布を反映した濃淡画像(後述する画像IM1、IM2)が得られる。これらの画像は、接合体9の接合状態の良否判定に用いられる。
本実施形態では、加振部2は、周波数が異なる複数の振動条件の振動を異なるタイミングで付与するよう構成されているが、これに限定されず、例えば、周波数が異なる複数の振動条件の振動を同じタイミングで付与するよう構成されてもよい。この場合、振動付与後に周波数解析を行えば、どの振動条件での振動による濃淡画像であるのかを識別することができる。これにより、前述した異なるタイミングでの振動付与と同様に、接合体9の接合状態の良否判定が可能となる。
信号発生器11は、また、振動子12と接続するケーブルとは別のケーブルでパルスレーザ光源13にも接続されており、前記交流電気信号が所定の位相となるタイミングで、該パルスレーザ光源13にパルス状の電気信号(パルス信号)を送信する。前記所定の位相、およびそれにより定まる前記タイミングは、接合体9の検査を行う間に後述のように変更される。パルスレーザ光源13は、加振部2による加振中に、加振部2が付与する振動の周期と同期して、信号発生器11からパルス信号を受けたときに、パルスレーザ光を観察面93に対して出力する、すなわち、照射する光源(光照射部)である。
照明光レンズ14は、パルスレーザ光源13と接合体9の間に配置されており、凹レンズから成る。照明光レンズ14は、パルスレーザ光源13からのパルスレーザ光を接合体9の表面の測定領域の全体に拡げる役割を有する。
スペックル・シェアリング干渉計15は、ビームスプリッタ151、第1反射鏡1521、第2反射鏡1522、位相シフタ153、集光レンズ154およびイメージセンサ155を有する。ビームスプリッタ151は、接合体9の表面の測定領域で反射した照明光が入射する位置に配置されたハーフミラーである。第1反射鏡1521は、ビームスプリッタ151で反射される照明光の光路上に配置されており、第2反射鏡1522は、ビームスプリッタ151を透過する照明光の光路上に配置されている。位相シフタ153は、ビームスプリッタ151と第1反射鏡1521の間に配置されており、該位相シフタ153を通過する光の位相を変化(シフト)させるものである。イメージセンサ155は、ビームスプリッタ151で反射された後に第1反射鏡1521で反射されてビームスプリッタ151を透過する照明光、およびビームスプリッタ151を透過した後に第2反射鏡1522で反射されてビームスプリッタ151で反射される照明光の光路上に配置されている。集光レンズ154は、ビームスプリッタ151とイメージセンサ155の間に配置されている。
第1反射鏡1521は、その反射面がビームスプリッタ151の反射面に対して45°の角度になるように配置されている。それに対して第2反射鏡1522は、その反射面がビームスプリッタ151の反射面に対して45°からわずかに傾斜した角度になるように配置されている。これら第1反射鏡1521および第2反射鏡1522の配置により、イメージセンサ155では、接合体9の表面(観察面93)上のある点Aおよび第1反射鏡1521で反射される照射光(図1中の一点鎖線)と、該表面上の点Aからわずかにずれた位置にある点Bおよび第2反射鏡1522で反射される照射光(同・破線)は、イメージセンサ155の同じ位置に入射して干渉する。イメージセンサ155は、検出素子を多数有しており、接合体9の表面上の多数の点(前記の点A)から第1反射鏡1521および位相シフタ153を通してイメージセンサ155に入射する光を、それぞれ異なる検出素子で検出する。前記の点Bについても同様に、多数の点から第2反射鏡1522を通してイメージセンサ155に入射する光を、それぞれ異なる検出素子で検出する。このようにして干渉画像が得られる。なお、図1では、一例として、点Aは、リベット92のかしめ部922上の点であり、点Bは、重なり部911上の点であって、かしめ部922が接する板部材91上の点である。
そして、このような構成の検出部3は、観察面93に含まれる板部材91とリベット92のかしめ部922との接合部94またはその近傍における振動変位に関する物理量の空間分布を、加振部2による加振中に検出することができる。ここで、「接合部94」とは、板部材91とかしめ部922との境界(部材同士の境界)を言い、「接合部94の近傍」とは、接合部94から3〜20mm以内の範囲を言う。また、「振動変位に関する物理量の空間分布」とは、観察面93における振動の振幅および位相の空間分布であり、本実施形態では光干渉法によって観察される干渉画像である。この干渉画像は、スペックル・シェアリング干渉計15によって取得される。
制御部16は、信号発生器11を制御するとともに、イメージセンサ155の各検出素子から得られる検出信号に基づいてデータ処理を行う。記憶部17は、イメージセンサ155の各検出素子から得られる検出信号や、制御部16による処理後のデータを記憶する。
表示部18は、例えば液晶画面を有している。そして、この表示部18により、記憶部17に記憶された干渉画像、複数の干渉画像に基づいて得られる濃淡画像や、その他の情報(例えば検査装置10による検査結果等)を表示することができる。
以下、図2のフローチャートおよび図3のグラフを用いて、検査装置10の動作を説明する。本実施形態では、振動子12の振動の位相が異なる、mmax≧3回の表面(観察面93)変位の測定を行う。ここで「振動子12の振動の位相」は、信号発生器11から振動子12に送信される交流電気信号の位相であり、接合体9に励振される弾性波の、振動子12が接触する点における位相に相当する。以下では、各回の表面変位の測定を、数値k(1〜mmaxの間のいずれかの自然数)を用いて「k回目の測定」と表す。また、以下の説明では、まずは最も単純な例としてmmax=3である場合について全てのステップを説明し、その後、mmaxがさらに大きな数である場合について説明する。
まず、kの初期値を1に設定し(ステップS1)、信号発生器11から振動子12に交流電気信号を送信することにより、振動子12から、被検査物体Sである接合体9への振動の付与を開始する(ステップS2)。これにより、接合体9に弾性波が励起される。なお、ステップS2は、第1周波数での振動付与か、または、第2周波数での振動付与となる。
次に、振動子12の振動の位相が、所定の初期値φ(例えばφ=0)を用いて[φ+2π(k−1)/mmax]で表されるタイミング毎に、信号発生器11は、パルスレーザ光源13にパルス信号を送信する。この段階ではk=1であるため、パルス信号が送信されるときの振動子12の振動の位相はφである。パルスレーザ光源13は、パルス信号を受ける毎にパルスレーザ光である照明光を繰り返し出力する。この照明光は、照明光レンズ14により拡径され、接合体9の表面の測定領域の全体に照射される(ステップS3)。
照明光は、接合体9の表面で反射され、スペックル・シェアリング干渉計15のビームスプリッタ151に入射する。その照明光の一部はビームスプリッタ151で反射され、位相シフタ153を通過した後に第1反射鏡1521で反射され、再度位相シフタ153を通過した後に一部がビームスプリッタ151を通過し、イメージセンサ155に入射する。また、ビームスプリッタ151に入射した照明光の残りは、ビームスプリッタ151を透過して第2反射鏡1522で反射され、一部がビームスプリッタ151で反射されてイメージセンサ155に入射する。前述の通り、イメージセンサ155では、接合体9の表面上の多数の点で反射される照射光をそれぞれ異なる検出素子で検出する。
位相シフタ153は、パルスレーザ光である照明光が繰り返し出力されている間に、該位相シフタ153を通過する照射光(すなわち、点Aで反射された照射光)の位相を変化(シフト)させてゆく。これにより、点Aで反射された照射光と点Bで反射された照射光の位相差が変化してゆき、この変化の間に、イメージセンサ155の各検出素子はこれら2つの照射光が干渉した干渉光の強度を検出してゆく(ステップS4)。図3(a)に、振動子12の振動の位相がφであるときに得られる、位相シフタ153による位相のシフト量と、イメージセンサ155の検出素子で検出される干渉光の強度の一例をグラフで示す。なお、図3において、検出強度が位相シフト量に対して正弦波状に変化する関係が連続的な曲線で示されているが、実際に観測されるのは離散的なデータであり、観測されたデータから最小二乗法等により上記の連続的な正弦波形を再現する。そのためには、少なくとも3つの異なる位相シフト量での強度を検出する必要がある。
続いて、ステップS5において、kの値がmmaxに達しているか否かを確認する。この段階では未だk=1であってmmax(この例では3)に達していないため、ステップS5での判定は「NO」となる。「NO」のときにはステップS6に進み、kの値を1だけ増加させて「2」とする(ステップS5での判定が「YES」の場合については後述)。
次に、ステップS3に戻り、振動子12の振動の位相が[φ+2π(k−1)/mmax]においてk=2、すなわち[φ+2π/3]≡φ1であるタイミング毎に、信号発生器11は、パルスレーザ光源13にパルス信号を送信し、パルスレーザ光源13は、該パルス信号を受信したタイミングで接合体9の表面にパルスレーザ光である照明光を繰り返し照射する。そして、位相シフタ153により点Aで反射された照射光の位相を少なくとも3つの値に変化(シフト)させつつ、イメージセンサ155の各検出素子は点Aで反射されて位相シフタ153等を通過した照射光と点Bで反射された照射光の干渉光の強度を検出してゆく(ステップS4)。
図3(b)に、振動子12の振動の位相がφであるときに得られる、位相シフタ153による位相のシフト量と、イメージセンサ155の検出素子で検出される干渉光の強度をグラフで示す。この図3(b)と前出の図3(a)を対比すると、干渉光の強度のピーク位置が両者でδφ−δφだけずれている。このずれは、点Aからの光路と点Bからの光路の位相差が、検出時の振動子12の振動の位相の相違により変化したことを示している。この光路の位相差の変化は、点Aと点Bの面外方向の相対的な変位が変化していることを示している。
このようにk=2におけるステップS4の操作を実行した後、ステップS5では未だmmax(=3)に達していないため「NO」と判定し、ステップS6においてkの値を1だけ増加させて「3」とする。その後、ステップS3に戻り、交流電気信号の位相が[φ+2π(k−1)/mmax]においてk=3、すなわち[φ+4π/3]≡φであるタイミング毎に、パルスレーザ光源13が接合体9の表面にパルスレーザ光である照明光を繰り返し照射し、イメージセンサ155の各検出素子は、干渉光の強度を検出してゆく(ステップS4)。こうして、図3(c)に示すように、交流電気信号の位相がφであるときの位相シフタ153による位相のシフト量と干渉光の強度の関係が得られる。
その後、ステップS5では、kの値が3であってmmaxに達しているため「YES」と判定し、ステップS7に移る。ステップS7では、信号発生器11から振動子12への交流電気信号の送信を停止し、それにより振動子12が振動を停止する。
次に、ステップS8およびS9において、以下の操作によって測定領域の各点における弾性波の振動状態(振幅および位相)を求める。
ステップS8では、干渉画像の全ての画素について、得られた複数の位相の干渉画像データから、2点間の面外方向の相対変位の時間変化を算出し、ステップS9では、2点間の面外方向の相対変位の時間変化から、測定領域の各点(各測定点)における弾性波の振動状態(振幅および位相)を求める。
具体的には、まず、イメージセンサの各検出素子につき、各振動の位相φ、φ、およびφにおいてそれぞれ、位相シフタ153による位相のシフト量を変化させた間に検出素子の出力が最大となる最大出力位相シフト量δφ、δφ、δφを求める(図3(a)〜(c)のグラフ参照)。さらに、振動の位相が異なる最大出力位相シフト量の差(δφ1-δφ)、(δφ-δφ)、および(δφ-δφ)を求める(ステップS8)。これら3つの最大出力位相シフト量の差は、点Aと点Bの面外方向の相対的な変位を、振動子12の振動の位相が異なる(すなわち時間が異なる)2つのデータで3組示している。これら3組の相対的な変位に基づいて、測定領域の各点における振動の振幅、振動の位相、および振動の中心値(DC成分)、という3つのパラメータの値が得られる(ステップS9)。
こうして得られた各点の振動の振幅や位相の値に基づき、画像を作成する(ステップS10)。例えば、測定点の振幅が大きいほど、その測定点に対応する画素の輝度を高くすることにより、振動の振幅の相違を画像の明暗(濃淡)の相違で表すことができる。
以上のようなステップS1〜ステップS10は、第1振動条件および第2振動条件の各振動条件で行われるステップである。例えば、第1振動条件でのステップS1〜ステップS10を行い、続いて、第2振動条件でのステップS1〜ステップS10を行う。
ところで、接合体9の接合状態には、良否がある。図6および図7には、接合状態が良の場合が示されている。図8および図9には、接合状態が不良の場合が示されている。
検査装置10は、この接合状態の良否の検査することができる。接合状態に良否が生じるのは、リベット92による接合力の影響が大きい。
接合状態が良となる場合には、通常、リベット92による接合力が十分となっている。これにより、図6および図7に示すように、リベット92のかしめ部922と板部材91との接合部94では、これらが互いに密着している。また、この場合、板部材91同士が確実に接合されている。
接合状態が良の接合体9を第1振動条件で加振すると、図6に示すように、観察面93が波打つ、すなわち、観察面93には、振幅が最大となる腹R1と、振幅が零となる節R2とが交互に形成される定常波Rが生じる。このとき、接合部94は、定常波Rにとっての固定端となるため、振幅が零となる。従って、定常波Rは、接合部94で節R2となる。
また、接合状態が良の接合体9を第2振動条件で加振すると、図7に示すように、観察面93には、定常波R’が生じる。このときも、接合部94は、定常波R’にとっても固定端となるため、振幅が零となる。従って、定常波R’は、接合部94で節R2となる。
このように、接合状態が良の接合体9は、第1振動条件で加振されるか、第2振動条件で加振されるかに関わらず、接合部94で節R2となる。
一方、接合状態が不良となる場合には、前記とは反対に、リベット92による接合力が不十分となっている。この場合、図8および図9に示すように、接合部94に隙間が生じ、その隙間分、板部材91同士がガタつき易くなる。
接合状態が不良の接合体9を第1振動条件で加振すると、図8に示すように、観察面93が波打つ、すなわち、観察面93には、定常波Rが生じる。このとき、接合部94は、定常波Rにとっての自由端となり、定常波Rは、腹R1、節R2のいずれも取り得る。なお、図8では、定常波Rは、接合部94で腹R1となっている。
また、接合状態が不良の接合体9を第2振動条件で加振すると、図9に示すように、観察面93には、定常波R’が生じる。このときも、接合部94は、定常波R’にとっても自由端となるため、定常波R’は、腹R1、節R2のいずれも取り得る。なお、図9では、定常波Rは、接合部94で節R2となっている。
このように、接合状態が不良の接合体9は、第1振動条件、第2振動条件によって、接合部94で腹R1となったり、節R2となったりする。
そして、図6〜図9に示す状態の接合体9に対して、第1振動条件および第2振動条件の各振動条件で振動を付与し、上述したステップS1〜S10に従って濃淡画像を取得する。この濃淡画像は、表示部18に表示することができる。表示部18に表示される画像は、図10に示す画像IM1と、図11に示す画像IM2である。
画像IM1および画像IM2では、測定点の振幅(物理量の変化)が大きいほど、その測定点に対応する画素の輝度が高くなっており、濃淡画像における濃度が低い。これとは反対に、測定点の振幅(物理量の変化)が小さいほど、その測定点に対応する画素の輝度が低くなっており、濃淡画像における濃度が高い。このように、振動の振幅の相違が画像の濃淡の相違で表されている。
画像IM1では、接合部94またはその近傍における濃度が高く、濃色で表されている。これにより、接合部94における振動振幅が小さく、接合部94での接合状態が良と判定することができる。一方、画像IM2では、接合部94またはその近傍における濃度が低く、淡色で表されている。これにより、接合部94またはその近傍における振動振幅は大きく、接合部94での接合状態が不良と判定することができる。
そして、第1振動条件および第2振動条件のいずれの振動条件でも、画像IM1が得られた場合には、処理部4は、接合部94またはその近傍における振動振幅(物理量の変化)が小さく、接合部94での接合状態が良と判定する。
一方、第1振動条件および第2振動条件のうちの少なくとも一方の条件で、画像IM2が得られた場合には、処理部4は、接合部94またはその近傍における振動振幅(物理量の変化)が大きく、接合部94での接合状態が不良と判定する。
なお、処理部4は、接合状態の良否を判定する際、物理量を閾値(所定値)と比較して、その判定を行うのが好ましい。この場合、例えば、濃度(輝度)の閾値(所定値)を設定して、当該閾値と、画像IM1や画像IM2での接合部94の実際の濃度の実測値と比較する。そして、実測値が閾値以上であれば、淡色と判断し、実測値が閾値未満であれば、濃色と判断することができる。なお、閾値は、記憶部17に予め記憶されているのが好ましい。また、処理部4では、閾値を適宜変更することもできる。
以上のように、接合体9の接合状態の良否を判定する際には、各振動条件下で接合体9を加振して、画像IM1や画像IM2を得ることができる。処理部4は、各振動条件に関わらず、接合部94またはその近傍における物理量の変化が、接合部94またはその近傍を除く領域における物理量の変化より小さい場合には、接合状態が良と判定する。一方、処理部4は、各振動条件によって、接合部94またはその近傍における物理量の変化が、接合部94またはその近傍を除く領域における物理量の変化より小さくなったり、大きくなったりする場合には、接合状態が不良と判定する。
このように、検査装置10では、画像IM1や画像IM2に基づいて、接合体9の接合状態の良否を迅速に検査することができる。
また、以上のような方法によれば、3箇所存在するリベット92による接合体9の接合状態の良否を一括して検査することができ、接合体の検査を迅速に行うことができる。
<第2実施形態>
以下、図12を参照して本発明の検査装置および検査方法の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
本実施形態は、接合体に対する加振箇所が異なること以外は前記第1実施形態と同様である。
図12に示すように、本実施形態では、加振部2は、観察面93における振動子12の接触位置を位置P1と位置P2とに変更することができる。位置P1は、板部材91の短辺方向の中央部である。位置P2は、図12中、位置P1よりも下方であって、若干右側にある。このような位置に振動子12を配置することにより、加振部2は、接合体9の観察面93に対して、振動の位相をずらした、すなわち、位相が異なる2つの振動条件の振動を付与することができる。これによっても、各振動条件下での濃淡画像を取得することができる。そして、この画像を接合状態の良否判定に用いることができる。
なお、位置P1と位置P2とには、振動子12を順に配置して、振動付与を行ってもよい。この場合、位置P1に振動子12を配置した状態での振動と、位置P2に振動子12を配置した状態での振動とは、異なるタイミングで行われる。
また、これと異なり、振動子12を2つ用意し、位置P1と位置P2とに振動子12を1つずつ配置して、一括して振動付与を行ってもよい。この場合、位置P1に振動子12を配置した状態での振動と、位置P2に振動子12を配置した状態での振動とは、異なるタイミングで行われる。
また、本実施形態では、加振部2は、振動子12の接触位置を2箇所に変更して、位相が異なる2つの振動条件の振動を付与するが、これに限定さない。例えば、加振部2は、振動子12の接触位置を3箇所以上に変更可能であってもよい。この場合、加振部2は、位相が異なる3つ以上の振動条件の振動を付与することができる。
振動子12を位置P1と位置P2とに変更することにより、観察面93における振幅の空間分布を変化させることもできる。これによっても、接合状態の良否判定が可能となる。
以上、本発明の検査装置および検査方法を図示の実施形態について説明したが、本発明は、これに限定されるものではない。また、本発明の検査装置を構成する各部は、同様の機能を発揮し得る任意の構成と置換することができ、また、任意の構成が付加されていてもよい。
また、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
また、本発明の検査装置および検査方法は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
上記の例ではmmax=3としたが、mmaxを[2n+1](nは2以上の自然数)で表される数より大きく選ぶことにより、接合体9に励起された弾性波のn次の成分(第n高調波成分)までを検出することができるようになる。すなわち、点Aと点Bの面外方向の相対的な変位が(2n+1)組以上得られることから、基本波の振幅、基本波の位相、第2高調波の振幅、第2高調波の位相、…第n高調波の振幅、第n高調波の位相、および弾性波のDC成分、という(2n+1)個のパラメータの値が得られる。
また、上記実施形態では信号発生器11と振動子12、および信号発生器11とパルスレーザ光源13はケーブル(有線)で接続しているが、これらを無線で接続していてもよい。特に、信号発生器11と振動子12は無線で接続されていることが好ましい。信号発生器11と振動子12が無線で接続されていることにより、振動子12を接合体9に接触させたうえで、振動子12以外の検査装置10の構成要素が接合体9から離れた位置に配置されていても、長いケーブルを用意する必要がない。このような無線を用いた構成は、例えば航空機や列車等のような比較的大型の接合体9を有する構造体を検査する場合に有益である。
上記実施形態では接合体9の表面に接触させて使用する振動子12を用いたが、その代わりに、接合体9の表面に接触させない位置に置かれた強力なスピーカ等を振動子として用いてもよい。
上記実施形態における接合体9からの反射光がイメージセンサへ入射するまでの光路上に、光学部品の保護や装置のSN比の向上等を目的として、ウィンドウや、種々の光学フィルタを配置してもよい。種々の光学フィルタとは、例えば偏光板、波長板、バンドパスフィルタ、ショートパスフィルタ、ロングパスフィルタ等である。
上記実施形態では、集光レンズ154は、ビームスプリッタ151とイメージセンサ155の間に配置されているが、この配置に限定されるものではない。また、集光レンズ154は、複数のレンズまたは複数のレンズ群によって構成されるものでもよい。例えば、集光レンズ154をレンズ群1とレンズ群2によって構成し、レンズ群1を接合体9とビームスプリッタ151の間、レンズ群2をビームスプリッタ151とイメージセンサ155の間に配置することができる。この時、レンズ群1をスペックル・シェアリング干渉計15の筐体を分解することなく脱着可能な構成とした上で、レンズ群1を焦点距離の異なる別のレンズ群と交換することにより、画角を簡便に変更することができる。これにより、例えば接合体9とスペックル・シェアリング干渉計15との間の距離に応じて画角を調整し、適切な測定領域の大きさを設定することで、様々な位置にある被検査物体に対して欠陥の検査が実現できるようになる。レンズ群1に用いることのできるレンズは、例えば、望遠レンズ、広角レンズ、マクロレンズ、ズームレンズ等である。
また、加振部2は、前記各実施形態では2つの振動条件の振動を付与するよう構成されているが、これに限定されず、3つ以上の振動条件の振動を付与するよう構成されていてもよい。
また、加振部2は、第1実施形態では周波数が異なる複数の振動条件の振動を付与しており、第2実施形態では位相が異なる複数の振動条件の振動を付与しているが、これに限定されない。例えば、加振部は、位相、振幅の空間分布および周波数の少なくとも1つが異なる複数の振動条件の振動を付与してもよい。
この場合、加振部は、観察面に1つの振動子を接触させて振動の付与を行い、観察面における振動子の接触位置を変更することにより振動の位相、振幅の空間分布を変化させるように構成することができる。また、加振部は、観察面に複数の振動子を接触させて振動の付与を行い、各振動子で付与する振動条件を変更することにより振動の位相、振幅の空間分布を変化させるように構成することができる。なお、後者の場合、加振部は、振動子アレイのような複数の個別素子を内蔵する単一の振動子ユニットとして構成してもよい。
また、検出部3は、観察面93の物理量の空間分布を検出するには、前記各実施形態では光干渉法を用いているが、これに限定されず、例えば、格子投影法、サンプリングモアレ法、デジタル画像相関(DIC: Digital Image Correlation)法、振動速度を計測するレーザドップラー振動計を用いてもよい。この場合、観察面93の物理量の空間分布は、各方法によって異なる。
また、処理部4は、パルスレーザ光源13が省略されていてもよい。この場合、パルスレーザ光源13からの光に代えて、自然光を用いることができる。また、この場合、観察面上に着色された微粒子を配置してもよい。
また、処理部4は、前記各実施形態では記憶部17および表示部18の双方を有しているが、これに限定されず、例えば、これらのうちの一方が省略されていてもよい。
また、接合体9の接合状態の良否判定は、前記各実施形態では処理部4により行われているが、これに限定されない。例えば、各振動条件下での濃淡画像を作業者が目視にて比較して、その判定を行ってもよい。
なお、接合体9の接合状態の良否判定に使用する画像は、例えば、振動振幅(物理量の変化)が他の領域における振動振幅(物理量の変化)より大きい領域を赤色で表示し、振動振幅(物理量の変化)が他の領域における振動振幅(物理量の変化)より小さい領域を青色で表示した着色画像であってもよい。
また、接合体9での部材同士の接合は、前記各実施形態ではリベット92を用いているが、これに限定されず、例えば、ボルトを用いてもよいし、スポット溶接等の溶接を用いてもよいし、接着剤を用いてもよいし、あるいは、部材の塑性変形を利用してもよい。
10 検査装置
2 加振部
3 検出部
4 処理部
9 接合体
91 板部材
911 重なり部
92 リベット
921 頭部
922 かしめ部
93 観察面
94 接合部
11 信号発生器
12 振動子
13 パルスレーザ光源
14 照明光レンズ
15 スペックル・シェアリング干渉計
151 ビームスプリッタ
1521 第1反射鏡
1522 第2反射鏡
153 位相シフタ
154 集光レンズ
155 イメージセンサ
16 制御部
17 記憶部
18 表示部
A 点
B 点
IM1 画像
IM2 画像
P1 位置
P2 位置
R 定常波
R’ 定常波
R1 腹
R2 節
S 被検査物体
S1〜S10 ステップ

Claims (12)

  1. 互いに重なり合って接合された複数の部材を含む接合体において、前記部材同士の接合状態を検査する検査装置であって、
    前記接合体の観察面に対して、位相、振幅の空間分布および/または周波数が異なる複数の振動条件の弾性波を付与する加振部と、
    前記加振部による加振中に、前記観察面における前記部材同士の接合部またはその近傍における弾性波により生じる振動の変位に関する物理量の空間分布を一括検出する検出部と、
    前記検出部が検出した前記物理量の空間分布を、記憶または表示する処理部と、を有することを特徴とする検査装置。
  2. 前記加振部は、前記振動条件として周波数が異なる複数の弾性波を異なるタイミングで付与する請求項1に記載の検査装置。
  3. 前記加振部は、前記振動条件として周波数が異なる複数の弾性波を同じタイミングで付与する請求項1に記載の検査装置。
  4. 前記加振部は、前記観察面に振動子を接触させて前記弾性波の付与を行い、前記観察面における前記振動子の接触位置を変更することにより前記振動の位相、振幅の空間分布を変化させる請求項1に記載の検査装置。
  5. 前記加振部は、前記観察面に複数の振動子を接触させて前記弾性波の付与を行い、前記各振動子で付与する前記振動条件を変更することにより前記振動の位相、振幅の空間分布を変化させる請求項1に記載の検査装置。
  6. 前記検出部は、前記加振部による加振中に、前記観察面に対して光を照射する光照射部を備える請求項1ないし5のいずれか1項に記載の検査装置。
  7. 前記光照射部は、前記加振部が付与する弾性波の周期と同期して、前記光としてパルスレーザ光を照射する請求項6に記載の検査装置。
  8. 前記光照射部は、前記加振部による前記弾性波の位相とは少なくとも3つの異なる位相差を持つ前記パルスレーザ光を照射する請求項7に記載の検査装置。
  9. 前記検出部は、前記物理量の空間分布として光干渉法によって観察される干渉画像を取得する請求項1ないし8のいずれか1項に記載の検査装置。
  10. 前記処理部は、前記各振動条件に関わらず、前記接合部またはその近傍における前記物理量の変化が、前記接合部またはその近傍を除く領域における前記物理量の変化より小さい場合には、前記接合部での前記接合状態が良と判定する請求項1ないし9のいずれか1項に記載の検査装置。
  11. 前記処理部は、前記物理量を所定値と比較することで前記接合状態の良否を判定する請求項1ないし10のいずれか1項に記載の検査装置。
  12. 請求項1ないし11のいずれか1項に記載の検査装置を用いて、互いに重なり合って接合された複数の部材を含む接合体において、前記部材同士の接合状態を検査する検査方法であって、
    前記接合体の観察面に対して、位相、振幅の空間分布および/または周波数が異なる複数の振動条件の弾性波を付与しつつ、前記観察面における前記部材同士の接合部またはその近傍における弾性波により生じる振動の変位に関する物理量の空間分布を検出することにより、前記接合状態の良否を判定することを特徴とする検査方法。
JP2018235310A 2018-12-17 2018-12-17 検査装置および検査方法 Active JP7215134B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018235310A JP7215134B2 (ja) 2018-12-17 2018-12-17 検査装置および検査方法
US16/371,250 US11181510B2 (en) 2018-12-17 2019-04-01 Inspection apparatus and inspection method
EP19167258.3A EP3671202A1 (en) 2018-12-17 2019-04-04 Inspection apparatus and inspection method
CN201910309937.XA CN111323479B (zh) 2018-12-17 2019-04-17 检查装置及检查方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235310A JP7215134B2 (ja) 2018-12-17 2018-12-17 検査装置および検査方法

Publications (2)

Publication Number Publication Date
JP2020098109A true JP2020098109A (ja) 2020-06-25
JP7215134B2 JP7215134B2 (ja) 2023-01-31

Family

ID=66092148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235310A Active JP7215134B2 (ja) 2018-12-17 2018-12-17 検査装置および検査方法

Country Status (4)

Country Link
US (1) US11181510B2 (ja)
EP (1) EP3671202A1 (ja)
JP (1) JP7215134B2 (ja)
CN (1) CN111323479B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030149A1 (ja) * 2020-08-05 2022-02-10 株式会社神戸製鋼所 接合体の検査方法、及び接合体の検査装置、並びに接合体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008987B (zh) * 2021-02-26 2023-03-14 大连理工大学 刹车块阻尼片粘接效果快速检测方法及装置
TWI819698B (zh) * 2022-07-14 2023-10-21 友達光電股份有限公司 判斷瑕疵的方法及電子裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160291A (ja) * 1997-11-25 1999-06-18 Mitsubishi Heavy Ind Ltd 剥離検出装置、及び剥離検出方法
JP2005241337A (ja) * 2004-02-25 2005-09-08 Fuji Heavy Ind Ltd 超音波非破壊検査装置の超音波センサヘッド
JP2016205914A (ja) * 2015-04-20 2016-12-08 株式会社豊田自動織機 スポット溶接部の検査方法およびその検査装置
WO2017221324A1 (ja) * 2016-06-21 2017-12-28 株式会社島津製作所 音波伝搬映像化装置及び方法
JP2018132480A (ja) * 2017-02-17 2018-08-23 学校法人桐蔭学園 非接触音響解析システム
US20180356205A1 (en) * 2017-06-12 2018-12-13 Shimadzu Corporation Defect detection method and defect detection device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408881A (en) * 1993-09-15 1995-04-25 National Research Council Of Canada High resolution ultrasonic interferometry for quantitative mondestructive characterization of interfacial adhesion in multilayer composites
JP3878969B2 (ja) 1997-03-05 2007-02-07 株式会社ジャスト リベット接合部の検査方法
US6332361B1 (en) * 1998-10-14 2001-12-25 Daido Tokushuko Kabushiki Kaisha Method for evaluating bonding properties of a metallic pipe
US6401540B1 (en) * 2000-02-29 2002-06-11 Bechtel Bwxt Idaho, Llc Method and apparatus for detecting internal structures of bulk objects using acoustic imaging
CA2352839A1 (en) * 2000-07-11 2002-01-11 National Research Council Of Canada Apparatus and method for evaluating the physical properties of a sample using ultrasonics
US6948369B2 (en) * 2002-02-06 2005-09-27 Applied Metrics, Inc. Methods for ultrasonic inspection of spot and seam resistance welds in metallic sheets and a spot weld examination probe system (SWEPS)
AU2003293826A1 (en) * 2002-08-28 2004-03-19 Siemens Westinghouse Power Company System for infrared imaging by inducing acoustic chaos
JP2005098855A (ja) 2003-09-25 2005-04-14 Koden Electronics Co Ltd 固体内部の振動検査装置
JP2010019622A (ja) * 2008-07-09 2010-01-28 Saitama Univ 超音波探傷方法と装置
US8656779B2 (en) * 2009-03-05 2014-02-25 Purdue Research Foundation Damage detection using laser vibrometry
JPWO2011093108A1 (ja) * 2010-02-01 2013-05-30 パナソニック株式会社 超音波プローブおよびそれを用いた超音波検査装置
JP2012037307A (ja) * 2010-08-05 2012-02-23 Toyota Central R&D Labs Inc 超音波検査システム
US20140020467A1 (en) * 2012-07-17 2014-01-23 Honeywell International Inc. Non-destructive evaluation methods for machine-riveted bearings
KR20160122165A (ko) * 2014-02-19 2016-10-21 에디슨 웰딩 인스티튜트, 인코포레이티드 휴대형 매트릭스 위상 배열 어레이 스폿 용접부 감시 시스템
DE102014207708A1 (de) * 2014-04-24 2015-10-29 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur akustischen Prüfung einer Nietverbindung
JP6451695B2 (ja) * 2016-06-02 2019-01-16 株式会社島津製作所 欠陥検査方法及び欠陥検査装置
JP6805930B2 (ja) * 2017-03-29 2020-12-23 株式会社島津製作所 振動測定装置
CN108132304B (zh) * 2017-12-05 2020-07-21 北京机电工程研究所 航天器复合材料紧固件连接强度的评价方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160291A (ja) * 1997-11-25 1999-06-18 Mitsubishi Heavy Ind Ltd 剥離検出装置、及び剥離検出方法
JP2005241337A (ja) * 2004-02-25 2005-09-08 Fuji Heavy Ind Ltd 超音波非破壊検査装置の超音波センサヘッド
JP2016205914A (ja) * 2015-04-20 2016-12-08 株式会社豊田自動織機 スポット溶接部の検査方法およびその検査装置
WO2017221324A1 (ja) * 2016-06-21 2017-12-28 株式会社島津製作所 音波伝搬映像化装置及び方法
JP2018132480A (ja) * 2017-02-17 2018-08-23 学校法人桐蔭学園 非接触音響解析システム
US20180356205A1 (en) * 2017-06-12 2018-12-13 Shimadzu Corporation Defect detection method and defect detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030149A1 (ja) * 2020-08-05 2022-02-10 株式会社神戸製鋼所 接合体の検査方法、及び接合体の検査装置、並びに接合体
JP2022029740A (ja) * 2020-08-05 2022-02-18 株式会社神戸製鋼所 接合体の検査方法、及び接合体の検査装置、並びに接合体
JP7401412B2 (ja) 2020-08-05 2023-12-19 株式会社神戸製鋼所 接合体の検査方法、及び接合体の検査装置、並びに接合体

Also Published As

Publication number Publication date
JP7215134B2 (ja) 2023-01-31
EP3671202A1 (en) 2020-06-24
US20200191751A1 (en) 2020-06-18
US11181510B2 (en) 2021-11-23
CN111323479B (zh) 2023-12-15
CN111323479A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
US10267618B2 (en) Defect detection method and defect detection apparatus
CN108760878B (zh) 振动测定装置以及方法、缺陷检查装置以及方法
JP6791029B2 (ja) 欠陥検出方法及び欠陥検出装置
EP3474009B1 (en) Sound-wave-propagation visualization device and method
JP7215134B2 (ja) 検査装置および検査方法
JP6838682B2 (ja) 欠陥検出方法及び装置
JP5033501B2 (ja) 物体の光学的測定を行うための走査型顕微鏡
US20030179382A1 (en) Use of electronic speckle interferometry for defect detection in fabricated devices
WO2021145034A1 (ja) 欠陥検査装置および欠陥検査方法
WO2022030149A1 (ja) 接合体の検査方法、及び接合体の検査装置、並びに接合体
JP7282882B2 (ja) 管状体の接合部の検査方法及び装置
Barone et al. Digital image correlation based on projected pattern for high frequency vibration measurements
JP7396374B2 (ja) 欠陥検査装置および欠陥検査方法
JP7315535B2 (ja) 振動計測装置
JP2023108546A (ja) 欠陥検出装置及び欠陥検出方法
JP7480915B2 (ja) 欠陥検査装置および欠陥検査方法
CN116026833A (zh) 缺陷检测装置及缺陷检测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R151 Written notification of patent or utility model registration

Ref document number: 7215134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151