JP2020094248A - 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法 - Google Patents

炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法 Download PDF

Info

Publication number
JP2020094248A
JP2020094248A JP2018234087A JP2018234087A JP2020094248A JP 2020094248 A JP2020094248 A JP 2020094248A JP 2018234087 A JP2018234087 A JP 2018234087A JP 2018234087 A JP2018234087 A JP 2018234087A JP 2020094248 A JP2020094248 A JP 2020094248A
Authority
JP
Japan
Prior art keywords
carbonaceous material
particles
containing particles
inner package
material inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018234087A
Other languages
English (en)
Other versions
JP6996485B2 (ja
Inventor
頌平 藤原
Shohei Fujiwara
頌平 藤原
一洋 岩瀬
Kazuhiro Iwase
一洋 岩瀬
隆英 樋口
Takahide Higuchi
隆英 樋口
山本 哲也
Tetsuya Yamamoto
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018234087A priority Critical patent/JP6996485B2/ja
Publication of JP2020094248A publication Critical patent/JP2020094248A/ja
Application granted granted Critical
Publication of JP6996485B2 publication Critical patent/JP6996485B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】炭材内装粒子の粒子同士の固着を抑制できる炭材内装粒子の製造方法およびその炭材内装粒子を用いた炭材内装焼結鉱の製造方法を提案する。【解決手段】鉄含有原料、石灰含有副原料およびセメント粉を混合してなる混合原料粉と核となる炭材とを造粒することにより、炭材核の周囲に前記混合原料粉の外層を形成して炭材内装粒子を得る造粒工程と、造粒後の炭材内装粒子を静置する第一の養生工程と、第一の養生工程の後に炭材内装粒子を解砕する解砕工程と、解砕工程の後に解砕した炭材内装粒子を静置する第二の養生工程と、を有する炭材内装粒子の製造方法である。第一の養生工程をフレコン内で行い、養生期間は3〜10日とし、第二の養生工程は、造粒工程後の20日後以降に終了する。炭材内装粒子と通常の焼結鉱製造用造粒粒子とを混合し、下方吸引式焼結機に装入して焼結する炭材内装焼結鉱の製造方法である。【選択図】図1

Description

本発明は、高炉などの製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、炭材を内装した炭材内装粒子の製造方法および該炭材内装粒子を焼結原料の一部として製造される炭材内装焼結鉱の製造方法に関する。
高炉製鉄法では、一般に、鉄源として焼結鉱や鉄鉱石、ペレットなどの鉄含有原料を主に用いている。ここで、焼結鉱は、塊成鉱の一種であり、以下の手順にて製造される。すなわち、まず、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料や、石灰石や生石灰、製鋼スラグなどの石灰含有原料、精錬ニッケルスラグやドロマイト、蛇紋岩などのMgO含有原料と、珪石などからなるSiO含有原料、粉コークスや無煙炭などの凝結材にて構成される造粒原料に適量の水を添加したうえで、ドラムミキサーなどを用いて混合、造粒して擬似粒子とし、次いで、その擬似粒子化した造粒原料を、焼結機の循環移動するパレット上に装入し、造粒原料に含まれる凝結材を燃焼させて焼結ケーキとし、その後、該焼結ケーキを破砕し、冷却し、整粒し、一定の粒径以上のものを成品焼結鉱として回収している。
従来、焼結機の装入層(以下、焼結ベッドという)全体を均一に液相焼結する方法が主体であった。しかし、近年、従来どおり液相焼結主体の部分と、液相生成を抑えた部分とを焼結ベッドに混在させ、あえて不均一な構造を指向する焼結方法が検討されている。その理由は、融点が高く溶融しにくい部分には焼成後に多くの細かい気孔が残存し、還元性ガスとの接触面積が増え、還元されやすい焼結鉱組織を形成することができるからである。
このような焼結鉱の製造方法として、例えば、特許文献1には、高融点で液相生成を抑えたものとして、炭材を鉄鉱石粉とCaO含有原料で被覆した炭材内装粒子を作製し、これを従来の液相焼結主体の焼結原料に混合後、下方吸引型焼結機において焼結する方法が開示されている。
特許第5790966号公報
特許文献1に開示されているような炭材内装粒子は、焼結機に装入するまでの間に粉化してしまうという問題があった。この粉化を低減するために炭材内装粒子の強度を向上させる方法として、上記炭材内装粒子の配合原料にセメント粉を使用する方法(特願2017−249329)が考えられる。ところが、配合原料にセメント粉を混合する場合、配合原料中の水分量によっては炭材内装粒子同士が固着するという問題が発生し、輸送が困難になるほか、焼結機内で炭材内装粒子が分散しなくなるという弊害も生じる。
そこで、本発明は上述のような問題点に鑑みて開発したものであって、その目的は、焼結機へ搬送され、装入される段階において炭材内装粒子の粒子同士の固着を抑制できるとともに円滑に炭材内装粒子を製造すること、および炭材内装型の焼結鉱を製造する方法を提案することにある。
発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、造粒後の粒子を一定期間養生した後、一旦解砕してから、さらに養生を重ねることが有効であることを見出し、本発明を開発するに至った。すなわち、本発明は、第一に、鉄含有原料、石灰含有副原料およびセメント粉を混合してなる混合原料粉と核となる炭材とを造粒することにより、炭材核の周囲に上記混合原料粉の外層を形成して炭材内装粒子を得る造粒工程と、上記造粒後の炭材内装粒子を静置する第一の養生工程と、上記第一の養生工程の後に炭材内装粒子を解砕する解砕工程と、上記解砕工程の後に解砕した炭材内装粒子を静置する第二の養生工程と、を経ることを特徴とする炭材内装粒子の製造方法を提案する。
なお、本発明に係る炭材内装粒子の製造方法については、
a.上記第一の養生工程は、養生期間が3日〜10日であること、
b.上記第二の養生工程は、上記造粒工程後の20日後以降に終了すること、
c.上記第一の養生工程は、フレキシブルコンテナバッグ内に上記炭材内装粒子を収容して行なうこと、
がより好ましい解決手段になり得るものと考えられる。
本発明は、第二に、上記の方法によって製造された炭材内装粒子と、通常の焼結鉱製造用造粒粒子を混合し、その混合粒子を下方吸引式焼結機に装入して焼結することを特徴とする炭材内装焼結鉱の製造方法を提案する。
本発明によれば、造粒後の粒子同士が固着して塊状化するようなことなく、高い圧潰強度をもつ炭材内装粒子を効率よく製造することができる。また、本発明によれば、焼結機へ搬送され、焼結機に装入される段階において、崩壊する炭材内装粒子を少なくできる。しかも、こうした炭材内装粒子を含む焼結原料を焼結して炭材内装焼結鉱を製造することで、還元されやすい焼結鉱組織が形成され、還元効率の高い焼結鉱を製造することができる。
本発明の一実施形態にかかる炭材内装粒子の造粒工程の一例を示す模式図である。 本発明の一実施形態にかかる造粒機内部の炭材内装粒子の状態を示す写真である。 本発明の一実施形態にかかる炭材内装焼結鉱の製造工程の一例を示す模式図である。 本発明の一実施形態にかかる炭材内装粒子の圧潰強度と養生期間の関係を示すグラフである。 本発明の一実施形態にかかる炭材内装粒子の塊率と養生期間の関係を示すグラフである。
以下、本発明の好適実施形態を、図面を参照して説明する。本発明の第一の実施形態は、炭材内装粒子の製造方法に係るものである。図1は、この実施形態に係る炭材内装粒子の製造方法を説明するための模式図であり、造粒工程10の一例を示す。
炭材内装粒子の造粒工程10では、まず、貯蔵槽14に貯蔵された粉状の鉄含有原料である鉄鉱石粉12と、貯蔵槽18に貯蔵された石灰含有副原料である、例えば生石灰16と、貯蔵槽22に貯蔵されたセメント粉20とをそれぞれの貯蔵槽から搬送機24上に所定量を切り出す。鉄鉱石粉12、生石灰16およびセメント粉20は、搬送機24によってインテンシブミキサーなどの混練機28に搬送され、その混練機28で適量の水26を加えて混合することで混合原料粉30となる。
この実施形態において、鉄鉱石粉12は、粉状の鉄含有原料の一例であり、例えば、粒径が150μm以下、比表面積が1500cm/g程度の鉄鉱石粉が用いられる。生石灰16は、石灰含有副原料の一例であり、生石灰[CaO]に代えて、または生石灰とともに石灰石[CaCO]を用いてもよい。但し、混合原料紛30を造粒するという観点から、造粒効果の高い生石灰を用いることが好ましい。また、焼結時に生じる融液の粘度を増加させるドロマイト[CaMg(CO]を生石灰および/または石灰石に添加してもよい。すなわち、石灰含有副原料とは、主として、生石灰、石灰石およびドロマイトから選ばれる1つ以上を含有する原料であり、セメントを含まない。
本発明において、特徴的なことは、上記石灰含有副原料の他に、セメント粉20を配合することにある、このセメント粉20は、水硬性のセメント、例えば、ポルトランドセメントや混合セメント、高炉スラグセメントなどが好適である。なお、セメント粉20には石灰分も含まれるので、セメント粉20に含まれる石灰分に相当する石灰含有副原料の切り出し量を減少させることが好ましい。なお、以下の実施形態ではセメント粉20として、下記の表1に示す化学組成を有するポルトランドセメントを用いた。セメントは種類によって数か月の長期強度に差があるが、本発明の用途では4週間かそれ以内の強度があればよく、数か月の長期強度は求められていない。このため、本発明では、いずれの種類のセメントをも用いることができる。なお、寒冷地などではアルミナセメントを用いることでさらに短時間で強度が発現するので、より好ましい。
次に、混練機28で混合された混合原料粉30と、貯蔵槽34に貯蔵された炭材核となるコークス粒子32とが搬送機36に所定量切り出され、造粒されて所定の造粒用混合原料となる。なお、この実施形態では、造粒用混合原料に対するコークス粒子32の配合割合が1質量%以上5質量%以下、より好ましくは、2質量%以上4質量%以下になるように、混合原料紛30およびコークス粒子32を切り出す。
また、この実施形態において、コークス粒子32は、炭材の一例であり、当該炭材は、周囲に混合原料紛30からなる外層が形成されて炭材核となる。その炭材としては、例えば無煙炭であるホンゲイ炭などを用いることができる。なお、コークス粒子やホンゲイ炭は揮発分が少ないので、これらを用いることで焼結時に炭材から生じる燃焼ガスが少なくでき、当該炭材内装粒子を用いて製造される炭材内装焼結鉱の強度低下が抑制できる。これにより、炭材内装焼結鉱の歩留低下を抑制できる。
上記造粒用混合原料は、搬送機36によってディスクペレタイザーなどの造粒機38に搬送され、造粒機38にて適量の水26添加の下に転動され、水の架橋力等によってコークス粒子32が炭材核となり、その周囲に混合原料紛30からなる外層が形成(被覆)された炭材内装粒子40が製造される。
図2は、造粒機38に存在する混合原料紛30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。図1に示した炭材内装粒子の造粒工程10に従って炭材内装粒子40が製造されるが、炭材内装粒子40の強度が低いと、炭材内装粒子40を焼結機へ搬送し、焼結機に装入する際に崩壊するおそれがある。そのため、本発明の実施形態に係る炭材内装粒子の製造方法では、鉄鉱石粉12および生石灰16にセメント粉20を配合することとした。このセメント粉20の配合(添加)により、コークス粒子32の周囲に外層として形成される混合原料紛30の強度が高められ、焼結機へ搬送し、焼結機に装入する際の炭材内装粒子40の崩壊を抑制できる。
次に、上記炭材内装粒子40の強度向上策について説明する。図3に模式的に示すように炭材内装粒子40が製造されてから下方吸引式焼結機60に装入されるまでに、上記炭材内装粒子40は、複数の搬送コンベアを乗り継ぐことになる。そのため、該炭材内装粒子40は、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐える強度を有することが好ましい。そこで、圧潰強度を変えた炭材内装粒子を試験的に製造し、搬送コンベアの乗り継ぎとパレット装入を行った後における炭材内装粒子の崩壊状況を調査した。その結果、炭材内装粒子の圧潰強度を9.8N/個以上にすることで、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃によく耐え、下方吸引式焼結機60への直送が可能になることが判明した。なお、本発明において、圧潰強度とは、圧縮試験機を用いて、圧縮速度1mm/minで炭材内装粒子を圧縮して測定される最大強度である。
炭材内装粒子の圧潰強度を9.8N/個以上にするには、ヘマタイトを主体鉱物とする鉄鉱石粉であれば、1800〜2000cm/g程度のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%以上となる鉄鉱石粉を使用する必要がある。しかしながら、現在、鉄鉱石市場で流通しているヘマタイト精鉱微粉の多くは、Blaine比表面積が500〜1500cm/g程度、45μm以下となる鉄鉱石粉の含有割合が35〜75質量%程度である。従って、これら原料をこのまま用いても圧潰強度9.8N/個以上の炭材内装粒子を製造することはできない。
一方、鉄鉱石粉を、ボールミル等を用いて粉砕することで、1800cm/g以上のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合を80質量%以上とすることができるが、設備コストやランニングコストが高くなる。そこで、炭材32の周囲に形成される外層の混合原料紛30にセメント粉20を配合し、炭材内装粒子40の圧潰強度を9.8N/個以上にできるか否かを確認すべく、図1に示した炭材内装粒子40の造粒工程10に従って、炭材内装粒子の製造試験を行った。
炭材内装粒子の製造試験は、以下の手順にて実施した。まず、粒径150μm以下であってBlaine比表面積が1500cm/gの鉄鉱石粉と、粒径75μm以下の生石灰と、粒径150μm以下のセメント粉とを、質量比で95:1:4の割合で配合し、インテンシブミキサーを用いて均一に混合して混合原料紛とした。この混合原料紛と、粒径2mm以上8mm以下のコークス粒子を質量比98:2の割合で配合した造粒用混合原料とした。この造粒用混合原料を、ディスクペレタイザーを用いて転動させて造粒用混合原料を造粒し、炭材の周囲に混合原料紛からなる外層が形成された炭材内装粒子を製造した。造粒用混合原料の造粒に必要な水は、インテンシブミキサーおよびディスクペレタイザー内へ適量噴霧して供給した。
上記造粒後の炭材内装粒子について、これを静置する第一の養生工程をおこなった。この第一の養生工程では、セメントなどによる硬化の進行中に振動や外力の悪影響を受けないように保護する作業を行う。一般に、セメントの硬化は水分との反応(水和反応)であり、湿度が影響するので、特に硬化の初期においては、強風や直射日光を避けて水分の蒸散を低減すること、あるいは、保熱や給熱により水和反応の進行を促進したり水分の凍結を抑制したりすることが好ましい。この第一の養生工程中での炭材内装粒子の荷姿は特に限定されないが、フレコン(フレキシブルコンテナバッグ)に収容した状態で養生をおこなうと、その保水効果によりセメントの硬化に必要な水分が表層を含めて全体的に高位に保たれるために硬化がより均質化するので望ましい。また、フレコンに収容した状態で養生をおこなうと、上記の保水効果により水分の蒸発熱による抜熱が抑制されることに加えて、セメントの硬化にともなう反応熱の放散が抑制されるので、炭材内装粒子の温度を外気の温度と同じかそれ以上に保てるので望ましい。さらに、フレコンに収容した状態で養生をおこなうと、炭材内装粒子の一部が互いに固着した場合でも過剰な力を加えることなく解砕をおこなうことができ粉化をさらに抑制できるので望ましい。
次に、上記第一の養生工程に続き、炭材内装粒子を解砕する解砕工程を設けた。ここで、上記解砕とは、造粒された複数の炭材内装粒子同士が接着して団塊化した場合に、その接着を解きほぐし、造粒直後と同様のばらばらの状態に戻す、あるいは近づけることである。たとえば、第一の養生工程をおこなった場所から移動させたり、フレコンから排出したりする作業自体が炭材内装粒子同士の接着を解きほぐすことになる。また、粉を篩い分け除去するために、たとえば目開き4mmの篩にかける作業も炭材内装粒子同士の接着を解きほぐす解砕の作用がある。
前述した作業でもなお炭材内装粒子同士の団塊化が解消しない場合は、移動を繰り返したり、重機で衝撃を与えて解きほぐしたりして解砕することができる。炭材内装粒子同士の接着団塊化が進まないうちは、運搬すること自体や、接着を解きほぐすこと自体が容易であり、また、解きほぐす際に炭材内装粒子自体が粉化する量をより少なくできるので、炭材内装粒子同士の接着団塊化が軽微なうちに解砕を施すことが望ましい。しかし、炭材内装粒子同士の接着団塊化が軽微なうち、つまり養生期間が短い場合には、炭材内装粒子自身の強度は十分でなく、搬送コンベア等で輸送し、貯蔵槽に貯蔵する際に潰れて粉化しやすいおそれがある。
そこで、上記解砕工程の後で、再び炭材内装粒子を静置する第二の養生工程を設けることとした。このような第二の養生工程を施すことで、第一の養生工程後よりも圧潰強度の高い炭材内装粒子を得ることができる。そして、一旦解砕した炭材内装粒子は、第二の養生工程では、団塊化がほとんど進行しないという特徴がある。
以上説明したところから明らかなように、本発明にかかる炭材内装粒子の製造方法では、上記炭材内装粒子の造粒工程10の後、前記第一の養生工程、前記解砕工程および前記第二の養生工程を経ることが必要となる。
図4は、養生期間と炭材内装粒子の圧潰強度との関係を示すグラフである。図4において、横軸は養生期間(日数)であり、縦軸は炭材内装粒子の圧潰強度(N/個)である。また、図4において、白丸プロットは圧潰強度の実測値を示し、黒丸プロットは圧潰強度の平均値を示す。この図4に示すように、養生後1日でも炭材内装粒子の圧潰強度は9.8N/個以上となるものがあり、養生後3日ではほぼ全量の炭材内装粒子の圧潰強度が9.8N/個以上となると考えられる。また、養生期間を20日以上にすれば、養生後に重機やリクレーマーでハンドリングしたとしても崩壊しない圧潰強度である49N/個以上にまで強度が上昇することがわかる。
図5は、養生期間と炭材内装粒子の塊率との関係を表すグラフである。ここで、塊率とは、養生後の炭材内装粒子のうち、団塊化した炭材内装粒子の割合を質量比で示したものである。養生期間(日数)が長くなるにしたがって塊率(質量%)が上昇し、15日経過時点では塊率が80質量%を超えた。また、塊率が上昇するにしたがって塊が大きくなり、ハンドリング困難となるおそれがあった。ハンドリング容易となる塊率10質量%以下とするためには、1段階目の養生期間(第一の養生工程)を10日以内とすることが望ましい。また、塊率10質量%以下の場合は塊を構成する炭材内装粒子同士の結合も強くないため、過半量がハンドリング中に造粒直後と同様のばらばらの状態に戻った。
次に、本発明の第二の実施形態である炭材内装焼結鉱の製造方法について説明する。図3は、炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。炭材内装焼結鉱の製造工程100では、図1に示した炭材内装粒子40の造粒工程10と並行して、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、石灰石、生石灰、製鋼スラグなどのCaO含有原料を含む副原料と、粒径3mm未満の粉コークスや無煙炭などからなる凝結材と、を含む原料50を、ドラムミキサー等の造粒機52で造粒して通常の焼結鉱製造用造粒粒子54を製造する。なお、副原料には、精錬ニッケルスラグやドロマイト、蛇紋岩などのMgO含有原料や、珪石などからなるSiO含有原料が含まれてもよい。
次いで、原料50を造粒した通常の焼結鉱製造用造粒粒子54に、炭材内装粒子40を混合して混合粒子56とする。混合粒子56のうち、通常の焼結鉱製造用造粒粒子54が液相焼結主体の部分となり、炭材内装粒子40が液相生成を抑えた部分となる。本実施形態では、混合粒子56に対する炭材内装粒子40の配合割合が10質量%以上30質量%以下になるように、造粒粒子54に炭材内装粒子40を配合することが好ましい。これにより、混合粒子56の通気性が向上し、炭材内装焼結鉱の生産性が向上する。
炭材内装粒子40が混合された混合粒子56は、下方吸引式焼結機60のサージホッパーに搬入される。混合粒子56は、サージホッパーから無端移動式のパレットに装入され、装入層が形成される。装入層は、上方に設置された点火炉によって点火され、下方に設置されたウインドボックスから上方のガスを下方に吸引されることで装入層は順次に燃焼し、焼結される。装入層は、当該燃焼により発生する燃焼熱で焼結されて焼結ケーキとなる。焼結ケーキは、排鉱部で破砕および整粒され、粒径4mm以上の塊成物が成品の炭材内装焼結鉱として回収される。このようにして製造された炭材内装焼結鉱が高炉70の製鉄原料として使用される。なお、本実施形態における粒径とは、JIS(日本工業規格) Z 8801−1:2006に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径4mm以上とは、JIS Z 8801−1:2006に準拠した公称目開き4mmの篩を用いて篩上に篩分けされる粒径をいう。
この実施形態に係る炭材内装粒子の製造方法で用いる炭材の粒径は、2mm以上であることが好ましい。粒径が2mm以上の炭材を用いることで、炭材内装粒子を混合した混合粒子を焼結機で焼結する工程で炭材核が消失してしまうことを抑制できる。炭材の粒径は、3mm以上であることがより好ましい。粒径が3mm以上の炭材を用いることで、炭材の消失をさらに抑制できる。
一方、粒径が大きい炭材を用いると、焼結時に炭材から発生する燃焼ガス量が増加し、炭材内装焼結鉱において炭材核を被覆する外層に亀裂が生じる。炭材核を被覆する外層に亀裂が生じると炭材内装焼結鉱の強度が大きく低下し、この結果、炭材内装焼結鉱の歩留が大きく低下する。このため、炭材の粒径は、8mm以下であることが好ましく、6mm以下であることがより好ましい。
また、製造される炭材内装粒子40の粒径は、8mm以上18mm以下であることが好ましい。上述したように、粒径が4mm以上の炭材内装焼結鉱が成品焼結鉱として回収され、粒径4mm未満の焼結鉱は、焼結原料にリサイクル(返鉱)される。また、炭材内装粒子40は、焼結機で焼結すると水分の蒸発や部分的な溶融によって体積が小さくなる。従って、炭材内装粒子40がそのまま焼結されたとしても返鉱にならないように、炭材内装粒子40の粒径は、8mm以上であることが好ましく、10mm以上であることがより好ましい。
前記炭材内装粒子40に形成された外層の厚みは、最も薄いところで2mm以上とすることが好ましい。2mm未満では、焼結した外層のバリヤ効果が不十分で、炭材核が焼結時に燃焼して消失するおそれがある。一方、炭材内装粒子40に形成された外層の厚さが5mmを超えると、限られた焼結時間内に炭材内装粒子40の全ての外層を焼結することが困難になる。焼結が不十分な部分が炭材内装焼結鉱に存在すると、炭材内装焼結鉱の強度は低下し、炭材内装焼結鉱の歩留が低下する。従って、炭材内装粒子40の外層の厚さは5mm以下であることが好ましく、例えば、コークス粒子32の粒径が8mmであって外層の厚さが5mmである場合の炭材内装粒子の粒径は18mmになる。このため、炭材内装粒子40の粒径は18mm以下であることが好ましい。
この実施形態に係る炭材内装粒子の製造方法では、混合原料紛にセメント粉20を配合し、これにより製造される炭材内装粒子40の強度を高めている。セメント粉は安価なので、焼結鉱の製造といった大量生産プロセスに用いることで、製造コスト抑制効果が高くなる。
本発明の技術は、上記に説明した実施例に限定されるものではなく、例えば、焼結熱源として、焼結原料中に添加した炭材に加えて、気体燃料を供給する焼結技術や、さらに、酸素を富化して供給する焼結技術にも適用することができる。
10 炭材内装粒子の造粒工程
12 鉄鉱石粉
14 貯蔵槽
16 生石灰
18 貯蔵槽
20 セメント粉
22 貯蔵槽
24 搬送機
26 水
28 混練機
30 混合原料粉
32 コークス粒子
34 貯蔵槽
36 搬送機
38 造粒機
40 炭材内装粒子
50 原料
52 造粒機
54 造粒粒子
56 混合粒子
60 下方吸引式焼結機
70 高炉
100 炭材内装焼結鉱の製造工程

Claims (5)

  1. 鉄含有原料、石灰含有副原料およびセメント粉を混合してなる混合原料粉と核となる炭材とを造粒することにより、炭材核の周囲に前記混合原料粉の外層を形成して炭材内装粒子を得る造粒工程と、
    前記造粒後の炭材内装粒子を静置する第一の養生工程と、
    前記第一の養生工程の後に炭材内装粒子を解砕する解砕工程と、
    前記解砕工程の後に解砕した炭材内装粒子を静置する第二の養生工程と、
    を経ることを特徴とする炭材内装粒子の製造方法。
  2. 前記第一の養生工程は、養生期間が3日〜10日であることを特徴とする請求項1に記載の炭材内装粒子の製造方法。
  3. 前記第二の養生工程は、前記造粒工程後の20日後以降に終了することを特徴とする請求項1または2に記載の炭材内装粒子の製造方法。
  4. 前記第一の養生工程は、フレキシブルコンテナバッグ内に前記炭材内装粒子を収容して行なうことを特徴とする請求項1〜3のいずれか1項に記載の炭材内装粒子の製造方法。
  5. 請求項1〜4のいずれか1項に記載の方法で製造した炭材内装粒子と、
    通常の焼結鉱製造用造粒粒子を混合し、その混合粒子を下方吸引式焼結機に装入して焼結することを特徴とする炭材内装焼結鉱の製造方法。
JP2018234087A 2018-12-14 2018-12-14 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法 Active JP6996485B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018234087A JP6996485B2 (ja) 2018-12-14 2018-12-14 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018234087A JP6996485B2 (ja) 2018-12-14 2018-12-14 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法

Publications (2)

Publication Number Publication Date
JP2020094248A true JP2020094248A (ja) 2020-06-18
JP6996485B2 JP6996485B2 (ja) 2022-01-17

Family

ID=71084646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018234087A Active JP6996485B2 (ja) 2018-12-14 2018-12-14 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法

Country Status (1)

Country Link
JP (1) JP6996485B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125402A (en) * 1974-08-28 1976-03-02 Nippon Steel Corp Kinzokusankabutsu no reikanketsugoperetsuto no seizoho
JPH02228428A (ja) * 1989-03-02 1990-09-11 Sumitomo Metal Ind Ltd 高炉装入物およびその製造方法
JPH02294418A (ja) * 1989-05-01 1990-12-05 Sumitomo Metal Ind Ltd 高炉装入物の製造方法
JP2016104901A (ja) * 2014-11-21 2016-06-09 新日鐵住金株式会社 焼結鉱製造用改質炭材およびそれを用いた焼結鉱の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125402A (en) * 1974-08-28 1976-03-02 Nippon Steel Corp Kinzokusankabutsu no reikanketsugoperetsuto no seizoho
JPH02228428A (ja) * 1989-03-02 1990-09-11 Sumitomo Metal Ind Ltd 高炉装入物およびその製造方法
JPH02294418A (ja) * 1989-05-01 1990-12-05 Sumitomo Metal Ind Ltd 高炉装入物の製造方法
JP2016104901A (ja) * 2014-11-21 2016-06-09 新日鐵住金株式会社 焼結鉱製造用改質炭材およびそれを用いた焼結鉱の製造方法

Also Published As

Publication number Publication date
JP6996485B2 (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
JP4589875B2 (ja) 回転炉床式還元炉での酸化金属の還元方法
JP2016191122A (ja) 焼結鉱の製造方法
JP5451568B2 (ja) 焼結用原料の事前処理方法
JP4781807B2 (ja) 焼結機を用いた製鋼用脱リン剤の製造方法
JP5146572B1 (ja) 焼結用原料の製造方法
AU2017388174B2 (en) Sintered ore manufacturing method
AU2009233017B2 (en) Process for producing cement-bonded ore agglomerates
JP6996485B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
WO2012015066A1 (ja) 焼結用原料の製造方法
JP6885386B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP3058015B2 (ja) 焼結原料の造粒方法
JP4261672B2 (ja) 焼結原料の造粒方法
JP2018141204A (ja) 炭材内装造粒粒子の製造方法
JP6992734B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP6809446B2 (ja) 炭材内装粒子の製造方法および炭材内装焼結鉱の製造方法
JP5517501B2 (ja) 焼結鉱の製造方法
JP6805672B2 (ja) 炭材内装造粒粒子の製造方法および炭材内装塊成鉱の製造方法
JP3797184B2 (ja) 焼結鉱の製造方法
JP5167641B2 (ja) 焼結鉱の製造方法
JP2003277838A (ja) 高炉用焼結原料に用いる高結晶水鉱石、高炉用焼結原料及びその製造方法
JP2018066046A (ja) 焼結鉱の製造方法
JP3738583B2 (ja) 微粉コークスの焼結原料への配合方法
KR102045597B1 (ko) 석탄계 용철 제조 공정에서 배출되는 부산물의 재활용 방법 및 환원철 괴성화 설비
JPH05195088A (ja) 高炉用焼結鉱原料の事前処理方法
JP2004225147A (ja) 高炉用焼結鉱の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6996485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150