JP2020091089A - ヒートポンプ給湯機 - Google Patents

ヒートポンプ給湯機 Download PDF

Info

Publication number
JP2020091089A
JP2020091089A JP2018230050A JP2018230050A JP2020091089A JP 2020091089 A JP2020091089 A JP 2020091089A JP 2018230050 A JP2018230050 A JP 2018230050A JP 2018230050 A JP2018230050 A JP 2018230050A JP 2020091089 A JP2020091089 A JP 2020091089A
Authority
JP
Japan
Prior art keywords
hot water
boiling
heat
heating capacity
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018230050A
Other languages
English (en)
Other versions
JP7151442B2 (ja
Inventor
雄斗 黒森
Yuto Kuromori
雄斗 黒森
▲泰▼成 松村
Yasunari Matsumura
▲泰▼成 松村
直紀 柴崎
Naoki Shibazaki
直紀 柴崎
風間 史郎
Shiro Kazama
史郎 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2018230050A priority Critical patent/JP7151442B2/ja
Publication of JP2020091089A publication Critical patent/JP2020091089A/ja
Application granted granted Critical
Publication of JP7151442B2 publication Critical patent/JP7151442B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】深夜時間帯内に沸き上げ運転を確実に完了する上で有利になるヒートポンプ給湯機を提供する。【解決手段】ヒートポンプ給湯機は、加熱手段により加熱された湯を貯湯タンク11に貯める沸き上げ運転を制御する制御手段と、給湯に使用された熱量を算出する給湯熱量算出手段52とを備える。深夜時間帯における沸き上げ運転は、加熱能力の値が異なる複数の運転モードを含む。制御手段は、給湯熱量算出手段52により算出された値に基づいて、深夜時間帯に使用される熱量の予測値である深夜使用熱量を算出する。深夜時間帯における沸き上げ運転のときに、制御手段は、深夜使用熱量が少ない場合の加熱能力よりも、深夜使用熱量が多い場合の加熱能力が大きくなるように制御する。制御手段は、深夜時間帯における沸き上げ運転の加熱能力が昼間時間帯における沸き上げ運転の加熱能力よりも大きくなるように制御する。【選択図】図1

Description

本発明は、ヒートポンプ給湯機に関する。
下記特許文献1に開示された従来のヒートポンプ給湯機では、深夜時間帯における沸き上げ運転のときの加熱能力が、昼間時間帯における加熱能力と略同等以下となるように設定されている。
特開2017−83045号公報
特許文献1の給湯機は、深夜時間帯の沸き上げ運転の加熱能力を小さくして運転する。そのため、深夜時間帯に湯の利用が発生し、深夜時間帯における沸き上げ湯量が増えた場合に、深夜時間帯内で必要湯量の沸き上げを完了できない可能性がある。夜間に熱を蓄える夜間蓄熱機器の利用者向けの電力料金では、夜間よりも昼間の方が単位電力当たりの料金が高い。このため、ヒートポンプ給湯機の利用者の電力料金が増加する可能性がある。
また、従来技術では、加熱能力を小さくした場合には同一熱量を沸き上げる時の沸き上げ時間が増加することを考慮していない。つまり、沸き上げ開始から沸き上げ完了時までのタンクから外気への放熱を考慮していないことになる。よって、加熱能力を小さくすると、ヒートポンプ給湯機で加熱、生成した熱量は同一であっても、沸き上げ完了後のタンクの蓄熱量が低くなる。
本発明は、上述のような課題を解決するためになされたもので、深夜時間帯内に沸き上げ運転を確実に完了する上で有利になるヒートポンプ給湯機を提供することを目的とする。
本発明に係るヒートポンプ給湯機は、水を加熱するヒートポンプサイクルを有し、加熱能力を調整可能な加熱手段と、貯湯タンクと、加熱手段により加熱された湯を貯湯タンクに貯める沸き上げ運転を制御する制御手段と、給湯に使用された熱量を算出する給湯熱量算出手段と、を備え、深夜時間帯における沸き上げ運転は、加熱能力の値が異なる複数の運転モードを含み、制御手段は、給湯熱量算出手段により算出された値に基づいて、深夜時間帯に使用される熱量の予測値である深夜使用熱量を算出し、深夜時間帯における沸き上げ運転のときに、制御手段は、深夜使用熱量が少ない場合の加熱能力よりも、深夜使用熱量が多い場合の加熱能力が大きくなるように制御し、制御手段は、深夜時間帯における沸き上げ運転の加熱能力が昼間時間帯における沸き上げ運転の加熱能力よりも大きくなるように制御するものである。
本発明によれば、深夜時間帯内に沸き上げ運転を確実に完了する上で有利になるヒートポンプ給湯機を提供することが可能となる。
実施の形態1によるヒートポンプ給湯機を示す全体構成図である。 実施の形態1によるヒートポンプ給湯機における沸き上げ運転のときの水及び冷媒の流れを示す図である。 実施の形態1によるヒートポンプ給湯機における深夜時間帯の沸き上げ運転の制御フローチャートである。 実施の形態1によるヒートポンプ給湯機における一日の沸き上げ運転のパターンの一例を示す図である。 ヒートポンプユニットの加熱能力とCOPの関係を示す図である。 深夜時間帯における沸き上げ運転が開始された後の沸き上げ温度の経時変化を示す図である。 深夜時間帯における沸き上げ運転の開始前及び完了後の貯湯タンク内の温度分布の変化の例を示す図である。 沸き上げ運転のときの加熱能力の値を表示部に表示したときのリモコンを示す図である。
以下、図面を参照して実施の形態について説明する。各図において共通または対応する要素には、同一の符号を付して、重複する説明を簡略化または省略する。なお、本実施の形態では、湯が持っている熱量を、所定温度の湯に換算した湯量として扱う場合がある。すなわち、以下の説明において、湯量との表記は、実質的には熱量を意味する場合がある。
実施の形態1.
図1は、実施の形態1によるヒートポンプ給湯機を示す全体構成図である。図1に示すように、本実施の形態のヒートポンプ給湯機は、水を加熱する加熱手段に相当するヒートポンプユニット100と、貯湯タンク11を有する貯湯ユニット200とを備えた貯湯式のヒートポンプ給湯機である。ヒートポンプユニット100及び貯湯ユニット200との間は、水が通る配管16a及び配管16kと、電気配線(図示省略)とを介して接続されている。
ヒートポンプユニット100は、圧縮機1、水冷媒熱交換器2、膨張弁3及び空気熱交換器4等の機器を有しており、電力により作動する。これらの機器は、配管等により環状に接続され、圧縮機1により冷媒を循環させる冷媒回路101を構成している。冷媒回路101は、水を加熱するヒートポンプサイクルに相当する。水冷媒熱交換器2は、水と冷媒との間で熱を交換するもので、水の流入口及び流出口を有している。以下の説明では、ヒートポンプユニット100により加熱された湯を「加熱水」と呼ぶ場合がある。水冷媒熱交換器2は、流入口から流入した水を冷媒により加熱し、流出口から加熱水を流出させる。また、空気熱交換器4は、空気と冷媒との間で熱を交換する。ヒートポンプユニット100は、外気を空気熱交換器4へ送風するファン5をさらに備えている。なお、以下の説明において、単に「水」または「湯」と記載した場合には、低温の水から、高温の湯まで、あらゆる温度の液体の水が含まれうる。
貯湯ユニット200内には、貯湯タンク11のほか、循環ポンプ6a、追焚用ポンプ6b、切替弁7、切替弁8、切替弁9、及び切換弁10などが備えられている。循環ポンプ6aは、後述の貯湯回路201及び追焚回路202に水(加熱水を含む)を循環させ、水冷媒熱交換器2の流入口に向けて水を送る。循環ポンプ6aは、貯湯回路201及び追焚回路202の一部を構成している。追焚用ポンプ6bは、追焚熱交換器12に向けて、浴槽(図示省略)の水を送る。切替弁7は、例えば、Aポート、Bポート、Cポート、及びDポートの4つのポートを有する電磁駆動式の四方弁等により構成されている。切替弁7は、水冷媒熱交換器2の流出口から流出する加熱水の流路を、切替弁8と、貯湯タンク11の下部にある低温水戻し口11eとに切り替える切替機構を構成している。また、切替弁7は、貯湯タンク11の上部にある高温水取出口11aから流出した湯を低温水戻し口11eに戻す切替機構を構成している。
切替弁8は、例えば、Eポート、Fポート、Gポート、及びHポートの4つのポートを有する電磁駆動式の四方弁等により構成されている。切替弁8は、Eポートから流入する水の流路を、貯湯タンク11の中間高さ部分にある追焚戻し口11cと、貯湯タンク11の上部にある高温水流出入口11bと、追焚熱交換器12とに切り替える切替機構を構成している。切替弁9は、例えば、Iポート、Jポート、及びKポートの3つのポートを有する電磁駆動式の三方弁等により構成されている。切替弁9は、貯湯タンク11の下部にある取水口11fから流出した水が循環ポンプ6aを通過して水冷媒熱交換器2へ流入する流路状態と、追焚熱交換器12から流出した水が循環ポンプ6aを通過して水冷媒熱交換器2へ流入する流路状態とを切り替える切替機構を構成している。
切換弁10は、Lポート、Mポート、及びNポートの3つのポートを有している。切換弁10は、貯湯タンク11の中間高さ部分にある中温水取出口11dから取り出される中温水と、水源に接続された給水端からの低温水とを混合または、中温水と低温水との切換えをし、給湯混合部15へ流出させる。貯湯タンク11は、加熱水を貯留する。貯湯タンク11は、前述した高温水取出口11a、高温水流出入口11b、追焚戻し口11c、中温水取出口11d、低温水戻し口11e、及び取水口11fのほか、貯湯タンク11の下部に位置する給水口11gを備えている。給水口11gは、配管16pを介して給水端に接続されている。給水端から供給される低温水が配管16pを通って、貯湯タンク11内に流入する。
水冷媒熱交換器2の流出口は、配管16aを介して切替弁7のAポートに接続されている。切替弁7のBポートは、配管16bを介して切替弁8のEポートに接続されている。切替弁8のFポートは、配管16c及び配管16dを介して高温水取出口11aに接続されている。また、Fポートは、配管16c及び配管16eを介して追焚熱交換器12の一次側流入口に接続されている。追焚熱交換器12の1次側の流出口は、配管16fを介して切替弁9のJポートに接続されている。また、追焚熱交換器12の1次側の流出口は、配管16gを介して、中温水取出口11dと切換弁10のLポートとの間をつなぐ流路に接続されている。切替弁9のIポートは、配管16hを介して取水口11fに接続されている。切替弁9のKポートは、配管16jを介して循環ポンプ6aの吸込口に接続されている。循環ポンプ6aの吐出口は、配管16kを介して水冷媒熱交換器2の流入口に接続されている。また、循環ポンプ6aの吐出口は、配管16lを介して切替弁7のCポートに接続されている。切替弁7のDポートは、配管16mを介して低温水戻し口11eに接続されている。切替弁8のHポートは、配管16n及び配管16qを介して高温水流出入口11bに接続されている。切替弁8のGポートは、配管16oを介して追焚戻し口11cに接続されている。
循環ポンプ6a、貯湯タンク11、配管16a,16b,16h,16j,16k,16n,16q、及び切替弁7,8,9は、水冷媒熱交換器2から流出する加熱水を貯湯タンク11内に貯湯する貯湯回路201を構成している。
循環ポンプ6a、追焚熱交換器12、配管16b,16d,16e,16f,16j,16l,16o、及び切替弁7,8,9は、追焚熱交換器12により負荷側の加熱対象水を加熱する追焚回路202を構成している。
追焚熱交換器12により加熱される加熱対象水は、前述した浴槽水に限定されるものではなく、例えば、床暖房用の循環水であってもよい。循環ポンプ6aは、必ずしも貯湯ユニット200に設置する必要はなく、ヒートポンプユニット100側に搭載してもよい。また、高温水流出入口11b、中温水取出口11d、配管16q、切換弁10、及び給湯混合部15は、貯湯タンク11から温水を取出して、浴槽あるいは給湯端に給湯する給湯回路203を構成している。
本実施の形態では、ヒートポンプユニット100の冷媒回路101の加熱能力を調整可能である。以下の説明では、ヒートポンプユニット100の冷媒回路101の加熱能力を単に「加熱能力」と呼ぶ場合がある。加熱能力は、ヒートポンプユニット100が時間当たりに水に与える熱量に相当する。加熱能力の単位は、例えばkW(キロワット)である。圧縮機1は、例えばインバータ制御式のDCブラシレスモータ等を備えた駆動装置(図示せず)により駆動される。この場合には、当該駆動装置により圧縮機1の回転数を調整することで、圧縮機1から吐出する冷媒の圧力及び温度を変化させたり、加熱能力を変化させたりすることができる。ただし、本開示のヒートポンプ給湯機においては、そのような駆動装置を用いなくてもよく、例えば、ヒートポンプユニット100に複数台の圧縮機を搭載し、そのうちで稼動する圧縮機の台数を切り替えることで、吐出する冷媒の圧力及び温度、あるいは加熱能力を変化させる構成としてもよい。
また、圧縮機1には、他の構造物を付加してもよい。そのような他の構造物としては、例えば、その吸込側に配置されて冷媒音を低減させるサクションマフラーのような容器と、圧縮機1の吐出側に流出した潤滑油を分離回収する油分離装置とが挙げられる。ヒートポンプユニット100の冷媒としては、例えば二酸化炭素、R410A、プロパン、プロピレンなどのように、高温出湯が可能な冷媒を用いるのが好ましいが、本開示のヒートポンプ給湯機においては、これらの冷媒に限定されるものではない。
次に、ヒートポンプ給湯機の制御系統について説明する。以下の説明では、水冷媒熱交換器2から流出する加熱水の温度を「沸き上げ温度」と呼ぶ。ヒートポンプユニット100は、水冷媒熱交換器2に流入する水の温度を検出する入水温度センサ13aと、沸き上げ温度を検出する沸き上げ温度センサ13bと、ヒートポンプユニット100の周囲の外気温度を検出する外気温度センサ13cとを備えている。沸き上げ温度センサ13bは、水冷媒熱交換器2の流出口の近傍に配置されている。また、冷媒回路101は、圧縮機1から吐出される冷媒の温度を検出する吐出温度センサ13dと、圧縮機1に吸込まれる冷媒の温度を検出する吸込温度センサ13eと、空気熱交換器4の入口もしくは中間部となる位置で冷媒の温度を検出する蒸発温度センサ13fとを備えている。貯湯ユニット200には、複数の貯湯温度センサ13g,13h,13i,13jが設けられている。貯湯温度センサ13g,13h,13i,13jは、互いに異なる高さの位置において貯湯タンク11に設置され、それぞれの設置場所で貯湯タンク11内の水温を検出する。
本実施の形態のヒートポンプ給湯機は、ヒートポンプユニット100に搭載された制御装置14と、貯湯ユニット200に搭載された制御装置50を備えている。制御装置14及び制御装置50のそれぞれは、マイクロコンピュータ等を備えている。制御装置14と制御装置50とは、双方向に通信可能に接続されている。本実施の形態では、制御装置14と制御装置50とが連携してヒートポンプ給湯機の動作を制御する。制御装置14及び制御装置50は、ヒートポンプユニット100により加熱された湯を貯湯タンク11に貯める沸き上げ運転を制御する制御手段に相当している。
以下では、説明の便宜上、制御装置14及び制御装置50を総称して単に「制御装置50」と呼ぶ。すなわち、以下の説明では、制御装置50が処理を実行するものとして記載するが、いずれの処理についても、制御装置14が単独で実行してもよいし、制御装置50が単独で実行してもよいし、制御装置14と制御装置50とが連携して実行してもよい。また、制御装置14及び制御装置50に代えて例えばリモコン51が処理を実行してもよい。その場合にはリモコン51が制御手段に相当する。また、本開示におけるヒートポンプ給湯機の制御手段は、本実施の形態のように複数の制御装置が連携する構成に限らず、単一の制御装置によって構成されるものでもよい。
制御装置50と、リモコン51との間は、有線通信または無線通信により、双方向に通信可能である。制御装置50とリモコン51とがネットワークを介して通信可能でもよい。リモコン51は、ユーザーインターフェースの例である。リモコン51は、情報を表示する表示部51aと、使用者が操作する操作部51bとを有する。リモコン51は、表示部51a及び操作部51bの両方の機能を有するタッチスクリーンを備えてもよい。使用者等の人間は、リモコン51を操作することで、ヒートポンプ給湯機を遠隔操作したり、各種の設定などを行ったりすることが可能である。表示部51aは、使用者等の人間に情報を報知する報知手段としての機能を有する。本実施の形態におけるリモコン51は、表示部51aを報知手段として備えるが、変形例として、例えば音声案内装置のような他の報知手段を備えてもよい。リモコン51は、例えば台所、リビング、浴室などの壁に設置されたものでもよい。または、例えばスマートフォンのような携帯情報端末がリモコン51のようなユーザーインターフェースとしての機能を有するように構成してもよい。複数のリモコン51が制御装置50に対して通信可能でもよい。
制御装置50には、ヒートポンプ給湯機が備える各種のセンサの出力と、リモコン51に対する使用者の操作内容の情報などが入力される。制御装置50は、これらの入力情報に基づいてヒートポンプユニット100及び貯湯ユニット200の動作をそれぞれ制御する。例えば、制御装置50は、圧縮機1、循環ポンプ6a、及び追焚用ポンプ6bの運転状態と、膨張弁3の開度と、切替弁7、切替弁8、切替弁9、及び切換弁10の流路方向あるいは切替位置等を制御する。また、制御装置50は、後述のように、沸き上げ運転、追焚運転等を実行する。制御装置50は、沸き上げ運転中に、沸き上げ温度の制御と、冷媒回路101の加熱能力の制御とを実行する。
制御装置50は、外部機器(図示省略)とさらに通信可能に接続されていてもよい。当該外部機器は、例えばHEMS(ホームエネルギーマネジメントシステム)コントローラでもよい。
本実施の形態において、深夜時間帯は、他の時間帯に比べて電気料金単価が割安な時間帯である。深夜時間帯は、例えば、23時から翌朝7時までの時間帯である。昼間時間帯は、深夜時間帯以外の時間帯である。昼間時間帯は、例えば、7時から23時までの時間帯である。この昼間時間帯は、深夜時間帯に比べて電気料金単価が割高な時間帯となる。ただし、深夜時間帯及び昼間時間帯は、本実施の形態での例に限定されるものではなく、それらの開始時刻及び終了時刻は、電力供給事業者との契約などに応じて変化し得るものである。制御装置50は、深夜時間帯及び昼間時間帯の開始時刻及び終了時刻の情報を記憶している。制御装置50は、タイマー機能を有しており、現在の時刻が深夜時間帯にあるか昼間時間帯にあるかを判別できる。また、制御装置50は、リモコン51または外部機器から、深夜時間帯及び昼間時間帯の開始時刻及び終了時刻の情報を取得してもよい。
本実施の形態における制御装置50は、給湯に使用された熱量(以下、「給湯使用熱量」と称する)を算出する給湯熱量算出手段52を備える。給湯熱量算出手段52は、給水温度センサ13kが検出する給水温度と、給湯温度センサ13lが検出する給湯温度と、風呂給湯温度センサ13mが検出する給湯温度と、給湯流量センサ17aが検出する給湯流量と、風呂給湯流量センサ17bが検出する給湯流量とに基づいて、給湯使用熱量を算出する。給水温度センサ13kが検出する給水温度とは、水源から給水端へ供給された低温水の温度である。給湯温度センサ13lが検出する給湯温度とは、給湯混合部15から浴槽以外の給湯端へ供給された湯の温度である。風呂給湯温度センサ13mが検出する給湯温度とは、給湯混合部15から浴槽へ供給された湯の温度である。給湯流量センサ17aが検出する給湯流量とは、給湯混合部15から上記給湯端へ供給された湯の流量である。風呂給湯流量センサ17bが検出する給湯流量とは、給湯混合部15から浴槽へ供給された湯の流量である。
制御装置50は、過去所定期間(例えば過去2週間)に給湯熱量算出手段52により算出された給湯使用熱量に関するデータを記憶することにより、給湯使用熱量を学習する機能を有している。例えば、制御装置50は、過去所定期間の給湯使用熱量を統計的に処理することにより、給湯使用熱量を学習する。また、制御装置50は、一日のうちの時間ごとに給湯使用熱量を学習してもよい。
本実施の形態におけるヒートポンプ給湯機は、深夜時間帯モードを設定可能とする設定手段を備えてもよい。例えば、使用者がリモコン51を操作することによって深夜時間帯モードを設定可能としてもよい。また、制御装置50が例えばHEMSコントローラのような外部機器からの指令を受信すると深夜時間帯モードが設定されるように構成してもよい。深夜時間帯モードは、特に電力単価の安い深夜時間帯により多くの熱量を貯湯タンク11に貯めることで電力料金を安価とするためのモードに相当する。深夜時間帯モードが設定された場合には、深夜時間帯における沸き上げ運転において、制御装置50は、冷媒回路101の加熱能力を所定の最高加熱能力に設定するとともに、沸き上げ温度が所定の最高沸き上げ温度になるように制御する。これにより、深夜時間帯に沸き上げ運転を集中させるため、昼間時間帯での沸き上げ運転が不要な程度の給湯使用量の場合には、ランニングコストの低減が可能となる。なお、最高沸き上げ温度は、例えば90℃でもよい。
次に、図2を参照しつつ、ヒートポンプ給湯機の沸き上げ運転の動作について説明する。図2は、実施の形態1によるヒートポンプ給湯機における沸き上げ運転のときの水及び冷媒の流れを示す図である。図2に示すように、沸き上げ運転では、冷媒回路101及び貯湯回路201を作動させることにより、貯湯タンク11の取水口11fから流出させた低温水を冷媒回路101により加熱し、水冷媒熱交換器2の流出口から流出する高温の加熱水を高温水流出入口11bから貯湯タンク11内に流入させる。
沸き上げ運転について、さらに以下に説明する。冷媒回路101では、圧縮機1から吐出された高温高圧のガス冷媒が水冷媒熱交換器2を流通する水に放熱しながら温度低下する。このとき、高圧側冷媒圧力が臨界圧以下であれば、冷媒は液化しながら放熱する。また、水冷媒熱交換器2から流出した高圧低温の冷媒は、膨張弁3を通過することにより低圧気液二相の状態に減圧される。そして、この冷媒は、空気熱交換器4内を流通しつつ外気から吸熱することにより、蒸発してガス化される。空気熱交換器4から流出した低圧冷媒は、圧縮機1に吸込まれて循環するので、この循環により冷凍サイクルすなわちヒートポンプサイクルが形成される。
また、切替弁7により配管16aと配管16bとが相互に接続され、切替弁8により配管16bと配管16nとが相互に接続され、切替弁9により配管16hと配管16jとが相互に接続される。これにより、貯湯回路201が形成される。そして、循環ポンプ6aが作動すると、貯湯タンク11内の水は、取水口11fから配管16h,16j,16kを通って水冷媒熱交換器2に導入される。そして、この水は、水冷媒熱交換器2内でガス冷媒により加熱され、加熱水となって水冷媒熱交換器2から流出する。この加熱水は、配管16a,16b,16n,16qを通過して高温水流出入口11bから貯湯タンク11内に流入する。このように、沸き上げ運転が実行されると、貯湯タンク11の上部が高温水となり下部が低温水となる温度分布状態を維持しつつ、貯湯される。
貯湯タンク11は、断熱材(図示省略)により覆われている。本実施の形態におけるヒートポンプ給湯機は、貯湯タンク11の上側の部分を覆う上部断熱材と、上部断熱材よりも下側の位置で貯湯タンク11を覆う下部断熱材とを備えてもよい。その場合、上部断熱材の熱通過率が下部断熱材の熱通過率よりも小さくなるように構成することが望ましい。上述したように、貯湯タンク11は上部が高温で下部が低温となる積層式に貯湯される方式であり、貯湯タンク11の上側の部分の貯湯温度は、貯湯タンク11の下側の部分の貯湯温度よりも高い。上部断熱材の熱通過率が下部断熱材の熱通過率よりも小さくすることで、貯湯タンク11の上側の部分の断熱性能を特に高くすることができる。その結果、貯湯タンク11からの放熱量を低く抑える上でより有利になる。また、下部断熱材の構成を比較的簡単にできるので、コスト低減に有利になる。なお、上部断熱材を下部断熱材よりも厚くすることで上部断熱材の熱通過率が下部断熱材の熱通過率よりも小さくなるようにしてもよいし、下部断熱材の材料(例えば発泡プラスチック)よりも熱伝導率の低い材料(例えば真空断熱材)を上部断熱材に用いることによって上部断熱材の熱通過率が下部断熱材の熱通過率よりも小さくなるようにしてもよい。
次に、沸き上げ運転時に制御装置50が実行する加熱水の温度制御及び冷媒回路101の加熱能力制御について説明する。まず、温度制御とは、沸き上げ温度センサ13bにより検出される沸き上げ温度が所定の目標沸き上げ温度に等しくなるように、循環ポンプ6aの回転数をフィードバック制御するものである。このフィードバック制御は、例えば、一定の時間間隔で周期的に実行される。沸き上げ運転では、目標沸き上げ温度を所定の貯湯目標温度に設定した状態で貯湯を実行する。すなわち、目標沸き上げ温度は、貯湯目標温度に等しい。例えば、制御装置50は、貯湯タンク11の容量との関係において、目標蓄熱量を貯湯タンク11に貯えることができるように貯湯目標温度すなわち目標沸き上げ温度を設定する。目標蓄熱量は、例えば、リモコン51の操作内容等に基づいて設定されるか、または過去の給湯使用量などに基づいて算出される。また、制御装置50は、貯湯目標温度すなわち目標沸き上げ温度が、予め定められた範囲内(例えば、65〜90℃)に収まるように設定する。
上記温度制御では、水冷媒熱交換器2に出入りする加熱水の流量を制御するだけなので、温度制御により実現される沸き上げ温度の最高値は、冷媒回路101の加熱能力に依存している。従って、冷媒回路101には、目標沸き上げ温度が設定範囲内の最大値(上記例では、90℃)に設定された場合でも、これを実現できるだけの加熱能力が要求される。このため、加熱能力制御では、例えば、貯湯タンク11内の残湯量すなわち残熱量、外気温度、給水温度等に基づいて上記要求を満たす加熱能力の目標値(目標加熱能力)を設定し、冷媒回路101の実際の加熱能力が目標加熱能力に等しくなるように、圧縮機1の回転数等を制御する。このように加熱能力を制御すれば、目標沸き上げ温度の設定及び外部条件がどのように変化した場合でも、要求される沸き上げ温度を安定的に確保することができる。加熱能力制御は、例えば、一定の時間間隔で周期的に実行される。また、圧縮機1の回転数には、耐久性の観点から上限回転数及び下限回転数が設けられている。
また、本開示では、ヒートポンプユニット100として、例えば冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプユニットだけでなく、臨界圧力以下で作動するヒートポンプユニットを用いてもよい。この場合、冷媒としてはフロンガス、アンモニア等を用いてもよい。
ここで、本実施の形態では、加熱能力は一定ではなく、残湯量が少ない場合は加熱能力を大きくし、短時間で湯を利用できる状態として、使用者の利便性を高める。また、残湯量が多い場合は、加熱能力を小さくし、省エネルギー性を高める。
本実施の形態において、深夜時間帯における沸き上げ運転は、加熱能力の値が異なる複数の運転モードを含む。本実施の形態において、制御装置50は、深夜時間帯における沸き上げ運転の加熱能力が、昼間時間帯における沸き上げ運転の加熱能力よりも大きくなるように制御する。これにより、深夜時間帯の沸き上げ運転中に使用者が湯を使用することによって残湯量が低減した場合にも、深夜時間帯内で沸き上げ運転を完了させることができる。
以下の説明では、深夜時間帯における沸き上げ運転で生成すべき目標熱量を「沸き上げ必要熱量」と称する。本実施の形態において、制御装置50は、沸き上げ必要熱量が比較的少ないときの加熱能力よりも、沸き上げ必要熱量が比較的多いときの加熱能力が大きくなるように制御する。これにより、沸き上げ必要熱量が比較的多いときにも、深夜時間帯内で沸き上げ運転を確実に完了させることができる。
以上のように構成されたヒートポンプ給湯機について、その動作を以下に説明する。基本的な沸き上げ運転の制御方法としては、主に非活動時間帯である深夜時間帯に沸き上げ運転を行って、翌日の昼間時間帯における湯の使用に備える。なお、ヒートポンプユニット100においては、ファン5を回転させ、空気熱交換器4内を流れる冷媒に空気の熱を供給するとともに、減圧手段に相当する膨張弁3により、圧縮機1から吐出される冷媒の温度を調整している。
図3は、実施の形態1によるヒートポンプ給湯機における深夜時間帯の沸き上げ運転の制御フローチャートである。制御装置50は、例えば、深夜時間帯の開始時刻またはその直前に、図3のフローチャートの処理を実行する。制御装置50は、深夜時間帯における沸き上げ運転開始前の貯湯タンク11内の残熱量と、学習した過去の湯の使用実績などに基づき、翌日の使用に備えて深夜時間帯の終了時までに貯湯タンク11に貯めておく必要のある熱量(以下、「目標蓄熱量」と称する)とを算出する(ステップS1)。
残湯量または残熱量は、貯湯温度センサ13g〜13jが検出する温度のうち少なくとも1つ以上を用いて把握する。例えば、貯湯温度センサ13hと、貯湯温度センサ13jとを用いて、それらの値の温度差(Th−Tj)が所定値α(例えば、3deg)未満で、かつ、その下方側にあたる貯湯温度センサ13jの値Tjが所定値β(例えば、60℃)を超える場合、貯湯タンク11の天面から貯湯温度センサ13jの位置まで湯があると判断できる。
また、貯湯温度センサ13jの温度が60℃以下の場合、残湯量または残熱量が少ないと判断し、一方、貯湯温度センサ13jの温度が60℃より高い場合、貯湯タンク11の天面から貯湯温度センサ13jの位置まで湯があると判断できる。
なお、複数の貯湯温度センサを用いて残熱量を算出する方が精度は良いが、貯湯タンク11内において上方の方が下方より温度が高く貯湯される温度成層型の貯湯タンク11においては、貯湯タンク11の高さ方向において、少なくとも略中央部と底部との間に配設された貯湯温度センサ13jの温度を用いて温度判定するのが望ましい。
続いて、制御装置50は、給湯熱量算出手段52により算出された値に基づいて、当日の深夜時間帯に使用される熱量の予測値である深夜使用熱量を算出する(ステップS2)。例えば、制御装置50は、過去所定期間の毎日の深夜時間帯における給湯使用熱量のデータを統計的に処理することにより、深夜使用熱量を算出する。この場合、制御装置50は、過去所定期間の毎日の深夜時間帯における給湯使用熱量の平均値または最大値に基づいて深夜使用熱量を算出してもよい。
次いで、制御装置50は、ステップS1で算出された目標蓄熱量及び残熱量と、ステップS2で予測された深夜使用熱量とを用いて、沸き上げ必要熱量を算出する(ステップS3)。例えば、制御装置50は、目標蓄熱量から残熱量を差し引いた値に深夜使用熱量を加算することにより、沸き上げ必要熱量を算出する。このように、制御装置50は、深夜使用熱量が多い場合ほど、沸き上げ必要熱量が大きくなるように沸き上げ必要熱量を算出する。
本実施の形態では、深夜時間帯の沸き上げ運転における加熱能力の値を、Q1と、Q2と、Q3とに調整することができる。ここで、Q1<Q2<Q3である。Q1は、定格加熱能力に相当する。この定格加熱能力Q1は、例えばJISによる性能評価条件で運転するときの加熱能力の値でもよい。本実施の形態では、定格加熱能力Q1を超える加熱能力Q2あるいは加熱能力Q3で沸き上げ運転を行うことができる。例えば、定格加熱能力Q1を超える加熱能力にしてもヒートポンプユニット100等が有する機器の制約条件内で運転可能であることが確認されているような場合には、定格加熱能力Q1を超える加熱能力で沸き上げ運転を行うことが可能である。
本実施の形態では、制御装置50は、定格加熱能力Q1では沸き上げ必要熱量を深夜時間帯内で生成することができない場合には、加熱能力を、定格加熱能力Q1を超える値である加熱能力Q2あるいは加熱能力Q3に設定して、深夜時間帯の沸き上げ運転を行う。これにより、深夜時間帯内でより確実に沸き上げ運転を完了させることが可能となる。
なお、制御装置50が沸き上げ必要熱量を設定する方法は、上記ステップS1からステップS3の方法に限定されるものではない。例えば、リモコン51、もしくはHEMSコントローラ等の外部機器から制御装置50が受信した情報に基づいて沸き上げ必要熱量を設定してもよい。
また、前述した深夜時間帯モードが設定された場合には、制御装置50は、沸き上げ必要熱量を最も高く設定する。これにより、図3のフローチャートに従うことによって、深夜時間帯に設定できる異なる加熱能力運転モードのうちの最高加熱能力(加熱能力Q3)に設定されるとともに、沸き上げ温度が所定の最高沸き上げ温度に設定される。
図3のフローチャートでは、上記ステップS3の処理に続いて、制御装置50は、ヒートポンプユニット100が定格加熱能力Q1で沸き上げ必要熱量を生成するために必要な時間である沸き上げ所要時間t1を算出する(ステップS4)。沸き上げ所要時間t1は、例えば、沸き上げ必要熱量を定格加熱能力Q1で除算した値に基づいて求めることができる。
以下の説明では、深夜時間帯の沸き上げ運転を終了する目標の時刻を「目標終了時刻」と称する。目標終了時刻は、深夜時間帯の終了時刻(例えば翌朝7時)と同じ時刻でもよいし、深夜時間帯の終了時刻に対して所定時間(例えば、1時間)早い時刻でもよい。
ステップS4の処理に続いて、制御装置50は、上記の沸き上げ所要時間t1から予測される沸き上げ運転完了時刻が、目標終了時刻よりも早くなるか否かを判定する(ステップS5)。沸き上げ所要時間t1から予測される沸き上げ運転完了時刻とは、例えば、深夜時間帯の開始時刻よりも沸き上げ所要時間t1だけ後の時刻である。
沸き上げ必要熱量が定格加熱能力Q1に対して適当で、予測される沸き上げ運転完了時刻が目標終了時刻よりも早くなる場合には、制御装置50は、ヒートポンプユニット100の加熱能力の値をQ1に設定して沸き上げ運転を行う(ステップS6)。この場合、制御装置50は、目標終了時刻よりも沸き上げ所要時間t1だけ前の時刻に沸き上げ運転を開始してもよい。
これに対し、沸き上げ必要熱量が定格加熱能力Q1に対して過大であり、予測される沸き上げ運転完了時刻が目標終了時刻よりも早くならない場合には、制御装置50は、ヒートポンプユニット100が加熱能力Q2で沸き上げ必要熱量を生成するために必要な時間である沸き上げ所要時間t2を算出する(ステップS7)。ここで、加熱能力Q2>定格加熱能力Q1であるので、沸き上げ所要時間t1>沸き上げ所要時間t2となる。
次に、制御装置50は、上記の沸き上げ所要時間t2から予測される沸き上げ運転完了時刻が目標終了時刻よりも早くなるか否かを判定する(ステップS8)。
沸き上げ必要熱量が加熱能力Q2に対して適当で、予測される沸き上げ運転完了時刻が目標終了時刻よりも早くなる場合には、制御装置50は、ヒートポンプユニット100の加熱能力の値をQ2に設定して沸き上げ運転を行う(ステップS9)。この場合、制御装置50は、目標終了時刻よりも沸き上げ所要時間t2だけ前の時刻に沸き上げ運転を開始してもよい。
これに対し、沸き上げ必要熱量が加熱能力Q2に対して過大で、予測される沸き上げ運転完了時刻が目標終了時刻よりも早くならない場合は、制御装置50は、ヒートポンプユニット100の加熱能力の値をQ3に設定して沸き上げ運転を行う(ステップS10)。
以上説明したように、本実施の形態では、制御装置50は、深夜時間帯における沸き上げ運転の加熱能力が、深夜時間帯における沸き上げ必要熱量を深夜時間帯内で生成することができる値となるように制御する。また、制御装置50は、深夜使用熱量が多い場合ほど、沸き上げ必要熱量が大きくなるように沸き上げ必要熱量を算出する。したがって、制御装置50は、深夜時間帯における沸き上げ運転において、深夜使用熱量が少ない場合の加熱能力よりも、深夜使用熱量が多い場合の加熱能力が大きくなるように制御する。このため、深夜使用熱量が多い場合であっても、深夜時間帯内で沸き上げ運転を確実に完了させることができる。
本実施の形態であれば、制御装置50により予測された深夜使用熱量に応じて加熱能力を決定することができる。このため、深夜時間帯の沸き上げ運転の開始後に利用が予測される湯の熱量についても、深夜時間帯内に確実に生成することができる。その結果、沸き上げ運転中に加熱能力を変更して効率ロスを発生させるようなことを抑制できる。また、深夜時間帯に多量の湯が利用される場合にも、沸き上げ運転を深夜時間帯内に確実に完了することができる。また、深夜時間帯における加熱能力が昼間時間帯における加熱能力よりも大きくなるように設定されているために、電力会社が規定する夜間蓄熱式機器としてのメリットを享受することができる。
また、本実施の形態であれば、深夜時間帯における沸き上げ運転の加熱能力を、昼間時間帯における沸き上げ運転の加熱能力よりも大きくすることで、貯湯タンク11から外気への放熱量を低減する上で有利になる。この理由について以下に説明する。同一の沸き上げ必要熱量を生成すると仮定した場合、加熱能力が大きいほど、沸き上げ運転の所要時間が短くなるので、沸き上げ運転中に貯湯タンク11から外気へ放熱する熱量が低くなる。本実施の形態であれば、深夜時間帯における沸き上げ運転の加熱能力を比較的大きい値にするので、沸き上げ運転中に貯湯タンク11から外気へ放熱する熱量が低くなり、沸き上げ運転完了時の貯湯タンク11の実際の蓄熱量を多くすることが可能となる。
制御装置50は、深夜時間帯の沸き上げ運転を開始した後に、湯が利用された場合には、目標終了時刻までに沸き上げ運転を完了できるかどうかを確認する処理を実施してもよい。当該処理は、沸き上げ運転を開始した後、所定の時刻に行ってもよいし、所定時間が経過する毎に行ってもよい。当該処理において目標終了時刻までに沸き上げ運転を完了できないと判定した場合には、制御装置50は、加熱能力を現在の値よりも大きい値に変更して沸き上げ運転を行う。これにより、目標終了時刻までに沸き上げ運転をより確実に完了できる。
図4は、実施の形態1によるヒートポンプ給湯機における一日の沸き上げ運転のパターンの一例を示す図である。図4は、深夜時間帯の開始時に、図3に示したフローチャートに従って、沸き上げ必要熱量からヒートポンプユニット100の加熱能力の値がQ2に決定された場合の例を示している。図4に示す例では、昼間時間帯の沸き上げ運転においては、制御装置50は、ヒートポンプユニット100の加熱能力の値がQ0となるように制御している。ここで、加熱能力Q0<定格加熱能力Q1である。
昼間時間帯における沸き上げ運転は、加熱能力の値が異なる複数の運転モードを含むものでもよい。例えば、昼間時間帯における沸き上げ運転において、生成すべき熱量に応じて加熱能力を異なる値に設定することで、加熱能力を必要以上に大きくすることを回避できる。その結果、より高いCOP(成績係数)で運転することができるので、昼間時間帯の沸き上げ運転時の消費電力量の増加をより確実に抑制することが可能となる。また、昼間時間帯の加熱能力は、給水温度、外気温度の条件、学習した湯の使用状況などに応じて変更してもよい。ただし、本開示のヒートポンプ給湯機は、上記の例に限定されるものではなく、昼間時間帯における沸き上げ運転の加熱能力の値が一定値に固定されたものでもよい。
制御装置50は、ヒートポンプユニット100の加熱能力が小さい場合ほど、目標沸き上げ温度が低くなるように設定する。
図5は、ヒートポンプユニット100の加熱能力とCOPの関係を示す図である。図5に示すように、加熱能力が小さいほどCOPは大きくなる傾向がある。本実施の形態では、昼間時間帯には、深夜時間帯に比べて低い加熱能力で沸き上げ運転を行うことにより、高いCOPで高効率な運転が可能となる。その一方で、深夜時間帯には昼間時間帯よりも高い加熱能力で沸き上げ運転を行うことで、多量の湯が使用された場合の湯切れリスクを抑制することができる。これらのことから、本実施の形態であれば、省エネルギー性と使用者の利便性とを両立できるヒートポンプ給湯機を提供することができる。
なお、ヒートポンプユニット100の冷媒として二酸化炭素を使用している場合には、高圧側で超臨界状態として動作させているので、沸き上げ温度が高温(例えば、65℃〜90℃)である場合にも高い効率が得られる。また、加熱能力を小さくして沸き上げ運転を行った場合においても、同様に、超臨界状態として冷媒を動作させるので、効率よく高温の湯を生成することができる。
図6は、深夜時間帯における沸き上げ運転が開始された後の沸き上げ温度の経時変化を示す図である。沸き上げ運転が開始された直後には、圧縮機1自体及び水冷媒熱交換器2自体を昇温する必要がある。このため、実際の沸き上げ温度が目標沸き上げ温度に到達するまでに、ある程度の時間を要する。この時間の間、圧縮機1及び水冷媒熱交換器2の昇温に伴って両者から放熱をしながらも、沸き上げ温度は、一時的に中温(例えば、20〜50℃程度)を経て、目標沸き上げ温度へと到達していく。
一般に、ヒートポンプユニット100の加熱能力が小さくなると、前述のようにCOPは向上するが、沸き上げ温度が目標沸き上げ温度に到達するまでの時間が著しく長くなる。これは、圧縮機1及び水冷媒熱交換器2などの構成部品からの放熱量が、構成部品の温度に依存して、ヒートポンプユニット100の加熱能力の大きさに依存しないので、加熱能力が小さくなると、加熱能力に対する放熱量の相対割合が大きくなるためである。
図6に示すように、本実施の形態の制御装置50は、深夜時間帯における沸き上げ運転の開始時における圧縮機1の回転数が、当該沸き上げ運転において沸き上げ温度が目標沸き上げ温度に達して定常状態となった後の圧縮機1の回転数よりも高くなるように制御する。図6に示す例では、沸き上げ運転の開始時における圧縮機1の運転周波数をf1とし、沸き上げ温度が目標沸き上げ温度に達した後の圧縮機1の運転周波数をf2としている。ここで、f1>f2である。
上記のようにすることで、以下のような効果が得られる。圧縮機1及び水冷媒熱交換器2などの構成部品の温度を短時間で上昇させることができ、沸き上げ運転開始後、短時間で沸き上げ温度を目標沸き上げ温度に到達させることができる。よって、沸き上げ運転開始後に生成する中温水の量を抑制することができる。生成する中温水によって貯湯タンク11内の湯温が低下することを抑制することができるので、浴槽の湯の追い焚きに要する時間が長くなったり、湯の使用量が多い日に湯切れを発生したりすることを抑制できる。加熱能力を比較的低くした場合でも、沸き上げ運転開始後に沸き上げ温度が目標沸き上げ温度に到達するまでの時間が長くなることを抑制できるので、加熱能力を低くすることによるCOP向上効果を得る場合に有利になる。その結果、使用者の利便性と省エネルギー性とを両立することができる。なお、上記のように制御する場合においては、沸き上げ温度が目標沸き上げ温度に達した後の加熱能力が、深夜時間帯における沸き上げ運転の加熱能力に相当するものとする。
本実施の形態において、制御装置50は、一日のうちで、深夜時間帯における沸き上げ運転での総消費電力量が、昼間時間帯における沸き上げ運転での総消費電力量よりも大きくなるように制御してもよい。これにより、本実施の形態のヒートポンプ給湯機が夜間蓄熱式機器として扱われるので、各電力会社が定める夜間蓄熱式機器のインセンティブ(通電制御割引等)を享受することができる。
深夜時間帯における沸き上げ運転の加熱能力の値が異なると、生成する中温水が、貯湯タンク11内に予めある湯に与える影響が異なる。図7は、深夜時間帯における沸き上げ運転の開始前及び完了後の貯湯タンク11内の温度分布の変化の例を示す図である。以下の説明では、深夜時間帯における沸き上げ運転の開始前の貯湯タンク11内の残湯量を「開始前残湯量」と称する。図7では、開始前残湯量が多く加熱能力がQ1となる場合と、開始前残湯量が中程度であり加熱能力がQ2となる場合と、開始前残湯量が少なく加熱能力がQ3となる場合とを示している。
図7に示すように、開始前残湯量が中程度もしくは少ない場合には、沸き上げ必要熱量が比較的多くなるので、Q2もしくはQ3の比較的高い加熱能力で沸き上げ運転が行われる。その結果、沸き上げ運転の開始後に生成されて、貯湯タンク11内に供給される中温水の量は比較的少ない。
その一方で、開始前残湯量が多い場合には、沸き上げ必要熱量が少なくなるので、比較的低い加熱能力Q1で沸き上げ運転が行われる。その結果、沸き上げ運転の開始後に生成されて、貯湯タンク11内に供給される中温水の量は増加する傾向がある。
これに対し、本実施の形態であれば、深夜時間帯における沸き上げ運転の開始時における圧縮機1の回転数が、当該沸き上げ運転において沸き上げ温度が目標沸き上げ温度に達した後の圧縮機1の回転数よりも高くなるように制御する。これにより、比較的低い加熱能力Q1で沸き上げ運転が行われる場合であっても、生成する中温水の量を抑制することができる。
本実施の形態のヒートポンプ給湯機は、沸き上げ運転のときの加熱能力に関する情報を使用者に報知する報知手段を備えてもよい。そのような報知手段として、例えば、リモコン51の表示部51aに、沸き上げ運転のときの加熱能力の値あるいは大小に関する情報を表示してもよい。これにより、優れた利便性が得られる。図8は、沸き上げ運転のときの加熱能力の値を表示部51aに表示したときのリモコン51を示す図である。図8に示す例では、『加熱能力:○○kW』と表示部51aに表示されている。この例のように加熱能力の値そのものを表示部51aに表示することに代えて、加熱能力が大きいか小さいかを示す図形などを表示部51aに表示してもよい。
本実施の形態のヒートポンプ給湯機は、加熱能力の能力可変のモードを有効にするか無効にするかを、使用者その他の人間が選択可能な選択手段を備えてもよい。そのような選択手段として、例えば、リモコン51に対するボタン操作などによって加熱能力の能力可変のモードを有効にするか無効にするかを選択できるように構成し、制御装置50は、加熱能力の能力可変のモードが有効にされたときにのみ、加熱能力を可変とする構成としてもよい。機器の動作及び性能を確認するための機器検定時などにおいて、加熱能力が変動しないようにすることが求められる場合がある。そのような場合には、加熱能力の能力可変のモードを無効にすることで、加熱能力の変動を防止する操作を容易に行うことができる。
1 圧縮機、 2 水冷媒熱交換器、 3 膨張弁、 4 空気熱交換器、 5 ファン、 6a 循環ポンプ、 6b 追焚用ポンプ、 7,8,9 切替弁、 10 切換弁、 11 貯湯タンク、 11a 高温水取出口、 11b 高温水流出入口、 11c 追焚戻し口、 11d 中温水取出口、 11e 低温水戻し口、 11f 取水口、 11g 給水口、 12 追焚熱交換器、 13a 入水温度センサ、 13b 温度センサ、 13c 外気温度センサ、 13d 吐出温度センサ、 13e 吸込温度センサ、 13f 蒸発温度センサ、 13g,13h,13i,13j 貯湯温度センサ、 13k 給水温度センサ、 13l 給湯温度センサ、 13m 風呂給湯温度センサ、 14 制御装置、 15 給湯混合部、 17a 給湯流量センサ、 17b 風呂給湯流量センサ、 50 制御装置、 51 リモコン、 51a 表示部、 51b 操作部、 52 給湯熱量算出手段、 100 ヒートポンプユニット、 101 冷媒回路、 200 貯湯ユニット、 201 貯湯回路、 202 追焚回路、 203 給湯回路

Claims (11)

  1. 水を加熱するヒートポンプサイクルを有し、加熱能力を調整可能な加熱手段と、
    貯湯タンクと、
    前記加熱手段により加熱された湯を前記貯湯タンクに貯める沸き上げ運転を制御する制御手段と、
    給湯に使用された熱量を算出する給湯熱量算出手段と、
    を備え、
    深夜時間帯における前記沸き上げ運転は、前記加熱能力の値が異なる複数の運転モードを含み、
    前記制御手段は、前記給湯熱量算出手段により算出された値に基づいて、前記深夜時間帯に使用される熱量の予測値である深夜使用熱量を算出し、
    前記深夜時間帯における前記沸き上げ運転のときに、前記制御手段は、前記深夜使用熱量が少ない場合の前記加熱能力よりも、前記深夜使用熱量が多い場合の前記加熱能力が大きくなるように制御し、
    前記制御手段は、前記深夜時間帯における前記沸き上げ運転の前記加熱能力が昼間時間帯における前記沸き上げ運転の前記加熱能力よりも大きくなるように制御するヒートポンプ給湯機。
  2. 沸き上げ必要熱量は、前記深夜時間帯における前記沸き上げ運転で生成する目標熱量であり、
    前記制御手段は、前記深夜使用熱量が多い場合ほど前記沸き上げ必要熱量が大きくなるように前記沸き上げ必要熱量を算出し、
    前記制御手段は、前記沸き上げ必要熱量が少ないときの前記加熱能力よりも、前記沸き上げ必要熱量が多いときの前記加熱能力が大きくなるように制御する請求項1に記載のヒートポンプ給湯機。
  3. 前記制御手段は、前記深夜時間帯における前記沸き上げ運転の前記加熱能力が、前記沸き上げ必要熱量を前記深夜時間帯内で生成することができる値となるように制御する請求項2に記載のヒートポンプ給湯機。
  4. 前記制御手段は、定格加熱能力では前記沸き上げ必要熱量を前記深夜時間帯内で生成することができない場合には、前記加熱能力を、前記定格加熱能力を超える値にして前記深夜時間帯の前記沸き上げ運転を行う請求項2または請求項3に記載のヒートポンプ給湯機。
  5. 前記昼間時間帯における前記沸き上げ運転は、前記加熱能力の値が異なる複数の運転モードを含む請求項1から請求項4のいずれか一項に記載のヒートポンプ給湯機。
  6. 前記加熱手段は、冷媒を圧縮する圧縮機を有し、
    前記制御手段は、前記深夜時間帯における前記沸き上げ運転の開始時における前記圧縮機の回転数が、当該沸き上げ運転において前記加熱手段から流出する湯の温度である沸き上げ温度が目標温度に達した後の前記圧縮機の回転数よりも高くなるように制御する請求項1から請求項5のいずれか一項に記載のヒートポンプ給湯機。
  7. 前記制御手段は、前記深夜時間帯における前記沸き上げ運転での総消費電力量が、前記昼間時間帯における前記沸き上げ運転での総消費電力量よりも大きくなるように制御する請求項1から請求項6のいずれか一項に記載のヒートポンプ給湯機。
  8. 前記貯湯タンクの上側の部分を覆う上部断熱材と、
    前記上部断熱材よりも下側の位置で前記貯湯タンクを覆う下部断熱材と、
    を備え、
    前記上部断熱材の熱通過率は、前記下部断熱材の熱通過率よりも小さい請求項1から請求項7のいずれか一項に記載のヒートポンプ給湯機。
  9. 深夜時間帯モードを設定可能とする設定手段を備え、
    前記深夜時間帯モードが設定された場合には、前記深夜時間帯における前記沸き上げ運転において、前記制御手段は、前記加熱能力を最高の加熱能力とするとともに、前記加熱手段から流出する湯の温度である沸き上げ温度が所定の最高温度になるように制御する請求項1から請求項8のいずれか一項に記載のヒートポンプ給湯機。
  10. 前記沸き上げ運転のときの前記加熱能力に関する情報を使用者に報知する報知手段を備える請求項1から請求項9のいずれか一項に記載のヒートポンプ給湯機。
  11. 前記加熱能力の値が異なる複数の運転モードを有効にするか無効にするかを選択可能な選択手段を備える請求項1から請求項10のいずれか一項に記載のヒートポンプ給湯機。
JP2018230050A 2018-12-07 2018-12-07 ヒートポンプ給湯機 Active JP7151442B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018230050A JP7151442B2 (ja) 2018-12-07 2018-12-07 ヒートポンプ給湯機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018230050A JP7151442B2 (ja) 2018-12-07 2018-12-07 ヒートポンプ給湯機

Publications (2)

Publication Number Publication Date
JP2020091089A true JP2020091089A (ja) 2020-06-11
JP7151442B2 JP7151442B2 (ja) 2022-10-12

Family

ID=71012629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018230050A Active JP7151442B2 (ja) 2018-12-07 2018-12-07 ヒートポンプ給湯機

Country Status (1)

Country Link
JP (1) JP7151442B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464192B2 (ja) 2021-04-26 2024-04-09 三菱電機株式会社 貯湯式ヒートポンプ給湯機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322065A (ja) * 2006-05-31 2007-12-13 Toshiba Kyaria Kk ヒートポンプ式給湯機
JP2017083045A (ja) * 2015-10-26 2017-05-18 パナソニックIpマネジメント株式会社 ヒートポンプ給湯装置
JP2017089930A (ja) * 2015-11-05 2017-05-25 三菱電機株式会社 貯湯式給湯機
JP2017145968A (ja) * 2016-02-15 2017-08-24 株式会社コロナ 貯湯式給湯機
JP2018096658A (ja) * 2016-12-16 2018-06-21 株式会社デンソー 給湯装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322065A (ja) * 2006-05-31 2007-12-13 Toshiba Kyaria Kk ヒートポンプ式給湯機
JP2017083045A (ja) * 2015-10-26 2017-05-18 パナソニックIpマネジメント株式会社 ヒートポンプ給湯装置
JP2017089930A (ja) * 2015-11-05 2017-05-25 三菱電機株式会社 貯湯式給湯機
JP2017145968A (ja) * 2016-02-15 2017-08-24 株式会社コロナ 貯湯式給湯機
JP2018096658A (ja) * 2016-12-16 2018-06-21 株式会社デンソー 給湯装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464192B2 (ja) 2021-04-26 2024-04-09 三菱電機株式会社 貯湯式ヒートポンプ給湯機

Also Published As

Publication number Publication date
JP7151442B2 (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
JP6044326B2 (ja) 貯湯式給湯機及びソーラーシステム
JP7151442B2 (ja) ヒートポンプ給湯機
JP6897331B2 (ja) 貯湯式給湯機
JP7279350B2 (ja) ヒートポンプ給湯機
JP6344156B2 (ja) ハイブリッド給湯システム
JP4375095B2 (ja) ヒートポンプ給湯機
JP7226062B2 (ja) ヒートポンプ給湯機
JP7135811B2 (ja) ヒートポンプ給湯機
JP7345302B2 (ja) 貯湯式給湯装置
JP7294087B2 (ja) ヒートポンプ給湯機
JP7251499B2 (ja) ヒートポンプ給湯機
JP2015227766A (ja) ヒートポンプ給湯機
JP2019070502A (ja) 貯湯式給湯装置
JP2021162287A (ja) ヒートポンプ給湯機
JP2022123523A (ja) ヒートポンプ給湯機
WO2020225905A1 (ja) 貯湯式給湯システム
JP6962136B2 (ja) 貯湯式給湯装置
JP6067189B2 (ja) 暖房給湯システム
JP2023131421A (ja) ヒートポンプ給湯機
JP2023166859A (ja) ヒートポンプ給湯機
JP2023093872A (ja) 貯湯式給湯装置
JP7268583B2 (ja) 貯湯式給湯機
JP7205321B2 (ja) ヒートポンプ給湯装置
JP7363658B2 (ja) 貯湯式給湯機
JP2023114719A (ja) 給湯システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150