JP2020089095A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2020089095A
JP2020089095A JP2018221300A JP2018221300A JP2020089095A JP 2020089095 A JP2020089095 A JP 2020089095A JP 2018221300 A JP2018221300 A JP 2018221300A JP 2018221300 A JP2018221300 A JP 2018221300A JP 2020089095 A JP2020089095 A JP 2020089095A
Authority
JP
Japan
Prior art keywords
output
switching element
time
power supply
mos transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018221300A
Other languages
English (en)
Inventor
晋也 植村
Shinya Uemura
晋也 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018221300A priority Critical patent/JP2020089095A/ja
Priority to DE102019217893.6A priority patent/DE102019217893A1/de
Publication of JP2020089095A publication Critical patent/JP2020089095A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】少なくとも制御部をIC化する際に、外付け部品や端子数を増加させることなく天絡発生時の対策を行うことができるスイッチング電源装置を提供する。【解決手段】スイッチング電源装置1は、入力電圧VinをMOSトランジスタ2および3、インダクタ4により出力電圧Voutを生成する。MOSトランジスタ2、3はパルス生成回路6からPWM信号でオンオフ制御される。出力電圧Voutは誤差増幅回路7でフィードバックされる。出力端子Pが天絡したときに、出力高電圧検出回路8は高電圧を検出する。また、入力電圧Vinが低い状態で高電圧を検出できなくても、MOSトランジスタ3のオン時間が長くなると、パルス時間超過検出回路9により検出する。パルス生成回路6はいずれの検出時にもMOSトランジスタ3をオフさせて保護する。【選択図】図1

Description

本発明は、スイッチング電源装置に関する。
直流電源から通電用スイッチング素子およびインダクタの直列回路を介して出力端子に給電する構成のスイッチング電源装置では、同期整流用スイッチング素子を設けてダイオード整流よりも損失を低減するようにしたものがある。
しかし、この構成においては、出力端子と直流電源との間が短絡するいわゆる天絡状態になると、出力端子の電圧を低下させるために同期整流用スイッチング素子をオンさせるように動作するので、同期整流用スイッチング素子やインダクタに過電流が流れるおそれがある。
そこで、これを防止するために、同期整流用スイッチング素子の電流を検出する構成を設け、過電流検出時に同期整流用スイッチング素子をオフさせることで保護するという構成が考えられるが、このような構成を設けることは、コストアップに繋がるという課題が残る。
特開2009−171741号公報
本発明は、上記事情を考慮してなされたもので、その目的は、少なくとも制御部をIC化する際に、外付け部品や端子数を増加させることなく天絡発生時の対策を行うことができるスイッチング電源装置を提供することにある。
請求項1に記載のスイッチング電源装置は、電源と出力端子との間に接続される通電用スイッチング素子(2、21)およびインダクタ(4)の直列回路と、前記出力端子が天絡した際に、当該端子より電流が逆方向に流れる逆流経路中に配置され、少なくとも1つは同期整流を行うために用いられる1つ以上のスイッチング素子(3、22)と、前記出力端子の電圧と目標電圧との偏差に基づく誤差信号を出力する誤差増幅回路(7)と、前記誤差信号に基づいてPWM信号を生成し、前記通電用スイッチング素子に出力するパルス生成回路(6、6a)と、前記出力端子の電圧が閾値電圧よりも上昇すると、出力高電圧検出信号を出力する出力高電圧検出回路(8)と、前記逆流経路中に配置されているスイッチング素子に出力されるパルス生成信号の時間が閾値時間より超えると、パルス時間超過検出信号を出力するパルス時間超過検出回路(9、9a)と、前記出力高電圧検出信号あるいは前記パルス時間超過検出信号の少なくとも一方が出力されると、前記逆流経路中に配置されているスイッチング素子をオフさせて、電流の逆流を防止する逆流防止制御回路(6、6a)とを備えている。
上記構成を採用することにより、通常状態においては、パルス生成回路からのPWM信号により、通電用スイッチング素子および同期整流用スイッチング素子を交互にオンオフ駆動し、誤差増幅回路により出力電圧と目標電圧との誤差信号を生成してフィードバックすることで、出力端子に所定の出力電圧を生成させる。
そして、出力端子が入力電圧を与える電源とショートする天絡状態になると、入力電圧が高いときには、出力高電圧検出回路により閾値を超える高電圧が検出されて高電圧検出信号が出力される。これにより、逆流防止制御回路は同期整流用スイッチング素子をオフさせて大電流が流れるのを阻止する。
また、天絡状態において入力電圧が低いが、同期整流用スイッチング素子がオン状態である場合には、パルス時間超過検出回路によりオン時間が閾値時間を超えるときにパルス時間超過検出信号が出力される。これにより、逆流防止制御回路は同期整流用スイッチング素子をオフさせて大電流が流れるのを阻止する。
この結果、天絡が発生した場合には、入力電圧が高い場合も低い場合も同期整流用スイッチング素子がオン状態を継続する状態を阻止して破壊に至るのを防止することができ、外付け部品や端子数を増加させることなく天絡発生時の対策を行うことができる。
第1実施形態を示す電気的構成図 入力電圧と出力電圧の関係を示す動作説明図 天絡状態の説明図 通常入力電圧で正常時のタイムチャート 通常入力電圧で天絡時のタイムチャート 低入力電圧で正常時のタイムチャート 低入力電圧で天絡時のタイムチャート 第2実施形態を示す電気的構成図 天絡状態の説明図
(第1実施形態)
以下、本発明の第1実施形態について、図1〜図7を参照して説明する。
電気的構成を示す図1において、スイッチング電源装置1は、車載バッテリなどの直流の入力電圧Vinを所定の出力電圧Voutに変換して出力端子Pに出力する。入力電圧Vinを供給する電源端子はnチャンネル型のMOSトランジスタ2および3を直列に介してグランドに接続される。
MOSトランジスタ2および3は、それぞれ寄生ダイオード2aおよび3aを備えている。MOSトランジスタ2は通電用スイッチング素子として機能し、MOSトランジスタ3は同期整流用スイッチング素子として機能する。MOSトランジスタ3の寄生ダイオード3aは非同期整流時に順方向電流が流れる。
MOSトランジスタ2および3の共通接続点は、インダクタ4を介して出力端子Pに接続される。出力端子Pとグランドとの間にはコンデンサ5が接続される。出力端子Pにはスイッチング電源装置1により出力電圧Voutが出力されるように制御される。
スイッチング電源装置1は、パルス生成回路6、誤差増幅回路7、出力高電圧検出回路8、パルス時間超過検出回路9が設けられると共に、2つのレギュレータ10および11を備えている。パルス生成回路6は、PWM信号を生成してMOSトランジスタ2および3のゲートにゲート信号を与える。
誤差増幅回路7は、出力端子Pの出力電圧Voutを取り込み、所定電圧を出力するための参照電圧との差を演算して誤差信号をパルス生成回路6に出力する。パルス生成回路6は、誤差信号に基づいてPWM信号のパルス幅を設定する。出力電圧検出回路8は、出力電圧Voutが入力され、この電圧レベルが天絡状態で発生する異常な高電圧レベルか否かを閾値電圧Vthで判定するもので、異常が判定されると高電圧検出信号をパルス生成回路6に出力する。
パルス時間超過検出回路9は、パルス生成回路6からMOSトランジスタ3のゲートに出力されるPWM信号のオン期間となるパルス幅が例えば25μsなどの閾値時間である所定のパルス幅Txを超える異常状態であるか否かを判定する。パルス時間超過検出回路9は、実際にはMOSトランジスタ3のオン時間をカウンタにより計時しており、閾値時間に相当するパルス幅Txのカウンタ値が設定されている。パルス時間超過検出回路9は、MOSトランジスタ3のオン時間がパルス幅Txを超える異常状態を検出するとパルス時間超過検出信号をパルス生成回路6に出力する。
前述のパルス生成回路6は、逆流防止制御回路としての機能も兼ねており、出力高電圧検出信号およびパルス時間超過検出信号のうちの少なくとも一方が入力されると、MOSトランジスタ3をオフ固定する状態を保持する。そして、パルス生成回路6は、出力高電圧検出信号およびパルス時間超過検出信号のいずれも入力されない状態になると、MOSトランジスタ3のオフ固定を解除して通常のPWM制御を再開する。
2つのレギュレータ10および11は、出力電圧Voutに基づいて安定した直流電圧を生成するもので、ここでは電圧精度が要求されるマイコン14の2つの電源端子に出力される。マイコン14の2つの電源端子は、例えばAD電源あるいはIO電源として要求される電圧5.0Vと、コア電源として要求される電圧1.0Vの供給を受ける。マイコン14の2つの電源端子は、図示のようにそれぞれコンデンサ12、13を介してグランドに接続されている。
次に、上記構成の作用について、図2〜図7も参照して説明する。
図2は、以下に説明する各動作を概略的に示したタイムチャートで、入力電圧Vin、出力電圧Voutと制御モードを示している。図2(a)に示すように、入力電圧Vinが通常状態では14V程度あり、他の負荷などへの給電動作中あるいは放電による電圧低下などの低下状態では7V程度まで低下した場合を想定している。
通常状態では、スイッチング電源装置1は、MOSトランジスタ3をオンオフ制御する同期整流を実施しており、天絡が発生するとMOSトランジスタ3をオフに固定した非同期整流状態に移行する。
まず、入力電圧Vinが14V程度の通常状態では、時刻t0から実施している同期整流状態のモードに対して、時刻taで天絡が発生して正常状態から異常状態に変わると、出力端子Pが入力電圧Vinと同じ14Vになるので、出力高電圧状態が検出され、MOSトランジスタ3がオフされる非同期整流状態のモードに移行する。
時刻tbで天絡状態から正常状態に復帰すると、コンデンサ5の電荷の放電により出力電圧Voutが徐々に低下してゆき、時刻tcで出力電圧Voutが所定電圧の6Vになると、出力高電圧検出回路8は出力高電圧検出信号を停止する。これにより、パルス生成回路6は、通常の制御状態に戻ってMOSトランジスタ2および3にPWM信号を出力して同期整流状態のモードを再開する。
また、入力電圧Vinが7Vまで下がった低下状態では、同期整流状態のモードを実施している状態で、時刻tdで天絡が発生して正常状態から異常状態に変わると、出力端子Pが入力電圧Vinと同じ7Vになる。しかし、この電圧レベルでは、出力高電圧検出回路8は出力高電圧状態を検出しないので、パルス生成回路6は同期整流状態のモードを継続する。
この状態では、パルス生成回路6は、MOSトランジスタ3をオンした後、出力電圧Voutが7Vに固定されているので、出力電圧Voutが所定レベルまで下がるまでMOSトランジスタ3のオン状態を継続するように制御している。このとき、パルス時間超過検出回路9は、MOSトランジスタ3がオンした時点からの経過時間をカウントしていて、経過時間が所定時間Txを超えるか否かを判定している。
ここで、例えばMOSトランジスタ3のオン状態の経過時間が所定時間Txに達する前の時刻teで天絡状態から復帰した場合には、コンデンサ5の電荷がMOSトランジスタ3を通じて急速に放電されるので出力電圧VoutはMOSトランジスタ3のオフレベルまで低下する。
これにより、パルス生成回路6は、MOSトランジスタ3をオフさせ、この後MOSトランジスタ2をオン駆動して同期整流状態のモードを継続する。このとき、MOSトランジスタ3のオン状態の経過時間が所定時間Txに達する前にオフ状態に移行するので、パルス時間超過検出回路9は、パルス時間超過検出信号を出力することはない。
一方、上記の場合と異なり、時刻tfで天絡が発生し、MOSトランジスタ3のオン状態が所定時間Txを超えて継続する場合には、パルス時間超過検出回路9は、経過時間がTxに達した時刻tgでパルス時間超過検出信号を出力する。これにより、パルス生成回路6はMOSトランジスタ3をオフさせてオフ状態を保持する。
この後、時刻thで天絡状態から復帰すると、出力電圧Voutが所定レベルまで低下する時刻tiまで待ってから、パルス生成回路6によりMOSトランジスタ2をオン駆動する。これにより同期整流状態のモードに戻り、この後は、パルス生成回路6によりMOSトランジスタ2および3をPWM信号によりオンオフ制御する同期整流状態となる。
次に、スイッチング電源装置1の詳細な動作について説明する。
まず、入力電圧Vinが車載バッテリの通常の端子電圧である14V程度ある通常状態で、出力端子Pが天絡やオープン故障などが発生していない正常状態における動作について説明する。
この状態では、スイッチング電源装置1においては、パルス生成回路6は、誤差増幅回路7から与えられる誤差信号をゼロにして出力端子Pに所定の出力電圧として例えば6Vとなる出力電圧Voutを出力するようにPWM信号によるゲート駆動信号を生成している。
これにより、MOSトランジスタ2および3はPWM信号に応じてオンオフ動作が開始され、入力電圧Vinを、インダクタ4を通じて出力端子Pに通電する。これによって、出力端子Pに出力電圧Voutが得られる。この出力電圧Voutは誤差増幅回路7により検出され、設定すべき出力電圧6Vとの差分を演算して誤差信号としてパルス生成回路6に出力する。
パルス生成回路6は、さらに誤差信号のレベルがゼロとなるようにPWM信号を調整することでMOSトランジスタ2および3を駆動制御する。このようにして、パルス生成回路6は、出力端子Pに接続されたコンデンサ5の端子電圧すなわち出力電圧Voutが設定された電圧レベルの6Vとなるように制御している。
なお、上記の通常状態での同期整流では、MOSトランジスタ2のオフ後にMOSトランジスタ3はオン駆動させることでグランド側からインダクタ4に電流を流している。これにより、寄生ダイオード3aに通電する場合よりも電圧降下を小さくして効率を高めた降圧制御を実施することができる。
なお、出力電圧Voutは、スイッチング電源装置1内の2つのレギュレータ10および11に取り込まれ、出力電圧Voutに基づいて安定した直流電圧に変換されてマイコン14に供給される。
次に、上記の動作を図4のタイムチャートを参照して説明する。なお、図4(a)に示す天絡が発生していない通常状態では、図4(b)に示すように、車載バッテリによる入力電圧Vinは通常14V程度で安定して供給されている。パルス生成回路6により生成されるPWM信号は、図4(d)および(e)に示すように、MOSトランジスタ2および3のゲートに対して時刻t0から交互にオンオフを繰り返す信号として出力される。
これにより、図4(c)に示すように、時刻t0でMOSトランジスタ2がオンされると、出力電圧Voutは上昇し6Vを超えて上昇する。この後、時刻t1でMOSトランジスタ2がオフされ、代わってMOSトランジスタ3がオンされることでインダクタ4の電流が継続的に流れながら出力電圧Voutが低下していく。
そして、時刻t2になるとMOSトランジスタ3がオフされる、再びMOSトランジスタ2がオンされる。これによって上記と同様に出力電圧Voutは上昇し6Vを超えて上昇するようになる。以下、図示の時刻t2−t4間、t4−t6間、t6−t8間では、時刻t0からt2の動作を繰り返し実施され、出力電圧Voutが6Vを中心にして保持される状態となる。
また、上記のようにして正常に動作しているので、出力電圧Voutが適正に制御されていて出力高電圧検出回路8による高電圧の検出は無く、図4(f)に示すようにローレベルが保持されている。また、同じく正常に動作しているので、パルス生成回路6によるMOSトランジスタ3のオン時間も適正に制御されているので、図4(g)に示すように、パルス時間超過検出回路9によるパルス時間超過検出も無く、ローレベルが保持されている。
次に、上記の通常状態において、図3に示しているように、出力端子Pが何らかの事情で電源と短絡した状態つまり「天絡」状態になった場合の動作について説明する。天絡状態では、出力端子Pの出力電圧Voutが所定の6Vではなく入力電圧Vinの14Vに吊り上げられた状態となる。このため、スイッチング電源装置1としては、次のような制御を実施しようとする。
まず、誤差増幅回路7においては、出力電圧Voutが所定電圧6Vから14Vに大幅に上昇したことで、大きい誤差信号をパルス生成回路6に出力するようになる。パルス生成回路6は、これを受けて、出力電圧Voutを低下させるべく、MOSトランジスタ2をオフ、MOSトランジスタ3をオンにしてインダクタ4側からグランド側に逆流させることでコンデンサ5の電荷を放電させる制御動作に移行する。
この場合、上記のように制御動作を開始すると、MOSトランジスタ3をオンすることで出力端子Pの電圧を下げるように動作するため、電源電圧に引き上げられた出力端子Pからインダクタ4を介してMOSトランジスタ3に過剰な電流が流れ続けて破壊に至るおそれがある。
そこで本実施形態のスイッチング電源装置1においては、このような場合に、次のような動作をする。図5のタイムチャートも参照しながら説明する。図5(a)に示すように、天絡が発生していない通常状態で時刻t1を経過した後の時刻tx2で天絡が発生した場合を想定している。また、図5(b)に示すように、車載バッテリによる入力電圧Vinは通常14V程度で安定して供給されている状態である。
時刻tx2までの通常の動作では、図5(c)に示すように、パルス生成回路6のPWM信号により時刻t0でMOSトランジスタ2がオンされ、出力電圧Voutは6Vを超えて上昇する。この後、時刻t1でMOSトランジスタ2がオフされ、代わってMOSトランジスタ3がオンされることでインダクタ4の電流が継続的に流れながら出力電圧Voutが低下していく。
この後、MOSトランジスタ3がオン状態で、出力電圧Voutが下降している途中の時刻tx2で出力端子Pが入力電圧Vinと短絡状態になる天絡が発生した場合を想定する。図5(c)に示すように、時刻tx2で、天絡によって出力電圧Voutが急激に上昇してほぼ入力電圧Vinの14Vまで達する。このとき、出力高電圧検出回路8では、出力端子Pの電圧が閾値電圧Vthである8Vを超えて上昇したことを検出して高電圧検出信号をパルス生成回路6に出力する。
これにより、パルス生成回路6は、直ちにMOSトランジスタ3をオフさせ、入力電圧Vinの出力端子Pからインダクタ4を介してMOSトランジスタ3に大電流が流れるのを阻止する。この状態では、同期整流の動作を停止した状態であるが、MOSトランジスタ3の寄生ダイオード3aは通電可能な状態であるから、寄生ダイオード3aを介して整流を行う非同期整流の制御状態と捉えることができる。
この後、時刻tx3で天絡状態から正常状態に復帰すると、コンデンサ5の電荷が放電されて出力端子Pの出力電圧Voutが正常レベルまで低下する時刻tx4で、出力高電圧検出回路8は高電圧検出信号の出力を停止する。これにより、パルス生成回路6は再びMOSトランジスタ3をオンさせる。
この後は、時刻tx4になるとMOSトランジスタ3がオフされ、再びMOSトランジスタ2がオンされる。これによって上記と同様に出力電圧Voutは上昇し6Vを超えて上昇するようになる。以下、スイッチング電源装置1は、前述した通常状態での動作を繰り返しながら出力電圧Voutが6Vを中心にして保持される状態となる。
次に、上記の場合と異なり、車載バッテリが他の負荷を駆動したり放電により端子電圧が低下して入力電圧Vinが閾値電圧Vthよりも低くなっている場合の動作について説明する。
この場合においても、スイッチング電源装置1は、出力端子Pに所定の出力電圧Voutを出力するために、パルス生成回路6により駆動制御を行っている。入力電圧Vinが例えば7V程度にある場合で図6のタイムチャートにより説明する。前述同様にして、パルス生成回路6のPWM信号により時刻t0でMOSトランジスタ2をオンさせる。
しかし、入力電圧Vinが低いことからコンデンサ5の充電が遅くなり、出力電圧Voutの上昇は遅い。出力端子Pからのフィードバックで誤差増幅回路7による誤差信号の低下も遅くなり、PWM信号のデューティ比が高くなる。そして、時刻ty1で出力電圧Voutが所定レベルに達すると、パルス生成回路6によりMOSトランジスタ2がオフされ、この後MOSトランジスタ3がオンされ、インダクタ5の電流が継続的に流れながら出力電圧Voutが低下していく。
そして、時刻ty2になるとMOSトランジスタ3がオフされ、再びMOSトランジスタ2がオンされる。これによって上記と同様に出力電圧Voutは上昇し6Vを超えて上昇するようになる。以後、時刻ty3〜ty8と続く間において、図4に示す時刻t0からty2の動作を繰り返しながら出力電圧Voutが6Vを中心にして保持される状態となる。
また、上記のようにして正常に動作しているので、出力高電圧検出回路8による高電圧の検出は無く、図6(f)に示すようにローレベルが保持されている。また、同じく正常に動作しているので、図6(g)に示すように、パルス時間超過検出回路9によるパルス時間超過検出も無く、ローレベルが保持されている。
次に、上記のように入力電圧Vinが閾値電圧Vthよりも低くなっている場合に天絡が発生した場合の動作について図7を参照して説明する。ここでは、図7(a)に示すように、天絡が発生していない通常状態で時刻t1を経過した後、MOSトランジスタ3がオフされる前の時刻tz2で天絡が発生した場合を想定している。
スイッチング電源装置1は、前述のように出力端子Pに所定の出力電圧Voutを出力するために、パルス生成回路6によりPWM信号のデューティ比を高めた状態でMOSトランジスタ2および3の駆動制御を行っている。
時刻tz2までの動作では、図7(c)に示すように、パルス生成回路6のPWM信号により時刻t0でMOSトランジスタ2がオンされ、出力電圧Voutは6Vを超えるまで徐々に上昇する。この後、時刻t1でMOSトランジスタ2がオフされ、代わってMOSトランジスタ3がオンされることでインダクタ4の電流が継続的に流れながら出力電圧Voutが低下していく。
そして、出力電圧Voutの下降途中の時刻tz2で出力端子Pが入力電圧Vinと短絡状態になる天絡が発生すると、図7(c)に示すように、出力電圧Voutが急激に上昇するが入力電圧Vinが7Vと低いので上昇した後の電圧は7V程度である。したがって、この場合には、出力電圧Voutが閾値電圧Vth(8V)を超えないので、出力高電圧検出回路8は高電圧検出をすることが無い。パルス生成回路6は出力電圧Voutが所定レベルまで下がらないため、MOSトランジスタ3のオン状態を継続させることとなる。
この状態では、車載バッテリからの電圧7Vの低い状態の入力電圧Vinが出力端子Pに印加されおり、インダクタ4を介してオン状態のMOSトランジスタ3を通じてグランドに電流が流れ続ける。また、この状態は、上記のように出力高電圧検出回路8による検出が無いので、MOSトランジスタ3の電流は継続的に流れたままとなる。
一方、この状態では、パルス時間超過検出回路9は、MOSトランジスタ3のオン信号が与えられた時刻tz1の時点からオン時間をカウントしており、カウント時間がTx(例えば25μs)に達する時刻tx3で、異常なオン時間であるとしてパルス時間超過検出信号をパルス生成回路6に出力する。
これにより、パルス生成回路6は、時刻tz3でMOSトランジスタ3をオフさせ、入力電圧Vinの出力端子Pからインダクタ4を介してMOSトランジスタ3に電流が流れるのを阻止する。この状態では、同期整流の動作を停止した状態であるが、MOSトランジスタ3の寄生ダイオード3aは通電可能な状態であるから、寄生ダイオード3aを介して整流を行う非同期整流の制御状態と捉えることができる。
この後、時刻tz4で天絡状態から正常状態に復帰すると、コンデンサ5の電荷が放電されて出力端子Pの出力電圧Voutが正常レベルまで低下する時刻tz5になると、パルス時間超過検出回路9はパルス時間超過検出信号の出力を停止する。また、時刻tz5で、パルス生成回路6は、MOSトランジスタ2をオン駆動させる。
これによって、出力電圧Voutは上昇し6Vを超えて上昇し所定レベルに達する時刻tz6になると、パルス生成回路6によりMOSトランジスタ2がオフされ、代わってMOSトランジスタ3がオンされる。以下、スイッチング電源装置1は、前述した通常状態での動作を繰り返しながら出力電圧Voutが6Vを中心にして保持される状態となる。
このような本実施形態では、出力端子Pの出力電圧Voutの高電圧状態を検出する出力高電圧検出回路8および同期整流用のMOSトランジスタ3のオン時間が所定時間Txを超えるか否かを検出するパルス時間超過検出回路9を設けた。これにより、出力端子Pが入力電圧Vinと短絡する天絡状態になった場合でも、確実にMOSトランジスタ3をオフさせることができる。この結果、外付け部品や端子数を増加させることなく天絡発生時の対策を行うことができる。
(第2実施形態)
図8および図9は第2実施形態を示すもので、以下、第1実施形態と異なる部分について説明する。第1実施形態のスイッチング電源装置1においては、入力電圧Vinを降圧して出力電圧Voutを生成する構成であったのに対して、この実施形態のスイッチング電源装置20では、入力電圧Vinを昇圧あるいは降圧して出力電圧Voutを生成する構成としている。
図8において、出力端子Pとインダクタ4との間に、第1昇圧用スイッチング素子としてのnチャンネル型のMOSトランジスタ21が接続されている。また、インダクタ4とMOSトランジスタ21との共通接続点とグランドとの間に第2昇圧用スイッチング素子としてのnチャンネル型のMOSトランジスタ22が接続されている。2つのMOSトランジスタ21、22は、それぞれ寄生ダイオード21a、22aを備えている。
また、スイッチング制御装置20においては、パルス生成回路6aは、4つのMOSトランジスタ2、3、21、22のオンオフ制御をPWM信号により実施し、パルス時間超過検出回路9aはMOSトランジスタ3のオン時間をカウントしていて、オン時間が所定時間Txを超える状態を検出するとパルス時間超過検出信号をパルス生成回路6aに出力する。
また、パルス生成回路6aは、出力高電圧検出回路8から出力高電圧検出信号が入力されると、MOSトランジスタ3あるいは21をオフ駆動し、オフ状態を保持する。また、パルス生成回路6aは、パルス時間超過検出回路9aからパルス時間超過検出信号が入力されると、MOSトランジスタ3あるいは21をオフ駆動し、オフ状態を保持する。
なお、上記構成において、第1昇圧用スイッチング素子であるMOSトランジスタ21は、通電用スイッチング素子として機能し、第2昇圧用スイッチング素子であるMOSトランジスタ22は、同期整流用スイッチング素子として機能するものである。
上記構成において、第1実施形態と同様にして、スイッチング制御装置20は、降圧制御を実施する場合には、MOSトランジスタ21を常時オン、MOSトランジスタ22を常時オフとしている。そして、スイッチング制御装置20は、降圧制御ではMOSトランジスタ2および3をPWM信号により交互にオンオフ駆動して入力電圧Vinを降圧して出力端子Pに所定の出力電圧Voutを生成する。
また、スイッチング制御装置20は、昇圧制御を実施する場合には、MOSトランジスタ2を常時オン、MOSトランジスタ3を常時オフとしている。そして、スイッチング制御装置20は、昇圧制御では、MOSトランジスタ2をオン、3をオフにした状態で、MOSトランジスタ21および22をPWM信号により交互にオンオフ駆動して入力電圧Vinを昇圧して出力端子Pに所定の出力電圧Voutを生成する。なお、入力電圧Vinが低下した状態では、昇圧制御を実施することで所定の出力電圧Voutを確保することができる。
図9は上記構成のスイッチング電源装置20の出力端子Pが天絡した場合の状態を示している。天絡が発生すると、出力端子Pは車載バッテリの正極端子と接触するなどして入力電圧Vinと等しい電圧になる。
上記した降圧制御状態において出力端子Pが天絡して入力電圧Vinとなる場合には、スイッチング制御装置20は、第1実施形態と同様にして出力高電圧検出回路8により出力端子Pの電圧が閾値電圧Vthを超えるとMOSトランジスタ3をオフして保護する。また、スイッチング制御装置20は、入力電圧Vinが低電圧状態では、パルス時間超過検出回路9aによりMOSトランジスタ3のオン時間が所定時間Txを超えるとMOSトランジスタ3をオフさせて保護する。
一方、昇圧制御状態において出力端子Pが天絡して入力電圧Vinとなる場合には、その時の入力電圧Vinが低電圧のままである場合には出力端子Pから電源側に電流が流れることになる。しかし、一時的に入力電圧Vinが低下して昇圧動作をした後に、天絡時に入力電圧Vinが通常電圧に戻っている場合には出力端子PからMOSトランジスタ22を介してグランドに大電流が逆流することになる。
この場合においても、スイッチング制御装置20においては、出力高電圧検出回路8あるいはパルス時間超過検出回路9aからの検出信号に基づいて、パルス生成回路6aによりMOSトランジスタ22がオフ状態となるように制御され、保護動作が実施される。
したがって、このような第2実施形態によっても第1実施形態と同様の作用効果を得ることができる。
(他の実施形態)
なお、本発明は、上述した実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能であり、例えば、以下のように変形または拡張することができる。
第1実施形態においては、MOSトランジスタ2および3をスイッチング制御装置1内に設けることができる。同様に、第2実施形態においては、MOSトランジスタ2、3、21、22をスイッチング制御装置20内に設けることができる。
上記各実施形態では、スイッチング電源装置1、20として、2つのレギュレータ10および11を備えた構成のものを示したが、これらレギュレータを備えていない構成のものにも適用することができる。
スイッチング素子としてMOSトランジスタを用いる例を示したが、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor)を用いることもできる。
寄生ダイオードを持たないスイッチング素子の場合には、別途整流用のダイオードを接続する構成としても良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
図面中、1、20はスイッチング電源装置、2はnチャンネル型のMOSトランジスタ(通電用スイッチング素子)、3はnチャンネル型のMOSトランジスタ(同期整流用スイッチング素子)、2a、3aは寄生ダイオード、4はインダクタ、6、6aはパルス生成回路(逆流防止制御回路)、7は誤差増幅回路、8は出力高電圧検出回路、9、9aはパルス時間超過検出回路、14はマイコン、21はnチャンネル型のMOSトランジスタ(第1昇圧用スイッチング素子、通電用スイッチング素子)、22はnチャンネル型のMOSトランジスタ(第2昇圧用スイッチング素子、同期整流用スイッチング素子)、21a、22aは寄生ダイオードである。

Claims (6)

  1. 電源と出力端子との間に接続される通電用スイッチング素子(2、21)およびインダクタ(4)の直列回路と、
    前記出力端子が天絡した際に、当該端子より電流が逆方向に流れる逆流経路中に配置され、少なくとも1つは同期整流を行うために用いられる1つ以上のスイッチング素子(3、22)と、
    前記出力端子の電圧と目標電圧との偏差に基づく誤差信号を出力する誤差増幅回路(7)と、
    前記誤差信号に基づいてPWM信号を生成し、前記通電用スイッチング素子に出力するパルス生成回路(6、6a)と、
    前記出力端子の電圧が閾値電圧よりも上昇すると、出力高電圧検出信号を出力する出力高電圧検出回路(8)と、
    前記逆流経路中に配置されているスイッチング素子に出力されるパルス生成信号の時間が閾値時間より超えると、パルス時間超過検出信号を出力するパルス時間超過検出回路(9、9a)と、
    前記出力高電圧検出信号あるいは前記パルス時間超過検出信号の少なくとも一方が出力されると、前記逆流経路中に配置されているスイッチング素子をオフさせて、電流の逆流を防止する逆流防止制御回路(6、6a)とを備えるスイッチング電源装置。
  2. 前記逆流防止制御回路によりオフされるスイッチング素子は、前記直列回路の前記通電用スイッチング素子および前記インダクタの共通接続点とグランドとの間に接続される同期整流用スイッチング素子(3、22)である請求項1記載のスイッチング電源装置。
  3. 前記出力端子と前記インダクタとの間に接続される第1昇圧用スイッチング素子(21)と、
    前記インダクタおよび前記第1昇圧用スイッチング素子の共通接続点とグランドとの間に接続される第2昇圧用スイッチング素子(22)とを備え、
    前記PWM信号を前記第1及び第2昇圧用スイッチング素子に与えることで、昇圧した電圧を出力可能である請求項1又は2記載のスイッチング電源装置。
  4. 前記逆流防止制御回路によりオフされるスイッチング素子は、前記第1昇圧用スイッチング素子である請求項3記載のスイッチング電源装置。
  5. 前記スイッチング素子は、前記誤差増幅部およびパルス生成部とは別素子で構成されている請求項1から4記載のスイッチング電源装置。
  6. 給電対象となるマイコン(14)に供給する電圧を前記出力端子に出力する請求項1から4記載のスイッチング電源装置。
JP2018221300A 2018-11-27 2018-11-27 スイッチング電源装置 Pending JP2020089095A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018221300A JP2020089095A (ja) 2018-11-27 2018-11-27 スイッチング電源装置
DE102019217893.6A DE102019217893A1 (de) 2018-11-27 2019-11-20 Schaltnetzteilvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018221300A JP2020089095A (ja) 2018-11-27 2018-11-27 スイッチング電源装置

Publications (1)

Publication Number Publication Date
JP2020089095A true JP2020089095A (ja) 2020-06-04

Family

ID=70546006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018221300A Pending JP2020089095A (ja) 2018-11-27 2018-11-27 スイッチング電源装置

Country Status (2)

Country Link
JP (1) JP2020089095A (ja)
DE (1) DE102019217893A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174806A (zh) * 2022-06-27 2022-10-11 北京京东乾石科技有限公司 用于无人车的相机控制装置及无人车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171741A (ja) * 2008-01-16 2009-07-30 Fujitsu Ten Ltd 同期整流型スイッチングレギュレータおよび電子部品
JP3175985U (ja) * 2009-02-03 2012-06-07 加賀電子株式会社 電源装置および電子機器
JP2013016959A (ja) * 2011-07-01 2013-01-24 Sanken Electric Co Ltd 負荷駆動回路
JP2017184301A (ja) * 2016-03-28 2017-10-05 株式会社オートネットワーク技術研究所 電圧変換装置
JP2018068002A (ja) * 2016-10-18 2018-04-26 株式会社デンソー Dcdcコンバータ
JP2018130011A (ja) * 2017-02-09 2018-08-16 ローム株式会社 スイッチングレギュレータ及びその制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171741A (ja) * 2008-01-16 2009-07-30 Fujitsu Ten Ltd 同期整流型スイッチングレギュレータおよび電子部品
JP3175985U (ja) * 2009-02-03 2012-06-07 加賀電子株式会社 電源装置および電子機器
JP2013016959A (ja) * 2011-07-01 2013-01-24 Sanken Electric Co Ltd 負荷駆動回路
JP2017184301A (ja) * 2016-03-28 2017-10-05 株式会社オートネットワーク技術研究所 電圧変換装置
JP2018068002A (ja) * 2016-10-18 2018-04-26 株式会社デンソー Dcdcコンバータ
JP2018130011A (ja) * 2017-02-09 2018-08-16 ローム株式会社 スイッチングレギュレータ及びその制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174806A (zh) * 2022-06-27 2022-10-11 北京京东乾石科技有限公司 用于无人车的相机控制装置及无人车
CN115174806B (zh) * 2022-06-27 2024-03-08 北京京东乾石科技有限公司 用于无人车的相机控制装置及无人车

Also Published As

Publication number Publication date
DE102019217893A1 (de) 2020-05-28

Similar Documents

Publication Publication Date Title
US8295020B2 (en) Electronic circuit
US8653800B2 (en) Step-up switching power supply device with current-limiting transistor
US8803500B2 (en) PFM SMPS with quick sudden load change response
JP4843490B2 (ja) 電源装置およびそれを用いた電子機器
US8913363B2 (en) Overcurrent protection circuit and overcurrent protection method
KR102110109B1 (ko) 스위칭 레귤레이터 및 전자 기기
JP5251455B2 (ja) Dc−dcコンバータの制御回路、dc−dcコンバータの制御方法及び電子機器
JP4825632B2 (ja) Dc−dcコンバータ
US20110241642A1 (en) Voltage converter
US20050110469A1 (en) Power supply circuit
US20090066161A1 (en) Power management systems with current sensors
EP2933911B1 (en) Switching mode power supply with negative current clocking
JP4887841B2 (ja) Dc−dcコンバータ制御回路、dc−dcコンバータ、半導体装置およびdc−dcコンバータ制御方法
US8994220B2 (en) Vehicle-mounted electronic control device
KR20090029266A (ko) 스위칭 레귤레이터 및 그 동작 제어 방법
US11329473B2 (en) Driver circuit having overcurrent protection function and control method of driver circuit having overcurrent protection function
US9407149B2 (en) Buck converting controller for reduction of output voltage overshoot
US8599521B2 (en) Switching regulator and operation control method
US8519689B2 (en) Switching regulator
JP2017131033A (ja) スイッチング電源装置
JP2020089095A (ja) スイッチング電源装置
JP5015035B2 (ja) 降圧型スイッチングレギュレータ
US7176657B2 (en) Capacitor charging circuit with a soft-start function
JP2009290937A (ja) スイッチング電源
JP2003324941A (ja) 電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220621