JP2020085490A - Strain detection element and dynamic quantity sensor - Google Patents

Strain detection element and dynamic quantity sensor Download PDF

Info

Publication number
JP2020085490A
JP2020085490A JP2018215614A JP2018215614A JP2020085490A JP 2020085490 A JP2020085490 A JP 2020085490A JP 2018215614 A JP2018215614 A JP 2018215614A JP 2018215614 A JP2018215614 A JP 2018215614A JP 2020085490 A JP2020085490 A JP 2020085490A
Authority
JP
Japan
Prior art keywords
strain
resistance value
gauge
strain detection
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018215614A
Other languages
Japanese (ja)
Other versions
JP7268333B2 (en
Inventor
健 海野
Takeshi Unno
健 海野
潤 平林
Jun Hirabayashi
潤 平林
将光 南風盛
Masamitsu Minamikaze
将光 南風盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018215614A priority Critical patent/JP7268333B2/en
Publication of JP2020085490A publication Critical patent/JP2020085490A/en
Application granted granted Critical
Publication of JP7268333B2 publication Critical patent/JP7268333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

To provide a strain detection element which has a high gauge ratio and excellent temperature characteristics of the gauge ratio, and also to provide a dynamic quantity sensor equipped with the same.SOLUTION: Disclosed is a strain detection element in which a plurality of strain detecting materials are electrically connected in parallel, a gauge rate of the strain detection element is a synthetic gauge rate obtained by synthesizing each gauge rate of a plurality of strain detecting materials, and the change rate of the synthetic gauge ratio relative to the synthetic gauge ratio at room temperature is within ± 3000 ppm/°C in the range of - 50 to +350°C.SELECTED DRAWING: Figure 3

Description

本発明は、歪検出素子および力学量センサに関する。 The present invention relates to a strain detecting element and a mechanical quantity sensor.

歪検出素子は、その歪検出素子に加えられた力に起因して生じる歪(圧縮または伸び)を、抵抗値の変化として出力するセンサ素子である。このような歪検出素子は、圧力センサ、加速度センサ、地震計等の力学量センサに用いられている。 The strain detection element is a sensor element that outputs a strain (compression or extension) caused by a force applied to the strain detection element as a change in resistance value. Such a strain detecting element is used in a mechanical sensor such as a pressure sensor, an acceleration sensor, and a seismograph.

歪と抵抗値の変化率とは比例関係を有しており、その比例係数をゲージ率と呼ぶ。ゲージ率は歪検出素子の感度を示しており、ゲージ率が大きいほど、その歪検出素子の感度がよいことを示す。ゲージ率は、歪検出素子の検知部を構成する材料特性により決まる。 The strain and the rate of change in resistance have a proportional relationship, and the proportional coefficient is called the gauge rate. The gauge factor indicates the sensitivity of the strain detecting element. The larger the gauge factor, the better the sensitivity of the strain detecting element. The gauge factor is determined by the characteristics of the material forming the sensing portion of the strain sensing element.

このような歪検出素子を用いた圧力センサは、たとえば、高温環境において、高圧を測定するために使用される。 A pressure sensor using such a strain detecting element is used, for example, to measure a high pressure in a high temperature environment.

圧力センサの測定精度を向上させるには、ゲージ率の高い歪検出素子を用いる必要がある。ゲージ率の高い材料としては、半導体材料が知られているが、半導体材料のゲージ率は温度変化に対する変動が大きい、すなわち、ゲージ率の温度特性が悪く、測定温度範囲が広い環境には適用できないという問題があった。一方、ゲージ率の温度特性がよい材料として、Cu−Ni合金が例示されるが、Cu−Ni合金はゲージ率が2と小さく、圧力センサの測定精度を向上させることができない。 In order to improve the measurement accuracy of the pressure sensor, it is necessary to use a strain detection element having a high gauge factor. A semiconductor material is known as a material having a high gauge factor, but the gauge factor of the semiconductor material has large fluctuations with respect to temperature changes, that is, the temperature characteristic of the gauge factor is poor, and it cannot be applied to an environment with a wide measurement temperature range. There was a problem. On the other hand, a Cu-Ni alloy is exemplified as a material having a good temperature characteristic of the gauge factor, but the Cu-Ni alloy has a small gauge factor of 2 and cannot improve the measurement accuracy of the pressure sensor.

そのため、ゲージ率が高く、かつゲージ率の温度特性が良好な材料が求められている。特許文献1には、Cr−N薄膜において、bcc構造、A15型構造、CrN化合物相が組み合わされた混合組織とすることにより、ゲージ率が高く、ゲージ率の温度特性も良好である歪検出素子が開示されている。 Therefore, a material having a high gauge factor and good temperature characteristics of the gauge factor is required. Patent Document 1, the Cr-N films, bcc structure, A15 type structure, by the Cr 2 N compound phase are combined mixed structure, high gauge factor, the temperature characteristic of the gage factor is good strain A sensing element is disclosed.

特開2015−31633号公報JP, 2015-31633, A

しかしながら、特許文献1に記載されたCr−N薄膜は、所定の熱処理により混合組織を制御する必要があり、安定的に製造できないという問題があった。 However, the Cr-N thin film described in Patent Document 1 has a problem in that it is necessary to control the mixed structure by a predetermined heat treatment and cannot be stably manufactured.

本発明は、このような実状に鑑みてなされ、ゲージ率が高く、かつゲージ率の温度特性が良好な歪検出素子およびこれを備える力学量センサを提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a strain detection element having a high gauge ratio and good temperature characteristics of the gauge ratio, and a mechanical sensor including the strain detection element.

上記目的を達成するため、本発明は、
[1]複数の歪検出材料が、電気的に並列に接続されている歪検出素子であって、
歪検出素子のゲージ率は、複数の歪検出材料の各ゲージ率を合成して得られる合成ゲージ率であり、
室温における合成ゲージ率に対する合成ゲージ率の変化率が−50〜+350℃の範囲において±3000ppm/℃以内であることを特徴とする歪検出素子である。
In order to achieve the above object, the present invention provides
[1] A strain sensing element in which a plurality of strain sensing materials are electrically connected in parallel,
The gauge factor of the strain detecting element is a synthetic gauge factor obtained by synthesizing each gauge factor of a plurality of strain detecting materials,
The strain detecting element is characterized in that the rate of change of the synthetic gauge ratio with respect to the synthetic gauge ratio at room temperature is within ±3000 ppm/°C in the range of -50 to +350°C.

[2]歪検出素子の抵抗値は、複数の歪検出材料の抵抗値を合成して得られる合成抵抗値であり、
室温における合成抵抗値に対する合成抵抗値の変化率が−50〜+350℃の範囲において±2000ppm/℃以内であることを特徴とする[1]に記載の歪検出素子である。
[2] The resistance value of the strain detection element is a combined resistance value obtained by combining the resistance values of a plurality of strain detection materials,
The strain detecting element according to [1], wherein the rate of change of the combined resistance value with respect to the combined resistance value at room temperature is within ±2000 ppm/°C in the range of -50 to +350°C.

[3]歪検出素子において、歪検出材料は所定のパターンで形成されており、
合成ゲージ率は、所定のパターンにおいて、パターン長さ、パターン幅およびパターン厚みから選ばれる少なくとも1つ以上を変化させて調整されることを特徴とする[1]または[2]に記載の歪検出素子である。
[3] In the strain detecting element, the strain detecting material is formed in a predetermined pattern,
The strain gauge according to [1] or [2] is characterized in that the synthetic gauge ratio is adjusted by changing at least one selected from a pattern length, a pattern width and a pattern thickness in a predetermined pattern. It is an element.

[4]歪検出素子において、歪検出材料は所定のパターンで形成されており、
合成抵抗値は、所定のパターンにおいて、パターン長さ、パターン幅およびパターン厚みから選ばれる少なくとも1つ以上を変化させて調整されることを特徴とする[2]または[3]のいずれかの記載の歪検出素子である。
[4] In the strain detecting element, the strain detecting material is formed in a predetermined pattern,
The combined resistance value is adjusted by changing at least one selected from a pattern length, a pattern width, and a pattern thickness in a predetermined pattern, [2] or [3]. Is a strain detecting element.

[5][1]から[4]のいずれかに記載の歪検出素子を備える力学量センサである。 [5] A mechanical quantity sensor including the strain detecting element according to any one of [1] to [4].

本発明によれば、ゲージ率が高く、かつゲージ率の温度特性が良好な歪検出素子およびこれを備える力学量センサを提供することができる。 According to the present invention, it is possible to provide a strain sensing element having a high gauge factor and good temperature characteristics of the gauge factor, and a mechanical quantity sensor including the strain sensing element.

図1は、本実施形態に係る圧力センサの一例を示す断面模式図である。FIG. 1 is a schematic sectional view showing an example of a pressure sensor according to the present embodiment. 図2Aは、本実施形態に係る圧力センサにおける歪検出部の構成を示す模式的な平面図である。FIG. 2A is a schematic plan view showing the configuration of the strain detection unit in the pressure sensor according to the present embodiment. 図2Bは、図2Aに示す歪検出部の回路図である。2B is a circuit diagram of the distortion detector shown in FIG. 2A. 図3は、本実施形態に係る歪検出素子の構成を示す歪検出部の回路図である。FIG. 3 is a circuit diagram of the strain detection unit showing the configuration of the strain detection element according to the present embodiment. 図4(a)は、本実施形態に係る歪検出素子の模式的な平面図である。図4(b)は、図4(a)において、IVB−IVB線に沿った断面図である。FIG. 4A is a schematic plan view of the strain detection element according to this embodiment. FIG. 4B is a sectional view taken along the line IVB-IVB in FIG. 図5(a)は、本実施形態に係る歪検出素子の模式的な平面図である。図5(b)は、図5(a)において、VB−VB線に沿った断面図である。FIG. 5A is a schematic plan view of the strain detection element according to this embodiment. FIG. 5B is a sectional view taken along the line VB-VB in FIG. 図6(a)は、本実施形態に係る歪検出素子の模式的な平面図である。図6(b)は、図6(a)において、VIB−VIB線に沿った断面図である。FIG. 6A is a schematic plan view of the strain detection element according to this embodiment. FIG. 6B is a sectional view taken along line VIB-VIB in FIG. 図7(a)は、本実施形態に係る歪検出素子の模式的な平面図である。図7(b)は、図7(a)において、VIIB−VII線Bに沿った断面図である。FIG. 7A is a schematic plan view of the strain detection element according to this embodiment. FIG. 7B is a sectional view taken along line VIIB-VII in FIG. 7A. 図8(a)は、本発明の実施例において、歪検出材料Aのゲージ率の温度特性および抵抗値の温度特性を示すグラフである。図8(b)は、本発明の実施例において、歪検出材料Aのゲージ率および抵抗値の温度係数を示すグラフである。図8(c)は、本発明の実施例において、歪検出材料Bのゲージ率の温度特性および抵抗値の温度特性を示すグラフである。図8(d)は、本発明の実施例において、歪検出材料Bのゲージ率および抵抗値の温度係数を示すグラフである。FIG. 8A is a graph showing the temperature characteristic of the gauge factor and the temperature characteristic of the resistance value of the strain detection material A in the example of the present invention. FIG. 8B is a graph showing the temperature coefficient of the gauge factor and the resistance value of the strain detection material A in the example of the present invention. FIG. 8C is a graph showing the temperature characteristic of the gauge factor and the temperature characteristic of the resistance value of the strain detection material B in the example of the present invention. FIG. 8D is a graph showing the temperature coefficient of the gauge factor and the resistance value of the strain detection material B in the example of the present invention. 図9(a)は、本発明の実施例において、歪検出素子における歪検出材料Aと歪検出材料Bとのパターン構成を示す断面模式図である。図9(b)は、本発明の実施例において、歪検出材料Aのゲージ率の温度特性、歪検出材料Bのゲージ率の温度特性および歪検出素子の合成ゲージ率の温度特性を示すグラフである。図9(c)は、本発明の実施例において、歪検出材料Aのゲージ率の温度係数、歪検出材料Bのゲージ率の温度係数および歪検出素子の合成ゲージ率の温度係数を示すグラフである。図9(d)は、本発明の実施例において、歪検出材料Aの抵抗値の温度特性、歪検出材料Bの抵抗値の温度特性および歪検出素子の合成抵抗値の温度特性を示すグラフである。図9(e)は、本発明の実施例において、歪検出材料Aの抵抗値の温度係数、歪検出材料Bの抵抗値の温度係数および歪検出素子の合成抵抗値の温度係数を示すグラフである。FIG. 9A is a schematic sectional view showing a pattern configuration of the strain detection material A and the strain detection material B in the strain detection element in the example of the present invention. FIG. 9B is a graph showing the temperature characteristic of the gauge factor of the strain detecting material A, the temperature characteristic of the gauge factor of the strain detecting material B, and the temperature characteristic of the combined gauge factor of the strain detecting element in the example of the present invention. is there. FIG. 9C is a graph showing the temperature coefficient of the gauge factor of the strain detecting material A, the temperature coefficient of the gauge factor of the strain detecting material B, and the temperature coefficient of the synthetic gauge factor of the strain detecting element in the example of the present invention. is there. FIG. 9D is a graph showing the temperature characteristic of the resistance value of the strain detecting material A, the temperature characteristic of the resistance value of the strain detecting material B, and the temperature characteristic of the combined resistance value of the strain detecting element in the example of the present invention. is there. FIG. 9E is a graph showing the temperature coefficient of the resistance value of the strain detection material A, the temperature coefficient of the resistance value of the strain detection material B, and the temperature coefficient of the combined resistance value of the strain detection element in the example of the present invention. is there. 図10(a)は、本発明の実施例において、計算により算出された歪検出素子の合成ゲージ率と、測定された歪検出素子の合成ゲージ率と、の関係を示すグラフである。図10(b)は、本発明の実施例において、計算により算出された歪検出素子の合成ゲージ率の温度係数と、測定された歪検出素子の合成ゲージ率の温度係数と、の関係を示すグラフである。図10(c)は、本発明の実施例において、計算により算出された歪検出素子の合成抵抗値と、測定された歪検出素子の合成抵抗値と、の関係を示すグラフである。図10(d)は、本発明の実施例において、計算により算出された歪検出素子の合成抵抗値の温度係数と、測定された歪検出素子の合成抵抗値の温度係数と、の関係を示すグラフである。FIG. 10A is a graph showing the relationship between the calculated composite gauge ratio of the strain detecting elements and the measured composite gauge ratio of the strain detecting elements in the example of the present invention. FIG. 10B shows the relationship between the temperature coefficient of the composite gauge ratio of the strain sensing element calculated by calculation and the temperature coefficient of the composite gauge ratio of the measured strain sensing element in the example of the present invention. It is a graph. FIG. 10C is a graph showing the relationship between the calculated combined resistance value of the strain detecting element and the measured combined resistance value of the strain detecting element in the example of the present invention. FIG. 10D shows the relationship between the temperature coefficient of the combined resistance value of the strain detecting element calculated by the calculation and the temperature coefficient of the combined resistance value of the measured strain detecting element in the example of the present invention. It is a graph. 図11(a)は、本発明の実施例において、歪検出材料Aのゲージ率の温度特性、歪検出材料Bのゲージ率の温度特性および歪検出素子の合成ゲージ率の温度特性を示すグラフである。図11(b)は、本発明の実施例において、歪検出材料Aのゲージ率の温度係数、歪検出材料Bのゲージ率の温度係数および歪検出素子の合成ゲージ率の温度係数を示すグラフである。図11(c)は、本発明の実施例において、歪検出材料Aの抵抗値の温度特性、歪検出材料Bの抵抗値の温度特性および歪検出素子の合成抵抗値の温度特性を示すグラフである。図11(d)は、本発明の実施例において、歪検出材料Aの抵抗値の温度係数、歪検出材料Bの抵抗値の温度係数および歪検出素子の合成抵抗値の温度係数を示すグラフである。FIG. 11A is a graph showing the temperature characteristic of the gauge factor of the strain detecting material A, the temperature characteristic of the gauge factor of the strain detecting material B, and the temperature characteristic of the combined gauge factor of the strain detecting element in the example of the present invention. is there. FIG. 11B is a graph showing the temperature coefficient of the gauge factor of the strain sensing material A, the temperature coefficient of the gauge factor of the strain sensing material B, and the temperature coefficient of the synthetic gauge factor of the strain sensing element in the example of the present invention. is there. FIG. 11C is a graph showing the temperature characteristic of the resistance value of the strain detecting material A, the temperature characteristic of the resistance value of the strain detecting material B, and the temperature characteristic of the combined resistance value of the strain detecting element in the example of the present invention. is there. FIG. 11D is a graph showing the temperature coefficient of the resistance value of the strain detection material A, the temperature coefficient of the resistance value of the strain detection material B, and the temperature coefficient of the combined resistance value of the strain detection element in the example of the present invention. is there. 図12(a)は、本発明の実施例において、計算により算出された歪検出素子の合成ゲージ率と、測定された歪検出素子の合成ゲージ率と、の関係を示すグラフである。図12(b)は、本発明の実施例において、計算により算出された歪検出素子の合成ゲージ率の温度係数と、測定された歪検出素子の合成ゲージ率の温度係数と、の関係を示すグラフである。図12(c)は、本発明の実施例において、計算により算出された歪検出素子の合成抵抗値と、測定された歪検出素子の合成抵抗値と、の関係を示すグラフである。図12(d)は、本発明の実施例において、計算により算出された歪検出素子の合成抵抗値の温度係数と、測定された歪検出素子の合成抵抗値の温度係数と、の関係を示すグラフである。FIG. 12A is a graph showing the relationship between the calculated composite gauge ratio of the strain detecting element and the measured composite gauge ratio of the strain detecting element in the example of the present invention. FIG. 12B shows the relationship between the temperature coefficient of the composite gauge ratio of the strain sensing element calculated by calculation and the temperature coefficient of the composite gauge ratio of the measured strain sensing element in the embodiment of the present invention. It is a graph. FIG. 12C is a graph showing the relationship between the calculated combined resistance value of the strain detecting element and the measured combined resistance value of the strain detecting element in the example of the present invention. FIG. 12D shows the relationship between the temperature coefficient of the combined resistance value of the strain detecting element calculated by the calculation and the temperature coefficient of the combined resistance value of the measured strain detecting element in the example of the present invention. It is a graph. 図13(a)は、本発明の実施例において、歪検出素子における歪検出材料Aと歪検出材料Bとのパターン構成を示す断面模式図である。図13(b)は、本発明の実施例において、歪検出材料Aのゲージ率の温度特性、歪検出材料Bのゲージ率の温度特性および歪検出素子の合成ゲージ率の温度特性を示すグラフである。図13(c)は、本発明の実施例において、歪検出材料Aのゲージ率の温度係数、歪検出材料Bのゲージ率の温度係数および歪検出素子の合成ゲージ率の温度係数を示すグラフである。図13(d)は、本発明の実施例において、歪検出材料Aの抵抗値の温度特性、歪検出材料Bの抵抗値の温度特性および歪検出素子の合成抵抗値の温度特性を示すグラフである。図13(e)は、本発明の実施例において、歪検出材料Aの抵抗値の温度係数、歪検出材料Bの抵抗値の温度係数および歪検出素子の合成抵抗値の温度係数を示すグラフである。FIG. 13A is a schematic sectional view showing a pattern configuration of the strain detection material A and the strain detection material B in the strain detection element in the example of the present invention. FIG. 13B is a graph showing the temperature characteristic of the gauge factor of the strain detecting material A, the temperature characteristic of the gauge factor of the strain detecting material B, and the temperature characteristic of the combined gauge factor of the strain detecting element in the example of the present invention. is there. FIG. 13C is a graph showing the temperature coefficient of the gauge factor of the strain sensing material A, the temperature coefficient of the gauge factor of the strain sensing material B, and the temperature coefficient of the synthetic gauge factor of the strain sensing element in the example of the present invention. is there. FIG. 13D is a graph showing the temperature characteristic of the resistance value of the strain detecting material A, the temperature characteristic of the resistance value of the strain detecting material B, and the temperature characteristic of the combined resistance value of the strain detecting element in the example of the present invention. is there. FIG. 13E is a graph showing the temperature coefficient of the resistance value of the strain detection material A, the temperature coefficient of the resistance value of the strain detection material B, and the temperature coefficient of the combined resistance value of the strain detection element in the example of the present invention. is there. 図14(a)は、本発明の実施例において、歪検出素子における歪検出材料Aと歪検出材料Bとのパターン構成を示す断面模式図である。図14(b)は、本発明の実施例において、歪検出材料Aのゲージ率の温度特性、歪検出材料Bのゲージ率の温度特性および歪検出素子の合成ゲージ率の温度特性を示すグラフである。図14(c)は、本発明の実施例において、歪検出材料Aのゲージ率の温度係数、歪検出材料Bのゲージ率の温度係数および歪検出素子の合成ゲージ率の温度係数を示すグラフである。図14(d)は、本発明の実施例において、歪検出材料Aの抵抗値の温度特性、歪検出材料Bの抵抗値の温度特性および歪検出素子の合成抵抗値の温度特性を示すグラフである。図14(e)は、本発明の実施例において、歪検出材料Aの抵抗値の温度係数、歪検出材料Bの抵抗値の温度係数および歪検出素子の合成抵抗値の温度係数を示すグラフである。FIG. 14A is a schematic sectional view showing a pattern configuration of the strain detection material A and the strain detection material B in the strain detection element in the example of the present invention. FIG. 14B is a graph showing the temperature characteristic of the gauge factor of the strain detecting material A, the temperature characteristic of the gauge factor of the strain detecting material B, and the temperature characteristic of the combined gauge factor of the strain detecting element in the example of the present invention. is there. FIG. 14C is a graph showing the temperature coefficient of the gauge factor of the strain detecting material A, the temperature coefficient of the gauge factor of the strain detecting material B, and the temperature coefficient of the synthetic gauge factor of the strain detecting element in the example of the present invention. is there. FIG. 14D is a graph showing the temperature characteristic of the resistance value of the strain detecting material A, the temperature characteristic of the resistance value of the strain detecting material B, and the temperature characteristic of the combined resistance value of the strain detecting element in the example of the present invention. is there. FIG. 14E is a graph showing the temperature coefficient of the resistance value of the strain detection material A, the temperature coefficient of the resistance value of the strain detection material B, and the temperature coefficient of the combined resistance value of the strain detection element in the example of the present invention. is there.

以下、本発明を、具体的な実施形態に基づき、以下の順序で詳細に説明する。
1.力学量センサ
1.1 圧力センサの全体構成
1.2 歪検出部
1.3 歪検出素子の組み合わせ
1.4 圧力センサの動作原理
2.本実施形態における効果
3.変形例
Hereinafter, the present invention will be described in detail in the following order based on specific embodiments.
1. Mechanical quantity sensor 1.1 Overall configuration of pressure sensor 1.2 Strain detection section 1.3 Combination of strain detection elements 1.4 Operating principle of pressure sensor 2. Effects in this embodiment 3. Modification

(1.力学量センサ)
力学量センサは、圧力、加速度、変位、荷重、トルク等の力学量を測定するためのセンサである。本実施形態では、力学量センサとして、流体の圧力を測定する圧力センサについて説明する。
(1. Mechanical sensor)
The mechanical quantity sensor is a sensor for measuring a mechanical quantity such as pressure, acceleration, displacement, load and torque. In the present embodiment, a pressure sensor that measures the pressure of a fluid will be described as the mechanical quantity sensor.

(1.1 圧力センサの全体構成)
図1に示すように、本実施形態に係る圧力センサ1は、ステム2、絶縁膜3、歪検出部10、電極4および保護部5を有している。
(1.1 Overall structure of pressure sensor)
As shown in FIG. 1, the pressure sensor 1 according to the present embodiment has a stem 2, an insulating film 3, a strain detection unit 10, an electrode 4 and a protection unit 5.

圧力センサ1は、測定対象媒体としての流体を圧力センサに導入するための導入部を下方側に有しており、導入部は流体が流れるパイプ等に取り付けられる。導入部は、ステム2から構成されており、後述する歪検出部が形成されている領域に対応して薄肉化されている。この薄肉化された部分はメンブレンと呼ばれ、メンブレンに圧力が掛かると、メンブレンが変形し、歪検出部を構成する歪検出素子に歪を生じさせる。 The pressure sensor 1 has an introduction part for introducing a fluid as a measurement target medium into the pressure sensor, and the introduction part is attached to a pipe or the like through which the fluid flows. The introduction portion is composed of the stem 2 and is thinned in correspondence with a region where a strain detection portion described later is formed. This thinned portion is called a membrane, and when pressure is applied to the membrane, the membrane is deformed and causes strain in the strain detection element forming the strain detection unit.

メンブレン上には、絶縁膜3が形成されており、ステム2と後述する歪検出部10とを絶縁している。ステム2は通常、導電性を有する金属材料から構成されているため、ステム2上に絶縁膜3を形成する必要があるが、ステム2が絶縁性を有する材料、たとえばセラミックスから構成されている場合には、絶縁膜を形成しなくてもよい。 An insulating film 3 is formed on the membrane, and insulates the stem 2 from the strain detection unit 10 described later. Since the stem 2 is usually made of a conductive metal material, it is necessary to form the insulating film 3 on the stem 2. However, when the stem 2 is made of an insulating material, for example, ceramics. In this case, the insulating film may not be formed.

絶縁膜3上には、歪検出部10と、外部回路と歪検出部とを電気的に接続できるように設けられた電極4と、歪検出部10を保護するための保護部5と、が形成されている。 On the insulating film 3, a strain detecting section 10, an electrode 4 provided so that an external circuit and the strain detecting section can be electrically connected, and a protecting section 5 for protecting the strain detecting section 10 are provided. Has been formed.

(1.2 歪検出部)
本実施形態では、歪検出部10は、図2Aに示すように、4つの歪検出素子11,12,13,14が4つの電極4a,4b,4c,4dに接続されており、各歪検出素子において、歪検出材料が所定のパターンとして形成されている構成を有している。歪検出素子および電極はブリッジ回路を形成しており、図2Aに示す構成は、図2Bに示す回路図に対応する。
(1.2 Strain detector)
In the present embodiment, as shown in FIG. 2A, in the strain detecting unit 10, four strain detecting elements 11, 12, 13, 14 are connected to four electrodes 4a, 4b, 4c, 4d, and each strain detecting element is detected. The element has a configuration in which the strain detection material is formed in a predetermined pattern. The strain detecting element and the electrode form a bridge circuit, and the configuration shown in FIG. 2A corresponds to the circuit diagram shown in FIG. 2B.

従来、歪検出素子としては、歪検出素子を構成する単独の歪検出材料の特性を向上させるという手法、たとえば、歪検出材料のゲージ率を大きくし、ゲージ率および抵抗値の温度特性を改善するという手法が採用されていた。しかしながら、このような手法では、特性が良好な材料が得られたとしても、その組成が極めて限定的であったり、特殊な製法等を採用する必要があったりするため、特性の良好な材料を安定的に得ることは困難であった。 Conventionally, as a strain sensing element, a method of improving the characteristics of a single strain sensing material forming the strain sensing element, for example, increasing the gauge factor of the strain sensing material and improving the temperature characteristics of the gauge factor and the resistance value. That method was adopted. However, in such a method, even if a material having good characteristics is obtained, its composition is extremely limited, or a special manufacturing method or the like needs to be adopted. It was difficult to get stable.

そこで、本実施形態では、単独の歪検出材料の特性を向上させるという手法は採用せず、複数の歪検出材料を並列に電気的に接続し、歪検出材料の特性(ゲージ率、抵抗値等)を合成した特性を利用する手法を用いて、それらが単独で用いられる場合よりも、良好な特性が得られるようにしている。すなわち、単独で用いた場合には、所定の温度範囲でゲージ率の変化率が大きい材料、すなわち、ゲージ率の温度特性が悪い材料であっても、たとえば、ゲージ率の温度特性が悪化する温度範囲が異なる材料を組み合わせることにより、歪検出素子全体としてのゲージ率、すなわち、複数の歪検出材料の各ゲージ率を合成して得られる合成ゲージ率の温度特性を、それらを単独で用いた場合のゲージ率の温度特性よりも良好にすることができる。 Therefore, in the present embodiment, a method of improving the characteristics of a single strain detection material is not adopted, but a plurality of strain detection materials are electrically connected in parallel, and the characteristics of the strain detection material (gauge ratio, resistance value, etc.) ) Is used to obtain better characteristics than when they are used alone. That is, when used alone, even if the material has a large rate of change in gauge ratio within a predetermined temperature range, that is, even if the temperature characteristic of gauge ratio is poor, for example, the temperature at which the temperature characteristic of gauge ratio deteriorates. When the gauge ratio of the strain sensing element as a whole by combining materials with different ranges, that is, the temperature characteristics of the synthetic gauge ratio obtained by synthesizing the gauge factors of a plurality of strain sensing materials, when they are used alone Can be better than the temperature characteristic of the gauge factor of.

このように、複数の歪検出材料を組み合わせて算出される合成ゲージ率、合成抵抗値およびこれらの温度特性を、歪検出材料単独の特性よりも良好とすることにより、既知の歪検出材料の適切な組み合わせで構成され、従来よりも良好な特性を有する歪検出素子を得ることができる。このような手法であれば、所望の特性が得られるように、既知の歪検出材料を組み合わせればよいので、安定的に得ることが困難な材料を採用する必要はない。 As described above, by making the synthetic gauge ratio, the synthetic resistance value, and the temperature characteristics of these calculated by combining a plurality of strain detection materials better than the characteristics of the strain detection material alone, the appropriateness of known strain detection materials can be improved. It is possible to obtain a strain detecting element which is composed of various combinations and has better characteristics than conventional ones. With such a method, known strain detection materials may be combined so that desired characteristics can be obtained, and therefore it is not necessary to employ a material that is difficult to obtain stably.

本実施形態では、複数の歪検出材料が電気的に並列に接続されている歪検出素子は、室温における合成ゲージ率に対する合成ゲージ率の変化率が−50〜350℃の範囲において±3000ppm/℃以内であり、±2000ppm/℃以内であることが好ましい。本実施形態では、室温は25℃である。 In the present embodiment, in the strain sensing element in which a plurality of strain sensing materials are electrically connected in parallel, the rate of change of the synthetic gauge rate with respect to the synthetic gauge rate at room temperature is ±3000 ppm/°C in the range of -50 to 350°C. And preferably within ±2000 ppm/°C. In this embodiment, the room temperature is 25°C.

また、当該歪検出素子は、室温における合成抵抗値に対する合成抵抗値の変化率が−50〜350℃の範囲において±2000ppm/℃以内であることが好ましく、±1800ppm/℃以内であることがより好ましい。 Further, in the strain detection element, the rate of change of the combined resistance value with respect to the combined resistance value at room temperature is preferably within ±2000 ppm/°C in the range of -50 to 350°C, and more preferably within ±1800 ppm/°C. preferable.

(1.3 歪検出素子の組み合わせ)
以下では、2つの歪検出材料を用いて、本実施形態に係る歪検出素子を構成する場合について説明する。
(1.3 Combination of strain detection elements)
Hereinafter, a case will be described where the strain detecting element according to the present embodiment is configured by using two strain detecting materials.

本実施形態に係る歪検出素子を4つ用いて形成したブリッジ回路を図3に示す。図3は、図2Bに対応しており、図3では、各歪検出素子が、2つの歪検出材料から構成されている点が明確になっている。たとえば、歪検出素子11において、歪検出材料A11aおよび歪検出材料B11bは電気的に並列に接続されている。なお、他の歪検出素子12、13、14も、歪検出素子11と同様に、歪検出材料Aおよび歪検出材料Bから構成される。 FIG. 3 shows a bridge circuit formed by using four strain detection elements according to this embodiment. FIG. 3 corresponds to FIG. 2B, and it is clear in FIG. 3 that each strain sensing element is composed of two strain sensing materials. For example, in the strain detection element 11, the strain detection material A11a and the strain detection material B11b are electrically connected in parallel. The other strain detection elements 12, 13 and 14 are also made of the strain detection material A and the strain detection material B, similarly to the strain detection element 11.

歪検出素子に歪が印加されていない場合、すなわち、初期状態では、歪検出素子の抵抗値は、歪検出材料Aの抵抗値Ra0と、歪検出材料Bの抵抗値Rb0との合成抵抗値Rtotal0に一致する。すなわち、Rtotal0は、以下の式1で表すことができる。

Figure 2020085490
When no strain is applied to the strain sensing element, that is, in the initial state, the resistance value of the strain sensing element is a combined resistance value Rtotal0 of the resistance value Ra0 of the strain sensing material A and the resistance value Rb0 of the strain sensing material B. Matches That is, Rtotal0 can be expressed by Equation 1 below.
Figure 2020085490

歪検出素子に歪εが印加されると、歪検出材料Aおよび歪検出材料Bは、それぞれのゲージ率に応じて、抵抗値が変化する。歪検出材料Aのゲージ率をGa、歪検出材料Bのゲージ率をGbとすると、歪εが印加された歪検出材料Aの抵抗値Ra1、および、歪εが印加された歪検出材料Bの抵抗値Rb1は以下の式2および式3で表すことができる。

Figure 2020085490
Figure 2020085490
When the strain ε is applied to the strain detection element, the resistance values of the strain detection material A and the strain detection material B change according to their gauge ratios. Let Ga be the gauge factor of the strain detection material A and Gb be the gauge factor of the strain detection material B. The resistance value Rb1 can be expressed by the following equations 2 and 3.
Figure 2020085490
Figure 2020085490

また、歪εが印加された歪検出素子の抵抗値は、歪εが印加された歪検出材料Aの抵抗値Ra1と、歪εが印加された歪検出材料Bの抵抗値Rb1との合成抵抗値Rtotal1に一致する。すなわち、Rtotal1は、以下の式4で表すことができる。

Figure 2020085490
The resistance value of the strain detection element to which the strain ε is applied is a combined resistance of the resistance value Ra1 of the strain detection material A to which the strain ε is applied and the resistance value Rb1 of the strain detection material B to which the strain ε is applied. Matches the value Rtotal1. That is, Rtotal1 can be expressed by Equation 4 below.
Figure 2020085490

したがって、歪εが印加された歪検出素子の合成ゲージ率Gtotalは以下の式5で表すことができる。

Figure 2020085490
Therefore, the combined gauge factor Gtotal of the strain detecting element to which the strain ε is applied can be expressed by the following equation 5.
Figure 2020085490

上記の式1から式5より、合成ゲージ率および合成抵抗値を算出することができる。このような合成された特性では、2つの歪検出材料の特性が相反する傾向を示す場合には相殺され、同じような傾向を示す場合には強調される傾向にある。ここで、歪検出材料Aおよび歪検出材料Bの抵抗値およびゲージ率は温度により変化し、その変化率の傾向は、歪検出材料ごとに異なる。 The combined gauge ratio and the combined resistance value can be calculated from the above Expressions 1 to 5. Such a synthesized characteristic tends to be canceled when the characteristics of the two strain sensing materials show contradictory tendencies, and to be emphasized when they show similar tendencies. Here, the resistance value and the gauge factor of the strain detection material A and the strain detection material B change depending on the temperature, and the tendency of the change rate is different for each strain detection material.

そこで、たとえば、高温になるにつれゲージ率が上昇する材料と、高温になるにつれゲージ率が低下する材料と、を組み合わせて、歪検出素子全体としてのゲージ率(合成ゲージ率)を算出することにより、高温におけるゲージ率の変化が相殺される。その結果、合成ゲージ率の温度特性は、高温においてもゲージ率の変化率が小さくなるので、ゲージ率の温度特性が良好な歪検出素子を実現することができる。 Therefore, for example, by combining a material whose gauge factor increases with increasing temperature and a material whose gauge factor decreases with increasing temperature, the gauge factor (combined gauge factor) of the entire strain sensing element is calculated. , The change in gauge factor at high temperature is offset. As a result, in the temperature characteristic of the combined gauge ratio, the rate of change of the gauge ratio becomes small even at high temperatures, so that it is possible to realize a strain detection element having a good temperature characteristic of the gauge ratio.

また、上記の式からも明らかなように、合成ゲージ率および合成抵抗値は、各歪検出材料の抵抗値に依存するパラメータである。したがって、合成ゲージ率および合成抵抗値を制御するには、各歪検出材料の抵抗値を制御すればよい。ここで、ある材料の抵抗値Rは、長さLに比例し、断面積Sに反比例することが知られている。すなわち、抵抗値Rは、当該材料の比抵抗をρとすると、以下の式6で表すことができる。

Figure 2020085490
Further, as is clear from the above formula, the synthetic gauge factor and the synthetic resistance value are parameters that depend on the resistance value of each strain detection material. Therefore, in order to control the synthetic gauge factor and the synthetic resistance value, the resistance value of each strain detecting material may be controlled. Here, it is known that the resistance value R of a certain material is proportional to the length L and inversely proportional to the cross-sectional area S. That is, the resistance value R can be expressed by Equation 6 below, where ρ is the specific resistance of the material.
Figure 2020085490

比抵抗ρは材料に固有の値なので、抵抗値Rは、長さおよび断面積の変化に伴い変化する。換言すれば、抵抗値Rに依存するパラメータである合成ゲージ率および合成抵抗値は、歪検出材料のパターン長さ、パターン幅およびパターン厚みを変化させることにより制御できる。すなわち、複数の歪検出材料を組み合わせ、さらに、歪検出材料のパターン長さ、パターン幅およびパターン厚みを制御することにより、歪検出素子のゲージ率および抵抗値の温度特性をさらに良好にすることができる。 Since the specific resistance ρ is a value peculiar to the material, the resistance value R changes with changes in length and cross-sectional area. In other words, the combined gauge factor and combined resistance value, which are parameters that depend on the resistance value R, can be controlled by changing the pattern length, pattern width, and pattern thickness of the strain detection material. That is, by combining a plurality of strain detection materials and further controlling the pattern length, pattern width, and pattern thickness of the strain detection material, it is possible to further improve the temperature characteristics of the gauge factor and the resistance value of the strain detection element. it can.

図4(a)および(b)は、歪検出素子11の一例を示している。歪検出素子において、歪検出材料A11aおよび歪検出材料B11bは図4(a)および(b)に示すパターン形状を有している。図4(a)は、歪検出素子の平面図であり、図4(b)は、図4(a)のIVB−IVB線に沿った歪検出素子の断面図である。図4(a)および図4(b)より、歪検出素子において、歪検出材料はミアンダパターン状に形成されており、歪検出材料B11bのパターン上に歪検出材料A11aのパターンが積層された構成となっている。 4A and 4B show an example of the strain detection element 11. In the strain detecting element, the strain detecting material A11a and the strain detecting material B11b have the pattern shapes shown in FIGS. 4(a) and 4(b). 4A is a plan view of the strain detecting element, and FIG. 4B is a cross-sectional view of the strain detecting element taken along the line IVB-IVB in FIG. 4A. 4A and 4B, in the strain sensing element, the strain sensing material is formed in a meander pattern, and the pattern of the strain sensing material A11a is laminated on the pattern of the strain sensing material B11b. Has become.

図4(a)および(b)では、歪検出材料A11aのパターン長さ、パターン幅およびパターン厚みは、歪検出材料B11bのパターン長さ、パターン幅およびパターン厚みと一致している。図4(a)および(b)に示す歪検出素子11の合成ゲージ率および合成抵抗値は、上記の式1から式5を用いて算出される。 In FIGS. 4A and 4B, the pattern length, pattern width, and pattern thickness of the strain detection material A11a match the pattern length, pattern width, and pattern thickness of the strain detection material B11b. The combined gauge factor and combined resistance value of the strain detection element 11 shown in FIGS. 4A and 4B are calculated using the above Expressions 1 to 5.

図5(a)および(b)も、歪検出素子11の一例を示している。歪検出素子において、歪検出材料A11aおよび歪検出材料B11bは図5(a)および(b)に示すパターン形状を有しており、歪検出材料B11bのパターン上に歪検出材料A11aのパターンが積層されている。 5A and 5B also show an example of the strain detection element 11. In the strain sensing element, the strain sensing material A11a and the strain sensing material B11b have the pattern shapes shown in FIGS. 5A and 5B, and the pattern of the strain sensing material A11a is laminated on the pattern of the strain sensing material B11b. Has been done.

しかしながら、歪検出材料Aのパターン長さおよびパターン厚みと、歪検出材料Bのパターン長さおよびパターン厚みとは同じであるものの、図5(a)および(b)から明らかなように、歪検出材料A11aのパターン幅は、歪検出材料B11bのパターン幅よりも狭い。すなわち、図5に示す歪検出材料Aの断面積は、図4に示す歪検出材料Aの断面積よりも小さい。 However, although the pattern length and the pattern thickness of the strain detection material A are the same as the pattern length and the pattern thickness of the strain detection material B, as shown in FIGS. 5A and 5B, the strain detection The pattern width of the material A11a is narrower than the pattern width of the strain detection material B11b. That is, the cross-sectional area of the strain detection material A shown in FIG. 5 is smaller than the cross-sectional area of the strain detection material A shown in FIG.

したがって、図5に示す歪検出素子においては、図4に示す歪検出素子に比べて、歪検出材料Aの抵抗値が大きくなっている。その結果、歪検出素子の合成ゲージ率および合成抵抗値に対して、歪検出材料Aの抵抗値が寄与する割合が大きくなるため、歪検出素子の合成ゲージ率および合成抵抗値も、図4に示す歪検出素子の合成ゲージ率および合成抵抗値に対して変化する。換言すれば、歪検出素子において、歪検出材料のパターン形状(図5では、パターン幅)を変化させることにより、歪検出素子の合成ゲージ率および合成抵抗値を制御できる。その結果、歪検出素子の合成ゲージ率および合成抵抗値の温度特性も制御できる。 Therefore, in the strain detecting element shown in FIG. 5, the resistance value of the strain detecting material A is larger than that in the strain detecting element shown in FIG. As a result, the ratio of contribution of the resistance value of the strain detection material A to the combined gauge ratio and combined resistance value of the strain detection element becomes large, so that the combined gauge ratio and combined resistance value of the strain detection element are also shown in FIG. It changes with respect to the composite gauge factor and composite resistance value of the strain detection element shown. In other words, in the strain detecting element, the synthetic gauge ratio and the synthetic resistance value of the strain detecting element can be controlled by changing the pattern shape (pattern width in FIG. 5) of the strain detecting material. As a result, the temperature characteristics of the combined gauge factor and combined resistance of the strain detecting element can also be controlled.

同様に、歪検出材料Aのパターン幅を歪検出材料Bのパターン幅と同じとし、歪検出材料Aのパターン厚みを歪検出材料Bのパターン厚みよりも小さくした場合についても、歪検出材料Aの断面積は小さくなるので、歪検出素子の合成ゲージ率および合成抵抗値を制御できる。 Similarly, when the pattern width of the strain detection material A is set to be the same as the pattern width of the strain detection material B and the pattern thickness of the strain detection material A is made smaller than the pattern thickness of the strain detection material B, Since the cross-sectional area is small, it is possible to control the composite gauge factor and composite resistance value of the strain detecting element.

図6(a)および(b)も、歪検出素子11の一例を示している。歪検出素子において、歪検出材料A11aおよび歪検出材料B11bは図6(a)および(b)に示すパターン形状を有しているが、歪検出材料Aおよび歪検出材料Bは積層されておらず、同一面上に形成されている点が図4(a)および(b)と異なる。図6(a)および(b)では、歪検出材料Aのパターン長さ、パターン幅およびパターン厚みは、歪検出材料Bのパターン長さ、パターン幅およびパターン厚みと一致している。図6(a)および(b)に示す歪検出素子の合成ゲージ率および合成抵抗値は、上記の式1から式5を用いて算出される。 6A and 6B also show an example of the strain detection element 11. In the strain sensing element, the strain sensing material A11a and the strain sensing material B11b have the pattern shapes shown in FIGS. 6A and 6B, but the strain sensing material A and the strain sensing material B are not laminated. 4A and 4B in that they are formed on the same surface. In FIGS. 6A and 6B, the pattern length, the pattern width, and the pattern thickness of the strain detection material A match the pattern length, the pattern width, and the pattern thickness of the strain detection material B. The combined gauge factor and combined resistance value of the strain detection elements shown in FIGS. 6A and 6B are calculated using the above Expressions 1 to 5.

図7(a)および(b)も、歪検出素子11の一例を示している。歪検出素子において、歪検出材料A11aおよび歪検出材料B11bは図7(a)および(b)に示すパターン形状を有しており、図6(a)および(b)と同様に、歪検出材料A11aおよび歪検出材料B11bが同一面上に形成された構成を示している。しかしながら、図7(a)および(b)から明らかなように、歪検出材料A11aのパターン厚みと歪検出材料B11bのパターン厚みとは同じであるものの、歪検出材料A11aのパターン長さは、歪検出材料B11bのパターン長さよりも短く、かつ歪検出材料A11aのパターン幅は、歪検出材料B11bのパターン幅よりも大きい。 7A and 7B also show an example of the strain detection element 11. In the strain sensing element, the strain sensing material A11a and the strain sensing material B11b have the pattern shapes shown in FIGS. 7(a) and 7(b), and the strain sensing material is the same as in FIGS. 6(a) and 6(b). It shows a configuration in which A11a and the strain detection material B11b are formed on the same surface. However, as is clear from FIGS. 7A and 7B, although the pattern thickness of the strain detection material A11a and the pattern thickness of the strain detection material B11b are the same, the pattern length of the strain detection material A11a is It is shorter than the pattern length of the detection material B11b, and the pattern width of the strain detection material A11a is larger than the pattern width of the strain detection material B11b.

したがって、図7に示す歪検出素子においては、図6に示す歪検出素子に比べて、歪検出材料Aの抵抗値が小さくなっている。その結果、歪検出素子の合成ゲージ率および合成抵抗値に対して、歪検出材料Aの抵抗値が寄与する割合が小さくなるため、歪検出素子の合成ゲージ率および合成抵抗値も、図6に示す歪検出素子の合成ゲージ率および合成抵抗値に対して変化する。換言すれば、歪検出素子において、歪検出材料のパターン形状(図7では、パターン長さおよびパターン幅)を変化させることにより、歪検出素子の合成ゲージ率および合成抵抗値を制御できる。その結果、歪検出素子の合成ゲージ率および合成抵抗値の温度特性も制御できる。 Therefore, in the strain detecting element shown in FIG. 7, the resistance value of the strain detecting material A is smaller than that in the strain detecting element shown in FIG. As a result, the ratio of contribution of the resistance value of the strain detection material A to the combined gauge ratio and combined resistance value of the strain detecting element becomes small, so that the combined gauge ratio and combined resistance value of the strain detecting element are also shown in FIG. It changes with respect to the composite gauge factor and composite resistance value of the strain detection element shown. In other words, in the strain detecting element, by changing the pattern shape (the pattern length and the pattern width in FIG. 7) of the strain detecting material, the synthetic gauge factor and the synthetic resistance value of the strain detecting element can be controlled. As a result, the temperature characteristics of the combined gauge factor and combined resistance of the strain detecting element can also be controlled.

(1.4 圧力センサの動作原理)
圧力センサ1を流体が流れるパイプ等に取付け、電極を図示しない外部回路に接続する。流体が圧力センサの導入部に導入され、流体の圧力により圧力センサ1のステムに形成されたメンブレンが、圧力に応じて変形する。当該領域は、歪検出部の直下に形成されているので、当該領域の変形により、歪検出部に配置されている歪検出素子に歪が生じる。歪が生じると、各歪検出素子の抵抗値が変化する。この変化に応じてブリッジ回路の平衡が崩れ、電流が流れる。この電流の大小により圧力値を検出できる。
(1.4 Operating principle of pressure sensor)
The pressure sensor 1 is attached to a pipe or the like through which fluid flows, and the electrodes are connected to an external circuit (not shown). The fluid is introduced into the introduction portion of the pressure sensor, and the pressure of the fluid causes the membrane formed on the stem of the pressure sensor 1 to be deformed according to the pressure. Since the region is formed immediately below the strain detecting unit, the strain is generated in the strain detecting element arranged in the strain detecting unit due to the deformation of the region. When strain occurs, the resistance value of each strain detection element changes. In response to this change, the balance of the bridge circuit is lost and a current flows. The pressure value can be detected by the magnitude of this current.

(2.本実施形態における効果)
本実施形態では、歪検出素子を、複数の歪検出材料を電気的に並列に接続して構成している。このような歪検出素子では、当該歪検出素子のゲージ率および抵抗値は、複数の歪検出材料の各ゲージ率および各抵抗値を合成して得られる値となる。
(2. Effects of this embodiment)
In the present embodiment, the strain detecting element is configured by electrically connecting a plurality of strain detecting materials in parallel. In such a strain detecting element, the gauge factor and the resistance value of the strain detecting element are values obtained by combining the gauge factors and the resistance values of the plurality of strain detecting materials.

歪検出材料は、材料ごとに、ゲージ率および抵抗値の温度特性が異なるので、所望の温度範囲において、ゲージ率の変化率および抵抗値の変化率が相殺されるように、歪検出材料を選択することにより、それらの歪検出材料が単独で歪検出素子を構成する場合に比べて、ゲージ率の温度特性および抵抗値の温度特性を良好にすることができる。 Strain detection materials have different gage rate and resistance temperature characteristics, so select a strain detection material so that the gage rate change rate and resistance change rate are canceled in the desired temperature range. By doing so, it is possible to improve the temperature characteristics of the gauge factor and the temperature characteristics of the resistance value, as compared with the case where those strain detecting materials alone constitute the strain detecting element.

さらに、合成ゲージ率および合成抵抗値は、各歪検出材料の抵抗値に依存するので、所定のパターンとして形成されている歪検出材料のパターン長さ、パターン幅およびパターン厚みのいずれか1つ以上を変化させることにより、合成ゲージ率および合成抵抗値を制御することができる。したがって、所定の歪検出材料の組み合わせにおいて、パターン長さ、パターン幅およびパターン厚みを調整することにより、ゲージ率の温度特性および抵抗値の温度特性をさらに良好にすることができる。 Further, since the synthetic gauge factor and the synthetic resistance value depend on the resistance value of each strain detecting material, any one or more of the pattern length, the pattern width, and the pattern thickness of the strain detecting material formed as a predetermined pattern. By changing, it is possible to control the combined gauge ratio and combined resistance value. Therefore, by adjusting the pattern length, the pattern width, and the pattern thickness in a predetermined combination of the strain detection materials, it is possible to further improve the temperature characteristics of the gauge factor and the temperature characteristics of the resistance value.

したがって、このような歪検出素子を備える圧力センサは、広い温度範囲において精度よく圧力を検知することができる。 Therefore, the pressure sensor including such a strain detection element can detect pressure accurately in a wide temperature range.

(3.変形例)
上述の実施形態では、歪検出素子において、2つの歪検出材料が電気的に並列に接続されている構成について説明したが、3つ以上の歪検出材料が電気的に並列に接続されている構成であってもよい。この場合であっても、上述した説明が適用できる。接続される歪検出材料の上限は特に制限されないが、製造上の観点から、3個程度であることが好ましい。
(3. Modified example)
In the above-described embodiment, the strain detection element has been described with respect to a configuration in which two strain detection materials are electrically connected in parallel, but a configuration in which three or more strain detection materials are electrically connected in parallel. May be Even in this case, the above description can be applied. The upper limit of the strain detection material to be connected is not particularly limited, but it is preferably about 3 from the viewpoint of manufacturing.

なお、n個の歪検出材料が電気的に並列に接続されている場合、歪検出素子の合成抵抗値(Rtotal0およびRtotal1)は、以下の式7および式8で表すことができる。なお、合成ゲージ率は、式5で表すことができる。

Figure 2020085490
Figure 2020085490
When n strain detection materials are electrically connected in parallel, the combined resistance values (Rtotal0 and Rtotal1) of the strain detection element can be expressed by the following equations 7 and 8. The composite gauge factor can be expressed by Equation 5.
Figure 2020085490
Figure 2020085490

以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の範囲内において種々の態様で改変しても良い。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and may be modified in various ways within the scope of the present invention.

以下、実施例を用いて、本発明をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

本実施例では、歪検出材料AをCr−N薄膜とし、歪検出材料BをCr−Mn薄膜とした歪検出素子について評価を行った。歪検出材料AとしてのCr−N薄膜は、図8(a)に示すゲージ率の温度特性および抵抗値の温度特性を有していた。また、図8(b)に示すように、−50〜350℃の範囲内において、室温(25℃)での抵抗値に対する抵抗値の温度係数(TCR)は±1900ppm/℃の範囲内であり、室温(25℃)でのゲージ率に対するゲージ率の温度係数(TCS)は±3900ppm/℃の範囲内であった。また、歪検出材料BとしてのCr−Mn薄膜は、図8(c)に示すゲージ率の温度特性および抵抗値の温度特性を有していた。また、図8(d)に示すように、−50〜350℃の範囲内において、室温での抵抗値に対する抵抗値の温度係数(TCR)は±1600ppm/℃の範囲内であり、室温でのゲージ率に対するゲージ率の温度係数(TCS)は±3100ppm/℃の範囲内であった。 In this example, a strain detecting element in which the strain detecting material A was a Cr-N thin film and the strain detecting material B was a Cr-Mn thin film was evaluated. The Cr-N thin film as the strain detection material A had the temperature characteristic of gauge factor and the temperature characteristic of resistance value shown in FIG. Further, as shown in FIG. 8B, the temperature coefficient (TCR) of the resistance value with respect to the resistance value at room temperature (25° C.) is within a range of ±1900 ppm/° C. in the range of −50 to 350° C. The temperature coefficient of gauge ratio (TCS) with respect to the gauge ratio at room temperature (25° C.) was within the range of ±3900 ppm/° C. Further, the Cr-Mn thin film as the strain detection material B had the temperature characteristics of gauge ratio and temperature characteristics of resistance value shown in FIG. 8C. Further, as shown in FIG. 8D, in the range of −50 to 350° C., the temperature coefficient of resistance (TCR) with respect to the resistance at room temperature is within the range of ±1600 ppm/° C. The temperature coefficient of gauge ratio to the gauge ratio (TCS) was within the range of ±3100 ppm/°C.

(実施例1)
実施例1では、図4(a)および(b)に示す構成を有する歪検出素子において、図9(a)に示すように、歪検出材料Aの厚みと歪検出材料Bの厚みとを1:1として、歪検出素子の合成ゲージ率、合成抵抗値およびそれらの温度係数と温度との関係を−100〜500℃の範囲で計算により算出した。歪検出素子の合成ゲージ率の算出結果を図9(b)に、合成ゲージ率の温度係数を図9(c)に示し、歪検出素子の合成抵抗値の算出結果を図9(d)に、合成抵抗値の温度係数を図9(e)に示す。なお、図9(b)および(c)には、歪検出材料Aおよび歪検出材料Bのゲージ率およびそれらの温度係数と温度との関係もプロットし、図9(d)および(e)には、歪検出材料Aおよび歪検出材料Bの抵抗値およびそれらの温度係数と温度との関係もプロットした。
(Example 1)
In Example 1, in the strain sensing element having the configuration shown in FIGS. 4A and 4B, the thickness of the strain sensing material A and the thickness of the strain sensing material B were set to 1 as shown in FIG. 9A. The composite gauge ratio of the strain detection element, the composite resistance value, and the relationship between the temperature coefficient and temperature of the strain detection element were calculated as -1 in the range of -100 to 500°C. The calculation result of the combined gauge ratio of the strain detection element is shown in FIG. 9B, the temperature coefficient of the combined gauge ratio is shown in FIG. 9C, and the calculation result of the combined resistance value of the strain detection element is shown in FIG. 9D. 9E shows the temperature coefficient of the combined resistance value. 9(b) and 9(c), the gauge ratios of the strain detecting material A and the strain detecting material B and the relationship between their temperature coefficients and temperature are also plotted, and in FIGS. 9(d) and 9(e). Also plotted the resistance values of the strain detection material A and the strain detection material B and the relationship between their temperature coefficients and temperatures.

図9(c)より、歪検出素子の合成ゲージ率の温度特性は、歪検出材料Aのゲージ率の温度特性および歪検出材料Bのゲージ率の温度特性が相殺され、単独の温度特性よりも良好であることが確認できた。なお、−50〜350℃の範囲内において、室温での合成ゲージ率に対する合成ゲージ率の温度係数は±2900ppm/℃の範囲内であり、歪検出材料Aおよび歪検出材料Bのそれぞれのゲージ率の温度係数よりも良好であった。 As shown in FIG. 9C, the temperature characteristic of the composite gauge ratio of the strain detecting element is higher than the temperature characteristic of the strain detecting material A and the temperature characteristic of the gauge ratio of the strain detecting material B. It was confirmed that it was good. In the range of −50 to 350° C., the temperature coefficient of the composite gauge ratio with respect to the composite gauge ratio at room temperature is within the range of ±2900 ppm/° C., and the gauge ratios of the strain detection material A and the strain detection material B are respectively. Better than the temperature coefficient of.

また、図9(e)より、歪検出素子の合成抵抗値の温度特性は、歪検出材料Aの抵抗値の温度特性と、歪検出材料Bの抵抗値の温度特性との間であることが確認できた。なお、−50〜350℃の範囲内において、室温での合成抵抗値に対する合成抵抗値の温度係数は±1800ppm/℃の範囲内であり、歪検出材料Aの抵抗値の温度係数と歪検出材料Bの抵抗値の温度係数との間の値であった。 Further, from FIG. 9E, the temperature characteristic of the combined resistance value of the strain detection element is between the temperature characteristic of the resistance value of the strain detection material A and the temperature characteristic of the resistance value of the strain detection material B. It could be confirmed. In the range of −50 to 350° C., the temperature coefficient of the combined resistance value with respect to the combined resistance value at room temperature is within the range of ±1800 ppm/° C., and the temperature coefficient of the resistance value of the strain detection material A and the strain detection material It was a value between the resistance coefficient of B and the temperature coefficient.

続いて、図4(a)および(b)に示す構成を有する歪検出素子を作製し、−50〜450℃の範囲で、合成ゲージ率、合成抵抗値およびそれらの温度係数を測定した。測定した合成ゲージ率および上記で算出された合成ゲージ率を図10(a)に、これらの温度係数を図10(b)にプロットし、測定した合成抵抗値および上記で算出された合成抵抗値を図10(c)に、これらの温度係数を図10(d)にプロットした。 Subsequently, a strain sensing element having the configuration shown in FIGS. 4A and 4B was produced, and the synthetic gauge ratio, the synthetic resistance value and their temperature coefficients were measured in the range of −50 to 450° C. The measured combined gauge ratio and the combined gauge ratio calculated above are plotted in FIG. 10(a), and the temperature coefficients thereof are plotted in FIG. 10(b), and the measured combined resistance value and the combined resistance value calculated above are plotted. Is plotted in FIG. 10( c ), and these temperature coefficients are plotted in FIG. 10( d ).

図10(a)から(d)より、計算により算出された合成ゲージ率、合成抵抗値およびそれらの温度係数と、測定された合成ゲージ率、合成抵抗値およびそれらの温度係数とがよく一致していることが確認できた。 From FIGS. 10(a) to 10(d), the calculated synthetic gauge ratio, the combined resistance value and the temperature coefficient thereof are in good agreement with the measured combined gauge ratio, the combined resistance value and the temperature coefficient thereof. I was able to confirm that.

(実施例2)
実施例2では、歪検出材料Aの厚みと歪検出材料Bの厚みとを1/4:1とした以外は、実施例1と同様にして、合成ゲージ率、合成抵抗値およびそれらの温度係数の算出および測定を行った。歪検出素子の合成ゲージ率の算出結果を図11(a)に、合成ゲージ率の温度係数の算出結果を図11(b)に示し、歪検出素子の合成抵抗値の算出結果を図11(c)に、合成抵抗値の温度係数の算出結果を図11(d)に示す。また、測定した合成ゲージ率および上記で算出された合成ゲージ率を図12(a)に、これらの温度係数を図12(b)に示し、測定した合成抵抗値および上記で算出された合成抵抗値を図12(c)に、これらの温度係数を図12(d)に示す。
(Example 2)
In Example 2, except that the thickness of the strain detecting material A and the thickness of the strain detecting material B were set to 1/4:1, the synthetic gauge ratio, the synthetic resistance value, and the temperature coefficient thereof were the same as in Example 1. Was calculated and measured. The calculation result of the combined gauge ratio of the strain detection element is shown in FIG. 11A, the calculation result of the temperature coefficient of the combined gauge ratio is shown in FIG. 11B, and the calculation result of the combined resistance value of the strain detection element is shown in FIG. FIG. 11D shows the calculation result of the temperature coefficient of the combined resistance value in c). Further, the measured combined gauge ratio and the combined gauge ratio calculated above are shown in FIG. 12A, and the temperature coefficients thereof are shown in FIG. 12B, and the measured combined resistance value and the combined resistance calculated above are shown. The values are shown in FIG. 12(c) and these temperature coefficients are shown in FIG. 12(d).

図11(b)より、歪検出素子の合成ゲージ率の温度係数は、歪検出材料Aのゲージ率の温度係数と、歪検出材料Bのゲージ率の温度係数と、よりも良好であることが確認できた。また、図11(d)より、歪検出素子の合成抵抗値の温度係数は、歪検出材料Aの抵抗値の温度係数および歪検出材料Bの抵抗値の温度係数により相殺されることが確認できた。なお、−50〜350℃の範囲内において、室温での合成抵抗値に対する合成抵抗値の温度係数は±1700ppm/℃の範囲内であり、室温での合成ゲージ率に対する合成ゲージ率の温度係数は±1500ppm/℃の範囲内であった。 From FIG. 11B, the temperature coefficient of the composite gauge factor of the strain detecting element is better than the temperature coefficient of the gauge factor of the strain detecting material A and the temperature coefficient of the gauge factor of the strain detecting material B. It could be confirmed. Also, from FIG. 11D, it can be confirmed that the temperature coefficient of the combined resistance value of the strain detection element is canceled by the temperature coefficient of the resistance value of the strain detection material A and the temperature coefficient of the resistance value of the strain detection material B. It was In the range of −50 to 350° C., the temperature coefficient of the combined resistance value with respect to the combined resistance value at room temperature is within the range of ±1700 ppm/° C., and the temperature coefficient of the combined gauge ratio with respect to the combined gauge ratio at room temperature is It was within the range of ±1500 ppm/°C.

さらに、図12(a)から(d)より、計算により算出された合成ゲージ率、合成抵抗値およびそれらの温度係数と、測定された合成ゲージ率、合成抵抗値およびそれらの温度係数とがよく一致していることが確認できた。 Further, from FIGS. 12( a) to 12 (d ), the calculated composite gauge ratio, combined resistance value and temperature coefficient thereof, and the measured combined gauge ratio, combined resistance value and temperature coefficient thereof are good. It was confirmed that they match.

(実施例3および4)
実施例3では、図13(a)に示すように、歪検出材料Aの厚みと歪検出材料Bの厚みとを1/2.2:1とし、実施例4では、図14(a)に示すように、歪検出材料Aの厚みと歪検出材料Bの厚みとを1/5:1として、実施例1と同様の計算を行い、歪検出素子の合成ゲージ率および合成抵抗値と温度との関係を算出した。実施例3の合成ゲージ率の結果を図13(b)に、合成ゲージ率の温度係数の結果を図13(c)に示し、実施例3の合成抵抗値の結果を図13(d)に、合成抵抗値の温度係数の結果を図13(e)に示した。また、実施例4の合成ゲージ率の結果を図14(b)に、合成ゲージ率の温度係数の結果を図14(c)に示し、実施例4の合成抵抗値の結果を図14(d)に、合成抵抗値の温度係数の結果を図14(e)に示した。
(Examples 3 and 4)
In Example 3, as shown in FIG. 13A, the thickness of the strain detection material A and the thickness of the strain detection material B were set to 1/2.2:1. As shown, the thickness of the strain detecting material A and the thickness of the strain detecting material B are set to ⅕:1, the same calculation as in Example 1 is performed, and the combined gauge factor and combined resistance value and temperature of the strain detecting element are calculated. Was calculated. The result of the combined gauge ratio of Example 3 is shown in FIG. 13(b), the result of the temperature coefficient of the combined gauge ratio is shown in FIG. 13(c), and the result of the combined resistance value of Example 3 is shown in FIG. 13(d). The result of the temperature coefficient of the combined resistance value is shown in FIG. 14B shows the result of the combined gauge ratio of Example 4, the result of the temperature coefficient of the combined gauge ratio is shown in FIG. 14C, and the result of the combined resistance value of Example 4 is shown in FIG. 14E shows the result of the temperature coefficient of the combined resistance value.

図13(c)および図14(c)より、歪検出材料Aの厚みを小さくして、歪検出材料Aの抵抗値を高くすることにより、図9(c)よりも合成ゲージ率の温度特性がさらに良好になることが確認できた。また、図13(e)および図14(e)より、歪検出材料Aの厚みを小さくして、歪検出材料Aの抵抗値を高くすることにより、図9(e)よりも合成抵抗値の温度特性の傾向が歪検出材料Bの抵抗値の温度特性の傾向に近づくことが確認できた。 13(c) and 14(c), by making the thickness of the strain detecting material A smaller and increasing the resistance value of the strain detecting material A, the temperature characteristic of the synthetic gauge ratio than in FIG. 9(c) is obtained. Was confirmed to be even better. 13(e) and FIG. 14(e), the thickness of the strain detecting material A is made smaller and the resistance value of the strain detecting material A is made higher, so that the combined resistance value becomes larger than that in FIG. 9(e). It was confirmed that the tendency of the temperature characteristics approached the tendency of the temperature characteristics of the resistance value of the strain detecting material B.

1… 圧力センサ
2… ステム
3… 絶縁膜
4,4a,4b,4c,4d… 電極
5… 保護部
10… 歪検出部
11,12,13,14… 歪検出素子
11a… 歪検出材料A
11b… 歪検出材料B
1... Pressure sensor 2... Stem 3... Insulating film 4,4a, 4b, 4c, 4d... Electrode 5... Protecting part 10... Strain detecting part 11, 12, 13, 14... Strain detecting element 11a... Strain detecting material A
11b... Strain detection material B

Claims (5)

複数の歪検出材料が、電気的に並列に接続されている歪検出素子であって、
前記歪検出素子のゲージ率は、前記複数の歪検出材料の各ゲージ率を合成して得られる合成ゲージ率であり、
室温における合成ゲージ率に対する合成ゲージ率の変化率が−50〜350℃の範囲において±3000ppm/℃以内であることを特徴とする歪検出素子。
A plurality of strain sensing materials, a strain sensing element electrically connected in parallel,
The gauge factor of the strain detecting element is a synthetic gauge factor obtained by synthesizing the gauge factors of the plurality of strain detecting materials,
A strain detecting element characterized in that the rate of change of the synthetic gauge ratio with respect to the synthetic gauge ratio at room temperature is within ±3000 ppm/°C in the range of -50 to 350°C.
前記歪検出素子の抵抗値は、前記複数の歪検出材料の抵抗値を合成して得られる合成抵抗値であり、
室温における合成抵抗値に対する合成抵抗値の変化率が−50〜350℃の範囲において±2000ppm/℃以内であることを特徴とする請求項1に記載の歪検出素子。
The resistance value of the strain detection element is a combined resistance value obtained by combining the resistance values of the plurality of strain detection materials,
The strain detecting element according to claim 1, wherein the rate of change of the combined resistance value with respect to the combined resistance value at room temperature is within ±2000 ppm/°C in the range of -50 to 350°C.
前記歪検出素子において、前記歪検出材料は所定のパターンで形成されており、
前記合成ゲージ率は、前記所定のパターンにおいて、パターン長さ、パターン幅およびパターン厚みから選ばれる少なくとも1つ以上を変化させて調整されることを特徴とする請求項1または2に記載の歪検出素子。
In the strain detection element, the strain detection material is formed in a predetermined pattern,
The strain detection according to claim 1 or 2, wherein the composite gauge factor is adjusted by changing at least one selected from a pattern length, a pattern width, and a pattern thickness in the predetermined pattern. element.
前記歪検出素子において、前記歪検出材料は所定のパターンで形成されており、
前記合成抵抗値は、前記所定のパターンにおいて、パターン長さ、パターン幅およびパターン厚みから選ばれる少なくとも1つ以上を変化させて調整されることを特徴とする請求項2または3に記載の歪検出素子。
In the strain detection element, the strain detection material is formed in a predetermined pattern,
The strain detection according to claim 2 or 3, wherein the combined resistance value is adjusted by changing at least one selected from a pattern length, a pattern width, and a pattern thickness in the predetermined pattern. element.
請求項1から4のいずれかに記載の歪検出素子を備える力学量センサ。 A mechanical quantity sensor comprising the strain detecting element according to claim 1.
JP2018215614A 2018-11-16 2018-11-16 Strain sensing element and mechanical quantity sensor Active JP7268333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018215614A JP7268333B2 (en) 2018-11-16 2018-11-16 Strain sensing element and mechanical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018215614A JP7268333B2 (en) 2018-11-16 2018-11-16 Strain sensing element and mechanical quantity sensor

Publications (2)

Publication Number Publication Date
JP2020085490A true JP2020085490A (en) 2020-06-04
JP7268333B2 JP7268333B2 (en) 2023-05-08

Family

ID=70909814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018215614A Active JP7268333B2 (en) 2018-11-16 2018-11-16 Strain sensing element and mechanical quantity sensor

Country Status (1)

Country Link
JP (1) JP7268333B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131346A (en) * 2020-02-21 2021-09-09 Tdk株式会社 Pressure sensor
WO2022202106A1 (en) * 2021-03-26 2022-09-29 Tdk株式会社 Strain resistance film, pressure sensor, and layered body

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122223A (en) * 1984-07-10 1986-01-30 Sumitomo Electric Ind Ltd Strain sensor
JPH03148181A (en) * 1989-11-02 1991-06-24 Mitsubishi Electric Corp Semiconductor pressure sensor
JPH03180732A (en) * 1989-12-11 1991-08-06 Fujikura Ltd Sensor element for semiconductor pressure sensor
JPH03194401A (en) * 1989-12-22 1991-08-26 Ricoh Co Ltd Semiconductor strain detecting circuit
JPH03220402A (en) * 1990-01-25 1991-09-27 Ricoh Co Ltd Detecting circuit of strain of semiconductor
WO1992005416A1 (en) * 1990-09-26 1992-04-02 Ishida Scales Mfg. Co., Ltd. Load cell
JPH05223515A (en) * 1992-02-10 1993-08-31 Nippondenso Co Ltd Manufacture of thin film resistance for strain detection
WO2001004594A1 (en) * 1999-07-09 2001-01-18 Nok Corporation Strain gauge
JP2001221696A (en) * 2000-02-10 2001-08-17 Res Inst Electric Magnetic Alloys Temperature-sensitive and strain-sensitive composite sensor
JP2002148131A (en) * 2000-11-10 2002-05-22 Denso Corp Physical quantity detector
JP2012207985A (en) * 2011-03-29 2012-10-25 Technology Research Institute Of Osaka Prefecture Strain-resistive thin film and sensor using the strain-resistive thin film
WO2012152425A1 (en) * 2011-05-10 2012-11-15 Sms Tenzotherm Gmbh Resistant strain gauge
JP2018031586A (en) * 2016-08-22 2018-03-01 日立オートモティブシステムズ株式会社 Sensor device
JP2018091848A (en) * 2016-12-02 2018-06-14 公益財団法人電磁材料研究所 Strain resistance film and strain sensor, and manufacturing method of them

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122223A (en) * 1984-07-10 1986-01-30 Sumitomo Electric Ind Ltd Strain sensor
JPH03148181A (en) * 1989-11-02 1991-06-24 Mitsubishi Electric Corp Semiconductor pressure sensor
JPH03180732A (en) * 1989-12-11 1991-08-06 Fujikura Ltd Sensor element for semiconductor pressure sensor
JPH03194401A (en) * 1989-12-22 1991-08-26 Ricoh Co Ltd Semiconductor strain detecting circuit
JPH03220402A (en) * 1990-01-25 1991-09-27 Ricoh Co Ltd Detecting circuit of strain of semiconductor
WO1992005416A1 (en) * 1990-09-26 1992-04-02 Ishida Scales Mfg. Co., Ltd. Load cell
JPH05223515A (en) * 1992-02-10 1993-08-31 Nippondenso Co Ltd Manufacture of thin film resistance for strain detection
WO2001004594A1 (en) * 1999-07-09 2001-01-18 Nok Corporation Strain gauge
JP2001221696A (en) * 2000-02-10 2001-08-17 Res Inst Electric Magnetic Alloys Temperature-sensitive and strain-sensitive composite sensor
JP2002148131A (en) * 2000-11-10 2002-05-22 Denso Corp Physical quantity detector
JP2012207985A (en) * 2011-03-29 2012-10-25 Technology Research Institute Of Osaka Prefecture Strain-resistive thin film and sensor using the strain-resistive thin film
WO2012152425A1 (en) * 2011-05-10 2012-11-15 Sms Tenzotherm Gmbh Resistant strain gauge
JP2018031586A (en) * 2016-08-22 2018-03-01 日立オートモティブシステムズ株式会社 Sensor device
JP2018091848A (en) * 2016-12-02 2018-06-14 公益財団法人電磁材料研究所 Strain resistance film and strain sensor, and manufacturing method of them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131346A (en) * 2020-02-21 2021-09-09 Tdk株式会社 Pressure sensor
WO2022202106A1 (en) * 2021-03-26 2022-09-29 Tdk株式会社 Strain resistance film, pressure sensor, and layered body

Also Published As

Publication number Publication date
JP7268333B2 (en) 2023-05-08

Similar Documents

Publication Publication Date Title
US9933321B2 (en) High gage factor strain gage
JP6084393B2 (en) Strain sensor and strain measurement method
JP2015031633A (en) Strain sensor
US9909944B2 (en) Thin film sensor
JP2020085490A (en) Strain detection element and dynamic quantity sensor
US9618406B2 (en) Sensor element
CN202255734U (en) Pressure sensitive core
JP5928863B2 (en) Strain resistance thin film and sensor using the strain resistance thin film
JPH03210443A (en) Load detector and method for compensating temperature of load detector
CN111238361A (en) Graphene temperature strain sensor
CN206531462U (en) A kind of self-temperature compensating gage
US10684176B2 (en) Temperature measurement device using strain gauge
RU2603446C1 (en) Device for pressure and temperature measuring
JP6977157B2 (en) Sheet resistance and thin film sensor
Kalpana et al. Development of the invar36 thin film strain gauge sensor for strain measurement
JP2001221696A (en) Temperature-sensitive and strain-sensitive composite sensor
US20150219504A1 (en) Sensor and method for determining a temperature
US20180292282A1 (en) Pressure Sensor having a Joint of Active Braze
JP4988938B2 (en) Temperature sensitive strain sensor
JPS5844323A (en) Pressure sensor
JP2021039055A (en) Sensor module and strain detection device
RU2391640C1 (en) Strain gauge pressure sensor on basis of thin-film nano- and microelectromechanical system
JP6801155B2 (en) Membrane register and thin film sensor
WO2021126261A1 (en) Strain gages and methods for manufacturing thereof
CN211346684U (en) Graphene temperature strain sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230404

R150 Certificate of patent or registration of utility model

Ref document number: 7268333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150