JP2020083792A - Method for producing soil disinfectant solution - Google Patents

Method for producing soil disinfectant solution Download PDF

Info

Publication number
JP2020083792A
JP2020083792A JP2018217297A JP2018217297A JP2020083792A JP 2020083792 A JP2020083792 A JP 2020083792A JP 2018217297 A JP2018217297 A JP 2018217297A JP 2018217297 A JP2018217297 A JP 2018217297A JP 2020083792 A JP2020083792 A JP 2020083792A
Authority
JP
Japan
Prior art keywords
soil
ethanol
disinfectant
solution
chloropicrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018217297A
Other languages
Japanese (ja)
Other versions
JP6546685B1 (en
Inventor
道士 江幡
Michio Ebata
道士 江幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Service Co Ltd
Original Assignee
Global Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Service Co Ltd filed Critical Global Service Co Ltd
Priority to JP2018217297A priority Critical patent/JP6546685B1/en
Application granted granted Critical
Publication of JP6546685B1 publication Critical patent/JP6546685B1/en
Publication of JP2020083792A publication Critical patent/JP2020083792A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

To provide a method for producing a soil disinfectant solution that replaces chloropicrin and has high plant growth effect and high nematode damage control effect, and to provide the soil disinfectant solution.SOLUTION: The soil disinfection solution is produced by: a step of using a filter material containing humic substances as a main component to grow bacteria performing alcohol fermentation, and decomposing starch which is the main component of sweet potato into ethanol by the grown alcohol fermentation performing bacteria; and a step of adding citric acid to acidify the ethanol, thereby eluting a fulvic acid contained in the humic substances into the ethanol.SELECTED DRAWING: None

Description

本発明は、土壌消毒液の製造方法及び土壌消毒液に関するものである。 The present invention relates to a method for producing a soil disinfectant and a soil disinfectant.

従来、土壌病害が蔓延してしまったときの最後の決め手として、農薬であるクロロピクリンにより土壌消毒を実施することが知られている。このクロロピクリンによる土壌消毒は病原菌微生物に対して卓越した防除効果がある。 Conventionally, it has been known to carry out soil disinfection with chloropicrin, which is a pesticide, as the final deciding factor when soil diseases have spread. This soil disinfection with chloropicrin has an excellent control effect against pathogenic microorganisms.

特開平11-180807号公報JP, 11-180807, A

しかし、クロロピクリンによる土壌消毒には、次のような問題点があった。
(イ)土壌有機物の分解が促進されることにより、土壌に含まれる養分の貯蔵量が減少し、かつ土壌が硬くなるため、植物の育成効果が低下し、土壌における植物の生産力を長期に亘って維持することが困難である。
(ロ)クロロピクリンによる土壌消毒は、刺激性があることにより病原菌微生物の防除には有効であるものの、害虫であるセンチュウ(線虫)は未消毒の周囲の土壌から消毒後の土壌に侵入することにより増殖してしまうため、センチュウ害の防除には十分に有効とはいえない。
(ハ)クロロピクリンによる土壌消毒は臭気が発生するため、住宅地周辺の土壌に対して実行しづらい。
そこで、本発明は、上述した事情によりなされたものであり、クロロピクリンに代わる、植物の育成効果及びセンチュウ害の防除効果が高い土壌消毒液の製造方法、並びに当該土壌消毒液の提供を目的とする。
However, soil disinfection with chloropicrin had the following problems.
(A) Accelerating the decomposition of soil organic matter reduces the storage amount of nutrients contained in the soil and hardens the soil, reducing the plant growth effect and increasing the plant productivity in the soil for a long time. Difficult to maintain over.
(B) Soil disinfection with chloropicrin is effective in controlling pathogenic microorganisms due to its stimulative properties, but nematodes, which are harmful insects, invade the undisinfected surrounding soil into the disinfected soil. Therefore, they are not effective enough to control nematode damage because they proliferate.
(C) Soil disinfection with chloropicrin causes odor and is difficult to perform on soil around residential areas.
Therefore, the present invention has been made under the circumstances described above, an alternative to chloropicrin, a method for producing a soil disinfecting solution having a high plant-growing effect and a control effect against nematode damage, and an object to provide the soil disinfecting solution. To do.

本発明は、腐植物質を主成分とした濾材によりアルコール発酵を行う菌を増殖させ、この増殖したアルコール発酵を行う菌によりサツマイモの主成分であるデンプンをエタノールへ分解する工程、クエン酸の添加により前記エタノールを酸性にすることで、前記腐植物質に含まれるフルボ酸を当該エタノールに溶出させる工程とからなることを特徴とした土壌消毒液の製造方法である。 The present invention grows a bacterium that performs alcohol fermentation with a filter material containing humic substances as a main component, and decomposes starch, which is the main component of sweet potatoes, into ethanol by the bacterium that performs this alcohol fermentation, and by adding citric acid. A method for producing a soil disinfecting solution, comprising the step of eluting fulvic acid contained in the humic substance into the ethanol by acidifying the ethanol.

また、本発明は、酸性であるとともに、フルボ酸が溶出され、かつエタノールが所定の割合で含まれることを特徴とする土壌消毒液である。 Further, the present invention is a soil disinfecting solution, which is acidic, in which fulvic acid is eluted, and ethanol is contained in a predetermined ratio.

本発明によれば、クロロピクリンに代わる、植物の育成効果及びセンチュウ害の防除効果が高い土壌消毒液の製造方法、並びに当該土壌消毒液を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it can replace with chloropicrin, and can provide the manufacturing method of the soil disinfectant liquid with the high plant growth effect and the control effect of nematode damage, and the said soil disinfectant liquid.

以下、本発明の好適な実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.

(土壌消毒液の製造方法の概要)
本実施の形態における土壌消毒液は、以下のように製造される。なおここでは、例として、概ね120Lの土壌消毒液を製造する方法について説明する。
(Summary of manufacturing method of soil disinfectant)
The soil disinfecting solution in the present embodiment is manufactured as follows. Here, as an example, a method for producing approximately 120 L of soil disinfectant will be described.

(1)仕込み工程
容量120Lの桶を1つ用意し、屋外に設置する。この桶内に、1本300g程度のサツマイモ30本を厚さ20mm〜40mm程度にカットしたもの、腐植物質を主成分とした濾材10kg、及びクエン酸1kgを投入し、桶一杯に水を満たす。そして、桶をビニールシートで覆った上で、風で飛ばされないようにロープで縛ると、仕込みが完了となる。なお、クエン酸を投入したことにより、仕込みが完了した時点で、桶内の溶液はpHが概ね4.5〜5.0の酸性となっている。
(1) Preparation step One tub with a capacity of 120 L is prepared and installed outdoors. In this tub, 30 sweet potatoes of about 300 g are cut to a thickness of about 20 mm to 40 mm, 10 kg of a filter material containing humic substances as a main component, and 1 kg of citric acid are added to fill the tub with water. Then, cover the vat with a vinyl sheet and tie it with a rope so that it will not be blown off by the wind. It should be noted that, by adding citric acid, the solution in the tub becomes acidic with a pH of approximately 4.5 to 5.0 at the time when the preparation is completed.

このように仕込みが完了した桶内には、自然界に通常に生存しているアルコール発酵に関与する菌(例えば、麹菌や酵母菌等)が存在する。そして、この桶内において、このアルコール発酵に関与する菌(以下、アルコール発酵菌という)が腐植物質を主成分とした濾材により増殖するとともに、当該アルコール発酵菌によりアルコール発酵が行われ、サツマイモの主成分であるデンプンがエタノールに分解される。また、クエン酸を投入したことで、アルコール発酵菌の活動が活性化されアルコール発酵が促進する。 Bacteria involved in alcoholic fermentation that are normally alive in nature (for example, koji mold and yeast) are present in the tub that has been charged in this way. Then, in this tub, bacteria involved in the alcohol fermentation (hereinafter referred to as alcohol-fermenting bacteria) are grown by a filter material containing humic substances as a main component, and alcohol fermentation is performed by the alcohol-fermenting bacteria. The component starch is decomposed into ethanol. In addition, the addition of citric acid activates the activity of alcohol-fermenting bacteria and promotes alcohol fermentation.

さらに、上述の如く、桶内に投入した濾材の主成分は腐植物質であるが、腐植物質は、ヒューミン、腐植酸及びフルボ酸から構成されている。また、腐植物質を構成するフルボ酸は、酸性環境下において腐植物質から抽出される。上記桶内の溶液はクエン酸の投入によりpHが概ね4.5〜5.0の酸性となっているため、腐植物質からフルボ酸が抽出され、上記桶内の溶液にフルボ酸が溶出することとなる。 Further, as described above, the main component of the filter medium put into the tub is humic substance, which is composed of humic acid, humic acid and fulvic acid. Fulvic acid that constitutes humic substances is extracted from humic substances in an acidic environment. Since the pH of the solution in the trough is approximately 4.5 to 5.0 due to the addition of citric acid, fulvic acid is extracted from the humic substance, and fulvic acid is eluted into the solution in the trough. Becomes

なお、上述のアルコール発酵は、サツマイモのデンプンを麦芽糖へ分解する工程([C6H10O5]n→nC6H12O6)と、分解された麦芽糖をエタノールへ分解する工程(C6H12O6→2C2H5OH+2CO2)により進行する。サツマイモのデンプンの麦芽糖への分解はアルコール発酵菌のうち麹菌により行われるが、麹菌は好気性菌であることから、麦芽糖への分解には酸素が必要となる。これに対して、麦芽糖のエタノールへの分解はアルコール発酵菌のうち酵母菌により行われるが、酵母菌は嫌気性菌であることから、エタノールへの分解には酸素は必要とならず、酸素が無い状態の方がエタノールへの分解が進行しやすい。 In addition, the above-mentioned alcohol fermentation progresses through a step of decomposing sweet potato starch into maltose ([C6H10O5]n→nC6H12O6) and a step of decomposing decomposed maltose into ethanol (C6H12O6→2C2H5OH+2CO2). Decomposition of starch of sweet potato into maltose is performed by koji mold among alcohol-fermenting bacteria. Since koji mold is an aerobic bacterium, oxygen is required for decomposition into maltose. On the other hand, decomposition of maltose into ethanol is performed by yeast among alcohol-fermenting bacteria, but since yeast is an anaerobic bacterium, oxygen is not required for decomposition into ethanol, and oxygen is not necessary. Without it, decomposition into ethanol is more likely to proceed.

(2)発酵工程
上述のように仕込みが完了した後は、1週間ごとに1回、ビニールシートを取り外して桶を開放し、桶内の溶液を5分程攪拌する。この攪拌は、長い柄杓等を使用し桶内の溶液全体が良く混ざるように行う。これにより、溶液全体に酸素が吸収され好気性菌である麹菌の活動が活発となるため、サツマイモのデンプンの麦芽糖への分解が促進されることとなる。
(2) Fermentation step After the preparation is completed as described above, the vinyl sheet is removed once a week to open the tub, and the solution in the tub is stirred for about 5 minutes. This stirring is performed using a long ladle or the like so that the entire solution in the tub is well mixed. As a result, oxygen is absorbed in the entire solution and the activity of the aerobic bacterium, koji mold, is activated, and thus the decomposition of sweet potato starch into maltose is promoted.

攪拌が終了した後は、再び桶をビニールシートで覆いロープで縛る。これにより、桶外から溶液内に酸素が吸収されず、麹菌の活動により酸素が使用されると次第に溶液内の酸素が減少し嫌気性菌である酵母菌の活動が活発となり、分解された麦芽糖のエタノールへの分解が促進されることとなる。
以上のように、溶液の攪拌及びビニールシートによる桶の密閉を繰り返すことにより、アルコール発酵が進むこととなる。
なお、攪拌は、上述のように手動で行ってもよいし、所定の攪拌装置を用いて自動で行ってもよい。
After stirring, cover the tub again with a vinyl sheet and tie it with a rope. As a result, oxygen is not absorbed into the solution from the outside of the vat, and when oxygen is used due to the activity of Aspergillus oryzae, the oxygen in the solution gradually decreases and the activity of yeast, which is an anaerobic bacterium, becomes active, and the decomposed maltose Will be decomposed into ethanol.
As described above, the alcohol fermentation is promoted by repeating the stirring of the solution and the sealing of the vat with the vinyl sheet.
The stirring may be performed manually as described above, or may be automatically performed using a predetermined stirring device.

そして、上述のような1週間ごとに1回の攪拌を少なくとも2ヶ月実施し、桶内の溶液が黄色くなり、焼酎のようなアルコール臭がしてくると、本実施の形態における土壌消毒液の完成となる。 Then, stirring is performed once a week for at least 2 months as described above, and when the solution in the vat becomes yellow and the alcohol odor like shochu comes out, the soil disinfectant solution of the present embodiment is removed. It will be completed.

(土壌消毒液の特性及び効果)
以上のように製造された土壌消毒液は、pHが概ね4.5〜5.0の酸性であるとともに、フルボ酸が溶出され、かつエタノールの濃度が概ね0.5%(v/v)〜0.6%(v/v)の水溶液である。
(Characteristics and effects of soil disinfectant)
The soil disinfecting solution produced as described above is acidic with a pH of approximately 4.5 to 5.0, fulvic acid is eluted, and the concentration of ethanol is approximately 0.5% (v/v) to It is a 0.6% (v/v) aqueous solution.

この土壌消毒液を土壌に散布すると、当該土壌消毒液に含まれるエタノールが土壌に吸収される。なお、この土壌消毒液のエタノール濃度は、上述のように、概ね0.5%(v/v)〜0.6%(v/v)であり低濃度となっている。ここで、高濃度のエタノールを含む土壌消毒液を散布した場合には土壌微生物を壊滅させてしまうものの、低濃度のエタノールを含む本実施の形態における土壌消毒液を散布した場合には、土壌に含まれるエタノールを餌として土壌微生物が活性化し呼吸活性が増すことから、土壌中の酸素が消費され、土壌は酸素が欠乏した状態(還元状態)となる。これにより、酸素が欠乏した土壌中ではセンチュウの活動が制限されることとなるため、センチュウ害の防除が可能となる。
また、酸素が欠乏した状態では土壌の酸化還元電位が低下し、土壌中に元々存在していた鉄・マンガンが還元し金属イオン(2価の電荷を帯びた陽イオン)が遊離する。さらに、土壌に元々存在していた有機物を土壌微生物が分解し、酢酸が生成される。これら金属イオンや酢酸は静菌効果が高く、これによってもセンチュウの活動が制限され、よりセンチュウ害の防除効果が高まることとなる。
さらに、上述の土壌消毒液はpHが概ね4.5〜5.0の酸性であることにより、この土壌消毒液を散布した土壌も酸性となる。そして、酸性の土壌環境下では、土壌微生物がより活性化し呼吸活性も一層増すことから、土壌はより一層酸素が欠乏した状態となる。これにより、さらにセンチュウ害の防除効果が高まることとなる。
When this soil disinfectant is sprayed on the soil, ethanol contained in the soil disinfectant is absorbed in the soil. In addition, the ethanol concentration of this soil disinfecting solution is, as described above, about 0.5% (v/v) to 0.6% (v/v), which is a low concentration. Here, although spoiling soil microorganisms when spraying a soil disinfectant solution containing a high concentration of ethanol, when spraying the soil disinfectant solution of the present embodiment containing a low concentration of ethanol, to the soil Since soil microorganisms are activated and respiratory activity is increased by using the contained ethanol as food, oxygen in the soil is consumed, and the soil is in a state where oxygen is deficient (reduced state). As a result, the activity of nematodes is restricted in the soil depleted of oxygen, so that the nematode damage can be controlled.
Further, when oxygen is deficient, the redox potential of the soil decreases, iron/manganese originally present in the soil is reduced, and metal ions (cations having a divalent charge) are liberated. Furthermore, soil microorganisms decompose organic substances originally present in the soil to produce acetic acid. These metal ions and acetic acid have a high bacteriostatic effect, which also restricts the activity of nematodes and further enhances the effect of controlling nematode damage.
Furthermore, since the pH of the soil disinfectant described above is approximately 4.5 to 5.0, the soil sprayed with this soil disinfectant also becomes acidic. In an acidic soil environment, soil microorganisms are more activated and respiratory activity is further increased, so that the soil becomes more oxygen-deficient. This will further enhance the control effect of nematode damage.

さらに、酸性の土壌は、当該土壌に含まれるマンガンが植物へ吸収されるのを促進させる。また、マンガンは植物の光合成能力を高める効果がある。したがって、この土壌消毒液を散布した土壌に植えられた植物は、その成長過程において当該土壌に含まれるマンガンを多く吸収することができ、光合成能力が高まることとなるため、当該植物の成長を促進することができる。
一方、一般的に酸性の土壌は、当該土壌に含まれるリン酸を難溶化させ、リン酸が植物へ吸収されるのを阻害する要因となる。しかし、この土壌消毒液にはフルボ酸が溶出されており、この土壌消毒液を散布した土壌にはフルボ酸が含まれることとなる。フルボ酸は、リン酸が植物へ吸収されるのを促進する効果がある。したがって、この土壌消毒液を散布した土壌に植えられた植物は、その成長過程において当該土壌に含まれるリン酸を多く吸収することができ、ひいては当該植物の成長を促進することができる。
Furthermore, the acidic soil promotes the absorption of manganese contained in the soil by plants. Manganese also has the effect of increasing the photosynthetic ability of plants. Therefore, the plant planted in the soil sprayed with this soil disinfectant can absorb a large amount of manganese contained in the soil during the growth process, and the photosynthetic ability is enhanced, thus promoting the growth of the plant. can do.
On the other hand, generally, acidic soil becomes a factor that makes phosphoric acid contained in the soil hardly soluble and inhibits phosphoric acid from being absorbed by plants. However, fulvic acid is eluted in this soil disinfectant, and the soil sprayed with this soil disinfectant contains fulvic acid. Fulvic acid has the effect of promoting the absorption of phosphoric acid into plants. Therefore, the plant planted in the soil sprayed with this soil disinfectant can absorb a large amount of phosphoric acid contained in the soil in the growth process thereof, and thus can promote the growth of the plant.

以上のように、この土壌消毒液によれば、極めて高いセンチュウの防除効果を得られるとともに、酸性の土壌環境下において吸収の度合いが相反するマンガン及びリン酸のいずれをも植物に吸収させやすくすることができ、植物の成長を相乗的に促進させることができる。 As described above, according to this soil disinfectant, an extremely high nematode control effect can be obtained, and it is easy for plants to absorb both manganese and phosphoric acid whose absorption degrees conflict in an acidic soil environment. It is possible to promote the growth of plants synergistically.

なお、仕込み工程において桶内に投入するサツマイモとしては、前年度以前に収穫されたもののうち、形が歪であったり、傷があったりする等の出荷規格に適合しなかった規格外品を用いるのが望ましい。また、桶内に投入するサツマイモのうち10本〜20本程度は、完全に熟し、スイーツ用に加工されたものを用いるのが望ましい。 In addition, as the sweet potatoes to be put into the tub in the preparation process, out of the ones harvested before the previous year that do not conform to the shipping standards such as distorted shape or scratches are used. Is desirable. In addition, it is desirable to use about 10 to 20 sweet potatoes that are completely ripe and processed for sweets among the sweet potatoes that are put into the tub.

また、本実施の形態における土壌消毒液は、年間を通じていずれの時期からも製造を開始することができるものの、デンプンを麦芽糖に分解する麹菌の活動に最適な温度は25℃〜28℃であり、外気温により桶内の溶液が当該温度に至ることが可能な時期は4月頃であるため、3月頃に製造を開始するのが望ましい。
たとえば、3月から土壌消毒液の製造を開始した場合には、桶内の溶液のエタノール濃度は3月だけで0.1%(v/v)に到達し、4月には0.6%(v/v)に到達する。上述のように土壌を酸素欠乏状態にすることでセンチュウを防除するためには、概ね0.5%(v/v)〜5.0%(v/v)のエタノール濃度とするのが望ましく、3月及び4月の2ヶ月間で、上述のようなセンチュウの防除に有効なエタノール濃度の土壌消毒液を製造することができる。
Although the soil disinfectant in the present embodiment can be manufactured at any time throughout the year, the optimum temperature for the activity of Aspergillus oryzae that decomposes starch into maltose is 25°C to 28°C. Since it is around April that the solution in the tub can reach the temperature due to the outside air temperature, it is desirable to start the production around March.
For example, if the production of soil disinfectant is started in March, the ethanol concentration of the solution in the tub will reach 0.1% (v/v) in March alone and will reach 0.6% in April. Reach (v/v). In order to control nematodes by making the soil oxygen-deficient as described above, it is desirable that the ethanol concentration is approximately 0.5% (v/v) to 5.0% (v/v), During the two months of March and April, the soil disinfectant solution having an ethanol concentration effective for controlling nematodes as described above can be produced.

(土壌消毒液による土壌消毒方法の概要)
対象となる土壌において30cm程度の畝を立て、この畝に沿って本実施の形態における土壌消毒液を散布する。そして、散布が終了した後にマルチングをして、そのまま3週間以上維持する。これにより、土壌消毒が完了となる。
なお、土壌消毒液の散布は、マルチング前に1回のみ行えばよく、マルチングを取り外して複数回の散布を行う必要は無い。また、マルチングについては、土壌の温度を高めること、雑草対策及び土壌の酸素欠乏状態を維持するため、土壌消毒液の散布及び苗の定植が終了した後は、植物の収穫まで取り外す必要は無い。
以上のように、本実施の形態における土壌消毒液による消毒を行うことで、センチュウを防除することができるとともに、土壌に含まれるマンガン及びリン酸の植物に吸収させやすくすることができ、植物の成長を相乗的に促進させることができる。また、上述のように土壌消毒液を散布し苗の定植が完了した後は、植物の収穫までマルチングを取り外さないようにしたことで、土壌が外気に接触することが妨げられ土壌の酸素欠乏状態が維持されるため、さらにセンチュウ害の防除効果を高めることができる。
(Outline of soil disinfection method using soil disinfectant)
A ridge of about 30 cm is set up in the target soil, and the soil disinfecting solution according to the present embodiment is sprayed along the ridge. Then, after spraying is finished, mulching is performed and maintained as it is for 3 weeks or more. This completes soil disinfection.
The soil disinfectant solution need only be sprayed once before mulching, and it is not necessary to remove the mulching and spray it multiple times. As for mulching, it is not necessary to remove it until the plant is harvested after the application of the soil disinfectant and the planting of seedlings are completed in order to increase the temperature of the soil, prevent weeds, and maintain the oxygen deficient state of the soil.
As described above, by performing the disinfection with the soil disinfectant according to the present embodiment, it is possible to control nematodes, and it is possible to easily absorb manganese and phosphoric acid contained in soil into the plant. Growth can be promoted synergistically. In addition, as mentioned above, after the soil disinfectant was sprayed and the planting of the seedlings was completed, the mulching was prevented from being removed until the plant was harvested, which prevented the soil from contacting the outside air, and the oxygen deficiency state of the soil. Since this is maintained, the effect of controlling nematode damage can be further enhanced.

なお、センチュウの活動は土壌の温度が30℃以上になると大きく制限され、この状態のときに土壌消毒液を散布して土壌消毒を行うと、センチュウに対して十分に土壌消毒液を与えることができるため、土壌の温度が25℃〜40℃程度となる時期に土壌消毒を開始するのが望ましい。具体的には、土壌の温度が上述の範囲内に至るには、1日の最高気温が25℃以上となることが必要となるが、5月以降になると1日の最高気温が25℃以上となる日が増えてくるため、この時期に土壌消毒液の散布を行い、散布終了後にマルチングをして3週間以上維持することで土壌消毒を行うことが望ましい。 It should be noted that the activity of nematodes is greatly restricted when the soil temperature rises to 30°C or higher, and if soil disinfectant is sprayed in this state to disinfect the soil, sufficient soil disinfectant can be given to nematodes. Therefore, it is desirable to start the soil disinfection at the time when the temperature of the soil reaches about 25°C to 40°C. Specifically, in order for the soil temperature to fall within the above range, the maximum daily temperature must be 25°C or higher, but after May, the maximum daily temperature is 25°C or higher. It is desirable to disinfect the soil by spraying the soil disinfectant solution at this time, mulching after the spraying and maintaining it for 3 weeks or more.

また、土壌消毒液を散布する前には、窒素やカリウム等の植物の成長に必要な栄養成分を含んだ化成肥料や、センチュウ以外の害虫であるコガネムシ類やハリガネムシ類を防除するための殺虫剤等を散布してもよい。 In addition, before spraying the soil disinfectant, chemical fertilizers containing nutrients necessary for plant growth such as nitrogen and potassium, and insecticides for controlling scarabs and wireworms that are pests other than nematodes. Etc. may be sprayed.

(本実施の形態における土壌消毒液の評価)
次に、本実施の形態における土壌消毒液の効果に関し、以下の項目について、クロロピクリンにより土壌消毒を行った場合と比較して評価した。
(Evaluation of the soil disinfectant in this embodiment)
Next, regarding the effect of the soil disinfecting solution in the present embodiment, the following items were evaluated in comparison with the case of performing soil disinfection with chloropicrin.

(1)土壌中の可給態リン酸の定量値
本実施の形態における土壌消毒液により土壌消毒を行った土壌(以下、土壌Aとする)、及び、クロロピクリンにより土壌消毒を行った土壌(以下、土壌Bとする)のそれぞれに、サツマイモの苗を定植し、定植から1ヶ月後の土壌A及び土壌Bをそれぞれ所定量採取し、各土壌100gに含まれる可給態リン酸の量を、日本分光(株)の測定器「紫外可視近赤外分光光度計V−730」により測定した。以下の表1が測定結果である。
(1) Quantitative Value of Available Phosphoric Acid in Soil Soil sterilized with the soil disinfectant according to the present embodiment (hereinafter referred to as soil A) and soil sterilized with chloropicrin ( Hereinafter, sweet potato seedlings are planted in each of the soil B), and a predetermined amount of each of the soil A and the soil B one month after the planting is collected, and the amount of available phosphate contained in 100 g of each soil is calculated. , UV spectrophotometer near infrared spectrophotometer V-730 of JASCO Corporation. Table 1 below shows the measurement results.

Figure 2020083792
Figure 2020083792

この表1によれば、土壌A100gに含まれる可給態リン酸が7.2mg、土壌B100gに含まれる可給態リン酸は12.0mgであり、土壌Aに含まれる可給態リン酸の量は、土壌Bに含まれる可給態リン酸の量は少なくなっていた。
ここで、可給態リン酸は、土壌中に可溶化し、植物が吸収可能なリン酸である。そして、リン酸は、フルボ酸と結合して可溶化することにより、植物に吸収されやすくなる。本実施の形態における土壌消毒液にはフルボ酸が溶出しており、当該土壌消毒液により土壌消毒を行った土壌Aにおいては、土壌中に含まれるリン酸が土壌消毒液に溶出していたフルボ酸と結合したため、クロロピクリンにより土壌消毒を行った土壌Bよりも、定植したサツマイモの苗によって多くのリン酸が吸収されたものと考えられる。そのため、上述のように、土壌Aに含まれる可給態リン酸の量は、土壌Bに含まれる可給態リン酸の量は少なくなっていたものと考えられる。
以上より、クロロピクリンにより土壌消毒を行った土壌よりも本実施の形態における土壌消毒液により土壌消毒を行った土壌の方が、植物に対してリン酸の吸収を促進させる効果が高いことが明らかとなった。
According to Table 1, the available phosphoric acid contained in 100 g of the soil A is 7.2 mg, and the available phosphoric acid contained in 100 g of the soil B is 12.0 mg. Regarding the amount, the amount of available phosphoric acid contained in the soil B was small.
Here, the available phosphoric acid is phosphoric acid that is solubilized in soil and can be absorbed by plants. Phosphoric acid is easily absorbed by plants by binding with fulvic acid and solubilizing it. Fulvic acid is eluted in the soil disinfectant according to the present embodiment, and in soil A subjected to soil disinfection with the soil disinfectant, phosphoric acid contained in the soil was eluted in the soil disinfectant. It is considered that more phosphoric acid was absorbed by the planted sweet potato seedlings than in the soil B that was soil-disinfected with chloropicrin because it was bound to acid. Therefore, as described above, it is considered that the amount of available phosphoric acid contained in the soil A was smaller than the amount of available phosphoric acid contained in the soil B.
From the above, it is clear that the soil disinfected with the soil disinfectant according to the present embodiment is more effective in promoting the absorption of phosphoric acid in plants than the soil disinfected with chloropicrin. Became.

(2)土壌中の交換性マンガンの定量値
土壌A及び土壌Bのそれぞれに、サツマイモの苗を定植し、定植から1ヶ月後の土壌A及び土壌Bをそれぞれ所定量採取し、各土壌に含まれる可溶化したマンガン量を示す交換性マンガン量を、(株)島津製作所の測定器「原子吸光分光光度計SPCA−6210」により測定した。以下の表2が測定結果である。
(2) Quantitative value of exchangeable manganese in soil Sweet potato seedlings were planted in each of soil A and soil B, and a predetermined amount of soil A and soil B was collected one month after planting and contained in each soil. The amount of exchangeable manganese, which represents the amount of solubilized manganese, was measured by a measuring device “Atomic absorption spectrophotometer SPCA-6210” manufactured by Shimadzu Corporation. Table 2 below shows the measurement results.

Figure 2020083792
Figure 2020083792

この表2によれば、土壌A1kgに含まれる交換性マンガンの量が0.7mg、土壌B1kgに含まれる交換性マンガンの量は1.6mgであり、土壌Aに含まれる交換性マンガンの量は、土壌Bに含まれる交換性マンガンの量より約56%少なくなっていた。
ここで、交換性マンガンは、土壌中に可溶化し、植物が吸収可能なマンガンである。そして、マンガンは、植物の光合成における酸素の発生に重要な役割を果たすとともに、葉緑素、葉緑素体の形成、構造維持に関わる重要な元素(光合成能力を高める元素)であり、酸性環境下で可溶化し、植物への吸収が促進する。本実施の形態における土壌消毒液により土壌消毒を行った土壌Aは上述の如く酸性となっているため、この土壌Aにおいては、クロロピクリンにより土壌消毒を行った土壌Bよりも、定植したサツマイモの苗によって多くのマンガンが吸収されたものと考えられる。そのため、上述のように、土壌Aに含まれる交換性マンガンの量は、土壌Bに含まれる交換性マンガンの量より少なくなっていたものと考えられる。
以上より、クロロピクリンにより土壌消毒を行った土壌よりも本実施の形態における土壌消毒液により土壌消毒を行った土壌の方が、植物に対してマンガンの吸収を促進させる効果が高いことが明らかとなった。
According to this Table 2, the amount of exchangeable manganese contained in 1 kg of soil A is 0.7 mg, the amount of exchangeable manganese contained in 1 kg of soil B is 1.6 mg, and the amount of exchangeable manganese contained in soil A is The amount of exchangeable manganese contained in the soil B was reduced by about 56%.
Here, exchangeable manganese is manganese that is solubilized in soil and can be absorbed by plants. Manganese plays an important role in the generation of oxygen during photosynthesis in plants and is an important element (element that enhances photosynthetic ability) involved in the formation and maintenance of structure of chlorophyll and chlorophyll, and is solubilized under acidic environment. However, absorption by plants is promoted. Since the soil A that has been soil-disinfected with the soil disinfectant according to the present embodiment is acidic as described above, the soil A of this plant is more acidic than the soil B that has been soil-disinfected with chloropicrin. It is considered that much manganese was absorbed by the seedlings. Therefore, as described above, it is considered that the amount of exchangeable manganese contained in the soil A was smaller than the amount of exchangeable manganese contained in the soil B.
From the above, it is clear that the soil sterilized with the soil disinfectant according to the present embodiment is more effective in promoting the absorption of manganese in plants than the soil sterilized with chloropicrin. became.

(3)定植したサツマイモの葉の長さ、枚数
土壌A及び土壌Bのそれぞれに、サツマイモの苗を定植し、定植から1ヶ月後の土壌A及び土壌Bにおける苗の葉の長さ(先端から後端までの長さ)、歯の枚数を測定した。以下の表3が測定結果である。
なお、この表3における葉の長さは、小さい葉については除外し、大きい葉を上位10枚選出し、その先端から後端までの長さの平均を算出した値である。
(3) Length and Number of Planted Sweet Potato Leaves Sweet potato seedlings were planted in soil A and soil B, respectively, and the leaf length of the seedlings in soil A and soil B one month after planting (from the tip) The length up to the rear end) and the number of teeth were measured. Table 3 below shows the measurement results.
The leaf length in Table 3 is a value obtained by excluding small leaves, selecting the top 10 large leaves, and calculating the average length from the leading end to the trailing end.

Figure 2020083792
Figure 2020083792

この表3によれば、土壌Aに定植したサツマイモの葉の枚数は、土壌Bに定植したサツマイモの葉の枚数と比べて32枚多い。また、土壌Aに定植したサツマイモの葉の長さは、土壌Bに定植したサツマイモの葉の長さよりも1cm小さい。すなわち、土壌Aに定植したサツマイモの苗は、土壌Bに定植したサツマイモの苗と比較して小さい葉が多いということとなる。小さい葉が多いということは、まだ十分に成長していない葉が多いということであり、この結果から、土壌Aに定植したサツマイモの苗は、土壌Bに定植したサツマイモの苗よりも若い葉が多いことが明らかとなった。
ここで、若い葉を多く作り出す働きはマンガンによるものであるため、本実施の形態における土壌消毒液により土壌消毒を行った土壌Aにおいては、クロロピクリンにより土壌消毒を行った土壌Bよりも、定植したサツマイモの苗によって多くのマンガンが吸収されたものと考えられる。
以上より、クロロピクリンにより土壌消毒を行った土壌よりも本実施の形態における土壌消毒液により土壌消毒を行った土壌の方が、植物に対してマンガンの吸収を促進させる効果が高いことが明らかとなった。
According to Table 3, the number of sweet potato leaves planted in soil A is 32 more than the number of sweet potato leaves planted in soil B. The length of the sweet potato leaves planted in the soil A is 1 cm shorter than the length of the sweet potato leaves planted in the soil B. That is, the sweet potato seedlings planted in the soil A have many smaller leaves than the sweet potato seedlings planted in the soil B. The fact that there are many small leaves means that there are many leaves that have not yet grown sufficiently, and from this result, the sweet potato seedlings planted in soil A have younger leaves than the sweet potato seedlings planted in soil B. It became clear that there were many.
Here, since the function of producing many young leaves is due to manganese, the soil A disinfected with the soil disinfectant according to the present embodiment is more planted than the soil B disinfected with chloropicrin. It is considered that much manganese was absorbed by the sweet potato seedlings.
From the above, it is clear that the soil sterilized with the soil disinfectant according to the present embodiment is more effective in promoting the absorption of manganese in plants than the soil sterilized with chloropicrin. became.

なお、若い葉は、古い葉よりもデンプンの生成に関与する光合成能力が高いため、クロロピクリンにより土壌消毒を行った土壌よりも本実施の形態における土壌消毒液により土壌消毒を行った土壌の方が、植物の成長を促進させる効果も高いといえる。 Since young leaves have a higher photosynthetic ability involved in starch production than older leaves, the soil disinfected with the soil disinfectant according to the present embodiment is better than the soil disinfected with chloropicrin. However, it can be said that the effect of promoting plant growth is also high.

(4)土壌中に生存するセンチュウの数
土壌A及び土壌Bのそれぞれにおいて散布を行い、この散布から1ヶ月後と3カ月後の土壌A及び土壌Bをそれぞれ1kg採取し、各土壌に含まれるセンチュウの数を、富士平工業株式会社の測定器「ベールマン装置」により測定した。なお、ここでは、サツマイモに寄生し腐敗させる原因となる寄生性センチュウの数を測定した。以下の表4が測定結果である。
(4) Number of nematodes that survive in soil Soil A and soil B are sprayed respectively, and 1 kg each of soil A and soil B one month and three months after this spraying are collected and contained in each soil. The number of nematodes was measured by a measuring device "Bellmann apparatus" manufactured by Fujidaira Kogyo Co., Ltd. In addition, here, the number of parasitic nematodes that parasitize the sweet potato and cause the putrefaction was measured. Table 4 below shows the measurement results.

Figure 2020083792
Figure 2020083792

この表4によれば、土壌Bでは、クロロピクリンを散布してから1ヶ月後の寄生性センチュウの数は0であったものの、3ヶ月後の寄生性センチュウの数は500であり、増加していた。これに対して、土壌Aでは、本実施の形態における土壌消毒液を散布してから1ヶ月後の寄生性センチュウの数は10であり、3ヶ月後の寄生センチュウの数は0であり、減少していた。
クロロピクリンは、散布後には高いセンチュウ駆除効果を示すものの、その効果が持続せず、未消毒の周囲の土壌から消毒を行った土壌へ向けて次第に寄生性センチュウが侵入したものと考えられる。一方、本実施の形態における土壌消毒液は、センチュウ駆除効果が持続するとともに、液中に含まれるエタノールによって土壌中の鉄・酢酸等から遊離したイオンの静菌効果により寄生性センチュウの活動が制限されるため、未消毒の周囲の土壌から消毒を行った土壌へ向けて寄生性センチュウが侵入するのを防止できたものと考えられる。
以上より、クロロピクリンにより土壌消毒を行った土壌よりも本実施の形態における土壌消毒液により土壌消毒を行った土壌の方が、センチュウ害を防除する効果が高く、しかもその効果の持続性が高いことが明らかとなった。
According to this Table 4, in soil B, the number of parasitic nematodes one month after the application of chloropicrin was 0, but the number of parasitic nematodes after three months was 500, increasing. Was there. On the other hand, in the soil A, the number of parasitic nematodes 1 month after the application of the soil disinfectant according to the present embodiment is 10, and the number of parasitic nematodes 3 months later is 0, which is decreased. Was.
Although chloropicrin showed a high nematode control effect after spraying, the effect did not persist, and it is considered that parasitic nematodes gradually invaded from the undisinfected surrounding soil to the disinfected soil. On the other hand, the soil disinfectant solution of the present embodiment has a long-lasting nematode control effect, and the activity of parasitic nematodes is limited by the bacteriostatic effect of the ions liberated from iron and acetic acid in the soil by the ethanol contained in the solution. Therefore, it is considered that the parasitic nematodes could be prevented from invading the undisinfected surrounding soil into the disinfected soil.
From the above, the soil sterilized with the soil disinfectant according to the present embodiment has a higher effect of controlling nematode damage than the soil sterilized with chloropicrin, and the effect is more persistent. It became clear.

(5)土壌中の放線菌・一般細菌の数
土壌A及び土壌Bのそれぞれにおいて散布を行い、この散布から1ヶ月後と3カ月後の土壌A及び土壌Bをそれぞれ所定量採取し、各土壌に含まれる放線菌及び一般細菌の数を、土壌浸出液寒天培地による希釈平板法により測定した。以下の表5が測定結果である。
(5) Number of actinomycetes/general bacteria in soil Soil A and soil B were sprayed respectively, and a predetermined amount of soil A and soil B was collected 1 month and 3 months after this spraying, and each soil was collected. The number of actinomycetes and general bacteria contained in was measured by a dilution plate method using a soil leachate agar medium. Table 5 below shows the measurement results.

Figure 2020083792
Figure 2020083792

この表5によれば、土壌Bでは、クロロピクリンを散布してから3ヶ月後の放線菌の数は1ヶ月後の放線菌の数より増加していたものの、3ヶ月後の一般細菌の数は1ヶ月後の一般細菌の数より減少していた。これに対して、土壌Aでは、本実施の形態における土壌消毒液を散布してから3ヶ月後の放線菌の数は1ヶ月後の放線菌の数より減少し、3ヶ月後の一般細菌の数も1ヶ月後の一般細菌の数より減少していた。このように、放線菌の数及び一般細菌の数が共に減少する現象は、土壌が酸性である場合に多く見受けられるものである。すなわち、本実施の形態における土壌消毒液により土壌消毒を行った土壌Aは酸性となっており、より一層センチュウの防除効果も高まっているものと考えられる。
以上より、クロロピクリンにより土壌消毒を行った土壌よりも本実施の形態における土壌消毒液により土壌消毒を行った土壌の方が、センチュウの防除効果が高いことが明らかとなった。
According to Table 5, in soil B, the number of actinomycetes after 3 months from the application of chloropicrin was higher than the number of actinomycetes after 1 month, but the number of general bacteria after 3 months Was less than the number of general bacteria after one month. On the other hand, in the soil A, the number of actinomycetes 3 months after the application of the soil disinfectant according to the present embodiment is smaller than the number of actinomycetes 1 month later, and the number of general bacteria after 3 months The number was also lower than the number of general bacteria after one month. As described above, the phenomenon in which both the number of actinomycetes and the number of general bacteria decrease is often found when the soil is acidic. That is, it is considered that the soil A that has been soil-disinfected by the soil disinfectant according to the present embodiment is acidic, and the control effect of nematodes is further enhanced.
From the above, it was clarified that the soil disinfected by the soil disinfecting solution according to the present embodiment has a higher nematode control effect than the soil disinfected by chloropicrin.

(6)収穫物の大きさ、本数
上述のように各土壌に定植した苗に基づき、秋口(10月)に、土壌Aから1,168本のサツマイモを収穫し、土壌Bからは1,324本のサツマイモを収穫して、これらの収穫物の大きさ及び本数を測定した。以下の表6が測定結果である。
なお、表6において、「L規格」とは、重量が100g以上700g以下であって、変形・病害・傷等がないサツマイモを示すものであり、「S」とは、重量が100g未満のサツマイモを示すものである。また、「B」とは、L規格ではあるものの変形・病害・傷等があるサツマイモを示すもの(いわゆる不良品)である。
(6) Harvest size and number Based on the seedlings planted in each soil as described above, in autumn (October), 1,168 sweet potatoes are harvested from soil A and 1,324 from soil B. A number of sweet potatoes were harvested and the size and number of these harvests were measured. Table 6 below shows the measurement results.
In addition, in Table 6, “L standard” indicates a sweet potato having a weight of 100 g or more and 700 g or less and having no deformation, disease, scratch or the like, and “S” is a sweet potato having a weight of less than 100 g. Is shown. Further, “B” is a sweet potato that is deformed, diseased, scratched, etc. although it is L standard (so-called defective product).

Figure 2020083792
Figure 2020083792

この表6によれば、土壌AにおけるL規格の平均重量は345.0g、土壌BにおけるL規格の平均重量は254.7gであり、土壌AにおけるL規格の平均重量は土壌BにおけるL規格の平均重量よりも91g重かった。
土壌Aにおいては、土壌Bに比べて、植物に対してマンガンの吸収が促進されたことにより若い葉が多く形成され光合成能力が向上し、さらには、土壌に含まれるフルボ酸によりリン酸の吸収も促進されたことで、収穫物1本あたりの成長度が高くなりL規格の平均重量が重くなったものと考えられる。
なお、表6によれば、L規格の収穫本数に関しては土壌Bの方が土壌Aよりも多いが、これは、土壌Aにおいては、光合成能力の向上により葉の成長に栄養素が活用され、着果作用が停滞したことによるものと考えられる。一方、L規格の収穫本数とL規格の平均重量との積により求められるL規格の総収穫重量を検討すると、土壌Aでは約281kg(=345.0g×816本)、土壌Bでは約241kg(=254.7g×946本)となり、L規格のサツマイモ全体としては、土壌Aの方が土壌Bよりも多くの栄養素を蓄積できたこととなる。
以上より、クロロピクリンにより土壌消毒を行った土壌よりも本実施の形態における土壌消毒液により土壌消毒を行った土壌の方が、リン酸及びマンガンが植物に吸収されやすく、植物の成長が促進されることが明らかとなった。
According to Table 6, the average weight of the L standard in the soil A is 345.0 g, the average weight of the L standard in the soil B is 254.7 g, and the average weight of the L standard in soil A is the same as that of the L standard in soil B. It was 91 g heavier than the average weight.
In soil A, compared with soil B, the absorption of manganese was promoted by plants, so that many young leaves were formed and the photosynthetic ability was improved. Furthermore, fulvic acid contained in soil absorbed phosphate. It is considered that the growth rate per harvest was increased and the average weight of the L standard was increased due to the promotion of the above.
In addition, according to Table 6, the number of harvests of the L standard is higher in the soil B than in the soil A. This is because in the soil A, nutrients are utilized for leaf growth due to improvement of photosynthetic ability, It is thought that this was due to the stagnation of fruit action. On the other hand, when considering the total harvest weight of the L standard, which is obtained by multiplying the number of harvests of the L standard and the average weight of the L standard, about 281 kg (=345.0 g x 816) of soil A and about 241 kg of soil B( =254.7 g×946 pieces), which means that the soil A was able to accumulate more nutrients than the soil B as the whole sweet potatoes of the L standard.
From the above, phosphoric acid and manganese are more easily absorbed by plants in the soil disinfected with the soil disinfectant solution than in the soil disinfected with chloropicrin, and the growth of the plant is promoted. Became clear.

また、この表6によれば、土壌AにおけるB品の割合は3.0%、土壌BにおけるB品の割合は6.0%であり、土壌AにおけるB品の割合は土壌BにおけるB品の割合は低かった。
上述のように、B品は病害等があるサツマイモであり、土壌Aにおいては、土壌Bよりも定植から収穫までの期間に亘ってセンチュウ害を防除できたものと考えられる。
以上より、クロロピクリンにより土壌消毒を行った土壌よりも本実施の形態における土壌消毒液により土壌消毒を行った土壌の方が、持続的にセンチュウ害を防除する効果が高いことが明らかとなった。
Further, according to Table 6, the ratio of the B product in the soil A is 3.0%, the ratio of the B product in the soil B is 6.0%, and the ratio of the B product in the soil A is the B product in the soil B. Was low.
As described above, the B product is a sweet potato having a disease or the like, and it is considered that the soil A was able to control nematode damage in the soil A over a period from planting to harvesting.
From the above, it was revealed that the soil disinfected with the soil disinfectant according to the present embodiment is more effective in continuously controlling nematode damage than the soil disinfected with chloropicrin. ..

本発明は、土壌消毒液の製造方法に関するものである。 The present invention relates to the production how soil disinfectant.

しかし、クロロピクリンによる土壌消毒には、次のような問題点があった。
(イ)土壌有機物の分解が促進されることにより、土壌に含まれる養分の貯蔵量が減少し、かつ土壌が硬くなるため、植物の育成効果が低下し、土壌における植物の生産力を長期に亘って維持することが困難である。
(ロ)クロロピクリンによる土壌消毒は、刺激性があることにより病原菌微生物の防除には有効であるものの、害虫であるセンチュウ(線虫)は未消毒の周囲の土壌から消毒後の土壌に侵入することにより増殖してしまうため、センチュウ害の防除には十分に有効とはいえない。
(ハ)クロロピクリンによる土壌消毒は臭気が発生するため、住宅地周辺の土壌に対して実行しづらい。
そこで、本発明は、上述した事情によりなされたものであり、クロロピクリンに代わる、植物の育成効果及びセンチュウ害の防除効果が高い土壌消毒液の製造方法の提供を目的とする。
However, soil disinfection with chloropicrin had the following problems.
(A) Accelerating the decomposition of soil organic matter reduces the storage amount of nutrients contained in the soil and hardens the soil, reducing the plant growth effect and increasing the plant productivity in the soil for a long time. Difficult to maintain over.
(B) Soil disinfection with chloropicrin is effective in controlling pathogenic microorganisms due to its stimulative properties, but nematodes, which are harmful insects, invade the undisinfected surrounding soil into the disinfected soil. Therefore, they are not effective enough to control nematode damage because they proliferate.
(C) Soil disinfection with chloropicrin causes odor and is difficult to perform on soil around residential areas.
The present invention has been made by the above-described circumstances, alternative to chloropicrin, and an object thereof is to provide a manufacturing how the control is highly effective soil disinfectant growing effect and nematodes harm plants.

本発明によれば、クロロピクリンに代わる、植物の育成効果及びセンチュウ害の防除効果が高い土壌消毒液の製造方法を提供することができる。 According to the present invention, alternative to chloropicrin, it is possible to provide a manufacturing how of control effect of growing effect and nematodes harm plant high soil disinfectant.

本発明は、デンプン源であるサツマイモの小片、腐植物質を主成分とした濾材、クエン酸、及び水を容器に投入し、当該容器内の水溶液を酸性とする第1の工程と、前記濾材に含まれる腐植物質により前記容器内に存在するアルコール発酵を行う菌を増殖させ、この増殖したアルコール発酵を行う菌によりサツマイモ中のデンプンをエタノールへ分解させると共に、酸性環境下において前記腐植物質に含まれるフルボ酸を前記容器内の水溶液に溶出させる第2の工程と、からなることを特徴とした土壌消毒液の製造方法である。 The present invention, a small step of sweet potato which is a starch source, a filter medium containing humic substances as main components, citric acid, and water are charged into a container, and the first step of making the aqueous solution in the container acidic, and the filter medium The humic substance contained in the container is used to grow a bacterium that carries out alcohol fermentation existing in the container, and the starch in sweet potato is decomposed into ethanol by the bacterium that carries out the grown alcohol fermentation, and the humic substance is contained in an acidic environment. a second step of eluting the fulvic acid in an aqueous solution in the container, it is a manufacturing method for the soil disinfection liquid characterized by comprising a.

Claims (2)

腐植物質を主成分とした濾材によりアルコール発酵を行う菌を増殖させ、この増殖したアルコール発酵を行う菌によりサツマイモの主成分であるデンプンをエタノールへ分解する工程、クエン酸の添加により前記エタノールを酸性にすることで、前記腐植物質に含まれるフルボ酸を当該エタノールに溶出させる工程とからなることを特徴とした土壌消毒液の製造方法。 Propagating bacteria that perform alcohol fermentation with a filter material containing humic substances as the main component, decomposing starch that is the main component of sweet potato into ethanol by the bacteria that perform this alcohol fermentation, and adding ethanol to acidify the ethanol. And a step of eluting the fulvic acid contained in the humic substance into the ethanol. 酸性であるとともに、フルボ酸が溶出され、かつエタノールが所定の割合で含まれることを特徴とする土壌消毒液。 A soil disinfecting solution which is acidic, in which fulvic acid is eluted, and which contains ethanol in a predetermined ratio.
JP2018217297A 2018-11-20 2018-11-20 Method of producing soil disinfectant Active JP6546685B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217297A JP6546685B1 (en) 2018-11-20 2018-11-20 Method of producing soil disinfectant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217297A JP6546685B1 (en) 2018-11-20 2018-11-20 Method of producing soil disinfectant

Publications (2)

Publication Number Publication Date
JP6546685B1 JP6546685B1 (en) 2019-07-17
JP2020083792A true JP2020083792A (en) 2020-06-04

Family

ID=67297684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217297A Active JP6546685B1 (en) 2018-11-20 2018-11-20 Method of producing soil disinfectant

Country Status (1)

Country Link
JP (1) JP6546685B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112243A1 (en) 2019-12-06 2021-06-10 凸版印刷株式会社 Gas barrier film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151706A (en) * 2004-11-25 2006-06-15 Kanto Natural Gas Development Co Ltd Composition for agriculture
WO2007129467A1 (en) * 2006-04-28 2007-11-15 Japan Alcohol Corporation Methods for reductive disinfection of soil, reductive disinfectants for soil, methods for wetting disinfection of soil, wetting disinfectants for soil, and systems for drenching soil with disinfectants
JP2011246424A (en) * 2010-05-31 2011-12-08 Nittetsu Kankyo Engineering Kk Plant-vitalizing agent, and therapeutic agent of plant viral disease
JP2012017275A (en) * 2010-07-07 2012-01-26 Katsuya Fujimura Method for producing new alcoholic disinfectant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151706A (en) * 2004-11-25 2006-06-15 Kanto Natural Gas Development Co Ltd Composition for agriculture
WO2007129467A1 (en) * 2006-04-28 2007-11-15 Japan Alcohol Corporation Methods for reductive disinfection of soil, reductive disinfectants for soil, methods for wetting disinfection of soil, wetting disinfectants for soil, and systems for drenching soil with disinfectants
JP2011246424A (en) * 2010-05-31 2011-12-08 Nittetsu Kankyo Engineering Kk Plant-vitalizing agent, and therapeutic agent of plant viral disease
JP2012017275A (en) * 2010-07-07 2012-01-26 Katsuya Fujimura Method for producing new alcoholic disinfectant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112243A1 (en) 2019-12-06 2021-06-10 凸版印刷株式会社 Gas barrier film

Also Published As

Publication number Publication date
JP6546685B1 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
CN1969606B (en) Method for breeding collybia albuminosa artificially by symbiosis of termite
CN101919333B (en) Method for improving survival rate of breeding nursery stock
KR101774548B1 (en) Manufacturing method of acidic liquid composition for controlling plant disease or fertilizing and composition for acidic liquid fertilizer
CN105265134B (en) Organic Chinese angelica production method and organic Chinese angelica product
CN102531800A (en) Agricultural-residue-free biodegradation technology
CN103444385A (en) Agricultural planting method
CN106489699A (en) A kind of substrate numerous Caulis et Folium Ipomoeae aquaticae method soon under winter greenhouse forcing frame
KR20140094042A (en) Mass-production method for seed potatoes
JP2020083792A (en) Method for producing soil disinfectant solution
CN107114175A (en) A kind of method for culturing seedlings for improving Exocarpium Citri Rubrum survival rate
CN101933452A (en) Method for sterilizing soil matrix used for nursery stock
KR100356762B1 (en) Method to manufacture complex microbe culture and manure using complex microbe culture
JP2006280255A (en) Culture media for cultivating lyophyllum decastes and method for cultivating the lyophyllum decastes
KR101893753B1 (en) Method of seminal propagation for Maesa japonica Thunb. Moritzi and Zoll
CN107616068A (en) A kind of high efficiency, low cost potato virus-free plantlet and seed production technology
CN114436713A (en) Silicon-titanium fertilizer and preparation method thereof
UA44759C2 (en) COMPOSITION AND METHOD OF STIMULATION OF GROWTH OF PLANTS AND VESICULAR TREE-LIKE MYCORISAL MUSHROOMS
CN113229054A (en) Vegetable planting and seedling raising method capable of improving insect pest resistance of vegetables
WO2002069708A1 (en) Glycerine as fungicide or bactericide active substance
JP2022018337A (en) Method of producing compost, method of producing liquid fertilizer, and compost
JP4965304B2 (en) Method for producing soil for plant cultivation and soil for plant cultivation
AU783850B2 (en) Cuttings of the plants of genus eucalyptus and genus acacia, and methods of cuttage of the plants of genus eucalyptus and genus acacia
CN115363033B (en) Attractant, method and application for improving efficient pollination of facility melon bees
CN114586802B (en) Bactericide containing prochloraz and ethylicin, and preparation method and application thereof
JP6941721B2 (en) Soil modifier for improving iron content in cultivated crops

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181126

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6546685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250