JP2020079748A - 測位装置、測位方法 - Google Patents

測位装置、測位方法 Download PDF

Info

Publication number
JP2020079748A
JP2020079748A JP2018213134A JP2018213134A JP2020079748A JP 2020079748 A JP2020079748 A JP 2020079748A JP 2018213134 A JP2018213134 A JP 2018213134A JP 2018213134 A JP2018213134 A JP 2018213134A JP 2020079748 A JP2020079748 A JP 2020079748A
Authority
JP
Japan
Prior art keywords
positioning
coordinate system
signal
shielding
positioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018213134A
Other languages
English (en)
Other versions
JP7107820B2 (ja
Inventor
瑛 樋山
Akira Hiyama
瑛 樋山
匡 杉本
Masashi Sugimoto
匡 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2018213134A priority Critical patent/JP7107820B2/ja
Publication of JP2020079748A publication Critical patent/JP2020079748A/ja
Application granted granted Critical
Publication of JP7107820B2 publication Critical patent/JP7107820B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】測位に用いるデータを用いて、遮蔽領域を設定する。【解決手段】衛星方向算出部は、測位信号に重畳された航法メッセージから得られるNED座標系での測位衛星の位置と、測位信号の受信結果から得られる測位装置の姿勢角と、を用いて、測位衛星の測位装置におけるボディ座標系での仰角および方位角を算出する。分布生成部は、測位衛星のボディ座標系での仰角および方位角と測位信号の信号受信強度と、を用いて、信号受信強度のボディ座標系での分布を生成する。遮蔽領域設定部は、ボディ座標系での分布を用いて、測位への影響を低くまたはゼロに設定する測位信号の決定に用いる遮蔽領域を設定する。【選択図】 図1

Description

本発明は、測位に用いる測位信号(測位衛星)を選択するための技術に関する。
特許文献1に記載の装置は、移動体にレーザスキャナやステレオカメラ等の構造物検出装置を備える。特許文献1に記載の装置は、構造物検出装置によって検出した周囲の構造物の位置を用いて、仰角マスクを設定する。特許文献1に記載の装置は、この仰角マスクを用いて、特定の航法衛星からの航法信号の利用を制限して、測位を行う。
特許文献2に記載の装置は、魚眼レンズを備える。特許文献2に記載の装置は、魚眼レンズによって検出した周囲の風景から障害物を検出する。特許文献2に記載の装置は、障害物の方向から、遮蔽領域を設定する。特許文献2に記載の装置は、この遮蔽領域の方向の衛星からの電波の利用を制限して、測位を行う。
特開2017−15585号公報 特開2002−357422号公報
しかしながら、特許文献1や特許文献2に示すように、従来の構成では、測位に直接利用するデータを出力する機能部以外に、仰角マスクや遮蔽領域を設定するための他の装置を用いなければならない。
したがって、本発明の目的は、測位に用いるデータを用いて、遮蔽領域を設定することにある。
この発明の測位装置は、衛星方向算出部、分布生成部、および、遮蔽領域設定部を備える。衛星方向算出部は、測位信号に重畳された航法メッセージから得られるNED座標系での測位衛星の位置と、測位信号の受信結果から得られる測位装置の姿勢角と、を用いて、測位衛星の測位装置におけるボディ座標系での仰角および方位角を算出する。分布生成部は、測位衛星のボディ座標系での仰角および方位角と測位信号の信号受信強度と、を用いて、信号受信強度のボディ座標系での分布を生成する。遮蔽領域設定部は、ボディ座標系での分布を用いて、測位への影響を低くまたはゼロに設定する測位信号の決定に用いる遮蔽領域を設定する。
この構成では、測位に用いる機能部以外を用いなくても遮蔽領域が設定される。さらに、ボディ座標系で遮蔽領域が設定されることによって、自装置(測位装置)、および、自装置が搭載された物体(例えば、船舶等の移動体)に起因する遮蔽領域が設定される。
この発明によれば、測位に用いるデータを用いて、遮蔽領域を設定できる。
本発明の第1の実施形態に係る測位装置における遮蔽情報設定部の構成を示す機能ブロック図である。 本発明の第1の実施形態に係る測位装置の構成を示す機能ブロック図である。 (A)、(B)、(C)は、ボディ座標系でのスカイプロットにおける測位衛星の位置をプロットする概念を説明するための図である。 スカイプロットにおける遮蔽判定用領域の設定の概念を表す図である。 (A)、(B)、(C)は、投影点の分類の概念の一例を示す図である。 信号レベルの一例を示す図である。 (A)、(B)は、遮蔽領域の設定の一例を示したものである。 測位装置で実行されるメインの処理(測位方法)を示すフローチャートである。 測位衛星の方向を算出する処理を示すフローチャートである。 遮蔽領域を設定する処理を示すフローチャートである。 慣性センサを用いた測位装置の構成を示す機能ブロック図である。
本発明の第1の実施形態に係る測位装置、測位方法について、図を参照して説明する。なお、以下では、測位装置が装着される物体として、移動体、特に、船舶を用いる態様を示すが、他の移動体、例えば、水中移動体、陸上移動体、または、空中移動体にも、本願発明の構成は適用でき、静止する物体にも適用できる。ただし、物体が移動体である時に、本願発明の構成は、より有効である。
図1は、本発明の実施形態に係る測位装置における遮蔽情報設定部の構成を示す機能ブロック図である。図2は、本発明の実施形態に係る測位装置の構成を示す機能ブロック図である。
(測位装置10の構成)
図2に示すように、測位装置10は、演算部20、および、アンテナ装置30を備える。アンテナ装置30は、演算部20に接続している。
アンテナ装置30は、測位装置10が装着される移動体に設置されている。アンテナ装置30は、例えば、3個以上のGNSSアンテナ(図示を省略する。)によって構成されている。3個以上のGNSSアンテナは、全てのGNSSアンテナが一直線上に並ばないように、配置されていない。
3個以上のGNSSアンテナは、それぞれに、複数の測位衛星(図示を省略する。)から送信される測位信号を受信し、演算部20に出力する。
測位信号(GNSS(Grobal Navigation Satellite Sysytems)信号)は、所定の周波数からなる搬送波信号に、PRN(擬似ランダムノイズ)コード、および、航法メッセージが重畳された信号である。PRNコードは、送信元の測位衛星を識別するコードである。航法メッセージは、測位衛星の軌道情報、補正情報等を含むデータである。
演算部20は、測位演算部21、および、遮蔽情報設定部22を備える。演算部20は、例えば、測位演算部21および遮蔽情報設定部22の機能を実現するプログラム、このプログラムを記憶する記憶部、および、このプログラムを記憶部から読み出して実行するCPU等の演算装置によって実現される。または、演算部20は、このプログラムが内蔵され、このプログラムを実行するIC等の演算素子によって実現される。
測位信号は、測位演算部21に入力される。測位演算部21は、測位信号毎に、受信信号の強度(信号受信強度)SSを観測する。測位演算部21は、既知の方法を用いて、測位信号(測位衛星)毎に、コードおよび搬送波信号(キャリア信号)を捕捉、追尾する。
測位演算部21は、アンテナ装置30の2個以上のGNSSアンテナで受信した測位信号のコードおよび搬送波信号の追尾結果(例えば、搬送波位相差や基線ベクトル等)を用いて、既知の方法から、姿勢角(ロール角、ピッチ角、ヨー角)R,P,Yを算出する。位置Psnは、NED座標系で算出される。この際、測位演算部21は、搬送波信号の位相の積算値を用いて、姿勢角R,P,Yを算出する。このように、搬送波信号の位相の積算値を用いることによって、姿勢角R,P,Yは、高精度に算出される。
また、測位演算部21は、アンテナ装置30の2個以上のGNSSアンテナの少なくとも1個のGNSSアンテナで受信した測位信号のコードの追尾結果(例えば、コード擬似距離等)を用いて、既知の方法から、自装置の位置Psnを算出する。なお、自装置の位置Psnは、アンテナ装置30の2個以上のGNSSアンテナのいずれかの位置、または、2個以上のGNSSアンテナの幾何学的な中心位置で算出される。2個以上のGNSSアンテナのいずれかの位置を用いる場合には、自装置の位置PsnとするGNSSアンテナで受信した測位信号を用いた単独測位によって、自装置の位置Psnは算出できる。また、2個以上のGNSSアンテナの幾何学的な中心位置を用いる場合には、各GNSSアンテナの測位結果の平均値の算出によって、自装置の位置Psnは算出できる。
測位演算部21は、追尾結果に基づいて、搬送波信号に重畳された航法メッセージを復調する。
測位演算部21は、追尾している測位衛星の識別情報SatN、この測位衛星からの測位信号の信号受信強度SS、自装置の位置Psn、自装置の姿勢角R,P,Y、および、航法メッセージNMを、遮蔽情報設定部22に出力する。なお、測位演算部21は、これらの情報の内の必要なものを、測位演算部21の後段に接続される各種の機能部(例えば、表示画像生成部等:図示せず)に出力する。
遮蔽情報設定部22は、概略的には、上述の測位演算部21から入力される測位に用いる各種のデータを用いて、遮蔽領域を設定する。遮蔽領域とは、測位に利用しない測位信号を判別するために設定された領域である。
遮蔽情報設定部22は、遮蔽領域を、測位演算部21に出力する。測位演算部21は、遮蔽領域を参照し、遮蔽領域内にある測位衛星の測位信号を用いることなく(測位への影響をゼロにして)、位置Psn、姿勢角R,P,Yを算出する。言い換えれば、測位演算部21は、遮蔽領域外にある測位衛星の測位信号を選択して、位置Psn、姿勢角R,P,Yを算出する。これにより、位置Psnおよび姿勢角R,P,Yの算出精度は向上する。
(遮蔽情報設定部22の具体的な構成)
図1に示すように、遮蔽情報設定部22は、衛星方向算出部221、分布生成部222、および、遮蔽領域設定部223を備える。
位置Psn、姿勢角R,P,Y、航法メッセージNM、および、測位衛星の識別情報SatNは、衛星方向算出部221に入力される。また、信号受信強度SSは、測位衛星の識別情報SatNに関連つけられた状態で、分布生成部222に入力される。
衛星方向算出部221は、測位衛星の識別情報SatNを参照して、航法メッセージNMから、追尾中の測位衛星の軌道情報を抽出する。衛星方向算出部221は、この軌道情報と自装置の位置Psnとを用いて、自装置の位置Psnを原点(中心)とした測位衛星の位置PsatNを算出する。測位衛星の位置PsatNは、NED座標系で得られる。
衛星方向算出部221は、姿勢角R,P,Yを用いて、変換行列を算出する。変換行列は、自装置位置を基準とするNED座標系と自装置のボディ座標系との座標変換を行う行列である。姿勢角R,P,Yが分かれば、既知の方法によって、変換行列は算出可能である。
衛星方向算出部221は、自装置の位置を原点とした測位衛星の位置PsatNと、変換行列と、を用いて、自装置の位置を原点(中心)としたボディ座標系での測位衛星の仰角Φbおよび方位角θbを算出する。この演算は、既知の幾何学的な演算式によって実現可能である。衛星方向算出部221は、追尾中の複数の測位衛星、好ましくは、追尾中の全ての測位衛星に対して、仰角Φbおよび方位角θbを算出する。この処理は、1つの測位衛星に対して1回に限るものではなく、1つの測位衛星に対して複数回、すなわち所定の時間長に亘って実行される。
衛星方向算出部221は、追尾中の測位衛星の識別情報SatNに関連づけして、この測位衛星の仰角Φbおよび方位角θbを、分布生成部222に出力する。
分布生成部222は、ボディ座標系でのスカイプロット800を生成する。図3(A)、図3(B)、図3(C)は、ボディ座標系でのスカイプロットにおける測位衛星の位置をプロットする概念を説明するための図である。
図3(A)、図3(B)、図3(C)に示すように、スカイプロット800とは、自装置の位置を中心としてボディ座標系によって定義された天頂側の半球の領域CObを、ボディ座標系における基準面(半球の底となる面)RPに二次元投影したものである。スカイプロット800は、自装置の位置を中心として、外方を向く放射方向に仰角Φbを設定し、円周方向に方位角θbを設定している。仰角Φbは、スカイプロット800の中心において90°であり、中心から離れるのにしたがって、小さくなる。方位角θbは、例えば、図3(A)に示すように、中心に対して特定の方向(例えば、船体90の中心を基準として船首を向く方向)をθb=0°として、1周で360°となるように設定されている。
図3(A)に示すように、スカイプロット800には、各測位衛星の投影点811B、811C、812B、812Cがプロットされている。これらの投影点811B、811C、812B、812Cは、上述のボディ座標系で得られた測位衛星の仰角Φbおよび方位角θbによってプロットされている。
例えば、投影点811Bは、図3(B)に示す船体(測位装置10が搭載された移動体)90の姿勢(Pitch=0°)における測位衛星SAT1のボディ座標系での仰角Φbおよび方位角θbによってプロットされる。一方、投影点811Cは、図3(C)に示す船体90の姿勢(Pitch=5°)における測位衛星SAT1のボディ座標系での仰角Φbおよび方位角θbによってプロットされる。
また、投影点812Bは、図3(B)に示す船体90の姿勢(Pitch=0°)における測位衛星SAT2のボディ座標系での仰角Φbおよび方位角θbによってプロットされる。一方、投影点812Cは、図3(C)に示す船体90の姿勢(Pitch=5°)における測位衛星SAT2のボディ座標系での仰角Φbおよび方位角θbによってプロットされる。
仰角Φbおよび方位角θbがボディ座標系で算出されていることによって、図3(B)、図3(C)に示すように、船体90の姿勢が一定でなく、例えば、揺動等をしていても、各測位衛星の方向は、船体90を基準(中心)としたスカイプロットに、精度良くプロットされる。
なお、図3(A)、図3(B)、図3(C)では、ピッチ角(Pitch)が変化する場合を示したが、ロール角(Roll)、および、ヨー角(Yaw)が変化する場合にも、同様に、測位衛星の方向(投影点)は、ボディ座標系のスカイプロット800に、精度良くプロットされる。
分布生成部222は、仰角Φbおよび方位角θbが算出されている全ての測位衛星に対して、スカイプロット800に対する投影点のプロットを行う。分布生成部222は、複数の時刻で、仰角Φbおよび方位角θbが得られていれば、これら複数の時刻のそれぞれの仰角Φbおよび方位角θbを用いて、プロットを行う。この際、分布生成部222は、スカイプロット800における各投影点に対して、信号受信強度SSを関連付けする。
分布生成部222は、スカイプロット800を、遮蔽領域設定部223に出力する。
遮蔽領域設定部223は、信号受信強度SSが関連付けされたスカイプロット800から、遮蔽領域を設定する。具体的には、例えば、遮蔽領域設定部223は、次に示す方法によって、遮蔽領域を設定する。
遮蔽領域設定部223は、スカイプロット800の全体領域を、図4に示すように、複数の遮蔽判定用領域aijに分割する。図4は、スカイプロットにおける遮蔽判定用領域の設定の概念を表す図である。
図4に示すように、スカイプロット800は、仰角Φbを用いて、複数の領域に分割される。さらに、スカイプロット800は、方位角θbを用いて、複数の領域に分割される。この仰角Φbおよび方位角θbによって分割される領域が遮蔽判定用領域aijとなる。
例えば、図4の例であれば、スカイプロット800は、仰角Φbが0°から90°の間において、それぞれが18°の仰角Φbの範囲を有する領域に分割される。さらに、スカイプロット800は、方位角θbが0°から360°の間において、それぞれが30°の方位角θbの範囲を有する領域に分割される。すなわち、仰角Φbにおいて18°の範囲、且つ、方位角θbにおいて30°の範囲が、遮蔽判定用領域aijとなる。遮蔽判定用領域aijは、仰角Φbの方向には、i(=1,2,・・・)によって、識別可能であり、方位角θbの方向には、j(=1,2,・・・)によって、識別可能である。
遮蔽領域設定部223は、スカイプロット800にプロットされている全ての投影点を、遮蔽判定用領域aijの単位で分類する。図5(A)、図5(B)、図5(C)は、投影点の分類の概念の一例を示す図である。なお、図5(A)、図5(B)、図5(C)において、ハッチングされた領域は、信号受信強度SSが得られた遮蔽判定用領域aijを示し、ハッチングされていない領域は、信号受信強度SSが得られない遮蔽判定用領域aijを示す。
図5(A)、図5(B)に示すように、遮蔽領域設定部223は、測位衛星の識別情報SatNを参照して、複数の測位衛星SAT1−SATm(mは2以上の整数)の投影点を、遮蔽判定用領域aij毎に分類し、信号受信強度SSに関連付けして記憶する。なお、図5(B)に示すように、1つの遮蔽判定用領域aijに複数の投影点がある場合には、これらの全ての投影点の信号受信強度SSを、遮蔽判定用領域aijに関連付けして記憶する。
遮蔽領域設定部223は、投影点と信号受信強度SSとを、遮蔽判定用領域aijに分類する(関連付けする)処理を、全ての測位衛星に対して行う。これにより、遮蔽領域設定部223は、図5(C)に示すような、遮蔽判定用領域aij毎に信号受信強度SSが関連付けされた分布を得る。
遮蔽領域設定部223は、それぞれの遮蔽判定用領域aijに対して、信号受信強度SSの代表値を設定する。具体的には、遮蔽領域設定部223は、遮蔽判定用領域aijに関連付けされた信号受信強度SSが1個の場合には、当該信号受信強度SSを、信号受信強度SSの代表値に設定する。また、遮蔽領域設定部223は、遮蔽判定用領域aijに関連付けされた信号受信強度SSが複数個の場合には、これら複数の信号受信強度SSの統計的算出値を、信号受信強度SSの代表値に設定する。統計的算出値とは、例えば、平均値、中央値等の1つを用いればよい。
遮蔽領域設定部223は、遮蔽判定用領域aij毎の信号受信強度SSの代表値から、遮蔽判定用領域aij毎の信号レベルを設定する。図6は、信号レベルの一例を示す図である。図6に示すように、遮蔽領域設定部223は、信号レベルを複数のレベルに設定する。各信号レベルは、複数の信号受信強度SSの代表値を、高さに応じて段階的に分類するものであり、1つの信号レベルに含まれる信号受信強度SSの代表値の強度には幅を有する。図6の例では、遮蔽領域設定部223は、Level0からLevel5の6段階に設定している。Level0は、信号受信強度SSが得られない場合に設定される。Level1からLevel5は、信号受信強度SSの代表値の高さにしたがって、代表値が低い順に設定される。
遮蔽領域設定部223は、この信号レベルの分布を用いて、遮蔽判定用領域aijの単位で、遮蔽領域を設定する。図7(A)、図7(B)は、遮蔽領域の設定の一例を示したものである。図7(A)は、仰角毎に遮蔽領域の設定を行う場合を示し、図7(B)はスカイプロットの全体領域で遮蔽領域の設定を行う場合を示す。
(仰角毎に遮蔽領域を設定する場合)
遮蔽領域設定部223は、仰角Φb毎に、遮蔽領域を設定する。具体的には、遮蔽領域設定部223は、同じ仰角Φbにあり、方位角θbの方向に並ぶ複数の遮蔽判定用領域aijに対して、信号レベルの相対的な差から、遮蔽領域を設定する。
例えば、図6のような信号レベルの分布であれば、図7(A)に示すように、遮蔽領域設定部223は、仰角Φbが72°から90°の間の領域では、Level4以下を遮蔽領域であるとし、level5を遮蔽領域でないとする。遮蔽領域設定部223は、仰角Φbが54°から72°の間の領域では、Level3以下を遮蔽領域であるとし、level4以上を遮蔽領域でないとする。遮蔽領域設定部223は、仰角Φbが36°から54°の間の領域、仰角Φbが18°から36°の間の領域、および、仰角Φbが0°から18°の間の領域では、Level2以下を遮蔽領域であるとし、level3以上を遮蔽領域でないとする。
なお、この判定基準は一例であり、適宜設定が可能であるが、基本的には、仰角Φbが高いほど、遮蔽領域の判定基準となるレベルを高く設定することが考えられる。
(全体領域で遮蔽領域を設定する場合)
遮蔽領域設定部223は、遮蔽領域の判定基準の信号レベルを設定する。そして、遮蔽領域設定部223は、判定基準以下の信号レベルの遮蔽判定用領域aijは遮蔽領域であると、判定する。また、遮蔽領域設定部223は、判定基準よりも高い信号レベルの遮蔽判定用領域aijは遮蔽領域でない、と判定する。
例えば、図6のような信号レベルの分布であり、判定基準の信号レベルをLevel3とすれば、遮蔽領域設定部223は、図7(B)に示すような遮蔽領域を設定する。
これらのような処理を行うことによって、遮蔽領域設定部223は、ボディ座標系において遮蔽領域を設定できる。これにより、遮蔽領域設定部223は、測位装置10が装着される移動体の構造に依存する遮蔽領域を、設定できる。
この構成および処理によって、遮蔽領域設定部223は、測位に用いるデータだけで、遮蔽領域を設定できる。すなわち、魚眼レンズ、レーザスキャナ、ステレオカメラのような、測位に直接関係しない装置を用いなくても、測位装置10は、遮蔽領域を設定できる。
この際、仰角Φb毎の遮蔽領域を設定する態様であれば、仰角Φb毎に遮蔽領域および非遮蔽領域(遮蔽領域外の領域)を設定できる。したがって、仰角Φbの高い領域に対して相対的に信号受信強度SSが低いことが多い仰角Φbの低い領域においても、測位に利用できる領域と測位に利用できない領域とを適切に設定できる。
また、全体領域において遮断領域を設定する態様であれば、仰角Φbに関係なく、所定の信号受信強度SS以上の測位信号のみを測位に用いることができる。
そして、このように遮蔽領域が設定され、遮蔽領域に存在する測位衛星の測位信号を用いずに、測位演算部21が測位演算を行うことによって、測位精度は向上する。すなわち、上述の測位演算部21で算出される自装置の位置Psn、姿勢角R,P,Yは、高精度になる。
上述の説明では、測位装置で実行する遮蔽領域の設定等の処理を複数の機能部で実現する態様を示したが、これらの処理をプログラム化して実行してもよい。この場合、このプログラムを記憶する記憶部、および、このプログラムを記憶部から読み出して実行するCPU等の演算装置によって、実現可能である。そして、この場合、図8、図9、図10に示す方法をプログラム化して用いればよい。図8は、測位装置で実行されるメインの処理(測位方法)を示すフローチャートである。図9は、測位衛星の方向を算出する処理を示すフローチャートである。図10は、遮蔽領域を設定する処理を示すフローチャートである。なお、各処理の具体的な内容は上述しているので、その具体的な説明は省略する。
図8に示すように、演算装置は、測位演算に利用する各種情報、各種データから、ボディ座標系での測位衛星の方向を算出する(S11)。具体的には、図9に示すように、演算装置は、測位信号から得られる自装置位置と航法メッセージから、NED座標系での測位衛星の位置を算出する(S111)。演算装置は、測位信号から得られる自装置の姿勢角から、NED座標系とボディ座標系と変換行列を算出する(S112)。演算装置は、測位衛星の位置と変換行列とから、ボディ座標系における測位衛星の仰角Φbおよび方位角θbを算出する(S113)。
図8に示すように、演算装置は、仰角Φbおよび方位角θbを用いて、信号受信強度SSの分布であるスカイプロットを生成する(S12)。
図8に示すように、演算装置は、スカイプロットを用いて、遮蔽領域を設定する(S13)。具体的には、図10に示すように、演算装置は、仰角Φbおよび方位角θbを基準にして、スカイプロットの全体領域を、複数の遮蔽判定用領域aijに分割する(S31)。演算装置は、複数の遮蔽判定用領域aijの信号受信強度SSから、遮蔽領域を、遮蔽判定用領域aijの単位で設定する(S32)。
図8に示すように、演算装置は、遮蔽領域を用いて、測位に利用する測位衛星(測位信号)を選択し(S14)、測位演算を行う(S15)。
なお、上述の説明では、測位演算に、測位信号のみを用いる態様を示した。しかしながら、加速度センサ、角速度センサ等の慣性センサの出力を用いる態様であってもよい。図11は、慣性センサを用いた測位装置の構成を示す機能ブロック図である。
図11に示すように、測位装置10Aは、演算部20A、アンテナ装置30A、慣性センサ40を備える。演算部20Aは、測位演算部21Aおよび遮蔽情報設定部22を備える。なお、遮蔽情報設定部22の構成および処理は、上述の通りであり、説明は省略する。
アンテナ装置30Aおよび慣性センサ40は、測位演算部21Aに接続している。
アンテナ装置30Aは、2個以上のGNSSアンテナ(図示を省略する。)によって構成されている。慣性センサ40は、直交三軸の加速度センサおよび角速度センサを備える。慣性センサ40は、計測した加速度および角速度を、測位演算部21Aに出力する。
測位演算部21Aは、アンテナ装置30Aで受信した測位信号の捕捉、追尾の結果と、慣性センサ40で計測された加速度および角速度とを用いて、既知の方法から、位置Psn、姿勢角R,P,Yを算出する。また、測位演算部21Aは、測位信号の追尾の結果から、航法メッセージNMを復調する。
このようなアンテナ装置30Aと慣性センサ40とを用いる態様であっても、上述のアンテナ装置30のみを用いる態様と同様に、遮蔽領域を設定できる。
なお、上述の説明では、遮蔽領域設定部223は、離散的に設定された信号レベルに基づいて、遮蔽領域の判定を行う態様を示した。しかしながら、遮蔽領域設定部223は、遮蔽判定用領域aijに割り当てられた信号受信強度SSの代表値を直接用いて、遮蔽領域と非遮蔽領域とを設定することもできる。この場合、遮蔽領域設定部223は、代表値に対する閾値を設定し、閾値以下であれば、遮蔽領域であると判定し、閾値を超えていれば、遮蔽領域でない(非遮蔽領域である)と判定すればよい。この場合、遮蔽領域設定部223は、信号受信強度SSが得られない遮蔽判定用領域aijについては遮蔽領域である、と判定すればよい。
また、上述の説明では、スカイプロット800の全体領域を複数の遮蔽判定用領域aijに分割した状態にて、遮蔽領域を設定している。しかしながら、遮蔽判定用領域を設定せずに、信号受信強度SSの分布をそのまま用いて、信号受信強度SSの大小差から遮蔽領域を設定してもよい。
また、上述の説明では、遮蔽領域内に存在する測位衛星の測位信号を、測位演算に用いない態様を示した。しかしながら、遮蔽領域内に存在する測位衛星の測位信号と、遮蔽領域に存在しない測位衛星の測位信号とで、測位演算時の重み付けを異ならせてもよい。具体的には、遮蔽領域内に存在する測位衛星の測位信号については、測位精度に与える影響を小さく(重み付けを小さく)し、遮蔽領域に存在しない測位衛星の測位信号については、測位精度に与える影響を大きく(重み付けを大きく)する。これにより、例えば、追尾中の測位衛星数が少ない場合に、遮蔽領域に存在する測位衛星の測位信号を用いながらも、これらの測位信号による測位精度の劣化を抑制できる。
また、上述の説明では、仰角Φbおよび方位角θbの双方を、一定の角度間隔で分割して、遮蔽判定用領域aijを設定する態様を示した。しかしながら、これらの間隔は一定の角度間隔でなくてもよい。例えば、仰角Φbに関しては、低いほど角度間隔を広くしたり、逆に、低いほど角度間隔を狭くしてもよい。また、例えば、方位角θbに関しては、船首側すなわちθb=0°に近いほど角度間隔を広くし、θb=180°に近いほど角度間隔を狭くしてもよい。さらに、1度目の遮蔽領域の判定において、遮蔽領域と非遮蔽領域との境界になる方位角θbの近傍について、遮蔽判定用領域aijをさらに細かく分割して、上記の判定を行ってもよい。
また、上述の説明では、信号受信強度SSを用いて遮蔽領域の判定を行う態様を示した。しかしながら、測位信号の受信回数を用いて、遮蔽領域の判定を行ってもよい。ここで、測位信号の受信回数とは、追尾可能な信号受信強度で受信した回数を意味する。
また、上述の説明では、信号受信強度SSの大小から遮蔽領域を設定する態様を示した。しかしながら、信号受信強度SSのバラツキの大小関係から遮蔽領域を設定することもできる。この場合、バラツキが大きい方が遮蔽領域に設定され、バラツキが小さい方が非遮蔽領域に設定される。
また、上述の説明では、遮蔽領域の設定タイミングについて、詳細に記載していない。遮蔽領域の設定タイミングは、例えば、実使用する測位演算を開始する前、すなわち、測位装置の使用の初期であればよい。さらに、遮蔽領域は、所定の時間間隔で設定され、その都度、測位演算にフィードバックされてもよい。また、遮蔽領域の設定のため、すなわち、スカイプロット800の生成のための、信号受信強度SSの観測、仰角Φbおよび方位角θbの取得は、可能な限り長い時間をかけた方が好ましい。これにより、船体90外に存在する遮蔽要素(外乱による遮蔽)の影響を抑制できる。
10、10A:測位装置
20、20A:演算部
21、21A:測位演算部
22:遮蔽情報設定部
30、30A:アンテナ装置
40:慣性センサ
90:船体
221:衛星方向算出部
222:分布生成部
223:遮蔽領域設定部
800:スカイプロット
811B、811C、812B、812C:投影点
aij:遮蔽判定用領域
COb:ボディ座標系によって定義された天頂側の半球の領域
NM:航法メッセージ
SAT1、SAT2、SATm:測位衛星
SatN:識別情報
SS:信号受信強度

Claims (16)

  1. 測位信号に重畳された航法メッセージから得られるNED座標系での測位衛星の位置と、前記測位信号の受信結果から得られる測位装置の姿勢角と、を用いて、前記測位衛星の前記測位装置におけるボディ座標系での仰角および方位角を算出する衛星方向算出部と、
    前記測位衛星の前記ボディ座標系での仰角および方位角と前記測位信号の信号受信強度と、を用いて、前記信号受信強度の前記ボディ座標系での分布を生成する分布生成部と、
    前記ボディ座標系での分布を用いて、測位への影響を低くまたはゼロに設定する測位信号の決定に用いる遮蔽領域を設定する遮蔽領域設定部と、
    を備える、測位装置。
  2. 請求項1に記載の測位装置であって、
    前記分布生成部は、
    前記測位装置を中心として前記ボディ座標系によって定義された天頂側の半球の領域を、前記ボディ座標系における基準面に二次元投影した全体領域を設定し、
    前記遮蔽領域設定部は、
    前記全体領域における前記ボディ座標系での分布を用いて、前記遮蔽領域を設定する、
    測位装置。
  3. 請求項2に記載の測位装置であって、
    前記遮蔽領域設定部は、
    前記ボディ座標系での仰角と方位角とを基準にして、前記全体領域を複数の遮蔽判定用領域に分割し、
    前記複数の遮蔽判定用領域の単位で前記遮蔽領域を設定する、
    測位装置。
  4. 請求項3に記載の測位装置であって、
    前記遮蔽領域設定部は、
    前記ボディ座標系での仰角毎に、方位角方向に並ぶ複数の前記遮蔽判定用領域の前記信号受信強度の大きさまたは前記信号受信強度の大きさのバラツキから、前記遮蔽領域を設定する、
    測位装置。
  5. 請求項3に記載の測位装置であって、
    前記遮蔽領域設定部は、
    前記全体領域における前記複数の遮蔽判定用領域の前記信号受信強度の大きさまたは前記信号受信強度の大きさのバラツキから、前記遮蔽領域を設定する、
    測位装置。
  6. 請求項1乃至請求項5のいずれかに記載の測位装置であって、
    複数のGNSSアンテナで受信した前記測位信号の搬送波信号を用いて、前記測位装置の姿勢角を算出し、複数のGNSSアンテナの少なくとも1個のGNSSアンテナで受信した前記測位信号のコードを用いて、前記測位装置の位置を算出する測位演算部を備える、
    測位装置。
  7. 請求項6に記載の測位装置であって、
    前記測位演算部は、
    前記遮蔽領域設定部で設定された前記遮蔽領域に含まれるか否かによって、前記測位衛星の前記測位信号に対する重みつけを異ならせて、前記姿勢角および前記位置を算出する、
    測位装置。
  8. 請求項6または請求項7に記載の測位装置であって、
    前記測位装置の位置は、前記複数のGNSSアンテナのいずれかのGNSSアンテナの位置、または、前記複数のGNSSアンテナの幾何学的な中心位置である、
    測位装置。
  9. 測位信号に重畳された航法メッセージから得られるNED座標系での測位衛星の位置と、前記測位信号の受信結果から得られる測位装置の姿勢角と、を用いて、前記測位衛星の前記測位装置におけるボディ座標系での仰角および方位角を算出し、
    前記測位衛星の前記ボディ座標系での仰角および方位角と前記測位信号の信号受信強度と、を用いて、前記信号受信強度の前記ボディ座標系での分布を生成し、
    前記ボディ座標系での分布を用いて、測位への影響を低くまたはゼロに設定する測位信号の決定に用いる遮蔽領域を設定する、
    測位方法。
  10. 請求項9に記載の測位方法であって、
    前記測位装置を中心として前記ボディ座標系によって定義された天頂側の半球の領域を、前記ボディ座標系における基準面に二次元投影した全体領域を設定し、
    前記全体領域における前記ボディ座標系での分布を用いて、前記遮蔽領域を設定する、
    測位方法。
  11. 請求項10に記載の測位方法であって、
    前記ボディ座標系での仰角と方位角とを基準にして、前記全体領域を複数の遮蔽判定用領域に分割し、
    前記複数の遮蔽判定用領域の単位で前記遮蔽領域を設定する、
    測位方法。
  12. 請求項11に記載の測位方法であって、
    前記ボディ座標系での仰角毎に、方位角方向に並ぶ複数の前記遮蔽判定用領域の前記信号受信強度の大きさまたは前記信号受信強度の大きさのバラツキから、前記遮蔽領域を設定する
    測位方法。
  13. 請求項11に記載の測位方法であって、
    前記全体領域における前記複数の遮蔽判定用領域の前記信号受信強度の大きさまたは前記信号受信強度の大きさのバラツキから、前記遮蔽領域を設定する、
    測位方法。
  14. 請求項9乃至請求項13のいずれかに記載の測位方法であって、
    複数のGNSSアンテナで受信した前記測位信号の搬送波信号を用いて、前記測位装置の姿勢角を算出し、複数のGNSSアンテナの少なくとも1個のGNSSアンテナで受信した前記測位信号のコードを用いて、前記測位装置の位置を算出する、
    測位方法。
  15. 請求項14に記載の測位方法であって、
    前記遮蔽領域に含まれるか否かによって、前記測位衛星の前記測位信号に対する重みつけを異ならせて、前記姿勢角および前記位置を算出する、
    測位方法。
  16. 請求項14または請求項15に記載の測位方法であって、
    前記測位装置の位置は、前記複数のGNSSアンテナのいずれかのGNSSアンテナの位置、または、前記複数のGNSSアンテナの幾何学的な中心位置である、
    測位方法。
JP2018213134A 2018-11-13 2018-11-13 測位装置、測位方法 Active JP7107820B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018213134A JP7107820B2 (ja) 2018-11-13 2018-11-13 測位装置、測位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018213134A JP7107820B2 (ja) 2018-11-13 2018-11-13 測位装置、測位方法

Publications (2)

Publication Number Publication Date
JP2020079748A true JP2020079748A (ja) 2020-05-28
JP7107820B2 JP7107820B2 (ja) 2022-07-27

Family

ID=70801706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018213134A Active JP7107820B2 (ja) 2018-11-13 2018-11-13 測位装置、測位方法

Country Status (1)

Country Link
JP (1) JP7107820B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111137A (ja) * 1996-10-07 1998-04-28 Hitachi Ltd Gpsナビゲーション装置
JP2000075010A (ja) * 1998-09-02 2000-03-14 Communication Research Laboratory Mpt 地点別上空見通し範囲作成方法
JP2002158525A (ja) * 2000-11-22 2002-05-31 Mitsubishi Electric Corp 衛星追尾用アンテナ制御装置
JP2004184121A (ja) * 2002-11-29 2004-07-02 Denso Corp Gps受信機の制御装置、及び、サーバ装置
JP2007093483A (ja) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp 測位装置、測位方法および測位プログラム
JP2012098158A (ja) * 2010-11-02 2012-05-24 Toyota Central R&D Labs Inc 衛星信号判定装置及びプログラム
US20140336929A1 (en) * 2010-05-24 2014-11-13 Robert J. Wellington Determining Spatial Orientation Information of a Body from Multiple Electromagnetic Signals
JP2017015585A (ja) * 2015-07-02 2017-01-19 株式会社トプコン 航法信号処理装置、航法信号処理方法および航法信号処理用プログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111137A (ja) * 1996-10-07 1998-04-28 Hitachi Ltd Gpsナビゲーション装置
JP2000075010A (ja) * 1998-09-02 2000-03-14 Communication Research Laboratory Mpt 地点別上空見通し範囲作成方法
JP2002158525A (ja) * 2000-11-22 2002-05-31 Mitsubishi Electric Corp 衛星追尾用アンテナ制御装置
JP2004184121A (ja) * 2002-11-29 2004-07-02 Denso Corp Gps受信機の制御装置、及び、サーバ装置
JP2007093483A (ja) * 2005-09-29 2007-04-12 Mitsubishi Electric Corp 測位装置、測位方法および測位プログラム
US20140336929A1 (en) * 2010-05-24 2014-11-13 Robert J. Wellington Determining Spatial Orientation Information of a Body from Multiple Electromagnetic Signals
JP2012098158A (ja) * 2010-11-02 2012-05-24 Toyota Central R&D Labs Inc 衛星信号判定装置及びプログラム
JP2017015585A (ja) * 2015-07-02 2017-01-19 株式会社トプコン 航法信号処理装置、航法信号処理方法および航法信号処理用プログラム

Also Published As

Publication number Publication date
JP7107820B2 (ja) 2022-07-27

Similar Documents

Publication Publication Date Title
US11409003B1 (en) Global navigation satellite system beam based attitude determination
CN114174850A (zh) 用于高完整性卫星定位的系统和方法
CN106560728B (zh) 用于目标速度估算的雷达视觉融合
JP6865521B2 (ja) 航法信号処理装置、航法信号処理方法および航法信号処理用プログラム
US10429500B2 (en) Tracking apparatus, tracking method, and computer-readable storage medium
JP6484512B2 (ja) レーザスキャナ制御装置、レーザスキャナ制御方法およびレーザスキャナ制御用プログラム
US20070115174A1 (en) Direction finding and mapping in multipath environments
CN106371114A (zh) 用于车辆的定位设备和方法
CN110889380B (zh) 一种舰船识别方法、装置及计算机存储介质
CN114581480B (zh) 多无人机协同目标状态估计控制方法及其应用
CN106569206B (zh) 一种基于微波光学复合的目标探测方法
JP6616961B2 (ja) 状況的可視化のための電磁識別(emid)タグを用いた部品の位置決め
US20140091966A1 (en) Multi-antenna radio-navigation signals reception device
JP2007232688A (ja) Gps妨害波抑制装置、及びgps妨害波抑制システム
JP7107820B2 (ja) 測位装置、測位方法
Kumar et al. Identifying reflected gps signals and improving position estimation using 3d map simultaneously built with laser range scanner
US10976447B2 (en) Azimuth angle calculating device, and method of calculating azimuth angle
JP2011208998A (ja) 船舶用衛星通信装置のgps信号受信手段
KR102238628B1 (ko) 전파간섭환경에서 uav를 활용한 선박 백업 항법 시스템 및 그 방법
JP2023021727A (ja) 距離推定装置、アンテナ装置、給電システム、給電装置、及び給電方法
KR102053845B1 (ko) Pga 기반의 표적 탐지용 영상 생성 방법 및 그 장치
WO2019150483A1 (ja) 速度算出装置、速度算出方法、及び、プログラム
US20230296717A1 (en) Search and rescue system with doppler-nulling spatial awareness
JP2019132713A (ja) 速度算出装置、速度算出方法、及び、プログラム
JP2019132717A (ja) 速度算出装置、速度算出方法、及び、プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220714

R150 Certificate of patent or registration of utility model

Ref document number: 7107820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150