WO2019150483A1 - 速度算出装置、速度算出方法、及び、プログラム - Google Patents

速度算出装置、速度算出方法、及び、プログラム Download PDF

Info

Publication number
WO2019150483A1
WO2019150483A1 PCT/JP2018/003199 JP2018003199W WO2019150483A1 WO 2019150483 A1 WO2019150483 A1 WO 2019150483A1 JP 2018003199 W JP2018003199 W JP 2018003199W WO 2019150483 A1 WO2019150483 A1 WO 2019150483A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
calculation
calculating
satellites
satellite
Prior art date
Application number
PCT/JP2018/003199
Other languages
English (en)
French (fr)
Inventor
良樹 轡
淑子 加藤
一聡 田中
加藤 正浩
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2018/003199 priority Critical patent/WO2019150483A1/ja
Publication of WO2019150483A1 publication Critical patent/WO2019150483A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/52Determining velocity
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/052Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed

Definitions

  • the present invention relates to a technique for calculating the speed of a moving object.
  • the vehicle speed is detected using a vehicle speed sensor, a GNSS (GPS) receiver, or the like.
  • a speed detection method using a GNSS receiver obtains a speed by calculating a Doppler shift or a position difference.
  • the speed detection method using the GNSS receiver calculates the speed using the observed value, the accuracy is lowered depending on the environment and behavior of the vehicle. Specifically, when the radio wave reception from the satellite is bad or when the acceleration / deceleration of the vehicle is large (especially in the low speed range), the accuracy of the detected value decreases and the speed detection accuracy decreases. . In order to improve this point, a system that corrects dynamics such as actual acceleration / deceleration by combining with inertial navigation unit (IMU) is also proposed, but the actual positioning environment is bad The correction according to was not performed. On the other hand, in the speed calculation method using the external sensor, the speed calculation itself cannot be performed when there is no object around the vehicle.
  • IMU inertial navigation unit
  • An object of the present invention is to provide a speed calculation device that can calculate a speed with high accuracy in various environments by using a GNSS receiver and an external sensor.
  • the invention according to claim 1 is a speed calculation device, based on a first calculation means for calculating the speed of a moving body based on an output of a detection device for detecting a feature, and on a signal received from a satellite.
  • the invention according to claim 8 is a speed calculation method executed by the speed calculation device, the first calculation step of calculating the speed of the moving body based on the output of the detection device for detecting the feature, and a satellite
  • the invention according to claim 9 is a program executed by a speed calculation device including a computer, wherein the first calculation means for calculating the speed of the moving body based on the output of the detection device for detecting the feature, the satellite Second calculation means for calculating the speed of the moving body based on the signal received from the first speed, and the speed calculated by the first calculation means and the second calculation means based on the number of satellites that have normally received the signal.
  • the computer is caused to function as speed calculation means for weighting the measured speed and calculating the speed of the moving body.
  • the velocity calculation device is based on a first calculation means for calculating the velocity of the moving body based on an output of a detection device that detects a feature, and on a signal received from a satellite.
  • the second calculation means for calculating the speed of the moving body, and the speed calculated by the first calculation means and the speed calculated by the second calculation means based on the number of satellites that have received signals normally, Speed calculating means for calculating the speed of the moving body.
  • the speed calculation means increases the weight of the speed calculated by the second calculation means as the number of satellites that have normally received signals increases. In this aspect, speed detection accuracy can be improved by using a large number of satellites that have received signals normally.
  • the speed calculation means may be configured to subtract the number of satellites shielded by a feature from the total number of satellites that have received the signal, and then the satellite that has normally received the signal. Calculate as a number. As a result, the number of satellites that have normally received signals can be accurately calculated.
  • the speed calculation means includes an elevation angle of the satellite with respect to a receiver that receives a signal from the satellite, and a distance between the feature existing in the direction of the satellite and the moving body. Based on the above, the number of shielded satellites is calculated. In this aspect, whether or not the satellite is shielded by the feature is determined based on the positional relationship between the direction of the satellite and the feature.
  • the detection device detects the feature by two-dimensional scanning, and the speed calculation unit uses the height of the feature acquired from map information to detect the satellite. It is determined whether or not the feature is shielded.
  • the detection device detects the feature by three-dimensional scanning, and the speed calculation means includes an elevation angle in a scanning direction when the detection device detects the uppermost portion of the feature, and Using the elevation angle of the satellite, it is determined whether or not the satellite is shielded by the feature.
  • the speed calculation unit may be configured based on the accuracy of the speed calculated by the first calculation unit and the accuracy of the speed calculated by the second calculation unit.
  • the speed calculated by the calculating means and the weight of the speed calculated by the second calculating means are changed.
  • an appropriate weight is determined according to the accuracy of each of the first calculation unit and the second calculation unit.
  • the speed calculation means determines the accuracy of the speed calculated by the first calculation means based on variations in the output of the detection device, and is calculated using a signal received from the satellite.
  • the accuracy of the speed calculated by the second calculation means is determined based on the variation in the position information.
  • a program executed by a speed calculation device including a computer is a first calculation means for calculating a speed of a moving body based on an output of a detection device for detecting a feature, a satellite Second calculation means for calculating the speed of the moving body based on the signal received from the first speed, and the speed calculated by the first calculation means and the second calculation means based on the number of satellites that have normally received the signal.
  • the computer is caused to function as speed calculation means for weighting the measured speed and calculating the speed of the moving body.
  • a speed calculation device can be realized by executing this program on a computer. This program can be stored and handled in a storage medium.
  • the GNSS receiver 2 is a device that receives radio waves from a plurality of satellites and measures the current position, and includes an antenna 21, a GNSS data acquisition unit 22, and a positioning calculation unit 23.
  • the antenna 21 receives radio waves from a plurality of satellites and supplies received signals to the GNSS data acquisition unit 22.
  • GNSS data acquisition unit 22 acquires the GNSS data D G based on radio waves from satellites, and supplies to the positioning computation unit 23 and the speed calculation device 1.
  • GNSS data D G is the data including distance and position of each satellite and each satellite that receives radio waves.
  • Positioning calculation unit 23 calculates the current position of the vehicle based on GNSS data D G from a plurality of satellites, and supplies to the velocity calculating device 1.
  • the lidar 3 is mounted on a vehicle, scans outgoing light over a predetermined angle range, receives reflected light obtained by reflecting the outgoing light by an object, and indicates point cloud data indicating the object based on the reflected light.
  • supplies lidar data D L is the velocity calculating apparatus 1.
  • the lidar 3 may be a two-dimensional (2D) lidar or a three-dimensional (3D) lidar.
  • the 2D lidar is a device that scans outgoing light in a horizontal plane
  • the 3D lidar is a device that scans outgoing light while changing the elevation angle of the outgoing light.
  • Speed sensor 4 for example the vehicle speed sensor, and the like acceleration sensor, and supplies the sensor data D S to the speed calculation device 1.
  • the speed calculation unit 11 calculates the speed of the vehicle based on the position data generated by the positioning calculation unit 23 of the GNSS receiver 2. Specifically, the speed calculation unit 11 calculates the moving amount per unit time of the current position of the vehicle indicated by the position data as the speed.
  • the speed generated by the speed calculation unit 11 based on the output of the GNSS receiver 2 is referred to as “GNSS speed V G ”.
  • Speed calculation unit 11 supplies the GNSS speed V G to the speed determination unit 18.
  • Feature identifying unit 12 identifies the feature based on the lidar data D L is the point group data of the feature, the presence or absence of a feature, the distance to the feature, the feature of the angles (azimuth, elevation), etc. calculating a feature specific data D GO comprising supplying to the velocity calculation unit 13 and the state determination section 17. Note that the feature is specified using a shape pattern prepared in advance for each type of feature and indicating the shape, size, and the like of the feature.
  • the speed calculation unit 13 calculates the speed of the vehicle 1 based on the feature specifying data D GO .
  • the speed at which the velocity calculation unit 13 on the basis of lidar data D L is calculated from rider 3 is referred to as a "rider velocity V L".
  • the speed calculation unit 13 supplies the rider speed V L to the speed determination unit 18.
  • FIG. 2 is a diagram for explaining a method for calculating the rider speed V L.
  • two feature A in each onboard rider is a time T 1 and time T 2, the traveling vehicle, and that detects a feature B.
  • the distance from the vehicle at time T 1 the distance to the feature B and L B, the azimuth viewed feature from the vehicle at time T 1 and phi B, from the vehicle at time T 2, to feature B Is defined as L B ′, the azimuth angle when the feature is viewed from the vehicle at time T 2 is defined as ⁇ B ′, and the angle ⁇ is defined as ⁇ ⁇ B ′ ⁇ B , the vehicle from time T 1 to time T 2 Is given by the following equation.
  • Speed calculation unit 14 calculates the speed of the vehicle based on the sensor data D S which is supplied from the speed sensor 4.
  • the speed at which the velocity calculation unit 14 based on the sensor data D S is calculated from the speed sensor 4 is referred to as a "sensor rate V S".
  • the speed calculation unit 14 supplies the sensor speed V S to the speed determination unit 18.
  • the speed calculation unit 11 is an example of the second calculation unit of the present invention
  • the speed calculation unit 13 is an example of the first calculation unit of the present invention
  • the situation determination unit 17 and the speed determination unit 18 are the main calculation unit. It is an example of the speed calculation means of invention.
  • the lidar 3 is an example of the detection device of the present invention
  • the GNSS receiver 2 is an example of the receiver of the present invention.
  • FIG. 3 is a flowchart of a speed calculation process for calculating the speed V. This process is mainly executed by the situation determination unit 17 and the speed determination unit 18 shown in FIG. In practice, this processing is realized by a computer such as a CPU executing a program prepared in advance.
  • the situation determination unit 17 determines whether or not the speed calculation by GNSS is valid (step S10). Specifically, state determination section 17, based on GNSS data D G supplied from the GNSS receiver 2 judges reception conditions of a plurality of satellites, and can receive radio waves at a predetermined level or higher strength When there are a predetermined number or more of satellites, it is determined that speed calculation by GNSS is effective.
  • the “predetermined number” in this case is the minimum number of satellites necessary for positioning the position of the vehicle based on the positions of the satellites, and can be obtained in advance by experiments or the like.
  • step S10 determines whether or not the speed calculation by the rider is valid (step S11). Specifically, state determination section 17, based on the lidar data D L supplied from the rider 3, the number of features required for calculating the speed is determined whether it has been detected, it is detected In this case, it is determined that the speed calculation by the rider is effective.
  • step S10 when it is determined that the speed calculation by GNSS is valid (step S10: Yes), the situation determination unit 17 determines whether the speed calculation by the rider is valid (step S14). If the speed calculated by the rider is not valid (step S14: No), status determining unit 17, the speed determining portion control signal C1 for instructing the use of GNSS speed V G to be calculated based on the output of the GNSS receiver 2 supplied to 18, the rate determining unit 18 outputs the GNSS speed V G as the speed V (step S15).
  • step S14 if the speed calculated by the rider is enabled (step S14: Yes), so that both the GNSS speed V G and rider velocity V L is obtained.
  • the speed determination unit 18 calculates the velocity V by weighted addition of GNSS speed V G and rider velocity V L. Assuming that the weight of the GNSS speed V G is w G and the weight of the rider speed V L is w L , the speed determination unit 18 determines the speed V by the following equation, for example.
  • state determination section 17 are both of GNSS speed V G and rider velocity V L is carried out for determining precision determination processing whether a high accuracy (Step S16).
  • accuracy determination There are several examples of accuracy determination, which will be described later.
  • the situation determination unit 17 makes the weight w G of the GNSS speed V G larger than the weight w L of the rider speed V L (step S17). ).
  • the status determination unit 17 is larger than the weight w G of weights w L a GNSS speed V G of the rider velocity V L ( Step S18).
  • the speed determination unit 18 calculates and outputs the speed V by the above equation (2) using the weights w G and w L set in step S17 or S18 (step S19).
  • the speed V can be calculated with the highest possible accuracy.
  • the situation determination unit 17 performs accuracy determination based on the number of satellites that the GNSS receiver 2 has normally received signals.
  • FIG. 4 is a flowchart of the accuracy determination process according to the first embodiment.
  • the situation determination unit 17 acquires the feature specifying data D GO from the feature specifying unit 12 (step S21).
  • the situation determination unit 17 counts the number of satellites that cannot receive direct waves among a plurality of satellites that are receiving radio waves, that is, the number of satellites that are blocked by obstacles (step S22).
  • the “satellite receiving a radio wave” means a satellite that receives a radio wave at an intensity level necessary for positioning by the GNSS receiver 2.
  • FIG. 5A shows a method of counting the number of satellites whose radio waves are blocked by obstacles (hereinafter also referred to as “shielded satellites”) when the lidar 3 mounted on the vehicle is a 2D lidar.
  • FIG. FIG. 5A shows a state in which a predetermined azimuth angle direction is viewed from the vehicle 7.
  • Status determining unit 17 selects one satellite being received radio waves, obtain GNSS data D G.
  • the situation determination part 17 acquires the height h0 of the antenna 21 mounted on the vehicle 7 from the vehicle information DB 16. Moreover, the situation determination part 17 acquires the height h of the building which exists in the direction of a satellite from map DB15. Furthermore, the situation determination unit 17 acquires the distance L to the building from the feature specifying data D GO acquired in step S21. For convenience of explanation, it is assumed that the height of the 2D lidar is the same as the height h0 of the antenna.
  • the height H at which the satellite is seen from the antenna 21 mounted on the vehicle 7 (broken line 31) hits the building, that is, the broken line 31 connecting the antenna 21 and the satellite intersects the perpendicular to the ground at the position of the building.
  • FIG. 5B is a diagram illustrating a method of counting the number of satellites that are shielded when the lidar 3 mounted on the vehicle is a 3D lidar.
  • FIG. 5B schematically shows a three-dimensional space including the vehicle 7, the building, and the satellite.
  • Status determining unit 17 selects one satellite being received radio waves, and calculates the elevation angle ⁇ of the satellite using the GNSS data D G.
  • the situation determination part 17 acquires the height h0 of the antenna 21 mounted on the vehicle 7 from the vehicle information DB 16.
  • the height of the 3D lidar is the same as the height h0 of the antenna.
  • the situation determination unit 17 determines whether there is a building in the direction of viewing the satellite from the position of the antenna 21, that is, in the direction of the elevation angle ⁇ (broken line 32). If there is a building, it is determined that the satellite is a shielded satellite. For example, the situation determination unit 17 determines that the satellite is shielded by the building when the elevation angle in the scanning direction when the top of the building is detected by the 3D lidar is larger than the elevation angle ⁇ of the satellite. The situation determination unit 17 performs this process for all satellites that are receiving radio waves, and calculates the number of satellites that are blocked.
  • the situation determination unit 17 subtracts the number of shielded satellites from the total number of satellites being received, that is, the number of satellites that can normally receive radio waves (hereinafter referred to as the number of satellites that can be normally received). , Also referred to as “the number of normally received satellites”) is determined to be equal to or greater than a certain ratio with respect to the total number of satellites being received (step S23).
  • This fixed ratio is a ratio of the number of normally received satellites necessary for realizing the required accuracy, and is determined in advance based on experiments or the like.
  • step S23: Yes When status determination unit 17 is the number of normal reception satellite more than a certain percentage of the total number of satellites being received (step S23: Yes), towards the GNSS speed V G is determined to be a high precision (step S24 ). On the other hand, when the number of normally received satellites is less than a certain ratio of the number of all currently received satellites (step S23: No), the situation determining unit 17 determines that the lidar speed V L is more accurate (step S25). Thus, the accuracy determination process ends.
  • the situation determination unit 17 increases the weight w G of the GNSS speed V G in step S17 as the ratio of the number of normal reception satellites increases, and the lidar speed V in step S18 as the ratio of the number of normal reception satellites decreases. it is preferable to increase the weights w L of L.
  • the weight w G is determined by evaluating the accuracy of the GNSS speed V G based on the number of satellites that can normally receive radio waves. It is possible to calculate the speed V with high accuracy even in a situation of being shielded.
  • the situation determination unit 17 determines whether or not the number of normally received satellites is greater than or equal to a certain ratio with respect to the total number of satellites being received in step S23. It may be determined whether or not the number of satellites to be received is equal to or greater than a certain ratio with respect to the total number of satellites being received. In that case, the situation determination unit 17 determines that the lidar speed VL is more accurate when the number of satellites to be shielded is equal to or greater than a certain ratio with respect to the total number of satellites being received. towards the GNSS speed V G may be determined to be accurate if that number of satellites is less than a certain percentage of the total number of satellites being received.
  • the situation determination unit 17 determines whether or not the number of normally received satellites is equal to or greater than a certain ratio with respect to the total number of satellites being received. It may be determined whether or not is a predetermined number or more. Similarly, when the determination is performed using the number of satellites that are blocked, the situation determination unit 17 may determine whether or not the number of satellites that are blocked is equal to or greater than a predetermined number.
  • the status determining section 17, the larger the variation of the GNSS data D G reduces the weight w G of GNSS speed V G, to increase the weight w G enough GNSS velocity V G variation in GNSS data D G is small.
  • state determination section 17 calculates the standard deviation of the distance and / or orientation of the values of the feature of the feature indicated by the lidar data D L obtained within a predetermined time, vary how those values Detect whether or not
  • the situation determination unit 17 sets weights for the GNSS speed V G and the rider speed V L according to the acceleration of the vehicle.
  • GNSS data D G obtained by the GNSS receiver 2
  • the situation determination unit 17 determines that the rider speed V L is more accurate when the acceleration of the vehicle is large, and the GNSS speed V G when the acceleration of the vehicle is small. Is determined to be highly accurate.
  • FIG. 6 is a flowchart of the accuracy determination process according to the second embodiment.
  • the situation determination unit 17 acquires the feature specification data D GO from the feature specification unit 12 (step S31), and determines whether or not the acceleration of the vehicle is equal to or greater than a certain value using the feature specification data G DO. (Step S32). For example, the situation determination unit 17 periodically calculates the speed based on the feature specifying data G DO , and if the difference between the previous speed and the current speed is a certain value or more, the vehicle acceleration is a certain value or more.
  • the status determining section 17 when the acceleration of the vehicle is less than a predetermined value, it is determined that the direction of GNSS speed V G is high precision (step S33), if it is the acceleration of the vehicle is above a certain value Determines that the rider speed VL is more accurate (step S34). Then, the situation determination unit 17 ends the accuracy determination process.
  • the situation determination unit 17 increases the weight w G of the GNSS speed V G in step S17 as the vehicle acceleration decreases, and increases the weight w L of the rider speed V L in step S18 as the vehicle acceleration increases. It is preferable to enlarge it.
  • the situation determination unit 17 acquires the feature specifying data D GO from the feature specifying unit 12 (step S41). Next, the situation determination unit 17 counts the number of satellites that are shielded among a plurality of satellites that are receiving radio waves (step S42). Next, the situation determination unit 17 determines whether or not the number of normally received satellites is equal to or greater than a certain ratio with respect to the total number of satellites being received (step S43). When the number of normally received satellites is less than a certain percentage of the total number of satellites being received (step S43: No), the situation determination unit 17 determines that the lidar speed V L is more accurate (step S46).
  • step S43 when the number of normally received satellites is equal to or greater than a certain percentage of the total number of satellites being received (step S43: Yes), the situation determination unit 17 uses the feature specifying data D GO to increase the vehicle acceleration to a certain value or more. It is determined whether or not (step S44).
  • step S44: No if the acceleration of the vehicle is less than a predetermined value (step S44: No), towards the GNSS speed V G is determined to be accurate (step S45), the acceleration of the vehicle is a predetermined value or more If present (step S44: Yes), it is determined that the rider speed VL is more accurate (step S46). Thus, the accuracy determination process ends.
  • the weight obtained by the accuracy judgment processing of the first embodiment is multiplied by the weight obtained by the accuracy judgment processing of the second embodiment.
  • the final weight may be determined.
  • the situation determination unit 17 performs both the accuracy determination process according to the first embodiment and the determination process according to the second embodiment in step S16 in FIG.
  • the weight of GNSS velocity V G obtained by the precision determination process of Embodiment 1 w G1, the weight of the rider velocity V L and w L1, GNSS speed obtained by the precision determination process of the second embodiment the weight of V G w G2, if the weight of the rider velocity V L is the w L2, state determination section 17 multiplies their weights, respectively, the weights w G and rider speeds of GNSS velocity V G as follows it may be calculated the weight w L of V L.
  • Weight of GNSS velocity V G: w G w G1 ⁇ w G2 (4)
  • Weight of rider speed VL: w L w L1 ⁇ w L2 (5)
  • the speed V can be calculated with high accuracy in consideration of both the satellite reception state and the vehicle acceleration / deceleration state.
  • the situation determination unit 17 sets the weights of the GNSS speed V G and the rider speed V L according to the number of features existing around the vehicle, more specifically, the number of features detected by the rider 3. Since the lidar 3 scans the outgoing light around it and receives the reflected light reflected by the feature to detect the feature existing around it, if the number of features around the vehicle is small, the lidar data D The accuracy of the rider speed V L calculated based on L decreases. Therefore, in the third embodiment, the situation determination unit 17 determines that the rider speed V L is more accurate when the number of features existing around the vehicle is large, and the number of features present around the vehicle. towards the GNSS velocity V G in the case is small is determined to be accurate.
  • the situation determination unit 17 increases the weight w G of the GNSS speed V G in step S17 as the number of features existing in the vicinity of the vehicle decreases, and increases as the number of features existing in the vicinity of the vehicle increases in step S18. In this case, it is preferable to increase the weight w L of the rider speed V L.
  • the speed V can be calculated with accuracy.
  • the situation determination unit 17 sets the weights of the GNSS speed V G and the rider speed V L according to the weather information of the place where the vehicle exists.
  • the lidar 3 scans the outgoing light around it, receives the reflected light reflected by the features and detects the features present in the surroundings, and thus affects the reflection and scattering of light such as fog, snow, and rain.
  • under weather give the accuracy of the lidar speed V L to be calculated based on the rider data D L is reduced. Therefore, in the fourth embodiment, the situation determination unit 17 acquires weather information of a place where the vehicle is present, and is a weather situation where the accuracy of the rider is reduced (hereinafter referred to as “low precision weather situation”). towards the GNSS speed V G than rider velocity V L in is judged to be accurate.
  • the determination as to whether or not it is “low precision weather conditions” can be made as follows.
  • the situation determination unit 17 can make this determination based on weather information of the location of the vehicle.
  • the situation determination unit 17 may access an external server (not shown) to acquire weather information of an area where the vehicle exists, and perform determination based on the weather information.
  • the situation determination unit 17 can make this determination based on the output of the humidity sensor. For example, the situation determination part 17 can determine that it is a low-precision weather situation when the humidity output from the humidity sensor is equal to or higher than a predetermined value.
  • the situation determination unit 17 can make this determination based on the output of the raindrop sensor mounted on the vehicle. For example, when the moisture or water pressure detected by the raindrop sensor is greater than or equal to a predetermined value, it can be determined that the weather condition is low accuracy.
  • the situation determination unit 17 estimates the weather at that time by analyzing the image captured by the camera, and makes this determination based on the result. It can be carried out. Furthermore, this determination may be performed by detecting rain sound included in sound collected by a camera or the like.
  • FIG. 9 is a flowchart of the accuracy determination process according to the fourth embodiment.
  • the situation determination unit 17 acquires the weather information around the vehicle by any one of the above methods (step S61), and the weather situation around the vehicle changes to a weather situation where the lidar accuracy is lowered, that is, a low-precision weather situation. It is determined whether or not this is true (step S62).
  • the accuracy determination process ends.
  • the accuracy determination process of the fourth embodiment can be performed in combination with any one, any two, or all of the accuracy determination processes of the first to third embodiments.
  • the situation determination unit 17 determines the ratio of the number of normally received satellites, the acceleration of the vehicle, and the number of features existing around the vehicle. , it will perform weighting of GNSS speed V G and rider velocity V L in consideration of the weather conditions around the vehicle.
  • the situation determination unit 17 executes the accuracy determination processing of the first to fourth embodiments in step S16 in FIG. 3 to obtain the weights of the first to fourth embodiments. Each may be calculated and multiplied to determine the final weight.
  • the status determination unit 17 sets the weight of the GNSS speed V G and rider velocity V L on the basis of the number of normal reception satellites.
  • the situation determination unit 17 may limit the satellites used for calculation of the GNSS speed V G according to the number of normally received satellites. That is, in the first modification, the speed calculation device uses the GNSS data D G acquired only from the normal reception satellites in addition to weighting the GNSS speed V G and the lidar speed V L based on the number of normal reception satellites. To calculate the GNSS speed V G.
  • FIG. 10 shows a configuration of a speed calculation device 1A according to the first modification.
  • the situation determination unit 17 supplies the control signal C ⁇ b> 2 to the positioning calculation unit 23.
  • the control information C2 indicates the satellite to be shielded identified in step S22 of the accuracy determination process of the first embodiment shown in FIG. That is, when the situation determination unit 17 specifies the satellites to be shielded, the situation determination unit 17 supplies the positioning calculation unit 23 with control information C2 for specifying them.
  • Positioning operation unit 23 supplies, among all satellites in reception, satellite other than the satellite to be shielded, i.e. calculates the current position of the vehicle based on GNSS data D G from the normal reception satellite, the velocity calculation unit 11 .
  • the speed calculation unit 11 calculates the GNSS speed V G based on the GNSS data D G corresponding only to the normal reception satellite. Therefore, as compared with the case of calculating the GNSS velocity V G based on GNSS data D G from the total received satellite including satellite is shielded, to increase the accuracy of GNSS speed V G for the speed calculation unit 11 outputs it can.
  • Modification 1 can be implemented in combination with any one, any two, or all of the second to fourth embodiments described above.
  • the speed calculation unit 11 calculates the GNSS speed V G using the GNSS data D G from only the normal reception satellite.
  • Modification 2 In the above first modification, the speed calculation apparatus 1A, in addition to calculating GNSS velocity V G using GNSS data D G only from normal reception satellite, the GNSS speed V G based on the number of normal reception satellite The rider speed V L is weighted. Instead, in the second modification, the GNSS speed V G is calculated using the GNSS data D G from only the normal receiving satellites, but the weighted addition of the GNSS speed V G and the lidar speed V L based on the number of normal receiving satellites Will not be performed.
  • the configuration of the speed calculation apparatus according to the second modification is basically the same as that of the speed calculation apparatus 1A according to the first modification.
  • the situation determination unit 17 does not supply the speed calculation unit 18 with a weighted addition instruction and weights W G and W L for that purpose. Therefore, the speed determination unit 18 selects any one of the GNSS speed V G , the rider speed V L , and the sensor speed V S and outputs it as the speed V.
  • the speed calculation unit 11 since the calculated GNSS velocity V G based on GNSS data D G obtained only from the normal reception satellite, GNSS speed based on GNSS data DG from the total received satellite including satellite is shielded as compared with the case of calculating the V G, it is possible to improve the accuracy of GNSS speed V G for the speed calculation unit 11 outputs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

速度算出装置は、地物を検出する検出装置の出力に基づいて、移動体の速度を算出するとともに、衛星から受信した信号に基づいて、移動体の速度を算出する。そして、速度算出装置は、正常に信号を受信した衛星数に基づいて、第1算出手段が算出した速度及び第2算出手段が算出した速度を重み付けし、移動体の速度を算出する。

Description

速度算出装置、速度算出方法、及び、プログラム
 本発明は、移動体の速度を算出する技術に関する。
 ナビゲーション装置を搭載した車両では、車速センサやGNSS(GPS)受信機などを用いて車両の速度を検出している。GNSS受信機を用いた速度検出方法は、ドップラーシフトもしくは位置の差分を算出することで速度を求めている。
 また、近年では、ライダ(LiDAR:Light Detection And Ranging)などの外界センサを用いて車両の速度を検出する方法が提案されている。外界センサを用いた速度算出方法は、外界センサにより認識した同一対象物に対する距離変化により速度を算出している。外界センサを用いた速度算出方法の一例が特許文献1に記載されている。
国際公開WO2017/109973号公報
 GNSS受信機を用いた速度検出方法は、観測した値を用いて速度を算出するため、車両の環境や挙動によって精度が低下する。具体的には、衛星からの電波の受信状況が悪い場合や、車両の加減速が大きい場合(特に低速度域において)には観測した値の精度の低下に伴い、速度の検出精度が低下する。この点を改善するために、慣性航法装置(IMU:Inertial Measurement Unit)と組み合わせることで実際の加減速などのダイナミクスの補正を行うようなシステムも提案されているが、実際の測位環境が悪い場合に応じた補正などは行えていなかった。一方、外界センサを用いた速度算出方法では、車両の周辺に対象物が存在しない場合には、速度算出自体が行えていなかった。
 本発明の解決しようとする課題としては、上記のものが一例として挙げられる。本発明は、GNSS受信機と外界センサとを用いることで、様々な環境において高精度に速度を算出することが可能な速度算出装置を提供することにある。
 請求項1に記載の発明は、速度算出装置であって、地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出手段と、衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出手段と、正常に信号を受信した衛星数に基づいて、前記第1算出手段が算出した速度及び前記第2算出手段が算出した速度を重み付けし、前記移動体の速度を算出する速度算出手段と、を備える。
 請求項8に記載の発明は、速度算出装置により実行される速度算出方法であって、地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出工程と、衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出工程と、正常に信号を受信した衛星数に基づいて、前記第1算出工程が算出した速度及び前記第2算出工程が算出した速度を重み付けし、前記移動体の速度を算出する速度算出工程と、を備える。
 請求項9に記載の発明は、コンピュータを備える速度算出装置により実行されるプログラムであって、地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出手段、衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出手段、正常に信号を受信した衛星数に基づいて、前記第1算出手段が算出した速度及び前記第2算出手段が算出した速度を重み付けし、前記移動体の速度を算出する速度算出手段、として前記コンピュータを機能させる。
本発明の実施例に係る速度算出装置の構成を示すブロック図である。 ライダによる速度の算出方法を説明する図である。 速度算出処理のフローチャートである。 第1実施例による精度判定処理のフローチャートである。 地物により電波が遮られる衛星を検出する方法を説明する図である。 第2実施例による精度判定処理のフローチャートである。 第1及び第2実施例を組み合わせた場合の精度判定処理のフローチャートである。 第3実施例による精度判定処理のフローチャートである。 第4実施例による精度判定処理のフローチャートである。 変形例1に係る速度算出装置の構成を示すブロック図である。
 本発明の1つの好適な実施形態では、速度算出装置は、地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出手段と、衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出手段と、正常に信号を受信した衛星数に基づいて、前記第1算出手段が算出した速度及び前記第2算出手段が算出した速度を重み付けし、前記移動体の速度を算出する速度算出手段と、を備える。
 上記の速度算出装置は、地物を検出する検出装置の出力に基づいて、移動体の速度を算出するとともに、衛星から受信した信号に基づいて、移動体の速度を算出する。そして、速度算出装置は、正常に信号を受信した衛星数に基づいて、第1算出手段が算出した速度及び第2算出手段が算出した速度を重み付けし、移動体の速度を算出する。これにより、移動体の環境に応じて、移動体の速度を高精度で算出することができる。
 上記の速度算出装置の一態様では、前記速度算出手段は、前記正常に信号を受信した衛星数が多いほど、前記第2算出手段が算出した速度の重みを大きくする。この態様では、正常に信号を受信した多数の衛星を利用して、速度の検出精度を高めることができる。
 上記の速度算出装置の他の一態様では、前記速度算出手段は、信号を受信した全衛星数から、地物により遮蔽されている衛星数を減算した数を、前記正常に信号を受信した衛星数として算出する。これにより、正常に信号を受信した衛星数を正確に算出することができる。
 上記の速度算出装置の他の一態様では、前記速度算出手段は、衛星から信号を受信する受信機に対する前記衛星の仰角、及び、前記衛星の方向に存在する地物と前記移動体との距離とに基づき、前記遮蔽されている衛星数を算出する。この態様では、衛星の方向と地物の位置関係に基づいて、地物により遮蔽されている衛星であるか否かが判定される。
 この場合の1つの好適な例では、前記検出装置は、2次元走査により前記地物を検出し、前記速度算出手段は、地図情報から取得した前記地物の高さを用いて、前記衛星が前記地物により遮蔽されているか否かを判定する。他の好適な例では、前記検出装置は、3次元走査により前記地物を検出し、前記速度算出手段は、前記検出装置が地物の最上部を検出した際の走査方向の仰角と、前記衛星の仰角とを用いて、前記衛星が前記地物により遮蔽されているか否かを判定する。
 上記の速度算出装置の他の一態様では、前記速度算出手段は、前記第1算出手段が算出した速度の精度、及び、前記第2算出手段が算出した速度の精度に基づいて、前記第1算出手段が算出した速度及び前記第2算出手段が算出した速度の重みを変更する。この態様では、第1算出手段及び第2算出手段それぞれの精度に応じて、適切な重みが決定される。
 この場合の好適な例では、前記速度算出手段は、前記検出装置の出力のばらつきに基づいて前記第1算出手段が算出した速度の精度を判定し、前記衛星から受信した信号を用いて算出された位置情報のばらつきに基づいて前記第2算出手段が算出した速度の精度を判定する。
 本発明の他の好適な実施形態では、速度算出装置により実行される速度算出方法は、地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出工程と、衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出工程と、正常に信号を受信した衛星数に基づいて、前記第1算出工程が算出した速度及び前記第2算出工程が算出した速度を重み付けし、前記移動体の速度を算出する速度算出工程と、を備える。この方法によっても、移動体の環境に応じて、移動体の速度を高精度で算出することができる。
 本発明の他の好適な実施形態では、コンピュータを備える速度算出装置により実行されるプログラムは、地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出手段、衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出手段、正常に信号を受信した衛星数に基づいて、前記第1算出手段が算出した速度及び前記第2算出手段が算出した速度を重み付けし、前記移動体の速度を算出する速度算出手段、として前記コンピュータを機能させる。このプログラムをコンピュータで実行することにより、速度算出装置を実現することができる。このプログラムは、記憶媒体に記憶して取り扱うことができる。
 以下、図面を参照して本発明の好適な実施例について説明する。
 [速度算出装置の構成]
 図1は、本発明の実施例に係る速度算出装置の構成を示す。速度算出装置1は、車両などの移動体に搭載され、その速度を算出する。図示のように、速度算出装置1には、GNSS受信機2、ライダ3及び速度センサ4が接続される。
 GNSS受信機2は、複数の衛星からの電波を受信して現在位置を測位する装置であり、アンテナ21と、GNSSデータ取得部22と、測位演算部23とを備える。アンテナ21は、複数の衛星からの電波を受信し、受信信号をGNSSデータ取得部22へ供給する。GNSSデータ取得部22は、衛星からの電波に基づいてGNSSデータDを取得し、測位演算部23及び速度算出装置1へ供給する。GNSSデータDは、電波を受信した各衛星との距離や各衛星の位置などを含むデータである。測位演算部23は、複数の衛星からのGNSSデータDに基づいて車両の現在位置を算出し、速度算出装置1へ供給する。
 ライダ3は、車両に搭載され、所定角度範囲にわたり出射光を走査するとともに、その出射光が対象物により反射されて得られる反射光を受信し、反射光に基づいて対象物を示す点群データであるライダデータDを速度算出装置1へ供給する。本実施例においては、ライダ3は、2次元(2D)ライダであっても3次元(3D)ライダであってもよい。なお、2Dライダは出射光を水平面内で走査する装置であり、3Dライダは出射光の仰角を変化させつつ出射光を走査する装置である。
 速度センサ4は、例えば車速センサ、加速度センサなどであり、センサデータDを速度算出装置1へ供給する。
 速度算出装置1は、GNSS受信機2からのGNSSデータDと、ライダ3からのライダデータDと、速度センサ4からのセンサデータDとに基づいて、速度算出装置1が搭載された車両の速度を示す速度Vを出力する。具体的に、速度算出装置1は、速度算出部11と、地物特定部12と、速度算出部13、14と、地図データベース(以下、「データベース」を「DB」と記す。)15と、車両情報DB16と、状況判定部17と、速度決定部18とを備える。
 速度算出部11は、GNSS受信機2の測位演算部23により生成された位置データに基づいて、車両の速度を算出する。具体的には、速度算出部11は、位置データが示す車両の現在位置の単位時間当りの移動量を速度として算出する。GNSS受信機2の出力に基づいて速度算出部11が生成した速度を「GNSS速度V」と呼ぶ。速度算出部11は、GNSS速度Vを速度決定部18へ供給する。
 地物特定部12は、地物の点群データであるライダデータDに基づいて地物を特定し、地物の有無、地物までの距離、地物の角度(方位角、仰角)などを含む地物特定データDGOを算出して速度算出部13及び状況判定部17に供給する。なお、地物の特定は、地物の種類ごとに予め用意され、その地物の形状、サイズなどを示す形状パターンを用いて行われる。
 速度算出部13は、地物特定データDGOに基づいて、車両1の速度を算出する。ライダ3からのライダデータDに基づいて速度算出部13が算出した速度を「ライダ速度V」と呼ぶ。速度算出部13は、ライダ速度Vを速度決定部18に供給する。
 ここで、速度算出部13によるライダ速度Vの算出方法の一例について説明する。図2は、ライダ速度Vの算出方法を説明する図である。いま、走行中の車両に搭載されたライダが時刻Tと時刻Tのそれぞれにおいて2つの地物A、地物Bを検出したものとする。この場合、時刻Tにおける車両から地物Bまでの距離をLとし、時刻Tにおける車両から地物を見た方位角をφとし、時刻Tにおける車両から地物Bまでの距離をL’とし、時刻Tにおける車両から地物を見た方位角をφ’とし、角度αをα=φ’-φと定義すると、時刻Tから時刻Tまでの車両の移動距離ΔDは、以下の式により与えられる。
Figure JPOXMLDOC01-appb-M000001
 よって、ライダ速度Vは、
  V=ΔD/(T-T)       (1)
と得られる。なお、この速度算出方法は特許文献1に詳しく記載されている。
 速度算出部14は、速度センサ4から供給されるセンサデータDに基づいて車両の速度を算出する。速度センサ4からのセンサデータDに基づいて速度算出部14が算出した速度を「センサ速度V」と呼ぶ。速度算出部14は、センサ速度Vを速度決定部18へ供給する。
 地図DB15には、地図データが記憶されている。地図データは、建物などの地物の形状や高さなどを示す地物データを含んでいる。車両情報DB16には、速度算出装置1が搭載されている車両に関するデータが記憶されている。特に、車両情報DB16には、車両に搭載されたGNSS受信機2のアンテナ21の地面からの高さであるアンテナ高さが記憶されている。
 状況判定部17は、車両が置かれている環境、車両の走行状態など(以下、「車両状況」と呼ぶ。)を検出する。具体的には、状況判定部17は、GNSS受信機2による衛星からの電波の受信状況、ライダ3による車両周辺の地物の検出状況、車両の加減速状況、車両の周辺の天候状況などを車両状況として判定し、その判定結果を示す制御情報C1を速度決定部18へ供給する。
 速度決定部18は、速度算出部11から供給されるGNSS速度V、速度算出部13から供給されるライダ速度V、及び、速度算出部14から供給されるセンサ速度Vに基づいて、最も精度が高い速度を算出し、最終的な速度Vとして出力する。その際、速度決定部18は、状況判定部17から供給される車両状況の判定結果に基づいて速度Vを決定する。具体的には、速度決定部18は、車両状況に応じて、GNSS速度V、ライダ速度V、センサ速度Vのいずれかを速度Vと決定したり、GNSS速度Vとライダ速度Vを重み付け加算して速度Vを算出したりする。
 上記の構成において、速度算出部11は本発明の第2算出手段の一例であり、速度算出部13は本発明の第1算出手段の一例であり、状況判定部17及び速度決定部18は本発明の速度算出手段の一例である。また、ライダ3は本発明の検出装置の一例であり、GNSS受信機2は本発明の受信機の一例である。
 [速度算出方法]
 次に、速度算出部18による速度Vの算出方法について説明する。図3は、速度Vを算出する速度算出処理のフローチャートである。この処理は、主として図1に示す状況判定部17及び速度決定部18により実行される。なお、実際には、この処理はCPU等のコンピュータが予め用意されたプログラムを実行することにより実現される。
 まず、状況判定部17は、GNSSによる速度算出が有効か否かを判定する(ステップS10)。具体的には、状況判定部17は、GNSS受信機2から供給されるGNSSデータDに基づいて複数の衛星からの電波の受信状況を判定し、所定レベル以上の強度で電波を受信できている衛星が所定数以上ある場合にGNSSによる速度算出が有効であると判定する。この場合の「所定数」は、衛星の位置に基づいて車両の位置を測位するために最低限必要な衛星の数とし、予め実験などにより求めておくことができる。
 GNSSによる速度算出が有効でない場合(ステップS10:No)、状況判定部17は、ライダによる速度算出が有効であるか否かを判定する(ステップS11)。具体的には、状況判定部17は、ライダ3から供給されるライダデータDに基づいて、速度の算出に必要な数の地物が検出されているか否かを判定し、検出されている場合に、ライダによる速度算出が有効であると判定する。
 ライダによる速度算出が有効でない場合(ステップS11:No)、状況判定部17は、速度センサ4の出力に基づいて算出されるセンサ速度Vを使用することを速度決定部18に通知し、速度決定部18はセンサ速度Vを速度Vとして出力する(ステップS12)。
 一方、ライダによる速度検出が有効である場合(ステップS11:Yes)、状況判定部17は、ライダ3の出力に基づいて算出されるライダ速度Vを使用することを指示する制御信号C1を速度決定部18に供給し、速度決定部18はライダ速度Vを速度Vとして出力する(ステップS13)。
 ステップS10において、GNSSによる速度算出が有効と判定された場合(ステップS10:Yes)、状況判定部17は、ライダによる速度算出が有効であるか否かを判定する(ステップS14)。ライダによる速度算出が有効でない場合(ステップS14:No)、状況判定部17は、GNSS受信機2の出力に基づいて算出されるGNSS速度Vを使用すること指示する制御信号C1を速度決定部18に供給し、速度決定部18はGNSS速度Vを速度Vとして出力する(ステップS15)。
 一方、ライダによる速度算出が有効な場合(ステップS14:Yes)、GNSS速度Vとライダ速度Vの両方が得られていることになる。この場合、速度決定部18は、GNSS速度Vとライダ速度Vを重み付け加算して速度Vを算出する。GNSS速度Vの重みをwとし、ライダ速度Vの重みをwとすると、速度決定部18は、例えば以下の式により速度Vを決定する。
  V=w・V+w・V      (2)
      但し、w+w=1
この際、状況判定部17は、GNSS速度Vとライダ速度Vのどちらが高精度であるかを判定し、その結果に応じて上記の重みw、wを設定する。
 具体的には、状況判定部17は、GNSS速度Vとライダ速度Vのどちらが高精度であるかを判定する精度判定処理を行う(ステップS16)。なお、精度判定にはいくつかの実施例があり、それらについては後述する。精度判定処理によりGNSS速度Vの方が高精度であると判定された場合、状況判定部17はGNSS速度Vの重みwをライダ速度Vの重みwよりも大きくする(ステップS17)。一方、精度判定処理によりライダ速度Vの方が高精度であると判定された場合、状況判定部17はライダ速度Vの重みwをGNSS速度Vの重みwよりも大きくする(ステップS18)。
 そして、速度決定部18は、ステップS17又はS18で設定された重みw、wを用いて、上記の式(2)により速度Vを計算して出力する(ステップS19)。このように、GNSSによる速度算出とライダによる速度算出が有効であるか否か、及び、GNSS速度とライダ速度のどちらが高精度であるかを考慮して速度Vを算出することにより、様々な状況において可能な限り高精度で速度を算出することが可能となる。
 [精度判定処理]
 次に、図3のステップS16で実行される精度判定処理のいくつかの実施例について説明する。
 (第1実施例)
 第1実施例では、状況判定部17は、GNSS受信機2が正常に信号を受信した衛星数に基づいて精度判定を行う。図4は、第1実施例による精度判定処理のフローチャートである。まず、状況判定部17は、地物特定部12から地物特定データDGOを取得する(ステップS21)。次に、状況判定部17は、電波を受信中の複数の衛星のうち、直接波を受信できない衛星数、即ち、障害物により電波が遮られる衛星数をカウントする(ステップS22)。ここで、「電波を受信中の衛星」とは、GNSS受信機2による測位に必要な強度レベルで電波を受信している衛星を意味する。
 ステップS22の処理について、図5を参照して詳しく説明する。図5(A)は、車両に搭載されているライダ3が2Dライダである場合に、障害物により電波が遮られる衛星(以下、「遮蔽される衛星」とも呼ぶ。)の数をカウントする方法を説明する図である。なお、図5(A)は、車両7から所定の方位角方向を見た状態を示す。状況判定部17は、電波を受信中の1つの衛星を選択し、GNSSデータDを取得する。そして、状況判定部17は、GNSSデータDに含まれる衛星の位置と、車両7の位置とに基づいて、その衛星の仰角θを算出する。また、状況判定部17は、車両情報DB16から、車両7に搭載されているアンテナ21の高さh0を取得する。また、状況判定部17は、衛星の方向に存在する建物の高さhを地図DB15から取得する。さらに、状況判定部17は、ステップS21で取得した地物特定データDGOから、その建物までの距離Lを取得する。なお、説明の便宜上、2Dライダの高さはアンテナの高さh0と同一であるものとする。
 ここで、車両7に搭載されたアンテナ21から衛星を見た方向(破線31)が建物とぶつかる高さH、即ち、アンテナ21と衛星とを結ぶ破線31が建物の位置において地面に対する垂線と交わる点の高さH(以下、「建物位置における衛星方向の高さH」と呼ぶ。)は、
  H=L×tanθ+h0      (3)
で与えられる。よって、状況判定部17は、建物位置における衛星方向の高さHが、地図DB15から取得した実際の建物の高さhより低い場合には、その衛星は遮蔽される衛星であると判定する。状況判定部17は、電波を受信中の全ての衛星についてこの処理を行い、遮蔽される衛星数を算出する。
 図5(B)は、車両に搭載されているライダ3が3Dライダである場合に、遮蔽される衛星数をカウントする方法を説明する図である。なお、図5(B)は、車両7と建物と衛星を含む3次元空間を模式的に示す。状況判定部17は、電波を受信中の1つの衛星を選択し、GNSSデータDを用いてその衛星の仰角θを算出する。また、状況判定部17は、車両情報DB16から、車両7に搭載されているアンテナ21の高さh0を取得する。なお、説明の便宜上、3Dライダの高さはアンテナの高さh0と同一であるものとする。
 そして、状況判定部17は、ステップS21で取得した地物特定データGDOに基づいて、アンテナ21の位置からその衛星を見た方向、即ち仰角θの方向(破線32)に建物が存在するか否かを判定し、建物が存在する場合に、その衛星を遮蔽される衛星であると判定する。例えば、状況判定部17は、3Dライダにより建物の最上部を検出した際の走査方向の仰角が、衛星の仰角θより大きい場合に、その建物により衛星が遮蔽されると判定する。状況判定部17は、電波を受信中の全ての衛星についてこの処理を行い、遮蔽される衛星数を算出する。
 こうして遮蔽される衛星数が得られると、状況判定部17は、受信中の全衛星数から遮蔽される衛星数を減算して得られる衛星数、即ち、正常に電波を受信できる衛星数(以下、「正常受信衛星数」とも呼ぶ。)が、受信中の全衛星数に対して一定割合以上であるか否かを判定する(ステップS23)。この一定割合は、要求精度を実現するために必要な正常受信衛星数の割合であり、実験などに基づいて予め決定される。
 そして、状況判定部17は、正常受信衛星数が受信中の全衛星数の一定割合以上である場合(ステップS23:Yes)、GNSS速度Vの方が高精度であると判定する(ステップS24)。一方、状況判定部17は、正常受信衛星数が受信中の全衛星数の一定割合未満である場合(ステップS23:No)、ライダ速度Vの方が高精度であると判定する(ステップS25)。こうして、精度判定処理は終了する。
 なお、この場合、状況判定部17は、正常受信衛星数の割合が大きいほどステップS17においてGNSS速度Vの重みwを大きくし、正常受信衛星数の割合が小さいほどステップS18においてライダ速度Vの重みwを大きくすることが好ましい。
 このように、第1実施例の精度判定方法によれば、正常に電波を受信できる衛星数に基づいてGNSS速度Vの精度を評価して重みwを決定するので、建物などにより衛星が遮蔽される状況などにおいても速度Vを高精度で算出することが可能となる。
 なお、上記の例では、状況判定部17は、ステップS23で正常受信衛星数が受信中の全衛星数に対して一定割合以上であるか否かを判定しているが、その代わりに、遮蔽される衛星数が受信中の全衛星数に対して一定割合以上であるか否かを判定することとしてもよい。その場合には、状況判定部17は、遮蔽される衛星数が受信中の全衛星数に対して一定割合以上である場合にライダ速度Vの方が高精度であると判定し、遮蔽される衛星数が受信中の全衛星数に対して一定割合未満である場合にGNSS速度Vの方が高精度であると判定すればよい。
 また、上記の例では、状況判定部17は、正常受信衛星数が受信中の全衛星数に対して一定割合以上であるか否かを判定しているが、その代わりに、正常受信衛星数が所定数以上であるか否かを判定してもよい。同様に、遮蔽される衛星数を用いて判定する場合には、状況判定部17は、遮蔽される衛星数が所定数以上であるか否かを判定しても良い。
 上記のように、第1実施例では、状況判定部17は、GNSS速度Vの精度とライダ速度Vの精度の相対的な比較により、GNSS速度Vの重みwとライダ速度Vの重みwを設定している。これに加えて、それぞれの絶対的な精度に応じて重みw、Wを補正してもよい。例えば、状況判定部17は、所定時間内に得られるGNSSデータDが示す衛星との距離及び/又は衛星の角度の値の標準偏差を算出して、それらの値がどの程度ばらついているかを検出する。そして、状況判定部17は、GNSSデータDのばらつきが大きいほどGNSS速度Vの重みwを小さくし、GNSSデータDのばらつきが小さいほどGNSS速度Vの重みwを大きくする。同様に、状況判定部17は、所定時間内に得られるライダデータDが示す地物との距離及び/又は地物の方位の値の標準偏差を算出して、それらの値がどの程度ばらついているかを検出する。そして、状況判定部17は、ライダデータDのばらつきが大きいほどライダ速度Vの重みwを小さくし、ライダデータDのばらつきが小さいほどライダ速度Vの重みwを大きくする。これにより、GNSS速度Vとライダ速度Vの相対的な比較のみならず、GNSS速度V及びライダ速度Vの個々の絶対的な精度も考慮して、最適な重み付けにより速度Vを算出することができる。
 (第2実施例)
 第2実施例では、状況判定部17は、車両の加速度に応じてGNSS速度Vとライダ速度Vの重みを設定する。一般的に、GNSS受信機2により得られるGNSSデータDは、車両の加速度が大きい場合、特に低速度域において加速度が大きい場合に精度が低下する傾向にある。そこで、第2実施例では、状況判定部17は車両の加速度が大きい場合にはライダ速度Vの方が高精度であると判定し、車両の加速度が小さい場合にはGNSS速度Vの方が高精度であると判定する。
 図6は、第2実施例による精度判定処理のフローチャートである。状況判定部17は、地物特定部12から地物特定データDGOを取得し(ステップS31)、地物特定データGDOを用いて、車両の加速度が一定値以上であるか否かを判定する(ステップS32)。例えば、状況判定部17は、地物特定データGDOに基づいて定期的に速度を算出し、前回の速度と今回の速度との差が一定値以上の場合に、車両の加速度が一定値以上であると判定する。そして、状況判定部17は、車両の加速度が一定値未満である場合にはGNSS速度Vの方が高精度であると判定し(ステップS33)、車両の加速度が一定値以上である場合にはライダ速度Vの方が高精度であると判定する(ステップS34)。そして、状況判定部17は、精度判定処理を終了する。
 なお、この場合、状況判定部17は、車両の加速度が小さいほどステップS17においてGNSS速度Vの重みwを大きくし、車両の加速度が大きいほどステップS18においてライダ速度Vの重みwを大きくすることが好ましい。
 このように、第2実施例によれば、車両の加速度を考慮してGNSS速度Vとライダ速度Vの重み付けを行うので、車両の加減速が大きい場合でも高精度で速度Vを算出することができる。
 なお、第2実施例の精度判定処理は、第1実施例の精度判定処理と組み合わせて実施することも可能である。この場合、状況判定部17は、正常受信衛星数の割合と車両の加速度の両方を考慮して、GNSS速度Vとライダ速度Vの重み付けを行う。図7は、第1実施例と第2実施例を組み合わせた場合の精度判定処理のフローチャートである。
 まず、状況判定部17は、地物特定部12から地物特定データDGOを取得する(ステップS41)。次に、状況判定部17は、電波を受信中の複数の衛星のうち、遮蔽される衛星数をカウントする(ステップS42)。次に、状況判定部17は、正常受信衛星数が、受信中の全衛星数に対して一定割合以上であるか否かを判定する(ステップS43)。正常受信衛星数が受信中の全衛星数の一定割合未満である場合(ステップS43:No)、状況判定部17は、ライダ速度Vの方が高精度であると判定する(ステップS46)。一方、正常受信衛星数が受信中の全衛星数の一定割合以上である場合(ステップS43:Yes)、状況判定部17は、地物特定データDGOを用いて、車両の加速度が一定値以上であるか否かを判定する(ステップS44)。
 状況判定部17は、車両の加速度が一定値未満である場合(ステップS44:No)、GNSS速度Vの方が高精度であると判定し(ステップS45)、車両の加速度が一定値以上である場合(ステップS44:Yes)、ライダ速度Vの方が高精度であると判定する(ステップS46)。こうして精度判定処理は終了する。
 第1実施例と第2実施例を組み合わせて実施する他の例として、第1実施例の精度判定処理により得られた重みと、第2実施例の精度判定処理により得られた重みを乗算して最終的な重みを決定することとしてもよい。具体的には、状況判定部17は、図3におけるステップS16において、第1実施例による精度判定処理と第2実施例による判定処理を両方行う。ここで、第1実施例の精度判定処理により得られたGNSS速度Vの重みをwG1、ライダ速度Vの重みをwL1とし、第2実施例の精度判定処理により得られたGNSS速度Vの重みをwG2、ライダ速度Vの重みがwL2とすれば、状況判定部17は、それらの重みをそれぞれ乗算し、下記のようにGNSS速度Vの重みwとライダ速度Vの重みwを算出すればよい。
  GNSS速度Vの重み:w=wG1×wG2   (4)
  ライダ速度VLの重み :w=wL1×wL2   (5)
 以上のように、第1実施例と第2実施例を組み合わせることにより、衛星の受信状態と車両の加減速状態の両方を考慮して速度Vを高精度に算出することができる。
 (第3実施例)
 第3実施例では、状況判定部17は、車両の周辺に存在する地物の数、より詳しくはライダ3により検出された地物の数に応じてGNSS速度Vとライダ速度Vの重みを設定する。ライダ3は、周囲に出射光を走査し、地物により反射された反射光を受信して周囲に存在する地物を検出するため、車両の周囲に存在する地物の数が少ないと、ライダデータDに基づいて算出されるライダ速度Vの精度は低下する。そこで、第3実施例では、状況判定部17は、車両の周辺に存在する地物の数が多い場合にはライダ速度Vの方が高精度であると判定し、車両の周辺に存在する地物の数が少ない場合にはGNSS速度Vの方が高精度であると判定する。
 図8は、第3実施例による精度判定処理のフローチャートである。状況判定部17は、地物特定部12から地物特定データDGOを取得し(ステップS51)、地物特定データDGOを用いて、車両の周辺に存在する地物の数が一定数以上であるか否かを判定する(ステップS52)。そして、状況判定部17は、車両の周辺に存在する地物の数が一定数未満である場合にはGNSS速度Vの方が高精度であると判定し(ステップS53)、車両の周辺に存在する地物の数が一定数以上である場合にはライダ速度Vの方が高精度であると判定する(ステップS54)。こうして精度判定処理は終了する。
 なお、この場合、状況判定部17は、車両の周辺に存在する地物の数が少ないほどステップS17においてGNSS速度Vの重みwを大きくし、車両の周辺に存在する地物の数が多いほどステップS18においてライダ速度Vの重みwを大きくすることが好ましい。
 このように、第3実施例によれば、車両の周辺に存在する地物の数を考慮してGNSS速度Vとライダ速度Vの重み付けを行うので、車両が走行している環境に応じて高精度で速度Vを算出することができる。
 なお、第3実施例の精度判定処理は、第1実施例及び第2実施例の精度判定処理のいずれか一方又は両方と組み合わせて実施することが可能である。例えば、第1実施例及び第2実施例の精度判定処理と組み合わせた場合、状況判定部17は、正常受信衛星数の割合と、車両の加速度と、車両の周辺に存在する地物の数とを考慮してGNSS速度Vとライダ速度Vの重み付けを行うことになる。この場合の具体例としては、状況判定部17は、図3におけるステップS16において第1実施例~第3実施例の精度判定処理をそれぞれ実行して第1実施例~第3実施例の重みをそれぞれ算出し、それらを乗算して最終的な重みを決定すればよい。
 (第4実施例)
 第4実施例では、状況判定部17は、車両が存在する場所の天候情報に応じてGNSS速度Vとライダ速度Vの重みを設定する。ライダ3は、周囲に出射光を走査し、地物により反射された反射光を受信して周囲に存在する地物を検出するため、霧、雪、雨など、光の反射や散乱に影響を与える天候下においては、ライダデータDに基づいて算出されるライダ速度Vの精度は低下する。そこで、第4実施例では、状況判定部17は、車両が存在する場所の天候情報を取得し、ライダの精度が低下する天候状況(以下、「低精度天候状況」と呼ぶ。)である場合にはライダ速度VよりもGNSS速度Vの方が高精度であると判定する。
 ここで、「低精度天候状況」は、例えば、霧、雪、雨など、大気中の湿度(水分)が高い状況を含む。また、低精度天候状況であるか否かを、車両前方の視程に基づいて判定してもよい。なお、「視程」とは、水平方向の見通せる距離をいい、霧、雪、雨などにより視界が悪くなると視程は短くなる。
 「低精度天候状況」であるか否かの判定は、以下のように行うことができる。第1の方法としては、状況判定部17は、車両の場所の天候情報に基づいてこの判定を行うことができる。この場合、状況判定部17は、図示しない外部のサーバなどにアクセスして車両の存在するエリアの天候情報を取得し、それに基づいて判定を行えばよい。第2の方法として、車両に湿度センサが搭載されている場合には、状況判定部17は、湿度センサの出力に基づいてこの判定を行うことができる。例えば、状況判定部17は、湿度センサが出力した湿度が所定値以上である場合に、低精度天候状況であると判定することができる。第3の方法として、状況判定部17は、車両に搭載されている雨滴センサの出力に基づいてこの判定を行うことができる。例えば、雨滴センサが検出した水分や水圧が所定値以上である場合に、低精度天候状況であると判定することができる。第4の方法として、車両前方を撮影するカメラがある場合には、状況判定部17は、カメラの撮影画像を画像解析することによりそのときの天候を推測し、その結果に基づいてこの判定を行うことができる。さらには、カメラなどにより収集された音に含まれる雨音を検出することにより、この判定を行っても良い。
 図9は、第4実施例による精度判定処理のフローチャートである。状況判定部17は、上記のいずれかの方法により車両の周辺の天候情報を取得し(ステップS61)、車両の周辺の天候状況が、ライダの精度が低下する天候状況、即ち低精度天候状況に該当するか否かを判定する(ステップS62)。状況判定部17は、車両の周辺の天候状況が低精度天候状況に該当する場合(ステップS62:Yes)にはGNSS速度Vの方が高精度であると判定し(ステップS63)、車両の周辺の天候状況が低精度天候状況に該当しない場合(ステップS62:No)にはライダ速度Vの方が高精度であると判定する(ステップS64)。こうして精度判定処理は終了する。
 なお、この場合、状況判定部17は、天候が悪いほど、ステップS18においてライダ速度Vの重みwを小さくすることが好ましい。例えば、状況判定部17は、湿度センサより検出された湿度が高いほど、又は、視程が短いほど、ライダ速度Vの重みwを小さくする。
 このように、第4実施例によれば、車両の周辺の天候状況を考慮してGNSS速度Vとライダ速度Vの重み付けを行うことにより、高精度で速度Vを算出することができる。
 なお、第4実施例の精度判定処理は、第1実施例乃至第3実施例の精度判定処理のいずれか1つ、いずれか2つ又は全てと組み合わせて実施することが可能である。例えば、第1実施例乃至第3実施例の全ての精度判定処理と組み合わせた場合、状況判定部17は、正常受信衛星数の割合と、車両の加速度と、車両の周辺に存在する地物の数と、車両の周辺の天候状況とを考慮してGNSS速度Vとライダ速度Vの重み付けを行うことになる。この場合の具体例としては、状況判定部17は、図3におけるステップS16において第1実施例~第4実施例の精度判定処理をそれぞれ実行して第1実施例~第4実施例の重みをそれぞれ算出し、それらを乗算して最終的な重みを決定すればよい。
 [変形例]
 以下、上記の実施例についての変形例について説明する。
 (変形例1)
 上記の第1実施例では、状況判定部17は、正常受信衛星数に基づいてGNSS速度Vとライダ速度Vの重みを設定している。これに加えて、状況判定部17は、正常受信衛星数に応じて、GNSS速度Vの算出に使用する衛星を制限してもよい。即ち、変形例1では、速度算出装置は、正常受信衛星数に基づいてGNSS速度Vとライダ速度Vとを重み付けすることに加えて、正常受信衛星のみから取得したGNSSデータDを用いてGNSS速度Vを算出する。
 図10は、変形例1に係る速度算出装置1Aの構成を示す。図1と比較するとわかるように、状況判定部17は測位演算部23へ制御信号C2を供給している。制御情報C2は、図4に示す第1実施例の精度判定処理のステップS22で特定される、遮蔽される衛星を示す。即ち、状況判定部17は、遮蔽される衛星を特定すると、それらを特定する制御情報C2を測位演算部23へ供給する。測位演算部23は、受信中の全衛星のうち、遮蔽される衛星以外の衛星、即ち正常受信衛星からのGNSSデータDに基づいて車両の現在位置を算出し、速度算出部11へ供給する。これにより、速度算出部11は、正常受信衛星のみに対応するGNSSデータDに基づいてGNSS速度Vを算出することになる。よって、遮蔽される衛星を含む全受信衛星からのGNSSデータDに基づいてGNSS速度Vを算出した場合と比較して、速度算出部11が出力するGNSS速度Vの精度を高めることができる。
 なお、変形例1は、上記の第2~第4実施例のいずれか1つ、いずれか2つ又は全てと組み合わせて実施することができる。例えば、変形例1を第2~第4実施例の全てと組み合わせた場合、速度算出部11は、正常受信衛星のみからのGNSSデータDを用いてGNSS速度Vを算出する。そして、状況判定部17は、正常受信衛星数と、車両の加速度と、車両の周辺に存在する地物の数と、車両の周辺の天候状況とを考慮してGNSS速度Vとライダ速度Vの重み付けを行う。
 (変形例2)
 上記の変形例1では、速度算出装置1Aは、正常受信衛星のみからのGNSSデータDを用いてGNSS速度Vを算出することに加えて、正常受信衛星数に基づいてGNSS速度Vとライダ速度Vとを重み付けしている。その代わりに、変形例2では、正常受信衛星のみからのGNSSデータDを用いてGNSS速度Vを算出するが、正常受信衛星数に基づくGNSS速度Vとライダ速度Vとの重み付け加算を行わないこととする。
 変形例2による速度算出装置の構成は基本的に変形例1による速度算出装置1Aと同一である。但し、状況判定部17は、速度算出部18へ重み付け加算の指示、及び、そのための重みW、Wを供給しない。よって、速度決定部18は、GNSS速度V、ライダ速度V、センサ速度Vのいずれかを選択して速度Vとして出力することになる。また、速度算出部11は、正常受信衛星のみから取得したGNSSデータDに基づいてGNSS速度Vを算出するので、遮蔽される衛星を含む全受信衛星からのGNSSデータDGに基づいてGNSS速度Vを算出した場合と比較して、速度算出部11が出力するGNSS速度Vの精度を高めることができる。
 なお、変形例2は、上記の第2~第4実施例のいずれ1つ、いずれか2つ又は全てと組み合わせて実施することができる。例えば、変形例2を第2~第4実施例の全てと組み合わせた場合、速度算出部11は、正常受信衛星のみからのGNSSデータDを用いてGNSS速度Vを算出する。そして、状況判定部13は、車両の加速度と、車両の周辺に存在する地物の数と、車両の周辺の天候状況とを考慮してGNSS速度Vとライダ速度Vの重み付けを行う。
 1 速度算出装置
 2 GNSS受信機
 3 ライダ
 4 速度センサ
 11、13、14 速度算出部
 17 状況判定部
 18 速度決定部
 21 アンテナ
 22 GNSSデータ取得部
 23 測位演算部

Claims (11)

  1.  地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出手段と、
     衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出手段と、
     正常に信号を受信した衛星数に基づいて、前記第1算出手段が算出した速度及び前記第2算出手段が算出した速度を重み付けし、前記移動体の速度を算出する速度算出手段と、 を備える速度算出装置。
  2.  前記速度算出手段は、前記正常に信号を受信した衛星数が多いほど、前記第2算出手段が算出した速度の重みを大きくする請求項1記載の速度算出装置。
  3.  前記速度算出手段は、信号を受信した全衛星数から、地物により遮蔽されている衛星数を減算した数を、前記正常に信号を受信した衛星数として算出する請求項1又2に記載の速度算出装置。
  4.  前記速度算出手段は、衛星から信号を受信する受信機に対する前記衛星の仰角、及び、前記衛星の方向に存在する地物と前記移動体との距離とに基づき、前記遮蔽されている衛星数を算出する請求項3に記載の速度算出装置 。
  5.  前記検出装置は、2次元走査により前記地物を検出し、
     前記速度算出手段は、地図情報から取得した前記地物の高さを用いて、前記衛星が前記地物により遮蔽されているか否かを判定する請求項4に記載の速度算出装置。
  6.  前記検出装置は、3次元走査により前記地物を検出し、
     前記速度算出手段は、前記検出装置が地物の最上部を検出した際の走査方向の仰角と、前記衛星の仰角とを用いて、前記衛星が前記地物により遮蔽されているか否かを判定する請求項4に記載の速度算出装置。
  7.  前記速度算出手段は、前記第1算出手段が算出した速度の精度、及び、前記第2算出手段が算出した速度の精度に基づいて、前記第1算出手段が算出した速度及び前記第2算出手段が算出した速度の重みを変更する請求項1乃至6のいずれか一項に記載の速度算出装置。
  8.  前記速度算出手段は、前記検出装置の出力のばらつきに基づいて前記第1算出手段が算出した速度の精度を判定し、前記衛星から受信した信号を用いて算出された位置情報のばらつきに基づいて前記第2算出手段が算出した速度の精度を判定する請求項7に記載の速度算出装置。
  9.  速度算出装置により実行される速度算出方法であって、
     地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出工程と、
     衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出工程と、
     正常に信号を受信した衛星数に基づいて、前記第1算出工程が算出した速度及び前記第2算出工程が算出した速度を重み付けし、前記移動体の速度を算出する速度算出工程と、
     を備える速度算出方法。
  10.  コンピュータを備える速度算出装置により実行されるプログラムであって、
     地物を検出する検出装置の出力に基づいて、移動体の速度を算出する第1算出手段、
     衛星から受信した信号に基づいて、前記移動体の速度を算出する第2算出手段、
     正常に信号を受信した衛星数に基づいて、前記第1算出手段が算出した速度及び前記第2算出手段が算出した速度を重み付けし、前記移動体の速度を算出する速度算出手段、
     として前記コンピュータを機能させるプログラム。
  11.  請求項9に記載のプログラムを記憶した記憶媒体。
PCT/JP2018/003199 2018-01-31 2018-01-31 速度算出装置、速度算出方法、及び、プログラム WO2019150483A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003199 WO2019150483A1 (ja) 2018-01-31 2018-01-31 速度算出装置、速度算出方法、及び、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003199 WO2019150483A1 (ja) 2018-01-31 2018-01-31 速度算出装置、速度算出方法、及び、プログラム

Publications (1)

Publication Number Publication Date
WO2019150483A1 true WO2019150483A1 (ja) 2019-08-08

Family

ID=67479705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003199 WO2019150483A1 (ja) 2018-01-31 2018-01-31 速度算出装置、速度算出方法、及び、プログラム

Country Status (1)

Country Link
WO (1) WO2019150483A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640310A (zh) * 2020-05-18 2020-09-08 万联易达物流科技有限公司 一种确定车辆在转弯过程中是否超速的方法和装置
US20230311904A1 (en) * 2022-04-04 2023-10-05 GM Global Technology Operations LLC Vehicle speed and/or wheel speed estimation using multiple speed measurements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100017128A1 (en) * 2007-06-05 2010-01-21 Gm Global Technology Operations, Inc. Radar, Lidar and camera enhanced methods for vehicle dynamics estimation
JP2010256301A (ja) * 2009-04-28 2010-11-11 Toyota Central R&D Labs Inc マルチパス判定装置及びプログラム
JP2015088049A (ja) * 2013-10-31 2015-05-07 富士重工業株式会社 車両制御システム
US20160299234A1 (en) * 2015-04-07 2016-10-13 GM Global Technology Operations LLC Fail operational vehicle speed estimation through data fusion of 6-dof imu, gps, and radar
JP2017508166A (ja) * 2013-12-10 2017-03-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd センサ融合
JP2017106842A (ja) * 2015-12-10 2017-06-15 三菱重工業株式会社 位置測定装置、位置測定方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100017128A1 (en) * 2007-06-05 2010-01-21 Gm Global Technology Operations, Inc. Radar, Lidar and camera enhanced methods for vehicle dynamics estimation
JP2010256301A (ja) * 2009-04-28 2010-11-11 Toyota Central R&D Labs Inc マルチパス判定装置及びプログラム
JP2015088049A (ja) * 2013-10-31 2015-05-07 富士重工業株式会社 車両制御システム
JP2017508166A (ja) * 2013-12-10 2017-03-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd センサ融合
US20160299234A1 (en) * 2015-04-07 2016-10-13 GM Global Technology Operations LLC Fail operational vehicle speed estimation through data fusion of 6-dof imu, gps, and radar
JP2017106842A (ja) * 2015-12-10 2017-06-15 三菱重工業株式会社 位置測定装置、位置測定方法及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640310A (zh) * 2020-05-18 2020-09-08 万联易达物流科技有限公司 一种确定车辆在转弯过程中是否超速的方法和装置
US20230311904A1 (en) * 2022-04-04 2023-10-05 GM Global Technology Operations LLC Vehicle speed and/or wheel speed estimation using multiple speed measurements

Similar Documents

Publication Publication Date Title
CN110889808B (zh) 一种定位的方法、装置、设备及存储介质
US9767372B2 (en) Target detection apparatus and target detection method
JP6721784B2 (ja) 情報処理装置、サーバ装置、制御方法、プログラム及び記憶媒体
JPWO2018221453A1 (ja) 出力装置、制御方法、プログラム及び記憶媒体
JP7436149B2 (ja) レーダーデータを処理する装置及び方法
JP6806891B2 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
US10482615B2 (en) Image processing device and image processing method
EP2597485A2 (en) Rapid lidar image correlation for ground navigation
US20210278217A1 (en) Measurement accuracy calculation device, self-position estimation device, control method, program and storage medium
WO2018212294A1 (ja) 自己位置推定装置、制御方法、プログラム及び記憶媒体
JP6740470B2 (ja) 測定装置、測定方法およびプログラム
JP2021032640A (ja) レーダ装置
EP2479585B1 (en) Target object movement estimating device
WO2019150483A1 (ja) 速度算出装置、速度算出方法、及び、プログラム
JP2010256301A (ja) マルチパス判定装置及びプログラム
JP2009025042A (ja) 船舶用目標追尾装置
JP5074718B2 (ja) 船舶用レーダ
JP2019132713A (ja) 速度算出装置、速度算出方法、及び、プログラム
JP2597027B2 (ja) 波浪観測レーダ
JP5557015B2 (ja) 軌跡情報生成装置、方法およびプログラム
JP2019132717A (ja) 速度算出装置、速度算出方法、及び、プログラム
JP2005114601A (ja) ナビゲーション装置及び現在位置算出方法
JP2023164502A (ja) 静止物データ生成装置、制御方法、プログラム及び記憶媒体
JP2019132714A (ja) 速度算出装置、速度算出方法、及び、プログラム
JP2019132715A (ja) 速度算出装置、速度算出方法、及び、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP