JP2020066041A - Production method of solder joint - Google Patents

Production method of solder joint Download PDF

Info

Publication number
JP2020066041A
JP2020066041A JP2018201476A JP2018201476A JP2020066041A JP 2020066041 A JP2020066041 A JP 2020066041A JP 2018201476 A JP2018201476 A JP 2018201476A JP 2018201476 A JP2018201476 A JP 2018201476A JP 2020066041 A JP2020066041 A JP 2020066041A
Authority
JP
Japan
Prior art keywords
cooling
alloy
temperature
solder joint
cu6sn5
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018201476A
Other languages
Japanese (ja)
Other versions
JP7291320B2 (en
Inventor
西村 哲郎
Tetsuro Nishimura
哲郎 西村
貴利 西村
Takatoshi Nishimura
貴利 西村
和宏 野北
Kazuhiro Nokita
和宏 野北
デヴィッド マクドナルド スチュワート
David Mcdonald Stewart
デヴィッド マクドナルド スチュワート
ソミディン フローラ
Somidin Flora
ソミディン フローラ
イエ シャオゾウ
Shaozou Ye
イエ シャオゾウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Queensland UQ
Nihon Superior Sha Co Ltd
Original Assignee
University of Queensland UQ
Nihon Superior Sha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Queensland UQ, Nihon Superior Sha Co Ltd filed Critical University of Queensland UQ
Priority to JP2018201476A priority Critical patent/JP7291320B2/en
Publication of JP2020066041A publication Critical patent/JP2020066041A/en
Application granted granted Critical
Publication of JP7291320B2 publication Critical patent/JP7291320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

To provide a production method pf a solder joint where the highly reliable joint suppressed with volumetric change associated with phase transformation during operation even when performing plurality times of melting, cooling and solidification of a solder alloy, the occurrence of strains and cracks caused by the volumetric change and the like can be formed with superior productivity.SOLUTION: In a production method of a solder joint, a cooling step is repeated plurality times, in which an alloy containing 0.3-7.6 wt.% of Cu and the balance Sn with inevitable impurities is heated to 186°C or higher and cooled to 186°C or lower. In each cooling step, the alloy is heated to 186°C or higher and cooled so that a cooling temperature line showing the secular change of the alloy passes a mixture region of a stable orthorhombic crystal and a hexagonal crystal of Cu6Sn5 and a holding time in the temperature range of 160-137°C becomes 96-305 s.SELECTED DRAWING: None

Description

本発明は、はんだ接合部の製造方法に関し、特に錫銅系はんだ合金を用いたはんだ接合部の製造方法に関するものである。   The present invention relates to a method for manufacturing a solder joint, and particularly to a method for manufacturing a solder joint using a tin-copper solder alloy.

環境上から、ミクロ電子部品の組み立てに用いる大半のはんだ合金は鉛の含有を減少した組成に変わっている。そして、現在では多くのはんだ合金は、Sn−Ag−Cuや、Sn−Cu−Ni合金を主成分としている。はんだ界面の接合部では、作業中、及び冷却中にCuSn金属間化合物(以下、単に「Cu6Sn5金属間化合物」又は「Cu6Sn5」と標記する場合がある。)が形成され、マイクロ電子回路のはんだ信頼性に大きく影響を及ぼす、はんだと界面の間の連続相を形成することになる。したがって、Cu6Sn5の結晶構造を安定した状態に維持することは、電子部品の信頼できる製造とサービスに適用するうえで重要である。電子製品のライフサイクルの間で変化する可能性がある様々な結晶構造中に存在するCu6Sn5金属間化合物を考えた場合、特にこの金属間化合物の安定化は重要な課題である。 From the environmental point of view, most solder alloys used for assembling microelectronic components have been changed to lead-free compositions. And nowadays, most solder alloys are based on Sn-Ag-Cu and Sn-Cu-Ni alloys. A Cu 6 Sn 5 intermetallic compound (hereinafter, may be simply referred to as “Cu6Sn5 intermetallic compound” or “Cu6Sn5”) is formed at the joint of the solder interface during working and cooling, and a microelectronic circuit is formed. Will form a continuous phase between the solder and the interface, which will greatly affect the solder reliability of the. Therefore, maintaining the crystal structure of Cu6Sn5 in a stable state is important for application to reliable manufacture and service of electronic components. When considering Cu6Sn5 intermetallic compounds present in various crystal structures that may change during the life cycle of electronic products, stabilization of the intermetallic compounds is an important issue.

このCu6Sn5金属間化合物は、186℃以下で六方晶から斜方晶の結晶構造に固相変態する。錫銅系の合金を用いてはんだ接合部を形成する場合、通常230℃より高い温度まで昇温した後冷却して凝固させる。冷却の際に六方晶のCu6Sn5金属間化合物が形成され、電子部品に残存すると、その作動時に固相変態が起こる可能性がある。そして、この変態に伴って体積変化等が発生すると金属間化合物そのものに亀裂が発生することで、接合部の強度が低下したり、電気抵抗が増加したりする場合がある。また、はんだリフロー工程を複数回繰り返すと、その度に結晶構造が変化することとなるため、その繰り返しによりCu6Sn5金属間化合物に亀裂が発生する可能性が生じる。そこで、本発明者は、溶融状態から凝固までのプロセスにおいて冷却温度を制御することによって、凝固した接合部に生成するCu6Sn5金属間化合物を、それに伴う体積変化が最小限になる温度領域で積極的に安定した状態の斜方晶に変態させ、作動時あるいは製造時に相変態に伴う体積変化、及び体積変化に起因した歪や亀裂の発生などを抑制する方法を提案している(特許文献1)。   The Cu6Sn5 intermetallic compound undergoes solid phase transformation at 186 ° C. or lower into a hexagonal to orthorhombic crystal structure. When forming a solder joint using a tin-copper-based alloy, it is usually heated to a temperature higher than 230 ° C. and then cooled to solidify. When a hexagonal Cu6Sn5 intermetallic compound is formed during cooling and remains in the electronic component, solid phase transformation may occur during its operation. When a volume change or the like occurs due to this transformation, cracks may occur in the intermetallic compound itself, which may reduce the strength of the joint or increase the electrical resistance. Further, if the solder reflow step is repeated a plurality of times, the crystal structure will change each time, so that the repetition may cause cracks in the Cu6Sn5 intermetallic compound. Therefore, the present inventor positively controls the Cu6Sn5 intermetallic compound generated in the solidified joint in the temperature range in which the accompanying volume change is minimized by controlling the cooling temperature in the process from the molten state to the solidification. Has proposed a method of suppressing the volume change associated with the phase transformation during operation or manufacturing, and the generation of strains and cracks caused by the volume change, by transforming into a stable orthorhombic crystal (Patent Document 1). .

特許第6118249号公報Patent No. 6118249

特許文献1に記載のように、本発明者は、186℃以上で溶融するSn−Cu二元合金、あるいはこれに対して他の元素を含むがCu6Sn5金属間化合物を生成する合金では、冷却温度履歴によっては、Cu6Sn5金属間化合物の全てが六方晶から斜方晶に変態する場合と、六方晶のうちの一部だけが斜方晶に変態し、六方晶と斜方晶が混在する場合があることを知見した。そして、冷却温度と冷却時間との関係から、冷却履歴とCu6Sn5金属間化合物の結晶構造の関係を実験により導出した(図1参照)。図1に示すように、X軸に時間(秒)、Y軸に温度(℃)で示した二次元図において、冷却温度と冷却時間の関係から、(1)100%安定斜方晶Cu6Sn5(η’−Cu6Sn5)に変態する領域(単斜晶領域)と、(2)η’−Cu6Sn5に変態しない状態の六方晶Cu6Sn5(η−Cu6Sn5)が混在する領域(斜方晶と六方晶の混合領域)と、(3)比較的短時間で冷却した場合の100%準安定η−Cu6Sn5領域(六方晶領域)が存在し、これらが186℃以下の温度において、2つの時間−温度−変態曲線(TTT曲線)により区画されることを確認した。そして、図1に基づき、Cu6Sn5金属間化合物を安定した状態の斜方晶に変態させる方法として、(i)140〜160℃程度で4000秒程度保持することによって、単斜晶領域を通過させ、全てのCu6Sn5金属間化合物を六方晶から斜方晶に変態させる方法、(ii)120〜175℃程度で200秒程度保持することによって、単斜晶と六方晶の混合領域を通過させ、一部のCu6Sn5金属間化合物を六方晶から斜方晶に変態させる方法を提案した。   As described in Patent Document 1, the inventors of the present invention have found that the Sn-Cu binary alloy that melts at 186 ° C. or higher, or the alloy that contains other elements but produces a Cu6Sn5 intermetallic compound, has a cooling temperature. Depending on the history, there may be cases where all of the Cu6Sn5 intermetallic compounds transform from hexagonal crystals to orthorhombic crystals, and cases where only some of the hexagonal crystals transform to orthorhombic crystals and a mixture of hexagonal crystals and orthorhombic crystals. I found that there is. Then, the relationship between the cooling history and the crystal structure of the Cu6Sn5 intermetallic compound was experimentally derived from the relationship between the cooling temperature and the cooling time (see FIG. 1). As shown in FIG. 1, in a two-dimensional diagram in which the X-axis represents time (seconds) and the Y-axis represents temperature (° C.), from the relationship between the cooling temperature and the cooling time, (1) 100% stable orthorhombic Cu6Sn5 ( η'-Cu6Sn5) transformed region (monoclinic region) and (2) η'-Cu6Sn5 hexagonal Cu6Sn5 (η-Cu6Sn5) mixed state (orthorhombic and hexagonal mixed) Region) and (3) 100% metastable η-Cu6Sn5 region (hexagonal region) when cooled in a relatively short time, and these are two time-temperature-transformation curves at a temperature of 186 ° C. or lower. It was confirmed to be partitioned by (TTT curve). Then, based on FIG. 1, as a method of transforming the Cu6Sn5 intermetallic compound into a stable orthorhombic crystal, (i) holding at about 140 to 160 ° C. for about 4000 seconds to pass through the monoclinic region, A method of transforming all Cu6Sn5 intermetallic compounds from hexagonal crystals to orthorhombic crystals, (ii) holding at about 120 to 175 ° C. for about 200 seconds to pass through a mixed region of monoclinic crystals and hexagonal crystals, and partially Proposed a method of transforming the Cu6Sn5 intermetallic compound from hexagonal system to orthorhombic system.

特許文献1に記載の発明では、前記(i)の方法により、全てのCu6Sn5金属間化合物を斜方晶に変態させることが最善であり、前記(ii)の方法により斜方晶と六方晶との混合状態に変態させることは次善であるという立場であった。これは、作動時のCu6Sn5金属間化合物の変態をより確実に防止できると考えたためである。   In the invention described in Patent Document 1, it is best to transform all Cu6Sn5 intermetallic compounds into the orthorhombic crystal by the method (i), and the orthorhombic crystal and the hexagonal crystal by the method (ii). It was in the position that it was suboptimal to transform into the mixed state. This is because it was thought that the transformation of the Cu6Sn5 intermetallic compound during operation could be more reliably prevented.

しかし、(i)の方法では、140〜160℃程度の温度範囲での経過時間(保持時間とも称する。)として4000秒程度の時間を必要とすることから、はんだ接合部の製造工程の実情に鑑みるとより短時間の冷却工程が求められる。特に、はんだ接合部の製造工程においては、接合が不十分な可能性がある場合は、はんだ合金を溶融、冷却する工程を複数回行うことが多い。そのため、冷却時間が長いことは生産性の低下、製造コストの上昇を招くことになる。   However, the method (i) requires about 4000 seconds as an elapsed time (also referred to as a holding time) in a temperature range of about 140 to 160 ° C., and therefore, the actual process of the solder joint manufacturing process is not limited. In view of this, a shorter cooling process is required. In particular, in the manufacturing process of the solder joint portion, when there is a possibility that the joint is insufficient, the step of melting and cooling the solder alloy is often performed plural times. Therefore, a long cooling time leads to a decrease in productivity and an increase in manufacturing cost.

また、(ii)の方法に関しては斜方晶と六方晶との混合物であり作動時のCu6Sn5金属間化合物の変態を避けられず、斜方晶が存在することによる意義は必ずしも十分ではない可能性があると考えられた。そのため、120〜175℃程度の温度範囲での経過時間(保持時間とも称する。)は200秒程度ではあっても、その効果は必ずしも十分なものとはならないと考えられた。   Further, regarding the method (ii), a mixture of orthorhombic and hexagonal crystals cannot be avoided because the transformation of the Cu6Sn5 intermetallic compound during operation cannot be avoided, and the significance of the presence of orthorhombic crystals is not always sufficient. Was thought to be. Therefore, even if the elapsed time (also referred to as holding time) in the temperature range of about 120 to 175 ° C. is about 200 seconds, it is considered that the effect is not always sufficient.

そこで、本発明の目的とするところは、はんだ合金の溶融、冷却凝固を複数回行う場合であっても、作動時に相変態に伴う体積変化、及び体積変化に起因した歪や亀裂の発生などを抑制した信頼性の高い接合部を生産性良く形成可能なはんだ接合部の製造方法を提供することにある。   Therefore, the purpose of the present invention is to melt the solder alloy, even when performing cooling and solidification a plurality of times, the volume change accompanying the phase transformation during operation, and the occurrence of strain and cracks due to the volume change, etc. It is an object of the present invention to provide a method for manufacturing a solder joint, in which a suppressed and highly reliable joint can be formed with high productivity.

本発明者は、前述の課題解決のために鋭意検討を行った。その結果、意外にも、Cu6Sn5金属間化合物の安定斜方晶と六方晶の混在領域を所定の条件で通過させると、はんだ合金の溶融、冷却凝固を複数回行っても、信頼性の高い接合部を生産性良く形成可能であることを見出し、本発明を完成させるに至った。   The present inventor has earnestly studied to solve the above problems. As a result, surprisingly, when the stable orthorhombic and hexagonal mixed regions of Cu6Sn5 intermetallic compound are allowed to pass under predetermined conditions, even if the solder alloy is melted and cooled and solidified multiple times, highly reliable bonding is achieved. It has been found that the parts can be formed with high productivity, and the present invention has been completed.

本発明は、Cu:0.3〜7.6重量%、残部がSn及び不可避不純物である合金を186℃以上に昇温した後186℃以下に冷却する冷却工程を複数回繰り返し行うはんだ接合部の製造方法であって、各冷却工程において、合金を186℃以上に昇温した後、合金の温度の経時変化を示す冷却温度線がCuSnの186℃以上で安定な六方晶と、186℃以下で安定な斜方晶の混在領域を通過し、かつ、160〜137℃の温度範囲での保持時間が96〜305秒となるように冷却する、はんだ接合部の製造方法に関する。 The present invention is a solder joint in which Cu: 0.3 to 7.6% by weight, the balance is Sn and alloys which are unavoidable impurities are heated to 186 ° C. or higher and then cooled to 186 ° C. or lower. In each cooling step, after the temperature of the alloy is raised to 186 ° C. or higher, a cooling temperature line showing a change with time of the temperature of the alloy is a stable hexagonal crystal of Cu 6 Sn 5 at 186 ° C. or higher, The present invention relates to a method for manufacturing a solder joint, which passes through a stable orthorhombic mixed region at 186 ° C. or lower and cools so that a holding time in a temperature range of 160 to 137 ° C. is 96 to 305 seconds.

本発明の実施形態では、冷却温度線がCuSnの安定斜方晶と六方晶の前記混在領域を通過し、かつ、175〜120℃の温度範囲での保持時間が4,000秒以下となるように冷却してもよい。 In the embodiment of the present invention, the cooling temperature line passes through the mixed region of stable orthorhombic and hexagonal Cu 6 Sn 5 and the holding time in the temperature range of 175 to 120 ° C. is 4,000 seconds or less. You may cool so that it may become.

本発明の実施形態では、合金が、Ag、Bi、Sb、Zn、Ge、Mn、Inから選択される少なくとも1種の元素を含んでもよい。   In the embodiment of the present invention, the alloy may include at least one element selected from Ag, Bi, Sb, Zn, Ge, Mn, and In.

本発明の実施形態では、Niの含量が、0.03重量%以下であってもよい。   In an embodiment of the present invention, the Ni content may be 0.03 wt% or less.

本発明によれば、はんだ合金の溶融、冷却凝固を複数回行う場合であっても、作動時に相変態に伴う体積変化、及び体積変化に起因した歪や亀裂の発生などを抑制した信頼性の高い接合部を、生産性良く、形成可能なはんだ接合部の製造方法を提供することができる。   According to the present invention, even when performing melting and cooling solidification of the solder alloy a plurality of times, the volume change accompanying the phase transformation at the time of operation, and the reliability of suppressing the occurrence of strain and cracks due to the volume change It is possible to provide a method for manufacturing a solder joint capable of forming a high joint with good productivity.

Cu6Sn5金属間化合物の時間、温度、相変態の関係を示した図である。It is the figure which showed the time of the Cu6Sn5 intermetallic compound, temperature, and the relationship of phase transformation. 試験例1a〜4cの評価結果を示した図である。(a)は、接合強度の測定結果を示したものであり、(b)は、冷却工程を1回行った時の接合強度に対する変化率の算出結果を示したものである。It is a figure showing the evaluation result of test examples 1a-4c. (A) shows the measurement result of the bonding strength, and (b) shows the calculation result of the change rate with respect to the bonding strength when the cooling step is performed once. 試験例5a〜8cの評価結果を示した図である。(a)は、接合強度の測定結果を示したものであり、(b)は、冷却工程を1回行った時の接合強度に対する変化率の算出結果を示したものである。It is a figure showing the evaluation result of test examples 5a-8c. (A) shows the measurement result of the bonding strength, and (b) shows the calculation result of the change rate with respect to the bonding strength when the cooling step is performed once.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本発明に係るはんだ接合部の製造方法の実施形態では、Cu:0.3〜7.6重量%、残部がSn及び不可避不純物である合金を186℃以上に昇温した後186℃以下に冷却する冷却工程を複数回繰り返し行う。そして、複数回繰り返し行われる各冷却工程において、合金を186℃以上に昇温した後、合金の温度の経時変化を示す冷却温度線が、図1に示す、Cu6Sn5金属間化合物の186℃以上で安定な六方晶と、186℃以下で安定な斜方晶の混在領域を通過し、かつ、160〜137℃の温度範囲の保持時間が96〜305秒になるように冷却する。   In the embodiment of the method for manufacturing a solder joint according to the present invention, Cu: 0.3 to 7.6% by weight, the balance is Sn and an alloy containing inevitable impurities is heated to 186 ° C. or higher and then cooled to 186 ° C. or lower. The cooling step is repeated a plurality of times. Then, in each cooling step that is repeated a plurality of times, after the alloy is heated to 186 ° C. or higher, the cooling temperature line showing the change with time of the temperature of the alloy is 186 ° C. or higher of the Cu6Sn5 intermetallic compound shown in FIG. The mixture is cooled so that it passes through a mixed region of stable hexagonal crystals and stable orthorhombic crystals at 186 ° C. or lower and the holding time in the temperature range of 160 to 137 ° C. is 96 to 305 seconds.

このように、複数回行われる冷却工程において、特許文献1に記載の発明の場合とは異なり、160〜137℃での温度保持時間が、96〜305秒であっても、この条件下で、合金の温度の経時変化を示す冷却温度線が、図1に示す、Cu6Sn5の安定斜方晶と六方晶の混在領域を通過していれば、信頼性の高い接合部が形成される。これは、(1)137〜160℃の温度で、例えば4000秒程度保持すると、Cu6Sn5の相変態は起こるものの、結晶が成長することで亀裂(クラック)が発生し、かえってクラックの発生量が増加すること、(2)図1に示す各結晶相の境界を表すTTT曲線のうち、斜方晶と六方晶の混合領域と100%準安定η−Cu6Sn5領域(六方晶領域)との境界を示すTTT曲線(以下、「混晶TTT曲線」と称する場合がある。)を越すと急激に相変態が起こり短時間でも斜方晶の割合が多くなり得ること、等が要因と考えられる。尚、137〜160℃での保持時間を長くすることでクラックの発生量が増加すること、短時間で相変態が起こることは、実験により確認している。   In this way, in the cooling step performed a plurality of times, unlike the case of the invention described in Patent Document 1, even if the temperature holding time at 160 to 137 ° C. is 96 to 305 seconds, under this condition, If the cooling temperature line showing the change over time of the temperature of the alloy passes through the mixed region of stable orthorhombic and hexagonal Cu6Sn5 shown in FIG. 1, a highly reliable joint is formed. This is because (1) when a temperature of 137 to 160 ° C. is maintained for, for example, about 4000 seconds, a phase transformation of Cu6Sn5 occurs, but cracks occur due to crystal growth, and the amount of cracks generated increases. (2) In the TTT curve representing the boundary of each crystal phase shown in FIG. 1, the boundary between the mixed region of orthorhombic and hexagonal and the 100% metastable η-Cu6Sn5 region (hexagonal region) is shown. It is considered that when the temperature exceeds the TTT curve (hereinafter sometimes referred to as “mixed crystal TTT curve”), a rapid phase transformation occurs and the ratio of orthorhombic crystals may increase even in a short time. It has been confirmed by experiments that increasing the holding time at 137 to 160 ° C. increases the amount of cracks and that phase transformation occurs in a short time.

冷却工程では、合金を186℃以上に昇温した後は、合金の温度の経時変化を示す冷却温度線がCu6Sn5の安定斜方晶と六方晶の混在領域を通過し、かつ、160〜137℃の温度範囲の保持時間が96〜305秒となるように冷却すればよい。信頼性を向上する観点から当該温度範囲での保持時間(経過時間)は、100秒以上が好ましく、130秒以上がより好ましい。この際の温度と時間の関係は、逆進的な昇温をさせない限りは、特に限定はない。漸次降温してもよいし、一定温度に保持する時間を適宜設けてもよい。言い換えると降温速度を一定にしてもよいし、任意に変化させてもよい。また、より効率的な冷却を行う観点から、冷却温度線がCu6Sn5の安定斜方晶と六方晶の混在領域を通過し、かつ、175〜120℃の温度範囲の保持時間が4,000秒以下となるように冷却してもよい。   In the cooling step, after the alloy is heated to 186 ° C. or higher, the cooling temperature line showing the time-dependent change in the temperature of the alloy passes through the mixed region of stable orthorhombic and hexagonal Cu6Sn5, and 160 to 137 ° C. Cooling may be performed so that the holding time in the temperature range is 96 to 305 seconds. From the viewpoint of improving reliability, the holding time (elapsed time) in the temperature range is preferably 100 seconds or longer, more preferably 130 seconds or longer. The relationship between the temperature and the time at this time is not particularly limited as long as the temperature is not increased in the reverse direction. The temperature may be gradually decreased, or a time for maintaining a constant temperature may be appropriately provided. In other words, the cooling rate may be constant or may be changed arbitrarily. Further, from the viewpoint of more efficient cooling, the cooling temperature line passes through a mixed region of stable orthorhombic and hexagonal Cu6Sn5 and the holding time in the temperature range of 175 to 120 ° C. is 4,000 seconds or less. You may cool so that it may become.

また、186℃以上に昇温後160℃に至るまで及び137℃未満になった後は、効率的に接合部を冷却することができれば降温速度は特に限定はない。186℃以上に昇温後160℃に至るまではCu6Sn5の安定斜方晶と六方晶の混在領域を通過させる観点から、186℃以上に昇温して冷却を開始した後、140〜160℃で図1に示す混晶TTT曲線と効率的に交差するように、逆進的に昇温させることなく合金の冷却温度線を制御するのが好ましい。   Further, the temperature lowering rate is not particularly limited as long as the joint can be efficiently cooled after the temperature is raised to 186 ° C. or higher and reaches 160 ° C. or lower than 137 ° C. From the viewpoint of passing through a mixed region of stable orthorhombic and hexagonal Cu6Sn5 until the temperature reaches 160 ° C after the temperature is raised to 186 ° C or higher, the temperature is raised to 186 ° C or higher and cooling is started, and then at 140 to 160 ° C. It is preferable to control the cooling temperature line of the alloy without increasing the temperature in a backward manner so as to efficiently intersect the mixed crystal TTT curve shown in FIG.

冷却工程の繰り返し回数は、はんだ接合を行う基材等の特性等により適宜決定することができるが、繰り返し回数が多くなると、接合強度が低下する傾向にあるため、極端に回数を多くするのは望ましくない。また、繰り返し時の冷却条件は、同じでもよいし、異なってもよい。   The number of times the cooling step is repeated can be appropriately determined depending on the characteristics of the base material to be soldered and the like.However, as the number of times the soldering is increased, the bonding strength tends to decrease. Not desirable. The cooling conditions at the time of repetition may be the same or different.

合金の成分組成は、Cu0.3〜7.6重量%、残部がSn及び不可避不純物であってよい。つまり、残部は実質的にSnが99.7〜92.4重量%で微量の不可避不純部を含み得る。Cuの含量が0.3重量%未満である場合、良好なはんだ接合部を形成することができなくなる傾向にある。7.6重量%を超えると、Cu3Sn金属間化合物も形成され、Cu6Sn5の生成量が相対的に低下する。そのため、本発明を適用する意義が低下する。   The composition of the alloy may be Cu 0.3 to 7.6% by weight, the balance being Sn and unavoidable impurities. That is, the balance may be substantially 99.7 to 92.4 wt% Sn and may contain a trace amount of unavoidable impurities. If the Cu content is less than 0.3% by weight, it tends to be impossible to form a good solder joint. If it exceeds 7.6% by weight, a Cu3Sn intermetallic compound is also formed, and the amount of Cu6Sn5 produced is relatively reduced. Therefore, the significance of applying the present invention decreases.

合金には、Cu6Sn5の生成を大きく阻害しなければ、SnとCu以外に他の金属を含んでもよい。このような金属元素としては、例えば、Ag、Bi、Sb、Zn、Ge、Mn、In等が挙げられる。これらは、1種含んでもよいし、2種以上含んでもよい。なお、Niを0.03重量%より多く含むと前述のような冷却工程を経ることなく良好な接合部を形成可能である。そのため、前述の冷却工程を意義あらしめる観点からは、Niの含量は、0.03重量%以下が望ましく、0.02重量%以下がより好ましい。   The alloy may contain other metals in addition to Sn and Cu as long as they do not significantly inhibit the production of Cu6Sn5. Examples of such metal elements include Ag, Bi, Sb, Zn, Ge, Mn, and In. These may include one kind or two or more kinds. If Ni is contained in an amount of more than 0.03% by weight, a good joint can be formed without going through the cooling process as described above. Therefore, from the viewpoint of making the above cooling step meaningful, the Ni content is preferably 0.03% by weight or less, and more preferably 0.02% by weight or less.

以上のような実施形態に係るはんだ接合部の製造方法は、Sn−Cuはんだ合金やCu6Sn5の生成を大きく阻害しない他の金属を含むSn−Cu系はんだ合金を用いて行われる各種のはんだ付けにおいて好適に適用可能である。   The solder joint manufacturing method according to the above-described embodiment is applicable to various soldering operations performed using Sn—Cu solder alloys or Sn—Cu based solder alloys containing other metals that do not significantly inhibit the production of Cu6Sn5. It is suitably applicable.

実施例により、本願発明の実施形態をより詳細に説明する。   The embodiments of the present invention will be described in more detail by way of examples.

(試験例1a〜4c)
<はんだ接合部の製造>
Cuが0.7重量%、残部がSnと不可避不純物であるSn−0.7Cu合金(株式会社日本スペリア社製、SC07)を用い、粒子径500μmのはんだボールを作製した。銅箔基板の実装箇所に「フラックスRM−5」(株式会社日本スぺリア製)を塗布した後、はんだボールを搭載した。リフロー装置(Manncorp社製、BT300)を用いて、窒素雰囲気下で、以下の温度履歴となるようにはんだ接合部の製造を行った。
(Test examples 1a to 4c)
<Manufacture of solder joints>
A solder ball having a particle diameter of 500 μm was produced using a Sn-0.7Cu alloy (SC07 manufactured by Nippon Superior Co., Ltd.) in which Cu is 0.7% by weight and the balance is Sn and inevitable impurities. "Flux RM-5" (manufactured by Nippon Superior Co., Ltd.) was applied to the mounting locations of the copper foil substrate, and then solder balls were mounted. Using a reflow device (manufactured by Manncorp, BT300), a solder joint was manufactured in a nitrogen atmosphere so as to have the following temperature history.

その後、室温から約5分間で約240℃まで昇温した後、表1のような条件で冷却した。リフローを繰り返す場合は、常温まで冷却後、同様の操作を繰り返した。常温に冷却後、IPA(イソプロピルアルコール)にて洗浄して、フラックスを除去後、後述する評価を行った。尚、各条件において、はんだボールは20箇所に実装し、それぞれ下記の評価を行った。また、表1より、試験例1〜4の160〜137℃の経過時間はそれぞれ、95s、155s、174s、305sである。   Then, the temperature was raised from room temperature to about 240 ° C. in about 5 minutes, and then cooled under the conditions shown in Table 1. When repeating the reflow, the same operation was repeated after cooling to room temperature. After cooling to room temperature, it was washed with IPA (isopropyl alcohol) to remove the flux, and then evaluated as described below. Under each condition, solder balls were mounted at 20 locations and the following evaluations were carried out. Moreover, from Table 1, the elapsed time of 160-137 degreeC of Test Examples 1-4 is 95 s, 155 s, 174 s, and 305 s, respectively.

Figure 2020066041
Figure 2020066041

<評価>
各試験例1a〜4cで得られたはんだ接合部20箇所をインパクトシェア試験機(DAGE社製 4000HS)にセットし、2,000mm/秒でのせん断負荷応力を測定した。せん断負荷応力の最大値の平均値を接合強度とした。評価結果を図2に示す。図2には、接合強度の結果(図2a)と、冷却工程を1回行った時の接合強度に対する変化率の算出結果(図2b)を示した。
<Evaluation>
Twenty places of solder joints obtained in each of Test Examples 1a to 4c were set in an impact shear tester (4000HS manufactured by DAGE), and a shear load stress at 2,000 mm / sec was measured. The average of the maximum values of the shear load stress was taken as the joint strength. The evaluation result is shown in FIG. FIG. 2 shows the result of the bonding strength (FIG. 2A) and the calculation result of the rate of change with respect to the bonding strength (FIG. 2B) when the cooling step was performed once.

(試験例5a〜8c)
はんだ合金を、Cuが0.5重量%、Agが3.0重量%、残部がSnと不可避不純物であるSn−3Ag−0.5Cu合金(株式会社日本スペリア社製、SAC305)を用いた以外は、それぞれ試験例1a〜4cと同様にしてはんだ接合部を製造し、評価を行った。評価結果を図3a、bに示す。
(Test examples 5a to 8c)
Other than using a solder alloy of 0.5 wt% Cu, 3.0 wt% Ag, and the balance Sn and Sn-3Ag-0.5Cu alloy (SAC305 manufactured by Nihon Superior Co., Ltd.) which is an unavoidable impurity. Was manufactured and evaluated in the same manner as in Test Examples 1a to 4c. The evaluation results are shown in FIGS.

図2、3から分かるように、所定の条件を満たす冷却工程(試験例2〜4)を行うことで、冷却工程を1回のみを行った場合に比べて、複数回行った場合の接合強度の低下を抑制することが可能であることが分かる。


As can be seen from FIGS. 2 and 3, by performing the cooling process satisfying a predetermined condition (Test Examples 2 to 4), the bonding strength when the cooling process is performed a plurality of times as compared with the case where the cooling process is performed only once It can be seen that it is possible to suppress the decrease of


Claims (4)

Cu:0.3〜7.6重量%、残部がSn及び不可避不純物である合金を186℃以上に昇温した後186℃以下に冷却する冷却工程を複数回繰り返し行うはんだ接合部の製造方法であって、
各冷却工程において、合金を186℃以上に昇温した後、合金の温度の経時変化を示す冷却温度線がCuSnの186℃以上で安定な六方晶と、186℃以下で安定な斜方晶の混在領域を通過し、かつ、160〜137℃の温度範囲での保持時間が96〜305秒となるように冷却する、はんだ接合部の製造方法。
Cu: 0.3 to 7.6% by weight, the balance is a method for manufacturing a solder joint in which a cooling step of heating an alloy containing Sn and inevitable impurities to 186 ° C. or higher and then cooling the alloy to 186 ° C. or lower is repeated a plurality of times. There
In each cooling step, after the temperature of the alloy was raised to 186 ° C. or higher, the cooling temperature line showing the change over time of the temperature of the alloy was a hexagonal crystal of Cu 6 Sn 5 stable at 186 ° C. or higher and a stable gradient at 186 ° C. or lower. A method for manufacturing a solder joint, which comprises passing through a mixed region of tetragonal crystals and cooling such that a holding time in a temperature range of 160 to 137 ° C. is 96 to 305 seconds.
冷却温度線がCuSnの安定斜方晶と六方晶の前記混在領域を通過し、かつ、175〜120℃の温度範囲での保持時間が4,000秒以下となるように冷却する、請求項1記載のはんだ接合部の製造方法。 The cooling temperature line passes through the mixed region of stable orthorhombic and hexagonal Cu 6 Sn 5 crystals and is cooled so that the holding time in the temperature range of 175 to 120 ° C. is 4,000 seconds or less. The method for manufacturing a solder joint according to claim 1. Ag、Bi、Sb、Zn、Ge、Mn、Inから選択される少なくとも1種の元素を含む、請求項1又は2に記載のはんだ接合部の製造方法。   The method for manufacturing a solder joint according to claim 1 or 2, which contains at least one element selected from Ag, Bi, Sb, Zn, Ge, Mn, and In. Niの含量が、0.03重量%以下である、請求項1〜3の何れか1項に記載のはんだ接合部の製造方法。


The method for manufacturing a solder joint according to any one of claims 1 to 3, wherein the content of Ni is 0.03% by weight or less.


JP2018201476A 2018-10-26 2018-10-26 Method for manufacturing solder joints Active JP7291320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018201476A JP7291320B2 (en) 2018-10-26 2018-10-26 Method for manufacturing solder joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201476A JP7291320B2 (en) 2018-10-26 2018-10-26 Method for manufacturing solder joints

Publications (2)

Publication Number Publication Date
JP2020066041A true JP2020066041A (en) 2020-04-30
JP7291320B2 JP7291320B2 (en) 2023-06-15

Family

ID=70389166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201476A Active JP7291320B2 (en) 2018-10-26 2018-10-26 Method for manufacturing solder joints

Country Status (1)

Country Link
JP (1) JP7291320B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150655A (en) * 2003-11-20 2005-06-09 Matsushita Electric Ind Co Ltd Lead frame, semiconductor device using the same, and method for packaging semiconductor device
WO2009051255A1 (en) * 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. Solder joint
WO2013002112A1 (en) * 2011-06-29 2013-01-03 株式会社日本スペリア社 Process for producing solder joint with improved reliability
WO2018096917A1 (en) * 2016-11-22 2018-05-31 千住金属工業株式会社 Soldering method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150655A (en) * 2003-11-20 2005-06-09 Matsushita Electric Ind Co Ltd Lead frame, semiconductor device using the same, and method for packaging semiconductor device
WO2009051255A1 (en) * 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. Solder joint
WO2009051181A1 (en) * 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. Lead-free solder alloy
WO2013002112A1 (en) * 2011-06-29 2013-01-03 株式会社日本スペリア社 Process for producing solder joint with improved reliability
WO2018096917A1 (en) * 2016-11-22 2018-05-31 千住金属工業株式会社 Soldering method

Also Published As

Publication number Publication date
JP7291320B2 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
TWI650426B (en) Advanced solder alloy and soldering method for electronic interconnection
JP6767506B2 (en) Highly reliable lead-free solder alloy
TWI587964B (en) Lead-free,antimony-free solder alloy,use of the same,soldered joint comprising the same,and method for forming soldered joint
TWI742813B (en) High temperature ultra-high reliability alloys
KR102153273B1 (en) Solder alloy, solder paste, solder ball, resin-embedded solder and solder joint
TWI677581B (en) Solder alloy, solder paste, solder ball, flux-cored solder and solder joint
JP2019520985A6 (en) Highly reliable lead-free solder alloy
JP6128211B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI645047B (en) Solder alloys, solder balls and solder joints
CN103079751A (en) Bi-sn-based high-temperature solder alloy
KR20210104144A (en) lead free solder composition
JP5187465B1 (en) High temperature lead-free solder alloy
JP6119912B1 (en) Solder alloys, solder balls and solder joints
KR102672970B1 (en) Solder alloy, solder ball, solder paste and solder joint
JP2020025982A (en) Lead-free solder alloy
JP6848859B2 (en) Solder alloy
JP7291320B2 (en) Method for manufacturing solder joints
JP2008221330A (en) Solder alloy
JP4432041B2 (en) Solder alloys and solder balls
JP4359983B2 (en) Electronic component mounting structure and manufacturing method thereof
JP5646230B2 (en) Lead-free bonding material and manufacturing method thereof
US20150258637A1 (en) Solder alloy for die bonding
Samiappan Alternative Pb-free soldering alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221012

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7291320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150