JP7291320B2 - Method for manufacturing solder joints - Google Patents

Method for manufacturing solder joints Download PDF

Info

Publication number
JP7291320B2
JP7291320B2 JP2018201476A JP2018201476A JP7291320B2 JP 7291320 B2 JP7291320 B2 JP 7291320B2 JP 2018201476 A JP2018201476 A JP 2018201476A JP 2018201476 A JP2018201476 A JP 2018201476A JP 7291320 B2 JP7291320 B2 JP 7291320B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
alloy
solder
orthorhombic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018201476A
Other languages
Japanese (ja)
Other versions
JP2020066041A (en
Inventor
哲郎 西村
貴利 西村
和宏 野北
デヴィッド マクドナルド スチュワート
ソミディン フローラ
イエ シャオゾウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Queensland UQ
Original Assignee
University of Queensland UQ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Queensland UQ filed Critical University of Queensland UQ
Priority to JP2018201476A priority Critical patent/JP7291320B2/en
Publication of JP2020066041A publication Critical patent/JP2020066041A/en
Application granted granted Critical
Publication of JP7291320B2 publication Critical patent/JP7291320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、はんだ接合部の製造方法に関し、特に錫銅系はんだ合金を用いたはんだ接合部の製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a method for manufacturing a solder joint, and more particularly to a method for manufacturing a solder joint using a tin-copper-based solder alloy.

環境上から、ミクロ電子部品の組み立てに用いる大半のはんだ合金は鉛の含有を減少した組成に変わっている。そして、現在では多くのはんだ合金は、Sn-Ag-Cuや、Sn-Cu-Ni合金を主成分としている。はんだ界面の接合部では、作業中、及び冷却中にCuSn金属間化合物(以下、単に「Cu6Sn5金属間化合物」又は「Cu6Sn5」と標記する場合がある。)が形成され、マイクロ電子回路のはんだ信頼性に大きく影響を及ぼす、はんだと界面の間の連続相を形成することになる。したがって、Cu6Sn5の結晶構造を安定した状態に維持することは、電子部品の信頼できる製造とサービスに適用するうえで重要である。電子製品のライフサイクルの間で変化する可能性がある様々な結晶構造中に存在するCu6Sn5金属間化合物を考えた場合、特にこの金属間化合物の安定化は重要な課題である。 For environmental reasons, most solder alloys used in the assembly of microelectronic components have been modified to contain less lead. At present, many solder alloys are mainly composed of Sn--Ag--Cu and Sn--Cu--Ni alloys. Intermetallic Cu6Sn5 ( hereinafter sometimes simply referred to as "Cu6Sn5 intermetallic compound" or "Cu6Sn5") is formed at the joints of the solder interface during operation and cooling, and is used for microelectronic circuits. A continuous phase is formed between the solder and the interface, which greatly affects the solder reliability of the solder. Therefore, maintaining the crystal structure of Cu6Sn5 in a stable state is important for reliable manufacturing and service applications of electronic components. Stabilization of this intermetallic compound is particularly important when considering the Cu6Sn5 intermetallic compound present in various crystal structures that may change during the life cycle of electronic products.

このCu6Sn5金属間化合物は、186℃以下で六方晶から斜方晶の結晶構造に固相変態する。錫銅系の合金を用いてはんだ接合部を形成する場合、通常230℃より高い温度まで昇温した後冷却して凝固させる。冷却の際に六方晶のCu6Sn5金属間化合物が形成され、電子部品に残存すると、その作動時に固相変態が起こる可能性がある。そして、この変態に伴って体積変化等が発生すると金属間化合物そのものに亀裂が発生することで、接合部の強度が低下したり、電気抵抗が増加したりする場合がある。また、はんだリフロー工程を複数回繰り返すと、その度に結晶構造が変化することとなるため、その繰り返しによりCu6Sn5金属間化合物に亀裂が発生する可能性が生じる。そこで、本発明者は、溶融状態から凝固までのプロセスにおいて冷却温度を制御することによって、凝固した接合部に生成するCu6Sn5金属間化合物を、それに伴う体積変化が最小限になる温度領域で積極的に安定した状態の斜方晶に変態させ、作動時あるいは製造時に相変態に伴う体積変化、及び体積変化に起因した歪や亀裂の発生などを抑制する方法を提案している(特許文献1)。 This Cu6Sn5 intermetallic compound undergoes a solid-phase transformation from a hexagonal crystal structure to an orthorhombic crystal structure at 186° C. or lower. When solder joints are formed using tin-copper based alloys, they are usually heated to a temperature higher than 230° C. and then cooled to solidify. If a hexagonal Cu6Sn5 intermetallic compound is formed during cooling and remains in the electronic component, a solid phase transformation can occur during its operation. If a volume change or the like occurs with this transformation, the intermetallic compound itself cracks, which may reduce the strength of the joint and increase the electrical resistance. In addition, when the solder reflow process is repeated multiple times, the crystal structure changes each time, and the repetition may cause cracks in the Cu6Sn5 intermetallic compound. Therefore, the present inventors actively controlled the Cu6Sn5 intermetallic compound formed in the solidified joint in a temperature range in which the accompanying volume change is minimized by controlling the cooling temperature in the process from the molten state to the solidification. We have proposed a method of transforming to a stable orthorhombic crystal to suppress the volume change accompanying the phase transformation during operation or manufacturing, and the generation of strain and cracks due to the volume change (Patent Document 1). .

特許第6118249号公報Japanese Patent No. 6118249

特許文献1に記載のように、本発明者は、186℃以上で溶融するSn-Cu二元合金、あるいはこれに対して他の元素を含むがCuSn金属間化合物を生成する合金では、冷却温度履歴によっては、CuSn金属間化合物の全てが六方晶から斜方晶に変態する場合と、六方晶のうちの一部だけが斜方晶に変態し、六方晶と斜方晶が混在する場合があることを知見した。そして、冷却温度と冷却時間との関係から、冷却履歴とCuSn金属間化合物の結晶構造の関係を実験により導出した(図1参照)。図1に示すように、X軸に時間(秒)、Y軸に温度(℃)で示した二次元図において、冷却温度と冷却時間の関係から、(1)100%安定斜方晶CuSn(η’-CuSn)に変態する領域(斜方晶領域)と、(2)η’-CuSnに変態しない状態の六方晶CuSn(η-CuSn)が混在する領域(斜方晶と六方晶の混合領域)と、(3)比較的短時間で冷却した場合の100%準安定η-CuSn領域(六方晶領域)が存在し、これらが186℃以下の温度において、2つの時間-温度-変態曲線(TTT曲線)により区画されることを確認した。そして、図1に基づき、CuSn金属間化合物を安定した状態の斜方晶に変態させる方法として、(i)140~160℃程度で4000秒程度保持することによって、斜方晶領域を通過させ、全てのCuSn金属間化合物を六方晶から斜方晶に変態させる方法、(ii)120~175℃程度で200秒程度保持することによって、斜方晶と六方晶の混合領域を通過させ、一部のCuSn金属間化合物を六方晶から斜方晶に変態させる方法を提案した。
As described in US Pat. No. 5,200,400, the inventors have found that in Sn—Cu binary alloys melting above 186° C., or in alloys containing other elements but forming Cu 6 Sn 5 intermetallics, , depending on the cooling temperature history, there are cases where all the Cu 6 Sn 5 intermetallic compounds transform from hexagonal to orthorhombic crystals, and only a part of the hexagonal crystals transforms into orthorhombic crystals, and hexagonal and orthorhombic It was found that crystals may be mixed. Then, from the relationship between the cooling temperature and the cooling time, the relationship between the cooling history and the crystal structure of the Cu 6 Sn 5 intermetallic compound was derived by experiment (see FIG. 1). As shown in FIG. 1, in a two-dimensional diagram with time (seconds) on the X-axis and temperature (° C.) on the Y-axis, from the relationship between the cooling temperature and the cooling time, (1) 100% stable orthorhombic Cu 6 and (2) hexagonal Cu 6 Sn 5 ( η-Cu 6 Sn ) in a state not transformed to η'-Cu 6 Sn 5 ( orthorhombic region). 5 ) mixed region (orthorhombic and hexagonal mixed region) and (3) 100% metastable η-Cu 6 Sn 5 region (hexagonal region) when cooled in a relatively short time. , which are subdivided by two time-temperature-transformation curves (TTT curves) at temperatures below 186°C. Then, based on FIG. 1, as a method for transforming the Cu 6 Sn 5 intermetallic compound into the orthorhombic crystal in a stable state, (i) the orthorhombic region is transformed by holding at about 140 to 160° C. for about 4000 seconds. (ii) a mixed region of orthorhombic and hexagonal by holding at about 120 to 175 ° C. for about 200 seconds proposed a method to transform some Cu 6 Sn 5 intermetallics from hexagonal to orthorhombic by passing through .

特許文献1に記載の発明では、前記(i)の方法により、全てのCu6Sn5金属間化合物を斜方晶に変態させることが最善であり、前記(ii)の方法により斜方晶と六方晶との混合状態に変態させることは次善であるという立場であった。これは、作動時のCu6Sn5金属間化合物の変態をより確実に防止できると考えたためである。 In the invention described in Patent Document 1, it is best to transform all Cu6Sn5 intermetallic compounds into orthorhombic crystals by the method (i), and orthorhombic and hexagonal crystals are transformed by the method (ii). It was the position that it was the second best to transform into a mixed state of This is because it was thought that the transformation of the Cu6Sn5 intermetallic compound during operation could be prevented more reliably.

しかし、(i)の方法では、140~160℃程度の温度範囲での経過時間(保持時間とも称する。)として4000秒程度の時間を必要とすることから、はんだ接合部の製造工程の実情に鑑みるとより短時間の冷却工程が求められる。特に、はんだ接合部の製造工程においては、接合が不十分な可能性がある場合は、はんだ合金を溶融、冷却する工程を複数回行うことが多い。そのため、冷却時間が長いことは生産性の低下、製造コストの上昇を招くことになる。 However, the method (i) requires about 4000 seconds as the elapsed time (also referred to as holding time) in the temperature range of about 140 to 160° C. In view of this, a shorter cooling process is required. In particular, in the process of manufacturing a solder joint, when there is a possibility that the joint may be insufficient, the process of melting and cooling the solder alloy is often performed multiple times. Therefore, a long cooling time leads to a decrease in productivity and an increase in manufacturing cost.

また、(ii)の方法に関しては斜方晶と六方晶との混合物であり作動時のCu6Sn5金属間化合物の変態を避けられず、斜方晶が存在することによる意義は必ずしも十分ではない可能性があると考えられた。そのため、120~175℃程度の温度範囲での経過時間(保持時間とも称する。)は200秒程度ではあっても、その効果は必ずしも十分なものとはならないと考えられた。 In addition, regarding the method (ii), it is a mixture of orthorhombic and hexagonal crystals, and transformation of the Cu6Sn5 intermetallic compound during operation cannot be avoided, and the presence of orthorhombic crystals may not necessarily be of sufficient significance. It was thought that there was Therefore, even if the elapsed time (also referred to as holding time) in the temperature range of about 120 to 175° C. is about 200 seconds, the effect is not necessarily sufficient.

そこで、本発明の目的とするところは、はんだ合金の溶融、冷却凝固を複数回行う場合であっても、作動時に相変態に伴う体積変化、及び体積変化に起因した歪や亀裂の発生などを抑制した信頼性の高い接合部を生産性良く形成可能なはんだ接合部の製造方法を提供することにある。 Therefore, the object of the present invention is to prevent the volume change due to phase transformation during operation, and the generation of strain and cracks due to the volume change, even when the solder alloy is melted and cooled and solidified multiple times. It is an object of the present invention to provide a method for manufacturing a solder joint which enables formation of a highly reliable joint with high productivity.

本発明者は、前述の課題解決のために鋭意検討を行った。その結果、意外にも、Cu6Sn5金属間化合物の安定斜方晶と六方晶の混在領域を所定の条件で通過させると、はんだ合金の溶融、冷却凝固を複数回行っても、信頼性の高い接合部を生産性良く形成可能であることを見出し、本発明を完成させるに至った。 The inventor of the present invention has made intensive studies to solve the problems described above. As a result, unexpectedly, when the Cu6Sn5 intermetallic compound is passed through a stable mixed region of orthorhombic and hexagonal crystals under predetermined conditions, even if the solder alloy is melted and cooled and solidified multiple times, a highly reliable joint can be obtained. The present inventors have found that the portion can be formed with high productivity, and have completed the present invention.

本発明は、Cu:0.3~7.6重量%、残部がSn及び不可避不純物である合金を186℃以上に昇温した後186℃以下に冷却する冷却工程を複数回繰り返し行うはんだ接合部の製造方法であって、各冷却工程において、合金を186℃以上に昇温した後、合金の温度の経時変化を示す冷却温度線がCuSnの186℃以上で安定な六方晶と、186℃以下で安定な斜方晶の混在領域を通過し、かつ、160~137℃の温度範囲での保持時間が96~305秒となるように冷却する、はんだ接合部の製造方法に関する。 The present invention is a solder joint in which a cooling process of heating an alloy containing 0.3 to 7.6% by weight of Cu and the balance being Sn and unavoidable impurities to 186 ° C. or higher and then cooling it to 186 ° C. or lower is repeated multiple times. wherein, in each cooling step, after the alloy is heated to 186 ° C. or higher, the cooling temperature line showing the change in the temperature of the alloy over time is a stable hexagonal crystal of Cu 6 Sn 5 at 186 ° C. or higher; The present invention relates to a method for manufacturing a solder joint, which passes through a stable orthorhombic mixed region at 186° C. or lower and is cooled such that the holding time in the temperature range of 160 to 137° C. is 96 to 305 seconds.

本発明の実施形態では、冷却温度線がCuSnの安定斜方晶と六方晶の前記混在領域を通過し、かつ、175~120℃の温度範囲での保持時間が4,000秒以下となるように冷却してもよい。 In an embodiment of the present invention, the cooling temperature line passes through the mixed region of stable orthorhombic and hexagonal Cu 6 Sn 5 , and the holding time in the temperature range of 175 to 120° C. is 4,000 seconds or less. It may be cooled to

本発明の実施形態では、合金が、Ag、Bi、Sb、Zn、Ge、Mn、Inから選択される少なくとも1種の元素を含んでもよい。 In embodiments of the invention, the alloy may contain at least one element selected from Ag, Bi, Sb, Zn, Ge, Mn, In.

本発明の実施形態では、Niの含量が、0.03重量%以下であってもよい。 In an embodiment of the present invention, the Ni content may be 0.03 wt% or less.

本発明によれば、はんだ合金の溶融、冷却凝固を複数回行う場合であっても、作動時に相変態に伴う体積変化、及び体積変化に起因した歪や亀裂の発生などを抑制した信頼性の高い接合部を、生産性良く、形成可能なはんだ接合部の製造方法を提供することができる。 According to the present invention, even when the solder alloy is melted and cooled and solidified multiple times, the volume change accompanying the phase transformation during operation, and the occurrence of distortion and cracks due to the volume change are suppressed. It is possible to provide a method for manufacturing a solder joint that can form a high joint with good productivity.

Cu6Sn5金属間化合物の時間、温度、相変態の関係を示した図である。FIG. 4 is a diagram showing the relationship between time, temperature, and phase transformation of Cu6Sn5 intermetallic compounds. 試験例1a~4cの評価結果を示した図である。(a)は、接合強度の測定結果を示したものであり、(b)は、冷却工程を1回行った時の接合強度に対する変化率の算出結果を示したものである。FIG. 3 is a diagram showing evaluation results of Test Examples 1a to 4c. (a) shows the measurement results of the bonding strength, and (b) shows the calculation results of the change rate with respect to the bonding strength when the cooling process is performed once. 試験例5a~8cの評価結果を示した図である。(a)は、接合強度の測定結果を示したものであり、(b)は、冷却工程を1回行った時の接合強度に対する変化率の算出結果を示したものである。FIG. 5 is a diagram showing evaluation results of Test Examples 5a to 8c. (a) shows the measurement results of the bonding strength, and (b) shows the calculation results of the change rate with respect to the bonding strength when the cooling process is performed once.

以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.

本発明に係るはんだ接合部の製造方法の実施形態では、Cu:0.3~7.6重量%、残部がSn及び不可避不純物である合金を186℃以上に昇温した後186℃以下に冷却する冷却工程を複数回繰り返し行う。そして、複数回繰り返し行われる各冷却工程において、合金を186℃以上に昇温した後、合金の温度の経時変化を示す冷却温度線が、図1に示す、Cu6Sn5金属間化合物の186℃以上で安定な六方晶と、186℃以下で安定な斜方晶の混在領域を通過し、かつ、160~137℃の温度範囲の保持時間が96~305秒になるように冷却する。 In an embodiment of the method for manufacturing a solder joint according to the present invention, an alloy containing 0.3 to 7.6% by weight of Cu and the balance being Sn and inevitable impurities is heated to 186° C. or higher and then cooled to 186° C. or lower. This cooling process is repeated several times. After heating the alloy to 186° C. or higher in each cooling step that is repeated multiple times, the cooling temperature line showing the change in the temperature of the alloy over time is shown in FIG. It passes through a mixed region of stable hexagonal crystals and stable orthorhombic crystals at 186° C. or lower, and is cooled so that the holding time in the temperature range of 160 to 137° C. is 96 to 305 seconds.

このように、複数回行われる冷却工程において、特許文献1に記載の発明の場合とは異なり、160~137℃での温度保持時間が、96~305秒であっても、この条件下で、合金の温度の経時変化を示す冷却温度線が、図1に示す、Cu6Sn5の安定斜方晶と六方晶の混在領域を通過していれば、信頼性の高い接合部が形成される。これは、(1)137~160℃の温度で、例えば4000秒程度保持すると、Cu6Sn5の相変態は起こるものの、結晶が成長することで亀裂(クラック)が発生し、かえってクラックの発生量が増加すること、(2)図1に示す各結晶相の境界を表すTTT曲線のうち、斜方晶と六方晶の混合領域と100%準安定η-Cu6Sn5領域(六方晶領域)との境界を示すTTT曲線(以下、「混晶TTT曲線」と称する場合がある。)を越すと急激に相変態が起こり短時間でも斜方晶の割合が多くなり得ること、等が要因と考えられる。尚、137~160℃での保持時間を長くすることでクラックの発生量が増加すること、短時間で相変態が起こることは、実験により確認している。 In this way, in the cooling process performed multiple times, unlike the invention described in Patent Document 1, even if the temperature holding time at 160 to 137 ° C. is 96 to 305 seconds, under this condition, A highly reliable joint is formed if the cooling temperature line, which indicates the temporal change in the temperature of the alloy, passes through the mixed region of the stable orthorhombic and hexagonal crystals of Cu6Sn5 shown in FIG. This is because (1) when held at a temperature of 137 to 160° C. for, for example, about 4000 seconds, although phase transformation of Cu6Sn5 occurs, cracks occur due to crystal growth, and the amount of cracks generated increases. (2) Of the TTT curves representing the boundaries of each crystal phase shown in FIG. The reason for this is considered to be that when the TTT curve (hereinafter sometimes referred to as "mixed crystal TTT curve") is exceeded, a rapid phase transformation occurs and the ratio of orthorhombic crystals can increase even in a short period of time. It has been confirmed by experiments that the amount of cracks generated increases and the phase transformation occurs in a short period of time by lengthening the holding time at 137 to 160°C.

冷却工程では、合金を186℃以上に昇温した後は、合金の温度の経時変化を示す冷却温度線がCu6Sn5の安定斜方晶と六方晶の混在領域を通過し、かつ、160~137℃の温度範囲の保持時間が96~305秒となるように冷却すればよい。信頼性を向上する観点から当該温度範囲での保持時間(経過時間)は、100秒以上が好ましく、130秒以上がより好ましい。この際の温度と時間の関係は、逆進的な昇温をさせない限りは、特に限定はない。漸次降温してもよいし、一定温度に保持する時間を適宜設けてもよい。言い換えると降温速度を一定にしてもよいし、任意に変化させてもよい。また、より効率的な冷却を行う観点から、冷却温度線がCu6Sn5の安定斜方晶と六方晶の混在領域を通過し、かつ、175~120℃の温度範囲の保持時間が4,000秒以下となるように冷却してもよい。 In the cooling step, after heating the alloy to 186 ° C. or higher, the cooling temperature line showing the change in the temperature of the alloy with time passes through the stable orthorhombic and hexagonal stable mixed region of Cu6Sn5, and 160 to 137 ° C. It is sufficient to cool so that the holding time in the temperature range is 96 to 305 seconds. From the viewpoint of improving reliability, the holding time (elapsed time) in the temperature range is preferably 100 seconds or longer, more preferably 130 seconds or longer. The relationship between temperature and time at this time is not particularly limited as long as the temperature is not raised in a regressive manner. The temperature may be gradually lowered, or the time for holding at a constant temperature may be provided as appropriate. In other words, the rate of temperature drop may be constant, or may be changed arbitrarily. In addition, from the viewpoint of more efficient cooling, the cooling temperature line passes through the stable orthorhombic and hexagonal mixed region of Cu6Sn5, and the holding time in the temperature range of 175 to 120 ° C. is 4,000 seconds or less. It may be cooled to

また、186℃以上に昇温後160℃に至るまで及び137℃未満になった後は、効率的に接合部を冷却することができれば降温速度は特に限定はない。186℃以上に昇温後160℃に至るまではCu6Sn5の安定斜方晶と六方晶の混在領域を通過させる観点から、186℃以上に昇温して冷却を開始した後、140~160℃で図1に示す混晶TTT曲線と効率的に交差するように、逆進的に昇温させることなく合金の冷却温度線を制御するのが好ましい。 Further, after the temperature is raised to 186° C. or higher, the temperature is lowered to 160° C. and after the temperature is lowered to less than 137° C., the cooling rate is not particularly limited as long as the joint can be efficiently cooled. From the viewpoint of allowing Cu6Sn5 to pass through a mixed region of stable orthorhombic and hexagonal crystals until the temperature rises to 186 ° C. or higher and reaches 160 ° C., after the temperature is raised to 186 ° C. or higher and cooling is started, at 140 to 160 ° C. It is preferable to control the alloy cooling temperature line without regressive heating so that it effectively intersects the mixed crystal TTT curve shown in FIG.

冷却工程の繰り返し回数は、はんだ接合を行う基材等の特性等により適宜決定することができるが、繰り返し回数が多くなると、接合強度が低下する傾向にあるため、極端に回数を多くするのは望ましくない。また、繰り返し時の冷却条件は、同じでもよいし、異なってもよい。 The number of repetitions of the cooling process can be appropriately determined according to the properties of the base material to be soldered. Undesirable. Also, the cooling conditions during the repetition may be the same or different.

合金の成分組成は、Cu0.3~7.6重量%、残部がSn及び不可避不純物であってよい。つまり、残部は実質的にSnが99.7~92.4重量%で微量の不可避不純部を含み得る。Cuの含量が0.3重量%未満である場合、良好なはんだ接合部を形成することができなくなる傾向にある。7.6重量%を超えると、Cu3Sn金属間化合物も形成され、Cu6Sn5の生成量が相対的に低下する。そのため、本発明を適用する意義が低下する。 The composition of the alloy may be 0.3 to 7.6% by weight of Cu, with the balance being Sn and unavoidable impurities. In other words, the balance is substantially 99.7 to 92.4% by weight of Sn and may contain a small amount of unavoidable impurities. If the Cu content is less than 0.3% by weight, it tends to be difficult to form good solder joints. Above 7.6% by weight, a Cu3Sn intermetallic compound is also formed and the amount of Cu6Sn5 produced is relatively reduced. Therefore, the significance of applying the present invention is reduced.

合金には、Cu6Sn5の生成を大きく阻害しなければ、SnとCu以外に他の金属を含んでもよい。このような金属元素としては、例えば、Ag、Bi、Sb、Zn、Ge、Mn、In等が挙げられる。これらは、1種含んでもよいし、2種以上含んでもよい。なお、Niを0.03重量%より多く含むと前述のような冷却工程を経ることなく良好な接合部を形成可能である。そのため、前述の冷却工程を意義あらしめる観点からは、Niの含量は、0.03重量%以下が望ましく、0.02重量%以下がより好ましい。 The alloy may contain other metals besides Sn and Cu as long as they do not significantly inhibit the formation of Cu6Sn5. Examples of such metal elements include Ag, Bi, Sb, Zn, Ge, Mn, and In. These may contain 1 type, and may contain 2 or more types. In addition, when the Ni content is more than 0.03% by weight, it is possible to form a good joint without going through the cooling process as described above. Therefore, from the viewpoint of making the above-described cooling step meaningful, the Ni content is preferably 0.03 wt % or less, more preferably 0.02 wt % or less.

以上のような実施形態に係るはんだ接合部の製造方法は、Sn-Cuはんだ合金やCu6Sn5の生成を大きく阻害しない他の金属を含むSn-Cu系はんだ合金を用いて行われる各種のはんだ付けにおいて好適に適用可能である。 The method for manufacturing a solder joint according to the embodiment as described above can be used in various soldering processes using Sn--Cu solder alloys and Sn--Cu solder alloys containing other metals that do not greatly hinder the formation of Cu6Sn5. Applicability is preferable.

実施例により、本願発明の実施形態をより詳細に説明する。 EXAMPLES Embodiments of the present invention will be described in more detail by means of examples.

(試験例1a~4c)
<はんだ接合部の製造>
Cuが0.7重量%、残部がSnと不可避不純物であるSn-0.7Cu合金(株式会社日本スペリア社製、SC07)を用い、粒子径500μmのはんだボールを作製した。銅箔基板の実装箇所に「フラックスRM-5」(株式会社日本スぺリア製)を塗布した後、はんだボールを搭載した。リフロー装置(Manncorp社製、BT300)を用いて、窒素雰囲気下で、以下の温度履歴となるようにはんだ接合部の製造を行った。
(Test Examples 1a to 4c)
<Manufacturing of solder joints>
A solder ball with a particle diameter of 500 μm was produced using a Sn-0.7Cu alloy (manufactured by Nihon Superior Co., Ltd., SC07) containing 0.7% by weight of Cu and the balance being Sn and inevitable impurities. After applying “Flux RM-5” (manufactured by Nihon Speria Co., Ltd.) to the mounting locations of the copper foil substrate, solder balls were mounted. Using a reflow apparatus (manufactured by Manncorp, BT300), solder joints were manufactured in a nitrogen atmosphere so as to have the following temperature history.

その後、室温から約5分間で約240℃まで昇温した後、表1のような条件で冷却した。リフローを繰り返す場合は、常温まで冷却後、同様の操作を繰り返した。常温に冷却後、IPA(イソプロピルアルコール)にて洗浄して、フラックスを除去後、後述する評価を行った。尚、各条件において、はんだボールは20箇所に実装し、それぞれ下記の評価を行った。また、表1より、試験例1~4の160~137℃の経過時間はそれぞれ、95s、155s、174s、305sである。 Thereafter, the temperature was raised from room temperature to about 240° C. in about 5 minutes, and then cooled under the conditions shown in Table 1. When reflow was repeated, the same operation was repeated after cooling to room temperature. After cooling to normal temperature, it was washed with IPA (isopropyl alcohol) to remove the flux, and then evaluated as described later. In each condition, 20 solder balls were mounted, and the following evaluations were performed. Further, from Table 1, the elapsed times of 160 to 137° C. in Test Examples 1 to 4 are 95 s, 155 s, 174 s and 305 s, respectively.

Figure 0007291320000001
Figure 0007291320000001

<評価>
各試験例1a~4cで得られたはんだ接合部20箇所をインパクトシェア試験機(DAGE社製 4000HS)にセットし、2,000mm/秒でのせん断負荷応力を測定した。せん断負荷応力の最大値の平均値を接合強度とした。評価結果を図2に示す。図2には、接合強度の結果(図2a)と、冷却工程を1回行った時の接合強度に対する変化率の算出結果(図2b)を示した。
<Evaluation>
Twenty solder joints obtained in each of Test Examples 1a to 4c were set in an impact shear tester (4000HS manufactured by DAGE) to measure shear load stress at 2,000 mm/sec. The average value of the maximum values of the shear load stress was taken as the bonding strength. The evaluation results are shown in FIG. FIG. 2 shows the result of bonding strength (FIG. 2a) and the calculation result of the rate of change with respect to the bonding strength when the cooling process was performed once (FIG. 2b).

(試験例5a~8c)
はんだ合金を、Cuが0.5重量%、Agが3.0重量%、残部がSnと不可避不純物であるSn-3Ag-0.5Cu合金(株式会社日本スペリア社製、SAC305)を用いた以外は、それぞれ試験例1a~4cと同様にしてはんだ接合部を製造し、評価を行った。評価結果を図3a、bに示す。
(Test Examples 5a to 8c)
The solder alloy is 0.5% by weight of Cu, 3.0% by weight of Ag, and the balance is Sn and Sn-3Ag-0.5Cu alloy (manufactured by Nihon Superior Co., Ltd., SAC305), which is an inevitable impurity. produced and evaluated solder joints in the same manner as in Test Examples 1a to 4c. The evaluation results are shown in Figures 3a,b.

図2、3から分かるように、所定の条件を満たす冷却工程(試験例2~4)を行うことで、冷却工程を1回のみを行った場合に比べて、複数回行った場合の接合強度の低下を抑制することが可能であることが分かる。


As can be seen from FIGS. 2 and 3, by performing the cooling process (test examples 2 to 4) that satisfies the predetermined conditions, the bonding strength in the case of performing the cooling process multiple times is higher than in the case of performing the cooling process only once. It can be seen that it is possible to suppress the decrease in


Claims (3)

Cu:0.3~7.6重量%、残部がSn及び不可避不純物である合金を186℃以上に昇温した後186℃以下に冷却する冷却工程を複数回繰り返し行うはんだ接合部の製造方法であって、
各冷却工程において、合金を186℃以上に昇温した後、合金の温度の経時変化を示す冷却温度線がCuSnの186℃以上で安定な六方晶と、186℃以下で安定な斜方晶の混在領域を通過し、かつ、160~137℃の温度範囲での保持時間が155~305秒となるように冷却する、はんだ接合部の製造方法。
Cu: 0.3 to 7.6% by weight, the balance being Sn and unavoidable impurities A method for manufacturing a solder joint in which the cooling process of heating the alloy to 186 ° C. or higher and then cooling it to 186 ° C. or lower is repeated multiple times. There is
In each cooling step, after heating the alloy to 186 ° C. or higher, the cooling temperature line showing the change in the temperature of the alloy over time is a hexagonal crystal that is stable at 186 ° C. or higher and an oblique crystal that is stable at 186 ° C. or lower. A method for producing a solder joint, which passes through a cubic mixed region and is cooled in a temperature range of 160 to 137° C. for a holding time of 155 to 305 seconds.
冷却温度線がCuSnの安定斜方晶と六方晶の前記混在領域を通過し、かつ、160~120℃の温度範囲での保持時間が240秒以上380秒以下となるように冷却する、請求項1記載のはんだ接合部の製造方法。 Cooling is performed so that the cooling temperature line passes through the mixed region of the stable orthorhombic and hexagonal crystals of Cu 6 Sn 5 and the holding time in the temperature range of 160 to 120° C. is 240 seconds or more and 380 seconds or less. A method of manufacturing a solder joint according to claim 1. Ag、Bi、Sb、Zn、Ge、Mn、Inから選択される少なくとも1種の元素を含む、請求項1又は2に記載のはんだ接合部の製造方法。
3. The method for producing a solder joint according to claim 1, comprising at least one element selected from Ag, Bi, Sb, Zn, Ge, Mn and In.
JP2018201476A 2018-10-26 2018-10-26 Method for manufacturing solder joints Active JP7291320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018201476A JP7291320B2 (en) 2018-10-26 2018-10-26 Method for manufacturing solder joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018201476A JP7291320B2 (en) 2018-10-26 2018-10-26 Method for manufacturing solder joints

Publications (2)

Publication Number Publication Date
JP2020066041A JP2020066041A (en) 2020-04-30
JP7291320B2 true JP7291320B2 (en) 2023-06-15

Family

ID=70389166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201476A Active JP7291320B2 (en) 2018-10-26 2018-10-26 Method for manufacturing solder joints

Country Status (1)

Country Link
JP (1) JP7291320B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150655A (en) 2003-11-20 2005-06-09 Matsushita Electric Ind Co Ltd Lead frame, semiconductor device using the same, and method for packaging semiconductor device
WO2009051255A1 (en) 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. Solder joint
WO2013002112A1 (en) 2011-06-29 2013-01-03 株式会社日本スペリア社 Process for producing solder joint with improved reliability
WO2018096917A1 (en) 2016-11-22 2018-05-31 千住金属工業株式会社 Soldering method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150655A (en) 2003-11-20 2005-06-09 Matsushita Electric Ind Co Ltd Lead frame, semiconductor device using the same, and method for packaging semiconductor device
WO2009051255A1 (en) 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. Solder joint
WO2009051181A1 (en) 2007-10-19 2009-04-23 Nihon Superior Sha Co., Ltd. Lead-free solder alloy
WO2013002112A1 (en) 2011-06-29 2013-01-03 株式会社日本スペリア社 Process for producing solder joint with improved reliability
WO2018096917A1 (en) 2016-11-22 2018-05-31 千住金属工業株式会社 Soldering method

Also Published As

Publication number Publication date
JP2020066041A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
TWI650426B (en) Advanced solder alloy and soldering method for electronic interconnection
JP6128211B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI679078B (en) Solder alloy, solder paste, solder ball, turpentine
TWI677581B (en) Solder alloy, solder paste, solder ball, flux-cored solder and solder joint
TWI706043B (en) Welding alloys, welding balls, welding preforms, welding pastes and welding joints
TW201615854A (en) Low temperature high reliability alloy for solder hierarchy
TWI742813B (en) High temperature ultra-high reliability alloys
TWI645047B (en) Solder alloys, solder balls and solder joints
JP2000349433A (en) Soldering method
KR20240013669A (en) Solder alloy, solder ball, solder paste and solder joint
JP7291320B2 (en) Method for manufacturing solder joints
JP7025208B2 (en) Solder alloy
WO2016185673A1 (en) Solder alloy
JP4359983B2 (en) Electronic component mounting structure and manufacturing method thereof
JP2018047499A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
KR102460042B1 (en) Lead-free solder alloy, solder ball, solder paste, and semiconductor device
JP7376842B1 (en) Solder alloys, solder balls, solder pastes and solder joints
JP7381980B1 (en) Solder alloys, solder balls, solder preforms, solder joints, and circuits
JP2005334955A (en) Solder alloy and solder ball
JP2018047497A (en) Bi-BASED SOLDER ALLOY AND METHOD FOR PRODUCING THE SAME, AND ELECTRONIC COMPONENT AND ELECTRONIC COMPONENT-MOUNTED SUBSTRATE COMPRISING THE SOLDER ALLOY
JP2005296983A (en) Solder alloy and solder ball

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221012

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7291320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150