JP2000349433A - Soldering method - Google Patents

Soldering method

Info

Publication number
JP2000349433A
JP2000349433A JP2000122905A JP2000122905A JP2000349433A JP 2000349433 A JP2000349433 A JP 2000349433A JP 2000122905 A JP2000122905 A JP 2000122905A JP 2000122905 A JP2000122905 A JP 2000122905A JP 2000349433 A JP2000349433 A JP 2000349433A
Authority
JP
Japan
Prior art keywords
weight
solder
solder alloy
alloy
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000122905A
Other languages
Japanese (ja)
Other versions
JP3643008B2 (en
Inventor
Atsushi Yamaguchi
敦史 山口
Tetsuo Fukushima
哲夫 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP02354796A external-priority patent/JP3220635B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000122905A priority Critical patent/JP3643008B2/en
Publication of JP2000349433A publication Critical patent/JP2000349433A/en
Application granted granted Critical
Publication of JP3643008B2 publication Critical patent/JP3643008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for soldering using the solder which does not include organic lead, and is fine in texture, small in changeover aging, and superior in heat-resistance and fatigue. SOLUTION: In the solidifying process of soldering using Sn-Ag-Bi-Cu-In based solder alloy containing 80 to 92 wt.% Sn, 2.5 to 4.0 wt.% Ag, 5 to 18 wt.% Bi, 0.1 to 0.7 wt.%, and 0.1 to 1.5 wt.% In, the solder alloy is quenched and solidified to finely disperse inter-metal compounds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子回路基板のはん
だ付けに用いるはんだ付け方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soldering method used for soldering an electronic circuit board.

【0002】[0002]

【従来の技術】近年の実装技術において、電子部品の小
型化、高密度実装化が急速に進んでいる。それに伴い、
はんだ材料の狭ピッチ対応、高信頼性化等の高機能化へ
の要求が急速に高まっている。また、環境への関心が高
まる中、電子回路基板などの産業廃棄物の処理について
も法的に規制をしようとする動きがある。
2. Description of the Related Art In recent mounting technologies, electronic components have been rapidly reduced in size and mounting density. with this,
Demands for higher functionality, such as a narrow pitch of solder materials and high reliability, are rapidly increasing. In addition, with increasing interest in the environment, there is a movement to legally regulate the treatment of industrial waste such as electronic circuit boards.

【0003】以下に上述した従来のはんだ材料の一例に
ついて図面を参照にしながら説明する。図2は従来のは
んだ材料の合金組織及び従来のはんだ材料と銅ランドと
の接合界面での金属組成を示すものである。図2におい
て、1はα固溶体でSnリッチ相である。2はβ固溶体
でPbリッチ相である。3は金属間化合物であり、その
組成はCu3 Snである。4は金属間化合物であり、そ
の組成はCu6 Sn5である。5はCuランドである。
An example of the above-mentioned conventional solder material will be described below with reference to the drawings. FIG. 2 shows the alloy structure of the conventional solder material and the metal composition at the joint interface between the conventional solder material and the copper land. In FIG. 2, 1 is an α solid solution, which is a Sn-rich phase. 2 is a β solid solution, which is a Pb-rich phase. Reference numeral 3 denotes an intermetallic compound having a composition of Cu 3 Sn. Reference numeral 4 denotes an intermetallic compound having a composition of Cu 6 Sn 5 . 5 is a Cu land.

【0004】以上のような従来のはんだ合金はその金属
組成がSnとPbの共晶合金であり、その構成成分とし
てSnを63重量%及びPbを37重量%からなるもの
で183℃に共晶点をもつものであった。また、その合
金組織はα固溶体1とβ固溶体2がラメラ状となってい
た。また、はんだ/銅ランド接合界面においては金属間
化合物3及び4が形成されていた。
The above-mentioned conventional solder alloy is a eutectic alloy having a metal composition of Sn and Pb, which comprises 63% by weight of Sn and 37% by weight of Pb. It had a point. In the alloy structure, the α solid solution 1 and the β solid solution 2 were in a lamellar state. In addition, intermetallic compounds 3 and 4 were formed at the solder / copper land bonding interface.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、環境保
護の立場から、はんだ材料(Sn−Pb合金)中に含ま
れ有毒物質である鉛の規制が国際的に急速に進みつつあ
る。従来のはんだ材料によりはんだ付けされたプリント
回路基板の廃棄物が酸性雨にさらされると、有害物質で
ある鉛が大量に溶出するので、その毒性により人体が神
経障害等の悪影響を受けるという問題点を有していた。
また、従来のはんだ材料はその合金組織がラメラ状とな
っており、高温環境下にさらされると、その組織の肥大
化が生じ、はんだに応力がかかるとその組織界面ですべ
りが生じ、はんだクラックが生じるという問題点を有し
ていた。さらに、はんだ付け時及び高温環境下におい
て、はんだ/銅ランド接合界面に二層の硬く、脆い金属
間化合物が成長するので接合界面でクラックが生じると
いう問題点を有していた。
However, from the standpoint of environmental protection, the regulation of lead, which is a toxic substance contained in a solder material (Sn-Pb alloy), is rapidly advancing internationally. If printed circuit board waste soldered with conventional solder materials is exposed to acid rain, a large amount of lead, a harmful substance, will elute, causing the human body to suffer adverse effects such as neurological damage due to its toxicity. Had.
In addition, conventional solder materials have a lamellar alloy structure, and when exposed to a high-temperature environment, the structure enlarges.When stress is applied to the solder, slip occurs at the structure interface, and solder cracks occur. However, there is a problem in that Furthermore, at the time of soldering and in a high-temperature environment, two layers of hard and brittle intermetallic compounds grow at the solder / copper land bonding interface, which causes a problem that cracks occur at the bonding interface.

【0006】本発明は上記問題点に鑑み、はんだ材料中
に鉛を含まないようにするとともに、その合金組織を微
細化し、また、はんだ/銅ランド接合界面で金属間化合
物の成長を抑制することで高温環境下で経時変化が少な
く高温疲労特性に優れたはんだ付け方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention eliminates lead in a solder material, refines its alloy structure, and suppresses the growth of intermetallic compounds at the solder / copper land junction interface. An object of the present invention is to provide a soldering method which has little change over time in a high-temperature environment and has excellent high-temperature fatigue characteristics.

【0007】[0007]

【課題を解決するための手段】本願の第1発明のはんだ
付け方法は、Snを83〜92重量%、Agを2.5〜
4.0重量%、Biを5〜18重量%含むSn−Ag−
Bi系のはんだ合金を用いたはんだ付けの凝固過程にお
いて、前記はんだ合金を急冷凝固させ金属間化合物を微
細分散させることを特徴とする。
According to the soldering method of the first invention of the present application, Sn is 83 to 92% by weight and Ag is 2.5 to 92% by weight.
Sn-Ag- containing 4.0% by weight and 5 to 18% by weight of Bi
In the solidification process of soldering using a Bi-based solder alloy, the solder alloy is rapidly solidified to finely disperse the intermetallic compound.

【0008】本願の第2発明のはんだ付け方法は、Sn
を80〜92重量%、Agを2.5〜4.0重量%、B
iを5〜18重量%、Cuを0.1〜0.7重量%、I
nを0.1〜1.5重量%含むSn−Ag−Bi−Cu
−In系のはんだ合金を用いたはんだ付けの凝固過程に
おいて、前記はんだ合金を急冷凝固させ金属間化合物を
微細分散させることを特徴とする。
[0008] The soldering method according to the second invention of the present application is based on the Sn method.
80-92% by weight, Ag 2.5-4.0% by weight, B
5 to 18% by weight of i, 0.1 to 0.7% by weight of Cu, I
Sn-Ag-Bi-Cu containing 0.1 to 1.5% by weight of n
In the solidification process of soldering using an -In-based solder alloy, the solder alloy is rapidly solidified to finely disperse the intermetallic compound.

【0009】本願の第1発明によれば、Snを主成分と
するはんだに関し、Agを少量添加することで微細な合
金組織を持つ耐熱疲労特性に優れた合金を得ることがで
きる。さらに、Biを少量添加することで融点を下げ、
及び濡れ性を改善することができる。
According to the first aspect of the present invention, an alloy having a fine alloy structure and excellent in heat fatigue resistance can be obtained by adding a small amount of Ag to a solder containing Sn as a main component. Furthermore, the melting point is lowered by adding a small amount of Bi,
And the wettability can be improved.

【0010】本願の第2発明によれば、第1発明の上記
特徴点に加え、Cuを少量添加することではんだ/銅ラ
ンド接合界面での金属間化合物の成長を抑制することが
できる。また、Inを少量添加することで合金の伸び特
性及び耐熱疲労特性を改善することができる。
According to the second aspect of the present invention, in addition to the features of the first aspect, by adding a small amount of Cu, the growth of an intermetallic compound at the solder / copper land junction interface can be suppressed. Further, the addition of a small amount of In can improve the elongation characteristics and the thermal fatigue resistance of the alloy.

【0011】本願の第1、第2発明において、はんだ合
金の組成を上述のように限定した理由を説明する。Ag
は耐熱疲労特性を改善させるが、その添加量が2.5重
量%よりも少なくなれば耐熱疲労特性を改善させる効果
が十分ではない。また220℃以下の融点を確保するた
めに4.0重量%以下としなければならない。それを越
えて添加すると融点は急激に上昇してしまうので好まし
くない。よって、Agの好適な添加量は2.5〜4.0
重量%である。
The reason why the composition of the solder alloy is limited as described above in the first and second aspects of the present invention will be described. Ag
Improves the thermal fatigue resistance, but if the added amount is less than 2.5% by weight, the effect of improving the thermal fatigue resistance is not sufficient. In order to secure a melting point of 220 ° C. or less, the content must be 4.0% by weight or less. If added in excess of this, the melting point rises sharply, which is not preferred. Therefore, a suitable addition amount of Ag is 2.5 to 4.0.
% By weight.

【0012】Biは融点を下げ、濡れ性を改善するが、
添加量が5重量%よりも少なければその効果は十分では
ない。また、18重量%を越えるとはんだ付け強度が得
られなくなるので好ましくない。よって、Biの添加量
は5〜18重量%が好適である。
Bi lowers the melting point and improves the wettability,
If the amount is less than 5% by weight, the effect is not sufficient. On the other hand, if it exceeds 18% by weight, the soldering strength cannot be obtained, which is not preferable. Therefore, the addition amount of Bi is preferably 5 to 18% by weight.

【0013】Cuは高温特性を改善し、はんだ/銅ラン
ド接合界面の金属間化合物の形成を抑制させる効果があ
るが、0.1重量%よりも少ない添加ではその効果は現
れず、0.7重量%を越えて添加すると硬く、脆くな
る。よって、Cuの好適な添加量は0.1〜0.7重量
%である。
[0013] Cu has the effect of improving the high-temperature properties and suppressing the formation of intermetallic compounds at the solder / copper land junction interface. If added in excess of weight percent, it becomes hard and brittle. Therefore, the preferable addition amount of Cu is 0.1 to 0.7% by weight.

【0014】Inは伸び特性、濡れ性及び耐熱疲労特性
を改善させる効果があるが、0.1重量%より少ない添
加ではその効果は現れず、1.5重量%を越えて添加す
ると合金の機械的強度を劣化させる。そのため、Inの
好適な添加量は0.1〜1.5重量%である。
In has the effect of improving elongation properties, wettability and thermal fatigue resistance, but its effect does not appear when added in less than 0.1% by weight, and when added in excess of 1.5% by weight, mechanical properties of the alloy are increased. Deteriorates the mechanical strength. Therefore, the preferable addition amount of In is 0.1 to 1.5% by weight.

【0015】本願の第1、第2発明のはんだ付け方法に
おける急冷法としては冷風吹付けが好適であり、その冷
却速度は5〜15℃/秒、特に10℃/秒前後が好適で
ある。
As a rapid cooling method in the soldering methods of the first and second inventions of the present application, cold air blowing is suitable, and the cooling rate is preferably 5 to 15 ° C./sec, particularly about 10 ° C./sec.

【0016】本願の第1、第2発明によれば、急冷凝固
によってAg3 Sn、Cu3 Sn、CuSn5 の金属間
化合物の成長を抑制して、これらを微細分散させること
ができるので、機械的強度、耐熱疲労特性の向上を図る
ことができる。
According to the first and second aspects of the present invention, the rapid solidification suppresses the growth of intermetallic compounds of Ag 3 Sn, Cu 3 Sn, and CuSn 5 and makes them finely dispersed. It is possible to improve the mechanical strength and the thermal fatigue resistance.

【0017】[0017]

【発明の実施の形態】本発明の実施の形態を、表1に示
す実施例1〜3及び比較例1、2に基き具体的に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described based on Examples 1 to 3 and Comparative Examples 1 and 2 shown in Table 1.

【0018】表1は実施例1〜3、比較例1、2のはん
だ合金について、その組成(重量%)、融点、濡れ性、
接合強度、及び熱衝撃特性を示したものである。
Table 1 shows the compositions (% by weight), melting points, wettability, and the like of the solder alloys of Examples 1 to 3 and Comparative Examples 1 and 2.
It shows the bonding strength and the thermal shock characteristics.

【0019】[0019]

【表1】 [Table 1]

【0020】融点は、それぞれのはんだ合金を熱分析に
より測定した。
The melting point of each solder alloy was measured by thermal analysis.

【0021】また、濡れ性、接合強度、熱衝撃試験は、
それぞれのはんだ合金を大気用RMAタイプのクリーム
はんだにしたものを作製しそれを用いて行った。
The wettability, bonding strength, and thermal shock test
Each of the solder alloys was made into an RMA type cream solder for the atmosphere, and this was used.

【0022】濡れ性については、0.5mmピッチのO
FPを実装後、その1リードあたりのピーリング強度を
測定した。
With respect to the wettability, a 0.5 mm pitch O
After mounting the FP, the peeling strength per lead was measured.

【0023】熱衝撃試験は、気相式熱衝撃試験機によ
り、試験条件:−40℃(30分)〜常温(5分)〜8
0℃(30分)、500サイクルで行い、クラックの有
無で評価した。
The thermal shock test is carried out using a gas-phase thermal shock tester under the following conditions: -40 ° C. (30 minutes) to room temperature (5 minutes) to 8
The test was performed at 0 ° C. (30 minutes) at 500 cycles, and evaluated by the presence or absence of cracks.

【0024】上記はんだ合金をクリームはんだにする場
合、フラックスの種類は特に限定されることはなく、大
気リフロー対応、窒素リフロー対応、RA、RMA等の
フラックスの使用が可能であった。好ましくは、活性力
があり、かつ比較的耐腐食性にも優れる大気用RMAタ
イプのフラックスが適していた。
When the above solder alloy is used as a cream solder, the type of the flux is not particularly limited, and it is possible to use flux such as air reflow, nitrogen reflow, RA, RMA, and the like. Preferably, a flux of the RMA type for the atmosphere, which is active and has relatively excellent corrosion resistance, was suitable.

【0025】なお、比較例1はSn96.5重量%、A
g3.5重量%のはんだ合金であり、比較例2はSn6
3重量%、Pb37重量%のはんだ合金である。
In Comparative Example 1, 96.5% by weight of Sn and A
g3.5% by weight of the solder alloy.
3% by weight, Pb 37% by weight solder alloy.

【0026】(実施例1)実施例1のはんだ合金は、S
n90.5重量%、Ag3.5重量%、Bi6重量%の
三成分はんだ合金である。
(Example 1) The solder alloy of Example 1
n is a three-component solder alloy of 90.5% by weight, 3.5% by weight of Ag, and 6% by weight of Bi.

【0027】このはんだ合金を大気用RMAのフラック
スを用いてクリームはんだとし、その融点、濡れ性、接
合強度、熱衝撃試験を行った。その結果は表1に示すと
おりである。又はんだの引張り強度試験を行った結果、
8.3kgf/mm2 であり、比較例2が6.5kgf
/mm2 であったことに比較すると、強度向上が顕著で
あった。
This solder alloy was used as a cream solder using an RMA flux for the atmosphere, and its melting point, wettability, bonding strength, and thermal shock test were performed. The results are as shown in Table 1. As a result of conducting a tensile strength test on
8.3 kgf / mm 2 , and that of Comparative Example 2 was 6.5 kgf / mm 2.
/ Mm 2 , the strength improvement was remarkable.

【0028】次にはんだ付け時の凝固過程において、急
冷凝固させると、図1に示すように金属間化合物(Ag
3 Sn)6の成長が抑制され、これを微細分散させるこ
とができ、更に機械的強度の上昇、耐熱疲労特性の向上
を図ることができた。またはんだ/銅ランド接合界面で
の金属間化合物の成長を抑制することができた。なお、
急冷凝固においては、冷風吹付け法を用い、約10℃/
秒の冷却速度ではんだ付け部を冷却した。
Next, in the solidification process at the time of soldering, when solidification is carried out by rapid cooling, as shown in FIG.
3 Sn) 6 growth is suppressed, which can be finely dispersed, further increase in the mechanical strength, it was possible to improve the thermal fatigue resistance. Also, the growth of the intermetallic compound at the solder / copper land bonding interface could be suppressed. In addition,
In the rapid solidification, a cold air blowing method is used, and about 10 ° C /
The soldered part was cooled at a cooling rate of seconds.

【0029】(実施例2)実施例2のはんだ合金は、S
n85.5重量%、Ag3重量%、Bi10重量%、C
u0.5重量%、In1重量%の五成分はんだ合金であ
る。
(Embodiment 2) The solder alloy of Embodiment 2 is S
n 85.5% by weight, Ag 3% by weight, Bi 10% by weight, C
u is a pentacomponent solder alloy of 0.5% by weight and In1% by weight.

【0030】各試験結果は表1に示すとおりであるが、
実施例1に比較し、融点の低下、接合強度の向上を図る
ことができた。
The test results are as shown in Table 1.
As compared with Example 1, the melting point was reduced and the bonding strength was improved.

【0031】この実施例2のはんだ合金についても、は
んだ付け時に急冷凝固させた。その結果更に機械的強度
の上昇、耐熱疲労特性の向上を図ることができた。
The solder alloy of Example 2 was also rapidly solidified during soldering. As a result, it was possible to further increase the mechanical strength and improve the thermal fatigue resistance.

【0032】(実施例3)実施例3のはんだ合金は、S
n80.5重量%、Ag3重量%、Bi15重量%、C
u0.5重量%、In1重量%の五成分はんだ合金であ
る。
(Embodiment 3) The solder alloy of Embodiment 3 is S
n 80.5% by weight, Ag 3% by weight, Bi 15% by weight, C
u is a pentacomponent solder alloy of 0.5% by weight and In1% by weight.

【0033】実施例3は実施例2に比較して、Biの含
有量を増やしたものであるが、その結果表1に示すよう
に、融点を低下させることに格別の効果があった。
In Example 3, the content of Bi was increased as compared with Example 2. As a result, as shown in Table 1, there was a remarkable effect in lowering the melting point.

【0034】この実施例3のはんだ合金についても、は
んだ付け時に急冷凝固させた。その結果更に機械的強度
の上昇、耐熱疲労特性の向上を図ることができた。
The solder alloy of Example 3 was also rapidly solidified during soldering. As a result, it was possible to further increase the mechanical strength and improve the thermal fatigue resistance.

【0035】[0035]

【発明の効果】以上から明らかなように本発明は、Sn
を主成分とするはんだに関し、Agを少量添加すること
で微細な合金組織を持ち、組織変化を少なくすることが
可能で、耐熱疲労特性に優れた合金を得ることができ
る。さらに、Biを少量添加することで融点を下げ、及
び濡れ性を改善することができる。また、Cuを少量添
加することではんだ/銅ランド接合界面での金属間化合
物の成長を抑制することができるので接合強度を改善す
ることができる。また、Inを少量添加することで合金
の伸び特性を改善して耐熱疲労特性を改善することがで
きる。
As is apparent from the above, the present invention provides
With respect to the solder containing as a main component, by adding a small amount of Ag, a fine alloy structure can be obtained, the structure change can be reduced, and an alloy excellent in thermal fatigue resistance can be obtained. Further, by adding a small amount of Bi, the melting point can be lowered and the wettability can be improved. Also, by adding a small amount of Cu, the growth of the intermetallic compound at the solder / copper land bonding interface can be suppressed, so that the bonding strength can be improved. Further, by adding a small amount of In, the elongation characteristics of the alloy can be improved, and the thermal fatigue resistance characteristics can be improved.

【0036】また、はんだ付けの冷却過程において急冷
凝固させることではんだ合金組織を微細化し、かつはん
だ/銅ランド接合界面の金属間化合物の成長を抑制する
ことができるために機械的強度及び耐熱疲労特性に優れ
たはんだ合金を得ることができる。
In addition, the rapid solidification during the cooling process of soldering makes the structure of the solder alloy finer and suppresses the growth of intermetallic compounds at the solder / copper land joint interface, so that the mechanical strength and the heat fatigue resistance are reduced. A solder alloy having excellent characteristics can be obtained.

【0037】また、その組成に有毒物質である鉛を含ん
でいないはんだを提供することができる。
Further, it is possible to provide a solder whose composition does not contain toxic lead.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態におけるはんだ合金の組織を
示す図。
FIG. 1 is a view showing a structure of a solder alloy according to an embodiment of the present invention.

【図2】従来のはんだ材料の合金組織及びはんだ/銅ラ
ンド接合界面での金属組成を示す図。
FIG. 2 is a diagram showing an alloy structure of a conventional solder material and a metal composition at a solder / copper land bonding interface.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 13/02 C22C 13/02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 13/02 C22C 13/02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Snを83〜92重量%、Agを2.5
〜4.0重量%、Biを5〜18重量%含むSn−Ag
−Bi系のはんだ合金を用いたはんだ付けの凝固過程に
おいて、前記はんだ合金を急冷凝固させ金属間化合物を
微細分散させるはんだ付け方法。
1. Sn is 83 to 92% by weight and Ag is 2.5% by weight.
Sn-Ag containing up to 4.0% by weight and 5 to 18% by weight of Bi
-A soldering method for rapidly solidifying the solder alloy and finely dispersing an intermetallic compound in a solidification process of soldering using a Bi-based solder alloy.
【請求項2】 Snを80〜92重量%、Agを2.5
〜4.0重量%、Biを5〜18重量%、Cuを0.1
〜0.7重量%、Inを0.1〜1.5重量%含むSn
−Ag−Bi−Cu−In系のはんだ合金を用いたはん
だ付けの凝固過程において、前記はんだ合金を急冷凝固
させ金属間化合物を微細分散させるはんだ付け方法。
2. Sn is 80 to 92% by weight and Ag is 2.5% by weight.
To 4.0% by weight, Bi to 5 to 18% by weight, Cu to 0.1%
-0.7 wt%, Sn containing 0.1-1.5 wt% of In
-A soldering method for rapidly solidifying the solder alloy and finely dispersing the intermetallic compound in a solidification process of soldering using an Ag-Bi-Cu-In-based solder alloy.
【請求項3】 銅ランドとはんだの場合に際し、Snを
83〜92重量%、Agを2.5〜4.0重量%、Bi
を5〜18重量%含むSn−Ag−Bi系のはんだ合金
を用いたはんだ付けの凝固過程において、前記はんだ合
金を急冷凝固させ金属間化合物を微細分散させるはんだ
付け方法。
3. In the case of a copper land and a solder, 83 to 92% by weight of Sn, 2.5 to 4.0% by weight of Ag, and Bi
A solidification process using a Sn-Ag-Bi-based solder alloy containing 5 to 18% by weight of a solder alloy to rapidly solidify the solder alloy and finely disperse the intermetallic compound.
【請求項4】 銅ランドとはんだの場合に際し、Snを
80〜92重量%、Agを2.5〜4.0重量%、Bi
を5〜18重量%、Cuを0.1〜0.7重量%、In
を0.1〜1.5重量%含むSn−Ag−Bi−Cu−
In系のはんだ合金を用いたはんだ付けの凝固過程にお
いて、前記はんだ合金を急冷凝固させ金属間化合物を微
細分散させるはんだ付け方法。
4. In the case of copper land and solder, Sn is 80 to 92% by weight, Ag is 2.5 to 4.0% by weight, Bi is
5 to 18% by weight, Cu 0.1 to 0.7% by weight, In
Containing 0.1 to 1.5% by weight of Sn-Ag-Bi-Cu-
In a solidification process of soldering using an In-based solder alloy, a soldering method of rapidly solidifying the solder alloy to finely disperse an intermetallic compound.
JP2000122905A 1996-02-09 2000-04-24 Soldering method Expired - Fee Related JP3643008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122905A JP3643008B2 (en) 1996-02-09 2000-04-24 Soldering method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP02354796A JP3220635B2 (en) 1996-02-09 1996-02-09 Solder alloy and cream solder
JP2000122905A JP3643008B2 (en) 1996-02-09 2000-04-24 Soldering method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02354796A Division JP3220635B2 (en) 1996-02-09 1996-02-09 Solder alloy and cream solder

Publications (2)

Publication Number Publication Date
JP2000349433A true JP2000349433A (en) 2000-12-15
JP3643008B2 JP3643008B2 (en) 2005-04-27

Family

ID=34575798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122905A Expired - Fee Related JP3643008B2 (en) 1996-02-09 2000-04-24 Soldering method

Country Status (1)

Country Link
JP (1) JP3643008B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915942B2 (en) 2001-06-01 2005-07-12 Nec Corporation Method of manufacturing mount structure without introducing degraded bonding strength of electronic parts due to segregation of low-strength/low-melting point alloy
WO2009011392A1 (en) 2007-07-18 2009-01-22 Senju Metal Industry Co., Ltd. In-containing lead-free solder for on-vehicle electronic circuit
WO2009011341A1 (en) 2007-07-13 2009-01-22 Senju Metal Industry Co., Ltd. Lead-free solder for vehicle, and in-vehicle electronic circuit
CZ303793B6 (en) * 2001-07-09 2013-05-09 Quantum Chemical Technologies (S'pore) Pte Ltd. Lead-free solder, process for its preparation and method of soldering
JP2016134421A (en) * 2015-01-16 2016-07-25 富士通株式会社 Electronic device and method of manufacturing electronic device
WO2017164194A1 (en) 2016-03-22 2017-09-28 株式会社タムラ製作所 Lead-free solder alloy, flux composition, solder paste composition, electronic circuit board and electronic control device
KR20190028985A (en) 2017-09-11 2019-03-20 가부시키가이샤 다무라 세이사쿠쇼 Lead-free solder alloy, electronic circuit board and electronic control unit
WO2019053866A1 (en) 2017-09-14 2019-03-21 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
KR20210015600A (en) 2018-06-04 2021-02-10 가부시키가이샤 다무라 세이사쿠쇼 Lead-free solder alloys, solder pastes, electronic circuit mounting boards and electronic control devices
KR20210113357A (en) 2019-05-27 2021-09-15 센주긴조쿠고교 가부시키가이샤 Solder Alloys, Solder Pastes, Solder Balls, Solder Preforms, Solder Joints, and Circuits
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
US11819955B2 (en) 2019-05-27 2023-11-21 Senju Metal Industry Co., Ltd. Solder alloy, solder paste, solder ball, solder preform, solder joint, on-board electronic circuit, ECU electronic circuit, on-board electronic circuit device, and ECU electronic circuit device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915942B2 (en) 2001-06-01 2005-07-12 Nec Corporation Method of manufacturing mount structure without introducing degraded bonding strength of electronic parts due to segregation of low-strength/low-melting point alloy
CZ303793B6 (en) * 2001-07-09 2013-05-09 Quantum Chemical Technologies (S'pore) Pte Ltd. Lead-free solder, process for its preparation and method of soldering
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
WO2009011341A1 (en) 2007-07-13 2009-01-22 Senju Metal Industry Co., Ltd. Lead-free solder for vehicle, and in-vehicle electronic circuit
US8845826B2 (en) 2007-07-13 2014-09-30 Senju Metal Industry Co., Ltd. Lead-free solder for vehicles and a vehicle-mounted electronic circuit using the solder
WO2009011392A1 (en) 2007-07-18 2009-01-22 Senju Metal Industry Co., Ltd. In-containing lead-free solder for on-vehicle electronic circuit
US8888932B2 (en) 2007-07-18 2014-11-18 Senju Metal Industry Co., Ltd. Indium-containing lead-free solder for vehicle-mounted electronic circuits
JP2016134421A (en) * 2015-01-16 2016-07-25 富士通株式会社 Electronic device and method of manufacturing electronic device
KR20180015711A (en) 2016-03-22 2018-02-13 가부시키가이샤 다무라 세이사쿠쇼 Lead-free solder alloy, flux composition, solder paste composition, electronic circuit board and electronic control device
US10926360B2 (en) 2016-03-22 2021-02-23 Tamura Corporation Lead-free solder alloy, solder joint, solder paste composition, electronic circuit board, and electronic device
WO2017164194A1 (en) 2016-03-22 2017-09-28 株式会社タムラ製作所 Lead-free solder alloy, flux composition, solder paste composition, electronic circuit board and electronic control device
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
KR20190028985A (en) 2017-09-11 2019-03-20 가부시키가이샤 다무라 세이사쿠쇼 Lead-free solder alloy, electronic circuit board and electronic control unit
WO2019053866A1 (en) 2017-09-14 2019-03-21 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit board, and electronic control device
KR20210015600A (en) 2018-06-04 2021-02-10 가부시키가이샤 다무라 세이사쿠쇼 Lead-free solder alloys, solder pastes, electronic circuit mounting boards and electronic control devices
KR20210113357A (en) 2019-05-27 2021-09-15 센주긴조쿠고교 가부시키가이샤 Solder Alloys, Solder Pastes, Solder Balls, Solder Preforms, Solder Joints, and Circuits
US11377715B2 (en) 2019-05-27 2022-07-05 Senju Metal Industry Co., Ltd. Solder alloy, solder paste, solder ball, solder preform, solder joint, and circuit
US11819955B2 (en) 2019-05-27 2023-11-21 Senju Metal Industry Co., Ltd. Solder alloy, solder paste, solder ball, solder preform, solder joint, on-board electronic circuit, ECU electronic circuit, on-board electronic circuit device, and ECU electronic circuit device

Also Published As

Publication number Publication date
JP3643008B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP3220635B2 (en) Solder alloy and cream solder
KR100510046B1 (en) Solder for electronic part bonding electrodes, and soldering method
JP3761678B2 (en) Tin-containing lead-free solder alloy, cream solder thereof, and manufacturing method thereof
EP0711629B1 (en) Lead-free low melting solder with improved mechanical properties and articles bonded therewith
US20020015660A1 (en) Lead-free solder alloys
JP4770733B2 (en) Solder and mounted products using it
JPH0970687A (en) Leadless solder alloy
JPH10144718A (en) Tin group lead free solder wire and ball
JP3874031B2 (en) Lead-free solder alloy
JP2000349433A (en) Soldering method
JP4135268B2 (en) Lead-free solder alloy
JPH08132277A (en) Leadless solder
JPH10193169A (en) Lead-free solder alloy
JPH10328880A (en) Tin-silver based lead-free solder
US6371361B1 (en) Soldering alloy, cream solder and soldering method
JP4612661B2 (en) Electronic component soldering method
JP3673021B2 (en) Lead-free solder for electronic component mounting
JP3776361B2 (en) Lead-free solder and solder joints
JP2000343273A (en) Soldering alloy
JPH09174278A (en) Lead-free solder alloy and electronic circuit device using it
JP2008221330A (en) Solder alloy
JPH106075A (en) Lead-free solder alloy
JP4359983B2 (en) Electronic component mounting structure and manufacturing method thereof
JP2910527B2 (en) High temperature solder
JPH0422595A (en) Cream solder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Effective date: 20040614

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20041110

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20041115

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050126

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100204

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100204

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees