JP2005150655A - Lead frame, semiconductor device using the same, and method for packaging semiconductor device - Google Patents

Lead frame, semiconductor device using the same, and method for packaging semiconductor device Download PDF

Info

Publication number
JP2005150655A
JP2005150655A JP2003390255A JP2003390255A JP2005150655A JP 2005150655 A JP2005150655 A JP 2005150655A JP 2003390255 A JP2003390255 A JP 2003390255A JP 2003390255 A JP2003390255 A JP 2003390255A JP 2005150655 A JP2005150655 A JP 2005150655A
Authority
JP
Japan
Prior art keywords
lead
semiconductor device
mounting
mass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003390255A
Other languages
Japanese (ja)
Inventor
Takeshi Kobayashi
健 小林
Toshiichi Kubo
登志一 久保
Masayuki Nakamura
正行 中村
Koji Yamaguchi
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003390255A priority Critical patent/JP2005150655A/en
Publication of JP2005150655A publication Critical patent/JP2005150655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that prevents a lowering of joint at the soldered joint part even at the lead-free time, and does not cause separation of the joint part in the step of reflow soldering. <P>SOLUTION: This lead frame has a semiconductor device mounting section and a plurality of leads whose one end is arranged such that they are located near the semiconductor device mounting section, and is used for packaging that employs lead-free soldering. The surface of the lead's joint part at least with the wiring pattern of the packaging substrate is composed of a material that has a composition having a nickel content less than 3 mass %. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リードフレーム、これを用いた半導体装置およびこの半導体装置の実装方法にかかり、特に鉛フリー半田を用いた実装に関する。   The present invention relates to a lead frame, a semiconductor device using the lead frame, and a mounting method for the semiconductor device, and more particularly to mounting using lead-free solder.

近年、環境汚染の問題が深刻化しており、パーソナルコンピュータ、携帯電話に代表される電子機器などの電子部品の分野でも、鉛を使用しない半田いわゆる鉛フリー半田の使用が進められている。
共晶半田の融点が約183℃であったのに対し、鉛フリー半田の場合、半田融点が、通常は約220℃と、共晶半田に比べ約40℃程度高い。そこで従来はせいぜい230℃程度に設定されていたリフロー温度が、最近では240℃から245℃となっており、高い物では260℃とされているものもある。
このように、リフロー工程で使用する半田が、共晶半田から鉛フリーとなるのに伴い、リフロー炉の温度設定を高くしているものが多い。
プリント基板上への半導体素子部品の実装に際し、多数の部品を実装するのは煩雑であり、共通部品を実装した汎用型ボードとして市販されることが多い。このような場合、ボードの製造メーカーにおいて少なくとも一回のリフロー工程を実施し、さらに組み立て工場で必要な部品を追加するためのリフロー工程を実施することになる。このような場合、先に実装された部品は多数回リフロー工程を経ることになり、剥がれが生じ易いという問題があった。
例えば、現在、携帯電話などに用いられる電圧制御発振機(VCO)のボードには、以下に示すような材質のリードフレームを用いているが、複数回のリフロー工程を経るものに対しては脱落が生じ易いという問題があった。とくに鉛フリー工程への変更に伴い、剥がれが生じるという問題が顕著となっている。これは鉛フリー工程によって特に顕著であり、ピーク温度240℃、チッ素ガス中で錫−銀(Sn−3.5%Ag)半田を用いて50〜80μmの半田量でリフローにより半導体装置部品をプリント基板上に実装する。
この場合も、数回のリフロー工程を経ると、接合部が剥離し部品が脱落するという問題があった。
また、このような問題は鉛半田を用いた場合にも、リフロー工程の回数が多い場合には、同様に生じていた。
In recent years, the problem of environmental pollution has become serious, and the use of so-called lead-free solder that does not use lead is also being promoted in the field of electronic components such as electronic devices such as personal computers and mobile phones.
Whereas eutectic solder has a melting point of about 183 ° C., lead-free solder usually has a solder melting point of about 220 ° C., which is about 40 ° C. higher than eutectic solder. Therefore, the reflow temperature, which has been set to about 230 ° C. at the past, has recently been changed from 240 ° C. to 245 ° C., and some of the higher reflow temperatures are set to 260 ° C.
Thus, as the solder used in the reflow process becomes lead-free from eutectic solder, the temperature setting of the reflow furnace is often increased.
When mounting semiconductor element components on a printed circuit board, mounting a large number of components is cumbersome and often marketed as a general-purpose board on which common components are mounted. In such a case, at least one reflow process is performed in the board manufacturer, and a reflow process for adding necessary parts in the assembly factory is performed. In such a case, there is a problem that the parts that have been mounted first go through a reflow process many times, and are easily peeled off.
For example, the voltage controlled oscillator (VCO) board currently used for mobile phones, etc., uses a lead frame made of the following materials, but is dropped for those that have undergone multiple reflow processes. There was a problem that it was easy to occur. In particular, with the change to the lead-free process, the problem that peeling occurs is prominent. This is particularly noticeable by the lead-free process, and the semiconductor device component is reflowed by using a tin-silver (Sn-3.5% Ag) solder in a nitrogen gas at a peak temperature of 240 ° C. with a solder amount of 50 to 80 μm. Mount on printed circuit board.
Also in this case, after several reflow steps, there is a problem that the joint part peels off and the component falls off.
Further, such a problem occurs similarly when lead solder is used and the number of reflow processes is large.

このように、近年、鉛フリー化により、従来よりもリフロー温度は40℃程度も高くなっており、この温度差は大きいため、種々のプロセスで不良発生の原因となっている。
特に、前述したように、VCOのボード場合、近年高密度化が進んでおり、実装に使用し得る面積が少なくなっており、多数回のリフロー工程に耐えうるようにするためには半田の流出を少なくするために使用する半田量を少なくする必要がある。このため単位面積あたりの半田層の厚さも小さくせざるを得ず、十分な接合強度を得ることができず剥離が生じ易いという問題があった。
Thus, in recent years, due to the lead-free process, the reflow temperature is about 40 ° C. higher than before, and this temperature difference is large, which causes defects in various processes.
In particular, as described above, in the case of a VCO board, the density has been increasing in recent years, the area that can be used for mounting has been reduced, and in order to be able to withstand many reflow processes, the outflow of solder Therefore, it is necessary to reduce the amount of solder used to reduce the amount of solder. For this reason, the thickness of the solder layer per unit area has to be reduced, and there is a problem that sufficient bonding strength cannot be obtained and peeling is likely to occur.

このようにして実装されたボードを断面解析により分析した結果、図10に断面図を示すように、リードフレームのニッケルが半田層に拡散し、半田の接合性を低下させていることがわかった。
特に150℃を越える温度では、Cu-Sn合金の成長速度よりもNi−Sn合金の成長速度が速くなることが知られている(非特許文献1参照)。
つまり、従来からリードフレームに用いられているCAC−92はNiを9%程度も含むためNi−Snの合金化が進行し易くなり、それに伴いCu−Snの合金化が促進されるためと考えられる。
As a result of analyzing the board mounted in this way by cross-sectional analysis, it was found that nickel in the lead frame diffused into the solder layer and lowered the solder jointability, as shown in the cross-sectional view of FIG. .
In particular, it is known that the growth rate of the Ni—Sn alloy is higher than the growth rate of the Cu—Sn alloy at a temperature exceeding 150 ° C. (see Non-Patent Document 1).
In other words, CAC-92 conventionally used for lead frames contains about 9% of Ni, so that Ni-Sn alloying is likely to proceed, and accordingly, Cu-Sn alloying is promoted. It is done.

本発明は、前記実情に鑑みてなされたものであり、鉛フリー化に際しても、半田接合部の接合性の低下を防止し、リフロー工程においても接合部の剥離の発生を引き起こすことのない半導体装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and prevents the deterioration of the joining property of the solder joint portion even when lead-free and does not cause the peeling of the joint portion even in the reflow process. The purpose is to provide.

本発明は、半導体素子搭載部と、前記半導体素子搭載部の近傍に、一端が位置するように配設され、ニッケル含有材料で構成された複数のリードとを具備してなり、鉛フリー半田を用いた実装に用いられるリードフレームであって、前記実装に際して前記鉛フリー半田表面に針状結晶が析出しないように、前記リードの、少なくとも実装基板の配線パターンとの接合部の表面が、ニッケル含有量3質量%以下の組成をもつ材料で構成される。   The present invention comprises a semiconductor element mounting portion, and a plurality of leads that are disposed in the vicinity of the semiconductor element mounting portion so that one end thereof is located and are made of a nickel-containing material. In the lead frame used for mounting, the surface of the joint portion of the lead and at least the wiring pattern of the mounting substrate is nickel-containing so that acicular crystals are not deposited on the lead-free solder surface during the mounting. It is composed of a material having a composition of 3% by mass or less.

この構成により、半田層にニッケルが拡散したとしても、3質量%以下であるため、接合性の低下を招くこともなく、確実な接続性を維持することができる。なお、150℃を越えるとNiとSnが反応しNiの含有量が多い場合、合金層を形成してしまい針状結晶が析出し、接合が破壊され剥がれが生じてしまうことがあるが、3質量%以下であるため剥がれが生じることはない。   With this configuration, even if nickel diffuses in the solder layer, the amount is 3% by mass or less, so that it is possible to maintain reliable connectivity without causing deterioration in bonding properties. When the temperature exceeds 150 ° C., when Ni and Sn react and the content of Ni is large, an alloy layer is formed, acicular crystals are deposited, the joint is broken, and peeling may occur. Since it is less than mass%, no peeling occurs.

本発明は、前記リードフレームにおいて、前記リードの先端部がニッケル含有量3質量%以下の組成をもつ材料で被覆される。
すなわち、全体がニッケル含有量3質量%以下の組成をもつ材料で被覆される必要はなく、先端部のみニッケル含有量が低下せしめられるとよい。
According to the present invention, in the lead frame, the leading end of the lead is coated with a material having a nickel content of 3% by mass or less.
That is, it is not necessary that the whole is coated with a material having a composition with a nickel content of 3% by mass or less, and the nickel content should be reduced only at the tip.

本発明は、前記リードフレームにおいて、前記リードの先端部がニッケル含有量3質量%以下の組成をもつ材料で構成される。   According to the present invention, in the lead frame, a tip portion of the lead is made of a material having a nickel content of 3% by mass or less.

この構成により、リードの先端部全体がニッケル含有量3質量%以下の組成をもつ材料で構成されるようにすれば、表面層のみがこの組成比をもつ場合に比べてより確実にリードとプリント基板上の配線パターンとの接合性を維持することができる。   With this configuration, if the entire tip of the lead is made of a material having a composition with a nickel content of 3% by mass or less, the lead and the print can be more reliably compared to the case where only the surface layer has this composition ratio. Bondability with the wiring pattern on the substrate can be maintained.

本発明の半導体装置は、半導体素子搭載部と、前記半導体素子搭載部の近傍に、一端が位置するように配設され、ニッケル含有材料で構成された複数のリードと、前記半導体素子搭載領域に搭載され、前記リードの少なくとも1つに電気的に接続された半導体素子チップと、前記半導体素子チップを被覆すると共に、前記リードの外方の端部を外部に露呈せしめる樹脂パッケージとを備え、鉛フリー半田を用いた実装に用いられる半導体装置であって、前記実装に際して針状結晶が析出しないように、前記リードの、少なくとも実装基板の配線パターンとの接合部の表面が、ニッケル含有量3質量%以下の組成をもつ材料で構成される。   A semiconductor device according to the present invention includes a semiconductor element mounting portion, a plurality of leads arranged at one end in the vicinity of the semiconductor element mounting portion and made of a nickel-containing material, and the semiconductor element mounting region. A semiconductor element chip mounted and electrically connected to at least one of the leads; and a resin package that covers the semiconductor element chip and exposes an outer end of the lead to the outside. In the semiconductor device used for mounting using free solder, the surface of the joint portion of the lead and at least the wiring pattern of the mounting substrate is 3 mass of nickel so that the needle crystal does not precipitate during the mounting. % Of the material having a composition of less than%.

この構成により、リードの先端部全体がニッケル含有量3質量%以下の組成をもつ材料で構成されるようにすれば、表面層のみがこの組成比をもつ場合に比べてより確実にリードとプリント基板上の配線パターンとの接合性を維持することができる。   With this configuration, if the entire tip of the lead is made of a material having a composition with a nickel content of 3% by mass or less, the lead and the print can be more reliably compared to the case where only the surface layer has this composition ratio. Bondability with the wiring pattern on the substrate can be maintained.

本発明の半導体装置は、上記半導体装置において、前記リードの先端部がニッケル含有量3質量%以下の組成をもつ材料で被覆される。   In the semiconductor device of the present invention, in the semiconductor device described above, the tip of the lead is covered with a material having a composition with a nickel content of 3% by mass or less.

本発明の半導体装置は、上記半導体装置において、前記リードの先端部がニッケル含有量3質量%以下の組成をもつ材料で構成される。   In the semiconductor device of the present invention, in the semiconductor device described above, the tip of the lead is made of a material having a composition with a nickel content of 3% by mass or less.

本発明の半導体装置の実装方法は、プリント基板表面の配線パターンに、鉛フリー半田層を介して半田リフロー法により半導体装置の、ニッケル含有材料で構成されたリードを載置し、加熱によりリフロー工程を実現するようにした半導体装置の実装方法であって、実装に際して針状結晶が析出しないように、前記配線パターンまたは、ニッケル含有材料で構成されたリードの少なくとも一方の表面が接合部においてニッケル含有量3質量%以下の組成をもつ材料で構成される。   The method for mounting a semiconductor device according to the present invention is such that a lead made of a nickel-containing material of a semiconductor device is placed on a wiring pattern on the surface of a printed circuit board by a solder reflow method via a lead-free solder layer, and a reflow process is performed by heating. A method of mounting a semiconductor device that realizes the above-described method, wherein at least one surface of the wiring pattern or the lead made of a nickel-containing material contains nickel at the joint so that acicular crystals do not precipitate during mounting. It is composed of a material having a composition of 3% by mass or less.

本発明は、上記半導体装置の実装方法において、前記リードの前記配線パターンとの接合部は少なくとも表面がニッケル含有量3質量%以下の組成をもつ材料で被覆される。   According to the present invention, in the semiconductor device mounting method, at least the surface of the joint between the lead and the wiring pattern is coated with a material having a composition having a nickel content of 3% by mass or less.

本発明は、上記半導体装置の実装方法において、前記配線パターンの表面がニッケル含有量3質量%以下の組成をもつ材料で被覆される。   In the semiconductor device mounting method according to the present invention, the surface of the wiring pattern is coated with a material having a composition with a nickel content of 3% by mass or less.

本発明は、上記半導体装置の実装方法において、前記配線パターンがニッケル含有量3質量%以下の組成をもつ材料で構成される。
なおここで、通常のリードは実装時に曲げる必要があるため、曲げに対する硬さと半田の濡れ性を維持する必要がある。そこで硬さと濡れ性を向上するために、フレーム素材中にNiを含有するものが望ましい。
また、リードあるいは配線パターン表面の被覆材料としては、Sn−Bi、Sn−Ag、Sn、Pd,Pd−Auなど、Ni含有量3質量%以下の材料が適用可能である。また、基材からのNiの拡散を防止するため、Cuなどの拡散防止層を介在させるのが望ましい。また拡散防止層としては、Ni単体でもよいことが実験的にわかっている。
The present invention is the above semiconductor device mounting method, wherein the wiring pattern is made of a material having a nickel content of 3 mass% or less.
Here, since a normal lead needs to be bent at the time of mounting, it is necessary to maintain the hardness against bending and the wettability of solder. Therefore, in order to improve hardness and wettability, it is desirable that the frame material contains Ni.
Moreover, as a covering material on the surface of the lead or the wiring pattern, a material having a Ni content of 3% by mass or less, such as Sn—Bi, Sn—Ag, Sn, Pd, Pd—Au, is applicable. Further, in order to prevent diffusion of Ni from the substrate, it is desirable to interpose a diffusion preventing layer such as Cu. Further, it has been experimentally found that the diffusion preventing layer may be Ni alone.

本発明の半導体装置によれば、鉛フリー工程において、高温でのリフロー工程を経ても、接合部の剥離のおそれがなく、高歩留まりで信頼性の高い接合強度をもつリードフレーム、半導体装置およびその実装方法を提供することが可能となる。   According to the semiconductor device of the present invention, in a lead-free process, there is no fear of peeling of the joint portion even after a reflow process at a high temperature, a lead frame having a high yield and high reliability and a semiconductor device and its semiconductor device It is possible to provide a mounting method.

次に本発明の実施の形態について図面を参照して詳細に説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態の半導体装置を示す斜視図、図2はその要部断面図、図3は同半導体装置の実装基板としてのプリント基板20上への実装状態を示す図、図4は、同半導体装置で用いられるリードフレームの半導体チップ搭載例を示す斜視図、図5は同実施の形態に用いられるリードフレームを示す図、図6は同半導体装置の製造工程の一部であって、半導体素子チップを搭載しワイヤボンディングを行った状態を示す図、図7は、この半導体装置の樹脂封止工程を示す説明図、図8は半田リフロー後の要部断面図である。
この半導体装置は、樹脂パッケージ1から導出された、リード2a、2b、2c、吊りリード3a、3bが、Cu−2.0%Sn−0.2%Niで構成されたことを特徴とするもので、プリント基板20上の配線パターン21との接合が鉛フリー半田からなる半田層22によって実現され、複数回のリフロー工程を経てもこの半導体装置がプリント基板20から脱落しないように構成したものである。
またこの半導体装置は、矩形の半導体素子搭載領域としてのダイパッド5a、5bに半導体素子チップ4a、4bが搭載され、樹脂パッケージ1で被覆されたものである。そしてこの樹脂パッケージ1から、リード2a、2b、2c、3a、3bが導出されている。
またこの樹脂パッケージの外径は2.9mm×1.5mm×1.1mmであった。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a perspective view showing a semiconductor device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of an essential part thereof, and FIG. 3 is a mounting state on a printed circuit board 20 as a mounting board of the semiconductor device. 4 is a perspective view showing an example of mounting a semiconductor chip of a lead frame used in the semiconductor device, FIG. 5 is a diagram showing a lead frame used in the embodiment, and FIG. 6 is a manufacturing process of the semiconductor device. FIG. 7 is a diagram showing a state in which a semiconductor element chip is mounted and wire bonding is performed, FIG. 7 is an explanatory diagram showing a resin sealing process of the semiconductor device, and FIG. 8 is a cross-sectional view of a main part after solder reflow FIG.
This semiconductor device is characterized in that the leads 2a, 2b, 2c and the suspension leads 3a, 3b derived from the resin package 1 are made of Cu-2.0% Sn-0.2% Ni. Thus, the connection with the wiring pattern 21 on the printed circuit board 20 is realized by the solder layer 22 made of lead-free solder, and the semiconductor device is configured not to fall off the printed circuit board 20 even after a plurality of reflow processes. is there.
Further, in this semiconductor device, semiconductor element chips 4 a and 4 b are mounted on die pads 5 a and 5 b as rectangular semiconductor element mounting regions and covered with a resin package 1. Leads 2a, 2b, 2c, 3a, and 3b are led out from the resin package 1.
The outer diameter of this resin package was 2.9 mm × 1.5 mm × 1.1 mm.

すなわち、この半導体装置は、リードフレームと、半導体素子チップ4a、4bと、この周りを囲む樹脂パッケージ1とで構成される。そして2個のトランジスタチップを構成する半導体素子チップ4a、4bを、リードフレームのダイパッド5a、5bにそれぞれ載置固定するとともに、この半導体素子チップ4a、4bのパッドを、リード端子2a、2b、2c、3a、3bに夫々ボンディングワイヤ6を介して電気的接続を行うものである。このように、リードフレーム上に電気的接続のなされた半導体素子チップを樹脂パッケージ1a、1bで封止し、樹脂パッケージ1a、1bから導出されたリードをガルウィング型に成形したものである。なお、樹脂封止後、プリント基板への実装に先立ち図2に示すようにリード端子2b(、2a、2c、3a、3b)の表面は半田層S0で被覆される。このリード端子2a、2b、2c、3a、3bの外方端を、半田を介してプリント基板(図示せず)上の回路パターンに載置し、、リフロー法により、245℃程度で加熱することにより、プリント基板20表面の回路パターン21上への実装が鉛フリー半田層22を介してなされる。   In other words, this semiconductor device includes a lead frame, semiconductor element chips 4a and 4b, and a resin package 1 surrounding the lead frame. Then, the semiconductor element chips 4a and 4b constituting the two transistor chips are respectively mounted and fixed on the die pads 5a and 5b of the lead frame, and the pads of the semiconductor element chips 4a and 4b are connected to the lead terminals 2a, 2b and 2c. 3a and 3b are electrically connected through bonding wires 6, respectively. As described above, the semiconductor element chip electrically connected on the lead frame is sealed with the resin packages 1a and 1b, and the lead led out from the resin packages 1a and 1b is formed into a gull wing type. After resin sealing, prior to mounting on the printed circuit board, the surface of the lead terminal 2b (2a, 2c, 3a, 3b) is covered with a solder layer S0 as shown in FIG. The outer ends of the lead terminals 2a, 2b, 2c, 3a, and 3b are placed on a circuit pattern on a printed circuit board (not shown) via solder and heated at about 245 ° C. by a reflow method. Thus, mounting on the circuit pattern 21 on the surface of the printed circuit board 20 is performed via the lead-free solder layer 22.

そしてこのリードフレームは、図4に拡大斜視図、図5に平面図を示すように、送り穴9を備えた2本のサイドバー8の間に、第1および第2の半導体素子チップ搭載部としてのダイパッド5a、5bと、これを支持する吊りリード3a、3bと、この吊りリードに相対向してリード端子2a、2b、2cとからなるリードフレームユニットが多数個順次配設されたものである。   The lead frame has an enlarged perspective view in FIG. 4 and a plan view in FIG. 5, and the first and second semiconductor element chip mounting portions between the two side bars 8 provided with the feed holes 9. A plurality of lead frame units, each comprising a lead pad 2a, 2b, 2c opposite to the suspension leads. is there.

次に、この半導体装置の実装方法について説明する。
まず、このリードフレームの製造方法について説明する。
この方法では、Cu−0.2Sn−0.2Niの組成比をもつCu−Sn−Ni合金(商品名MF202H)の板状体(銅板)からなる条材を打ち抜き加工し、図5に示すように、送り穴9を備えたサイドバー8の間に、ダイパッド5a、5bと、これを支持する吊りリード3a、3bと、リード端子2a、2b、2cとからなるリードフレームユニットが多数個順次配設されたリードフレーム本体の形状加工を行う。このとき抜き型を変更し、打ち抜きと同時に切り欠きが形成できるようになっている。そしてめっきを必要とする場合にはこのようにして形成されたリードフレーム本体の基材m0表面を、電解めっきにより図9に変形例(後述)を示すように多層構造の金属層からなるリード部を備えたリードフレームを形成する。
Next, a method for mounting the semiconductor device will be described.
First, a method for manufacturing the lead frame will be described.
In this method, a strip material made of a plate-like body (copper plate) of a Cu-Sn-Ni alloy (trade name MF202H) having a composition ratio of Cu-0.2Sn-0.2Ni is punched and processed as shown in FIG. In addition, a large number of lead frame units each including a die pad 5a, 5b, suspension leads 3a, 3b, and lead terminals 2a, 2b, 2c are sequentially arranged between the side bars 8 provided with the feed holes 9. The shape of the installed lead frame body is processed. At this time, the punching die is changed so that a notch can be formed simultaneously with the punching. When plating is required, the lead m main body surface of the lead frame body formed in this way is subjected to electrolytic plating to lead portions made of a metal layer having a multilayer structure as shown in FIG. 9 (described later). To form a lead frame.

次にこのリードフレームを用いた半導体装置の製造方法について説明する。   Next, a method for manufacturing a semiconductor device using this lead frame will be described.

まず図6に示すように、図5に示したリードフレームのダイパッド5a、5bに半導体素子チップ4a、4bの裏面が搭載されるように固着し、ボンディングワイヤ12によって半導体素子チップ4a、4bとリード端子2a、2b、2cとの電気的接続を行う。   First, as shown in FIG. 6, the semiconductor element chips 4a and 4b are fixed to the die pads 5a and 5b of the lead frame shown in FIG. Electrical connection with the terminals 2a, 2b and 2c is performed.

この後、図7に示すように、上金型10aと下金型10bによって形成されるキャビティ空間11a、11b内の空間領域にエポキシ樹脂が注入され、樹脂パッケージ1で被覆された半導体装置を形成する。   Thereafter, as shown in FIG. 7, epoxy resin is injected into the space areas in the cavity spaces 11 a and 11 b formed by the upper mold 10 a and the lower mold 10 b to form a semiconductor device covered with the resin package 1. To do.

そして最後に、樹脂パッケージから露呈するリード表面にめっきにより半田層S0を形成した後、サイドバー8を除去し、リード端子をガルウイング形状に成形し、図1に示した半導体装置が形成される。   Finally, after forming the solder layer S0 by plating on the lead surface exposed from the resin package, the side bar 8 is removed, and the lead terminal is formed into a gull wing shape, whereby the semiconductor device shown in FIG. 1 is formed.

そして、プリント基板20への装着時には鉛フリー半田により、効率よくリフローされる。
この結果、接合部断面を図8に示す。この図8と図10に示した従来例のリードフレームを用いた場合の接合部断面とを比較した結果、従来例ではCAC92からなる基材m1に含まれるNiがSnと合金層をつくり、またCuとも合金層を作っていくため合金層の厚みは図10に示したように厚くなる。そしてリードの表面ではCuを含んだNi−Sn合金からなる針状結晶が形成されていることがわかる。Snは多くの金属と金属間化合物をつくり、Sn比率が増すほど合金層成長を助長させることになる。特に鉛フリー半田ではSnの比率が高くなるため合金層成長を助長させる結果となる。この合金層S1の厚みが厚くなると半田中のSnがくわれる率が高くなり半田中のSn含有率が下がるためもろい半田となる。このように、半田層がリードフレームのニッケル層にくわれ、空洞が生じていることがわかる。これに対し、本発明ではわずかに合金層S1は厚くなっているが、それ以上は進行せず良好な接合界面を維持している。
本実施の形態によれば、245℃の高温でのリフロー工程を5回程度、経た場合にも脱落もなく良好な接合界面を得ることができた。また、EDX分析による断面解析によっても合金層が厚くなったり、Cuを含んだNi−Sn合金からなる針状結晶が現われたりすることもなく、強固な接合を維持することができた。
Then, when mounted on the printed circuit board 20, reflow is efficiently performed with lead-free solder.
As a result, the cross section of the joint is shown in FIG. As a result of comparing the cross section of the joint portion when the lead frame of the conventional example shown in FIG. 8 and FIG. 10 is used, in the conventional example, Ni contained in the base material m1 made of CAC92 forms an alloy layer with Sn. Since an alloy layer is formed with Cu, the thickness of the alloy layer is increased as shown in FIG. And it turns out that the acicular crystal | crystallization consisting of the Ni-Sn alloy containing Cu is formed in the surface of a lead | read | reed. Sn produces many metals and intermetallic compounds, and the alloy layer growth is promoted as the Sn ratio increases. Particularly in the case of lead-free solder, the Sn ratio increases, resulting in the promotion of alloy layer growth. As the thickness of the alloy layer S1 increases, the rate at which Sn in the solder is mixed increases and the Sn content in the solder decreases, resulting in brittle solder. Thus, it can be seen that the solder layer is bonded to the nickel layer of the lead frame and a cavity is formed. On the other hand, in the present invention, although the alloy layer S1 is slightly thicker, it does not proceed further and maintains a good bonding interface.
According to the present embodiment, even when the reflow process at a high temperature of 245 ° C. was performed about 5 times, a good bonded interface could be obtained without dropping. In addition, the cross-sectional analysis by EDX analysis also maintained strong bonding without the alloy layer becoming thicker or the appearance of needle-like crystals made of Ni-Sn alloy containing Cu.

なお、上記実施の形態の他、他の組成のリードフレームについて同様の実験を行った。実施例として次表に示すようなNi含有率の少ないリードフレームを用いた場合には100%脱落が生じなかったのに対し、比較例として次表に示すような材質をリードフレームとしても用いた場合には、100%脱落が生じた。なお、ここで以下に示すようフレームの材質を用いた。

Figure 2005150655
In addition to the above embodiment, the same experiment was conducted on lead frames having other compositions. When a lead frame with a low Ni content as shown in the following table was used as an example, 100% dropout did not occur, whereas a material as shown in the following table was also used as a lead frame as a comparative example. In some cases, 100% loss occurred. Here, the material of the frame was used as shown below.
Figure 2005150655

さらにまた、本実施の形態では、プリント基板の配線パターンとの接合部でリード表面のNi含有量が3質量%以下となるように構成されているため、リフロー工程において245℃以上の高温となっても、針状結晶が析出することもなく良好な接合状態を維持することができる。このため、接合状態が破壊される確率は大きく低減される。   Furthermore, in the present embodiment, the Ni content on the lead surface is 3% by mass or less at the junction with the wiring pattern of the printed circuit board, so that the reflow process has a high temperature of 245 ° C. or higher. However, a good bonding state can be maintained without acicular crystals being precipitated. For this reason, the probability that the bonded state is destroyed is greatly reduced.

(第2の実施の形態)
次に本発明の第2の実施の形態について説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described.

なお、前記実施の形態では、リードをバルクで構成したが、変形例を図9に示すようにリード表面にめっき層を形成し2層構造で構成してもよい。
すなわち、このダイパッド、吊りリード、リードは、ニッケルからなる基体m1にめっき層の被膜を形成し2層構造をなすようにしたもので、この基体m1の上層に形成された膜厚2〜3μmのCu層からなるめっき層m2とを備えている。
また、半導体装置の封止樹脂から露呈するリードの表面のニッケル含有量が3質量%以下であるため、NiとSnとノ反応がなくなるため合金層の形成は少なくなり、リフロー5回後においても、半田層22との間に形成される合金層S0は大きくは増大せず、強固に接続されており、安定な外部端子構造を形成することが可能となる。
なおこのめっき層としては、金、銅、錫、パラジウム半田など、安定でNiの拡散を防止可能な金属で構成すればよい。この場合も樹脂封止後、表面に半田層S0が形成される。
In the above-described embodiment, the lead is configured in bulk. However, as shown in FIG. 9, a modified example may be configured in which a plating layer is formed on the lead surface to form a two-layer structure.
That is, the die pad, the suspension lead, and the lead are formed by forming a coating layer of a plating layer on a base body m1 made of nickel to form a two-layer structure. And a plating layer m2 made of a Cu layer.
Further, since the nickel content on the surface of the lead exposed from the sealing resin of the semiconductor device is 3% by mass or less, there is no reaction between Ni and Sn, so the formation of the alloy layer is reduced, and even after 5 reflows. The alloy layer S0 formed between the solder layer 22 and the solder layer 22 does not increase greatly and is firmly connected, so that a stable external terminal structure can be formed.
The plating layer may be made of a metal that can stably prevent diffusion of Ni, such as gold, copper, tin, and palladium solder. Also in this case, the solder layer S0 is formed on the surface after resin sealing.

また、本発明のリードフレームにおいては、前記めっき層は、半田と共晶を形成し易い金などの金属で構成すれば、プリント基板などへの実装に際し、良好に接続を行うことが可能となる。またこのめっき層は、拡散防止層に加えてその外側に他のめっき層を形成し多層構造を形成してもよい。   In the lead frame of the present invention, if the plating layer is made of a metal such as gold, which is easy to form a eutectic with solder, it is possible to make a good connection when mounted on a printed circuit board. . In addition to the diffusion prevention layer, this plating layer may be formed with another plating layer outside thereof to form a multilayer structure.

また、本発明のリードフレームの製造方法では、打ち抜き法によって形成したが、打ち抜き法とエッチング法との組み合わせあるいはエッチング法を用いるようにしてもよい。   Further, although the lead frame manufacturing method of the present invention is formed by the punching method, a combination of the punching method and the etching method or an etching method may be used.

なお、前記実施の形態では、リードフレームのリードについて説明したが、プリント基板などの実装基板の配線パターンについても同様であり、少なくとも接合部の表面が3質量%以下のニッケル含有量であるものを用いることにより、さらに接合は確実となる。また、配線パターンのみの表面が3質量%以下のニッケル含有量であるものを用いることによっても接合部の剥離を防止することができる。   In the above embodiment, the lead of the lead frame has been described, but the same applies to the wiring pattern of a mounting board such as a printed circuit board, and at least the surface of the joint has a nickel content of 3% by mass or less. By using it, the joining is further ensured. Moreover, peeling of a joint part can also be prevented by using a surface having only a wiring pattern with a nickel content of 3% by mass or less.

また、前記実施の形態では、2個のトランジスタの実装について説明したが、1個のトランジスタを実装する場合にも適用可能であり、またこのようなディスクリート素子に限定されることなく、ICやLSIなどにも適用可能であることはいうまでもない。   In the above-described embodiment, the mounting of two transistors has been described. However, the present invention can be applied to the case of mounting a single transistor, and is not limited to such a discrete element. Needless to say, the present invention is also applicable.

さらにまた、材料については前記実施の形態に限定されることなく種々の場合に適用可能である。例えば第2表に示すような組み合わせが可能である。

Figure 2005150655
Furthermore, the material is not limited to the above embodiment and can be applied to various cases. For example, the combinations shown in Table 2 are possible.
Figure 2005150655

以上説明してきたように、本発明の半導体装置によれば、鉛フリー工程において、高温でのリフロー工程によって実装される半導体装置の、歩留まりの向上に有効である。   As described above, according to the semiconductor device of the present invention, it is effective in improving the yield of the semiconductor device mounted by the reflow process at a high temperature in the lead-free process.

本発明の第1の実施の形態に係る半導体装置を示す図The figure which shows the semiconductor device which concerns on the 1st Embodiment of this invention 本発明の第1の実施の形態の要部拡大図を示す図The figure which shows the principal part enlarged view of the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る半導体装置の実装例を示す図The figure which shows the example of mounting of the semiconductor device which concerns on the 1st Embodiment of this invention 本発明の第1の実施の形態に係る半導体装置の(樹脂パッケージを除いた状態を示す)説明図Explanatory drawing (The state except the resin package is shown) of the semiconductor device which concerns on the 1st Embodiment of this invention 本発明の第1の実施の形態に係る半導体装置の製造工程の一部を示す図The figure which shows a part of manufacturing process of the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る半導体装置の製造工程の一部を示す図The figure which shows a part of manufacturing process of the semiconductor device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る半導体装置の製造工程の一部を示す図The figure which shows a part of manufacturing process of the semiconductor device which concerns on the 1st Embodiment of this invention. 同実施の形態の半導体装置のリフロー後の接合部断面を示す図The figure which shows the junction part cross section after the reflow of the semiconductor device of the embodiment 本発明の第2の実施の形態に係る半導体装置の要部を示す図The figure which shows the principal part of the semiconductor device which concerns on the 2nd Embodiment of this invention. 従来例の半導体装置のリフロー後の接合部断面を示す図The figure which shows the junction cross-section after the reflow of the semiconductor device of a prior art example

符号の説明Explanation of symbols

1 樹脂パッケージ
1a 樹脂パッケージ
1b 樹脂パッケージ
2a、2b、2c リード端子
3a、3b 吊りリード
4a、4b 半導体素子チップ
5a、5b ダイパッド(半導体素子搭載部)
5e 伸張部
6 ボンディングワイヤ
7 切欠き
8 サイドバー
9 送り穴
m0、m1 基材
m2 めっき層
S0 半田(合金)層
S1 合金層
DESCRIPTION OF SYMBOLS 1 Resin package 1a Resin package 1b Resin package 2a, 2b, 2c Lead terminal 3a, 3b Suspension lead 4a, 4b Semiconductor element chip 5a, 5b Die pad (semiconductor element mounting part)
5e Extension part 6 Bonding wire 7 Notch 8 Side bar 9 Feed hole m0, m1 Base material m2 Plating layer S0 Solder (alloy) layer S1 Alloy layer

Claims (10)

半導体素子搭載部と、
前記半導体素子搭載部の近傍に、一端が位置するように配設され、ニッケル含有材料で構成された複数のリードとを具備し、鉛フリー半田を用いた実装に用いられるリードフレームであって、
前記リードが、少なくとも実装基板の配線パターンとの接合部の表面が、前記実装に際して前記鉛フリー半田表面に針状結晶が析出しないようにニッケル含有量3質量%以下の組成をもつ材料で構成されたリードフレーム。
A semiconductor element mounting portion;
A lead frame that is disposed in the vicinity of the semiconductor element mounting portion so that one end thereof is positioned and includes a plurality of leads made of a nickel-containing material, and is used for mounting using lead-free solder,
The lead is made of a material having a composition with a nickel content of 3% by mass or less so that at least the surface of the joint portion with the wiring pattern of the mounting substrate does not deposit needle crystals on the lead-free solder surface during the mounting. Lead frame.
請求項1に記載のリードフレームであって、
前記リードの先端部がニッケル含有量3質量%以下の組成をもつ材料で被覆されたリードフレーム。
The lead frame according to claim 1,
A lead frame in which the tip of the lead is coated with a material having a nickel content of 3% by mass or less.
請求項1に記載のリードフレームであって、
前記リードの先端部がニッケル含有量3質量%以下の組成をもつ材料で構成されたリードフレーム。
The lead frame according to claim 1,
A lead frame in which a tip portion of the lead is made of a material having a composition with a nickel content of 3 mass% or less.
半導体素子搭載部と、
前記半導体素子搭載部の近傍に、一端が位置するように配設され、ニッケル含有材料で構成された複数のリードとを具備したリードフレームと、
前記半導体素子搭載領域に搭載され、前記リードの少なくとも1つに電気的に接続された半導体素子チップと、
前記半導体素子チップを被覆すると共に、前記リードの外方の端部を外部に露呈せしめる樹脂パッケージとを備え、鉛フリー半田を用いた実装に用いられる半導体装置であって、
前記リードの、少なくとも実装基板の配線パターンとの接合部の表面が、前記実装に際して針状結晶が析出しないようにニッケル含有量3質量%以下の組成をもつ材料で構成された半導体装置。
A semiconductor element mounting portion;
In the vicinity of the semiconductor element mounting portion, a lead frame provided with a plurality of leads disposed with one end and made of a nickel-containing material;
A semiconductor element chip mounted in the semiconductor element mounting region and electrically connected to at least one of the leads; and
A semiconductor device that covers the semiconductor element chip and includes a resin package that exposes the outer end of the lead to the outside, and is used for mounting using lead-free solder,
A semiconductor device in which at least a surface of a joint portion of the lead with a wiring pattern of a mounting substrate is made of a material having a nickel content of 3% by mass or less so that acicular crystals do not precipitate during the mounting.
請求項4に記載の半導体装置であって、
前記リードの先端部がニッケル含有量3質量%以下の組成をもつ材料で被覆された半導体装置。
The semiconductor device according to claim 4,
A semiconductor device in which a tip portion of the lead is coated with a material having a nickel content of 3% by mass or less.
請求項4に記載の半導体装置であって、
前記リードの先端部がニッケル含有量3質量%以下の組成をもつ材料で構成された半導体装置。
The semiconductor device according to claim 4,
A semiconductor device in which a tip portion of the lead is made of a material having a composition with a nickel content of 3% by mass or less.
プリント基板表面の配線パターンに、鉛フリー半田層を介して半田リフロー法により半導体装置のリードを載置し、加熱によりリフロー工程を実現するようにした半導体装置の実装方法であって、
実装に際して針状結晶が析出しないように、前記配線パターンまたは、ニッケル含有材料で構成されたリードの少なくとも一方の表面が接合部において、ニッケル含有量3質量%以下の組成をもつ材料で構成された半導体装置の実装方法。
A semiconductor device mounting method in which a lead of a semiconductor device is placed on a wiring pattern on a printed circuit board surface by a solder reflow method via a lead-free solder layer, and a reflow process is realized by heating,
At least one surface of the wiring pattern or the lead made of the nickel-containing material is made of a material having a composition with a nickel content of 3% by mass or less at the joint so that the needle-like crystals do not precipitate during mounting. Semiconductor device mounting method.
請求項7に記載の半導体装置の実装方法であって、
前記リードの前記配線パターンとの接合部は少なくとも表面がニッケル含有量3質量%以下の組成をもつ材料で被覆された半導体装置の実装方法。
A method for mounting a semiconductor device according to claim 7,
A method for mounting a semiconductor device, wherein at least a surface of a joint portion between the lead and the wiring pattern is coated with a material having a nickel content of 3 mass% or less.
請求項8に記載の半導体装置の実装方法であって、
前記配線パターンの表面がニッケル含有量3質量%以下の組成をもつ材料で被覆された半導体装置の実装方法。
A method for mounting a semiconductor device according to claim 8, comprising:
A method for mounting a semiconductor device, wherein a surface of the wiring pattern is coated with a material having a nickel content of 3% by mass or less.
請求項8に記載の半導体装置の実装方法であって、
前記配線パターンがニッケル含有量3質量%以下の組成をもつ材料で構成された半導体装置の実装方法。
A method for mounting a semiconductor device according to claim 8, comprising:
A method for mounting a semiconductor device, wherein the wiring pattern is made of a material having a composition with a nickel content of 3% by mass or less.
JP2003390255A 2003-11-20 2003-11-20 Lead frame, semiconductor device using the same, and method for packaging semiconductor device Pending JP2005150655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390255A JP2005150655A (en) 2003-11-20 2003-11-20 Lead frame, semiconductor device using the same, and method for packaging semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390255A JP2005150655A (en) 2003-11-20 2003-11-20 Lead frame, semiconductor device using the same, and method for packaging semiconductor device

Publications (1)

Publication Number Publication Date
JP2005150655A true JP2005150655A (en) 2005-06-09

Family

ID=34696701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390255A Pending JP2005150655A (en) 2003-11-20 2003-11-20 Lead frame, semiconductor device using the same, and method for packaging semiconductor device

Country Status (1)

Country Link
JP (1) JP2005150655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066041A (en) * 2018-10-26 2020-04-30 株式会社日本スペリア社 Production method of solder joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066041A (en) * 2018-10-26 2020-04-30 株式会社日本スペリア社 Production method of solder joint
JP7291320B2 (en) 2018-10-26 2023-06-15 株式会社日本スペリア社 Method for manufacturing solder joints

Similar Documents

Publication Publication Date Title
US20110201159A1 (en) Semiconductor package and manufacturing method thereof
US7511232B2 (en) Substrate for mounting electronic part and electronic part
US5384204A (en) Tape automated bonding in semiconductor technique
KR101704030B1 (en) Improvement of solder interconnect by addition of copper
US5757071A (en) C4 substrate contact pad which has a layer of Ni-B plating
US7233074B2 (en) Semiconductor device with improved contacts
TWI322493B (en) Leadframe strip, semiconductor device, and the method of fabricating a leadframe
US20080087996A1 (en) Semiconductor device and manufacturing method of the same
US20110079887A1 (en) Lead frame and method of manufacturing the same
EP2073261B1 (en) Ceramic substrate component and electronic component using the same
US20100127047A1 (en) Method of inhibiting a formation of palladium-nickel-tin intermetallic in solder joints
US20080036079A1 (en) Conductive connection structure formed on the surface of circuit board and manufacturing method thereof
JP2009054690A (en) Lead frame structure
US8399996B2 (en) Chip carrier
US20240047439A1 (en) Batch Soldering of Different Elements in Power Module
JP3700598B2 (en) Semiconductor chip, semiconductor device, circuit board, and electronic equipment
JP4012527B2 (en) Manufacturing method of electronic parts
JP2005150655A (en) Lead frame, semiconductor device using the same, and method for packaging semiconductor device
EP0468787A2 (en) Tape automated bonding in semiconductor technique
JP2716355B2 (en) Method for manufacturing semiconductor device
WO2009084597A1 (en) Method for manufacturing semiconductor device, semiconductor device, method for manufacturing interim product of semiconductor device, interim product of semiconductor device, and lead frame
KR20070015164A (en) External palladium plating structure of semiconductor component and semiconductor device manufacturing method
JP2000100999A (en) Relay board
JP2001313361A (en) Lead frame for semiconductor integrated circuit
JP2543619C (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091014