JP2020064319A - 反射スクリーン、映像表示装置 - Google Patents

反射スクリーン、映像表示装置 Download PDF

Info

Publication number
JP2020064319A
JP2020064319A JP2019236088A JP2019236088A JP2020064319A JP 2020064319 A JP2020064319 A JP 2020064319A JP 2019236088 A JP2019236088 A JP 2019236088A JP 2019236088 A JP2019236088 A JP 2019236088A JP 2020064319 A JP2020064319 A JP 2020064319A
Authority
JP
Japan
Prior art keywords
screen
layer
image
light
optical shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019236088A
Other languages
English (en)
Inventor
後藤 正浩
Masahiro Goto
正浩 後藤
関口 博
Hiroshi Sekiguchi
博 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2019236088A priority Critical patent/JP2020064319A/ja
Publication of JP2020064319A publication Critical patent/JP2020064319A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】透明性が高く、良好な映像を表示できる反射スクリーン、及び、これを備える表示装置を提供することである。【解決手段】スクリーン10は、映像光が入射する第1斜面121aと、第1斜面121aに対向する第2斜面121bとを有する単位光学形状121が、背面側の面に複数配列された第1光学形状層12と、単位光学形状121の少なくとも第1斜面に形成された反射層13とを備え、単位光学形状121は、その表面に微細な凹凸形状を有し、反射層13の単位光学形状121との界面となる反射面は、微細な凹凸形状を有する。【選択図】図2

Description

本発明は、反射スクリーン、及び、これを備える映像表示装置に関するものである。
従来、映像源から投射された映像光を反射して表示する反射スクリーンとして、様々なものが開発されている(例えば、特許文献1参照)。なかでも、窓ガラス等のように透光性の高い部材に貼り付ける等し、映像光を投射して映像が良好に視認できる反射スクリーンとして使用でき、映像光を投射しない不使用時等にはスクリーンの向こう側の景色が透けて見える半透過型の反射スクリーンは、意匠性の高さ等から需要が高まっている。
特開平9−114003号公報
しかし、このような半透過型の反射スクリーンは、拡散粒子等を含有する拡散層を備えていると、スクリーンの向こう側の景色が白っぽくぼやけて観察され、意匠性の低下を招くため、透明性の向上が課題となっていた。また、各種スクリーンにおいて、薄型化や、コントラストの高い良好な映像を表示することは、常々求められることである。
上述の特許文献1には、透過型、反射型の両方に使用することができるスクリーンが提案されており、背面側からの光を透過することが可能である。しかし、この特許文献1には、透明性の向上に関する対策に関してはなんら開示されていない。
本発明の課題は、透明性が高く、良好な映像を表示できる反射スクリーン、及び、これを備える映像表示装置を提供することである。
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
請求項1の発明は、映像源から投射された映像光を反射して映像を表示する反射スクリーンであって、光透過性を有し、映像光が入射する第1の面(121a,221a)と、これに対向する第2の面(121b,221b)とを有する単位光学形状(121,221)が、背面側の面に複数配列された光学形状層(12,22)と、前記単位光学形状の少なくとも第1の面に形成された反射層(13)と、を備え、前記単位光学形状は、その表面に微細な凹凸形状を有し、前記反射層の前記単位光学形状との界面となる反射面は、前記凹凸形状に対応した凹凸形状を有すること、を特徴とする反射スクリーン(10,20)である。
請求項2の発明は、請求項1に記載の反射スクリーンにおいて、前記反射層(13)は、入射した光の一部を反射し、その他を透過する半透過型の反射層であること、を特徴とする反射スクリーン(10,20)である。
請求項3の発明は、請求項1又は請求項2に記載の反射スクリーンにおいて、拡散粒子を含有する拡散層を備えていないこと、を特徴とする反射スクリーン(10,20)である。
請求項4の発明は、請求項1から請求項3までのいずれか1項に記載の反射スクリーンにおいて、前記単位光学形状(121,221)の配列方向において、該反射スクリーンの反射光のピーク輝度となる出射角度から輝度が1/2となる出射角度までの角度変化量を+α1,−α2とし、その絶対値の平均値をαとするとき、5°≦α≦45°であること、を特徴とする反射スクリーン(10,20)である。
請求項5の発明は、請求項1から請求項4までのいずれか1項に記載の反射スクリーンにおいて、前記単位光学形状(121,221)の配列方向において、該反射スクリーンの反射光のピーク輝度となる出射角度から輝度が1/2となる出射角度までの角度変化量を+α1,−α2とし、その絶対値の平均値をαとし、前記第1の面(121a,221a)がスクリーン面に平行な面となす角度をθ1とするとき、該反射スクリーンの少なくとも一部の領域において、α<arcsin(n×sin(2×(θ1)))という関係を満たすこと、を特徴とする反射スクリーン(10,20)である。
請求項6の発明は、請求項1から請求項5までのいずれか1項に記載の反射スクリーンにおいて、前記第1の面(121a,221a)上の前記反射層(13)の単位面積当たりに前記凹凸形状が形成されていない鏡面領域が占める割合が5%以下であること、を特徴とする反射スクリーン(10,20)である。
請求項7の発明は、請求項1から請求項6までのいずれか1項に記載の反射スクリーンにおいて、前記光学形状層(12,22)の前記単位光学形状(121,221)が形成された面とは反対側の面に、該光学形状層を形成する基材となる基材層(11)を備えること、を特徴とする反射スクリーン(10,20)である。
請求項8の発明は、請求項1から請求項7までのいずれか1項に記載の反射スクリーンにおいて、光透過性を有し、前記光学形状層(12,22)の前記単位光学形状(121,221)が形成された側の面に、前記単位光学形状の間の谷部を充填するように積層された第2光学形状層(14)を備えること、を特徴とする反射スクリーン(10,20)である。
請求項9の発明は、請求項1から請求項8までのいずれか1項に記載の反射スクリーン(10,20)と、前記反射スクリーンに映像光を投射する映像源(LS)と、を備える映像表示装置(1)である。
本発明によれば、透明性が高く、良好な映像を表示できる反射スクリーン、及び、これを備える映像表示装置を提供できる。
第1実施形態の映像表示装置1を示す図である。 第1実施形態のスクリーン10の層構成を示す図である。 1/2角αと映像光の入射角φ及び第1斜面121aの角度θ1の関係について説明する図である。 第1実施形態のスクリーン10での映像光及び外光の様子を示す図である。 測定例1〜6のスクリーン10の反射光の輝度と拡散角を示す図である。 第2実施形態のスクリーン20を説明する図である。 変形形態の映像表示装置1Aを示す図である。
以下、図面等を参照して、本発明の実施形態について説明する。
なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張している。
本明細書中において、形状や幾何学的条件を特定する用語、例えば、平行や直交等の用語については、厳密に意味するところに加え、同様の光学的機能を奏し、平行や直交と見なせる程度の誤差を有する状態も含むものとする。
本明細書中において、記載する各部材の寸法等の数値及び材料名等は、実施形態としての一例であり、これに限定されるものではなく、適宜選択して使用してよい。
本明細書中において、板、シート等の言葉を使用している。一般的に、厚さの厚い順に、板、シート、フィルムの順で使用されており、本明細書中でもそれに倣って使用している。しかし、このような使い分けには、技術的な意味は無いので、これらの文言は、適宜置き換えることができるものとする。
本明細書中において、スクリーン面とは、スクリーン全体として見たときにおける、スクリーンの平面方向となる面を示すものであり、スクリーンの画面(表示面)に平行であるとする。
(第1実施形態)
図1は、第1実施形態の映像表示装置1を示す図である。図1(a)では、映像表示装置1の斜視図であり、図1(b)は、映像表示装置1を側面から見た図である。
映像表示装置1は、スクリーン10、映像源LS等を有している。本実施形態のスクリーン10は、映像源LSから投影された映像光Lを反射して、その画面上に映像を表示する反射スクリーンである。このスクリーン10の詳細に関しては、後述する。
本実施形態では、一例として、映像表示装置1は、店舗のショーウィンドウに適用され、スクリーン10がショーウィンドウのガラスに固定される例を挙げて説明する。
ここで、理解を容易にするために、図1を含め以下に示す各図において、適宜、XYZ直交座標系を設けて示している。この座標系では、スクリーン10の画面の水平方向(左右方向)をX方向、鉛直方向(上下方向)をY方向とし、スクリーン10の厚み方向をZ方向とする。スクリーン10の画面は、XY面に平行であり、スクリーン10の厚み方向(Z方向)は、スクリーン10の画面に直交する。
また、スクリーン10の正面方向に位置する観察者Oから見て水平方向の右側に向かう方向を+X方向、鉛直方向の上側に向かう方向を+Y方向、厚み方向において背面側(裏面側)から映像源側(観察者側)に向かう方向を+Z方向とする。
さらに、以下の説明中において、画面上下方向、画面左右方向、厚み方向とは、特に断りが無い場合、このスクリーン10の使用状態における画面上下方向(鉛直方向)、画面左右方向(水平方向)、厚み方向(奥行き方向)であり、それぞれ、Y方向、X方向、Z方向に平行であるとする。
映像源LSは、映像光Lをスクリーン10へ投影する映像投射装置であり、例えば、短焦点型のプロジェクタである。
この映像源LSは、映像表示装置1の使用状態において、スクリーン10の画面(表示領域)を正面方向(スクリーン面の法線方向)から見た場合に、スクリーン10の画面左右方向の中央であって、スクリーン10の画面よりも鉛直方向下方側に位置している。
映像源LSは、奥行き方向(Z方向)において、スクリーン10の表面からの距離が、従来の汎用プロジェクタに比べて大幅に近い位置から斜めに映像光Lを投影できる。したがって、従来の汎用プロジェクタに比べて、映像源LSは、スクリーン10までの投射距離が短く、投射された映像光がスクリーン10に入射する入射角度が大きい。
スクリーン10は、映像源LSが投射した映像光Lを観察者O側へ向けて反射し、映像を表示するスクリーンであり、かつ、スクリーン10の向こう側(背面側,−Z側)の景色を観察できる半透過型の反射スクリーンである。
スクリーン10の画面(表示領域)は、使用状態において、観察者O側から見て長辺方向が画面左右方向となる略矩形状である。
スクリーン10は、その画面サイズが対角80〜100インチ程度の大きな画面を有しており、画面の横縦比が16:9である。なお、これに限らず、例えば、40インチ程度やそれ以下の大きさとしてもよく、使用目的や使用環境等に応じて、その大きさや形状は適宜選択できるものとする。
一般的に、スクリーン10は、樹脂製の薄い層の積層体等であり、それ単独では平面性を維持するだけの十分な剛性を有していない場合が多い。そのため、本実施形態のスクリーン10は、図1(b)等に示すように、その背面側に光透過性を有する接合層51を介して支持板50一体に接合(あるいは部分固定)され、画面の平面性を維持している。
支持板50は、光透過性を有し、剛性が高い平板状の部材であり、アクリル樹脂やPC樹脂等の樹脂製、ガラス製等の板状の部材を用いることができる。
本実施形態では、支持板50は、例えば、店舗等のショーウィンドウの窓ガラスである。なお、これに限らず、スクリーン10は、不図示の枠部材等によってその四辺等が支持され、その平面性を維持する形態としてもよい。
図2は、第1実施形態のスクリーン10の層構成を示す図である。図2では、スクリーン10の画面中央(画面の幾何学的中心)となる点A(図1(a)、(b)参照)を通り、画面上下方向(Y方向)に平行であって、スクリーン面に直交(Z方向に平行)する断面の一部を拡大して示している。なお、図2では、理解を容易にするために、支持板50等は省略して示している。
スクリーン10は、図2に示すように、その映像源側(+Z側)から順に、基材層11、第1光学形状層12、反射層13、第2光学形状層14、保護層15を備えている。
基材層11は、光透過性を有するシート状の部材である。基材層11は、その背面側(−Z側)に、第1光学形状層12が一体に形成されている。この基材層11は、第1光学形状層12を形成する基材(ベース)となる層である。
基材層11は、例えば、高い光透過性を有するPET(ポリエチレンテレフタレート)等のポリエステル樹脂、アクリル樹脂、スチレン樹脂、アクリルスチレン樹脂、PC(ポリカーボネート)樹脂、脂環式ポリオレフィン樹脂、TAC(トリアセチルセルロース)樹脂等により形成される。
また、基材層11は、画面サイズ等に応じてその厚さを変更可能であり、本実施形態での厚さが約100μmである。
第1光学形状層12は、基材層11の背面側(−Z側)に形成された光透過性を有する層である。第1光学形状層12の背面側(−Z側)の面には、単位光学形状121が複数設けられている。
単位光学形状121は、スクリーン10の画面左右方向(X方向)に延在し、画面上下方向(Y方向)に沿って複数配列されている。
単位光学形状121は、スクリーン10の厚み方向(Z方向)に平行であって単位光学形状121の配列方向(Y方向)に平行な断面での断面形状が三角形状であり、いわゆるプリズム形状である。
単位光学形状121は、映像光が直接入射する第1斜面121aと、この第1斜面121aに対向する第2斜面121bとを有している。1つの単位光学形状121において、第1斜面121aは、頂点tを挟んで第2斜面121bよりも上側(+Y側)に位置している。
第1斜面121aがスクリーン面に平行な面となす角度は、θ1である。また、第2斜面121bがスクリーン面に平行な面となす角度は、θ2である。この角度θ1,θ2は、θ2>θ1という関係を満たしている。
この単位光学形状121の第1斜面121a及び第2斜面121bは、微細な凹凸形状を有している。
単位光学形状121の配列ピッチは、Pであり、単位光学形状121の高さ(厚み方向における頂点tから単位光学形状121間の谷底となる点vまでの寸法)は、hである。
本実施形態では、図2に示すように、角度θ1,θ2、配列ピッチP等が一定である例を示している。しかし、これに限らず、これらの角度や寸法は、映像源LSからの映像光の投射角度(スクリーン10への映像光の入射角度)や、映像源LSの画素(ピクセル)の大きさ、スクリーン10の画面サイズ、各層の屈折率等に応じて、適宜設定してよい。例えば、単位光学形状121の配列方向に沿って、これらの角度や寸法が、次第に又は段階的に変化する形態としてもよい。
第1光学形状層12は、光透過性の高いウレタンアクリレート系、ポリエステルアクリレート系、エポキシアクリレート系、ポリエーテルアクリレート系、ポリチオール系、ブタジエンアクリレート系等の紫外線硬化型樹脂により形成されている。
なお、本実施形態では、第1光学形状層12を構成する樹脂として、紫外線硬化型樹脂を例に挙げて説明するが、これに限らず、例えば、電子線硬化型樹脂等の他の電離放射線硬化型樹脂により形成してもよい。
反射層13は、単位光学形状121の少なくとも第1斜面121aに形成された層である。本実施形態では、反射層13は、単位光学形状121の第1斜面121a及び第2斜面121bに形成されている。
前述のように、第1斜面121a及び第2斜面121bは、微細な凹凸形状が形成されており、反射層13は、この微細な凹凸形状に追従して形成されている。また、この反射層13の厚みは、凹凸形状よりも十分に薄い。したがって、反射層13の反射面(反射層13の第1光学形状層12側の面)は、微細な凹凸形状を有するマット面となっている。
この反射層13の反射面の表面粗さ(即ち、第1斜面121aの表面粗さ)は、算術平均粗さRa(JIS B0601−2001)が約0.15〜0.3μmであることが、反射光により映像を良好に表示する観点から好ましい。なお、反射層13の反射面の表面粗さ(即ち、第1斜面121aの表面粗さ)である算術平均粗さRaは、所望する光学性能等に応じて適宜選択してよい。
反射層13は、入射した光の一部を反射し、その他を透過する半透過型の反射層、いわゆるハーフミラーである。
反射層13の反射率と透過率の割合は、適宜に設定できるが、映像光を良好に反射させるとともに、映像光以外の光(例えば、太陽光等の外界からの光)を良好に透過させる観点から、透過率が30〜80%、反射率が5〜60%の範囲であることが望ましい。
本実施形態の反射層13は、反射率が約40%、透過率が約50%のハーフミラー状に形成されている。
したがって、本実施形態の反射層13は、入射した光の一部を反射面の微細凹凸形状により拡散して反射し、反射しない他の光を拡散しないで透過するという機能を有する。
反射層13は、光反射性の高い金属、例えば、アルミニウム、銀、ニッケル等により形成され、その厚さは、数10Å程度である。本実施形態の反射層13は、アルミニウムを蒸着することにより形成されている。
反射層13は、これに限らず、例えば、光反射性の高い金属をスパッタリングしたり、金属箔を転写したり、金属薄膜を含有した塗料を塗布したりする等により形成されてもよいし、例えば、誘電体多層膜を蒸着することにより形成されてもよい。
第2光学形状層14は、第1光学形状層12の背面側(−Z側)に設けられた光透過性を有する層である。第2光学形状層14は、第1光学形状層12の背面側(−Z側)の面を平坦にするために設けられており、単位光学形状121間の谷部を埋めるように形成されている。したがって、第2光学形状層14の映像源側(+Z側)の面は、第1光学形状層12の単位光学形状121の略逆型の形状が複数配列されて形成されている。
このような第2光学形状層14を設けることにより、反射層13を保護することができ、スクリーン10の第1光学形状層12の背面側の面に保護層15等を積層しやすくなり、また、支持板50等への接合も容易となる。
第2光学形状層14の屈折率は、第1光学形状層22と同等であることが望ましく、第2光学形状層14は、前述の第1光学形状層12と同じ紫外線硬化型樹脂を用いて形成することが好ましい。
保護層15は、第2光学形状層14の背面側(−Z側)に形成される層であり、このスクリーン10の背面側を保護する機能を有している。
保護層15は、光透過性の高い樹脂製のシート状の部材が用いられる。保護層15は、例えば、前述の基材層11と同様の材料を用いて形成されたシート状の部材を用いてもよい。
上述のように、本実施形態のスクリーン10は、拡散作用を有する粒子等の拡散材を含有した光拡散層を備えておらず、拡散作用を有するのは、反射層13の反射面の微細凹凸形状のみである。
本実施形態のスクリーン10では、反射層13は、微細な凹凸形状を有する第1斜面121a及び第2斜面121bに形成され、反射面となる第1光学形状層12側の面がマット面(粗面)となっている。したがって、第1斜面121aに入射した光の一部は、拡散反射される。
ここで、第1斜面121aから反射層13に入射して拡散反射し、スクリーン10から出射した光(反射光)のピーク輝度の角度Kに対して、単位光学形状121の配列方向(本実施形態では、画面上下方向)において、輝度が1/2となる角度をK1,K2とし、ピーク輝度の角度Kから輝度が1/2となる角度K1,K2までの角度変化量を+α1(ただし、K+α1=K1),−α2(K−α2=K2)とするとき、ピーク輝度から輝度が1/2になるまでの角度変化量の絶対値の平均値をα(これを以下、1/2角αという)とするとき、この1/2角αは、5°以上45°以下(5°≦α≦45°)とすることが好ましい。
α<5°である場合、視野角が狭くなり過ぎ、映像が見えにくくなるので好ましくない。また、α<5°である場合、反射光において鏡面反射成分が増え、光源の映り込み等が生じるため、好ましくない。
α>45°である場合、視野角は広くなるが映像の明るさが低下したり、映像のぼけが強くなったり、外光のスクリーン10の表面での反射によって映像のコントラストが低下したりするので好ましくない。したがって、1/2角αは、上記範囲が好ましい。
また、第1斜面121aのうち、粗面ではない領域、即ち、微細な凹凸形状が形成されていない領域であって反射層13の反射面が鏡面状あり、入射した映像光が鏡面反射する鏡面領域は、第1斜面121a上に形成された反射層13の単位面積当たり5%以下であることが、映像光を十分に拡散し、良好な視野角を得るために必要であり、0%であることが理想的である。
第1斜面121aの単位面積当たりにおいて、粗面ではない鏡面領域が5%を超えると、拡散されず反射して観察者O側に到達する映像光の成分により輝線が生じたり、視野角が低下したりするため、好ましくない。
図3は、1/2角αと映像光の入射角φ及び第1斜面121aの角度θ1の関係について説明する図である。図3では、理解を容易にするために、スクリーン10内の構成は簡略化し、基材層11及び保護層15は省略して示している。図3では角度α,φに関して、スクリーン面の法線に対して画面上側を+、画面下側を−として示している。
第1斜面121aの角度θ1は、映像光をスクリーン10の正面方向に位置する観察者に最も効率よく映像を反射するように、即ち、反射光のピーク輝度となる角度Kが0°となるように、各層の屈折率等に基づいて設計されている。また、−αから+αまでの範囲は、スクリーン正面に位置する観察者が映像を良好に観察することを想定している範囲である。
ここで、画面上下方向(単位光学形状121の配列方向)におけるある点において、映像光Lがスクリーン10の下方から入射角φで入射し、屈折率nの第1光学形状層12を進み、スクリーン面に対して角度θ1をなす第1斜面121aに入射して反射層13で反射し、スクリーン10からスクリーン面に直交する方向(出射角度0°)へ出射するとき、角度θ1は、以下の式1で表される。
θ1=1/2×arcsin((sinφ)/n) (式1)
本実施形態のように、映像源LSから映像光を投射してスクリーン10で反射させ、映像を表示する際に、映像光を投射する映像源LSの光源が映り込み、映像のコントラストが低下するという問題が生じる場合がある。この映像源の映り込みは、スクリーンの表面で反射した映像光が観察者に届くことが主な原因である。
このような映像源の映り込みを防止するためには、スクリーン10の表面で観察者が主に映像を良好に観察する範囲となる角度範囲(−α〜+α)よりも外側に、スクリーンの表面で反射した映像光が進むことが好ましい。入射角φで入射した映像光Lの一部Lrがスクリーン表面で反射する場合、その反射角はφである。したがって、映像源の映り込みを防止するために、α<φであることが好ましい。
よって、前述の(式1)から、画面上下方向(単位光学形状121の配列方向)において、1/2角αは、第1斜面121aの角度θ1に対して、映像源の映り込みを防止するために、少なくともスクリーン10の一部の領域(例えば、スクリーン中央)において、以下の式2を満たすことが好ましい。
α<arcsin(n×sin(2×(θ1))) ・・・(式2)
また、映像源の映り込み防止のためには、1/2角αは、第1斜面121aの角度θ1に対して、スクリーン10の全域において、上記式2を満たすことがさらに好ましい。
角度θ1が1/2角αに対して、上記式2を満たす形態とすることにより、スクリーン10への入射時にスクリーン10の表面で反射する光が主に向かう方向(+φの方向)が、反射層13で反射した映像光がスクリーン10から出射して進む範囲(−α〜+α)よりも外側となる。これにより、−αから+αまでの範囲において、映像源LSの映り込みを低減し、コントラストの高い良好な映像を表示することができる。
スクリーン10は、例えば、以下のような製造法により形成される。
基材層11を用意し、その一方の面に、単位光学形状121を賦形する成形型に紫外線硬化型樹脂を充填した状態で積層し、紫外線を照射して樹脂を硬化させるUV成形法により第1光学形状層12を形成する。このとき、単位光学形状121を賦形する成形型の第1斜面121a及び第2斜面121bを賦形する面には、微細な凹凸形状が形成されている。この微細な凹凸形状は、成形型の第1斜面121a及び第2斜面121bを賦形する面に、条件の異なるめっきを2回以上繰り返したり、エッチング処理を行ったりすること等によって形成できる。
第1光学形状層12を、基材層11の一方の面に形成した後、第1斜面121a及び第2斜面121bに、反射層13を蒸着等により形成する。
その後、反射層13の上から、単位光学形状121間の谷部を充填して平面状となるように、紫外線硬化型樹脂を塗布し、保護層15を積層して紫外線硬化型樹脂を硬化させ、第2光学形状層14及び保護層15を一体に形成する。その後、所定の大きさに裁断する等により、スクリーン10が完成する。
基材層11及び保護層15は、枚葉状としてもよいし、ウェブ状としてもよい。基材層11及び保護層15をウェブ状とした場合には、裁断前の状態のスクリーン10を連続して製造することができ、スクリーン10の生産効率を向上させ、生産コストを低減することができる。
また、例えば、第1斜面121a及び第2斜面121bに粗面を形成する方法として、第1斜面121a,第2斜面121b上に拡散粒子等を塗布してその上から反射層13を形成したり、第1光学形状層12を形成後に第1斜面121a,第2斜面121bにブラスト加工を行ったりする方法等が知られている。しかし、このような製法で反射層13の反射面を粗面とした場合には、個々のスクリーン10での拡散特性や品質等のばらつきが大きく、安定した製造が行えない。これに対して、上述のように、単位光学形状121の第1斜面121a,第2斜面121bの微細凹凸形状を成形型によって賦形することにより、多数の第1光学形状層12及びスクリーン10を製造する場合にも、品質のばらつきが少なく、安定して製造できるという利点がある。
図4は、第1実施形態のスクリーン10での映像光及び外光の様子を示す図である。図4では、単位光学形状121の配列方向(Y方向)及びスクリーンの厚み方向(Z方向)に平行な断面での断面の一部を拡大して示している。また、図4では、理解を容易にするために、スクリーン10内の各層の界面における屈折率差はないものとして示している。
スクリーン10の下方に位置する映像源LSから投射され、スクリーン10に入射した映像光L1のうち、一部の映像光L2は、その単位光学形状121の第1斜面121aに入射し、反射層13によって拡散反射され、観察者O側へ出射する。
第1斜面121aに入射した映像光のうち反射しなかった他の映像光L3は、反射層13を透過し、スクリーン10の背面側(−Z側)から出射する。このとき、映像光L3は、スクリーン10の上方へと出射し、背面側のスクリーン10の正面方向に位置する観察者O2には到達しない。
また、映像源LSから投射された映像光L1うち、一部の映像光L4は、スクリーン10の表面で反射し、スクリーン10上方へ向かう。このとき、映像光L4の反射角は、前述のように、1/2角α以上よりも大きい角度となるので、観察者Oの映像の視認の妨げにはならない。
なお、本実施形態では、映像光L1がスクリーン10の下方から投射され、かつ、角度θ2(図2参照)がスクリーン10の画面上下方向の各点における映像光の入射角度よりも大きいので、映像光が第2斜面121bに直接入射することはなく、第2斜面121bは、映像光の反射にはほとんど影響しない。
次に、背面側(−Z側)又は映像源側(+Z側)からスクリーン10に入射する映像光以外の太陽光等の外界からの光(以下、外光という)について説明する。
図4に示すように、スクリーン10に入射する外光G1,G5のうち、一部の外光G2,G6は、スクリーン10の表面で反射し、スクリーン下方側へ向かう。また、一部の外光G3,G7は、反射層13で反射し、例えば、外光G3は、スクリーン10の映像源側(+Z側)の表面で全反射してスクリーン10内下方へ向かい、外光G7は、背面側(−Z側)のスクリーン外上方側へ出射する。また、反射層13で反射しなかった他の外光G4,G8は、反射層13を透過して、それぞれ背面側、映像源側へ出射する。このとき、映像源側へ出射する外光G2,G3,G8は、観察者Oには到達しないので、映像のコントラスト低下を抑制できる。
また、図示しないが、スクリーン10に入射した外光の一部は、スクリーン10の表面で全反射して、スクリーン内部下方側へ向かい、減衰する。
また、他の外光G9,G10は、反射層13を透過して、それぞれ背面側、映像源側へ出射する。スクリーン10は、拡散粒子を含有する拡散材等を含有していないので、このスクリーン10を透過する外光G9,G10は、拡散されない。したがって、スクリーン10を通して、スクリーン10の向こう側の景色を観察した場合に、スクリーン10の向こう側の景色がぼやけたり、白くにじんだりすることなく、高い透明性を有して観察することができる。
従来の拡散粒子を含有する拡散層を備えた半透過型の反射スクリーンでは、映像光は、反射層での反射前後の2回拡散されるので、良好な視野角が得られる一方で映像の解像度が低下するという問題がある。また、拡散粒子によって外光も拡散されるため、スクリーンの向こう側の景色がぼやけたり、白くにじんだりして観察される。
しかし、本実施形態のスクリーン10では、反射層13の反射面が粗面になっている以外は、拡散作用を有しないので、映像光は反射時のみ拡散される。また、本実施形態のスクリーン10では、反射層13で反射する光のみが拡散され、透過光は拡散されない。したがって、本実施形態のスクリーン10は、良好な視野角及び解像度を有する映像を表示でき、かつ、スクリーン10の向こう側の景色が白くにじんだり、ぼけたりすることがなく観察者Oに良好に視認され、高い透明性を実現できる。また、本実施形態のスクリーン10では、スクリーン10に映像光が投射された状態においても、観察者Oが、スクリーン10の向こう側(背面側)の景色を一部視認することが可能である。さらに、スクリーン10では、背面側に位置する観察者O2は、映像光の投射の有無に関わらず、スクリーン10越しに映像源側(+Z側)の景色を高い透明性を有して良好に視認することができる。
また、本実施形態のスクリーン10では、反射層13で拡散反射された映像光(反射光)の1/2角αは、第1斜面121aがスクリーン面に平行な面となす角度θ1に対して、前述の式2を満たすので、スクリーン10の映像源側表面で反射する映像光は、1/2角αよりも外側へ向かい、映像源LSの映り込みがなく、良好な映像を表示できる。
ここで、1/2角αの異なる第1光学形状層12を備える測定例1〜6のスクリーンを用意し、映像源LSから映像を投射して、表示される映像の見え方を評価した。この測定例1〜6のスクリーンは、それぞれ、1/2角α及び第1斜面121aの微細凹凸の表面粗さ(算術平均粗さRa)が異なる以外は、同一の形状である。
測定例1のスクリーンは、1/2角αが4°であり、第1斜面121aの算術平均粗さRaが0.122μmである。
測定例2のスクリーンは、1/2角αが約8°であり、第1斜面121aの算術平均粗さRaが0.184μmである。
測定例3のスクリーンは、1/2角αが約15°であり、第1斜面121aの算術平均粗さRaが0.255μmである。
測定例4のスクリーンは、1/2角αが40°であり、第1斜面121aの算術平均粗さRaが0.298μmである。
測定例5のスクリーンは、1/2角αが約50°であり、第1斜面121aの算術平均粗さRaが0.323μmである。
測定例6のスクリーンは、1/2角αが60°以上であり、第1斜面121aの算術平均粗さRaが0.329μmである。
測定例1〜6のスクリーンにおいて、基材層11等の共通部分の寸法等は、以下の通りである。
基材層11は、PET樹脂製であり、厚さ約100μmである。
第1光学形状層12は、ウレタンアクリレート系の紫外線硬化型樹脂(屈折率1.52)である。
単位光学形状121は、配列ピッチPが100μmである。
反射層13は、アルミニウムの蒸着膜により形成され、厚さ約60Å、透過率50%、反射率40%である。
第2光学形状層14は、ウレタンアクリレート系の紫外線硬化型樹脂(屈折率1.52)である。
保護層15は、PET樹脂製であり、厚さ約100μmである。
映像源LSは、スクリーンの画面中央となる点Aにおいて、輝度が最大となるように設置した。
測定例1〜6のスクリーンを用意し、映像源LSから映像光を投射して、映像を表示し、その映像の見え方について、スクリーン10の映像源側(+Z側)から目視で観察して評価した。
表1は、測定例1〜6のスクリーンの評価結果をまとめたものである。
図5は、測定例1〜6のスクリーン10の反射光の輝度と拡散角を示すグラフを示す図である。図5に示すグラフにおいて、縦軸は、反射光の輝度(cd/m)、横軸は、拡散角(°)である。
Figure 2020064319
1/2角αが、5°未満である測定例1のスクリーンでは、映像の明るさは良好であるが、視野角が狭すぎ、映像が視認し難くかった。また、反射層13で反射した映像光において、鏡面反射成分が増え、映像源LSの光源の映り込み等も観察された。
1/2角αが、45°以上である測定例5,6のスクリーンでは、視野角は十分に広いが、光が拡散され過ぎ、映像の明るさや解像度が低下して、映像が視認し難かった。
これに対して、1/2角αが5〜45°である測定例2,3,4のスクリーンでは、十分な視野角及び明るさを有する良好な映像が視認された。
以上のことから、本実施形態によれば、透明性が高く、かつ、十分な視野角及び明るさを有する良好な映像を表示できる半透過の反射型のスクリーン10及び表示装置1を提供することができる。
(第2実施形態)
図6は、第2実施形態のスクリーン20を説明する図である。図6(a)では、スクリーン20の第1光学形状層22を背面側(−Z側)から見た図であり、理解を容易にするために、反射層13や第2光学形状層14、保護層15等は、省略して示している。図6(b)では、前述の図2に示す第1実施形態のスクリーン10の断面に相当する第2実施形態のスクリーン20の断面の一部を拡大して示している。
第2実施形態に示すスクリーン20は、第1光学形状層22の単位光学形状221の形状が異なる点以外は、前述の第1実施形態と同様の形態である。したがって、前述した第1実施形態と同様の機能を果たす部分には、同一の符号又は末尾に同一の符号を付して、重複する説明を適宜省略する。
第2実施形態のスクリーン20は、前述の第1実施形態の映像表示装置1において、スクリーン10に換えて用いることが可能である。
このスクリーン20は、基材層11、第1光学形状層22、反射層13、第2光学形状層14、保護層15を備えている。
第1光学形状層22の背面側には、単位光学形状(単位レンズ)221が複数配列されて形成されている。単位光学形状221は、図6に示すように、スクリーン20の画面(表示領域)外に位置する点Cを中心として、同心円状に複数配列されている。即ち、第1光学形状層22は、背面側にサーキュラーフレネルレンズ形状を有している。
第1光学形状層22のサーキュラーフレネルレンズ形状は、スクリーン10の画面外に位置する点Cを中心(フレネルセンター)とする、いわゆるオフセット構造のサーキュラーフレネルレンズ形状である。そのため、図6(a)に示すように、第1光学形状層22をスクリーン面の法線方向背面側から見たときに、真円の一部形状(円弧状)の単位光学形状221が複数配列されているように観察される。
単位光学形状221は、スクリーン面に直交する方向(Z方向)に平行であって、単位光学形状221の配列方向(Y方向)に平行な断面における断面形状が、略三角形形状である。
この単位光学形状221は、背面側に凸であり、映像光が入射する第1斜面(レンズ面)221aと、映像光が入射しない第2斜面(非レンズ面)221bとを有している。
1つの単位光学形状221において、第1斜面221aは、頂点tを挟んで第2斜面221bの上側(+Y側)に位置している。
単位光学形状221において、図6(b)に示すように、第1斜面221aがスクリーン面に平行な面となす角度(レンズ角)は、θ1であり、第2斜面221bがスクリーン面に平行な面となす角度は、θ2である。この時、角度θ1,θ2は、θ2>θ1という関係を満たす。
角度θ1は、前述の第1実施形態に示したように、1/2角αに対して、スクリーン20上の少なくとも一部の領域で、式2を満たしている。
α<arcsin(n×sin(2×(θ1))) ・・・(式2)
また、このスクリーン10の1/2角αは、5°≦α≦45°を満たす。
理解を容易にするために、図6では、単位光学形状221の配列ピッチP、角度θ1,θ2は、単位光学形状221の配列方向において一定である例を示している。しかし、本実施形態の単位光学形状221は、実際には、配列ピッチPは一定であるが、角度θ1が単位光学形状221の配列方向においてフレネルセンターとなる点Cから離れるにつれて次第に大きくなっている。
本実施形態によれば、前述の第1実施形態と同様に、透明性が高く、かつ、良好な映像を表示できる半透過型である反射型のスクリーン20及び表示装置1を提供することができる。
また、本実施形態によれば、第1光学形状層22は、フレネルセンターとなる点Cが、スクリーン20の表示領域外下方に位置しており、いわゆるオフセット構造のサーキュラーフレネルレンズ形状を有しているので、スクリーン20の下方に位置する短焦点型の映像源LSから投射された入射角度の大きい映像光であっても、画面左右方向の映像が暗くなることがなく、明るさの面均一性の高い良好な映像を表示することができる。
(変形形態)
以上説明した各実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。
(1)各実施形態において、スクリーン10,20の映像源側(+Z側)の面に、傷つき防止を目的としたハードコート層を設けてもよい。ハードコート層は、例えば、スクリーン10,20の映像源側の面(基材層11の映像源側の面)に、ハードコート機能を有する紫外線硬化型樹脂(例えば、ウレタンアクリレート等)を塗布して形成する等により、形成される。
また、ハードコート層に限らず、スクリーン10,20の使用環境や使用目的等に応じて、例えば、反射防止機能、紫外線吸収機能、防汚機能、帯電防止機能等、適宜必要な機能を有する層を1つ又は複数選択して設けてもよい。さらに、基材層11の映像源側(観察者側)にタッチパネル層等を設けてもよい。
(2)各実施形態において、反射層13は、ハーフミラー(マジックミラー)状の半透過型の反射層である例を示したが、これに限らず、例えば、その厚みを1000Å以上とする等として、入射した光を完全に反射する反射層としてもよい。この場合、スクリーン10,20は、一般的な反射型のスクリーンとなり、スクリーンの薄型化、映像源の映り込みの抑制等の効果が得られる。このような形態とする場合には、例えば、第2光学形状層14や保護層15を、遮光層として外光を吸収させ、コントラスト向上を図ってもよい。
また、各実施形態において、スクリーン10,20は、反射層を設けない形態とすることもできる。この場合、映像光を観察者Oへ効率よく反射させる観点から、第1光学形状層12の第1斜面121aと第2光学形状層14との間に、第1光学形状層12の屈折率とは相違する屈折率の層(例えば、有機多層膜による層や空気層)を一層又は複数層設ける必要がある。
(3)各実施形態において、映像源LSは、スクリーン10,20の画面左右方向の中央であって鉛直方向下側に位置する例を挙げて説明したが、これに限らず、例えば、スクリーン10,20の斜め下側等に配置され、スクリーン10,20に対して画面左右方向において斜め方向光から映像光を投射する形態としてもよい。
図7は、変形形態の映像表示装置1Aを示す図である。
図7に示すように、例えば、映像源LSをスクリーン10の画面左右方向左側(−X側)の下方に配置する場合、単位光学形状121は、その配列方向及び長手方向が、映像源LSの位置に合わせてそれぞれ画面上下方向(Y方向)及び画面左右方向(X方向)に対して傾斜した形態となっている。このような形態とすることにより、映像源LSの位置等を自由に設定することができる。
なお、第2実施形態に示すスクリーン20のように、第1光学形状層22がサーキュラーフレネル形状を有する場合にも、映像源LSの位置に合わせて単位光学形状221の配列方向を傾けた形態とすることにより、このような変形形態は適用可能である。
(4)各実施形態において、単位光学形状121,221は、第1斜面121a,221a及び第2斜面121b,221bが平面により形成される例を示したが、これに限らず、例えば、曲面と平面とが組み合わされた形態としてもよいし、折れ面状としてもよい。
また、各実施形態において、単位光学形状121,221は、3つ以上の複数の面によって形成される多角形形状としてもよい。
また、各実施形態において、反射層13は、第1斜面121a,221a及び第2斜面121b,221bに形成される例を示したが、これに限らず、例えば、第1斜面121a,221aの少なくとも一部に形成される形態としてもよい。
また、各実施形態において、第1斜面121a,221a及び第2斜面121b,221bは、微細な凹凸形状が形成された粗面である例を示したが、これに限らず、第1斜面121a,221aのみ粗面である形態としてもよい。
(5)各実施形態において、スクリーン10,20は、第1光学形状層12及び第2光学形状層14が十分な厚みや剛性等を有している場合には、基材層11及び保護層15を備えない形態としてもよいし、どちらか一方を備えない形態としてもよい。
また、各実施形態において、スクリーン10,20は、基材層11及び保護層15の少なくとも一方を、ガラス板等の光透過性を有する板状の部材としてもよい。このとき、粘着剤層等を介して第1光学形状層12等がガラス板等に接合される形態としてもよい。
(6)各実施形態において、映像源LSは、例えば、P波の偏光成分を有する映像光を投射するものとしてもよい。
このとき、映像源LSは、映像光が入射角φでスクリーン10,20へ投射されるように位置及び角度が設定されている。この入射角φは、スクリーン10,20へ投射された映像光(P波)の反射率がゼロとなる入射角(ブリュースター角)をθb(°)とした場合、(θb−10)°以上85°以下の範囲に設定される。例えば、スクリーン10,20へ投射された映像光の反射率がゼロとなる入射角θbが60°である場合、映像光の入射角φは、50〜85°の範囲に設定される。
このように、P波の偏光成分を有する映像光を投射する映像源LSを用いることにより、スクリーン10,20への入射角φが大きい場合にも、スクリーン10,20の表面における鏡面反射を抑制することができ、映像源LSの設置位置等、投射系の設計の自由度を上げることができる。また、このような映像源LSを用いることにより、スクリーン10,20に入射する際にスクリーン表面での映像光の反射を低減でき、映像の明るさ、鮮明さの向上を図ることができる。
なお、角度θb(ブリュースター角)は、映像光が投射されるスクリーン10,20表面の材質により異なる。
また、このような形態の場合、基材層11及び保護層15としては、TAC製のシート状の部材が好適である。
(7)各実施形態において、映像表示装置1は、店舗等のショーウィンドウに配置される例を示したが、これに限らず、例えば、室内用のパーテーションや、展示会等における映像表示等にも適用できる。また、スクリーン10,20をフロントガラスに貼り合わせる等し、映像表示装置1を自動車のヘッドアップディスプレイ(HUD:HEAD−Up Display)に適用してもよいし、自動車以外の乗り物に適用してもよい。
なお、本実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した各実施形態によって限定されることはない。
1 映像表示装置
10,20 スクリーン
11 基材層
12,22 第1光学形状層
121,221 単位光学形状
121a,221a 第1斜面
121b,221b 第2斜面
13 反射層
14 第2光学形状層
15 保護層
LS 映像源
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
第1の発明は、映像源から投射された映像光を反射して映像を表示する反射スクリーンであって、光透過性を有し、映像光が入射する第1の面(121a,221a)と、これに対向する第2の面(121b,221b)とを有する単位光学形状(121,221)が、背面側の面に複数配列された光学形状層(12,22)と、前記単位光学形状の少なくとも第1の面に形成された反射層(13)と、光透過性を有し、前記光学形状層の前記単位光学形状が形成された側の面に、前記単位光学形状の間の谷部を充填するように積層された第2光学形状層(14)と、を備え、前記反射層は、入射した光の一部を反射し、その他を透過する半透過型の反射層であり、前記第2光学形状層の屈折率は、前記光学形状層の屈折率と同等であり、前記単位光学形状は、その表面に微細な凹凸形状を有し、前記反射層の前記単位光学形状との界面となる反射面は、前記凹凸形状に対応した凹凸形状を有すること、を特徴とする反射スクリーン(10,20)である。
第2の発明は、第1の発明の反射スクリーンにおいて、光を拡散する拡散粒子を含有する拡散層を備えていないこと、を特徴とする反射スクリーン(10,20)である。
第3の発明は、第1の発明又は第2の発明の反射スクリーンにおいて、前記単位光学形状(121,221)の配列方向において、該反射スクリーンの反射光のピーク輝度となる出射角度から輝度が1/2となる出射角度までの角度変化量を+α1,−α2とし、その絶対値の平均値をαとし、前記第1の面(121a,221a)がスクリーン面に平行な面となす角度をθ1とするとき、該反射スクリーンの少なくとも一部の領域において、α<arcsin(n×sin(2×(θ1)))という関係を満たすこと、を特徴とする反射スクリーン(10,20)である。
第4の発明は、第1の発明から第3の発明までのいずれかの反射スクリーンにおいて、前記第1の面(121a,221a)上の前記反射層(13)の単位面積当たりに前記凹凸形状が形成されていない鏡面領域が占める割合が5%以下であること、を特徴とする反射スクリーン(10,20)である。
第5の発明は、第1の発明から第4の発明までのいずれかの反射スクリーンにおいて、前記光学形状層(12,22)の前記単位光学形状(121,221)が形成された面とは反対側の面に、該光学形状層を形成する基材となる基材層(11)を備えること、を特徴とする反射スクリーン(10,20)である。
第6の発明は、第1の発明から第5の発明までのいずれかの反射スクリーン(20)において、前記光学形状層(22)は、背面側に、前記単位光学形状(221)が前記反射スクリーンの表示領域の外に位置する点(C)を中心として同心円状に配列されたフレネルレンズ形状を有すること、を特徴とする反射スクリーン(20)である。
第7の発明は、第1の発明から第6の発明までのいずれかの反射スクリーンにおいて、前記反射層(13)は、その透過率が30〜80%、反射率が5〜60%の範囲であること、を特徴とする反射スクリーン(10,20)である。
第8の発明は、第1の発明から第7の発明までのいずれかの反射スクリーン(10,20)と、前記反射スクリーンに映像光を投射する映像源(LS)と、を備える映像表示装置(1)である。
第9の発明は、第8の発明の映像表示装置において、前記光学形状層(22)は、背面側に、前記単位光学形状(221)が前記反射スクリーン(20)の表示領域の外に位置する点(C)を中心として同心円状に配列されたフレネルレンズ形状を有し、前記映像源(LS)は、前記反射スクリーンの前記表示領域の幾何学的中心(A)を通り前記単位光学形状の配列方向に平行な仮想直線上において、前記幾何学的中心に対して前記フレネルレンズ形状のフレネルセンターとなる前記点と同じ側に位置すること、を特徴とする映像表示装置(1)である。

Claims (1)

  1. 映像源から投射された映像光を反射して映像を表示する反射スクリーンであって、
    光透過性を有し、映像光が入射する第1の面と、これに対向する第2の面とを有する単位光学形状が、背面側の面に複数配列された光学形状層と、
    前記単位光学形状の少なくとも第1の面に形成された反射層と、
    を備え、
    前記単位光学形状は、その表面に微細な凹凸形状を有し、
    前記反射層の前記単位光学形状との界面となる反射面は、前記凹凸形状に対応した凹凸形状を有すること、
    を特徴とする反射スクリーン。
JP2019236088A 2019-12-26 2019-12-26 反射スクリーン、映像表示装置 Pending JP2020064319A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019236088A JP2020064319A (ja) 2019-12-26 2019-12-26 反射スクリーン、映像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019236088A JP2020064319A (ja) 2019-12-26 2019-12-26 反射スクリーン、映像表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016013047A Division JP6642043B2 (ja) 2016-01-27 2016-01-27 反射スクリーン、映像表示装置

Publications (1)

Publication Number Publication Date
JP2020064319A true JP2020064319A (ja) 2020-04-23

Family

ID=70387279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019236088A Pending JP2020064319A (ja) 2019-12-26 2019-12-26 反射スクリーン、映像表示装置

Country Status (1)

Country Link
JP (1) JP2020064319A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062870A (ja) * 1996-08-16 1998-03-06 Dainippon Printing Co Ltd 反射型スクリーン及び前方投影システム
JP2005250459A (ja) * 2004-02-04 2005-09-15 Sony Corp 光拡散シート複製用金型の製造方法、光拡散シート及びその製造方法、並びにスクリーン
US20140036359A1 (en) * 2012-08-06 2014-02-06 Samsung Electronics Co., Ltd. Screen for front projection apparatus and fabrication method thereof
JP2014052554A (ja) * 2012-09-07 2014-03-20 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
JP2014071388A (ja) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd スクリーン、映像表示システム、スクリーンの製造方法
CN104076589A (zh) * 2014-07-21 2014-10-01 成都菲斯特科技有限公司 一种短投射距离正向投影光学屏幕的投影系统
CN104298063A (zh) * 2014-10-24 2015-01-21 苏州大学 透明投影屏幕

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062870A (ja) * 1996-08-16 1998-03-06 Dainippon Printing Co Ltd 反射型スクリーン及び前方投影システム
JP2005250459A (ja) * 2004-02-04 2005-09-15 Sony Corp 光拡散シート複製用金型の製造方法、光拡散シート及びその製造方法、並びにスクリーン
US20140036359A1 (en) * 2012-08-06 2014-02-06 Samsung Electronics Co., Ltd. Screen for front projection apparatus and fabrication method thereof
JP2014052554A (ja) * 2012-09-07 2014-03-20 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
JP2014071388A (ja) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd スクリーン、映像表示システム、スクリーンの製造方法
CN104076589A (zh) * 2014-07-21 2014-10-01 成都菲斯特科技有限公司 一种短投射距离正向投影光学屏幕的投影系统
CN104298063A (zh) * 2014-10-24 2015-01-21 苏州大学 透明投影屏幕

Similar Documents

Publication Publication Date Title
JP7060137B2 (ja) 反射スクリーン、映像表示装置
JP2017156452A (ja) 反射スクリーン、映像表示装置
JP6717051B2 (ja) スクリーン、映像表示装置
JP6812761B2 (ja) 反射スクリーン、映像表示装置
JP2021099515A (ja) 反射スクリーン、映像表示装置
JP6642043B2 (ja) 反射スクリーン、映像表示装置
JP6790616B2 (ja) 反射スクリーン、映像表示装置
JP6593201B2 (ja) スクリーン、映像表示装置
JP6953728B2 (ja) スクリーン、映像表示装置
JP6988070B2 (ja) 映像表示装置
JP6988069B2 (ja) 反射スクリーン、映像表示装置
JP2018109687A (ja) 反射スクリーン、映像表示装置
JP6724424B2 (ja) 反射スクリーン、映像表示装置
JP6938872B2 (ja) 映像表示装置
JP6717052B2 (ja) 反射スクリーン、映像表示装置
JP6747132B2 (ja) 透過型スクリーン、背面投射型表示装置
JP6957891B2 (ja) 反射スクリーン、映像表示装置
JP2017156696A (ja) 反射スクリーン、映像表示装置
JP2020064319A (ja) 反射スクリーン、映像表示装置
JP7070613B2 (ja) 映像表示装置
JP7036247B2 (ja) 反射スクリーン、映像表示装置
JP7001132B2 (ja) 透過型スクリーン、背面投射型表示装置
JP7231093B2 (ja) 映像表示装置
JP7322511B2 (ja) 透過型スクリーン、映像表示装置
JP6812757B2 (ja) 映像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211207

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211214

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220114

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220118

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220419

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220510

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220809

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220906

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220906