JP2020061771A - 信号生成方法、送信装置、受信方法および受信装置 - Google Patents

信号生成方法、送信装置、受信方法および受信装置 Download PDF

Info

Publication number
JP2020061771A
JP2020061771A JP2019237039A JP2019237039A JP2020061771A JP 2020061771 A JP2020061771 A JP 2020061771A JP 2019237039 A JP2019237039 A JP 2019237039A JP 2019237039 A JP2019237039 A JP 2019237039A JP 2020061771 A JP2020061771 A JP 2020061771A
Authority
JP
Japan
Prior art keywords
signal
phase
signal sequence
transmission
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019237039A
Other languages
English (en)
Other versions
JP7113256B2 (ja
Inventor
村上 豊
Yutaka Murakami
豊 村上
知弘 木村
Tomohiro Kimura
知弘 木村
幹博 大内
Mikihiro Ouchi
幹博 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Patent Trust Inc
Original Assignee
Sun Patent Trust Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Patent Trust Inc filed Critical Sun Patent Trust Inc
Publication of JP2020061771A publication Critical patent/JP2020061771A/ja
Application granted granted Critical
Publication of JP7113256B2 publication Critical patent/JP7113256B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L23/00Apparatus or local circuits for systems other than those covered by groups H04L15/00 - H04L21/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Abstract

【課題】LOS環境における受信品質を改善することができるMIMOシステムを提供する。【解決手段】同一の周波数帯域かつ同一の時刻に複数のアンテナから複数の送信信号を送信する送信装置において用いられる信号生成方法であって、第1の送信信号と第2の送信信号について、その生成過程において第1の送信信号に対して第2の送信信号よりも大きいパワー変更を施す。【選択図】図150

Description

(関連出願に関する言及)2012年12月7日に出願された日本国特許出願2012−268858及び2012年12月7日に出願された日本国特許出願2012−268859に含まれる、特許請求の範囲、明細書、図面及び要約書の開示内容はすべて本願に援用される。
本発明は、特にマルチアンテナを用いた通信を行う信号生成方法及び信号生成装置に関する。
従来、マルチアンテナを用いた通信方法として例えばMIMO(Multiple−Input Multiple−Output)と呼ばれる通信方法がある。MIMOに代表されるマルチアンテナ通信では、複数系列の送信データをそれぞれ変調し、各変調信号を異なるアンテナから同時に送信することで、データの通信速度を高めるようになっている。
図23は、送信アンテナ数2、受信アンテナ数2、送信変調信号(送信ストリーム)数2のときの送受信装置の構成の一例を示している。送信装置では、符号化されたデータをインタリーブし、インタリーブ後のデータを変調し、周波数変換等を行い送信信号が生成され、送信信号はアンテナから送信される。このとき、送信アンテナからそれぞれ異なる変調信号が同一時刻に同一周波数に送信する方式が空間多重MIMO方式である。
このとき、特許文献1では送信アンテナごとに異なるインタリーブパターンを具備する送信装置が提案されている。つまり、図23の送信装置において2つのインタリーブ(πa、πb)が互いに異なるインタリーブパターンを有していることになる。そして、受信装置において、非特許文献1、非特許文献2に示されているように、ソフト値を用いた検波方法(図23におけるMIMO detector)を、反復して行うことによって、受信品質が向上することになる。
ところで、無線通信における実伝搬環境のモデルとして、レイリーフェージング環境で代表されるNLOS(non−line of sight)環境、ライスフェージング環境で代表されるLOS(line of sight)環境が存在する。送信装置においてシングルの変調信号を送信し、受信装置において複数のアンテナで受信した信号に対して最大比合成を行い、最大比合成後の信号に対して復調、及び復号を行う場合、LOS環境、特に、散乱波の受信電力に対する直接波の受信電力の大きさを示すライスファクタが大きい環境では、良好な受信品質を得ることができる。しかし、伝送方式(例えば、空間多重MIMO伝送方式)によっては、ライスファクタが大きくなると受信品質が劣化するという問題が発生する。(非特許文献3参照)
図24の(A)(B)は、レイリ−フェージング環境、及びライスファクタK=3、10、16dBのライスフェージング環境において、LDPC(low−density parity−check)符号化されたデータを2×2(2アンテナ送信、2アンテナ受信)空間多重MIMO伝送した場合のBER(Bit Error Rate)特性(縦軸:BER、横軸:SNR(signal−to−noise power ratio))のシミュレーション結果の一例を示している。図24の(A)は、反復検波を行わないMax−log−APP(非特許文献1、非特許文献2参照)(APP:a posterior probability)のBER特性、図24の(B)は、反復検波を行ったMax−log−APP(非特許文献1、非特許文献2参照)(反復回数5回)のBER特性を示している。図24(A)(B)からわかるように、反復検波を行う、または行わないに関係なく、空間多重MIMOシステムでは、ライスファクタが大きくなると受信品質が劣化することが確認できる。このことから、「空間多重MIMOシステムでは、伝搬環境が安定的になると受信品質が劣化する」という従来のシングルの変調信号を送信するシステムにはない、空間多重MIMOシステム固有の課題をもつことがわかる。
放送やマルチキャスト通信は、いろいろな伝播環境に対応しなければならないサービスであり、ユーザが所持する受信機と放送局との間の電波伝搬環境はLOS環境であることは当然ありうる。前述の課題をもつ空間多重MIMOシステムを、放送やマルチキャスト通信に用いた場合、受信機において、電波の受信電界強度は高いが、受信品質の劣化によりサービスを受けることができない、という現象が発生する可能性がある。つまり、空間多重MIMOシステムを放送やマルチキャスト通信で用いるには、NLOS環境、及びLOS環境のいずれの場合においても、ある程度の受信品質が得られるMIMO伝送方式の開発が望まれる。
非特許文献8では、通信相手からのフィードバック情報からプリコーディングに用いるコードブック(プリコーディング行列(プリコーディングウェイト行列ともいう))を選択する方法について述べられているが、上記のように、放送やマルチキャスト通信のように、通信相手からのフィードバック情報が得られない状況において、プリコーディングを行う方法については全く記載されていない。
一方、非特許文献4では、フィードバック情報が無い場合にも適用することができる、時間とともに、プリコーディング行列を切り替える方法について述べられている。この文献では、プリコーディングに用いる行列として、ユニタリ行列を用いること、また、ユニタリ行列をランダムに切り替えることについて述べられているが、上記で示したLOS環境での受信品質の劣化に対する適用方法については全く記載されていなく、単にランダムに切り替えることのみが記載されている。当然であるが、LOS環境の受信品質の劣化を改善するためのプリコーディング方法、および、プリコーディング行列の構成方法に関する記述は一切されていない。
国際公開第2005/050885号
"Achieving near−capacity on a multiple−antenna channel" IEEE Transaction on communications, vol.51, no.3, pp.389−399, March 2003. "Performance analysis and design optimization of LDPC−coded MIMO OFDM systems" IEEE Trans. Signal Processing., vol.52, no.2, pp.348−361, Feb. 2004. "BER performance evaluation in 2x2 MIMO spatial multiplexing systems under Rician fading channels," IEICE Trans. Fundamentals, vol.E91−A, no.10, pp.2798−2807, Oct. 2008. "Turbo space−time codes with time varying linear transformations, "IEEE Trans. Wireless communications, vol.6, no.2, pp.486−493, Feb. 2007. "Likelihood function for QR−MLD suitable for soft−decision turbo decoding and its performance," IEICE Trans. Commun., vol.E88−B, no.1, pp.47−57, Jan. 2004. 「Shannon限界への道標:"Parallel concatenated (Turbo) coding", "Turbo (iterative) decoding"とその周辺」電子情報通信学会、信学技法IT98−51 "Advanced signal processing for PLCs: Wavelet−OFDM," Proc. of IEEE International symposium on ISPLC 2008, pp.187−192, 2008. D. J. Love, and R. W. heath, Jr., "Limited feedback unitary precoding for spatial multiplexing systems," IEEE Trans. Inf. Theory, vol.51, no.8, pp.2967−2976, Aug. 2005. DVB Document A122, Framing structure, channel coding and modulation for a second generation digital terrestrial television broadcasting syste,m (DVB−T2), June 2008. L. Vangelista, N. Benvenuto, and S. Tomasin, "Key technologies for next−generation terrestrial digital television standard DVB−T2," IEEE Commun. Magazine, vol.47, no.10, pp.146−153, Oct. 2009. T. Ohgane, T. Nishimura, and Y. Ogawa, "Application of space division multiplexing and those performance in a MIMO channel," IEICE Trans. Commun., vol.E88−B, no.5, pp.1843−1851, May 2005. R. G. Gallager, "Low−density parity−check codes," IRE Trans. Inform. Theory, IT−8, pp−21−28, 1962. D. J. C. Mackay, "Good error−correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, vol.45, no.2, pp399−431, March 1999. ETSI EN 302 307, "Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications, " v.1.1.2, June 2006. Y.−L. Ueng, and C.−C. Cheng, "a fast−convergence decoding method and memory−efficient VLSI decoder architecture for irregular LDPC codes in the IEEE 802.16e standards," IEEE VTC−2007 Fall, pp.1255−1259. S.M.Alamouti、 "A simple transmit diversity technique for wireless communications,"IEEE J. Select. Areas Commun., vol.16, no.8, pp.1451−1458, Oct 1998. V. Tarokh, H. Jafrkhani, and A.R.Calderbank、 "Space−time block coding for wireless communications: Performance results、"IEEE J. Select. Areas Commun., vol.17, no.3, no.3, pp.451―460, March 1999.
本発明は、LOS環境における受信品質を改善することが可能なMIMOシステムを提供することを目的とする。
本発明に係る信号生成方法は、同一の周波数帯域かつ同一の時刻に複数のアンテナから複数の送信信号を送信する送信装置において用いられる信号生成方法であって、gビットの第1の送信データから第1の変調信号s(i)を生成し、hビットの第2の送信データから第2の変調信号s(i)を生成し、前記第1の変調信号s(i)及び前記第2の変調信号s(i)から下記式(R2)を満たす、第1の信号z(i)及び第2の信号z(i)を生成し、a(i)、b(i)、c(i)及びd(i)は任意の複素数であり、且つa(i)、b(i)、c(i)及びd(i)のうち2以上の要素が0以外の値であり、P及びPは実数であり、Q及びQはQ>Qを満たす実数であり、前記第1の信号z(i)に対してz(i)=Q×u(i)を満たす第3の信号u(i)と、前記第2の信号z(i)に対してz(i)=Q×u(i)を満たす第4の信号u(i)とを定義した場合に、同相I−直交Q平面において第3の信号u(i)が取り得る2g+h個の信号点間の最小ユークリッド距離Dと、同相I−直交Q平面において第4の信号u(i)が取り得る2g+h個の信号点間の最小ユークリッド距離Dとは、D>Dの条件を満たす、ことを特徴とする。
また、本発明に係る送信装置は、同一の周波数帯域かつ同一の時刻に複数のアンテナから複数の送信信号を送信する送信装置であって、gビットの第1の送信データから第1の変調信号s(i)を生成し、hビットの第2の送信データから第2の変調信号s(i)を生成するマッピング部と、前記第1の変調信号s(i)及び前記第2の変調信号s(i)から下記式(R2)を満たす、第1の信号z(i)及び第2の信号z(i)を生成し、a(i)、b(i)、c(i)及びd(i)は任意の複素数であり、且つa(i)、b(i)、c(i)及びd(i)のうち2以上の要素が0以外の値であり、P及びPは実数であり、Q及びQはQ>Qを満たす実数である重み付け合成部と、を備え、前記第1の信号z(i)に対してz(i)=Q×u(i)を満たす第3の信号u(i)と、前記第2の信号z(i)に対してz(i)=Q×u(i)を満たす第4の信号u(i)とを定義した場合に、同相I−直交Q平面において第3の信号u(i)が取り得る2g+h個の信号点間の最小ユークリッド距離Dと、同相I−直交Q平面において第4の信号u(i)が取り得る2g+h個の信号点間の最小ユークリッド距離Dとは、D>Dの条件を満たす、ことを特徴とする。
このように本発明によれば、LOS環境における受信品質の劣化を改善する信号生成方法、信号生成装置を提供することができるため、放送やマルチキャスト通信において見通し内のユーザに対して、品質の高いサービスを提供することができる。
空間多重MIMO伝送システムにおける送受信装置の構成の例 フレーム構成の一例 位相変更方法適用時の送信装置の構成の例 位相変更方法適用時の送信装置の構成の例 フレーム構成の例 位相変更方法の例 受信装置の構成例 受信装置の信号処理部の構成例 受信装置の信号処理部の構成例 復号処理方法 受信状態の例 位相変更方法適用時の送信装置の構成の例 位相変更方法適用時の送信装置の構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 マッピング方法の一例 マッピング方法の一例 重み付け合成部の構成の例 シンボルの並び換え方法の一例 空間多重MIMO伝送システムにおける送受信装置の構成の例 BER特性例 位相変更方法の例 位相変更方法の例 位相変更方法の例 位相変更方法の例 位相変更方法の例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のフレーム構成例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のシンボル配置例 ブロック符号を用いた場合の1つの符号化後のブロックに必要なシンボル数、スロット数の変化例 ブロック符号を用いた場合の2つの符号化後のブロックに必要なシンボル数、スロット数の変化例 デジタル放送用システムの全体構成図 受信機の構成例を示すブロック図 多重化データの構成を示す図 各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図 PESパケット列に、ビデオストリームがどのように格納されているかを示す詳細図 多重化データにおけるTSパケットとソースパケットの構造を示す図 PMTのデータ構成を示す図 多重化データ情報の内部構成を示す図 ストリーム属性情報の内部構成を示す図 映像表示、音声出力装置の構成図 通信システムの構成の一例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のシンボル配置例 高い受信品質が得られる変調信号のシンボル配置例 送信装置の構成の例 送信装置の構成の例 送信装置の構成の例 送信装置の構成の例 ベースバンド信号入れ替え部を示す図 送信装置の構成の例 分配部の動作の一例 分配部の動作の別例 基地局及び端末の関係を示す通信システムの一例 送信信号の周波数割り当ての一例 送信信号の周波数割り当ての一例 基地局と、中継器と、端末の関係を示す通信システムの一例 基地局からの送信信号の周波数割り当ての一例 中継器からの送信信号の周波数割り当ての一例 中継器の受信部と送信部の構成の一例 基地局が送信する信号のデータフォーマットの一例 送信装置の構成の例 ベースバンド信号入れ替え部を示す図 重み付け、ベースバンド信号の入れ替え、位相変更方法の一例 OFDM方式を用いた送信装置の構成の例 フレーム構成の例 変調方式に応じたスロット数と位相変更値の例 変調方式に応じたスロット数と位相変更値の例 DVB−T2規格における、放送局が送信する信号のフレーム構成の概要 同一時刻に2種類以上の信号が存在する例 送信装置の構成の例 フレーム構成の例 フレーム構成の例 フレーム構成の例 I−Q平面における16QAMの場合の信号点配置の例 I−Q平面におけるQPSKの場合の信号点配置の例 受信装置が得た対数尤度比の絶対値を模式的に示す例 受信装置が得る対数尤度比の絶対値の好適な例 重み付け合成部に関連する信号処理部の構成の例 重み付け合成部に関連する信号処理部の構成の例 I−Q平面における64QAMの場合の信号点配置の例 時間毎の変調方式、パワー変更値、位相変更値の設定例 時間毎の変調方式、パワー変更値、位相変更値の設定例 重み付け合成部に関連する信号処理部の構成の例 重み付け合成部に関連する信号処理部の構成の例 時間毎の変調方式、パワー変更値、位相変更値の設定例 時間毎の変調方式、パワー変更値、位相変更値の設定例 重み付け合成部に関連する信号処理部の構成の例 I−Q平面における16QAM及びQPSKの信号点配置の例 I−Q平面における16QAM及びQPSKの信号点配置の例 I―Q平面における8QAMの信号点配置の例 I―Q平面における信号点配置の例 I―Q平面における8QAMの信号点配置の例 I―Q平面における信号点配置の例 重み付け合成部に関連する信号処理部の構成の例 時間毎の変調方式、パワー変更値、位相変更値の設定例 時間毎の変調方式、パワー変更値、位相変更値の設定例 変調信号毎のフレーム構成の例 変調信号毎の送信電力の変更例 重み付け合成部に関連する信号処理部の構成の例 重み付け合成部に関連する信号処理部の構成の例 I−Q平面における16QAMの場合の信号点配置の例 サイクリックQディレイを適用する場合の信号生成部の構成の例 サイクリックQディレイを用いたときの、s1(t)、s2(t)の生成方法の第1の例 サイクリックQディレイを適用する場合の信号生成部の構成の例 サイクリックQディレイを適用する場合の信号生成部の構成の例 サイクリックQディレイを用いたときの、s1(t)、s2(t)の生成方法の第2の例 サイクリックQディレイを適用する場合の信号生成部の構成の例 サイクリックQディレイを適用する場合の信号生成部の構成の例 受信システムの外観 受信システムの構成 受信システムの構成 受信システムの構成 テレビの構成 受信システムの構成 (a)は地上デジタル放送の放送波の概念図。(b)はBS放送の放送波の概念図。 (a)はフィルタリング前の受信信号の概念図。(b)は放送局が複数の変調信号を複数アンテナを用いて送信した周波数帯域の受信信号を除去したときの図 (a)は周波数変更前の受信信号の概念図。(b)は放送局が複数の変調信号を複数アンテナを用いて送信した周波数帯域の受信信号を周波数変換したときの図。 (a)は周波数変更前の受信信号の概念図。(b)は放送局が複数の変調信号を複数アンテナを用いて送信した周波数帯域の受信信号を周波数変換したときの図。 図123のようにした場合の、家庭内への引き込みを1本で行う際の、周波数配置。 図124のようにした場合の、家庭内への引き込みを1本で行う際の、周波数配置。 (a)は集合住宅での共同受信に用いる中継装置の配置例。(b)は個人住宅に用いる中継装置の配置例。(c)はCATV事業者で用いる中継装置の配置例。 受信したテレビ放送のデータ構成の概念図。 ケーブルテレビ事業者における中継装置の構成例 信号処理部の構成例 配信用データ生成部の構成例 結合前の信号の例 結合後の信号の例 テレビ受信機の構成例 ケーブルテレビ事業者における中継装置の構成例 (a)はマルチキャスト通信の例。(b)はフィードバックのあるユニキャスト通信の例。(c)はフィードバックのないユニキャスト通信の例 送信機の構成例 フィードバック機能を有する受信機の構成例 CSIのフレーム構成例 送信装置の構成の例 重み付け合成部に関連する信号処理部の構成の例 変調信号のパイロットシンボル配置例 重み付け合成部に関連する信号処理部の構成の例 I−Q平面におけるBPSKの場合の信号点配置の例 重み付け合成部に関連する信号処理部の構成の例 重み付け合成部に関連する信号処理部の構成の例 I−Q平面における16QAMの場合のプリコーディング後の信号配置点の例 I−Q平面における64QAMの場合のプリコーディング後の信号配置点の例 I−Q平面における256QAMの場合の信号点配置の例 送信装置の構成の例 送信装置の構成の例 送信装置の構成の例 信号処理部の構成の例 フレーム構成の例 I−Q平面における16QAMの信号点配置の例 I−Q平面における64QAMの信号点配置の例 I−Q平面における64QAMの信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 送信アンテナと受信アンテナの関係を示す図 受信装置の構成の例 I−Q平面におけるQPSKの信号点配置の例 I−Q平面における16QAMの信号点配置の例 I−Q平面における64QAMの信号点配置の例 I−Q平面における256QAMの信号点配置の例 送信装置の構成の例 送信装置の構成の例 送信装置の構成の例 信号処理部の構成の例 フレーム構成の例 I−Q平面における16QAMの信号点配置の例 I−Q平面における64QAMの信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 I−Q平面の第一象限における信号点配置の例 I−Q平面の第二象限における信号点配置の例 I−Q平面の第三象限における信号点配置の例 I−Q平面の第四象限における信号点配置の例 送信アンテナと受信アンテナの関係を示す図 受信装置の構成の例 I−Q平面における信号点配置の例 I−Q平面における信号点配置の例 I−Q平面における16QAMの信号点配置の例 I−Q平面における64QAMの信号点配置の例 I−Q平面における256QAMの信号点配置の例 I−Q平面における16QAMの信号点配置の例 I−Q平面における64QAMの信号点配置の例 I−Q平面における256QAMの信号点配置の例 送信装置の構成の例 受信装置の構成の例 送信装置の構成の例 送信装置の構成の例 送信装置の構成の例 送信装置の構成の例
以下、本発明の実施の形態について図面を参照して詳細に説明する。
(実施の形態1)
本実施の形態の送信方法、送信装置、受信方法、受信装置について詳しく説明する。
本説明を行う前に、従来システムである空間多重MIMO伝送システムにおける、送信方法、復号方法の概要について説明する。
xN空間多重MIMOシステムの構成を図1に示す。情報ベクトルzは、符号化およびインタリーブが施される。そして、インタリーブの出力として、符号化後ビットのベクトルu=(u,…,uNt)が得られる。ただし、u=(ui1,…,uiM)とする(M:シンボル当たりの送信ビット数)。送信ベクトルs=(s,…,sNtとすると送信アンテナ#iから送信信号s=map(u)とあらわし、送信エネルギーを正規化するとE{|s}=Es/Ntとあらわされる(E:チャネル当たりの総エネルギー)。そして、受信ベクトルをy=(y,…,yNrとすると、式(1)のようにあらわされる。
Figure 2020061771
このとき、HNtNrはチャネル行列、n=(n,…,nNrはノイズベクトルであり、nは平均値0、分散σのi.i.d.複素ガウス雑音である。受信機で導入する送信シンボルと受信シンボルの関係から、受信ベクトルに関する確率は、式(2)のように多次元ガウス分布で与えることができる。
Figure 2020061771
ここで、outer soft−in/soft−outデコーダとMIMO検波からなる図1のような反復復号を行う受信機を考える。図1における対数尤度比のベクトル(L−value)は式(3)−(5)のようにあらわされる。
Figure 2020061771
Figure 2020061771
Figure 2020061771
<反復検波方法>
ここでは、NxN空間多重MIMOシステムにおけるMIMO信号の反復検波について述べる。
mnの対数尤度比を式(6)のように定義する。
Figure 2020061771
ベイズの定理より、式(6)は、式(7)のようにあらわすことができる。
Figure 2020061771
ただし、Umn,±1={u|umn=±1}とする。そして、lnΣa〜max ln aで近似すると式(7)は式(8)のように近似することができる。なお、上の「〜」の記号は近似を意味する。
Figure 2020061771
式(8)におけるP(u|umn)とln P(u|umn)は以下のようにあらわされる。
Figure 2020061771
Figure 2020061771
Figure 2020061771
ところで、式(2)で定義した式の対数確率は式(12)のようにあらわされる。
Figure 2020061771
したがって、式(7),(13)から、MAP、または、APP(a posteriori probability)では、事後のL−valueは、以下のようにあらわされる。
Figure 2020061771
以降では、反復APP復号と呼ぶ。また、式(8),(12)から、Max−Log近似に基づく対数尤度比(Max−Log APP)では、事後のL−valueは、以下のようにあらわされる。
Figure 2020061771
Figure 2020061771
以降では、反復Max−log APP復号と呼ぶ。そして、反復復号のシステムで必要とする外部情報は、式(13)または(14)から事前入力を減算することで、求めることができる。
<システムモデル>
図23に、以降の説明につながるシステムの基本構成を示す。ここでは、2×2空間多重MIMOシステムとし、ストリームA,Bではそれぞれにouterエンコーダがあり、2つのouterエンコーダは同一のLDPC符号のエンコーダとする(ここではouterエンコーダとしてLDPC符号のエンコーダを用いる構成を例に挙げて説明するが、outerエンコーダが用いる誤り訂正符号はLDPC符号に限ったものではなく、ターボ符号、畳み込み符号、LDPC畳み込み符号等の他の誤り訂正符号を用いても同様に実施することができる。また、outerエンコーダは、送信アンテナごとに有する構成としているがこれに限ったものではなく、送信アンテナが複数であっても、outerエンコーダは一つであってもよく、また、送信アンテナ数より多くのouterエンコーダを有していてもよい。)。そして、ストリームA,Bではそれぞれにインタリーバ(π,π)がある。ここでは、変調方式を2−QAMとする(1シンボルでhビットを送信することになる。)。
受信機では、上述のMIMO信号の反復検波(反復APP(またはMax−log APP)復号)を行うものとする。そして、LDPC符号の復号としては、例えば、sum−product復号を行うものとする。
図2はフレーム構成を示しており、インタリーブ後のシンボルの順番を記載している。このとき、以下の式のように(i,j),(i,j)をあらわすものとする。
Figure 2020061771
Figure 2020061771
このとき、i,i:インタリーブ後のシンボルの順番、j,j:変調方式におけるビット位置(j,j=1,・・・,h)、π,π:ストリームA,Bのインタリーバ、Ω ia,ja,Ω ib,jb:ストリームA,Bのインタリーブ前のデータの順番、を示している。ただし、図2では、i=iのときのフレーム構成を示している。
<反復復号>
ここでは、受信機におけるLDPC符号の復号で用いるsum−product復号およびMIMO信号の反復検波のアルゴリズムについて詳しく述べる。
sum−product復号
2元MxN行列H={Hmn}を復号対象とするLDPC符号の検査行列とする。集合[1,N]={1,2,・・・,N}の部分集合A(m),B(n)を次式のように定義する。
Figure 2020061771
Figure 2020061771
このとき、A(m)は検査行列Hのm行目において、1である列インデックスの集合を意味し、B(n)は検査行列Hのn行目において1である行インデックスの集合である。sum−product復号のアルゴリズムは以下のとおりである。
Step A・1(初期化):Hmn=1を満たす全ての組(m,n)に対して事前値対数比βmn=0とする。ループ変数(反復回数)lsum=1とし、ループ最大回数をlsum,maxと設定する。
Step A・2(行処理):m=1,2,・・・,Mの順にHmn=1を満たす全ての組(m,n)に対して、以下の更新式を用いて外部値対数比αmnを更新する。
Figure 2020061771
Figure 2020061771
Figure 2020061771
このとき、fはGallagerの関数である。そして、λの求め方については以降で詳しく説明する。
Step A・3(列処理):n=1,2,・・・,Nの順にHmn=1を満たす全ての組(m,n)に対して、以下の更新式を用いて外部値対数比βmnを更新する。
Figure 2020061771
Step A・4(対数尤度比の計算):n∈[1,N]について対数尤度比Lを以下のように求める。
Figure 2020061771
Step A・5(反復回数のカウント):もしlsum<lsum,maxならばlsumをインクリメントして、step A・2に戻る。lsum=lsum,maxの場合、この回のsum−product復号は終了する。
以上が、1回のsum−product復号の動作である。その後、MIMO信号の反復検波が行われる。上述のsum−product復号の動作の説明で用いた変数m,n,αmn,βmn,λ,Lにおいて、ストリームAにおける変数をm,n,α mana,β mana,λna,Lna、ストリームBにおける変数をm,n,α mbnb,β mbnb,λnb,Lnbであらわすものとする。
<MIMO信号の反復検波>
ここでは、MIMO信号の反復検波におけるλの求め方について詳しく説明する。
式(1)から、次式が成立する。
Figure 2020061771
図2のフレーム構成から、式(16)(17)から、以下の関係式が成立する。
Figure 2020061771
Figure 2020061771
このとき、n,n∈[1,N]となる。以降では、MIMO信号の反復検波の反復回数kのときのλna,Lna,λnb,Lnbをそれぞれλk,na,Lk,na,λk,nb,Lk,nbとあらわすものとする。
Step B・1(初期検波;k=0):初期検波のとき、λ0,na,λ0,nbを以下のように求める。
反復APP復号のとき:
Figure 2020061771
反復Max−log APP復号のとき:
Figure 2020061771
Figure 2020061771
ただし、X=a,bとする。そして、MIMO信号の反復検波の反復回数をlmimo=0とし、反復回数の最大回数をlmimo,maxと設定する。
Step B・2(反復検波;反復回数k):反復回数kのときのλk,na,λk,nbは、式(11)(13)−(15)(16)(17)から式(31)−(34)のようにあらわされる。ただし、(X,Y)=(a,b)(b,a)となる。
反復APP復号のとき:
Figure 2020061771
Figure 2020061771
反復Max−log APP復号のとき:
Figure 2020061771
Figure 2020061771
Step B・3(反復回数のカウント、符号語推定):もしlmimo<lmimo,maxならばlmimoをインクリメントして、step B・2に戻る。lmimo=lmimo,maxの場合、推定符号語を以下のようにもとめる。
Figure 2020061771
ただし、X=a,bとする。
図3は、本実施の形態における送信装置300の構成の一例である。符号化部302Aは、情報(データ)301A、フレーム構成信号313を入力とし、フレーム構成信号313(符号化部302Aがデータの誤り訂正符号化に使用する誤り訂正方式、符号化率、ブロック長等の情報が含まれており、フレーム構成信号313が指定した方式を用いることになる。また、誤り訂正方式は、切り替えても良い。)にしたがい、例えば、畳み込み符号、LDPC符号、ターボ符号等の誤り訂正符号化を行い、符号化後のデータ303Aを出力する。
インタリーバ304Aは、符号化後のデータ303A、フレーム構成信号313を入力とし、インタリーブ、つまり、順番の並び替えを行い、インタリーブ後のデータ305Aを出力する。(フレーム構成信号313に基づき、インタリーブの方法は、切り替えても良い。)
マッピング部306Aは、インタリーブ後のデータ305A、フレーム構成信号313を入力とし、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)、64QAM(64 Quadrature Amplitude Modulation)等の変調を施し、ベースバンド信号307Aを出力する。(フレーム構成信号313に基づき、変調方式は、切り替えても良い。)
図19は、QPSK変調におけるベースバンド信号を構成する同相成分Iと直交成分QのIQ平面におけるマッピング方法の一例としている。例えば、図19(A)のように、入力データが「00」の場合、I=1.0、Q=1.0が出力され、以下同様に、入力データが「01」の場合、I=―1.0、Q=1.0が出力され、・・・、が出力される。図19(B)は、図19(A)とは異なるQPSK変調のIQ平面におけるマッピング方法の例であり、図19(B)が図19(A)と異なる点は、図19(A)における信号点が、原点を中心に回転させることで図19(B)の信号点を得ることができる。このようなコンスタレーションの回転方法については、非特許文献9、非特許文献10に示されており、また、非特許文献9、非特許文献10に示されているCyclic Q Delayを適用してもよい。図19とは別の例として、図20に16QAMのときのIQ平面における信号点配置を示しており、図19(A)に相当する例が図20(A)であり、図19(B)に相当する例が図20(B)となる。
符号化部302Bは、情報(データ)301B、フレーム構成信号313を入力とし、フレーム構成信号313(使用する誤り訂正方式、符号化率、ブロック長等の情報が含まれており、フレーム構成信号313が指定した方式を用いることになる。また、誤り訂正方式は、切り替えても良い。)にしたがい、例えば、畳み込み符号、LDPC符号、ターボ符号等の誤り訂正符号化を行い、符号化後のデータ303Bを出力する。
インタリーバ304Bは、符号化後のデータ303B、フレーム構成信号313を入力とし、インタリーブ、つまり、順番の並び替えを行い、インタリーブ後のデータ305Bを出力する。(フレーム構成信号313に基づき、インタリーブの方法は、切り替えても良い。)
マッピング部306Bは、インタリーブ後のデータ305B、フレーム構成信号313を入力とし、QPSK(Quadrature Phase Shift Keying)、16QAM(16 Quadrature Amplitude Modulation)、64QAM(64 Quadrature Amplitude Modulation)等の変調を施し、ベースバンド信号307Bを出力する。(フレーム構成信号313に基づき、変調方式は、切り替えても良い。)
信号処理方法情報生成部314は、フレーム構成信号313を入力とし、フレーム構成信号313に基づいた信号処理方法に関する情報315を出力する。なお、信号処理方法に関する情報315は、どのプリコーディング行列を固定的に用いるのかを指定する情報と、位相を変更する位相変更パターンの情報を含む。
重み付け合成部308Aは、ベースバンド信号307A、ベースバンド信号307B、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315に基づいて、ベースバンド信号307Aおよびベースバンド信号307Bを重み付け合成し、重み付け合成後の信号309Aを出力する。なお、重み付け合成の方法の詳細については、後で詳しく説明する。
無線部310Aは、重み付け合成後の信号309Aを入力とし、直交変調、帯域制限、周波数変換、増幅等の処理を施し、送信信号311Aを出力し、送信信号311Aは、アンテナ312Aから電波として出力される。
重み付け合成部308Bは、ベースバンド信号307A、ベースバンド信号307B、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315に基づいて、ベースバンド信号307Aおよびベースバンド信号307Bを重み付け合成し、重み付け合成後の信号316Bを出力する。
図21に重み付け合成部(308A、308B)の構成を示す。図21において点線で囲まれる領域が重み付け合成部となる。ベースバンド信号307Aは、w11と乗算し、w11・s1(t)を生成し、w21と乗算し、w21・s1(t)を生成する。同様に、ベースバンド信号307Bは、w12と乗算し、w12・s2(t)を生成し、w22と乗算し、w22・s2(t)を生成する。次に、z1(t)=w11・s1(t)+w12・s2(t)、z2(t)=w21・s1(t)+w22・s2(t)を得る。このとき、s1(t)およびs2(t)は、上記の説明からわかるように、BPSK(Binary Phase Shift Keying)、QPSK、8PSK(8 Phase Shift Keying)、16QAM、32QAM(32 Quadrature Amplitude Modulation)、64QAM、256QAM、16APSK(16 Amplitude Phase Shift Keying)等の変調方式のベースバンド信号となる。
ここで、両重み付け合成部は、固定のプリコーディング行列を用いて重み付けを実行するものとし、プリコーディング行列としては、一例として、下記式(37)又は式(38)の条件のもと、式(36)を用いる方法がある。但し、これは一例であり、αの値は、式(37)、式(38)に限ったものではなく、別の値、例えば、αを1、としてもよい。
なお、プリコーディング行列は、
Figure 2020061771
但し、上記式(36)において、αは、
Figure 2020061771
である。
あるいは、上記式(36)において、αは、
Figure 2020061771
である。
なお、プリコーディング行列は、式(36)に限ったものではなく、式(39)に示すものを用いてもよい。
Figure 2020061771
この式(39)において、a=Aejδ11、b=Bejδ12、c=Cejδ21、d=Dejδ22であらわされればよい。また、a、b、c、dのいずれか一つが「ゼロ」であってもよい。例えば、(1)aがゼロであり、b、c、dはゼロでない、(2)bがゼロであり、a、c、dはゼロでない、(3)cがゼロであり、a、b、dはゼロでない、(4)dがゼロであり、a、b、cはゼロでない、という構成であってもよい。
なお、変調方式、誤り訂正符号、その符号化率のいずれかを変更した時は、使用するプリコーディング行列を設定、変更し、そのプリコーディング行列を固定的に使用してもよい。
位相変更部317Bは、重み付け合成後の信号316B及び信号処理方法に関する情報315を入力とし、当該信号316Bの位相を規則的に変更して出力する。規則的に変更するとは、予め定められた周期(例えば、n個のシンボル毎(nは1以上の整数)あるいは予め定められた時間毎)で、予め定められた位相変更パターンに従って位相を変更する。位相変更パターンの詳細については、下記実施の形態4において説明する。
無線部310Bは、位相変更後の信号309Bを入力とし、直交変調、帯域制限、周波数変換、増幅等の処理を施し、送信信号311Bを出力し、送信信号311Bは、アンテナ312Bから電波として出力される。
図4は、図3とは異なる送信装置400の構成例を示している。図4において、図3と異なる部分について説明する。
符号化部402は、情報(データ)401、フレーム構成信号313を入力とし、フレーム構成信号313に基づき、誤り訂正符号化を行い、符号化後のデータ402を出力する。
分配部404は符号化後のデータ403を入力とし、分配し、データ405Aおよびデータ405Bを出力する。なお、図4では、符号化部が一つの場合を記載したが、これに限ったものではなく、符号化部をm(mは1以上の整数)とし、各符号化部で作成された符号化データを分配部が、2系統のデータにわけて出力する場合についても、本発明は同様に実施することができる。
図5は、本実施の形態における送信装置の時間軸におけるフレーム構成の一例を示している。シンボル500_1は、受信装置に、送信方法を通知するためのシンボルであり、例えば、データシンボルを伝送するために用いる誤り訂正方式、その符号化率の情報、データシンボルを伝送するために用いる変調方式の情報等を伝送する。
シンボル501_1は、送信装置が送信する変調信号z1(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_1は変調信号z1(t)が(時間軸における)シンボル番号uに送信するデータシンボル、シンボル503_1は変調信号z1(t)がシンボル番号u+1に送信するデータシンボルである。
シンボル501_2は、送信装置が送信する変調信号z2(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_2は変調信号z2(t)がシンボル番号uに送信するデータシンボル、シンボル503_2は変調信号z2(t)がシンボル番号u+1に送信するデータシンボルである。
このとき、z1(t)におけるシンボルとz2(t)におけるシンボルにおいて、同一時刻(同一時間)のシンボルは、同一(共通)の周波数を用いて、送信アンテナから送信されることになる。
送信装置が送信する変調信号z1(t)と変調信号z2(t)、及び、受信装置における受信信号r1(t)、r2(t)の関係について説明する。
図5において、504#1、504#2は送信装置における送信アンテナ、505#1、505#2は受信装置における受信アンテナを示しており、送信装置は、変調信号z1(t)を送信アンテナ504#1、変調信号z2(t)を送信アンテナ504#2から送信する。このとき、変調信号z1(t)および変調信号z2(t)は、同一(共通の)周波数(帯域)を占有しているものとする。送信装置の各送信アンテナと受信装置の各アンテナのチャネル変動をそれぞれh11(t)、h12(t)、h21(t)、h22(t)とし、受信装置の受信アンテナ505#1が受信した受信信号をr1(t)、受信装置の受信アンテナ505#2が受信した受信信号をr2(t)とすると、以下の関係式が成立する。
Figure 2020061771
図6は、本実施の形態における重み付け方法(プリコーディング(Precoding)方法)及び位相変更方法に関連する図であり、重み付け合成部600は、図3の重み付け合成部308Aと308Bの両者を統合した重み付け合成部である。図6に示すように、ストリームs1(t)およびストリームs2(t)は、図3のベースバンド信号307Aおよび307Bに相当する、つまり、QPSK、16QAM、64QAMなどの変調方式のマッピングにしたがったベースバンド信号の同相I成分、直交Q成分となる。そして、図6のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図3におけるベースバンド信号307A(s1(t))および307B(s2(t))、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315にしたがった重み付けを施し、図3の重み付け合成後の信号309A(z1(t))、316B(z2’(t))を出力する。位相変更部317Bは、重み付けされた信号316B(z2’(t))の位相を変更し、位相変更後の信号309B(z2(t))を出力する。
このとき、z1(t)は、固定のプリコーディング行列Fにおける第1行のベクトルをW1=(w11,w12)とすると、以下の式(41)であらわすことができる。
Figure 2020061771
一方、z2(t)は、固定のプリコーディング行列Fにおける第2行のベクトルをW2=(w21,w22)とし、位相変更部による位相変更式をy(t)とすると、以下の式(42)であらわすことができる。
Figure 2020061771
ここで、y(t)は、予め定められた方式に従って、位相を変更するための式であり、例えば、周期を4とすると、時刻uの位相変更式は、例えば、式(43)であらわすことができる。
Figure 2020061771
同様に時刻u+1の位相変更式は、例えば、式(44)であらわすことができる。
Figure 2020061771
即ち、時刻u+kの位相変更式は、式(45)であらわすことができる。
Figure 2020061771
なお、式(43)〜(45)に示した規則的な位相変更例は一例に過ぎない。
規則的な位相変更の周期は4に限ったものではない。この周期の数が多くなればその分だけ、受信装置の受信性能(より正確には誤り訂正性能)の向上を促すことができる可能性がある(周期が大きければよいというわけではないが、2のような小さい値は避ける方がよい可能性が高い。)。
また、上記式(43)〜(45)で示した位相変更例では逐次所定の位相(上記式では、π/2ずつ)だけ回転させていく構成を示したが、同じ位相量だけ回転させるのではなくランダムに位相を変更することとしてもよい。例えば、y(t)は予め定められた周期に従って、式(46)や式(47)に示すような順に乗じる位相が変更されてもよい。位相の規則的な変更において重要となるのは、変調信号の位相が規則的に変更されることであり、変更される位相の度合いについては、なるべく均等になる、例えば、−πラジアンからπラジアンに対し、一様分布となるのが望ましいもののランダムであってもよい。
Figure 2020061771
Figure 2020061771
このように、図6の重み付け合成部600は、予め定められた固定のプリコーディングウェイトを用いてプリコーディングを実行し、位相変更部317Bは、入力された信号の位相を、その変更度合いを規則的に変えながら、変更する。
LOS環境では、特殊なプリコーディング行列を用いると、受信品質が大きく改善する可能性があるが、直接波の状況により、その特殊なプリコーディング行列は受信した際の直接波の位相、振幅成分により異なる。しかし、LOS環境には、ある規則があり、この規則に従い送信信号の位相を規則的に変更すれば、データの受信品質が大きく改善する。本発明は、LOS環境を改善する信号処理方法を提案している。
図7は、本実施の形態における受信装置700の構成の一例を示している。無線部703_Xは、アンテナ701_Xで受信された受信信号702_Xを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Xを出力する。
送信装置で送信された変調信号z1におけるチャネル変動推定部705_1は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(40)のh11に相当する値を推定し、チャネル推定信号706_1を出力する。
送信装置で送信された変調信号z2におけるチャネル変動推定部705_2は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(40)のh12に相当する値を推定し、チャネル推定信号706_2を出力する。
無線部703_Yは、アンテナ701_Yで受信された受信信号702_Yを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Yを出力する。
送信装置で送信された変調信号z1におけるチャネル変動推定部707_1は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(40)のh21に相当する値を推定し、チャネル推定信号708_1を出力する。
送信装置で送信された変調信号z2におけるチャネル変動推定部707_2は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(40)のh22に相当する値を推定し、チャネル推定信号708_2を出力する。
制御情報復号部709は、ベースバンド信号704_Xおよび704_Yを入力とし、図5の送信方法を通知するためのシンボル500_1を検出し、送信装置が通知した送信方法の情報に関する信号710を出力する。
信号処理部711は、ベースバンド信号704_X、704_Y、チャネル推定信号706_1、706_2、708_1、708_2、及び、送信装置が通知した送信方法の情報に関する信号710を入力とし、検波、復号を行い、受信データ712_1および712_2を出力する。
次に、図7の信号処理部711の動作について詳しく説明する。図8は、本実施の形態における信号処理部711の構成の一例を示している。図8は、主にINNER MIMO検波部とsoft−in/soft−outデコーダ、係数生成部から構成されている。この構成における反復復号の方法については、非特許文献2、非特許文献3で詳細が述べられているが、非特許文献2、非特許文献3に記載されているMIMO伝送方式は空間多重MIMO伝送方式であるが、本実施の形態における伝送方式は、時間とともに信号の位相を規則的に変更し、かつ、プリコーディング行列が使用されているMIMO伝送方式である点が、非特許文献2、非特許文献3と異なる点である。式(36)における(チャネル)行列をH(t)、図6におけるプリコーディングウェイト行列をF(ここでプリコーディング行列は1の受信信号中においては変更されない固定のものである)、図6の位相変更部による位相変更式の行列をY(t)(ここでY(t)はtによって変化する)、受信ベクトルをR(t)=(r1(t),r2(t))、ストリームベクトルS(t)=(s1(t),s2(t))とすると以下の関係式が成立する。
Figure 2020061771
このとき、受信装置は、H(t)×Y(t)×Fを得ることで、受信ベクトルR(t)に対して非特許文献2、非特許文献3の復号方法を適用することができる。
したがって、図8の係数生成部819は、送信装置が通知した送信方法の情報(用いた固定のプリコーディング行列及び位相を変更していた場合の位相変更パターンを特定するための情報)に関する信号818(図7の710に相当)を入力とし、信号処理方法の情報に関する信号820を出力する。
INNER MIMO検波部803は、信号処理方法の情報に関する信号820を入力とし、この信号を利用して、式(48)の関係を利用することで、反復検波・復号を行うことになるがその動作について説明する。
図8に示す構成の信号処理部では、反復復号(反復検波)を行うため図10に示すような処理方法を行う必要がある。初めに、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の復号を行う。その結果、soft−in/soft−outデコーダから、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の各ビットの対数尤度比(LLR:Log−Likelihood Ratio)が得られる。そして、そのLLRを用いて再度、検波・復号が行われる。この操作が複数回行われる(この操作を反復復号(反復検波)と呼ぶ。)。以降では、1フレームにおける特定の時間のシンボルの対数尤度比(LLR)の作成方法を中心に説明する。
図8において、記憶部815は、ベースバンド信号801X(図7のベースバンド信号704_Xに相当する。)、チャネル推定信号群802X(図7のチャネル推定信号706_1、706_2に相当する。)、ベースバンド信号801Y(図7のベースバンド信号704_Yに相当する。)、チャネル推定信号群802Y(図7のチャネル推定信号708_1、708_2に相当する。)を入力とし、反復復号(反復検波)を実現するために、式(48)におけるH(t)×Y(t)×Fを実行(算出)し、算出した行列を変形チャネル信号群として記憶する。そして、記憶部815は、必要なときに上記信号を、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Yとして出力する。
その後の動作については、初期検波の場合と反復復号(反復検波)の場合を分けて説明する。
<初期検波の場合>
INNER MIMO検波部803は、ベースバンド信号801X、チャネル推定信号群802X、ベースバンド信号801Y、チャネル推定信号群802Yを入力とする。ここでは、変調信号(ストリーム)s1、変調信号(ストリーム)s2の変調方式が16QAMとして説明する。
INNER MIMO検波部803は、まず、チャネル推定信号群802X、チャネル推定信号群802YからH(t)×Y(t)×Fを実行し、ベースバンド信号801Xに対応する候補信号点を求める。そのときの様子を図11に示す。図11において、●(黒丸)は、IQ平面における候補信号点であり、変調方式が16QAMのため、候補信号点は256個存在する。(ただし、図11では、イメージ図を示しているため、256個の候補信号点全ては示していない。)ここで、変調信号s1で伝送する4ビットをb0、b1、b2、b3、変調信号s2で伝送する4ビットをb4、b5、b6、b7とすると、図11において(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点が存在することになる。そして、受信信号点1101(ベースバンド信号801Xに相当する。)と候補信号点それぞれとの2乗ユークリッド距離を求める。そして、それぞれの2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。なお、各ベースバンド信号、変調信号s1、s2は、複素信号である。
同様に、チャネル推定信号群802X、チャネル推定信号群802YからH(t)×Y(t)×Fを実行し、ベースバンド信号801Yに対応する候補信号点をもとめ、受信信号点(ベースバンド信号801Yに相当する。)との2乗ユークリッド距離を求め、この2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。
そして、E(b0,b1,b2,b3,b4,b5,b6,b7)+E(b0,b1,b2,b3,b4,b5,b6,b7)=E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。
INNER MIMO検波部803は、E(b0,b1,b2,b3,b4,b5,b6,b7)を信号804として出力する。
対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(28)、式(29)、式(30)に示した通りであり、詳細については、非特許文献2、非特許文献3に示されている。
同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。
デインタリーバ(807A)は、対数尤度信号806Aを入力とし、インタリーバ(図3のインタリーバ(304A))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Aを出力する。
同様に、デインタリーバ(807B)は、対数尤度信号806Bを入力とし、インタリーバ(図3のインタリーバ(304B))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Bを出力する。
対数尤度比算出部809Aは、デインタリーブ後の対数尤度信号808Aを入力とし、図3の符号化器302Aで符号化されたビットの対数尤度比(LLR:Log−Likelihood Ratio)を算出し、対数尤度比信号810Aを出力する。
同様に、対数尤度比算出部809Bは、デインタリーブ後の対数尤度信号808Bを入力とし、図3の符号化器302Bで符号化されたビットの対数尤度比(LLR:Log−Likelihood Ratio)を算出し、対数尤度比信号810Bを出力する。
Soft−in/soft−outデコーダ811Aは、対数尤度比信号810Aを入力とし、復号を行い、復号後の対数尤度比812Aを出力する。
同様に、Soft−in/soft−outデコーダ811Bは、対数尤度比信号810Bを入力とし、復号を行い、復号後の対数尤度比812Bを出力する。
<反復復号(反復検波)の場合、反復回数k>
インタリーバ(813A)は、k−1回目のsoft−in/soft−outデコードで得られた復号後の対数尤度比812Aを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Aを出力する。このとき、インタリーブ(813A)のインタリーブのパターンは、図3のインタリーバ(304A)のインタリーブパターンと同様である。
インタリーバ(813B)は、k−1回目のsoft−in/soft−outデコードで得られた復号後の対数尤度比812Bを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Bを出力する。このとき、インタリーブ(813B)のインタリーブのパターンは、図3のインタリーバ(304B)のインタリーブパターンと同様である。
INNER MIMO検波部803は、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Y、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを入力とする。ここで、ベースバンド信号801X、チャネル推定信号群802X、ベースバンド信号801Y、チャネル推定信号群802Yではなく、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Yを用いているのは、反復復号のため、遅延時間が発生しているためである。
INNER MIMO検波部803の反復復号時の動作と、初期検波時の動作の異なる点は、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを信号処理の際に用いていることである。INNER MIMO検波部803は、まず、初期検波のときと同様に、E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。加えて、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bから、式(11)、式(32)に相当する係数を求める。そして、E(b0,b1,b2,b3,b4,b5,b6,b7)の値をこの求めた係数を用いて補正し、その値をE’(b0,b1,b2,b3,b4,b5,b6,b7)とし、信号804として出力する。
対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(31)、式(32)、式(33)、式(34)、式(35)に示した通りであり、非特許文献2、非特許文献3に示されている。
同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。デインタリーバ以降の動作は、初期検波と同様である。
なお、図8では、反復検波を行う場合の、信号処理部の構成について示したが、反復検波は必ずしも良好な受信品質を得る上で必須の構成ではなく、反復検波のみに必要とする構成部分、インタリーバ813A、813Bを有していない構成でもよい。このとき、INNER MIMO検波部803は、反復的な検波を行わないことになる。
そして、本実施の形態で重要な部分は、H(t)×Y(t)×Fの演算を行うことである。なお、非特許文献5等に示されているように、QR分解を用いて初期検波、反復検波を行ってもよい。
また、非特許文献11に示されているように、H(t)×Y(t)×Fに基づき、MMSE(Minimum Mean Square Error)、ZF(Zero Forcing)の線形演算を行い、初期検波を行ってもよい。
図9は、図8と異なる信号処理部の構成であり、図4の送信装置が送信した変調信号のための信号処理部である。図8と異なる点は、soft−in/soft−outデコーダの数であり、soft−in/soft−outデコーダ901は、対数尤度比信号810A、810Bを入力とし、復号を行い、復号後の対数尤度比902を出力する。分配部903は、復号後の対数尤度比902を入力とし、分配を行う。それ以外の部分については、図8と同様の動作となる。
以上のように、本実施の形態のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、プリコーディング行列を乗算するとともに、時間とともに位相を変更し、この位相の変更を規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、受信装置におけるデータの受信品質が向上するという効果を得ることができる。
本実施の形態において、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。
また、本実施の形態では、特にLDPC符号を例に説明したがこれに限ったものではなく、また、復号方法についても、soft−in/soft−outデコーダとして、sum−product復号を例に限ったものではなく、他のsoft−in/soft−outの復号方法、例えば、BCJRアルゴリズム、SOVAアルゴリズム、Max−log−MAPアルゴリズムなどがある。詳細については、非特許文献6に示されている。
また、本実施の形態では、シングルキャリア方式を例に説明したが、これに限ったものではなく、マルチキャリア伝送を行った場合でも同様に実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM(Orthogonal Frequency−Division Multiplexing)方式、SC−FDMA(Single Carrier Frequency Division Multiple Access)、SC−OFDM(Single Carrier Orthogonal Frequency−Division Multiplexing)方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。
以下では、マルチキャリア方式の一例として、OFDM方式を用いたときの例を説明する。
図12は、OFDM方式を用いたときの送信装置の構成を示している。図12において、図3と同様に動作するものについては、同一符号を付した。
OFDM方式関連処理部1201Aは、重み付け後の信号309Aを入力とし、OFDM方式関連の処理を施し、送信信号1202Aを出力する。同様に、OFDM方式関連処理部1201Bは、位相変更後の信号309Bを入力とし、送信信号1202Bを出力する。
図13は、図12のOFDM方式関連処理部1201A、1201B以降の構成の一例を示しており、図12の1201Aから312Aに関連する部分が、1301Aから1310Aであり、1201Bから312Bに関連する部分が1301Bから1310Bである。
シリアルパラレル変換部1302Aは、重み付け後の信号1301A(図12の重み付け後の信号309Aに相当する)シリアルパラレル変換を行い、パラレル信号1303Aを出力する。
並び換え部1304Aは、パラレル信号1303Aを入力とし、並び換えを行い、並び換え後の信号1305Aを出力する。なお、並び換えについては、後で詳しく述べる。
逆高速フーリエ変換部1306Aは、並び換え後の信号1305Aを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1307Aを出力する。
無線部1308Aは、逆フーリエ変換後の信号1307Aを入力とし、周波数変換、増幅等の処理を行い、変調信号1309Aを出力し、変調信号1309Aはアンテナ1310Aから電波として出力される。
シリアルパラレル変換部1302Bは、重み付けされ位相が変更された後の信号1301B(図12の位相変更後の信号309Bに相当する)に対し、シリアルパラレル変換を行い、パラレル信号1303Bを出力する。
並び換え部1304Bは、パラレル信号1303Bを入力とし、並び換えを行い、並び換え後の信号1305Bを出力する。なお、並び換えについては、後で詳しく述べる。
逆高速フーリエ変換部1306Bは、並び換え後の信号1305Bを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1307Bを出力する。
無線部1308Bは、逆フーリエ変換後の信号1307Bを入力とし、周波数変換、増幅等の処理を行い、変調信号1309Bを出力し、変調信号1309Bはアンテナ1310Bから電波として出力される。
図3の送信装置では、マルチキャリアを用いた伝送方式でないため、図6のように、4周期となるように位相を変更し、位相変更後のシンボルを時間軸方向に配置している。図12に示すようなOFDM方式のようなマルチキャリア伝送方式を用いている場合、当然、図3のようにプリコーディングし、位相を変更した後のシンボルを時間軸方向に配置し、それを各(サブ)キャリアごとに行う方式が考えられるが、マルチキャリア伝送方式の場合、周波数軸方向、または、周波数軸・時間軸両者を用いて配置する方法が考えられる。以降では、この点について説明する。
図14は、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、周波数軸は、(サブ)キャリア0から(サブ)キャリア9で構成されており、変調信号z1とz2は、同一時刻(時間)に同一の周波数帯域を使用しており、図14(A)は変調信号z1のシンボルの並び替え方法、図14(B)は変調信号z2のシンボルの並び替え方法を示している。シリアルパラレル変換部1302Aが入力とする重み付けされた後の信号1301Aのシンボルに対し、順番に、#0、#1、#2、#3、・・・と番号をふる。ここでは、周期4の場合を考えているので、#0、#1、#2、#3が一周期分となる。同様に考えると、#4n、#4n+1、#4n+2、#4n+3(nは0以上の整数)が一周期分となる。
このとき、図14(a)のように、シンボル#0、#1、#2、#3、・・・をキャリア0から順番に配置し、シンボル#0から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。なお、変調信号z1とz2は、複素信号である。
同様に、シリアルパラレル変換部1302Bが入力とする重み付けされ位相が変更された後の信号1301Bのシンボルに対し、順番に、#0、#1、#2、#3、・・・と番号をふる。ここでは、周期4の場合を考えているので、#0、#1、#2、#3はそれぞれ異なる位相変更を行っていることになり、#0、#1、#2、#3が一周期分となる。同様に考えると、#4n、#4n+1、#4n+2、#4n+3(nは0以上の整数)はそれぞれ異なる位相変更を行っていることになり、#4n、#4n+1、#4n+2、#4n+3が一周期分となる。
このとき、図14(b)のように、シンボル#0、#1、#2、#3、・・・をキャリア0から順番に配置し、シンボル#0から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。
そして、図14(B)に示すシンボル群1402は、図6に示す位相変更方法を用いたときの1周期分のシンボルであり、シンボル#0は図6の時刻uの位相を用いたときのシンボルであり、シンボル#1は図6の時刻u+1の位相を用いたときのシンボルであり、シンボル#2は図6の時刻u+2の位相を用いたときのシンボルであり、シンボル#3は図6の時刻u+3の位相を用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 4が0(xを4で割ったときの余り、したがって、mod:modulo)のとき、シンボル#xは図6の時刻uの位相を用いたときのシンボルであり、x mod 4が1のとき、シンボル#xは図6の時刻u+1の位相を用いたときのシンボルであり、x mod 4が2のとき、シンボル#xは図6の時刻u+2の位相を用いたときのシンボルであり、x mod 4が3のとき、シンボル#xは図6の時刻u+3の位相を用いたときのシンボルである。
なお、本実施の形態においては、図14(A)に示す変調信号z1は位相を変更されていない。
このように、OFDM方式などのマルチキャリア伝送方式を用いた場合、シングルキャリア伝送のときとは異なり、シンボルを周波数軸方向に並べることができるという特徴を持つことになる。そして、シンボルの並べ方については、図14のような並べ方に限ったものではない。他の例について、図15、図16を用いて説明する。
図15は、図14とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図15(A)は変調信号z1のシンボルの並び替え方法、図15(B)は変調信号z2のシンボルの並び替え方法を示している。図15(A)(B)が図14と異なる点は、変調信号z1のシンボルの並び替え方法と変調信号z2のシンボルの並び替え方法が異なる点であり、図15(B)では、シンボル#0から#5をキャリア4からキャリア9に配置し、シンボル#6から#9をキャリア0から3に配置し、その後、同様の規則で、シンボル#10から#19を各キャリアに配置する。このとき、図14(B)と同様に、図15(B)に示すシンボル群1502は、図6に示す位相変更方法を用いたときの1周期分のシンボルである。
図16は、図14と異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図16(A)は変調信号z1のシンボルの並び替え方法、図16(B)は変調信号z2のシンボルの並び替え方法を示している。図16(A)(B)が図14と異なる点は、図14では、シンボルをキャリアに順々に配置しているのに対し、図16では、シンボルをキャリアに順々に配置していない点である。当然であるが、図16において、図15と同様に、変調信号z1のシンボルの並び替え方法と変調信号z2の並び替え方法を異なるようにしてもよい。
図17は、図14〜16とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図17(A)は変調信号z1のシンボルの並び替え方法、図17(B)は変調信号z2のシンボルの並び替え方法を示している。図14〜16では、シンボルを周波数軸方向に並べているが、図17ではシンボルを周波数、時間軸の両者を利用して配置している。
図6では、位相の変更を4スロットで切り替える場合の例を説明したが、ここでは、8スロットで切り替える場合を例に説明する。図17に示すシンボル群1702は、位相変更方法を用いたときの1周期分のシンボル(したがって、8シンボル)であり、シンボル#0は時刻uの位相を用いたときのシンボルであり、シンボル#1は時刻u+1の位相を用いたときのシンボルであり、シンボル#2は時刻u+2の位相を用いたときのシンボルであり、シンボル#3は時刻u+3の位相を用いたときのシンボルであり、シンボル#4は時刻u+4の位相を用いたときのシンボルであり、シンボル#5は時刻u+5の位相を用いたときのシンボルであり、シンボル#6は時刻u+6の位相を用いたときのシンボルであり、シンボル#7は時刻u+7の位相を用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 8が0のとき、シンボル#xは時刻uの位相を用いたときのシンボルであり、x mod 8が1のとき、シンボル#xは時刻u+1の位相を用いたときのシンボルであり、x mod 8が2のとき、シンボル#xは時刻u+2の位相を用いたときのシンボルであり、x mod 8が3のとき、シンボル#xは時刻u+3の位相を用いたときのシンボルであり、x mod 8が4のとき、シンボル#xは時刻u+4の位相を用いたときのシンボルであり、x mod 8が5のとき、シンボル#xは時刻u+5の位相を用いたときのシンボルであり、x mod 8が6のとき、シンボル#xは時刻u+6の位相を用いたときのシンボルであり、x mod 8が7のとき、シンボル#xは時刻u+7の位相を用いたときのシンボルである。図17のシンボルの並べ方では、時間軸方向に4スロット、周波数軸方向で2スロットの計4×2=8スロットを用いて、1周期分のシンボルを配置しているが、このとき、1周期分のシンボルの数をm×nシンボル(つまり、乗じる位相はm×n種類存在する。)1周期分のシンボルを配置するのに使用する周波数軸方向のスロット(キャリア数)をn、時間軸方向に使用するスロットをmとすると、m>nとするとよい。これは、直接波の位相は、時間軸方向の変動は、周波数軸方向の変動と比較し、緩やかである。したがって、定常的な直接波の影響を小さくするために本実施の形態の規則的な位相の変更を行うので、位相の変更を行う周期では直接波の変動を小さくしたい。したがって、m>nとするとよい。また、以上の点を考慮すると、周波数軸方向のみ、または、時間軸方向のみにシンボルを並び替えるより、図17のように周波数軸と時間軸の両者を用いて並び換えを行うほうが、直接波は定常的になる可能性が高く、本発明の効果を得やすいという効果が得られる。ただし、周波数軸方向に並べると、周波数軸の変動が急峻であるため、ダイバーシチゲインを得ることが出来る可能性があるので、必ずしも周波数軸と時間軸の両者を用いて並び換えを行う方法が最適な方法であるとは限らない。
図18は、図17とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図18(A)は変調信号z1のシンボルの並び替え方法、図18(B)は変調信号z2のシンボルの並び替え方法を示している。図18は、図17と同様、シンボルを周波数、時間軸の両者を利用して配置しているが、図17と異なる点は、図17では、周波数方向を優先し、その後、時間軸方向にシンボルを配置しているのに対し、図18では、時間軸方向を優先し、その後、時間軸方向にシンボルを配置している点である。図18において、シンボル群1802は、位相変更方法を用いたときの1周期分のシンボルである。
なお、図17、図18では、図15と同様に、変調信号z1のシンボルの配置方法と変調信号z2のシンボル配置方法が異なるように配置しても同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。また、図17、図18において、図16のようにシンボルを順々に配置していなくても、同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。
図22は、上記とは異なる、横軸周波数、縦軸時間における図13の並び替え部1301A、130Bにおけるシンボルの並び換え方法の一例を示している。図6の時刻u〜u+3のような4スロットを用いて規則的に位相を変更する場合を考える。図22において特徴的な点は、周波数軸方向にシンボルを順に並べているが、時間軸方向に進めた場合、サイクリックにn(図22の例ではn=1)シンボルサイクリックシフトさせている点である。図22における周波数軸方向のシンボル群2210に示した4シンボルにおいて、図6の時刻u〜u+3の位相の変更を行うものとする。
このとき、#0のシンボルでは時刻uの位相を用いた位相変更、#1では時刻u+1の位相を用いた位相変更、#2では時刻u+2の位相を用いた位相変更、時刻u+3の位相を用いた位相変更を行うものとする。
周波数軸方向のシンボル群2220についても同様に、#4のシンボルでは時刻uの位相を用いた位相変更、#5では時刻u+1の位相を用いた位相変更、#6では時刻u+2の位相を用いた位相変更、#7では時刻u+3の位相を用いた位相変更を行うものとする。
時間$1のシンボルにおいて、上記のような位相の変更を行ったが、時間軸方向において、サイクリックシフトしているため、シンボル群2201、2202、2203、2204については以下のように位相の変更を行うことになる。
時間軸方向のシンボル群2201では、#0のシンボルでは時刻uの位相を用いた位相変更、#9では時刻u+1の位相を用いた位相変更、#18では時刻u+2の位相を用いた位相変更、#27では時刻u+3の位相を用いた位相変更を行うものとする。
時間軸方向のシンボル群2202では、#28のシンボルでは時刻uの位相を用いた位相変更、#1では時刻u+1の位相を用いた位相変更、#10では時刻u+2の位相を用いた位相変更、#19では時刻u+3の位相を用いた位相変更を行うものとする。
時間軸方向のシンボル群2203では、#20のシンボルでは時刻uの位相を用いた位相変更、#29では時刻u+1の位相を用いた位相変更、#2では時刻u+2の位相を用いた位相変更、#11では時刻u+3の位相を用いた位相変更を行うものとする。
時間軸方向のシンボル群2204では、#12のシンボルでは時刻uの位相を用いた位相変更、#21では時刻u+1の位相を用いた位相変更、#30では時刻u+2の位相を用いた位相変更、#3では時刻u+3の位相を用いた位相変更を行うものとする。
図22においての特徴は、例えば#11のシンボルに着目した場合、同一時刻の周波数軸方向の両隣のシンボル(#10と#12)は、ともに#11とは異なる位相を用いて位相の変更を行っているとともに、#11のシンボルの同一キャリアの時間軸方向の両隣のシンボル(#2と#20)は、ともに#11とは異なる位相を用いて位相の変更を行っていることである。そして、これは#11のシンボルに限ったものではなく、周波数軸方向および時間軸方向ともに両隣にシンボルが存在するシンボルすべてにおいて#11のシンボルと同様の特徴をもつことになる。これにより、効果的に位相を変更していることになり、直接波の定常的な状況に対する影響を受けづらくなるため、データの受信品質が改善される可能性が高くなる。
図22では、n=1として説明したが、これに限ったものではなく、n=3としても同様に実施することができる。また、図22では、周波数軸にシンボルを並べ、時間が軸方向にすすむ場合、シンボルの配置の順番をサイクリックシフトするという特徴を持たせることで、上記の特徴を実現したが、シンボルをランダム(規則的であってもよい)に配置することで上記特徴を実現するような方法もある。

(実施の形態2)
上記実施の形態1においては、重み付け合成された(固定のプリコーディング行列でプリコーディングされた)信号z(t)の位相を変更することとした。ここでは、上記実施の形態1と同等の効果を得られる位相変更方法の各種の実施形態について開示する。
上記実施の形態において、図3及び図6に示すように、位相変更部317Bは、重み付け合成部600からの一方の出力に対してのみ位相の変更を実行する構成となっている。
しかしながら、位相の変更を実行するタイミングとしては、重み付け合成部600によるプリコーディングの前に実行することとしてもよく、送信装置は、図6に示した構成に代えて、図25に示すように、位相変更部317Bを重み付け合成部600の前段に設ける構成としてもよい。
この場合、位相変更部317Bは、選択した変調方式のマッピングにしたがったベースバンド信号s2(t)に対して規則的な位相の変更を実行して、s2’(t)=s2(t)y(t)(但し、y(t)はtにより変更される)を出力し、重み付け合成部600は、s2’(t)に対してプリコーディングを実行して、z2(t)(=W2s2’(t))(式(42)参照)を出力し、これを送信する構成としてもよい。
また、位相の変更は、両変調信号s1(t)、s2(t)の双方に対して実行してもよく、送信装置は、図6に示した構成に代えて、図26に示すように、重み付け合成部600の両方の出力に対して位相変更部を設ける構成をとってもよい。
位相変更部317Aは、位相変更部317Bと同様に入力された信号の位相を規則的に変更するものであり、重み付け合成部からのプリコーディングされた信号z1’(t)の位相を変更し、位相を変更した信号z1(t)を送信部に出力する。
ただし、位相変更部317A及び位相変更部317Bは互いに位相を変更する位相の度合いは、同じタイミングにおいては、図26に示すような位相の変更を行う。(ただし、以下は一つの例であり、位相の変更方法はこれに限ったものではない。)時刻uにおいて、図26の位相変更部317Aは、z1(t)=y(t)z1’(t)となるように、また、位相変更部317Bは、z2(t)=y(t)z2’(t)となるように、位相の変更を行う。例えば、図26に示すように、時刻uにおいて、y(u)=ej0、y(u)=e−jπ/2、時刻u+1において、y(u+1)=ejπ/4、y(u+1)=e−j3π/4、・・・、時刻u+kにおいて、y(u+k)=ejkπ/4、y(u+k)=ej(−kπ/4−π/2)、として位相の変更を行う。なお、位相を規則的に変更する周期は、位相変更部317Aと位相変更部317Bとで同じであってもよいし、異なるものであってもよい。
また、上述したとおり、位相を変更するタイミングは、重み付け合成部によるプリコーディングの実行前であってもよく、送信装置は、図26に示す構成に代えて、図27に示す構成としてもよい。
両変調信号の位相を規則的に変更する場合には、それぞれの送信信号には、例えば制御情報として、それぞれの位相変更パターンの情報が含まれることとし、受信装置は、この制御情報を得ることで、送信装置が規則的に切り替えた位相変更方法、つまり、位相変更パターンを知ることができ、これにより、正しい復調(検波)を実行することが可能となる。
次に、図6、図25の構成の変形例について図28、図29を用いて説明する。図28が図6と異なる点は、位相変更ON/OFFに関する情報2800が存在する点、および、位相変更をz1’(t)、z2’(t)のいずれかに位相変更を行う(同一時刻、または、同一周波数で、位相変更をz1’(t)、z2’(t)のいずれかに対し施す。)点である。したがって、位相変更をz1’(t)、z2’(t)のいずれかに位相変更を行うことになるため、図28の位相変更部317A、位相変更部317Bは、位相変更を行う(ON)場合と位相変更を行わない(OFF)場合がある。このON/OFFに関する制御情報が、位相変更ON/OFFに関する情報2800となる。この位相変更ON/OFFに関する情報2800は、図3に示す信号処理方法情報生成部314から出力される。
図28の位相変更部317Aは、z1(t)=y(t)z1’(t)となるように、また、位相変更部317Bは、z2(t)=y(t)z2’(t)となるように、位相の変更を行うことになる。
このとき、例えば、z1’(t)は、周期4で位相変更を行うものとする。(このとき、z2’(t)は位相変更を行わない。)したがって、時刻uにおいて、y(u)=ej0、y(u)=1、時刻u+1において、y(u+1)=ejπ/2、y(u+1)=1、時刻u+2において、y(u+2)=ejπ、y(u+2)=1、時刻u+3において、y(u+3)=ej3π/2、y(u+3)=1とするものとする。
次に、例えば、z2’(t)は、周期4で位相変更を行うものとする。(このとき、z1’(t)は位相変更を行わない。)したがって、時刻u+4において、y(u+4)=1、y(u+4)=ej0、時刻u+5において、y(u+5)=1、y(u+5)=ejπ/2、時刻u+6において、y(u+6)=1、y(u+6)=ejπ、時刻u+7において、y(u+7)=1、y(u+7)=ej3π/2とするものとする。
したがって、上記の例では、
時刻8kのとき、y(8k)=ej0、y(8k)=1、
時刻8k+1のとき、y(8k+1)=ejπ/2、y(8k+1)=1、
時刻8k+2のとき、y(8k+2)=ejπ、y(8k+2)=1、
時刻8k+3のとき、y(8k+3)=ej3π/2、y(8k+3)=1、
時刻8k+4のとき、y(8k+4)=1、y(8k+4)=ej0
時刻8k+5のとき、y(8k+5)=1、y(8k+5)=ejπ/2
時刻8k+6のとき、y(8k+6)=1、y(8k+6)=ejπ
時刻8k+7のとき、y(8k+7)=1、y(8k+7)=ej3π/2
となる。
上述のように、z1’(t)のみ位相変更する時間とz2’(t)のみ位相を変更する時間とが存在するようにする。また、z1’(t)のみ位相変更する時間とz2’(t)のみ位相を変更する時間とで、位相変更の周期を構成する。なお、上述では、z1’(t)のみ位相変更を行う場合の周期とz2’(t)のみ位相変更を行う場合の周期を同一にしているが、これに限ったものではなく、z1’(t)のみ位相変更を行う場合の周期とz2’(t)のみ位相変更を行う場合の周期が異なっていてもよい。また、上述の例では、z1’(t)を4周期で位相変更を行った後にz2’(t)を4周期で位相変更を行うように説明しているが、これに限ったものではなく、z1’(t)の位相変更とz2’(t)の位相変更の順番をどのようにしてもよい(例えば、z1’(t)の位相変更とz2’(t)の位相変更を交互に行っても良いし、ある規則にしたがった順番でもよいし、順番はランダムであってもよい。)
図29の位相変更部317Aは、s1’(t)=y(t)s1(t)となるように、また、位相変更部317Bは、s2’(t)=y(t)s2(t)となるように、位相の変更を行うことになる。
このとき、例えば、s1(t)は、周期4で位相変更を行うものとする。(このとき、s2(t)は位相変更を行わない。)したがって、時刻uにおいて、y(u)=ej0、y(u)=1、時刻u+1において、y(u+1)=ejπ/2、y(u+1)=1、時刻u+2において、y(u+2)=ejπ、y(u+2)=1、時刻u+3において、y(u+3)=ej3π/2、y(u+3)=1とするものとする。
次に、例えば、s2(t)は、周期4で位相変更を行うものとする。(このとき、s1(t)は位相変更を行わない。)したがって、時刻u+4において、y(u+4)=1、y(u+4)=ej0、時刻u+5において、y(u+5)=1、y(u+5)=ejπ/2、時刻u+6において、y(u+6)=1、y(u+6)=ejπ、時刻u+7において、y(u+7)=1、y(u+7)=ej3π/2とするものとする。
したがって、上記の例では、
時刻8kのとき、y(8k)=ej0、y(8k)=1、
時刻8k+1のとき、y(8k+1)=ejπ/2、y(8k+1)=1、
時刻8k+2のとき、y(8k+2)=ejπ、y(8k+2)=1、
時刻8k+3のとき、y(8k+3)=ej3π/2、y(8k+3)=1、
時刻8k+4のとき、y(8k+4)=1、y(8k+4)=ej0
時刻8k+5のとき、y(8k+5)=1、y(8k+5)=ejπ/2
時刻8k+6のとき、y(8k+6)=1、y(8k+6)=ejπ
時刻8k+7のとき、y(8k+7)=1、y(8k+7)=ej3π/2
となる。
上述のように、s1(t)のみ位相変更する時間とs2(t)のみ位相を変更する時間とが存在するようにする。また、s1(t)のみ位相変更する時間とs2(t)のみ位相を変更する時間とで、位相変更の周期を構成する。なお、上述では、s1(t)のみ位相変更を行う場合の周期とs2(t)のみ位相変更を行う場合の周期を同一にしているが、これに限ったものではなく、s1(t)のみ位相変更を行う場合の周期とs2(t)のみ位相変更を行う場合の周期が異なっていてもよい。また、上述の例では、s1(t)を4周期で位相変更を行った後にs2(t)を4周期で位相変更を行うように説明しているが、これに限ったものではなく、s1(t)の位相変更とs2(t)の位相変更の順番をどのようにしてもよい(例えば、s1(t)の位相変更とs2(t)の位相変更を交互に行っても良いし、ある規則にしたがった順番でもよいし、順番はランダムであってもよい。)
これによって、受信装置側における送信信号z1(t)及びz2(t)を受信したときのそれぞれの受信状態を均等にすることができるとともに、受信した信号z1(t)及びz2(t)それぞれのシンボルにおいて位相が周期的に切り替えられることにより、誤り訂正復号後の誤り訂正能力を向上させることができるので、LOS環境における受信品質を向上させることができる。
以上、実施の形態2に示した構成でも、上記実施の形態1と同様の効果を得ることができる。
本実施の形態では、シングルキャリア方式を例、つまり、位相変更を時間軸に対して行う場合について説明したが、これに限ったものではなく、マルチキャリア伝送を行った場合でも同様に実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM(Orthogonal Frequency−Division Multiplexing)方式、SC−FDMA(Single Carrier Frequency Division Multiple Access)、SC−OFDM(Single Carrier Orthogonal Frequency−Division Multiplexing)方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。前述したように、本実施の形態では、位相変更を行う説明として、時間t軸方向で位相変更を行う場合で説明したが、実施の形態1と同様に、周波数軸方向に位相変更を行う、つまり、本実施の形態において、t方向での位相変更の説明において、tをf(f:周波数((サブ)キャリア))に置き換えて、考えることで、本実施の形態で説明した位相変更方法を、周波数方向に位相変更ことに適用することができることになる。また、本実施の形態の位相変更方法は、実施の形態1の説明と同様に、時間−周波数方向に対する位相変更に対して、適用することも可能である。
したがって、図6、図25、図26、図27では時間軸方向で位相変更を行う場合を示しているが、図6、図25、図26、図27において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。
そして、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。

(実施の形態3)
上記実施の形態1及び2においては、位相を規則的に変更することとした。本実施の形態3においては、送信装置から見て、各所に点在することになる受信装置において、受信装置がどこに配置されていても、各受信装置が良好なデータの受信品質を得るための手法について開示する。
本実施の形態3においては、位相を変更して得られる信号のシンボル配置を説明する。
図31は、規則的に位相を変更する送信方式において、OFDM方式のようなマルチキャリア方式を用いたときの、時間−周波数軸における信号の一部のシンボルのフレーム構成の一例を示している。
はじめに、実施の形態1で説明した、2つのプリコーディング後のベースバンド信号のうち、一方のベースバンド信号(図6参照)に位相変更を行った場合の例で説明する。
(なお、図6では時間軸方向で位相変更を行う場合を示しているが、図6において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)
図31は、図12に示した位相変更部317Bの入力である変調信号z2’のフレーム構成を示しており、1つの四角がシンボル(ただし、プリコーディングを行っているため、s1とs2の両者の信号を含んでいるのが通常であるが、プリコーディング行列の構成次第では、s1とs2の一方の信号のみであることもある。)を示している。
ここで、図31のキャリア2、時刻$2のシンボル3100について着目する。なお、ここではキャリアと記載しているが、サブキャリアと呼称することもある。
キャリア2において、時刻$2に時間的に最も隣接するシンボル、つまりキャリア2の時刻$1のシンボル3103と時刻$3のシンボル3101のそれぞれのチャネル状態は、キャリア2、時刻$2のシンボル3100のチャネル状態と、非常に相関が高い。
同様に時刻$2において、周波数軸方向でキャリア2に最も隣接している周波数のシンボル、即ち、キャリア1、時刻$2のシンボル3104と時刻$2、キャリア3のシンボル3104とのチャネル状態は、ともに、キャリア2、時刻$2のシンボル3100のチャネル状態と、非常に相関が高い。
上述したように、シンボル3101、3102、3103、3104のそれぞれのチャネル状態は、シンボル3100のチャネル状態との相関が非常に高い。
本明細書において、規則的に位相を変更する送信方法において、乗じる位相として、N種類の位相(但し、Nは2以上の整数)を用意しているものとする。図31に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図6における信号z2’に対し、「ej0」が乗じられて位相が変更されたことを意味する。つまり、図31の各シンボルに記載している値は、式(42)におけるy(t)、および、実施の形態2で説明したz2(t)=y(t)z2’(t)におけるy(t)の値となる。
本実施の形態においては、この周波数軸方向で隣接しあうシンボル及び/又は時間軸方向で隣接しあうシンボルのチャネル状態の相関性が高いことを利用して受信装置側において、高いデータの受信品質が得られる位相が変更されたシンボルのシンボル配置を開示する。
この受信側で高いデータの受信品質が得られる条件として、<条件#1>、<条件#2>が考えられる。

<条件#1>
図6のように、プリコーディング後のベースバンド信号z2’に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、時間軸方向で隣接するシンボル、即ち、時間X−1・キャリアYおよび時間X+1・キャリアYがいずれもデータシンボルであり、これら3つのデータシンボルに対応するプリコーディング後のベースバンド信号z2’、つまり、時間X・キャリアY、時間X−1・キャリアYおよび時間X+1・キャリアYにおけるそれぞれのプリコーディング後のベースバンド信号z2’では、いずれも異なる位相変更が行われる。

<条件#2>
図6のように、プリコーディング後のベースバンド信号z2’に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、周波数軸方向で隣接するシンボル、即ち、時間X・キャリアY−1および時間X・キャリアY+1がいずれもデータシンボルである場合、これら3つのデータシンボルに対応するプリコーディング後のベースバンド信号z2’、つまり、時間X・キャリアY、時間X・キャリアY−1および時間X・キャリアY+1におけるそれぞれのプリコーディング後のベースバンド信号z2’では、いずれも異なる位相変更が行われる。

そして、<条件#1>を満たすデータシンボルが存在するとよい。同様に、<条件2>を満たすデータシンボルが存在するとよい。
この<条件#1><条件#2>が導出される理由は以下の通りである。
送信信号においてあるシンボル(以降、シンボルAと呼称する)があり、当該シンボルAに時間的に隣接したシンボルそれぞれのチャネル状態は、上述したとおり、シンボルAのチャネル状態との相関が高い。
したがって、時間的に隣接した3シンボルで、異なる位相を用いていると、LOS環境において、シンボルAが劣悪な受信品質(SNRとしては高い受信品質を得ているものの、直接波の位相関係が劣悪な状況であるため受信品質が悪い状態)であっても、残りのシンボルAに隣接する2シンボルでは、良好な受信品質を得ることができる可能性が非常に高く、その結果、誤り訂正復号後は良好な受信品質を得ることができる。
同様に、送信信号においてあるシンボル(以降、シンボルAと呼称する)があり、このシンボルAに周波数的に隣接したシンボルそれぞれのチャネル状態は、上述したとおり、シンボルAのチャネル状態との相関が高い。
したがって、周波数的に隣接した3シンボルで、異なる位相を用いていると、LOS環境において、シンボルAが劣悪な受信品質(SNRとしては高い受信品質を得ているものの、直接波の位相関係が劣悪な状況であるため受信品質が悪い状態)であっても、残りのシンボルAに隣接する2シンボルでは、良好な受信品質を得ることができる可能性が非常に高く、その結果、誤り訂正復号後は良好な受信品質を得ることができる。
また、<条件#1>と<条件#2>を組み合わせると、受信装置において、より、データの受信品質を向上させることができる可能性がある。したがって、以下の<条件#3>を導くことができる。

<条件#3>
図6のように、プリコーディング後のベースバンド信号z2’に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、時間軸方向で隣接するシンボル、即ち、時間X−1・キャリアYおよび時間X+1・キャリアYがいずれもデータシンボルであり、かつ、周波数軸方向で隣接するシンボル、即ち、時間X・キャリアY−1および時間X・キャリアY+1がいずれもデータシンボルである場合、これら5つのデータシンボルに対応するプリコーディング後のベースバンド信号z2’、つまり、時間X・キャリアYおよび時間X−1・キャリアYおよび時間X+1・キャリアYおよび時間X・キャリアY−1および時間X・キャリアY+1におけるそれぞれのプリコーディング後のベースバンド信号z2’では、いずれも異なる位相変更が行われる。

ここで、「異なる位相変更」について、補足を行う。位相変更は、0ラジアンから2πラジアンで定義されることになる。例えば、時間X・キャリアYにおいて、図6のプリコーディング後のベースバンド信号z2’に対して施す位相変更をejθX,Y、時間X−1・キャリアYにおいて、図6のプリコーディング後のベースバンド信号z2’に対して施す位相変更をejθX−1,Y、時間X+1・キャリアYにおいて、図6のプリコーディング後のベースバンド信号z2’に対して施す位相変更をejθX+1,Yとすると、0ラジアン≦θX,Y<2π、0ラジアン≦θX−1,Y<2π、0ラジアン≦θX+1,Y<2πとなる。したがって、<条件#1>では、θX,Y≠θX−1,YかつθX,Y≠θX+1,YかつθX+1,Y≠θX−1,Yが成立することになる。同様に考えると、<条件#2>では、θX,Y≠θX,Y−1かつθX,Y≠θX,Y+1かつθX,Y−1≠θX−1,Y+1が成立することになり、<条件#3>では、θX,Y≠θX−1,YかつθX,Y≠θX+1,YかつθX,Y≠θX,Y−1かつθX,Y≠θX,Y+1かつθX−1,Y≠θX+1,YかつθX−1,Y≠θX,Y−1かつθX−1,Y≠θX,Y+1かつθX+1,Y≠θX,Y−1かつθX+1,Y≠θX,Y+1かつθX,Y−1≠θX,Y+1が成立することになる。
そして、<条件#3>を満たすデータシンボルが存在するとよい。
図31は<条件#3>の例であり、シンボルAに該当するシンボル3100に相当する図6のプリコーディング後のベースバンド信号z2’に乗じられている位相と、そのシンボル3100に時間的に隣接するシンボル3101に相当する図6のプリコーディング後のベースバンド信号z2’、3103に相当する図6のプリコーディング後のベースバンド信号z2’に乗じられている位相と、周波数的に隣接するシンボル3102に相当する図6のプリコーディング後のベースバンド信号z2’、3104に相当する図6のプリコーディング後のベースバンド信号z2’に乗じられている位相が互いに異なるように配されており、これによって、受信側においてシンボル3100の受信品質が劣悪であろうとも、その隣接するシンボルの受信品質は非常に高くなるため、誤り訂正復号後の高い受信品質を確保できる。
この条件のもとで、位相を変更して得られるシンボルの配置例を図32に示す。
図32を見ればわかるように、いずれのデータシンボルにおいても、その位相が周波数軸方向及び時間軸方向の双方において隣接しあうシンボルに対して変更された位相の度合いは互いに異なる位相変更量となっている。このようにすることで、受信装置における誤り訂正能力を更に向上させることができる。
つまり、図32では、時間軸方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#1>がすべてのX、すべてのYで成立している。
同様に、図32では、周波数方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#2>がすべてのX、すべてのYで成立している。
同様に、図32では、周波数方向で隣接するシンボルにデータシンボルが存在し、かつ、時間軸方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#3>がすべてのX、すべてのYで成立している。
次に、実施の形態2で説明した、2つのプリコーディング後のベースバンド信号に位相変更を行った場合(図26参照)の例で説明する。
図26のように、プリコーディング後のベースバンド信号z1’、および、プリコーディング後のベースバンド信号z2’の両者に位相変更を与える場合、位相変更方法について、いくつかの方法がある。その点について、詳しく説明する。
方法1として、プリコーディング後のベースバンド信号z2’の位相変更は、前述のように、図32のように位相変更を行うものとする。図32において、プリコーディング後のベースバンド信号z2’の位相変更は周期10としている。しかし、前述で述べたように、<条件#1><条件#2><条件#3>を満たすようにするために、(サブ)キャリア1で、プリコーディング後のベースバンド信号z2’に施す位相変更を時間とともに変更している。(図32では、このような変更をほどこしているが、周期10をとし、別の位相変更方法であってもよい)そして、プリコーディング後のベースバンド信号z1’の位相変更は、図33のように、プリコーディング後のベースバンド信号z2’の位相変更は周期10の1周期分の位相変更する値は一定とする。図33では、(プリコーディング後のベースバンド信号z2’の位相変更の)1周期分を含む時刻$1において、プリコーディング後のベースバンド信号z1’の位相変更の値は、ej0としており、次の(プリコーディング後のベースバンド信号z2’の位相変更の)1周期分を含む時刻$2において、プリコーディング後のベースバンド信号z1’の位相変更の値は、ejπ/9としており、・・・、としている。
なお、図33に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図26における信号z1’に対し、「ej0」が乗じられて位相が変更されたことを意味する。つまり、図33の各シンボルに記載している値は、実施の形態2で説明したz1(t)=y(t)z1’(t)におけるy(t)の値となる。
プリコーディング後のベースバンド信号z1’の位相変更は、図33ように、プリコーディング後のベースバンド信号z2’の位相変更は周期10の1周期分の位相変更する値は一定とし、位相変更する値は、1周期分の番号とともに変更するようにする。(上述のように、図33では、第1の1周期分では、ej0とし、第2の1周期分ではejπ/9、・・・としている。)
以上のようにすることで、プリコーディング後のベースバンド信号z2’の位相変更は周期10であるが、プリコーディング後のベースバンド信号z1’の位相変更とプリコーディング後のベースバンド信号z2’の位相変更の両者を考慮したときの周期は10より大きくすることができるという効果を得ることができる。これにより、受信装置のデータの受信品質が向上する可能性がある。
方法2として、プリコーディング後のベースバンド信号z2’の位相変更は、前述のように、図32のように位相変更を行うものとする。図32において、プリコーディング後のベースバンド信号z2’の位相変更は周期10としている。しかし、前述で述べたように、<条件#1><条件#2><条件#3>を満たすようにするために、(サブ)キャリア1で、プリコーディング後のベースバンド信号z2’に施す位相変更を時間とともに変更している。(図32では、このような変更をほどこしているが、周期10をとし、別の位相変更方法であってもよい)そして、プリコーディング後のベースバンド信号z1’の位相変更は、図30に示すように、プリコーディング後のベースバンド信号z2’の位相変更は周期10とは異なる周期3での位相変更を行う。
なお、図30に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図26における信号z1’に対し、「ej0」が乗じられて位相が変更されたことを意味する。つまり、図30の各シンボルに記載している値は、実施の形態2で説明したz1(t)=y(t)z1’(t)におけるy(t)の値となる。
以上のようにすることで、プリコーディング後のベースバンド信号z2’の位相変更は周期10であるが、プリコーディング後のベースバンド信号z1’の位相変更とプリコーディング後のベースバンド信号z2’の位相変更の両者を考慮したときの周期は30となりプリコーディング後のベースバンド信号z1’の位相変更とプリコーディング後のベースバンド信号z2’の位相変更の両者を考慮したときの周期を10より大きくすることができるという効果を得ることができる。これにより、受信装置のデータの受信品質が向上する可能性がある。方法2の一つの有効な方法としては、プリコーディング後のベースバンド信号z1’の位相変更の周期をNとし、プリコーディング後のベースバンド信号z2’の位相変更の周期をMとしたとき、特に、NとMが互いに素の関係であると、プリコーディング後のベースバンド信号z1’の位相変更とプリコーディング後のベースバンド信号z2’の位相変更の両者を考慮したときの周期はN×Mと容易に大きな周期に設定することができるという利点があるが、NとMが互いに素の関係でも、周期を大きくすることは可能である。
なお、本実施の形態3の位相変更方法は一例であり、これに限ったものではなく、実施の形態1、実施の形態2で説明したように、周波数軸方向で位相変更を行ったり、時間軸方向で位相変更を行ったり、時間−周波数のブロックで位相変更を行っても同様に、受信装置におけるデータの受信品質を向上させることができるという効果を持つことになる。
上記で説明したフレーム構成以外にも、データシンボル間にパイロットシンボル(SP(Scattered Pilot))や制御情報を伝送するシンボルなどが挿入されることも考えられる。この場合の位相変更について詳しく説明する。
図47は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’および変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成を示しており、図47(a)は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’の時間―周波数軸におけるフレーム構成、図47(b)は、変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成である。図47において、4701はパイロットシンボル、4702はデータシンボルを示しており、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。
図47は、図6のように、プリコーディング後のベースバンド信号z2’に対し、位相変更を行う場合のシンボル配置を示している(プリコーディング後のベースバンド信号z1には位相変更を行わない)。(なお、図6では時間軸方向で位相変更を行う場合を示しているが、図6において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図47のプリコーディング後のベースバンド信号z2’のシンボルに記載されている数値は、位相の変更値を示している。なお、図47のプリコーディング後のベースバンド信号z1’(z1)のシンボルは、位相変更を行わないので、数値を記載していない。
図47において重要な点は、プリコーディング後のベースバンド信号z2’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
図48は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’および変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成を示しており、図48(a)は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’の時間―周波数軸におけるフレーム構成、図48(b)は、変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成である。図48において、4701はパイロットシンボル、4702はデータシンボルを示しており、データシンボル4702は、プリコーディングと位相変更を施したシンボルとなる。
図48は、図26のように、プリコーディング後のベースバンド信号z1’およびプリコーディング後のベースバンド信号z2’に対し、位相変更を行う場合のシンボル配置を示している。(なお、図26では時間軸方向で位相変更を行う場合を示しているが、図26において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図48のプリコーディング後のベースバンド信号z1’およびプリコーディング後のベースバンド信号z2’のシンボルに記載されている数値は、位相の変更値を示している。
図48において重要な点は、プリコーディング後のベースバンド信号z1’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している、また、プリコーディング後のベースバンド信号z2’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z1’に挿入されたパイロットシンボルに対しては、位相変更を施さず、また、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
図49は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’および変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成を示しており、図49(a)は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’の時間―周波数軸におけるフレーム構成、図49(b)は、変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成である。図49において、4701はパイロットシンボル、4702はデータシンボル、4901はヌルシンボルであり、ベースバンド信号の同相成分I=0であり、直交成分Q=0となる。このとき、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。図49と図47の違いは、データシンボル以外のシンボルの構成方法であり、変調信号z1’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z2’はヌルシンボルとなっており、逆に、変調信号z2’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z1’はヌルシンボルとなっている点である。
図49は、図6のように、プリコーディング後のベースバンド信号z2’に対し、位相変更を行う場合のシンボル配置を示している(プリコーディング後のベースバンド信号z1には位相変更を行わない)。(なお、図6では時間軸方向で位相変更を行う場合を示しているが、図6において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図49のプリコーディング後のベースバンド信号z2’のシンボルに記載されている数値は、位相の変更値を示している。なお、図49のプリコーディング後のベースバンド信号z1’(z1)のシンボルは、位相変更を行わないので、数値を記載していない。
図49において重要な点は、プリコーディング後のベースバンド信号z2’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
図50は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’および変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成を示しており、図50(a)は、変調信号(プリコーディング後のベースバンド信号)z1またはz1’の時間―周波数軸におけるフレーム構成、図50(b)は、変調信号(プリコーディング後のベースバンド信号)z2’の時間―周波数軸におけるフレーム構成である。図50において、4701はパイロットシンボル、4702はデータシンボル、4901はヌルシンボルであり、ベースバンド信号の同相成分I=0であり、直交成分Q=0となる。このとき、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。図50と図48の違いは、データシンボル以外のシンボルの構成方法であり、変調信号z1’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z2’はヌルシンボルとなっており、逆に、変調信号z2’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z1’はヌルシンボルとなっている点である。
図50は、図26のように、プリコーディング後のベースバンド信号z1’およびプリコーディング後のベースバンド信号z2’に対し、位相変更を行う場合のシンボル配置を示している。(なお、図26では時間軸方向で位相変更を行う場合を示しているが、図26において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図50のプリコーディング後のベースバンド信号z1’およびプリコーディング後のベースバンド信号z2’のシンボルに記載されている数値は、位相の変更値を示している。
図50において重要な点は、プリコーディング後のベースバンド信号z1’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している、また、プリコーディング後のベースバンド信号z2’に対する位相変更は、データシンボル、つまり、プリコーディングを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z1’に挿入されたパイロットシンボルに対しては、位相変更を施さず、また、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
図51は、図47、図49のフレーム構成の変調信号を生成し、送信する送信装置の構成の一例を示しており、図4と同様に動作するものについては、同一符号を付している。
図51において、重み付け合成部308A、308B、および、位相変更部317Bは、フレーム構成信号313がデータシンボルであるタイミングを示しているときのみ動作することになる。
図51のパイロットシンボル(ヌルシンボル生成を兼ねるものとする)生成部5101は、フレーム構成信号313がパイロットシンボル(かつヌルシンボル)であることをしめしていた場合、パイロットシンボルのベースバンド信号5102A、および5102Bを出力する。
図47から図50のフレーム構成では示していなかったが、プリコーディング(および、位相回転を施さない)を施さない、例えば、1アンテナから変調信号を送信する方式、(この場合、もう一方のアンテナからは信号を伝送しないことになる)、または、時空間符号(特に時空間ブロック符号)を用いた伝送方式を用いて制御情報シンボルを送信する場合、制御情報シンボル5104は、制御情報5103、フレーム構成信号313を入力とし、フレーム構成信号313が制御情報シンボルであることを示している場合、制御情報シンボルのベースバンド信号5102A、5102Bを出力する。
図51の無線部310A、310Bは、入力となる複数のベースバンド信号のうち、フレーム構成信号313に基づき、複数のベースバンド信号から、所望のベースバンド信号を選択する。そして、OFDM関連の信号処理を施し、フレーム構成にしたがった変調信号311A、311Bをそれぞれ出力する。
図52は、図48、図50のフレーム構成の変調信号を生成し、送信する送信装置の構成の一例を示しており、図4、図51と同様に動作するものについては、同一符号を付している。図51に対して追加した位相変更部317Aは、フレーム構成信号313がデータシンボルであるタイミングを示しているときのみ動作することになる。その他については、図51と同様の動作となる。
図53は、図51とは異なる送信装置の構成方法である。以降では異なる点について説明する。位相変更部317Bは、図53のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部317Bは、プリコーディング後のベースバンド信号316Bに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部317Bは、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
選択部5301は、複数のベースバンド信号を入力とし、フレーム構成信号313が示したシンボルのベースバンド信号を選択し、出力する。
図54は、図52とは異なる送信装置の構成方法である。以降では異なる点について説明する。位相変更部317Bは、図54のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部317Bは、プリコーディング後のベースバンド信号316Bに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部317Bは、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
同様に、位相変更部5201は、図54のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部5201は、プリコーディング後のベースバンド信号309Aに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部5201は、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
上述の説明では、パイロットシンボルと制御シンボルとデータシンボルを例に説明したが、これに限ったものではなく、プリコーディングとは異なる伝送方法、例えば、1アンテナ送信、時空間ブロック符号を用いた伝送方式、等を用いて伝送するシンボルであれば、同様に、位相変更を与えない、ということが重要となり、これとは逆に、プリコーディングを行ったシンボルに対しては、位相変更を行うことが本発明では重要なこととなる。
したがって、時間−周波数軸におけるフレーム構成におけるすべてのシンボルで位相変更が行われるわけではなく、プリコーディングを行った信号のみに位相変更を与える点が、本発明の特徴となる。

(実施の形態4)
上記実施の形態1及び2においては、位相を規則的に変更すること、実施の形態3においては、隣り合うシンボルの位相の変更の度合いを異ならせることを開示した。
本実施の形態4では、位相変更方法が、送信装置が使用する変調方式、誤り訂正符号の符号化率により、異なっていてもよいことを示す。
以下の表1には、送信装置が設定した各種設定パラメータに応じて設定する位相変更方法の一例を示している。
Figure 2020061771
表1における#1は上記実施の形態1の変調信号s1(送信装置が設定した変調方式のベースバンド信号s1)、#2は変調信号s2(送信装置が設定した変調方式のベースバンド信号s2)を意味する。表1における符号化率の列は、#1, #2の変調方式に対し、誤り訂正符号の設定した符号化率を示している。表1における位相変更パターンの列は、実施の形態1から実施の形態3で説明したように、プリコーディング後のベースバンド信号z1(z1’)、z2(z2’)に対して施す位相変更方法を示しており、位相変更パターンをA、B、C、D、E、・・・というように定めているが、これは、実際には、位相を変更する度合いの変化を示す情報であり、例えば、上記式(46)や式(47)に示すような変更パターンを示すものとする。なお、表1における位相変更パターンの例において「‐」と記載しているが、これは、位相変更を行わないことを意味している。
なお、表1に示した変調方式や符号化率の組み合わせは、一例であり、表1に示す変調方式以外の変調方式(例えば、128QAMや256QAM等)や、符号化率(例えば、7/8等)が含まれてもよい。また、実施の形態1で示したように、誤り訂正符号は、s1、s2別々に設定してもよい(なお、表1の場合は、図4のように、一つの誤り訂正符号の符号化を施している場合としている。)。また、同じ変調方式及び符号化率に、互いに異なる複数の位相変更パターンを対応付けることとしてもよい。送信装置は、各位相変更パターンを示す情報を受信装置に対して送信し、受信装置は当該情報と表1を参照することによって位相変更パターンを特定し、復調、および、復号を実行することとなる。なお、変調方式、および、誤り訂正方式に対し、位相変更パターンが一意に決定する場合、送信装置は、変調方式と誤り訂正方式の情報を受信装置に送信すれば、受信装置は、その情報を得ることで、位相変更パターンを知ることができるので、この場合は、位相変更パターンの情報は必ずしも必要としない。
実施の形態1から実施の形態3では、プリコーディング後のベースバンド信号に対し、位相変更を行う場合について説明したが、位相のみでなく、振幅を位相変更と同様に周期をもって規則的に変更することも可能である。したがって、当該表1に、規則的に変調信号の振幅を変更する振幅変更パターンも対応させてもよい。この場合、送信装置には、図3や図4の重み付け合成部308Aの後に振幅を変更する振幅変更部、また、重み付け合成部308Bの後に、振幅を変更する振幅変更部を備えればよい。なお、プリコーディング後のベースバンド信号z1(t)、z2(t)の一方に対し、振幅変更を施しても良いし(この場合、重み付け合成部308A、308Bのいずれかの後に振幅変更部を備えればよい。)、両方に対し、振幅変更を施してもよい。
更に、上記表1においては示していないが、位相を規則的に変更するのではなく、マッピング部により規則的にマッピング方法を変更する構成としてもよい。
即ち、変調信号s1(t)のマッピング方式を16QAM、変調信号s2(t)のマッピング方式を16QAMであったものを、例えば、変調信号s2(t)に適用するマッピング方式を規則的に、16QAM→16APSK(16 Amplitude Phase Shift Keying)→I-Q平面において16QAM、16APSKとは異なる信号点配置となる第1のマッピング方法→I-Q平面において16QAM、16APSKとは異なる信号点配置となる第2のマッピング方法→・・・というように変更することで、上述してきたように位相を規則的に変更する場合と同様に、受信装置において、データの受信品質を向上する効果を得ることができる。
また、本発明は、位相を規則的に変更する方法、マッピング方法を規則的に変更する方法、振幅を変更する方法のいずれかの組み合わせであってもよく、また、その全てを考慮にいれて送信信号を送信する構成としてもよい。
本実施の形態では、シングルキャリア方式、マルチキャリア伝送いずれの場合でも実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM(Orthogonal Frequency−Division Multiplexing)方式、SC−FDMA(Single Carrier Frequency Division Multiple Access)、SC−OFDM(Single Carrier Orthogonal Frequency−Division Multiplexing)方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても実施することができる。前述したように、本実施の形態では、位相変更、振幅変更、マッピング変更を行う説明として、時間t軸方向で位相変更、振幅変更、マッピング変更を行う場合で説明したが、実施の形態1と同様に、周波数軸方向に位相変更を行うときと同様に、つまり、本実施の形態において、t方向での位相変更、振幅変更、マッピング変更の説明において、tをf(f:周波数((サブ)キャリア))に置き換えて、考えることで、本実施の形態で説明した位相変更、振幅変更、マッピング変更を、周波数方向に位相変更、振幅変更、マッピング変更ことに適用することができることになる。また、本実施の形態の位相変更、振幅変更、マッピング変更方法は、実施の形態1の説明と同様に、時間−周波数方向に対する位相変更、振幅変更、マッピング変更に対して、適用することも可能である。
そして、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。

(実施の形態A1)
本実施の形態では、非特許文献12〜非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Parity-Check)符号(QC−LDPC符号でない、LDPC符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号、テイルバイティングを用いたターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの規則的に位相を変更する方法について詳しく説明する。ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、図4の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、図4の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
次に、規則的に位相を変更する方法において、上述で定義したスロットと乗じる位相との関係について説明する。
ここでは、規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図4の送信装置の位相変更部のために、5つの位相変更値(または、位相変更セット)を用意するものとする(実施の形態1から実施の形態4における「周期」となる)(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。この5つの位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],PHASE[3], PHASE[4]とあらわすものとする。
変調方式がQPSKのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた1500スロットにおいて、位相PHASE[0]を使用するスロットが300スロット、位相PHASE[1]を使用するスロットが300スロット、位相PHASE[2]を使用するスロットが300スロット、位相PHASE[3]を使用するスロットが300スロット、位相PHASE[4]を使用するスロットが300スロットである必要がある。これは、使用する位相にかたよりがあると、多くの数を使用した位相の影響が大きく、受信装置において、この影響に依存したデータの受信品質となるからである。
同様に、変調方式が16QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた750スロットにおいて、位相PHASE[0]を使用するスロットが150スロット、位相PHASE[1]を使用するスロットが150スロット、位相PHASE[2]を使用するスロットが150スロット、位相PHASE[3]を使用するスロットが150スロット、位相PHASE[4]を使用するスロットが150スロットである必要がある。
同様に、変調方式が64QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた500スロットにおいて、位相PHASE[0]を使用するスロットが100スロット、位相PHASE[1]を使用するスロットが100スロット、位相PHASE[2]を使用するスロットが100スロット、位相PHASE[3]を使用するスロットが100スロット、位相PHASE[4]を使用するスロットが100スロットである必要がある。
以上のように、規則的に位相を変更する方法において、用意する位相変更値(または、位相変更セット)をN個(N個の異なる位相をPHASE[0], PHASE[1], PHASE[2],・・・, PHASE[N-2] , PHASE[N-1]とあらわすものとする)としたとき、1つの符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用するスロット数をK, 位相PHASE[1]を使用するスロット数をK1、位相PHASE[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用するスロット数をKN-1としたとき、

<条件#A01>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であるとよい。
そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#A01>が成立するとよいことになる。
しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#A01>を満たすことができない変調方式が存在することもある。この場合、<条件#A01>にかわり、以下の条件を満たすとよい。

<条件#A02>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

図35は、ブロック符号を用いたとき、2つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図35は、図3の送信装置および図12の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図35に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、図3の送信装置および図12の送信装置では、2つのストリームを同時に送信することになり、また、2つの符号化器が存在するため、2つのストリームでは、異なる符号ブロックを伝送することになる。したがって、変調方式がQPSKのとき、s1、s2により、2つの符号化ブロックが同一区間内で送信されることから、例えば、s1により第1の符号化後のブロックが送信され、s2により、第2の符号化ブロックが送信されることになるので、第1、第2の符号化後のブロックを送信するために3000スロットが必要となる。
同様に考えると、変調方式が16QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1500スロットが必要となり、変調方式が64QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1000スロットが必要となる。
次に、規則的に位相を変更する方法において、上述で定義したスロットと乗じる位相との関係について説明する。
ここでは、規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図3および図12の送信装置の位相変更部のために、5つの位相変更値(または、位相変更セット)を用意するものとする(実施の形態1から実施の形態4における「周期」となる)(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。この5つの位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],PHASE[3], PHASE[4]とあらわすものとする。
変調方式がQPSKのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた3000スロットにおいて、位相PHASE[0]を使用するスロットが600スロット、位相PHASE[1]を使用するスロットが600スロット、位相PHASE[2]を使用するスロットが600スロット、位相PHASE[3]を使用するスロットが600スロット、位相PHASE[4]を使用するスロットが600スロットである必要がある。これは、使用する位相にかたよりがあると、多くの数を使用した位相の影響が大きく、受信装置において、この影響に依存したデータの受信品質となるからである。
また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが600回、位相PHASE[1]を使用するスロットが600回、位相PHASE[2]を使用するスロットが600回、位相PHASE[3]を使用するスロットが600回、位相PHASE[4]を使用するスロットが600回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが600回、位相PHASE[1]を使用するスロットが600回、位相PHASE[2]を使用するスロットが600回、位相PHASE[3]を使用するスロットが600回、位相PHASE[4]を使用するスロットが600回であるとよい。
同様に、変調方式が16QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1500スロットにおいて、位相PHASE[0]を使用するスロットが300スロット、位相PHASE[1]を使用するスロットが300スロット、位相PHASE[2]を使用するスロットが300スロット、位相PHASE[3]を使用するスロットが300スロット、位相PHASE[4]を使用するスロットが300スロットである必要がある。
また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが300回、位相PHASE[1]を使用するスロットが300回、位相PHASE[2]を使用するスロットが300回、位相PHASE[3]を使用するスロットが300回、位相PHASE[4]を使用するスロットが300回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが300回、位相PHASE[1]を使用するスロットが300回、位相PHASE[2]を使用するスロットが300回、位相PHASE[3]を使用するスロットが300回、位相PHASE[4]を使用するスロットが300回であるとよい。
同様に、変調方式が64QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1000スロットにおいて、位相PHASE[0]を使用するスロットが200スロット、位相PHASE[1]を使用するスロットが200スロット、位相PHASE[2]を使用するスロットが200スロット、位相PHASE[3]を使用するスロットが200スロット、位相PHASE[4]を使用するスロットが200スロットである必要がある。
また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが200回、位相PHASE[1]を使用するスロットが200回、位相PHASE[2]を使用するスロットが200回、位相PHASE[3]を使用するスロットが200回、位相PHASE[4]を使用するスロットが200回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが200回、位相PHASE[1]を使用するスロットが200回、位相PHASE[2]を使用するスロットが200回、位相PHASE[3]を使用するスロットが200回、位相PHASE[4]を使用するスロットが200回であるとよい。
以上のように、規則的に位相を変更する方法において、用意する位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],・・・, PHASE[N-2] , PHASE[N-1]とあらわすものとする)としたとき、2つの符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用するスロット数をK, 位相PHASE[1]を使用するスロット数をK1、位相PHASE[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用するスロット数をKN-1としたとき、

<条件#A03>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用する回数をK0,1, 位相PHASE[1]を使用する回数をK1,1、位相PHASE[i]を使用する回数をKi,1(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用する回数をKN-1,1としたとき、

<条件#A04>
0,1=K1,1=・・・=Ki,1=・・・=KN-1,1、つまり、Ka,1=Kb,1、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用する回数をK0,2, 位相PHASE[1]を使用する回数をK1,2、位相PHASE[i]を使用する回数をKi,2(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用する回数をKN-1,2としたとき、

<条件#A05>
0,2=K1,2=・・・=Ki,2=・・・=KN-1,2、つまり、Ka,2=Kb,2、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であるとよい。
そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#A03><条件#A04><条件#A05>が成立するとよいことになる。
しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#A03><条件#A04><条件#A05>を満たすことができない変調方式が存在することもある。この場合、<条件#A03><条件#A04><条件#A05>にかわり、以下の条件を満たすとよい。

<条件#A06>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

<条件#A07>
a,1とKb,1の差は0または1、つまり、|Ka,1―Kb,1|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

<条件#A08>
a,2とKb,2の差は0または1、つまり、|Ka,2―Kb,2|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

以上のように、符号化後のブロックと乗じる位相の関係付けを行うことで、符号化ブロックを伝送するために使用する位相にかたよりがなくなるため、受信装置において、データの受信品質が向上するという効果を得ることができる。
本実施の形態では、規則的に位相を変更する方法において、周期Nの位相変更方法のためには、N個の位相変更値(または、位相変更セット)が必要となる。このとき、N個の位相変更値(または、位相変更セット)として、PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]を用意することになるが、周波数軸方向にPHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]の順に並べる方法もあるが、必ずしもこれに限ったものではなく、N個の位相変更値(または、位相変更セット)PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]を実施の形態1と同様に、時間軸、周波数―時間軸のブロックに対し、シンボルを配置することで、位相を変更することもできる。なお、周期Nの位相変更方法として説明しているが、N個の位相変更値(または、位相変更セット)をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の位相変更値(または、位相変更セット)を用いる必要はないが、上記で説明した条件を満たすことは、受信装置において、高いデータの受信品質を得る上では、重要となる。
また、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法(実施の形態1から実施の形態4で説明した送信方法)のモードが存在し、送信装置(放送局、基地局)は、これらのモードから、いずれかの送信方法を選択することができるようにしてもよい。
なお、空間多重MIMO伝送方式とは、非特許文献3に示されているように、選択した変調方式でマッピングした信号s1、s2をそれぞれ異なるアンテナから送信する方法であり、プリコーディング行列が固定のMIMO伝送方式とは、実施の形態1から実施の形態4において、プリコーディングのみを行う(位相変更を行わない)方式である。また、時空間ブロック符号化方式とは、非特許文献9、16、17に示されている伝送方式である。1ストリームのみ送信とは、選択した変調方式でマッピングした信号s1の信号を所定の処理を行いアンテナから送信する方法である。
また、OFDMのようなマルチキャリアの伝送方式を用いており、複数のキャリアで構成された第1キャリア群、複数のキャリアで構成された第1キャリア群とは異なる第2キャリア群、・・・というように複数のキャリア群でマルチキャリア伝送を実現しており、キャリア群ごとに、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のいずれかに設定してもよく、
特に、規則的に位相を変更する方法を選択した(サブ)キャリア群では、本実施の形態を実施するとよい。
なお、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、PHASE[i]の位相変更値を「Xラジアン」とした場合、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになる。そして、両者のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、PHASE[i]の位相変更セットを「Xラジアン」および「Yラジアン」とした場合、図26、図27、図28、図52、図54における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになり、ejYをプリコーディング後のベースバンド信号z1’に乗算することになる。

(実施の形態B1)
以下では、上記各実施の形態で示した送信方法及び受信方法の応用例とそれを用いたシステムの構成例を説明する。
図36は、上記実施の形態で示した送信方法及び受信方法を実行する装置を含むシステムの構成例を示す図である。上記各実施の形態で示した送信方法及び受信方法は、図36に示すような放送局と、テレビ(テレビジョン)3611、DVDレコーダ3612、STB(Set Top Box)3613、コンピュータ3620、車載のテレビ3641及び携帯電話3630等の様々な種類の受信機を含むデジタル放送用システム3600において実施される。具体的には、放送局3601が、映像データや音声データ等が多重化された多重化データを上記各実施の形態で示した送信方法を用いて所定の伝送帯域に送信する。
放送局3601から送信された信号は、各受信機に内蔵された、または外部に設置され当該受信機と接続されたアンテナ(例えば、アンテナ3660、3640)で受信される。各受信機は、アンテナにおいて受信された信号を上記各実施の形態で示した受信方法を用いて復調し、多重化データを取得する。これにより、デジタル放送用システム3600は、上記各実施の形態で説明した本願発明の効果を得ることができる。
ここで、多重化データに含まれる映像データは、例えばMPEG(Moving Picture Experts Group)2、MPEG4−AVC(Advanced Video Coding)、VC−1などの規格に準拠した動画符号化方法を用いて符号化されている。また、多重化データに含まれる音声データは例えばドルビーAC(Audio Coding)−3、Dolby Digital Plus、MLP(Meridian Lossless Packing)、DTS(Digital Theater Systems)、DTS−HD、リニアPCM(Pulse Coding Modulation)等の音声符号化方法で符号化されている。
図37は、上記各実施の形態で説明した受信方法を実施する受信機7900の構成の一例を示す図である。図37に示す受信機3700は、図36に示したテレビ(テレビジョン)3611、DVDレコーダ3612、STB(Set Top Box)3613、コンピュータ3620、車載のテレビ3641及び携帯電話3630等が備える構成に相当する。受信機3700は、アンテナ3760で受信された高周波信号をベースバンド信号に変換するチューナ3701と、周波数変換されたベースバンド信号を復調して多重化データを取得する復調部3702とを備える。上記各実施の形態で示した受信方法は復調部3702において実施され、これにより上記各実施の形態で説明した本願発明の効果を得ることができる。
また、受信機3700は、復調部3702で得られた多重化データから映像データと音声データとを分離するストリーム入出力部3720と、分離された映像データに対応する動画像復号方法を用いて映像データを映像信号に復号し、分離された音声データに対応する音声復号方法を用いて音声データを音声信号に復号する信号処理部3704と、復号された音声信号を出力するスピーカ等の音声出力部3706と、復号された映像信号を表示するディスプレイ等の映像表示部3707とを有する。
例えば、ユーザは、リモコン(リモートコントローラ)3750を用いて、選局したチャネル(選局した(テレビ)番組、選局した音声放送)の情報を操作入力部3710に送信する。すると、受信機3700は、アンテナ3760で受信した受信信号において、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信機3700は、選局したチャネルに相当する信号に含まれる伝送方法(上記の実施の形態で述べた伝送方式、変調方式、誤り訂正方式等)(これについては、図5、図41に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。上述では、ユーザは、リモコン3750によって、チャネルを選局する例を説明したが、受信機3700が搭載している選局キーを用いて、チャネルを選局しても、上記と同様の動作となる。
上記の構成により、ユーザは、受信機3700が上記各実施の形態で示した受信方法により受信した番組を視聴することができる。
また、本実施の形態の受信機3700は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データ(場合によっては、復調部3702で復調されて得られる信号に対して誤り訂正復号を行わないこともある。また、受信機3700は、誤り訂正復号後に他の信号処理が施されることもある。以降について、同様の表現を行っている部分についても、この点は同様である。)に含まれるデータ、または、そのデータに相当するデータ(例えば、データを圧縮することによって得られたデータ)や、動画、音声を加工して得られたデータを、磁気ディスク、光ディスク、不揮発性の半導体メモリ等の記録メディアに記録する記録部(ドライブ)3708を備える。ここで光ディスクとは、例えばDVD(Digital Versatile Disc)やBD(Blu−ray Disc)(登録商標)等の、レーザ光を用いて情報の記憶と読み出しがなされる記録メディアである。磁気ディスクとは、例えばFD(Floppy Disk)(登録商標)やハードディスク(Hard Disk)等の、磁束を用いて磁性体を磁化することにより情報を記憶する記録メディアである。不揮発性の半導体メモリとは、例えばフラッシュメモリや強誘電体メモリ(Ferroelectric Random Access Memory)等の、半導体素子により構成された記録メディアであり、フラッシュメモリを用いたSDカードやFlash SSD(Solid State Drive)などが挙げられる。なお、ここで挙げた記録メディアの種類はあくまでその一例であり、上記の記録メディア以外の記録メディアを用いて記録を行っても良いことは言うまでもない。
上記の構成により、ユーザは、受信機3700が上記各実施の形態で示した受信方法により受信した番組を記録して保存し、番組の放送されている時間以降の任意の時間に記録されたデータを読み出して視聴することが可能になる。
なお、上記の説明では、受信機3700は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを記録部3708で記録するとしたが、多重化データに含まれるデータのうち一部のデータを抽出して記録しても良い。例えば、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに映像データや音声データ以外のデータ放送サービスのコンテンツ等が含まれる場合、記録部3708は、復調部3702で復調された多重化データから映像データや音声データを抽出して多重した新しい多重化データを記録しても良い。また、記録部3708は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データ及び音声データのうち、どちらか一方のみを多重した新しい多重化データを記録しても良い。そして、上記で述べた多重化データに含まれるデータ放送サービスのコンテンツを記録部3708は、記録してもよい。
さらには、テレビ、記録装置(例えば、DVDレコーダ、Blu−rayレコーダ、HDDレコーダ、SDカード等)、携帯電話に、本発明で説明した受信機3700が搭載されている場合、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに、テレビや記録装置を動作させるのに使用するソフトウェアの欠陥(バグ)を修正するためのデータや個人情報や記録したデータの流出を防ぐためのソフトウェアの欠陥(バグ)を修正するためのデータが含まれている場合、これらのデータをインストールすることで、テレビや記録装置のソフトウェアの欠陥を修正してもよい。そして、データに、受信機3700のソフトウェアの欠陥(バグ)を修正するためのデータが含まれていた場合、このデータにより、受信機3700の欠陥を修正することもできる。これにより、受信機3700が搭載されているテレビ、記録装置、携帯電話が、より安定的の動作させることが可能となる。
ここで、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる複数のデータから一部のデータを抽出して多重する処理は、例えばストリーム入出力部3703で行われる。具体的には、ストリーム入出力部3703が、図示していないCPU等の制御部からの指示により、復調部3702で復調された多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離し、分離後のデータから指定されたデータのみを抽出して多重し、新しい多重化データを生成する。なお、分離後のデータからどのデータを抽出するかについては、例えばユーザが決定してもよいし、記録メディアの種類毎に予め決められていてもよい。
上記の構成により、受信機3700は記録された番組を視聴する際に必要なデータのみを抽出して記録することができるので、記録するデータのデータサイズを削減することができる。
また、上記の説明では、記録部3708は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを記録するとしたが、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データを、当該映像データよりもデータサイズまたはビットレートが低くなるよう、当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換し、変換後の映像データを多重した新しい多重化データを記録してもよい。このとき、元の映像データに施された動画像符号化方法と変換後の映像データに施された動画像符号化方法とは、互いに異なる規格に準拠していてもよいし、同じ規格に準拠して符号化時に使用するパラメータのみが異なっていてもよい。同様に、記録部3708は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる音声データを、当該音声データよりもデータサイズまたはビットレートが低くなるよう、当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換し、変換後の音声データを多重した新しい多重化データを記録してもよい。
ここで、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データや音声データをデータサイズまたはビットレートが異なる映像データや音声データに変換する処理は、例えばストリーム入出力部3703及び信号処理部3704で行われる。具体的には、ストリーム入出力部3703が、CPU等の制御部からの指示により、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離する。信号処理部3704は、制御部からの指示により、分離後の映像データを当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換する処理、及び分離後の音声データを当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換する処理を行う。ストリーム入出力部3703は、制御部からの指示により、変換後の映像データと変換後の音声データとを多重し、新しい多重化データを生成する。なお、信号処理部3704は制御部からの指示に応じて、映像データと音声データのうちいずれか一方に対してのみ変換の処理を行っても良いし、両方に対して変換の処理を行っても良い。また、変換後の映像データ及び音声データのデータサイズまたはビットレートは、ユーザが決定してもよいし、記録メディアの種類毎に予め決められていてもよい。
上記の構成により、受信機3700は、記録メディアに記録可能なデータサイズや記録部3708がデータの記録または読み出しを行う速度に合わせて映像データや音声データのデータサイズまたはビットレートを変更して記録することができる。これにより、記録メディアに記録可能なデータサイズが復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データのデータサイズよりも小さい場合や、記録部がデータの記録または読み出しを行う速度が復調部3702で復調された多重化データのビットレートよりも低い場合でも記録部が番組を記録することが可能となるので、ユーザは番組の放送されている時間以降の任意の時間に記録されたデータを読み出して視聴することが可能になる。
また、受信機3700は、復調部3702で復調された多重化データを外部機器に対して通信媒体3730を介して送信するストリーム出力IF(Interface:インターフェース)3709を備える。ストリーム出力IF3709の一例としては、Wi−Fi(登録商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth(登録商標)、Zigbee(登録商標)等の無線通信規格に準拠した無線通信方法を用いて変調した多重化データを、無線媒体(通信媒体3730に相当)を介して外部機器に送信する無線通信装置が挙げられる。また、ストリーム出力IF3709は、イーサネット(登録商標)やUSB(Universal Serial Bus)、PLC(Power Line Communication)、HDMI(High−Definition Multimedia Interface)(登録商標)等の有線通信規格に準拠した通信方法を用いて変調された多重化データを当該ストリーム出力IF3709に接続された有線伝送路(通信媒体3730に相当)を介して外部機器に送信する有線通信装置であってもよい。
上記の構成により、ユーザは、受信機3700が上記各実施の形態で示した受信方法により受信した多重化データを外部機器で利用することができる。ここでいう多重化データの利用とは、ユーザが外部機器を用いて多重化データをリアルタイムで視聴することや、外部機器に備えられた記録部で多重化データを記録すること、外部機器からさらに別の外部機器に対して多重化データを送信すること等を含む。
なお、上記の説明では、受信機3700は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データをストリーム出力IF3709が出力するとしたが、多重化データに含まれるデータのうち一部のデータを抽出して出力しても良い。例えば、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに映像データや音声データ以外のデータ放送サービスのコンテンツ等が含まれる場合、ストリーム出力IF3709は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データから映像データや音声データを抽出して多重した新しい多重化データを出力しても良い。また、ストリーム出力IF3709は、復調部3702で復調された多重化データに含まれる映像データ及び音声データのうち、どちらか一方のみを多重した新しい多重化データを出力しても良い。
ここで、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる複数のデータから一部のデータを抽出して多重する処理は、例えばストリーム入出力部3703で行われる。具体的には、ストリーム入出力部3703が、図示していないCPU(Central Processing Unit)等の制御部からの指示により、復調部3702で復調された多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離し、分離後のデータから指定されたデータのみを抽出して多重し、新しい多重化データを生成する。なお、分離後のデータからどのデータを抽出するかについては、例えばユーザが決定してもよいし、ストリーム出力IF3709の種類毎に予め決められていてもよい。
上記の構成により、受信機3700は外部機器が必要なデータのみを抽出して出力することができるので、多重化データの出力により消費される通信帯域を削減することができる。
また、上記の説明では、ストリーム出力IF3709は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを出力するとしたが、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データを、当該映像データよりもデータサイズまたはビットレートが低くなるよう、当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換し、変換後の映像データを多重した新しい多重化データを出力してもよい。このとき、元の映像データに施された動画像符号化方法と変換後の映像データに施された動画像符号化方法とは、互いに異なる規格に準拠していてもよいし、同じ規格に準拠して符号化時に使用するパラメータのみが異なっていてもよい。同様に、ストリーム出力IF3709は、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる音声データを、当該音声データよりもデータサイズまたはビットレートが低くなるよう、当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換し、変換後の音声データを多重した新しい多重化データを出力してもよい。
ここで、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データに含まれる映像データや音声データをデータサイズまたはビットレートが異なる映像データや音声データに変換する処理は、例えばストリーム入出力部3703及び信号処理部3704で行われる。具体的には、ストリーム入出力部3703が、制御部からの指示により、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを映像データ、音声データ、データ放送サービスのコンテンツ等の複数のデータに分離する。信号処理部3704は、制御部からの指示により、分離後の映像データを当該映像データに施された動画像符号化方法とは異なる動画像符号化方法で符号化された映像データに変換する処理、及び分離後の音声データを当該音声データに施された音声符号化方法とは異なる音声符号化方法で符号化された音声データに変換する処理を行う。ストリーム入出力部3703は、制御部からの指示により、変換後の映像データと変換後の音声データとを多重し、新しい多重化データを生成する。なお、信号処理部3704は制御部からの指示に応じて、映像データと音声データのうちいずれか一方に対してのみ変換の処理を行っても良いし、両方に対して変換の処理を行っても良い。また、変換後の映像データ及び音声データのデータサイズまたはビットレートは、ユーザが決定してもよいし、ストリーム出力IF3709の種類毎に予め決められていてもよい。
上記の構成により、受信機3700は、外部機器との間の通信速度に合わせて映像データや音声データのビットレートを変更して出力することができる。これにより、外部機器との間の通信速度が、復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データのビットレートよりも低い場合でもストリーム出力IFから外部機器新しい多重化データを出力することが可能となるので、ユーザは他の通信装置において新しい多重化データを利用することが可能になる。
また、受信機3700は、外部機器に対して信号処理部3704で復号された映像信号及び音声信号を外部の通信媒体に対して出力するAV(Audio and Visual)出力IF(Interface)3711を備える。AV出力IF3711の一例としては、Wi−Fi(登録商標)(IEEE802.11a、IEEE802.11b、IEEE802.11g、IEEE802.11n等)、WiGiG、WirelessHD、Bluetooth、Zigbee等の無線通信規格に準拠した無線通信方法を用いて変調した映像信号及び音声信号を、無線媒体を介して外部機器に送信する無線通信装置が挙げられる。また、ストリーム出力IF3709は、イーサネット(登録商標)やUSB、PLC、HDMI等の有線通信規格に準拠した通信方法を用いて変調された映像信号及び音声信号を当該ストリーム出力IF3709に接続された有線伝送路を介して外部機器に送信する有線通信装置であってもよい。また、ストリーム出力IF3709は、映像信号及び音声信号をアナログ信号のまま出力するケーブルを接続する端子であってもよい。
上記の構成により、ユーザは、信号処理部3704で復号された映像信号及び音声信号を外部機器で利用することができる。
さらに、受信機3700は、ユーザ操作の入力を受け付ける操作入力部3710を備える。受信機3700は、ユーザの操作に応じて操作入力部3710に入力される制御信号に基づいて、電源のON/OFFの切り替えや、受信するチャネルの切り替え、字幕表示の有無や表示する言語の切り替え、音声出力部3706から出力される音量の変更等の様々な動作の切り替えや、受信可能なチャネルの設定等の設定の変更を行う。
また、受信機3700は、当該受信機3700で受信中の信号の受信品質を示すアンテナレベルを表示する機能を備えていてもよい。ここで、アンテナレベルとは、例えば受信機3700が受信した信号のRSSI(Received Signal Strength Indication、Received Signal Strength Indicator、受信信号強度)、受信電界強度、C/N(Carrier−to−noise power ratio)、BER(Bit Error Rate:ビットエラー率)、パケットエラー率、フレームエラー率、チャネル状態情報(Channel State Information)等に基づいて算出される受信品質を示す指標であり、信号レベル、信号の優劣を示す信号である。この場合、復調部3702は受信した信号のRSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等を測定する受信品質測定部を備え、受信機3700はユーザの操作に応じてアンテナレベル(信号レベル、信号の優劣を示す信号)をユーザが識別可能な形式で映像表示部3707に表示する。アンテナレベル(信号レベル、信号の優劣を示す信号)の表示形式は、RSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等に応じた数値を表示するものであっても良いし、RSSI、受信電界強度、C/N、BER、パケットエラー率、フレームエラー率、チャネル状態情報等に応じて異なる画像を表示するようなものであっても良い。また、受信機3700は、上記各実施の形態で示した受信方法を用いて受信して分離された複数のストリームs1、s2、・・・毎に求めた複数のアンテナレベル(信号レベル、信号の優劣を示す信号)を表示しても良いし、複数のストリームs1、s2、・・・から求めた1つのアンテナレベル(信号レベル、信号の優劣を示す信号)を表示しても良い。また、番組を構成する映像データや音声データが階層伝送方式を用いて送信されている場合は、階層毎に信号のレベル(信号の優劣を示す信号)を示しても可能である。
上記の構成により、ユーザは上記各実施の形態で示した受信方法を用いて受信する場合のアンテナレベル(信号レベル、信号の優劣を示す信号)を数値的に、または、視覚的に把握することができる。
なお、上記の説明では受信機3700が、音声出力部3706、映像表示部3707、記録部3708、ストリーム出力IF3709、及びAV出力IF3711を備えている場合を例に挙げて説明したが、これらの構成の全てを備えている必要はない。受信機3700が上記の構成のうち少なくともいずれか一つを備えていれば、ユーザは復調部3702で復調し、誤り訂正の復号を行うことで得られた多重化データを利用することができるため、各受信機はその用途に合わせて上記の構成を任意に組み合わせて備えていれば良い。
(多重化データ)
次に、多重化データの構造の一例について詳細に説明する。放送に用いられるデータ構造としてはMPEG2−トランスポートストリーム(TS)が一般的であり、ここではMPEG2−TSを例に挙げて説明する。しかし、上記各実施の形態で示した送信方法及び受信方法で伝送される多重化データのデータ構造はMPEG2−TSに限られず、他のいかなるデータ構造であっても上記の各実施の形態で説明した効果を得られることは言うまでもない。
図38は、多重化データの構成の一例を示す図である。図38に示すように多重化データは、各サービスで現在提供されている番組(programまたはその一部であるevent)を構成する要素である、例えばビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラファイックスストリーム(IG)などのエレメンタリーストリームのうち、1つ以上を多重化することで得られる。多重化データで提供されている番組が映画の場合、ビデオストリームは映画の主映像および副映像を、オーディオストリームは映画の主音声部分と当該主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームとは映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像(例えば、映画のあらすじを示したテキストデータの映像など)のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。
多重化データに含まれる各ストリームは、各ストリームに割り当てられた識別子であるPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。
図39は、多重化データがどのように多重化されているかの一例を模式的に示す図である。まず、複数のビデオフレームからなるビデオストリーム3901、複数のオーディオフレームからなるオーディオストリーム3904を、それぞれPESパケット列3902および3905に変換し、TSパケット3903および3906に変換する。同じくプレゼンテーショングラフィックスストリーム3911およびインタラクティブグラフィックス3914のデータをそれぞれPESパケット列3912および3915に変換し、さらにTSパケット3913および3916に変換する。多重化データ3917はこれらのTSパケット(3903、3906、3913、3916)を1本のストリームに多重化することで構成される。
図40は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図40における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図40の矢印yy1,yy2,yy3,yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time−Stamp)やピクチャの復号時刻であるDTS(Decoding Time−Stamp)が格納される。
図41は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD−ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図41下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。
また、多重化データに含まれるTSパケットには、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリームなどの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自体のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報(フレームレート、アスペクト比など)を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。
図42は、PMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためのストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。
記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。
図43は、その多重化データ情報ファイルの構成を示す図である。多重化データ情報ファイルは、図43に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。
多重化データ情報は図43に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。
図44は、多重化データ情報ファイルに含まれるストリーム属性情報の構成を示す図である。ストリーム属性情報は図44に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。
本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。
図45は、放送局(基地局)から送信された、映像および音声のデータ、または、データ放送のためのデータを含む変調信号を受信する受信装置4504を含む映像音声出力装置4500の構成の一例を示している。なお、受信装置4504の構成は、図37の受信装置3700に相当する。映像音声出力装置4500には、例えば、OS(Operating System:オペレーティングシステム)が搭載されており、また、インターネットに接続するための通信装置4506(例えば、無線LAN(Local Area Network)やイーザーネットのための通信装置)が搭載されている。これにより、映像を表示する部分4501では、映像および音声のデータ、または、データ放送のためのデータにおける映像4502、および、インターネット上で提供されるハイパーテキスト(World Wide Web(ワールド ワイド ウェブ:WWW))4503を同時に表示することが可能となる。そして、リモコン(携帯電話やキーボードであってもよい)4507を操作することにより、データ放送のためのデータにおける映像4502、インターネット上で提供されるハイパーテキスト4503のいずれかを選択し、動作を変更することになる。例えば、インターネット上で提供されるハイパーテキスト4503が選択された場合、表示しているWWWのサイトを、リモコンを操作することにより、変更することになる。また、映像および音声のデータ、または、データ放送のためのデータにおける映像4502が選択されている場合、リモコン4507により、選局したチャネル(選局した(テレビ)番組、選局した音声放送)の情報を送信する。すると、IF4505は、リモコンで送信された情報を取得し、受信装置4504は、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信装置4504は、選局したチャネルに相当する信号に含まれる伝送方法(これについては、図5に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。上述では、ユーザは、リモコン4507によって、チャネルを選局する例を説明したが、映像音声出力装置4500が搭載している選局キーを用いて、チャネルを選局しても、上記と同様の動作となる。
また、インターネットを用い、映像音声出力装置4500を操作してもよい。例えば、他のインターネット接続している端末から、映像音声出力装置4500に対し、録画(記憶)の予約を行う。(したがって、映像音声出力装置4500は、図37のように、記録部3708を有していることになる。)そして、録画を開始する前に、チャネルを選局することになり、受信装置4504は、選局したチャネルに相当する信号を復調、誤り訂正復号等の処理を行い、受信データを得ることになる。このとき、受信装置4504は、選局したチャネルに相当する信号に含まれる伝送方法(上記の実施の形態で述べた伝送方式、変調方式、誤り訂正方式等)(これについては、図5に記載のとおりである。)の情報を含む制御シンボルの情報を得ることで、受信動作、復調方法、誤り訂正復号等の方法を正しく設定することで、放送局(基地局)で送信したデータシンボルに含まれるデータを得ることが可能となる。

(その他補足)
本明細書において、送信装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器であることが考えられ、このとき、受信装置を具備しているのは、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本発明における送信装置、受信装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェース(例えば、USB)を介して接続できるような形態であることも考えられる。
また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(パイロットシンボルをプリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル、スキャッタードパイロット等と呼んでもよい。)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。そして、ここでは、パイロットシンボル、制御情報用のシンボルと名付けているが、どのような名付け方を行ってもよく、機能自身が重要となっている。
パイロットシンボルは、例えば、送受信機において、PSK変調を用いて変調した既知のシンボル(または、受信機が同期をとることによって、受信機は、送信機が送信したシンボルを知ることができてもよい。)であればよく、受信機は、このシンボルを用いて、周波数同期、時間同期、(各変調信号の)チャネル推定(CSI(Channel State Information)の推定)、信号の検出等を行うことになる。
また、制御情報用のシンボルは、(アプリケーション等の)データ以外の通信を実現するための、通信相手に伝送する必要がある情報(例えば、通信に用いている変調方式・誤り訂正符号化方式・誤り訂正符号化方式の符号化率、上位レイヤーでの設定情報等)を伝送するためのシンボルである。
なお、本発明はすべての実施の形態に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェアとして行うことも可能である。
また、上記では、2つの変調信号を2つのアンテナから送信する方法における位相変更方法について説明したが、これに限ったものではなく、4つのマッピング後の信号に対し、プリコーディングを行うとともに位相を変更して、4つの変調信号を生成し、4つのアンテナから送信する方法、つまり、N個のマッピング後の信号に対し、プリコーディングを行い、N個の変調信号を生成し、N個のアンテナから送信する方法においても同様に位相を規則的に変更する、位相変更方法としても同様に実施することができる。
また、上記実施の形態に示したシステム例では、2つの変調信号を2つのアンテナから送信し、それぞれを2つのアンテナで受信するMIMO方式の通信システムを開示したが、本発明は、当然にMISO(Multiple Input Single Output)方式の通信システムにも適用できる。MISO方式の場合、受信装置は、図7に示す構成のうち、アンテナ701_Y、無線部703_Y、変調信号z1のチャネル変動推定部707_1、変調信号z2のチャネル変動推定部707_2がない構成となるが、この場合であっても、上記実施の形態1に示した処理を実行することで、r1、r2それぞれを推定することができる。なお、同一周波数帯、同一時間において、送信された複数の信号を1つのアンテナで受信して復号できることは周知のことであり、本明細書においては、信号処理部における送信側で変更された位相を戻すための処理が従来技術に追加される処理となる。
また、本発明の説明で示したシステム例では、2つの変調信号を2つのアンテナから送信し、それぞれを2つのアンテナで受信するMIMO方式の通信システムを開示したが、本発明は、当然にMISO(Multiple Input Single Output)方式の通信システムにも適用できる。MISO方式の場合、送信装置において、プリコーディングと位相変更を適用している点は、これまでの説明のとおりである。一方で、受信装置は、図7に示す構成のうち、アンテナ701_Y、無線部703_Y、変調信号z1のチャネル変動推定部707_1、変調信号z2のチャネル変動推定部707_2がない構成となるが、この場合であっても、本明細書の中で示した処理を実行することで、送信装置が送信したデータを推定することができる。なお、同一周波数帯、同一時間において、送信された複数の信号を1つのアンテナで受信して復号できることは周知のこと(1アンテナ受信において、ML演算等(Max-log APP等)の処理を施せばよい。)であり、本発明では、図7の信号処理部711において、送信側で用いたプリコーディングと位相変更を考慮した復調(検波)を行えばよいことになる。
本明細書では、「プリコーディング」「プリコーディングウェイト」「プリコーディング行列」等の用語を用いているが、呼び方自身は、どのようなものでもよく(例えば、コードブック(codebook)と呼んでもよい。)、本発明では、その信号処理自身が重要となる。
また、本明細書では、送信方法としてOFDM方式を用いた場合を中心に説明したが、これに限ったものではなく、OFDM方式以外のマルチキャリア方式、シングルキャリア方式を用いた場合にも同様に実施することは可能である。このとき、スペクトル拡散通信方式を用いていてもよい。なお、シングルキャリア方式を用いている場合、位相変更は時間軸方向で位相変更が行われることになる。
また、本明細書において、受信装置で、ML演算、APP、Max-log APP、ZF、MMSE等を用いて説明しているが、この結果、送信装置が送信したデータの各ビットの軟判定結果(対数尤度、対数尤度比)や硬判定結果(「0」または「1」)を得ることになるが、これらを総称して、検波、復調、検出、推定、分離と呼んでもよい。
ストリームs1(t)、s2(t)(s1(i)、s2(i))により、異なるデータを伝送してもよいし、同一のデータを伝送してもよい。
また、2ストリームのベースバンド信号s1(i)、s2(i)(ただし、iは、(時間、または、周波数(キャリア)の)順番をあらわす)に対し、規則的な位相変更およびプリコーディングを行い(順番はどちらが先であってもよい)生成された、両者の信号処理後のベースバンド信号z1(i)、z2(i)において、両者の信号処理後のベースバンド信号z1(i)の同相I成分をI(i)、直交成分をQ(i)とし、両者の信号処理後のベースバンド信号z2(i)の同相I成分をI(i)、直交成分をQ(i)とする。このとき、ベースバンド成分の入れ替えを行い、
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
とし、入れ替え後のベースバンド信号r1(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号r2(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号r1(i)に相当する変調信号と入れ替え後のベースバンド信号r2(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信するとしてもよい。また、
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)
としてもよい。また、上述では、2ストリームの信号に対し両者の信号処理を行い、両者の信号処理後の信号の同相成分と直交成分の入れ替えについて説明したが、これに限ったものではなく、2ストリームより多い信号に対し両者の信号処理後を行い、両者の信号処理後の信号の同相成分と直交成分の入れ替えを行うことも可能である。
また、上記の例では、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えを説明しているが、同一時刻のベースバンド信号の入れ替えでなくてもよい。例として、以下のように記述することができる
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をI(i+w)
図55は、上記の記載を説明するためのベースバンド信号入れ替え部5502を示す図である。図55に示すように、両者の信号処理後のベースバンド信号z1(i)5501_1、z2(i)5501_2において、両者の信号処理後のベースバンド信号z1(i)5501_1の同相I成分をI(i)、直交成分をQ(i)とし、両者の信号処理後のベースバンド信号z2(i)5501_2の同相I成分をI(i)、直交成分をQ(i)とする。そして、入れ替え後のベースバンド信号r1(i)5503_1の同相成分をIr1(i)、直交成分をQr1(i)、入れ替え後のベースバンド信号r2(i)5503_2の同相成分をIr2(i)、直交成分をQr2(i)とすると、入れ替え後のベースバンド信号r1(i)5503_1の同相成分Ir1(i)、直交成分Qr1(i)、入れ替え後のベースバンド信号r2(i)5503_2の同相成分Ir2(i)、直交成分をQr2(i)は上述で説明したいずれかであらわされるものとする。なお、この例では、同一時刻(同一周波数((サブ)キャリア))の両者の信号処理後のベースバンド信号の入れ替えについて説明したが、上述のように、異なる時刻(異なる周波数((サブ)キャリア))の両者の信号処理後のベースバンド信号の入れ替えであってもよい。
送信装置の送信アンテナ、受信装置の受信アンテナ、共に、図面で記載されている1つのアンテナは、複数のアンテナにより構成されていても良い。
本明細書において、「∀」は全称記号(universal quantifier)をあらわしており、「∃」は存在記号(existential quantifier)をあらわしている。
また、本明細書において、複素平面における、例えば、偏角のような、位相の単位は、「ラジアン(radian)」としている。
複素平面を利用すると、複素数の極座標による表示として極形式で表示できる。複素数 z = a + jb (a、bはともに実数であり、jは虚数単位である)に、複素平面上の点 (a, b) を対応させたとき、この点が極座標で[r, θ] とあらわされるなら、
a=r×cosθ、
b=r×sinθ
Figure 2020061771
が成り立ち、r は z の絶対値 (r = |z|) であり、θ が偏角 (argument)となる。そして、z = a + jbは、rejθとあらわされる。
本発明の説明において、ベースバンド信号、s1、s2、z1、z2は複素信号となるが、複素信号とは、同相信号をI、直交信号をQとしたとき、複素信号はI + jQ(jは虚数単位)とあらわされることになる。このとき、Iがゼロとなってもよいし、Qがゼロとなってもよい。
本明細書で説明した位相変更方法を用いた放送システムの一例を図46に示す。図46において、映像符号化部4601は、映像を入力とし、映像符号化を行い、映像符号化後のデータ4602を出力する。音声符号化部4603は、音声を入力とし、音声符号化を行い、音声符号化後のデータ4604を出力する。データ符号化部4605は、データを入力とし、データの符号化(例えば、データ圧縮)を行い、データ符号化後のデータ4606を出力する。これらをまとめて、情報源符号化部4600とする。
送信部4607は、映像符号化後のデータ4602、音声符号化後のデータ4604、データ符号化後のデータ4606を入力とし、これらのデータのいずれか、または、これらのデータ全てを送信データとし、誤り訂正符号化、変調、プリコーディング、位相変更等の処理(例えば、図3の送信装置における信号処理)を施し、送信信号4608_1から4608_Nを出力する。そして、送信信号4608_1から4608_Nはそれぞれアンテナ4609_1から4609_Nにより、電波として送信される。
受信部4612は、アンテナ4610_1から4610_Mで受信した受信信号4611_1から4611_Mを入力とし、周波数変換、位相変更、プリコーディングのデコード、対数尤度比算出、誤り訂正復号等の処理(例えば、図7の受信装置における処理)を施し、受信データ4613、4615、4617を出力する。情報源復号部4619は、受信データ4613、4615、4617を入力とし、映像復号化部4614は、受信データ4613を入力とし、映像用の復号を行い、映像信号を出力し、映像は、テレビ、ディスプレーに表示される。また、音声復号化部4616は、受信データ4615を入力とし。音声用の復号を行い、音声信号を出力し、音声は、スピーカーから流れる。また、データ復号化部4618は、受信データ4617を入力とし、データ用の復号を行い、データの情報を出力する。
また、本発明の説明を行っている実施の形態において、以前にも説明したようにOFDM方式のようなマルチキャリア伝送方式において、送信装置が保有している符号化器の数は、いくつであってもよい。したがって、例えば、図4のように、送信装置が、符号化器を1つ具備し、出力を分配する方法を、OFDM方式のようなマルチキャリア伝送方式にも適用することも当然可能である。このとき、図4の無線部310A、310Bを図12のOFDM方式関連処理部1301A、1301Bに置き換えればよいことになる。このとき、OFDM方式関連処理部の説明は、実施の形態1のとおりである。
また、実施の形態1において、プリコーディング行列の例として、式(36)を与えたが、これとは別にプリコーディング行列として以下の式を用いる方法が考えられる。
Figure 2020061771
なお、プリコーディング式(36)、式(50)において、αの値として、式(37)、式(38)を設定することを記載したが、これに限ったものではなく、α=1と設定すると、簡単なプリコーディング行列となるので、この値も有効な値の一つである。
また、実施の形態A1において、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、周期Nのための位相変更値(図3、図4、図6、図12、図25、図29、図51、図53では、一方のベースバンド信号にのみ、位相変更を与えることになるので、位相変更値となる。)として、PHASE[i](i=0,1,2,・・・,N-2,N-1(iは0以上N-1以下の整数))と表現した。そして、本明細書において、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合(つまり、図3、図4、図6、図12、図25、図29、図51、図53)、図3、図4、図6、図12、図25、図29、図51、図53において、プリコーディング後のベースバンド信号z2’のみに位相変更を与えている。このとき、PHASE[k]を以下のように与える。
Figure 2020061771
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とする。そして、N=5, 7, 9, 11, 15とすると受信装置において、良好なデータの受信品質を得ることができる。
また、本明細書では、2つの変調信号を複数のアンテナで送信する場合における位相変更方法について詳しく説明したが、これに限ったものでは、なく、3つ以上の変調方式のマッピングを行ったベースバンド信号に対し、プリコーディング、位相変更を行い、プリコーディング、位相変更後のベースバンド信号に対し、所定の処理を行い、複数のアンテナから送信する場合についても、同様に実施することができる。
なお、例えば、上記通信方法を実行するプログラムを予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
また、上記通信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
そして、上記の各実施の形態などの各構成は、典型的には集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。 ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。
さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適用等が可能性としてあり得る。

(実施の形態C1)
本実施の形態では、実施の形態1で、送信パラメータを変更した際、使用するプリコーディング行列を切り替える場合について説明したが、本実施の形態では、その詳細の例について、上述の(その他の補足)で述べたように、送信パラメータとして、ストリームs1(t)、s2(t)において、異なるデータを伝送する場合と同一のデータを伝送する場合で切り替えるときに、使用するプリコーディング行列を切り替える方法、および、これに伴う位相変更方法について説明する。
本実施の形態の例では、異なる2つの送信アンテナからそれぞれ変調信号を送信する場合、それぞれの変調信号において同一のデータを含んでいる場合と、それぞれの変調信号において異なるデータを送信する場合を切り替えるときについて説明する。
図56は、前述のように送信方法を切り替える場合の送信装置の構成の一例を示している。図56において、図54と同様に動作するものについては同一符号を付している。図56において、分配部404は、フレーム構成信号313を入力としていることが、図54と異なる点となる。分配部404の動作について、図57を用いて説明する。
図57に、同一データを送信する場合と異なるデータを送信する場合の分配部404の動作を示している。図57に示すように、符号化後のデータをx1、x2、x3、x4、x5、x6、・・・とすると、同一データを送信する場合、分配後のデータ405Aは、x1、x2、x3、x4、x5、x6、・・・とあらわされ、同様に、分配後のデータ405Bは、x1、x2、x3、x4、x5、x6、・・・とあらわされる。
一方、異なるデータを送信する場合、分配後のデータ405Aは、x1、x3、x5、x7、x9、・・・とあらわされ、分配後のデータ405Bは、x2、x4、x6、x8、x10、・・・とあらわされる。
なお、分配部404は、入力信号であるフレーム構成信号313により、送信モードが、同一データを送信する場合、異なるデータを送信する場合を判断することになる。
上記の別の方法としては、図58のように、同一データ送信を行う場合、分配部404は、分配後のデータ405Aとしてx1、x2、x3、x4、x5、x6、・・・を出力し、分配後のデータ405Bには、出力を行わない。したがって、フレーム構成信号313が、「同一データ送信」を示している場合、分配部404の動作は上述のとおりであり、また、図56におけるインタリーバ304B、マッピング部306Bは動作しないことになる。そして、図56におけるマッピング部306Aの出力であるベースバンド信号307Aのみが有効となり、重み付け合成部308Aおよび308Bの両者の入力信号となる。
本実施の形態において、一つの特徴となる点は、送信モードを、同一データを送信する場合と異なるデータを送信する場合の切り替えを行う場合に、プリコーディング行列を切り替える点である。実施の形態1の式(36)、式(39)で示したように、w11、w12、w21、w22で構成される行列であらわした場合、同一データを送信する場合のプリコーディング行列は、以下のようにあらわすとよい。
Figure 2020061771
式(52)において、aは実数とする(aは複素数であってもよいが、プリコーディングにより、入力するベースバンド信号に位相変更を与えることになるので、回路規模がなるべく大きく、複雑にならないようにすることを考慮すると、実数であったほうがよい。)また、aが1の場合、重み付け合成部308A、308Bは、重み付け合成の動作をせずに、入力信号をそのまま出力することになる。
したがって、「同一データを送信する」場合、重み付け合成部308A、308Bの出力信号となる、重み付け合成後のベースバンド信号309Aと重み付け合成後のベースバンド信号316Bは同一の信号となる。
そして、位相変更部5201は、フレーム構成信号313が「同一データを送信する」であることを示している場合、重み付け合成後のベースバンド信号309Aに位相変更を施し、位相変更後のベースバンド信号5202を出力する。そして、位相変更部317Bは、フレーム構成信号313が「同一データを送信する」であることを示している場合、重み付け合成後のベースバンド信号316Bに位相変更を施し、位相変更後のベースバンド信号309Bを出力する。なお、位相変更部5201で施す位相変更をejA(t)(または、ejA(f)または、ejA(t、f))(ただし、tは時間、fは周波数)とし(したがって、ejA(t)(または、ejA(f)または、ejA(t、f))は、入力されたベースバンド信号に乗算する値である。)、位相変更部317Bで施す位相変更をejB(t)(または、ejB(f)または、ejB(t、f))(ただし、tは時間、fは周波数)とすると(したがって、ejB(t)(または、ejB(f)または、ejB(t、f))は、入力されたベースバンド信号に乗算する値である。)、以下の条件を満たすことが重要となる。
Figure 2020061771
このようにすることで、送信信号は、マルチパスの影響を軽減することができるため、受信装置において、データの受信品質を向上させることができる。(ただし、位相変更は、重み付け合成後のベースバンド信号309Aと重み付け合成後のベースバンド信号316Bのうち、一方のみに行う構成としてもよい。)
なお、図56において、位相変更後のベースバンド信号5202は、OFDMを用いている場合、IFFT、周波数変換等の処理を施し、送信アンテナから送信される。(図13参照)(したがって、位相変更後のベースバンド信号5202は、図13の信号1301Aであると考えればよい。)同様に、位相変更後のベースバンド信号309Bは、OFDMを用いている場合、IFFT、周波数変換等の処理を施し、送信アンテナから送信される。(図13参照)(したがって、位相変更後のベースバンド信号309Bは、図13の信号1301Bであると考えればよい。)
一方、送信モードとして、「異なるデータを送信する」が選択されている場合、実施の形態1で示したように、式(36)、式(39)、式(50)のいずれかであらわされるものとする。このとき、図56の位相変更部5201、317Bは、「同一のデータを送信」する場合とは異なる位相変更方法を行うことが重要となる。特に、この場合、実施の形態1で述べたように、例えば、位相変更部5201は位相変更を行い、位相変更部317Bは位相変更を行わない、または、位相変更部5201は位相変更を行わず、位相変更部317Bは位相変更を行う、というように、2つの位相変更部のうち、いずれか一方のみ位相変更を行う、というようにすれば、LOS環境、NLOS環境の両者で、受信装置は、良好なデータの受信品質を得ることができる。
なお、送信モードとして、「異なるデータを送信する」が選択されている場合、プリコーディング行列として、式(52)を用いてもよいが、式(36)、式(50)、または、式(39)であらわされ、かつ、式(52)と異なるプリコーディング行列を用いると、受信装置において、特に、LOS環境におけるデータの受信品質をさらに向上させることができる可能性がある。
また、本実施の形態は、送信方法としてOFDM方式を用いた場合を例に説明したが、これに限ったものではなく、OFDM方式以外のマルチキャリア方式、シングルキャリア方式を用いた場合にも同様に実施することは可能である。このとき、スペクトル拡散通信方式を用いていてもよい。なお、シングルキャリア方式を用いている場合、位相変更は時間軸方向で位相変更が行われることになる。
なお、実施の形態3で説明したように、「異なるデータを送信する」送信方法の場合、データシンボルのみに対し、位相変更を行うものとした。しかし、本実施の形態において説明した「同一データを送信する」の送信方法のとき、位相変更は、データシンボルに限らず、送信信号の送信フレームに挿入されているパイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行うことになる。(ただし、パイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行わないようにしてもよいが、ダイバーシチゲインを得るためには、位相変更を行うとよい。)

(実施の形態C2)
本実施の形態では、実施の形態C1を応用した基地局の構成方法について説明する。
図59に基地局(放送局)と端末の関係を示している。端末P(5907)は、基地局A(5902A)のアンテナ5904Aから送信された送信信号5903Aとアンテナ5906Aから送信された送信信号5905Aを受信し、所定の処理を行い、受信データを得ているものとする。
端末Q(5908)は、基地局A(5902A)のアンテナ5904Aから送信された送信信号5903Aと基地局B(5902B)のアンテナ5904Bから送信された送信信号5903Bを受信し、所定の処理を行い、受信データを得ているものとする。
図60および図61は、基地局A(5902A)がアンテナ5904A、アンテナ5906Aから送信する送信信号5903A、送信信号5905Aの周波数割り当て、および、基地局B(5902B)がアンテナ5904B、アンテナ5906Bから送信する送信信号5903B、送信信号5905Bの周波数割り当て、を示している。図60、図61における図では、横軸を周波数、縦軸を送信パワーとする。
図60に示すように、基地局A(5902A)が送信する送信信号5903A、送信信号5905A、および、基地局B(5902B)が送信する送信信号5903B、送信信号5905Bは少なくとも周波数帯域Xと周波数帯域Yを使用しており、周波数帯域Xを用いて、第1のチャネルのデータの伝送を行っており、また、周波数帯域Yを用いて、第2のチャネルのデータの伝送を行っているものとする。
したがって、端末P(5907)は、基地局A(5902A)のアンテナ5904Aから送信された送信信号5903Aとアンテナ5906Aから送信された送信信号5905Aを受信し、周波数帯域Xを抽出し、所定の処理を行い、第1のチャネルのデータを得ることになる。そして、端末Q(5908)は、基地局A(5902A)のアンテナ5904Aから送信された送信信号5903Aと基地局B(5902B)のアンテナ5904Bから送信された送信信号5903Bを受信し、周波数帯域Yを抽出し、所定の処理を行い、第2のチャネルのデータを得ることになる。
このときの基地局A(5902A)および基地局B(5902B)の構成および動作について説明する。
基地局A(5902A)および基地局B(5902B)いずれも、実施の形態C1で説明したように、図56および図13で構成された送信装置を具備している。そして、基地局A(5902A)は、図60のように送信する場合、周波数帯域Xにおいては、実施の形態C1で説明したように、異なる2つの変調信号を生成し(プリコーディング、位相変更を行う)、2つの変調信号をそれぞれ図59のアンテナ5904Aおよび5906Aから送信する。周波数帯域Yにおいては、基地局A(5902A)は、図56において、インタリーバ304A、マッピング部306A、重み付け合成部308A、位相変更部5201を動作させ、変調信号5202を生成し、変調信号5202に相当する送信信号を図13のアンテナ1310A、つまり、図59のアンテナ5904Aから送信する。同様に、基地局B(5902B)は、図56において、インタリーバ304A、マッピング部306A、重み付け合成部308A、位相変更部5201を動作させ、変調信号5202を生成し、変調信号5202に相当する送信信号を図13のアンテナ1310A、つまり、図59のアンテナ5904Bから送信する。
なお、周波数帯域Yの符号化後のデータの作成については、図56のように、基地局が個別に符号化後のデータを生成してもよいが、いずれかの基地局で作成した符号化後のデータを、別の基地局に転送してもよい。また、別の方法としては、変調信号をいずれかの基地局が生成し、生成した変調信号を、別の基地局に渡すような構成としてもよい。
また、図59において、信号5901は、送信モード(「同一のデータを送信」または「異なるデータを送信」)に関する情報を含んでいることになり、基地局は、この信号を取得することで、各周波数帯域における変調信号の生成方法を切り替えることになる。ここでは、信号5901は、図59のように他の機器あるいはネットワークから入力しているが、例えば、基地局A(5902A)がマスタ局となり、基地局B(5902B)に信号5901に相当する信号をわたすようにしてもよい。
以上の説明のように、基地局が「異なるデータを送信」する場合、その送信方法に適した、プリコーディング行列、および、位相変更方法を設定し、変調信号を生成することになる。
一方、「同一のデータを送信」する場合、2つの基地局がそれぞれ、変調信号を生成し、送信することになる。このとき、各基地局は、一つのアンテナから送信するための変調信号を生成することは、2つの基地局を併せて考えた場合、2つの基地局で、式(52)のプリコーディング行列を設定したことに相当する。なお、位相変更方法については、実施の形態C1で説明したとおりであり、例えば、(数53)の条件を満たすとよい。
また、周波数帯域Xと周波数帯域Yは時間とともに、送信する方法を変更してもよい。したがって、図61のように、時間が経過し、図60のような周波数割り当てから図61のような周波数割り当てに変更してもよい。
本実施の形態のようにすることで、「同一のデータを送信」「異なるデータを送信」いずれの場合についても、受信装置において、データの受信品質を向上させることができるという効果を得ることができるとともに、送信装置において、位相変更部の共有化を行うことができるという利点がある。
また、本実施の形態は、送信方法としてOFDM方式を用いた場合を例に説明したが、これに限ったものではなく、OFDM方式以外のマルチキャリア方式、シングルキャリア方式を用いた場合にも同様に実施することは可能である。このとき、スペクトル拡散通信方式を用いていてもよい。なお、シングルキャリア方式を用いている場合、位相変更は時間軸方向で位相変更が行われることになる。
なお、実施の形態3で説明したように、「異なるデータを送信する」送信方法の場合、データシンボルのみに対し、位相変更を行うものとした。しかし、本実施の形態において説明した「同一データを送信する」の送信方法のとき、位相変更は、データシンボルに限らず、送信信号の送信フレームに挿入されているパイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行うことになる。(ただし、パイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行わないようにしてもよいが、ダイバーシチゲインを得るためには、位相変更を行うとよい。)

(実施の形態C3)
本実施の形態では、実施の形態C1を応用した中継器の構成方法について説明する。なお、中継器は、中継局と呼称されることもある。
図62に、基地局(放送局)、中継器と端末の関係を示している。基地局6201は、図63に示すように、少なくとも周波数帯域Xと周波数帯域Yの変調信号を送信する。基地局6201は、アンテナ6202Aおよびアンテナ6202Bからそれぞれ変調信号を送信する。このときの送信方法については、図63を用いて後に説明する。
中継器A(6203A)は、受信アンテナ6204Aで受信した受信信号6205A、および、受信アンテナ6206Aで受信した受信信号6207Aを復調等の処理を施し、受信データを得る。そして、その受信データを端末に伝送するため、送信処理を施し、変調信号6209Aおよび、6211Aを生成し、それぞれ、アンテナ6210Aおよび6212Aから送信する。
同様に、中継器B(6203B)は、受信アンテナ6204Bで受信した受信信号6205B、および、受信アンテナ6206Bで受信した受信信号6207Bを復調等の処理を施し、受信データを得る。そして、その受信データを端末に伝送するため、送信処理を施し、変調信号6209Bおよび6211Bを生成し、それぞれ、アンテナ6210Bおよび6212Bから送信する。なお、ここでは、中継器B(6203B)は、マスタ中継器であるとし、制御信号6208を出力し、中継器A(6203A)は、この信号を入力とする。なお、必ずしも、マスタ中継器を設ける必要はなく、基地局6201が、中継器A(6203A)、中継器B(6203B)に個別に制御情報を伝送することとしてもよい。
端末P(5907)は、中継器A(6203A)が送信した変調信号を受信し、データを得ることになる。端末Q(5908)は、中継器A(6203A)および中継器B(6203B)が送信した信号を受信し、データを得ることになる。端末R(6213)は、中継器B(6203B)が送信した変調信号を受信し、データを得ることになる。
図63は、基地局が送信する送信信号のうち、アンテナ6202Aから送信する変調信号の周波数割り当て、および、アンテナ6202Bから送信する変調信号の周波数割り当て、を示している。図63において、横軸を周波数、縦軸を送信パワーとする。
図63に示すように、アンテナ6202Aから送信する変調信号、および、アンテナ6202Bから送信する変調信号は少なくとも周波数帯域Xと周波数帯域Yを使用しており、周波数帯域Xを用いて、第1のチャネルのデータの伝送を行っており、また、周波数帯域Yを用いて、第1のチャネルとは異なる第2のチャネルのデータの伝送を行っているものとする。
そして、第1のチャネルのデータは、実施の形態C1で説明したように、周波数帯域Xを用いて、「異なるデータを送信」するモードで、伝送する。したがって、図63に示すように、アンテナ6202Aから送信する変調信号、および、アンテナ6202Bから送信する変調信号は、周波数帯域Xの成分を含んでいることになる。そして、周波数帯域Xの成分は、中継器Aおよび中継器Bで受信されることになる。したがって、周波数帯域Xの変調信号は、実施の形態1、実施の形態C1で説明したように、マッピング後の信号に対し、プリコーディング(重み付け合成)、および、位相変更が施されることになる。
第2のチャネルのデータは、図63では、図62のアンテナ6202Aから送信される周波数帯域Yの成分によりデータが伝送される。そして、周波数帯域Yの成分は、中継器Aおよび中継器Bで受信されることになる。
図64は、中継器A、中継器Bが送信する送信信号のうち、中継器Aのアンテナ6210Aから送信する変調信号6209A、アンテナ6212Aから送信する変調信号6211Aの周波数割り当て、および、中継器Bのアンテナ6210Bから送信する変調信号6209B、アンテナ6212Bから送信する変調信号6211Bの周波数割り当て、を示している。図64において、横軸を周波数、縦軸を送信パワーとする。
図64に示すように、アンテナ6210Aから送信する変調信号6209A、および、アンテナ6212Aから送信する変調信号6211Aは少なくとも周波数帯域Xと周波数帯域Yを使用しており、また、アンテナ6210Bから送信する変調信号6209B、および、アンテナ6212Bから送信する変調信号6211Bは少なくとも周波数帯域Xと周波数帯域Yを使用しており、周波数帯域Xを用いて、第1のチャネルのデータの伝送を行っており、また、周波数帯域Yを用いて、第2のチャネルのデータの伝送を行っているものとする。
そして、第1のチャネルのデータは、実施の形態C1で説明したように、周波数帯域Xを用いて、「異なるデータを送信」するモードで、伝送する。したがって、図64に示すように、アンテナ6210Aから送信する変調信号6209A、および、アンテナ6212Aから送信する変調信号6211Aは、周波数帯域Xの成分を含んでいることになる。そして、周波数帯域Xの成分は、端末Pで受信されることになる。同様に、図64に示すように、アンテナ6210Bから送信する変調信号6209B、および、アンテナ6212Bから送信する変調信号6211Bは、周波数帯域Xの成分を含んでいることになる。そして、周波数帯域Xの成分は、端末Rで受信されることになる。したがって、周波数帯域Xの変調信号は、実施の形態1、実施の形態C1で説明したように、マッピング後の信号に対し、プリコーディング(重み付け合成)、および、位相変更が施されることになる。
第2のチャネルのデータは、図64では、図62の中継器A(6203A)のアンテナ6210Aおよび中継器B(6203B)のアンテナ6210Bから送信される変調信号の周波数帯域Yの成分を用いて、伝送されることになる。このとき、図62の中継器A(6203A)のアンテナ6210Aから送信される変調信号6209Aの周波数帯域Yの成分および中継器B(6203B)のアンテナ6210Bから送信される変調信号6209Bの周波数帯域Yの成分により、実施の形態C1で説明した「同一データを送信する」送信モードを使用することになる。そして、周波数帯域Yの成分は、端末Qで受信されることになる。
次に、図62における中継器A(6203A)と中継器B(6203B)の構成を、図65を用いて説明する。
図65は、中継器の受信部と送信部の構成の一例を示しており、図56と同様に動作するものについては、同一符号を付した。受信部6203Xは、受信アンテナ6501aで受信した受信信号6502a、および、受信アンテナ6501bで受信した受信信号6502bを入力とし、周波数帯域Xの成分に対し、信号処理(信号の分離または合成、誤り訂正復号等の処理)を施し、基地局が周波数帯域Xを用いて伝送したデータ6204Xを得て、これを分配部404に出力するとともに、制御情報に含まれる送信方法の情報を得(中継器が送信する際の送信方法の情報も得る)、フレーム構成信号313を出力する。
なお、受信部6203X以降は、周波数帯域Xで送信するための変調信号を生成するための処理部となる。また、受信部については、図65で示しているように、周波数帯域Xの受信部のみだけではなく、他の周波数帯域の受信部を他に具備しており、各受信部では、その周波数帯域を用いて送信するための変調信号を生成するための処理部を具備することになる。
分配部404の動作の概要は、実施の形態C2で述べた基地局における分配部の動作と同様になる。
中継器A(6203A)と中継器B(6203B)は、図64のように送信する場合、周波数帯域Xにおいては、実施の形態C1で説明したように、異なる2つの変調信号を生成し(プリコーディング、位相変更を行う)、2つの変調信号をそれぞれ、中継器A(6203A)は図62のアンテナ6210Aおよび6212Aから、中継器B(6203B)は図62のアンテナ6210Bおよび6212Bから送信する。
周波数帯域Yにおいては、中継器A(6203A)は、図65において、周波数帯域Xに関連する信号処理部6500に対応する周波数帯域Yに関連する処理部6500において(6500は、周波数帯域X関連の信号処理部であるが、周波数帯域Yについても同様の信号処理部を具備するので、6500内の付加した番号で説明する。)、インタリーバ304A、マッピング部306A、重み付け合成部308A、位相変更部5201を動作させ、変調信号5202を生成し、変調信号5202に相当する送信信号を図13のアンテナ1310A、つまり、図62のアンテナ6210Aから送信する。同様に、中継器B(6203B)は、図62において、周波数帯域Yにおける、インタリーバ304A、マッピング部306A、重み付け合成部308A、位相変更部5201を動作させ、変調信号5202を生成し、変調信号5202に相当する送信信号を図13のアンテナ1310A、つまり、図62のアンテナ6210Bから送信する。
なお、基地局は、図66に示すように(図66は、基地局が送信する変調信号のフレーム構成であり、横軸時間、縦軸周波数である。)、送信方法に関する情報6601、中継器が施す位相変更に関する情報6602、データシンボル6603を送信し、中継器は、送信方法に関する情報6601、中継器が施す位相変更に関する情報6602を得ることで、送信信号に施す、位相変更の方法を決定することができる。また、図66における中継器が施す位相変更に関する情報6602が、基地局が送信した信号に含まれていない場合は、図62に示すように、中継器B(6203B)がマスタとなり、中継器A(6203A)に位相変更方法の指示をしてもよい。
以上の説明のように、中継器が「異なるデータを送信」する場合、その送信方法に適した、プリコーディング行列、および、位相変更方法を設定し、変調信号を生成することになる。
一方、「同一のデータを送信」する場合、2つの中継器がそれぞれ、変調信号を生成し、送信することになる。このとき、各中継器は、一つのアンテナから送信するための変調信号を生成することは、2つの中継器を併せて考えた場合、2つの中継器で、式(52)のプリコーディング行列を設定したことに相当する。なお、位相変更方法については、実施の形態C1で説明したとおりであり、例えば、(数53)の条件を満たすとよい。
また、実施の形態C1で説明したように、周波数帯域Xのように、基地局、中継器ともに、2つのアンテナからそれぞれ変調信号を送信し、2つのアンテナから、同一のデータを送信するようにしてもよい。このときの基地局及び中継器の動作については実施の形態C1で説明したとおりである。
本実施の形態のようにすることで、「同一のデータを送信」「異なるデータを送信」いずれの場合についても、受信装置において、データの受信品質を向上させることができるという効果を得ることができるとともに、送信装置において、位相変更部の共有化を行うことができるという利点がある。
また、本実施の形態は、送信方法としてOFDM方式を用いた場合を例に説明したが、これに限ったものではなく、OFDM方式以外のマルチキャリア方式、シングルキャリア方式を用いた場合にも同様に実施することは可能である。このとき、スペクトル拡散通信方式を用いていてもよい。なお、シングルキャリア方式を用いている場合、位相変更は時間軸方向で位相変更が行われることになる。
なお、実施の形態3で説明したように、「異なるデータを送信する」送信方法の場合、データシンボルのみに対し、位相変更を行うものとした。しかし、本実施の形態において説明した「同一データを送信する」の送信方法のとき、位相変更は、データシンボルに限らず、送信信号の送信フレームに挿入されているパイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行うことになる。(ただし、パイロットシンボルや制御シンボル等のシンボルに対しても位相変更を行わないようにしてもよいが、ダイバーシチゲインを得るためには、位相変更を行うとよい。)

(実施の形態C4)
本実施の形態では、「実施の形態1」、「その他補足」で説明した位相変更方法とは異なる位相変更方法について説明する。
実施の形態1において、プリコーディング行列の例として、式(36)を与え、その他補足において、プリコーディング行列の例として、式(50)を与えた。そして、実施の形態A1において、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、周期Nのための位相変更値(図3、図4、図6、図12、図25、図29、図51、図53では、一方のベースバンド信号にのみ、位相変更を与えることになるので、位相変更値となる。)として、PHASE[i](i=0,1,2,・・・,N-2,N-1(iは0以上N-1以下の整数))と表現した。そして、本明細書において、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合(つまり、図3、図4、図6、図12、図25、図29、図51、図53)、図3、図4、図6、図12、図25、図29、図51、図53において、プリコーディング後のベースバンド信号z2’のみに位相変更を与えている。このとき、PHASE[k]を以下のように与える。
Figure 2020061771
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とする。
このようにすると、受信装置において、特に、電波伝搬環境が、LOS環境のとき、データの受信品質が向上するという効果を得ることができる。これは、LOS環境において、位相変更を行わなかった場合、定常的な位相関係であったものが、位相変更を行うことで、位相関係の変更が行われ、これにより、バースト的に伝搬環境が悪い状況が回避されるからである。また、式(54)とは別の方法として、PHASE[k]を以下のように与えてもよい。
Figure 2020061771
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とする。
また、別の位相変更方法として、PHASE[k]を以下のように与えてもよい。
Figure 2020061771
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とし、Zは固定値とする。
また、別の位相変更方法として、PHASE[k]を以下のように与えてもよい。
Figure 2020061771
このとき、k=0,1,2,・・・,N-2,N-1(kは0以上N-1以下の整数)とし、Zは固定値とする。
以上のように、本実施の形態のような位相変更を行うことで、受信装置は、良好な受信品質を得ることができる可能性が高くなる、という効果を得ることができる。
本実施の形態の位相変更は、シングルキャリア方式への適用に限ったものではなく、マルチキャリア伝送の場合も適用することができる。したがって、例えば、スペクトル拡散通信方式、OFDM方式、SC−FDMA、SC−OFDM方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。前述したように、本実施の形態では、位相変更を行う説明として、時間t軸方向で位相変更を行う場合があるが、実施の形態1と同様に、周波数軸方向に位相変更を行うときと同様に、つまり、本実施の形態において、t方向での位相変更の説明において、tをf(f:周波数((サブ)キャリア))に置き換えて、考えることで、本実施の形態で説明した位相変更変更を、周波数方向に位相変更に適用することができることになる。また、本実施の形態の位相変更方法は、実施の形態1の説明と同様に、時間−周波数方向に対する位相変更に対して、適用することも可能である。また、本実施の形態で説明した位相変更方法は、実施の形態A1で示した内容を満たすと、受信装置において、良好なデータ品質を得ることができる可能性が高い。

(実施の形態C5)
本実施の形態では、「実施の形態1」、「その他補足」、「実施の形態C4」で説明した位相変更方法とは異なる位相変更方法について説明する。
実施の形態1において、プリコーディング行列の例として、式(36)を与え、その他補足において、プリコーディング行列の例として、式(50)を与えた。そして、実施の形態A1において、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、周期Nのための位相変更値(図3、図4、図6、図12、図25、図29、図51、図53では、一方のベースバンド信号にのみ、位相変更を与えることになるので、位相変更値となる。)として、PHASE[i](i=0,1,2,・・・,N-2,N-1(iは0以上N-1以下の整数))と表現した。そして、本明細書において、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合(つまり、図3、図4、図6、図12、図25、図29、図51、図53)、図3、図4、図6、図12、図25、図29、図51、図53において、プリコーディング後のベースバンド信号z2’のみに位相変更を与えている。
本実施の形態における位相変更方法の特徴的な点は、周期N=2n+1とあらわされる点である。そして、周期N=2n+1を実現するために用意する異なる位相変更値は、n+1個となる。そして、n+1個の異なる位相変更値のうち、n個の位相変更値は、1周期内で、それぞれ2回用いられ、1個の位相変更値は、1回用いられることで、周期N=2n+1が実現される。以下では、このときの位相変更値について詳しく説明する。
周期N=2n+1の規則的に位相変更値を切り替える位相変更方法を実現するために必要となるn+1個の異なる位相変更値をPHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]とする(i=0,1,2,・・・,n-2,n-1,n(iは0以上n以下の整数))。このとき、n+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]の例を以下のようにあらわす。
Figure 2020061771
このとき、k=0,1,2,・・・,n-2,n-1,n(kは0以上n以下の整数)とする。式(58)のn+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]において、PHASE[0]を1回用い、かつ、PHASE[1]〜PHASE[n]をそれぞれ2回用いる(PHASE[1]を2回用い、PHASE[2]を2回用い、・・・、PHASE[n-1]を2回用い、PHASE[n]を2回用いる)ことで、周期N=2n+1の規則的に位相変更値を切り替える位相変更方法とすることで、少ない位相変更値で規則的に位相変更値を切り替える位相変更方法を実現することができ、受信装置は、良好なデータの受信品質を得ることができる。用意する位相変更値が少ないため、送信装置、受信装置の効果を削減できる効果を得ることができる。以上のように、受信装置において、特に、電波伝搬環境が、LOS環境のとき、データの受信品質が向上するという効果を得ることができる。これは、LOS環境において、位相変更を行わなかった場合、定常的な位相関係であったものが、位相変更を行うことで、位相関係の変更が行われ、これにより、バースト的に伝搬環境が悪い状況が回避されるからである。また、式(58)とは別の方法として、PHASE[k]を以下のように与えてもよい。
Figure 2020061771
このとき、k=0,1,2,・・・,n-2,n-1,n(kは0以上n以下の整数)とする。
式(59)のn+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]において、PHASE[0]を1回用い、かつ、PHASE[1]〜PHASE[n]をそれぞれ2回用いる(PHASE[1]を2回用い、PHASE[2]を2回用い、・・・、PHASE[n-1]を2回用い、PHASE[n]を2回用いる)ことで、周期N=2n+1の規則的に位相変更値を切り替える位相変更方法とすることで、少ない位相変更値で規則的に位相変更値を切り替える位相変更方法を実現することができ、受信装置は、良好なデータの受信品質を得ることができる。用意する位相変更値が少ないため、送信装置、受信装置の効果を削減できる効果を得ることができる。
また、別の方法として、PHASE[k]を以下のように与えてもよい。
Figure 2020061771
このとき、k=0,1,2,・・・,n-2,n-1,n(kは0以上n以下の整数)とし、Zは固定値とする。
式(60)のn+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]において、PHASE[0]を1回用い、かつ、PHASE[1]〜PHASE[n]をそれぞれ2回用いる(PHASE[1]を2回用い、PHASE[2]を2回用い、・・・、PHASE[n-1]を2回用い、PHASE[n]を2回用いる)ことで、周期N=2n+1の規則的に位相変更値を切り替える位相変更方法とすることで、少ない位相変更値で規則的に位相変更値を切り替える位相変更方法を実現することができ、受信装置は、良好なデータの受信品質を得ることができる。用意する位相変更値が少ないため、送信装置、受信装置の効果を削減できる効果を得ることができる。
また、別の方法として、PHASE[k]を以下のように与えてもよい。
Figure 2020061771
このとき、k=0,1,2,・・・,n-2,n-1,n(kは0以上n以下の整数)とし、Zは固定値とする。
式(61)のn+1個の異なる位相変更値PHASE[0], PHASE[1],・・・, PHASE[i],・・・, PHASE[n-1], PHASE[n]において、PHASE[0]を1回用い、かつ、PHASE[1]〜PHASE[n]をそれぞれ2回用いる(PHASE[1]を2回用い、PHASE[2]を2回用い、・・・、PHASE[n-1]を2回用い、PHASE[n]を2回用いる)ことで、周期N=2n+1の規則的に位相変更値を切り替える位相変更方法とすることで、少ない位相変更値で規則的に位相変更値を切り替える位相変更方法を実現することができ、受信装置は、良好なデータの受信品質を得ることができる。用意する位相変更値が少ないため、送信装置、受信装置の効果を削減できる効果を得ることができる。
以上のように、本実施の形態のような位相変更を行うことで、受信装置は、良好な受信品質を得ることができる可能性が高くなる、という効果を得ることができる。
本実施の形態の位相変更は、シングルキャリア方式をへの適用に限ったものではなく、マルチキャリア伝送の場合も適用することができる。したがって、例えば、スペクトル拡散通信方式、OFDM方式、SC−FDMA、SC−OFDM方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。前述したように、本実施の形態では、位相変更を行う説明として、時間t軸方向で位相変更を行う場合があるが、実施の形態1と同様に、周波数軸方向に位相変更を行うときと同様に、つまり、本実施の形態において、t方向での位相変更の説明において、tをf(f:周波数((サブ)キャリア))に置き換えて、考えることで、本実施の形態で説明した位相変更変更を、周波数方向に位相変更に適用することができることになる。また、本実施の形態の位相変更方法は、実施の形態1の説明と同様に、時間−周波数方向に対する位相変更に対して、適用することも可能である。

(実施の形態C6)
本実施の形態では、非特許文献12〜非特許文献15に示されているように、QC(Quasi Cyclic)LDPC(Low-Density Parity-Check)符号(ただし、QC−LDPC符号でないLDPC(ブロック)符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号等のブロック符号、ターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの、特に、実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法を用いたときについて詳しく説明する。ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、図4の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、図4の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
次に、規則的に位相を変更する方法において、上述で定義したスロットと位相との関係について説明する。
ここでは、周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図4の送信装置の位相変更部のために、周期5のための5つの位相変更値(または、位相変更セット)を用意するものとする。ただし、実施の形態C5で述べたように、異なる位相変更値は3つ存在することになる。したがって、周期5のための5つの位相変更値の中には、同一の位相変更値が存在することになる。(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。周期5のための5つの位相変更値(または、位相変更セット)をP[0], P[1], P [2], P [3], P [4]とあらわすものとする。
次に、規則的に位相を変更する方法において、上述で定義したスロットと位相の関係について説明する。
変調方式がQPSKのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた1500スロットにおいて、位相変更値P[0]を使用するスロットが300スロット、位相変更値P[1]を使用するスロットが300スロット、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300スロット、位相変更値P[4]を使用するスロットが300スロットである必要がある。これは、使用する位相変更値にかたよりがあると、多くの数を使用した位相変更値の影響が大きいデータの受信品質となるからである。
同様に、変調方式が16QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた750スロットにおいて、位相変更値P[0]を使用するスロットが150スロット、位相変更値P[1]を使用するスロットが150スロット、位相変更値P[2]を使用するスロットが150スロット、位相変更値P[3]を使用するスロットが150スロット、位相変更値P[4]を使用するスロットが150スロットである必要がある。
同様に、変調方式が64QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた500スロットにおいて、位相変更値P[0]を使用するスロットが100スロット、位相変更値P[1]を使用するスロットが100スロット、位相変更値P[2]を使用するスロットが100スロット、位相変更値P[3]を使用するスロットが100スロット、位相変更値P[4]を使用するスロットが100スロットである必要がある。
以上のように、実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法において、周期N=2n+1を実現するための位相変更値P[0], P[1],・・・, P[2n-1], P[2n](ただし、P[0], P[1],・・・, P[2n-1], P[2n]は、PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[n-1]、PHASE[n]で構成されている。(実施の形態C5参照))としたとき、1つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用するスロット数をK, 位相変更値P[1]を使用するスロット数をK1、位相変更値P[i]を使用するスロット数をKi(i=0,1,2,・・・,2n-1,2n(iは0以上2n以下の整数))、位相変更値P[2n] を使用するスロット数をK2nとしたとき、

<条件#C01>
=K=・・・=Ki=・・・=K2n、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)

であるとよい。
実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法において、周期N=2n+1を実現するための異なる位相変更値PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[n-1]、PHASE[n]において、1つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値PHASE[0]を使用するスロット数をG, 位相変更値PHASE[1]を使用するスロット数をG1、位相変更値PHASE[i]を使用するスロット数をGi(i=0,1,2,・・・,n-1,n(iは0以上n以下の整数))、 位相変更値PHASE[n] を使用するスロット数をGnとしたとき、<条件#C01>は、以下のようにあらわすことができる。

<条件#C02>
2×G=G=・・・=Gi=・・・=Gn、つまり、2×G=G、(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))

そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#C01>(<条件#C02>)が成立するとよいことになる。
しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#C01>(<条件#C02>)を満たすことができない変調方式が存在することもある。この場合、<条件#C01>にかわり、以下の条件を満たすとよい。

<条件#C03>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)

<条件#C03>を別の表現にすると、以下の条件となる。

<条件#C04>
aとGbの差は0または1または2、つまり、|Ga―Gb|は0または1または2
(for∀a、∀b、ただし、a, b=1,2,・・・, n-1,n(aは1以上n以下の整数、bは1以上n以下の整数)、a≠b)
および
2×GとGの差は0または1または2、つまり、|2×G―G|は0または1または2
(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))

図35は、ブロック符号を用いたとき、2つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図35は、図3の送信装置および図12の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図35に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、図3の送信装置および図12の送信装置では、2つのストリームを同時に送信することになり、また、2つの符号化器が存在するため、2つのストリームでは、異なる符号ブロックを伝送することになる。したがって、変調方式がQPSKのとき、s1、s2により、2つの符号化ブロックが同一区間内で送信されることから、例えば、s1により第1の符号化後のブロックが送信され、s2により、第2の符号化ブロックが送信されることになるので、第1、第2の符号化後のブロックを送信するために3000スロットが必要となる。
同様に考えると、変調方式が16QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1500スロットが必要となり、変調方式が64QAMのとき、2ブロックを構成するすべてのビットを送信するために1000スロットが必要となる。
次に、規則的に位相を変更する方法において、上述で定義したスロットと位相との関係について説明する。
ここでは、周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図4の送信装置の位相変更部のために、周期5のための5つの位相変更値(または、位相変更セット)を用意するものとする。ただし、実施の形態C5で述べたように、異なる位相変更値は3つ存在することになる。したがって、周期5のための5つの位相変更値の中には、同一の位相変更値が存在することになる。(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。周期5のための5つの位相変更値(または、位相変更セット)をP[0], P[1], P [2], P [3], P [4]とあらわすものとする。
変調方式がQPSKのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた3000スロットにおいて、位相変更値P[0]を使用するスロットが600スロット、位相変更値P[1]を使用するスロットが600スロット、位相変更値P[2]を使用するスロットが600スロット、位相変更値P[3]を使用するスロットが600スロット、位相変更値P[4]を使用するスロットが600スロットである必要がある。これは、使用する位相変更値にかたよりがあると、多くの数を使用した位相変更値の影響が大きいデータの受信品質となるからである。
また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが600回、位相変更値P[1]を使用するスロットが600回、位相変更値P[2]を使用するスロットが600回、位相変更値P[3]を使用するスロットが600回、プ位相変更値P[4]を使用するスロットが600回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが600回、位相変更値P[1]を使用するスロットが600回、位相変更値P[2]を使用するスロットが600回、位相変更値P[3]を使用するスロットが600回、位相変更値P[4]を使用するスロットが600回であるとよい。
同様に、変調方式が16QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1500スロットにおいて、位相変更値P[0]を使用するスロットが300スロット、位相変更値P[1]を使用するスロットが300スロット、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300スロット、位相変更値P[4]を使用するスロットが300スロットである必要がある。
また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが300回、位相変更値P[1]を使用するスロットが300回、位相変更値P[2]を使用するスロットが300回、位相変更値P[3]を使用するスロットが300回、位相変更値P[4]を使用するスロットが300回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが300回、位相変更値P[1]を使用するスロットが300回、位相変更値P[2]を使用するスロットが300回、位相変更値P[3]を使用するスロットが300回、位相変更値P[4]を使用するスロットが300回であるとよい。
同様に、変調方式が64QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1000スロットにおいて、位相変更値P[0]を使用するスロットが200スロット、位相変更値P[1]を使用するスロットが200スロット、位相変更値P[2]を使用するスロットが200スロット、位相変更値P[3]を使用するスロットが200スロット、位相変更値P[4]を使用するスロットが200スロットである必要がある。
また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが200回、位相変更値P[1]を使用するスロットが200回、位相変更値P[2]を使用するスロットが200回、位相変更値P[3]を使用するスロットが200回、位相変更値P[4]を使用するスロットが200回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが200回、位相変更値P[1]を使用するスロットが200回、位相変更値P[2]を使用するスロットが200回、位相変更値P[3]を使用するスロットが200回、位相変更値P[4]を使用するスロットが200回であるとよい。
以上のように、実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法において、周期N=2n+1を実現するための位相変更値P[0], P[1],・・・, P[2n-1], P[2n](ただし、P[0], P[1],・・・, P[2n-1], P[2n]は、PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[n-1]、PHASE[n]で構成されている。(実施の形態C5参照))としたとき、2つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用するスロット数をK, 位相変更値P[1]を使用するスロット数をK1、位相変更値P[i]を使用するスロット数をKi(i=0,1,2,・・・,2n-1,2n(iは0以上2n以下の整数))、位相変更値P[2n] を使用するスロット数をK2nとしたとき、

<条件#C05>
=K=・・・=Ki=・・・=K2n、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)

であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用する回数をK0,1, 位相変更値P[1]を使用する回数をK1,1、位相変更値P[i]を使用する回数をKi,1(i=0,1,2,・・・,2n-1,2n(iは0以上2n以下の整数))、位相変更値P[2n] を使用する回数をK2n,1としたとき、

<条件#C06>
0,1=K1,1=・・・=Ki,1=・・・=K2n,1、つまり、Ka,1=Kb,1、(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)

であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用する回数をK0,2, 位相変更値P[1]を使用する回数をK1,2、位相変更値P[i]を使用する回数をKi,2(i=0,1,2,・・・,2n-1,2n(iは0以上2n以下の整数))、位相変更値P[2n] を使用する回数をK2n,2としたとき、

<条件#C07>
0,2=K1,2=・・・=Ki,2=・・・=K2n,2、つまり、Ka,2=Kb,2、(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)

であるとよい。
実施の形態C5で述べた規則的に位相変更値を切り替える位相変更方法において、周期N=2n+1を実現するための異なる位相変更値PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[n-1]、PHASE[n]において、2つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値PHASE[0]を使用するスロット数をG, 位相変更値PHASE[1]を使用するスロット数をG1、位相変更値PHASE[i]を使用するスロット数をGi(i=0,1,2,・・・,n-1,n(iは0以上n以下の整数))、 位相変更値PHASE[n] を使用するスロット数をGnとしたとき、<条件#C05>は、以下のようにあらわすことができる。

<条件#C08>
2×G=G=・・・=Gi=・・・=Gn、つまり、2×G=G、(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))

であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値PHASE[0]を使用する回数をG0,1, 位相変更値PHASE[1]を使用する回数をK1,1、位相変更値PHASE[i]を使用する回数をGi,1(i=0,1,2,・・・,n-1,n(iは0以上n以下の整数))、位相変更値PHASE[n] を使用する回数をGn,1としたとき、

<条件#C09>
2×G0,1=G1,1=・・・=Gi,1=・・・=Gn,1、つまり、2×G0,1=Ga,1、(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))

であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値PHASE[0]を使用する回数をG0,2, 位相変更値PHASE[1]を使用する回数をG1,2、位相変更値PHASE[i]を使用する回数をGi,2(i=0,1,2,・・・,n-1,n(iは0以上n以下の整数))、位相変更値PHASE[n] を使用する回数をGn,2としたとき、

<条件#C10>
2×G0,2=G1,2=・・・=Gi,2=・・・=Gn,2、つまり、2×G0,2=Ga,2、(for∀a、ただし、a =1,2,・・・, n-1,n(aは1以上n以下の整数))

であるとよい。
そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#C05><条件#C06><条件#C07>(<条件#C08><条件#C09><条件#C10>)が成立するとよいことになる。
しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#C05><条件#C06><条件#C07>(<条件#C08><条件#C09><条件#C10>)を満たすことができない変調方式が存在することもある。この場合、<条件#C05><条件#C06><条件#C07>にかわり、以下の条件を満たすとよい。

<条件#C11>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n((aは0以上2n以下の整数、bは0以上2n以下の整数))、a≠b)

<条件#C12>
a,1とKb,1の差は0または1、つまり、|Ka,1―Kb,1|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n((aは0以上2n以下の整数、bは0以上2n以下の整数))、a≠b)

<条件#C13>
a,2とKb,2の差は0または1、つまり、|Ka,2―Kb,2|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・, 2n-1,2n(aは0以上2n以下の整数、bは0以上2n以下の整数)、a≠b)

<条件#C11><条件#C12><条件#C13>を別の表現にすると、以下の条件となる。

<条件#C14>
aとGbの差は0または1または2、つまり、|Ga―Gb|は0または1または2
(for∀a、∀b、ただし、a, b=1,2,・・・, n-1,n((aは1以上n以下の整数、bは1以上n以下の整数))、a≠b)
および
2×GとGの差は0または1または2、つまり、|2×G―G|は0または1または2
(for∀a、ただし、a =1,2,・・・, n-1,n(aは、1以上n以下の整数))

<条件#C15>
a,1とGb,1の差は0または1または2、つまり、|Ga,1―Gb,1|は0または1または2
(for∀a、∀b、ただし、a, b=1,2,・・・, n-1,n(aは1以上n以下の整数、bは1以上n以下の整数)、a≠b)
および
2×G0,1とGa,1の差は0または1または2、つまり、|2×G0,1―Ga,1|は0または1または2
(for∀a、ただし、a =1,2,・・・, n-1,n(aは、1以上n以下の整数))

<条件#C16>
a,2とGb,2の差は0または1または2、つまり、|Ga,2―Gb,2|は0または1または2
(for∀a、∀b、ただし、a, b=1,2,・・・, n-1,n(aは1以上n以下の整数、bは1以上n以下の整数)、a≠b)
および
2×G0,2とGa,2の差は0または1または2、つまり、|2×G0,2―Ga,2|は0または1または2
(for∀a、ただし、a =1,2,・・・, n-1,n(aは、1以上n以下の整数))

以上のように、符号化後のブロックと位相変更値の関係付けを行うことで、符号化ブロックを伝送するために使用する位相変更値にかたよりがなくなるため、受信装置において、データの受信品質が向上するという効果を得ることができる。
本実施の形態では、規則的に位相を変更する方法において、周期Nの位相変更方法のためには、N個の位相変更値(または、位相変更セット)が必要となる。このとき、N個の位相変更値(または、位相変更セット)として、P[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]を用意することになるが、周波数軸方向にP[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]の順に並べる方法もあるが、必ずしもこれに限ったものではなく、N個の位相変更値(または、位相変更セット)P[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]を実施の形態1と同様に、時間軸、周波数―時間軸のブロックに対し、シンボルを配置することで、位相を変更することもできる。なお、周期Nの位相変更方法として説明しているが、N個の位相変更値(または、位相変更セット)をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の位相変更値(または、位相変更セット)を用いる必要はないが、上記で説明した条件を満たすことは、受信装置において、高いデータの受信品質を得る上では、重要となる。
また、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のモードが存在し、送信装置(放送局、基地局)は、これらのモードから、いずれかの送信方法を選択することができるようにしてもよい。
なお、空間多重MIMO伝送方式とは、非特許文献3に示されているように、選択した変調方式でマッピングした信号s1、s2をそれぞれ異なるアンテナから送信する方法であり、プリコーディング行列が固定のMIMO伝送方式とは、プリコーディングのみを行う(位相変更を行わない)方式である。また、時空間ブロック符号化方式とは、非特許文献9、16、17に示されている伝送方式である。1ストリームのみ送信とは、選択した変調方式でマッピングした信号s1の信号を所定の処理を行いアンテナから送信する方法である。
また、OFDMのようなマルチキャリアの伝送方式を用いており、複数のキャリアで構成された第1キャリア群、複数のキャリアで構成された第1キャリア群とは異なる第2キャリア群、・・・というように複数のキャリア群でマルチキャリア伝送を実現しており、キャリア群ごとに、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のいずれかに設定してもよく、特に、規則的に位相を変更する方法を選択した(サブ)キャリア群では、本実施の形態を実施するとよい。
なお、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、P[i]の位相変更値を「Xラジアン」とした場合、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになる。そして、両者のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、P[i]の位相変更セットを「Xラジアン」および「Yラジアン」とした場合、図26、図27、図28、図52、図54における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになり、ejYをプリコーディング後のベースバンド信号z1’に乗算することになる。

(実施の形態C7)
本実施の形態では、非特許文献12〜非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Parity-Check)符号(ただし、QC−LDPC符号でないLDPC(ブロック)符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号等のブロック符号、ターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの、実施の形態A1、実施の形態C6を一般化させた場合について説明する。ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、図4の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、図4の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
次に、規則的に位相を変更する方法において、上述で定義したスロットと位相との関係について説明する。
ここでは、周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)をP[0], P[1], P[2], P[3], P[4]とする。ただし、P[0], P[1], P[2], P[3], P[4]には、少なくとも2つ以上の異なる位相変更値が含まれていればよい(P[0], P[1], P[2], P[3], P[4]に同一の位相変更値が含まれていてもよい。)。(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。
変調方式がQPSKのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた1500スロットにおいて、位相変更値P[0]を使用するスロットが300スロット、位相変更値P[1]を使用するスロットが300スロット、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300スロット、位相変更値P[4]を使用するスロットが300スロットである必要がある。これは、使用する位相変更値にかたよりがあると、多くの数を使用した位相変更値の影響が大きいデータの受信品質となるからである。
同様に、変調方式が16QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた750スロットにおいて、位相変更値P[0]を使用するスロットが150スロット、位相変更値P[1]を使用するスロットが150スロット、位相変更値P[2]を使用するスロットが150スロット、位相変更値P[3]を使用するスロットが150スロット、位相変更値P[4]を使用するスロットが150スロットである必要がある。
同様に、変調方式が64QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた500スロットにおいて、位相変更値P[0]を使用するスロットが100スロット、位相変更値P[1]を使用するスロットが100スロット、位相変更値P[2]を使用するスロットが100スロット、位相変更値P[3]を使用するスロットが100スロット、位相変更値P[4]を使用するスロットが100スロットである必要がある。
以上のように、周期Nの規則的に位相変更値を切り替える位相変更方法における位相変更値P[0], P[1],・・・, P[N-2] , P[N-1]とあらわすものとする。ただし、P[0], P[1],・・・, P[N-2] , P[N-1]は少なくとも2つ以上の異なる位相変更値で構成されているものとする。(P[0], P[1],・・・, P[N-2] , P[N-1]に同一の位相変更値が含まれていてもよい。)1つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用するスロット数をK, 位相変更値P[1]を使用するスロット数をK1、位相変更値P[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、位相変更値P[N-1] を使用するスロット数をKN-1としたとき、

<条件#C17>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であるとよい。
そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#C17>が成立するとよいことになる。
しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#C17>を満たすことができない変調方式が存在することもある。この場合、<条件#C17>にかわり、以下の条件を満たすとよい。

<条件#C18>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

図35は、ブロック符号を用いたとき、2つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図35は、図3の送信装置および図12の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図35に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、図3の送信装置および図12の送信装置では、2つのストリームを同時に送信することになり、また、2つの符号化器が存在するため、2つのストリームでは、異なる符号ブロックを伝送することになる。したがって、変調方式がQPSKのとき、s1、s2により、2つの符号化ブロックが同一区間内で送信されることから、例えば、s1により第1の符号化後のブロックが送信され、s2により、第2の符号化ブロックが送信されることになるので、第1、第2の符号化後のブロックを送信するために3000スロットが必要となる。
同様に考えると、変調方式が16QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1500スロットが必要となり、変調方式が64QAMのとき、2ブロックを構成するすべてのビットを送信するために1000スロットが必要となる。
次に、規則的に位相を変更する方法において、上述で定義したスロットと位相との関係について説明する。
ここでは、周期5の規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図4の送信装置の位相変更部のために、周期5のための5つの位相変更値(または、位相変更セット)P[0], P[1], P[2],P[3], P[4]を用意するものとする。ただし、P[0], P[1], P[2],P[3], P[4]には、少なくとも2つ以上の異なる位相変更値が含まれていればよい(P[0], P[1], P[2],P[3], P[4]に同一の位相変更値が含まれていてもよい。)。(図6のように、プリコーディング後のベースバンド信号z2’のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、図26のように、プリコーディング後のベースバンド信号z1’およびz2’の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)。周期5のための5つの位相変更値(または、位相変更セット)をP[0], P[1], P [2], P [3], P [4]とあらわすものとする。
変調方式がQPSKのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた3000スロットにおいて、位相変更値P[0]を使用するスロットが600スロット、位相変更値P[1]を使用するスロットが600スロット、位相変更値P[2]を使用するスロットが600スロット、位相変更値P[3]を使用するスロットが600スロット、位相変更値P[4]を使用するスロットが600スロットである必要がある。これは、使用する位相変更値にかたよりがあると、多くの数を使用した位相変更値の影響が大きいデータの受信品質となるからである。
また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが600回、位相変更値P[1]を使用するスロットが600回、位相変更値P[2]を使用するスロットが600スロット、位相変更値P[3]を使用するスロットが600回、プ位相変更値P[4]を使用するスロットが600回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが600回、位相変更値P[1]を使用するスロットが600回、位相変更値P[2]を使用するスロットが600スロット、位相変更値P[3]を使用するスロットが600回、位相変更値P[4]を使用するスロットが600回であるとよい。
同様に、変調方式が16QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1500スロットにおいて、位相変更値P[0]を使用するスロットが300スロット、位相変更値P[1]を使用するスロットが300スロット、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300スロット、位相変更値P[4]を使用するスロットが300スロットである必要がある。
また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが300回、位相変更値P[1]を使用するスロットが300回、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300回、位相変更値P[4]を使用するスロットが300回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが300回、位相変更値P[1]を使用するスロットが300回、位相変更値P[2]を使用するスロットが300スロット、位相変更値P[3]を使用するスロットが300回、位相変更値P[4]を使用するスロットが300回であるとよい。
同様に、変調方式が64QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1000スロットにおいて、位相変更値P[0]を使用するスロットが200スロット、位相変更値P[1]を使用するスロットが200スロット、位相変更値P[2]を使用するスロットが200スロット、位相変更値P[3]を使用するスロットが200スロット、位相変更値P[4]を使用するスロットが200スロットである必要がある。
また、第1の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが200回、位相変更値P[1]を使用するスロットが200回、位相変更値P[2]を使用するスロットが200スロット、位相変更値P[3]を使用するスロットが200回、位相変更値P[4]を使用するスロットが200回である必要があり、また、第2の符号化ブロックを送信するために、位相変更値P[0]を使用するスロットが200回、位相変更値P[1]を使用するスロットが200回、位相変更値P[2]を使用するスロットが200スロット、位相変更値P[3]を使用するスロットが200回、位相変更値P[4]を使用するスロットが200回であるとよい。
以上のように、周期Nの規則的に位相変更値を切り替える位相変更方法における位相変更値をP[0], P[1], P[2],・・・, P[N-2] , P[N-1]とあらわすものとする。ただし、P[0], P[1], P[2],・・・, P[N-2] , P[N-1]は少なくとも2つ以上の異なる位相変更値で構成されているものとする。(P[0], P[1], P[2],・・・, P[N-2] , P[N-1]に同一の位相変更値が含まれていてもよい。)2つの符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用するスロット数をK, 位相変更値P[1]を使用するスロット数をK1、位相変更値P[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、位相変更値P[N-1] を使用するスロット数をKN-1としたとき、

<条件#C19>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用する回数をK0,1, 位相変更値P[1]を使用する回数をK1,1、位相変更値P[i]を使用する回数をKi,1(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、位相変更値P[N-1] を使用する回数をKN-1,1としたとき、

<条件#C20>
0,1=K1,1=・・・=Ki,1=・・・=KN-1,1、つまり、Ka,1=Kb,1、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相変更値P[0]を使用する回数をK0,2, 位相変更値P[1]を使用する回数をK1,2、位相変更値P[i]を使用する回数をKi,2(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、位相変更値P[N-1] を使用する回数をKN-1,2としたとき、

<条件#C21>
0,2=K1,2=・・・=Ki,2=・・・=KN-1,2、つまり、Ka,2=Kb,2、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であるとよい。
そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#C19><条件#C20><条件#C21>が成立するとよいことになる。
しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#C19><条件#C20><条件#C21>を満たすことができない変調方式が存在することもある。この場合、<条件#C19><条件#C20><条件#C21>にかわり、以下の条件を満たすとよい。

<条件#C22>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

<条件#C23>
a,1とKb,1の差は0または1、つまり、|Ka,1―Kb,1|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

<条件#C24>
a,2とKb,2の差は0または1、つまり、|Ka,2―Kb,2|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

以上のように、符号化後のブロックと位相変更値の関係付けを行うことで、符号化ブロックを伝送するために使用する位相変更値にかたよりがなくなるため、受信装置において、データの受信品質が向上するという効果を得ることができる。
本実施の形態では、規則的に位相を変更する方法において、周期Nの位相変更方法のためには、N個の位相変更値(または、位相変更セット)が必要となる。このとき、N個の位相変更値(または、位相変更セット)として、P[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]を用意することになるが、周波数軸方向にP[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]の順に並べる方法もあるが、必ずしもこれに限ったものではなく、N個の位相変更値(または、位相変更セット)P[0]、P[1]、P[2]、・・・、P[N-2]、P [N-1]を実施の形態1と同様に、時間軸、周波数―時間軸のブロックに対し、シンボルを配置することで、位相を変更することもできる。なお、周期Nの位相変更方法として説明しているが、N個の位相変更値(または、位相変更セット)をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の位相変更値(または、位相変更セット)を用いる必要はないが、上記で説明した条件を満たすことは、受信装置において、高いデータの受信品質を得る上では、重要となる。
また、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のモードが存在し、送信装置(放送局、基地局)は、これらのモードから、いずれかの送信方法を選択することができるようにしてもよい。
なお、空間多重MIMO伝送方式とは、非特許文献3に示されているように、選択した変調方式でマッピングした信号s1、s2をそれぞれ異なるアンテナから送信する方法であり、プリコーディング行列が固定のMIMO伝送方式とは、プリコーディングのみを行う(位相変更を行わない)方式である。また、時空間ブロック符号化方式とは、非特許文献9、16、17に示されている伝送方式である。1ストリームのみ送信とは、選択した変調方式でマッピングした信号s1の信号を所定の処理を行いアンテナから送信する方法である。
また、OFDMのようなマルチキャリアの伝送方式を用いており、複数のキャリアで構成された第1キャリア群、複数のキャリアで構成された第1キャリア群とは異なる第2キャリア群、・・・というように複数のキャリア群でマルチキャリア伝送を実現しており、キャリア群ごとに、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のいずれかに設定してもよく、特に、規則的に位相を変更する方法を選択した(サブ)キャリア群では、本実施の形態を実施するとよい。
なお、一方のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、P[i]の位相変更値を「Xラジアン」とした場合、図3、図4、図6、図12、図25、図29、図51、図53における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになる。そして、両者のプリコーディング後のベースバンド信号に対し、位相変更を行う場合、例えば、P[i]の位相変更セットを「Xラジアン」および「Yラジアン」とした場合、図26、図27、図28、図52、図54における位相変更部において、ejXをプリコーディング後のベースバンド信号z2’に乗算することになり、ejYをプリコーディング後のベースバンド信号z1’に乗算することになる。

(実施の形態D1)
本実施の形態では、まず、実施の形態1の変形例について説明する。図67は、本実施の形態における送信装置の構成の一例であり、図3と同様に動作するものについては、同一符号を付しており、また、以降では、図3での説明と同様に動作素部部分については、説明を省略する。そして、図67が図3と異なる点は、重み付け合成部の直後にベースバンド信号入れ替え部6702が挿入されている部分である。したがって、以降では、ベースバンド信号入れ替え部6702周辺の動作の動作を中心に説明を行う。
図21に重み付け合成部(308A、308B)の構成を示す。図21において点線で囲まれる領域が重み付け合成部となる。ベースバンド信号307Aは、w11と乗算し、w11・s1(t)を生成し、w21と乗算し、w21・s1(t)を生成する。同様に、ベースバンド信号307Bは、w12と乗算し、w12・s2(t)を生成し、w22と乗算し、w22・s2(t)を生成する。次に、z1(t)=w11・s1(t)+w12・s2(t)、z2(t)=w21・s1(t)+w22・s2(t)を得る。このとき、s1(t)およびs2(t)は、実施の形態1の説明からわかるように、BPSK(Binary Phase Shift Keying)、QPSK、8PSK(8 Phase Shift Keying)、16QAM、32QAM(32 Quadrature Amplitude Modulation)、64QAM、256QAM、16APSK(16 Amplitude Phase Shift Keying)等の変調方式のベースバンド信号となる。ここで、両重み付け合成部は、固定のプリコーディング行列を用いて重み付けを実行するものとし、プリコーディング行列としては、一例として、下記、式(63)又は式(64)の条件のもと、式(62)を用いる方法がある。ただし、これは一例であり、αの値は、式(63)、式(64)に限ったものではなく、別の値、例えば、αを1、としてもよいし、αは0であってもよい(αは0以上の実数であってよいし、αは虚数でもよい。)。
なお、プリコーディング行列は、
Figure 2020061771
但し、上記式(62)において、αは、
Figure 2020061771
である。
あるいは、上記式(62)において、αは、
Figure 2020061771
である。
また、プリコーディング行列は、式(62)に限ったものではなく、
Figure 2020061771
a=Aejδ11、b=Bejδ12、c=Cejδ21、d=Dejδ22であらわされればよい。また、a、b、c、dのいずれか一つが「ゼロ」であってもよい。例えば、(1)aがゼロであり、b、c、dはゼロでない、(2)bがゼロであり、a、c、dはゼロでない、(3)cがゼロであり、a、b、dはゼロでない、(4)dがゼロであり、a、b、cはゼロでない、であってもよい。
また、a、b、c、dのうち、2つの値をゼロとしてもよい。例えば、(1)aおよびdがゼロであり、b、cはゼロでない、(2)bおよびcがゼロであり、a、dはゼロでないという方法が有効である。
なお、変調方式、誤り訂正符号、その符号化率のいずれかを変更したときは、使用するプリコーディング行列を設定、変更し、そのプリコーディング行列を固定的に使用してもよい。
次に、図67における、ベースバンド信号入れ替え部6702について説明する。ベースバンド信号入れ替え部6702は、重み付け合成後の信号309Aおよび重み付け合成後の信号316Bを入力とし、ベースバンド信号入れ替えを行い、入れ替え後ベースバンド信号6701A、および、入れ替え後ベースバンド信号6701Bを出力する。なお、ベースバンド信号の入れ替えの詳細については、図55を用いて説明したとおりである。本実施の形態のベースバンド信号の入れ替えは、ベースバンド信号の入れ替えするための信号が図55と異なる。以下では、本実施の形態のベースバンド信号の入れ替えについて、図68を用いて説明する。
図68において、重み付け合成後の信号309A(p1(i))の同相I成分Ip1(i)、直交Q成分をQp1(i)とあらわし、重み付け合成後の信号316B(p2(i))の同相I成分Ip2(i)、直交Q成分をQp2(i)とあらわす。そして、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)とあらわし、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)とあらわす。(ただし、iは、(時間、または、周波数(キャリア)の)順番をあらわす。図67の例では、iは時間となるが、図67を図12のようにOFDM方式を用いている場合に適用した場合、iは周波数(キャリア)であってもよい。後に、この点について説明する。)
このとき、ベースバンド信号入れ替え部6702は、ベースバンド成分の入れ替えを行い、

・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i)、直交成分をQp2(i)、入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i)、直交成分をQp1(i)

とし、入れ替え後のベースバンド信号q1(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号q2(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号q1(i)に相当する変調信号と入れ替え後のベースバンド信号q2(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信するとしてもよい。また、

・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i)、直交成分をIp2(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i)、直交成分をQp2(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i)、直交成分をQp2(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i)、直交成分をIp2(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i)、直交成分をQp2(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i)、直交成分をIp2(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i)、直交成分をIp2(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i)、直交成分をIp2(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i)、直交成分をQp2(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i)、直交成分をQp2(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i)、直交成分をIp2(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i)、直交成分をQp2(i)、入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i)、直交成分をQp2(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i)、直交成分をIp2(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i)、直交成分をQp1(i)
・入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i)、直交成分をIp1(i)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i)、直交成分をIp2(i)

としてもよい。また、上述では、重み付け合成後の信号309Aおよび重み付け合成後の信号316Bの同相成分と直交成分の入れ替えについて説明したが、これに限ったものではなく、2つの信号より多い信号同相成分と直交成分の入れ替えを行うことも可能である。
また、上記の例では、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えを説明しているが、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えでなくてもよい。例として、以下のように記述することができる。

・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i+v)、直交成分をQp2(i+w)、入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i+v)、直交成分をIp2(i+w)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i+v)、直交成分をQp2(i+w)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i+v)、直交成分をQp2(i+w)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i+v)、直交成分をIp2(i+w)、入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q1(i)の同相成分をIp1(i+v)、直交成分をQp2(i+w)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i+v)、直交成分をIp2(i+w)
・入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q2(i)の同相成分をQp1(i+v)、直交成分をIp2(i+w)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i+v)、直交成分をIp2(i+w)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i+v)、直交成分をQp2(i+w)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i+v)、直交成分をQp2(i+w)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i+v)、直交成分をIp2(i+w)、入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q1(i)の同相成分をQp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i+v)、直交成分をQp2(i+w)、入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q2(i)の同相成分をIp1(i+v)、直交成分をQp2(i+w)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i+v)、直交成分をIp2(i+w)
・入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q1(i)の同相成分をIp2(i+w)、直交成分をQp1(i+v)
・入れ替え後のベースバンド信号q2(i)の同相成分をQp2(i+w)、直交成分をIp1(i+v)、入れ替え後のベースバンド信号q1(i)の同相成分をQp1(i+v)、直交成分をIp2(i+w)

重み付け合成後の信号309A(p1(i))の同相I成分Ip1(i)、直交Q成分をQp1(i)とあらわし、重み付け合成後の信号316B(p2(i))の同相I成分Ip2(i)、直交Q成分をQp2(i)とあらわす。そして、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)とあらわし、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)とあらわす。
図68は、上記の記載を説明するための図であり、前述に記載したとおり、重み付け合成後の信号309A(p1(i))の同相I成分Ip1(i)、直交Q成分をQp1(i)とあらわし、重み付け合成後の信号316B(p2(i))の同相I成分Ip2(i)、直交Q成分をQp2(i)とあらわす。そして、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)とあらわし、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)とあらわす。
すると、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)、および、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)上述で説明したいずれかであらわされるものとする。
そして、入れ替え後ベースバンド信号6701A(q1(i))に相当する変調信号を送信アンテナ312A、入れ替え後ベースバンド信号6701B(q2(i))に相当する変調信号を送信アンテナ312Bから、同一時刻に同一周波数を用いて送信する、というように、入れ替え後ベースバンド信号6701A(q1(i))に相当する変調信号と入れ替え後ベースバンド信号6701B(q2(i))相当する変調信号を異なるアンテナから、同一時刻に同一周波数を用いて送信することになる。
位相変更部317Bは、入れ替え後ベースバンド信号6701B及び信号処理方法に関する情報315を入力とし、当該信号入れ替え後ベースバンド信号6701Bの位相を規則的に変更して出力する。規則的に変更するとは、予め定められた周期(例えば、n個のシンボル毎(nは1以上の整数)あるいは予め定められた時間毎)で、予め定められた位相変更パターンに従って位相を変更する。位相変更パターンの詳細については、実施の形態4において説明したとおりである。
無線部310Bは、位相変更後の信号309Bを入力とし、直交変調、帯域制限、周波数変換、増幅等の処理を施し、送信信号311Bを出力し、送信信号311Bは、アンテナ312Bから電波として出力される。
なお、図67は、図3のように、符号化器が複数ある場合で説明したが、図67に対し、図4のように符号化器と分配部を具備し、分配部が出力する信号をそれぞれ、インタリーバの入力信号とするようにし、それ以降は、図67の構成を踏襲する場合についても、上述と同様に動作させることができる。
図5は、本実施の形態における送信装置の時間軸におけるフレーム構成の一例を示している。シンボル500_1は、受信装置に、送信方法を通知するためのシンボルであり、例えば、データシンボルを伝送するために用いる誤り訂正方式、その符号化率の情報、データシンボルを伝送するために用いる変調方式の情報等を伝送する。
シンボル501_1は、送信装置が送信する変調信号z1(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_1は変調信号z1(t)が(時間軸における)シンボル番号uに送信するデータシンボル、シンボル503_1は変調信号z1(t)がシンボル番号u+1に送信するデータシンボルである。
シンボル501_2は、送信装置が送信する変調信号z2(t){ただし、tは時間}のチャネル変動を推定するためのシンボルである。シンボル502_2は変調信号z2(t)がシンボル番号uに送信するデータシンボル、シンボル503_2は変調信号z2(t)がシンボル番号u+1に送信するデータシンボルである。
このとき、z1(t)におけるシンボルとz2(t)におけるシンボルにおいて、同一時刻(同一時間)のシンボルは、同一(共通)の周波数を用いて、送信アンテナから送信されることになる。
送信装置が送信する変調信号z1(t)と変調信号z2(t)、及び、受信装置における受信信号r1(t)、r2(t)の関係について説明する。
図5において、504#1、504#2は送信装置における送信アンテナ、505#1、505#2は受信装置における受信アンテナを示しており、送信装置は、変調信号z1(t)を送信アンテナ504#1、変調信号z2(t)を送信アンテナ504#2から送信する。このとき、変調信号z1(t)および変調信号z2(t)は、同一(共通の)周波数(帯域)を占有しているものとする。送信装置の各送信アンテナと受信装置の各アンテナのチャネル変動をそれぞれh11(t)、h12(t)、h21(t)、h22(t)とし、受信装置の受信アンテナ505#1が受信した受信信号をr1(t)、受信装置の受信アンテナ505#2が受信した受信信号をr2(t)とすると、以下の関係式が成立する。
Figure 2020061771
図69は、本実施の形態における重み付け方法(プリコーディング(Precoding)方法)、ベースバンド信号の入れ替え及び位相変更方法に関連する図であり、重み付け合成部600は、図67の重み付け合成部308Aと308Bの両者を統合した重み付け合成部である。図69に示すように、ストリームs1(t)およびストリームs2(t)は、図3のベースバンド信号307Aおよび307Bに相当する、つまり、QPSK、16QAM、64QAMなどの変調方式のマッピングにしたがったベースバンド信号の同相I成分、直交Q成分となる。そして、図69のフレーム構成のようにストリームs1(t)は、シンボル番号uの信号をs1(u)、シンボル番号u+1の信号をs1(u+1)、・・・とあらわす。同様に、ストリームs2(t)は、シンボル番号uの信号をs2(u)、シンボル番号u+1の信号をs2(u+1)、・・・とあらわす。そして、重み付け合成部600は、図67におけるベースバンド信号307A(s1(t))および307B(s2(t))、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315にしたがった重み付けを施し、図67の重み付け合成後の信号309A(p1(t))、316B(p2(t))を出力する。
このとき、p1(t)は、固定のプリコーディング行列Fにおける第1行のベクトルをW1=(w11,w12)とすると、以下の式(67)であらわすことができる。
Figure 2020061771
一方、p2(t)は、プリコーディング行列Fにおける第2行のベクトルをW2=(w21,w22)とすると、以下の式(68)であらわすことができる。
Figure 2020061771
したがって、プリコーディング行列Fは、次式であらわすことができる。
Figure 2020061771
ベースバンド信号の入れ替えを行った後の、入れ替え後ベースバンド信号6701A(q1(i))の同相I成分Iq1(i)、直交Q成分をQq1(i)、および、入れ替え後ベースバンド信号6701B(q2(i))の同相I成分Iq2(i)、直交Q成分をQq2(i)と、p1(t)およびp2(t)の関係は、上述説明したとおりである。そして、位相変更部による位相変更式をy(t)とすると、位相変更後のベースバンド信号309B(q2’(i))は、以下の式(70)であらわすことができる。
Figure 2020061771
ここで、y(t)は、予め定められた方式に従って、位相を変更するための式であり、例えば、周期を4とすると、時刻uの位相変更式は、例えば、式(71)であらわすことができる。
Figure 2020061771
同様に時刻u+1の位相変更式は、例えば、式(72)であらわすことができる。
Figure 2020061771
即ち、時刻u+kの位相変更式は、式(73)であらわすことができる。
Figure 2020061771
なお、式(71)〜(73)に示した規則的な位相変更例は一例に過ぎない。
規則的な位相変更の周期は4に限ったものではない。この周期の数が多くなればその分だけ、受信装置の受信性能(より正確には誤り訂正性能)の向上を促すことができる可能性がある(周期が大きければよいというわけではないが、2のような小さい値は避ける方がよい可能性が高い。)。
また、上記式(71)〜(73)で示した位相変更例では逐次所定の位相(上記式では、π/2ずつ)だけ回転させていく構成を示したが、同じ位相量だけ回転させるのではなくランダムに位相を変更することとしてもよい。例えば、y(t)は予め定められた周期に従って、式(74)や式(75)に示すような順に乗じる位相が変更されてもよい。位相の規則的な変更において重要となるのは、変調信号の位相が規則的に変更されることであり、変更される位相の度合いについては、なるべく均等になる、例えば、−πラジアンからπラジアンに対し、一様分布となるのが望ましいもののランダムであってもよい。
Figure 2020061771
Figure 2020061771
このように、図6の重み付け合成部600は、予め定められた固定のプリコーディングウェイトを用いてプリコーディングを実行し、ベースバンド信号入れ替え部は、上述のベースバンド信号の入れ替えを行い、位相変更部は、入力された信号の位相を、その変更度合いを規則的に変えながら、変更する。
LOS環境では、特殊なプリコーディング行列を用いると、受信品質が大きく改善する可能性があるが、直接波の状況により、その特殊なプリコーディング行列は受信した際の直接波の位相、振幅成分により異なる。しかし、LOS環境には、ある規則があり、この規則に従い送信信号の位相を規則的に変更すれば、データの受信品質が大きく改善する。本発明は、LOS環境を改善する信号処理方法を提案している。
図7は、本実施の形態における受信装置700の構成の一例を示している。無線部703_Xは、アンテナ701_Xで受信された受信信号702_Xを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Xを出力する。
送信装置で送信された変調信号z1におけるチャネル変動推定部705_1は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(66)のh11に相当する値を推定し、チャネル推定信号706_1を出力する。
送信装置で送信された変調信号z2におけるチャネル変動推定部705_2は、ベースバンド信号704_Xを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(66)のh12に相当する値を推定し、チャネル推定信号706_2を出力する。
無線部703_Yは、アンテナ701_Yで受信された受信信号702_Yを入力とし、周波数変換、直交復調等の処理を施し、ベースバンド信号704_Yを出力する。
送信装置で送信された変調信号z1におけるチャネル変動推定部707_1は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_1を抽出し、式(66)のh21に相当する値を推定し、チャネル推定信号708_1を出力する。
送信装置で送信された変調信号z2におけるチャネル変動推定部707_2は、ベースバンド信号704_Yを入力とし、図5におけるチャネル推定用のリファレンスシンボル501_2を抽出し、式(66)のh22に相当する値を推定し、チャネル推定信号708_2を出力する。
制御情報復号部709は、ベースバンド信号704_Xおよび704_Yを入力とし、図5の送信方法を通知するためのシンボル500_1を検出し、送信装置が通知した送信方法の情報に関する信号710を出力する。
信号処理部711は、ベースバンド信号704_X、704_Y、チャネル推定信号706_1、706_2、708_1、708_2、及び、送信装置が通知した送信方法の情報に関する信号710を入力とし、検波、復号を行い、受信データ712_1および712_2を出力する。
次に、図7の信号処理部711の動作について詳しく説明する。図8は、本実施の形態における信号処理部711の構成の一例を示している。図8は、主にINNER MIMO検波部とsoft−in/soft−outデコーダ、係数生成部から構成されている。この構成における反復復号の方法については、非特許文献2、非特許文献3で詳細が述べられているが、非特許文献2、非特許文献3に記載されているMIMO伝送方式は空間多重MIMO伝送方式であるが、本実施の形態における伝送方式は、時間とともに信号の位相を規則的に変更し、かつ、プリコーディング行列が使用、また、ベースバンド信号の入れ替えを行っているMIMO伝送方式である点が、非特許文献2、非特許文献3と異なる点である。式(66)における(チャネル)行列をH(t)、図69におけるプリコーディングウェイト行列をF(ここでプリコーディング行列は1の受信信号中においては変更されない固定のものである)、図69の位相変更部による位相変更式の行列をY(t)(ここでY(t)はtによって変化する)、ベースバンド信号の入れ替えから、受信ベクトルをR(t)=(r1(t),r2(t))、とストリームベクトルS(t)=(s1(t),s2(t))の関係を導き、受信ベクトルをR(t)に対して非特許文献2、非特許文献3の復号方法を適用することができる、MIMO検波を行うことができる。
したがって、図8の係数生成部819は、送信装置が通知した送信方法の情報(用いた固定のプリコーディング行列及び位相を変更していた場合の位相変更パターンを特定するための情報)に関する信号818(図7の710に相当)を入力とし、信号処理方法の情報に関する信号820を出力する。
INNER MIMO検波部803は、信号処理方法の情報に関する信号820を入力とし、この信号を利用して、反復検波・復号を行うことになるがその動作について説明する。
図8に示す構成の信号処理部では、反復復号(反復検波)を行うため図10に示すような処理方法を行う必要がある。初めに、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の復号を行う。その結果、soft−in/soft−outデコーダから、変調信号(ストリーム)s1の1符号語(または、1フレーム)、および、変調信号(ストリーム)s2の1符号語(または、1フレーム)の各ビットの対数尤度比(LLR:Log−Likelihood Ratio)が得られる。そして、そのLLRを用いて再度、検波・復号が行われる。この操作が複数回行われる(この操作を反復復号(反復検波)と呼ぶ。)。以降では、1フレームにおける特定の時間のシンボルの対数尤度比(LLR)の作成方法を中心に説明する。
図8において、記憶部815は、ベースバンド信号801X(図7のベースバンド信号704_Xに相当する。)、チャネル推定信号群802X(図7のチャネル推定信号706_1、706_2に相当する。)、ベースバンド信号801Y(図7のベースバンド信号704_Yに相当する。)、チャネル推定信号群802Y(図7のチャネル推定信号708_1、708_2に相当する。)を入力とし、反復復号(反復検波)を実現するために、算出した行列を変形チャネル信号群として記憶する。そして、記憶部815は、必要なときに上記信号を、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Yとして出力する。
その後の動作については、初期検波の場合と反復復号(反復検波)の場合を分けて説明する。
<初期検波の場合>
INNER MIMO検波部803は、ベースバンド信号801X、チャネル推定信号群802X、ベースバンド信号801Y、チャネル推定信号群802Yを入力とする。ここでは、変調信号(ストリーム)s1、変調信号(ストリーム)s2の変調方式が16QAMとして説明する。
INNER MIMO検波部803は、まず、チャネル推定信号群802X、チャネル推定信号群802Yからベースバンド信号801Xに対応する候補信号点を求める。そのときの様子を図11に示す。図11において、●(黒丸)は、IQ平面における候補信号点であり、変調方式が16QAMのため、候補信号点は256個存在する。(ただし、図11では、イメージ図を示しているため、256個の候補信号点全ては示していない。)ここで、変調信号s1で伝送する4ビットをb0、b1、b2、b3、変調信号s2で伝送する4ビットをb4、b5、b6、b7とすると、図11において(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点が存在することになる。そして、受信信号点1101(ベースバンド信号801Xに相当する。)と候補信号点それぞれとの2乗ユークリッド距離を求める。そして、それぞれの2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。なお、各ベースバンド信号、変調信号s1、s2は、複素信号である。
同様に、チャネル推定信号群802X、チャネル推定信号群802Yから、ベースバンド信号801Yに対応する候補信号点をもとめ、受信信号点(ベースバンド信号801Yに相当する。)との2乗ユークリッド距離を求め、この2乗ユークリッド距離をノイズの分散σで除算する。したがって、(b0,b1,b2,b3,b4,b5,b6,b7)に対応する候補信号点と受信信号点2乗ユークリッド距離をノイズの分散で除算した値をE(b0,b1,b2,b3,b4,b5,b6,b7)が求まることになる。
そして、E(b0,b1,b2,b3,b4,b5,b6,b7)+E(b0,b1,b2,b3,b4,b5,b6,b7)=E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。
INNER MIMO検波部803は、E(b0,b1,b2,b3,b4,b5,b6,b7)を信号804として出力する。
対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(28)、式(29)、式(30)に示した通りであり、詳細については、非特許文献2、非特許文献3に示されている。
同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。
デインタリーバ(807A)は、対数尤度信号806Aを入力とし、インタリーバ(図67のインタリーバ(304A))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Aを出力する。
同様に、デインタリーバ(807B)は、対数尤度信号806Bを入力とし、インタリーバ(図67のインタリーバ(304B))に対応するデインタリーブを行い、デインタリーブ後の対数尤度信号808Bを出力する。
対数尤度比算出部809Aは、デインタリーブ後の対数尤度信号808Aを入力とし、図67の符号化器302Aで符号化されたビットの対数尤度比(LLR:Log−Likelihood Ratio)を算出し、対数尤度比信号810Aを出力する。
同様に、対数尤度比算出部809Bは、デインタリーブ後の対数尤度信号808Bを入力とし、図67の符号化器302Bで符号化されたビットの対数尤度比(LLR:Log−Likelihood Ratio)を算出し、対数尤度比信号810Bを出力する。
Soft−in/soft−outデコーダ811Aは、対数尤度比信号810Aを入力とし、復号を行い、復号後の対数尤度比812Aを出力する。
同様に、Soft−in/soft−outデコーダ811Bは、対数尤度比信号810Bを入力とし、復号を行い、復号後の対数尤度比812Bを出力する。
<反復復号(反復検波)の場合、反復回数k>
インタリーバ(813A)は、k−1回目のsoft−in/soft−outデコードで得られた復号後の対数尤度比812Aを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Aを出力する。このとき、インタリーブ(813A)のインタリーブのパターンは、図67のインタリーバ(304A)のインタリーブパターンと同様である。
インタリーバ(813B)は、k−1回目のsoft−in/soft−outデコードで得られた復号後の対数尤度比812Bを入力とし、インタリーブを行い、インタリーブ後の対数尤度比814Bを出力する。このとき、インタリーブ(813B)のインタリーブのパターンは、図67のインタリーバ(304B)のインタリーブパターンと同様である。
INNER MIMO検波部803は、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Y、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを入力とする。ここで、ベースバンド信号801X、チャネル推定信号群802X、ベースバンド信号801Y、チャネル推定信号群802Yではなく、ベースバンド信号816X、変形チャネル推定信号群817X、ベースバンド信号816Y、変形チャネル推定信号群817Yを用いているのは、反復復号のため、遅延時間が発生しているためである。
INNER MIMO検波部803の反復復号時の動作と、初期検波時の動作の異なる点は、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比814Bを信号処理の際に用いていることである。INNER MIMO検波部803は、まず、初期検波のときと同様に、E(b0,b1,b2,b3,b4,b5,b6,b7)を求める。加えて、インタリーブ後の対数尤度比814A、インタリーブ後の対数尤度比914Bから、式(11)、式(32)に相当する係数を求める。そして、E(b0,b1,b2,b3,b4,b5,b6,b7)の値をこの求めた係数を用いて補正し、その値をE’(b0,b1,b2,b3,b4,b5,b6,b7)とし、信号804として出力する。
対数尤度算出部805Aは、信号804を入力とし、ビットb0およびb1およびb2およびb3の対数尤度(log likelihood)を算出し、対数尤度信号806Aを出力する。ただし、対数尤度の算出では、“1”のときの対数尤度および“0”のときの対数尤度が算出される。その算出方法は、式(31)、式(数32)、式(33)、式(34)、式(35)に示したとおりであり、非特許文献2、非特許文献3に示されている。
同様に、対数尤度算出部805Bは、信号804を入力とし、ビットb4およびb5およびb6およびb7の対数尤度を算出し、対数尤度信号806Bを出力する。デインタリーバ以降の動作は、初期検波と同様である。
なお、図8では、反復検波を行う場合の、信号処理部の構成について示したが、反復検波は必ずしも良好な受信品質を得る上で必須の構成ではなく、反復検波のみに必要とする構成部分、インタリーバ813A、813Bを有していない構成でもよい。このとき、INNER MIMO検波部803は、反復的な検波を行わないことになる。
なお、非特許文献5等に示されているように、QR分解を用いて初期検波、反復検波を行ってもよい。また、非特許文献11に示されているように、MMSE(Minimum Mean Square Error)、ZF(Zero Forcing)の線形演算を行い、初期検波を行ってもよい。
図9は、図8と異なる信号処理部の構成であり、図67に対し、図4の符号化器、分配部を適用した送信装置が送信した変調信号のための信号処理部である。図8と異なる点は、soft−in/soft−outデコーダの数であり、soft−in/soft−outデコーダ901は、対数尤度比信号810A、810Bを入力とし、復号を行い、復号後の対数尤度比902を出力する。分配部903は、復号後の対数尤度比902を入力とし、分配を行う。それ以外の部分については、図8と同様の動作となる。
以上のように、本実施の形態のように、MIMO伝送システムの送信装置が複数アンテナから複数の変調信号を送信する際、プリコーディング行列を乗算するとともに、時間とともに位相を変更するし、当該位相の変更を規則的に行うことで、直接波が支配的なLOS環境において、従来の空間多重MIMO伝送を用いるときと比べ、受信装置におけるデータの受信品質が向上するという効果を得ることができる。
本実施の形態において、特に、受信装置の構成については、アンテナ数を限定して、動作を説明したが、アンテナ数が増えても、同様に実施することができる。つまり、受信装置におけるアンテナ数は、本実施の形態の動作、効果に影響を与えるものではない。
また、本実施の形態では、符号化として、特にLDPC符号に限ったものではなく、また、復号方法についても、soft−in/soft−outデコーダとして、sum−product復号を例に限ったものではなく、他のsoft−in/soft−outの復号方法、例えば、BCJRアルゴリズム、SOVAアルゴリズム、Max−log−MAPアルゴリズムなどがある。詳細については、非特許文献6に示されている。
また、上述では、シングルキャリア方式を例に説明したが、これに限ったものではなく、マルチキャリア伝送を行った場合でも同様に実施することができる。したがって、例えば、スペクトル拡散通信方式、OFDM方式、SC−FDMA、SC−OFDM方式、非特許文献7等で示されているウェーブレットOFDM方式等を用いた場合についても同様に実施することができる。また、本実施の形態では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード等)、制御情報の伝送用のシンボルなどが、フレームにどのように配置されていてもよい。
次に、マルチキャリア方式の一例として、OFDM方式を用いたときの例を説明する。
図70は、OFDM方式を用いたときの送信装置の構成を示している。図70において、図3、図12、図67と同様に動作するものについては、同一符号を付した。
OFDM方式関連処理部1201Aは、重み付け後の信号309Aを入力とし、OFDM方式関連の処理を施し、送信信号1202Aを出力する。同様に、OFDM方式関連処理部1201Bは、位相変更後の信号309Bを入力とし、送信信号1202Bを出力する。
図13は、図70のOFDM方式関連処理部1201A、1201B以降の構成の一例を示しており、図70の1201Aから312Aに関連する部分が、1301Aから1310Aであり、1201Bから312Bに関連する部分が1301Bから1310Bである。
シリアルパラレル変換部1302Aは、入れ替え後のベースバンド信号1301A(図70の入れ替え後のベースバンド信号6701Aに相当する)シリアルパラレル変換を行い、パラレル信号1303Aを出力する。
並び換え部1304Aは、パラレル信号1303Aを入力とし、並び換えを行い、並び換え後の信号1305Aを出力する。なお、並び換えについては、後で詳しく述べる。
逆高速フーリエ変換部1306Aは、並び換え後の信号1305Aを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1307Aを出力する。
無線部1308Aは、逆フーリエ変換後の信号1307Aを入力とし、周波数変換、増幅等の処理を行い、変調信号1309Aを出力し、変調信号1309Aはアンテナ1310Aから電波として出力される。
シリアルパラレル変換部1302Bは、位相が変更された後の信号1301B(図12の位相変更後の信号309Bに相当する)に対し、シリアルパラレル変換を行い、パラレル信号1303Bを出力する。
並び換え部1304Bは、パラレル信号1303Bを入力とし、並び換えを行い、並び換え後の信号1305Bを出力する。なお、並び換えについては、後で詳しく述べる。
逆高速フーリエ変換部1306Bは、並び換え後の信号1305Bを入力とし、逆高速フーリエ変換を施し、逆フーリエ変換後の信号1307Bを出力する。
無線部1308Bは、逆フーリエ変換後の信号1307Bを入力とし、周波数変換、増幅等の処理を行い、変調信号1309Bを出力し、変調信号1309Bはアンテナ1310Bから電波として出力される。
図67の送信装置では、マルチキャリアを用いた伝送方式でないため、図69のように、4周期となるように位相を変更し、位相変更後のシンボルを時間軸方向に配置している。図70に示すようなOFDM方式のようなマルチキャリア伝送方式を用いている場合、当然、図67のようにプリコーディング、ベースバンド信号の入れ替えをし、位相を変更した後のシンボルを時間軸方向に配置し、それを各(サブ)キャリアごとに行う方式が考えられるが、マルチキャリア伝送方式の場合、周波数軸方向、または、周波数軸・時間軸両者を用いて配置する方法が考えられる。以降では、この点について説明する。
図14は、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、周波数軸は、(サブ)キャリア0から(サブ)キャリア9で構成されており、変調信号z1とz2は、同一時刻(時間)に同一の周波数帯域を使用しており、図14(A)は変調信号z1のシンボルの並び替え方法、図14(B)は変調信号z2のシンボルの並び替え方法を示している。シリアルパラレル変換部1302Aが入力とする入れ替え後のベースバンド信号1301Aのシンボルに対し、順番に、#0、#1、#2、#3、・・・と番号をふる。ここでは、周期4の場合を考えているので、#0、#1、#2、#3が一周期分となる。同様に考えると、#4n、#4n+1、#4n+2、#4n+3(nは0以上の整数)が一周期分となる。
このとき、図14(a)のように、シンボル#0、#1、#2、#3、・・・をキャリア0から順番に配置し、シンボル#0から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。なお、変調信号z1とz2は、複素信号である。
同様に、シリアルパラレル変換部1302Bが入力とする位相が変更された後の信号1301Bのシンボルに対し、順番に、#0、#1、#2、#3、・・・と番号をふる。ここでは、周期4の場合を考えているので、#0、#1、#2、#3はそれぞれ異なる位相変更を行っていることになり、#0、#1、#2、#3が一周期分となる。同様に考えると、#4n、#4n+1、#4n+2、#4n+3(nは0以上の整数)はそれぞれ異なる位相変更を行っていることになり、#4n、#4n+1、#4n+2、#4n+3が一周期分となる。
このとき、図14(b)のように、シンボル#0、#1、#2、#3、・・・をキャリア0から順番に配置し、シンボル#0から#9を時刻$1に配置し、その後、シンボル#10から#19を時刻$2に配置するというように規則的に配置するものとする。
そして、図14(B)に示すシンボル群1402は、図69に示す位相変更方法を用いたときの1周期分のシンボルであり、シンボル#0は図69の時刻uの位相を用いたときのシンボルであり、シンボル#1は図69の時刻u+1の位相を用いたときのシンボルであり、シンボル#2は図69の時刻u+2の位相を用いたときのシンボルであり、シンボル#3は図69の時刻u+3の位相を用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 4(xを4で割ったときの余り、したがって、mod:modulo)が0のとき、シンボル#xは図69の時刻uの位相を用いたときのシンボルであり、x mod 4が1のとき、シンボル#xは図69の時刻u+1の位相を用いたときのシンボルであり、x mod 4が2のとき、シンボル#xは図69の時刻u+2の位相を用いたときのシンボルであり、x mod 4が3のとき、シンボル#xは図69の時刻u+3の位相を用いたときのシンボルである。
なお、本実施の形態においては、図14(A)に示す変調信号z1は位相を変更されていない。
このように、OFDM方式などのマルチキャリア伝送方式を用いた場合、シングルキャリア伝送のときとは異なり、シンボルを周波数軸方向に並べることができるという特徴を持つことになる。そして、シンボルの並べ方については、図14のような並べ方に限ったものではない。他の例について、図15、図16を用いて説明する。
図15は、図14とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図15(A)は変調信号z1のシンボルの並び替え方法、図15(B)は変調信号z2のシンボルの並び替え方法を示している。図15(A)(B)が図14と異なる点は、変調信号z1のシンボルの並び替え方法と変調信号z2のシンボルの並び替え方法が異なる点であり、図15(B)では、シンボル#0から#5をキャリア4からキャリア9に配置し、シンボル#6から#9をキャリア0から3に配置し、その後、同様の規則で、シンボル#10から#19を各キャリアに配置する。このとき、図14(B)と同様に、図15(B)に示すシンボル群1502は、図6に示す位相変更方法を用いたときの1周期分のシンボルである。
図16は、図14と異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図16(A)は変調信号z1のシンボルの並び替え方法、図16(B)は変調信号z2のシンボルの並び替え方法を示している。図16(A)(B)が図14と異なる点は、図14では、シンボルをキャリアに順々に配置しているのに対し、図16では、シンボルをキャリアに順々に配置していない点である。当然であるが、図16において、図15と同様に、変調信号z1のシンボルの並び替え方法と変調信号z2の並び替え方法を異なるようにしてもよい。
図17は、図14〜16とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図17(A)は変調信号z1のシンボルの並び替え方法、図17(B)は変調信号z2のシンボルの並び替え方法を示している。図14〜16では、シンボルを周波数軸方向に並べているが、図17ではシンボルを周波数、時間軸の両者を利用して配置している。
図69では、位相の変更を4スロットで切り替える場合の例を説明したが、ここでは、8スロットで切り替える場合を例に説明する。図17に示すシンボル群1702は、位相変更方法を用いたときの1周期分のシンボル(したがって、8シンボル)であり、シンボル#0は時刻uの位相を用いたときのシンボルであり、シンボル#1は時刻u+1の位相を用いたときのシンボルであり、シンボル#2は時刻u+2の位相を用いたときのシンボルであり、シンボル#3は時刻u+3の位相を用いたときのシンボルであり、シンボル#4は時刻u+4の位相を用いたときのシンボルであり、シンボル#5は時刻u+5の位相を用いたときのシンボルであり、シンボル#6は時刻u+6の位相を用いたときのシンボルであり、シンボル#7は時刻u+7の位相を用いたときのシンボルである。したがって、シンボル#xにおいて、x mod 8が0のとき、シンボル#xは時刻uの位相を用いたときのシンボルであり、x mod 8が1のとき、シンボル#xは時刻u+1の位相を用いたときのシンボルであり、x mod 8が2のとき、シンボル#xは時刻u+2の位相を用いたときのシンボルであり、x mod 8が3のとき、シンボル#xは時刻u+3の位相を用いたときのシンボルであり、x mod 8が4のとき、シンボル#xは時刻u+4の位相を用いたときのシンボルであり、x mod 8が5のとき、シンボル#xは時刻u+5の位相を用いたときのシンボルであり、x mod 8が6のとき、シンボル#xは時刻u+6の位相を用いたときのシンボルであり、x mod 8が7のとき、シンボル#xは時刻u+7の位相を用いたときのシンボルである。図17のシンボルの並べ方では、時間軸方向に4スロット、周波数軸方向で2スロットの計4×2=8スロットを用いて、1周期分のシンボルを配置しているが、このとき、1周期分のシンボルの数をm×nシンボル(つまり、乗じる位相はm×n種類存在する。)1周期分のシンボルを配置するのに使用する周波数軸方向のスロット(キャリア数)をn、時間軸方向に使用するスロットをmとすると、m>nとするとよい。これは、直接波の位相は、時間軸方向の変動は、周波数軸方向の変動と比較し、緩やかである。したがって、定常的な直接波の影響を小さくするために本実施の形態の規則的な位相の変更を行うので、位相の変更を行う周期では直接波の変動を小さくしたい。したがって、m>nとするとよい。また、以上の点を考慮すると、周波数軸方向のみ、または、時間軸方向のみにシンボルを並び替えるより、図17のように周波数軸と時間軸の両者を用いて並び換えを行うほうが、直接波は定常的になる可能性が高く、本発明の効果を得やすいという効果が得られる。ただし、周波数軸方向に並べると、周波数軸の変動が急峻であるため、ダイバーシチゲインを得ることが出来る可能性があるので、必ずしも周波数軸と時間軸の両者を用いて並び換えを行う方法が最適な方法であるとは限らない。
図18は、図17とは異なる、横軸周波数、縦軸時間における、図13の並び替え部1301A、1301Bにおけるシンボルの並び替え方法の一例を示しており、図18(A)は変調信号z1のシンボルの並び替え方法、図18(B)は変調信号z2のシンボルの並び替え方法を示している。図18は、図17と同様、シンボルを周波数、時間軸の両者を利用して配置しているが、図17と異なる点は、図17では、周波数方向を優先し、その後、時間軸方向にシンボルを配置しているのに対し、図18では、時間軸方向を優先し、その後、時間軸方向にシンボルを配置している点である。図18において、シンボル群1802は、位相変更方法を用いたときの1周期分のシンボルである。
なお、図17、図18では、図15と同様に、変調信号z1のシンボルの配置方法と変調信号z2のシンボル配置方法が異なるように配置しても同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。また、図17、図18において、図16のようにシンボルを順々に配置していなくても、同様に実施することができ、また、高い受信品質を得ることができるという効果を得ることができる。
図22は、上記とは異なる、横軸周波数、縦軸時間における図13の並び替え部1301A、130Bにおけるシンボルの並び換え方法の一例を示している。図69の時刻u〜u+3のような4スロットを用いて規則的に位相を変更する場合を考える。図22において特徴的な点は、周波数軸方向にシンボルを順に並べているが、時間軸方向に進めた場合、サイクリックにn(図22の例ではn=1)シンボルサイクリックシフトさせている点である。図22における周波数軸方向のシンボル群2210に示した4シンボルにおいて、図69の時刻u〜u+3の位相の変更を行うものとする。
このとき、#0のシンボルでは時刻uの位相を用いた位相変更、#1では時刻u+1の位相を用いた位相変更、#2では時刻u+2の位相を用いた位相変更、#3では時刻u+3の位相を用いた位相変更を行うものとする。
周波数軸方向のシンボル群2220についても同様に、#4のシンボルでは時刻uの位相を用いた位相変更、#5では時刻u+1の位相を用いた位相変更、#6では時刻u+2の位相を用いた位相変更、#7では時刻u+3の位相を用いた位相変更を行うものとする。
時間$1のシンボルにおいて、上記のような位相の変更を行ったが、時間軸方向において、サイクリックシフトしているため、シンボル群2201、2202、2203、2204については以下のように位相の変更を行うことになる。
時間軸方向のシンボル群2201では、#0のシンボルでは時刻uの位相を用いた位相変更、#9では時刻u+1の位相を用いた位相変更、#18では時刻u+2の位相を用いた位相変更、#27では時刻u+3の位相を用いた位相変更を行うものとする。
時間軸方向のシンボル群2202では、#28のシンボルでは時刻uの位相を用いた位相変更、#1では時刻u+1の位相を用いた位相変更、#10では時刻u+2の位相を用いた位相変更、#19では時刻u+3の位相を用いた位相変更を行うものとする。
時間軸方向のシンボル群2203では、#20のシンボルでは時刻uの位相を用いた位相変更、#29では時刻u+1の位相を用いた位相変更、#2では時刻u+2の位相を用いた位相変更、#11では時刻u+3の位相を用いた位相変更を行うものとする。
時間軸方向のシンボル群2204では、#12のシンボルでは時刻uの位相を用いた位相変更、#21では時刻u+1の位相を用いた位相変更、#30では時刻u+2の位相を用いた位相変更、#3では時刻u+3の位相を用いた位相変更を行うものとする。
図22においての特徴は、例えば#11のシンボルに着目した場合、同一時刻の周波数軸方向の両隣のシンボル(#10と#12)は、ともに#11とは異なる位相を用いて位相の変更を行っているとともに、#11のシンボルの同一キャリアの時間軸方向の両隣のシンボル(#2と#20)は、ともに#11とは異なる位相を用いて位相の変更を行っていることである。そして、これは#11のシンボルに限ったものではなく、周波数軸方向および時間軸方向ともに両隣にシンボルが存在するシンボルすべてにおいて#11のシンボルと同様の特徴をもつことになる。これにより、効果的に位相を変更していることになり、直接波の定常的な状況に対する影響を受けづらくなるため、データの受信品質が改善される可能性が高くなる。
図22では、n=1として説明したが、これに限ったものではなく、n=3としても同様に実施することができる。また、図22では、周波数軸にシンボルを並べ、時間が軸方向にすすむ場合、シンボルの配置の順番をサイクリックシフトするという特徴を持たせることで、上記の特徴を実現したが、シンボルをランダム(規則的であってもよい)に配置することで上記特徴を実現するような方法もある。
なお、本実施の形態では、実施の形態1の変形例として、位相変更前に、ベースバンド信号入れ替え部を挿入する構成を示したが、本実施の形態と実施の形態2を組み合わせ、図26、図28において、位相変更を行う前に、ベースバンド信号の入れ替え部を挿入して、実施してもよい。したがって、図26において、位相変更部317Aは、入れ替え後ベースバンド信号6701A(q1(i))を入力とし、位相変更部317Bは、入れ替え後ベースバンド信号6701B(q2(i))を入力とすることになる。また、図28の位相変更部317Aおよび位相変更部317Bについても同様となる。
次に、送信装置から見て、各所に点在することになる受信装置において、受信装置がどこに配置されていても、各受信装置が良好なデータの受信品質を得るための手法について開示する。
図31は、規則的に位相を変更する送信方式において、OFDM方式のようなマルチキャリア方式を用いたときの、時間−周波数軸における信号の一部のシンボルのフレーム構成の一例を示している。
図31は、図67に示した位相変更部317Bの入力である入れ替え後のベースバンド信号に対応する変調信号z2’のフレーム構成を示しており、1つの四角がシンボル(ただし、プリコーディングを行っているため、s1とs2の両者の信号を含んでいるのが通常であるが、プリコーディング行列の構成しだいでは、s1とs2の一方の信号のみであることもある。)を示している。
ここで、図31のキャリア2、時刻$2のシンボル3100について着目する。なお、ここではキャリアと記載しているが、サブキャリアと呼称することもある。
キャリア2において、時刻$2に時間的に最も隣接するシンボル、つまりキャリア2の時刻$1のシンボル3103と時刻$3のシンボル3101のそれぞれのチャネル状態は、キャリア2、時刻$2のシンボル610aのチャネル状態と、非常に相関が高い。
同様に時刻$2において、周波数軸方向でキャリア2に最も隣接している周波数のシンボル、即ち、キャリア1、時刻$2のシンボル3104と時刻$2、キャリア3のシンボル3104とのチャネル状態は、ともに、キャリア2、時刻$2のシンボル3100のチャネル状態と、非常に相関が高い。
上述したように、シンボル3101、3102、3103、3104のそれぞれのチャネル状態は、シンボル3100のチャネル状態との相関が非常に高い。
本明細書において、規則的に位相を変更する送信方法において、乗じる位相として、N種類の位相(但し、Nは2以上の整数)を用意しているものとする。図31に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図6における信号z2’に対し、「ej0」が乗じられて位相が変更されたことを意味する。つまり、図31の各シンボルに記載している値は、式(70)におけるy(t)の値となる。
本実施の形態においては、この周波数軸方向で隣接しあうシンボル及び/または時間軸方向で隣接しあうシンボルのチャネル状態の相関性が高いことを利用して受信装置側において、高いデータの受信品質が得られる位相が変更されたシンボルのシンボル配置を開示する。
この受信側で高いデータの受信品質が得られる条件として、条件#D1−1、条件#D1−2が考えられる。

<条件#D1−1>
図69のように、入れ替え後のベースバンド信号q2に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、時間軸方向で隣接するシンボル、即ち、時間X−1・キャリアYおよび時間X+1・キャリアYがいずれもデータシンボルであり、これら3つのデータシンボルに対応する入れ替え後のベースバンド信号q2、つまり、時間X・キャリアY、時間X−1・キャリアYおよび時間X+1・キャリアYにおけるそれぞれの入れ替え後のベースバンド信号q2では、いずれも異なる位相変更が行われる。

<条件#D1−2>
図69のように、入れ替え後のベースバンド信号q2に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、周波数軸方向で隣接するシンボル、即ち、時間X・キャリアY−1および時間X・キャリアY+1がいずれもデータシンボルである場合、これら3つのデータシンボルに対応する入れ替え後のベースバンド信号q2、つまり、時間X・キャリアY、時間X・キャリアY−1および時間X・キャリアY+1におけるそれぞれの入れ替え後のベースバンド信号q2では、いずれも異なる位相変更が行われる。

そして、<条件#D1−1>を満たすデータシンボルが存在するとよい。同様に、<条件#D1−2>を満たすデータシンボルが存在するとよい。
当該<条件#D1−1><条件#D1−2>が導出される理由は以下の通りである。
送信信号においてあるシンボル(以降、シンボルAと呼称する)があり、当該シンボルAに時間的に隣接したシンボルそれぞれのチャネル状態は、上述したとおり、シンボルAのチャネル状態との相関が高い。
したがって、時間的に隣接した3シンボルで、異なる位相を用いていると、LOS環境において、シンボルAが劣悪な受信品質(SNRとしては高い受信品質を得ているものの、直接波の位相関係が劣悪な状況であるため受信品質が悪い状態)であっても、残りのシンボルAに隣接する2シンボルでは、良好な受信品質を得ることができる可能性が非常に高く、その結果、誤り訂正復号後は良好な受信品質を得ることができる。
同様に、送信信号においてあるシンボル(以降、シンボルAと呼称する)があり、当該シンボルAに周波数的に隣接したシンボルそれぞれのチャネル状態は、上述したとおり、シンボルAのチャネル状態との相関が高い。
したがって、周波数的に隣接した3シンボルで、異なる位相を用いていると、LOS環境において、シンボルAが劣悪な受信品質(SNRとしては高い受信品質を得ているものの、直接波の位相関係が劣悪な状況であるため受信品質が悪い状態)であっても、残りのシンボルAに隣接する2シンボルでは、良好な受信品質を得ることができる可能性が非常に高く、その結果、誤り訂正復号後は良好な受信品質を得ることができる。
また、<条件#D1−1>と<条件#D1−2>を組み合わせると、受信装置において、より、データの受信品質を向上させることができる可能性がある。したがって、以下の条件を導くことができる。

<条件#D1−3>
図69のように、入れ替え後のベースバンド信号q2に対し、規則的に位相を変更する送信方法において、OFDMのようなマルチキャリア伝送方式を用いている場合、時間X・キャリアYがデータ伝送用のシンボル(以下、データシンボルと呼称する)であり、時間軸方向で隣接するシンボル、即ち、時間X−1・キャリアYおよび時間X+1・キャリアYがいずれもデータシンボルであり、かつ、周波数軸方向で隣接するシンボル、即ち、時間X・キャリアY−1および時間X・キャリアY+1がいずれもデータシンボルである場合、これら5つのデータシンボルに対応する入れ替え後のベースバンド信号q2、つまり、時間X・キャリアYおよび時間X−1・キャリアYおよび時間X+1・キャリアYおよび時間X・キャリアY−1および時間X・キャリアY+1におけるそれぞれの入れ替え後のベースバンド信号q2では、いずれも異なる位相変更が行われる。

ここで、「異なる位相変更」について、補足を行う。位相変更は、0ラジアンから2πラジアンで定義されることになる。例えば、時間X・キャリアYにおいて、図69の入れ替え後のベースバンド信号q2に対して施す位相変更をejθX,Y、時間X−1・キャリアYにおいて、図69の入れ替え後のベースバンド信号q2に対して施す位相変更をejθX−1,Y、時間X+1・キャリアYにおいて、図69の入れ替え後のベースバンド信号q2に対して施す位相変更をejθX+1,Yとすると、0ラジアン≦θX,Y<2π、0ラジアン≦θX−1,Y<2π、0ラジアン≦θX+1,Y<2πとなる。したがって、<条件#D1−1>では、θX,Y≠θX−1,YかつθX,Y≠θX+1,YかつθX+1,Y≠θX−1,Yが成立することになる。同様に考えると、<条件#D1−2>では、θX,Y≠θX,Y−1かつθX,Y≠θX,Y+1かつθX,Y−1≠θX−1,Y+1が成立することになり、<条件#D1−3>では、θX,Y≠θX−1,YかつθX,Y≠θX+1,YかつθX,Y≠θX,Y−1かつθX,Y≠θX,Y+1かつθX−1,Y≠θX+1,YかつθX−1,Y≠θX,Y−1かつθX−1,Y≠θX,Y+1かつθX+1,Y≠θX,Y−1かつθX+1,Y≠θX,Y+1かつθX,Y−1≠θX,Y+1が成立することになる。
そして、<条件#D1−3>を満たすデータシンボルが存在するとよい。
図31は<条件#D1−3>の例であり、シンボルAに該当するシンボル3100に相当する図69の入れ替え後のベースバンド信号q2に乗じられている位相と、そのシンボル3100に時間的に隣接するシンボル3101に相当する図69の入れ替え後のベースバンド信号q2、3103に相当する図69の入れ替え後のベースバンド信号q2に乗じられている位相と、周波数的に隣接するシンボル3102に相当する図69の入れ替え後のベースバンド信号q2、3104に相当する図69の入れ替え後のベースバンド信号q2に乗じられている位相が互いに異なるように配されており、これによって、受信側においてシンボル3100の受信品質が劣悪であろうとも、その隣接するシンボルの受信品質は非常に高くなるため、誤り訂正復号後の高い受信品質を確保できる。
この条件のもとで、位相を変更して得られるシンボルの配置例を図32に示す。
図32を見ればわかるように、いずれのデータシンボルにおいても、その位相が周波数軸方向及び時間軸方向の双方において隣接しあうシンボルに対して変更された位相の度合いは互いに異なる位相変更量となっている。このようにすることで、受信装置における誤り訂正能力を更に向上させることができる。
つまり、図32では、時間軸方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#D1−1>がすべてのX、すべてのYで成立している。
同様に、図32では、周波数方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#D1−2>がすべてのX、すべてのYで成立している。
同様に、図32では、周波数方向で隣接するシンボルにデータシンボルが存在し、かつ、時間軸方向で隣接するシンボルにデータシンボルが存在していた場合、<条件#D1−3>がすべてのX、すべてのYで成立している。
次に、上述で説明した、2つの入れ替え後のベースバンド信号q2に位相変更を行った場合(図68参照)の例で説明する。
入れ替え後のベースバンド信号q1、および、入れ替え後のベースバンド信号q2の両者に位相変更を与える場合、位相変更方法について、いくつかの方法がある。その点について、詳しく説明する。
方法1として、入れ替え後のベースバンド信号q2の位相変更は、前述のように、図32のように位相変更を行うものとする。図32において、入れ替え後のベースバンド信号q2の位相変更は周期10としている。しかし、前述で述べたように、<条件#D1−1><条件#D1−2><条件#D1−3>を満たすようにするために、(サブ)キャリア1で、入れ替え後のベースバンド信号q2に施す位相変更を時間とともに変更している。(図32では、このような変更をほどこしているが、周期10をとし、別の位相変更方法であってもよい)そして、入れ替え後のベースバンド信号q1の位相変更は、図33ように、入れ替え後のベースバンド信号q2の位相変更は周期10の1周期分の位相変更する値は一定とする。図33では、(入れ替え後のベースバンド信号q2の位相変更の)1周期分を含む時刻$1において、入れ替え後のベースバンド信号q1の位相変更の値は、ej0としており、次の(入れ替え後のベースバンド信号q2の位相変更の)1周期分を含む時刻$2において、入れ替え後のベースバンド信号q1の位相変更の値は、ejπ/9としており、・・・、としている。
なお、図33に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける図26における信号q1に対し、「ej0」が乗じられて位相が変更されたことを意味する。
入れ替え後のベースバンド信号q1の位相変更は、図33ように、プリコーディング後の入れ替え後のベースバンド信号q2の位相変更は周期10の1周期分の位相変更する値は一定とし、位相変更する値は、1周期分の番号とともに変更するようにする。(上述のように、図33では、第1の1周期分では、ej0とし、第2の1周期分ではejπ/9、・・・としている。)
以上のようにすることで、入れ替え後のベースバンド信号q2の位相変更は周期10であるが、入れ替え後のベースバンド信号q1の位相変更と入れ替え後のベースバンド信号q2の位相変更の両者を考慮したときの周期は10より大きくすることができるという効果を得ることができる。これにより、受信装置のデータの受信品質が向上する可能性がある。
方法2として、入れ替え後のベースバンド信号q2の位相変更は、前述のように、図32のように位相変更を行うものとする。図32において、入れ替え後のベースバンド信号q2の位相変更は周期10としている。しかし、前述で述べたように、<条件#D1−1><条件#D1−2><条件#D1−3>を満たすようにするために、(サブ)キャリア1で、入れ替え後のベースバンド信号q2に施す位相変更を時間とともに変更している。(図32では、このような変更をほどこしているが、周期10をとし、別の位相変更方法であってもよい)そして、入れ替え後のベースバンド信号q1の位相変更は、図30ように、入れ替え後のベースバンド信号q2の位相変更は周期10とは異なる周期3での位相変更を行う。
なお、図30に示したシンボルには、例えば、「ej0」という記載を付しているが、これは、このシンボルにおける入れ替え後のベースバンド信号q1に対し、「ej0」が乗じられて位相が変更されたことを意味する。
以上のようにすることで、入れ替え後のベースバンド信号q2の位相変更は周期10であるが、入れ替え後のベースバンド信号q1の位相変更と入れ替え後のベースバンド信号q2の位相変更の両者を考慮したときの周期は30となり入れ替え後のベースバンド信号q1の位相変更と入れ替え後のベースバンド信号q2の位相変更の両者を考慮したときの周期を10より大きくすることができるという効果を得ることができる。これにより、受信装置のデータの受信品質が向上する可能性がある。方法2の一つの有効な方法としては、入れ替え後のベースバンド信号q1の位相変更の周期をNとし、入れ替え後のベースバンド信号q2の位相変更の周期をMとしたとき、特に、NとMが互いに素の関係であると、入れ替え後のベースバンド信号q1の位相変更と入れ替え後のベースバンド信号q2の位相変更の両者を考慮したときの周期はN×Mと容易に大きな周期に設定することができるという利点があるが、NとMが互いに素の関係でも、周期を大きくすることは可能である。
なお、上述の位相変更方法は一例であり、これに限ったものではなく、周波数軸方向で位相変更を行ったり、時間軸方向で位相変更を行ったり、時間−周波数のブロックで位相変更を行っても同様に、受信装置におけるデータの受信品質を向上させることができるという効果を持つことになる。
上記で説明したフレーム構成以外にも、データシンボル間にパイロットシンボル(SP(Scattered Pilot))や制御情報を伝送するシンボルなどが挿入されることも考えられる。この場合の位相変更について詳しく説明する。
図47は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’および変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成を示しており、図47(a)は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’ の時間―周波数軸におけるフレーム構成、図47(b)は、変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成である。図47において、4701はパイロットシンボル、4702はデータシンボルを示しており、データシンボル4702は、入れ替え後のベースバンド信号または入れ替え後のベースバンド信号と位相変更を施したシンボルとなる。
図47は、図69のように、入れ替え後のベースバンド信号q2に対し、位相変更を行う場合のシンボル配置を示している(入れ替え後のベースバンド信号q1には位相変更を行わない)。(なお、図69では時間軸方向で位相変更を行う場合を示しているが、図69において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図47の入れ替え後のベースバンド信号qのシンボルに記載されている数値は、位相の変更値を示している。なお、図47の入れ替え後のベースバンド信号q1(z1)のシンボルは、位相変更を行わないので、数値を記載していない。
図47において重要な点は、入れ替え後のベースバンド信号q2に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号入れ替えを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
図48は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’および変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成を示しており、図48(a)は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’ の時間―周波数軸におけるフレーム構成、図48(b)は、変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成である。図48において、4701はパイロットシンボル、4702はデータシンボルを示しており、データシンボル4702は、プリコーディングと位相変更を施したシンボルとなる。
図48は、入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2に対し、位相変更を行う場合のシンボル配置を示している。したがって、図48の入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2のシンボルに記載されている数値は、位相の変更値を示している。
図48において重要な点は、入れ替え後のベースバンド信号q1に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号の入れ替えを施したシンボルに対して施している、また、入れ替え後のベースバンド信号q2に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号の入れ替えを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z1’に挿入されたパイロットシンボルに対しては、位相変更を施さず、また、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
図49は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’および変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成を示しており、図49(a)は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’の時間―周波数軸におけるフレーム構成、図49(b)は、変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成である。図49において、4701はパイロットシンボル、4702はデータシンボル、4901はヌルシンボルであり、ベースバンド信号の同相成分I=0であり、直交成分Q=0となる。このとき、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。図49と図47の違いは、データシンボル以外のシンボルの構成方法であり、変調信号z1’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z2’はヌルシンボルとなっており、逆に、変調信号z2’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z1’はヌルシンボルとなっている点である。
図49は、図69のように、入れ替え後のベースバンド信号q2に対し、位相変更を行う場合のシンボル配置を示している(入れ替え後のベースバンド信号q1には位相変更を行わない)。(なお、図69では時間軸方向で位相変更を行う場合を示しているが、図6において、時間tをキャリアfに置き換えて考えることで、周波数方向での位相変更を行うことに相当し、時間tを時間t、周波数f、つまり(t)を(t、f)に置き換えて考えることで、時間周波数のブロックで位相変更を行うことに相当する。)したがって、図49の入れ替え後のベースバンド信号q2のシンボルに記載されている数値は、位相の変更値を示している。なお、図49の入れ替え後のベースバンド信号q1のシンボルは、位相変更を行わないので、数値を記載していない。
図49において重要な点は入れ替え後のベースバンド信号q2に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号入れ替えを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
図50は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’および変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成を示しており、図50(a)は、変調信号(入れ替え後のベースバンド信号q1)z1またはz1’の時間―周波数軸におけるフレーム構成、図50(b)は、変調信号(入れ替え後のベースバンド信号q2)z2’の時間―周波数軸におけるフレーム構成である。図50において、4701はパイロットシンボル、4702はデータシンボル、4901はヌルシンボルであり、ベースバンド信号の同相成分I=0であり、直交成分Q=0となる。このとき、データシンボル4702は、プリコーディングまたはプリコーディングと位相変更を施したシンボルとなる。図50と図48の違いは、データシンボル以外のシンボルの構成方法であり、変調信号z1’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z2’はヌルシンボルとなっており、逆に、変調信号z2’でパイロットシンボルが挿入されている時間とキャリアにおいて、変調信号z1’はヌルシンボルとなっている点である。
図50は、入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2に対し、位相変更を行う場合のシンボル配置を示している。したがって、図50の入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2のシンボルに記載されている数値は、位相の変更値を示している。
図50において重要な点は、入れ替え後のベースバンド信号q1に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号入れ替えを施したシンボルに対して施している、また、入れ替え後のベースバンド信号q2に対する位相変更は、データシンボル、つまり、プリコーディングおよびベースバンド信号入れ替えを施したシンボルに対して施している点である。(ここで、シンボルと記載しているが、ここで記載しているシンボルには、プリコーディングが施されているため、s1のシンボルとs2のシンボルの両者を含んでいることになる。)したがって、z1’に挿入されたパイロットシンボルに対しては、位相変更を施さず、また、z2’に挿入されたパイロットシンボルに対しては、位相変更を施さないことになる。
図51は、図47、図49のフレーム構成の変調信号を生成し、送信する送信装置の構成の一例を示しており、図4と同様に動作するものについては、同一符号を付している。なお、図51では、図67や図70で示したベースバンド信号入れ替え部を図示していないが、図51に対し、図67や図70と同様、重み付け合成部と位相変更部の間にベースバンド信号入れ替え部を挿入すればよい。
図51において、重み付け合成部308A、308B、および、位相変更部317B、および、ベースバンド信号入れ替え部は、フレーム構成信号313がデータシンボルであるタイミングを示しているときのみ動作することになる。
図51のパイロットシンボル(ヌルシンボル生成を兼ねるものとする)生成部5101は、フレーム構成信号313がパイロットシンボル(かつヌルシンボル)であることをしめしていた場合、パイロットシンボルのベースバンド信号5102A、および5102Bを出力する。
図47から図50のフレーム構成では示していなかったが、プリコーディング(および、位相回転を施さない)を施さない、例えば、1アンテナから変調信号を送信する方式、(この場合、もう一方のアンテナからは信号を伝送しないことになる)、または、時空間符号(特に、時空間ブロック符号)を用いた伝送方式を用いて制御情報シンボルを送信する場合、制御情報シンボル5104は、制御情報5103、フレーム構成信号313を入力とし、フレーム構成信号313が制御情報シンボルであることを示している場合、制御情報シンボルのベースバンド信号5102A、5102Bを出力する。
図51の無線部310A、310Bは、入力となる複数のベースバンド信号のうち、フレーム構成信号313に基づき、複数のベースバンド信号から、所望のベースバンド信号を選択する。そして、OFDM関連の信号処理を施し、フレーム構成にしたがった変調信号311A、311Bをそれぞれ出力する。
図52は、図48、図50のフレーム構成の変調信号を生成し、送信する送信装置の構成の一例を示しており、図4、図51と同様に動作するものについては、同一符号を付している。図51に対して追加した位相変更部317Aは、フレーム構成信号313がデータシンボルであるタイミングを示しているときのみ動作することになる。その他については、図51と同様の動作となる。なお、図52では、図67や図70で示したベースバンド信号入れ替え部を図示していないが、図52に対し、図67や図70と同様、重み付け合成部と位相変更部の間にベースバンド信号入れ替え部を挿入すればよい。
図53は、図51とは異なる送信装置の構成方法である。なお、図53では、図67や図70で示したベースバンド信号入れ替え部を図示していないが、図53に対し、図67や図70と同様、重み付け合成部と位相変更部の間にベースバンド信号入れ替え部を挿入すればよい。以降では異なる点について説明する。位相変更部317Bは、図53のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部317Bは、プリコーディング後のベースバンド信号316Bに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部317Bは、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
選択部5301は、複数のベースバンド信号を入力とし、フレーム構成信号313が示したシンボルのベースバンド信号を選択し、出力する。
図54は、図52とは異なる送信装置の構成方法である。なお、図54では、図67や図70で示したベースバンド信号入れ替え部を図示していないが、図54に対し、図67や図70と同様、重み付け合成部と位相変更部の間にベースバンド信号入れ替え部を挿入すればよい。以降では異なる点について説明する。位相変更部317Bは、図54のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部317Bは、プリコーディング後のベースバンド信号316Bに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部317Bは、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
同様に、位相変更部5201は、図54のように、複数のベースバンド信号を入力とする。そして、フレーム構成信号313が、データシンボルであることを示していた場合、位相変更部5201は、プリコーディング後のベースバンド信号309Aに対し、位相変更を施す。そして、フレーム構成信号313が、パイロットシンボル(またはヌルシンボル)、または、制御情報シンボルであることを示していた場合、位相変更部5201は、位相変更の動作を停止し、各シンボルのベースバンド信号をそのまま出力する。(解釈としては、「ej0」に相当する位相回転を強制的に行っていると考えればよい。)
上述の説明では、パイロットシンボルと制御シンボルとデータシンボルを例に説明したが、これに限ったものではなく、プリコーディングとは異なる伝送方法、例えば、1アンテナ送信、時空間ブロック符号を用いた伝送方式、等を用いて伝送するシンボルであれば、同様に、位相変更を与えない、ということが重要となり、これとは逆に、プリコーディングおよびベースバンド信号入れ替えを行ったシンボルに対しては、位相変更を行うことが本発明では重要なこととなる。
したがって、時間−周波数軸におけるフレーム構成におけるすべてのシンボルで位相変更が行われるわけではなく、プリコーディングおよびベースバンド信号入れ替えを行った信号のみに位相変更を与える点が、本発明の特徴となる。
次に、非特許文献12〜非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Parity-Check)符号(QC−LDPC符号でない、LDPC符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号、テイルバイティングを用いたターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの規則的に位相を変更する方法について詳しく説明する。ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、図69、図70の送信装置に対し、図4のような符号器と分配部を適用し、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、上述の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
次に、規則的に位相を変更する方法において、上述で定義したスロットと乗じる位相との関係について説明する。
ここでは、規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、上述の送信装置の位相変更部のために、5つの位相変更値(または、位相変更セット)を用意するものとする。(図69のように、入れ替え後のベースバンド信号q2のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、入れ替え後のベースバンド信号q1および入れ替え後のベースバンド信号q2の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)この5つの位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],PHASE[3], PHASE[4]とあらわすものとする。
変調方式がQPSKのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた1500スロットにおいて、位相PHASE[0]を使用するスロットが300スロット、位相PHASE[1]を使用するスロットが300スロット、位相PHASE[2]を使用するスロットが300スロット、位相PHASE[3]を使用するスロットが300スロット、位相PHASE[4]を使用するスロットが300スロットである必要がある。これは、使用する位相にかたよりがあると、多くの数を使用した位相の影響が大きく、受信装置において、この影響に依存したデータの受信品質となるからである。
同様に、変調方式が16QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた750スロットにおいて、位相PHASE[0]を使用するスロットが150スロット、位相PHASE[1]を使用するスロットが150スロット、位相PHASE[2]を使用するスロットが150スロット、位相PHASE[3]を使用するスロットが150スロット、位相PHASE[4]を使用するスロットが150スロットである必要がある。
同様に、変調方式が64QAMのとき、1つの符号化後のブロックを構成するビット数6000ビットを送信するための上記で述べた500スロットにおいて、位相PHASE[0]を使用するスロットが100スロット、位相PHASE[1]を使用するスロットが100スロット、位相PHASE[2]を使用するスロットが100スロット、位相PHASE[3]を使用するスロットが100スロット、位相PHASE[4]を使用するスロットが100スロットである必要がある。
以上のように、規則的に位相を変更する方法において、用意する位相変更値(または、位相変更セット)をN個(N個の異なる位相をPHASE[0], PHASE[1], PHASE[2],・・・, PHASE[N-2] , PHASE[N-1]とあらわすものとする)としたとき、1つの符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用するスロット数をK, 位相PHASE[1]を使用するスロット数をK1、位相PHASE[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用するスロット数をKN-1としたとき、

<条件#D1−4>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であるとよい。
そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#D1−4>が成立するとよいことになる。
しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#D1−4>を満たすことができない変調方式が存在することもある。この場合、<条件#D1−4>にかわり、以下の条件を満たすとよい。

<条件#D1−5>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

図35は、ブロック符号を用いたとき、2つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図35は、図67の送信装置および図70の送信装置に示したように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図35に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、図67の送信装置および図70の送信装置では、2つのストリームを同時に送信することになり、また、2つの符号化器が存在するため、2つのストリームでは、異なる符号ブロックを伝送することになる。したがって、変調方式がQPSKのとき、s1、s2により、2つの符号化ブロックが同一区間内で送信されることから、例えば、s1により第1の符号化後のブロックが送信され、s2により、第2の符号化ブロックが送信されることになるので、第1、第2の符号化後のブロックを送信するために3000スロットが必要となる。
同様に考えると、変調方式が16QAMのとき、2つの符号化後のブロックを構成するすべてのビットを送信するために1500スロットが必要となり、変調方式が64QAMのとき、2つの符号化ブロックを構成するすべてのビットを送信するために1000スロットが必要となる。
次に、規則的に位相を変更する方法において、上述で定義したスロットと乗じる位相との関係について説明する。
ここでは、規則的に位相を変更する方法のために用意する位相変更値(または、位相変更セット)の数を5とする。つまり、図67の送信装置および図70の送信装置の位相変更部のために、5つの位相変更値(または、位相変更セット)を用意するものとする。(図69のように、入れ替え後のベースバンド信号q2のみに位相変更を行う場合、周期5の位相変更を行うためには、5つの位相変更値を用意すればよい。また、入れ替え後のベースバンド信号qおよび入れ替え後のベースバンド信号q2の両者に対し位相変更を行う場合、1スロットのために、2つの位相変更値が必要となる。この2つの位相変更値を位相変更セットとよぶ。したがって、この場合、周期5の位相変更を行うためには、5つの位相変更セットを用意すればよい)この5つの位相変更値(または、位相変更セット)をPHASE[0], PHASE[1], PHASE[2],PHASE[3], PHASE[4]とあらわすものとする。
変調方式がQPSKのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた3000スロットにおいて、位相PHASE[0]を使用するスロットが600スロット、位相PHASE[1]を使用するスロットが600スロット、位相PHASE[2]を使用するスロットが600スロット、位相PHASE[3]を使用するスロットが600スロット、位相PHASE[4]を使用するスロットが600スロットである必要がある。これは、使用する位相にかたよりがあると、多くの数を使用した位相の影響が大きく、受信装置において、この影響に依存したデータの受信品質となるからである。
また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが600回、位相PHASE[1]を使用するスロットが600回、位相PHASE[2]を使用するスロットが600回、位相PHASE[3]を使用するスロットが600回、位相PHASE[4]を使用するスロットが600回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが600回、位相PHASE[1]を使用するスロットが600回、位相PHASE[2]を使用するスロットが600回、位相PHASE[3]を使用するスロットが600回、位相PHASE[4]を使用するスロットが600回であるとよい。
同様に、変調方式が16QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1500スロットにおいて、位相PHASE[0]を使用するスロットが300スロット、位相PHASE[1]を使用するスロットが300スロット、位相PHASE[2]を使用するスロットが300スロット、位相PHASE[3]を使用するスロットが300スロット、位相PHASE[4]を使用するスロットが300スロットである必要がある。
また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが300回、位相PHASE[1]を使用するスロットが300回、位相PHASE[2]を使用するスロットが300回、位相PHASE[3]を使用するスロットが300回、位相PHASE[4]を使用するスロットが300回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが300回、位相PHASE[1]を使用するスロットが300回、位相PHASE[2]を使用するスロットが300回、位相PHASE[3]を使用するスロットが300回、位相PHASE[4]を使用するスロットが300回であるとよい。
同様に、変調方式が64QAMのとき、2つの符号化後のブロックを構成するビット数6000×2ビットを送信するための上記で述べた1000スロットにおいて、位相PHASE[0]を使用するスロットが200スロット、位相PHASE[1]を使用するスロットが200スロット、位相PHASE[2]を使用するスロットが200スロット、位相PHASE[3]を使用するスロットが200スロット、位相PHASE[4]を使用するスロットが200スロットである必要がある。
また、第1の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが200回、位相PHASE[1]を使用するスロットが200回、位相PHASE[2]を使用するスロットが200回、位相PHASE[3]を使用するスロットが200回、位相PHASE[4]を使用するスロットが200回である必要があり、また、第2の符号化ブロックを送信するために、位相PHASE[0]を使用するスロットが200回、位相PHASE[1]を使用するスロットが200回、位相PHASE[2]を使用するスロットが200回、位相PHASE[3]を使用するスロットが200回、位相PHASE[4]を使用するスロットが200回であるとよい。
以上のように、規則的に位相を変更する方法において、用意する位相変更値(または、位相変更セット)をN個(N個の異なる位相をPHASE[0], PHASE[1], PHASE[2],・・・, PHASE[N-2] , PHASE[N-1]とあらわすものとする)としたとき、2つの符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用するスロット数をK, 位相PHASE[1]を使用するスロット数をK1、位相PHASE[i]を使用するスロット数をKi(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用するスロット数をKN-1としたとき、

<条件#D1−6>
=K=・・・=Ki=・・・=KN-1、つまり、Ka=Kb、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であり、第1の符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用する回数をK0,1, 位相PHASE[1]を使用する回数をK1,1、位相PHASE[i]を使用する回数をKi,1(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用する回数をKN-1,1としたとき、

<条件#D1−7>
0,1=K1,1=・・・=Ki,1=・・・=KN-1,1、つまり、Ka,1=Kb,1、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であり、第2の符号化後のブロックを構成するビットをすべて送信する際に、位相PHASE[0]を使用する回数をK0,2, 位相PHASE[1]を使用する回数をK1,2、位相PHASE[i]を使用する回数をKi,2(i=0,1,2,・・・,N-1(iは0以上N-1以下の整数))、 位相PHASE[N-1] を使用する回数をKN-1,2としたとき、

<条件#D1−8>
0,2=K1,2=・・・=Ki,2=・・・=KN-1,2、つまり、Ka,2=Kb,2、(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

であるとよい。
そして、通信システムが、複数の変調方式をサポートしており、サポートしている変調方式から選択して使用する場合、サポートしている変調方式において、<条件#D1−6><条件#D1−7><条件#D1−8>が成立するとよいことになる。
しかし、複数の変調方式をサポートしている場合、各変調方式により1シンボルで送信することができるビット数が異なるのが一般的であり(場合によっては、同一となることもあり得る。)、場合によっては、<条件#D1−6><条件#D1−7><条件#D1−8>を満たすことができない変調方式が存在することもある。この場合、<条件#D1−6><条件#D1−7><条件#D1−8>にかわり、以下の条件を満たすとよい。

<条件#D1−9>
aとKbの差は0または1、つまり、|Ka―Kb|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

<条件#D1−10>
a,1とKb,1の差は0または1、つまり、|Ka,1―Kb,1|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

<条件#D1−11>
a,2とKb,2の差は0または1、つまり、|Ka,2―Kb,2|は0または1
(for∀a、∀b、ただし、a, b=0,1,2,・・・,N-1(aは0以上N-1以下の整数、bは0以上N-1以下の整数)、a≠b)

以上のように、符号化後のブロックと乗じる位相の関係付けを行うことで、符号化ブロックを伝送するために使用する位相にかたよりがなくなるため、受信装置において、データの受信品質が向上するという効果を得ることができる。
上述では、規則的に位相を変更する方法において、周期Nの位相変更方法のためには、N個の位相変更値(または、位相変更セット)が必要となる。このとき、N個の位相変更値(または、位相変更セット)として、PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]を用意することになるが、周波数軸方向にPHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]の順に並べる方法もあるが、必ずしもこれに限ったものではなく、N個の位相変更値(または、位相変更セット)PHASE[0]、PHASE[1]、PHASE[2]、・・・、PHASE[N-2]、PHASE[N-1]を時間軸、周波数―時間軸のブロックに対し、シンボルを配置することで、位相を変更することもできる。なお、周期Nの位相変更方法として説明しているが、N個の位相変更値(または、位相変更セット)をランダムに用いるようにしても同様の効果を得ることができる、つまり、必ずしも、規則的な周期を持つようにN個の位相変更値(または、位相変更セット)を用いる必要はないが、上記で説明した条件を満たすことは、受信装置において、高いデータの受信品質を得る上では、重要となる。
また、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のモードが存在し、送信装置(放送局、基地局)は、これらのモードから、いずれかの送信方法を選択することができるようにしてもよい。
なお、空間多重MIMO伝送方式とは、非特許文献3に示されているように、選択した変調方式でマッピングした信号s1、s2をそれぞれ異なるアンテナから送信する方法であり、プリコーディング行列が固定のMIMO伝送方式とは、プリコーディングのみを行う(位相変更を行わない)方式である。また、時空間ブロック符号化方式とは、非特許文献9、16、17に示されている伝送方式である。1ストリームのみ送信とは、選択した変調方式でマッピングした信号s1の信号を所定の処理を行いアンテナから送信する方法である。
また、OFDMのようなマルチキャリアの伝送方式を用いており、複数のキャリアで構成された第1キャリア群、複数のキャリアで構成された第1キャリア群とは異なる第2キャリア群、・・・というように複数のキャリア群でマルチキャリア伝送を実現しており、キャリア群ごとに、空間多重MIMO伝送方式、プリコーディング行列が固定のMIMO伝送方式、時空間ブロック符号化方式、1ストリームのみ送信、規則的に位相を変更する方法のいずれかに設定してもよく、特に、規則的に位相を変更する方法を選択した(サブ)キャリア群では、上述を実施するとよい。
なお、本実施の説明した、プリコーディング、ベースバンド信号の入れ替え、位相変更を施す、送信装置と、本明細書で説明した内容は、組み合わせて使用することができ、特に、本実施の形態で説明した位相変更部に対し、本明細書で説明した全ての位相変更に関する内容を組み合わせて使用することは可能である。

(実施の形態D2)
本実施の形態では、図4の送信装置の場合、図4の送信装置に対しOFDM方式のようなマルチキャリア方式に対応した場合、図67、図70の送信装置に対し図4のように、一つの符号化器と分配部を適用した場合において、本明細書の中で説明した規則的に位相変更を行った場合の位相変更のイニシャライズ方法について説明する。
非特許文献12〜非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Parity-Check)符号(QC−LDPC符号でない、LDPC符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号、テイルバイティングを用いたターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの規則的に位相を変更する場合を考える。
ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(cyclic redundancy check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、上述の送信装置に対し、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、上述の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
次に、図71のようなフレーム構成で、送信装置が、変調信号を送信する場合を考える。図71(a)は、変調信号z1’またはz1(アンテナ312Aで送信)の時間および周波数軸におけるフレーム構成を示している。また、図71(b)は、変調信号z2(アンテナ312Bで送信)の時間および周波数軸におけるフレーム構成を示している。このとき、変調信号z1’またはz1が用いている周波数(帯)と変調信号z2が用いている周波数(帯)は同一であるものとし、同一時刻に変調信号z1’またはz1、と、変調信号z2が存在することになる。
図71(a)に示すように、送信装置は区間Aではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第1、第2符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Bで、第1符号化ブロックを送信することになる。送信装置は区間Cで、第2符号化ブロックを送信することになる。
送信装置は区間Dではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第3、第4、・・・、符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Eで、第3符号化ブロックを送信することになる。送信装置は区間Fで、第4符号化ブロックを送信することになる。
図71(b)に示すように、送信装置は区間Aではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第1、第2符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Bで、第1符号化ブロックを送信することになる。送信装置は区間Cで、第2符号化ブロックを送信することになる。
送信装置は区間Dではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第3、第4、・・・、符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Eで、第3符号化ブロックを送信することになる。送信装置は区間Fで、第4符号化ブロックを送信することになる。
図72は、図34のように符号化ブロックを伝送する場合において、特に、第1符号化ブロックでは、変調方式として16QAMを用いた場合に使用するスロット数を示しており、第1符号化ブロックを伝送するためには、750スロットが必要となる。
同様に、第2符号化ブロックでは、変調方式としてQPSKを用いた場合に使用するスロット数を示しており、第2符号化ブロックを伝送するためには、1500スロットが必要となる。
図73は、図34のように符号化ブロックを伝送する場合において、特に、第3符号化ブロックでは、変調方式としてQPSKを用いた場合に使用するスロット数を示しており、第3符号化ブロックを伝送するためには、1500スロットが必要となる。
そして、本明細書で説明したように、変調信号z1、つまり、アンテナ312Aで送信する変調信号に対しては、位相変更を行わず、変調信号z2、つまり、アンテナ312Bで送信する変調信号に対しては、位相変更を行う場合を考える。このとき、図72、図73では、位相変更を行う方法について示している。
まず、前提として、位相変更するために、異なる位相変更値を7つ用意し、7つの位相変更値を#0、#1、#2、#3、#4、#5、#6と名付ける。また、位相変更は規則的、且つ周期的に用いるものとする。つまり、位相変更値は、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、・・・というように規則的にかつ、周期的に変更を行うものとする。
図72に示すように、まず、第1ブロック符号化ブロックでは、750スロット存在するので、位相変更値を#0から使用を開始すると、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、・・・、#4、#5、#6、#0となり、750番目のスロットは#0を用いて終了することになる。
次に、第2符号化ブロックの各スロットに対し、位相変更を適用することになる。本明細書では、マルチキャスト通信、放送に適用する場合を想定しているので、ある受信端末は、第1符号化ブロックを必要とせず、第2符号化ブロックのみ抽出する場合が考えられる。この場合、第1符号化ブロックの最後のスロットを送信するために位相変更値#0を用いたからといって、第2符号化ブロックを伝送するために、最初に位相変更値#1を用いたものとする。すると、

(a):前述の端末は、第1符号化ブロックがどのように送信されたかを監視、つまり、第1符号化ブロックの最後のスロットの送信に位相変更値がどのパターンであるかを監視し、第2符号化ブロックの最初のスロットに使用する位相変更値を推定する、
(b):(a)を行わないために、送信装置は、第2符号化ブロックの最初のスロットに使用する位相変更値の情報を伝送する

という方法が考えられる。(a)の場合、端末は第1符号化ブロックの伝送を監視する必要があるため消費電力が増大してしまい、(b)の場合、データの伝送効率の低下を招くことになる。
したがって、上述のような位相変更値の割り当てには改善の余地がある。そこで、各符号化ブロックの最初のスロットを伝送するために使用する位相変更値を固定とする方法を提案する。したがって、図72に示すように、第2符号化ブロックの最初のスロットを伝送するために使用する位相変更値は、第1符号化ブロックの最初のスロットを伝送するために用いた位相変更値と同様に、#0とする。
同様に、図73に示すように、第3符号化ブロックの最初のスロットを伝送するために使用する位相変更値は、#3とするのではなく、第1、第2符号化ブロックの最初のスロットを伝送するために使用する位相変更値と同様に、#0とする。
以上のようにすることで、(a)、(b)で発生する課題を抑制することができるという効果を得ることができる。
なお、本実施の形態では、符号化ブロックごとに位相変更値をイニシャライズする方法、つまり、いずれの符号化ブロックの最初のスロットに使用する位相変更値は、#0と固定と方法について述べたが、別の方法として、フレーム単位で行うことも可能である。例えば、プリアンブルや制御シンボル伝送後の情報を伝送するためのシンボルにおいて、最初のスロットで使用する位相変更値は#0と固定としてもよい。

(実施の形態D3)
なお、上述の各実施の形態では、重み付け合成部がプリコーディングに使用するプリコーディング行列を複素数で表現しているが、プリコーディング行列を実数で表現することもできる。
つまり、例えば、2つのマッピング後の(使用した変調方式の)ベースバンド信号をs1(i)、s2(i)(ただし、iは時間、または、周波数)とし、プリコーディングに得られる2つのプリコーディング後のベースバンド信号をz1(i)、z2(i)とする。そして、マッピング後の(使用した変調方式の)ベースバンド信号をs1(i)の同相成分をIs1(i)、直交成分をQs1(i)、マッピング後の(使用した変調方式の)ベースバンド信号をs2(i)の同相成分をIs2(i)、直交成分をQs2(i)、プリコーディング後のベースバンド信号をz1(i)の同相成分をIz1(i)、直交成分をQz1(i)、プリコーディング後のベースバンド信号をz2(i)の同相成分をIz2(i)、直交成分をQz2(i)とすると、実数で構成されたプリコーディング行列Hを用いると以下の関係式が成立する。
Figure 2020061771
ただし、実数で構成されたプリコーディング行列Hは以下のようにあらわされる。
Figure 2020061771
このとき、a11、a12、a13、a14、a21、a22、a23、a24、a31、a32、a33、a34、a41、a42、a43、a44は実数である。ただし、{a11=0かつa12=0かつa13=0かつa14=0}が成立してはならず、{a21=0かつa22=0かつa23=0かつa24=0}が成立してはならず、{a31=0かつa32=0かつa33=0かつa34=0}が成立してはならず、{a41=0かつa42=0かつa43=0かつa44=0}が成立してはならない。そして、{a11=0かつa21=0かつa31=0かつa41=0}が成立してはならず、{a12=0かつa22=0かつa32=0かつa42=0}が成立してはならず、{a13=0かつa23=0かつa33=0かつa43=0}が成立してはならず、{a14=0かつa24=0かつa34=0かつa44=0}が成立してはならない。

(実施の形態E1)
本実施の形態では、(1)図4の送信装置の場合、(2)図4の送信装置に対してOFDM方式のようなマルチキャリア方式に対応した場合、(3)図67、図70の送信装置に対して図4のように一つの符号化器と分配部を適用した場合にの3つの場合のどれにも適用できる、本明細書の中で説明した規則的に位相変更を行った場合の位相変更のイニシャライズ方法について説明する。
非特許文献12〜非特許文献15に示されているように、QC(Quasi Cyclic) LDPC(Low-Density Parity-Check)符号(QC−LDPC符号でない、LDPC符号であってもよい)、LDPC符号とBCH符号(Bose-Chaudhuri-Hocquenghem code)の連接符号、テイルバイティングを用いたターボ符号またはDuo-Binary Turbo Code等のブロック符号を用いたときの規則的に位相を変更する場合を考える。
ここでは、一例として、s1、s2の2つのストリームを送信する場合を例に説明する。ただし、ブロック符号を用いて符号化を行った際、制御情報等が必要でないとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数(ただし、この中に、以下で記載するような制御情報等が含まれていてもよい。)と一致する。ブロック符号を用いて符号化を行った際、制御情報等(例えば、CRC(Cyclic Redundancy Check)、伝送パラメータ等)が必要であるとき、符号化後のブロックを構成するビット数は、ブロック符号を構成するビット数と制御情報等のビット数の和であることもある。
図34は、ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図である。図34は、例えば、上述の送信装置に対し、s1、s2の2つのストリームを送信し、かつ、送信装置が、1つの符号化器を有している場合の「ブロック符号を用いたとき、1つの符号化後のブロックに必要なシンボル数、スロット数の変化を示した図」である。(このとき、伝送方式としては、シングルキャリア伝送、OFDMのようなマルチキャリア伝送、いずれを用いてもよい。)
図34に示すように、ブロック符号における1つの符号化後のブロックを構成するビット数を6000ビットであるとする。この6000ビットを送信するためには、変調方式がQPSKのとき3000シンボル、16QAMのとき1500シンボル、64QAMのとき1000シンボルが必要となる。
そして、上述の送信装置では、2つのストリームを同時に送信することになるため、変調方式がQPSKのとき、前述の3000シンボルは、s1に1500シンボル、s2に1500シンボル割り当てられることになるため、s1で送信する1500シンボルとs2で送信する1500シンボルを送信するために1500スロット(ここでは「スロット」と名付ける。)が必要となる。
同様に考えると、変調方式が16QAMのとき、1つの符号化後のブロックを構成するすべてのビットを送信するために750スロットが必要となり、変調方式が64QAMのとき、1ブロックを構成するすべてのビットを送信するために500スロットが必要となる。
次に、図71のようなフレーム構成で、送信装置が、変調信号を送信する場合を考える。図71(a)は、変調信号z1’またはz1(アンテナ312Aで送信)の時間および周波数軸におけるフレーム構成を示している。また、図71(b)は、変調信号z2(アンテナ312Bで送信)の時間および周波数軸におけるフレーム構成を示している。このとき、変調信号z1’またはz1が用いている周波数(帯)と変調信号z2が用いている周波数(帯)は同一であるものとし、同一時刻に変調信号z1’またはz1、と、変調信号z2が存在することになる。
図71(a)に示すように、送信装置は区間Aではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第1、第2符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Bで、第1符号化ブロックを送信することになる。送信装置は区間Cで、第2符号化ブロックを送信することになる。
送信装置は区間Dではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第3、第4、・・・、符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Eで、第3符号化ブロックを送信することになる。送信装置は区間Fで、第4符号化ブロックを送信することになる。
図71(b)に示すように、送信装置は区間Aではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第1、第2符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Bで、第1符号化ブロックを送信することになる。送信装置は区間Cで、第2符号化ブロックを送信することになる。
送信装置は区間Dではプリアンブル(制御シンボル)を送信しており、通信相手に制御情報を伝送するためのシンボルであり、特に、ここでは、第3、第4、・・・、符号化ブロックを伝送するための変調方式の情報が含まれているものとする。送信装置は、区間Eで、第3符号化ブロックを送信することになる。送信装置は区間Fで、第4符号化ブロックを送信することになる。
図72は、図34のように符号化ブロックを伝送する場合において、特に、第1符号化ブロックでは、変調方式として16QAMを用いた場合に使用するスロット数を示しており、第1符号化ブロックを伝送するためには、750スロットが必要となる。
同様に、第2符号化ブロックでは、変調方式としてQPSKを用いた場合に使用するスロット数を示しており、第2符号化ブロックを伝送するためには、1500スロットが必要となる。
図73は、図34のように符号化ブロックを伝送する場合において、特に、第3符号化ブロックでは、変調方式としてQPSKを用いた場合に使用するスロット数を示しており、第3符号化ブロックを伝送するためには、1500スロットが必要となる。
そして、本明細書で説明したように、変調信号z1、つまり、アンテナ312Aで送信する変調信号に対しては、位相変更を行わず、変調信号z2、つまり、アンテナ312Bで送信する変調信号に対しては、位相変更を行う場合を考える。このとき、図72、図73では、位相変更を行う方法について示している。
まず、前提として、位相変更するために、異なる位相変更値を7つ用意し、7つの位相変更値を#0、#1、#2、#3、#4、#5、#6と名付ける。また、位相変更は規則的、且つ周期的に用いるものとする。つまり、位相変更値は、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、・・・というように規則的にかつ、周期的に変更を行うものとする。
図72に示すように、まず、第1ブロック符号化ブロックでは、750スロット存在するので、位相変更値を#0から使用を開始すると、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、・・・、#4、#5、#6、#0となり、750番目のスロットは#0を用いて終了することになる。
次に、第2符号化ブロックの各スロットに対し、位相変更を適用することになる。本明細書では、マルチキャスト通信、放送に適用する場合を想定しているので、ある受信端末は、第1符号化ブロックを必要とせず、第2符号化ブロックのみ抽出する場合が考えられる。この場合、第1符号化ブロックの最後のスロットを送信するために位相変更値#0を用いたからといって、第2符号化ブロックを伝送するために、最初に位相変更値#1を用いたものとする。すると、

(a)前述の端末は、第1符号化ブロックがどのように送信されたかを監視、つまり、第1符号化ブロックの最後のスロットの送信に位相変更値がどのパターンであるかを監視し、第2符号化ブロックの最初のスロットに使用する位相変更値を推定する、
(b)(a)を行わないために、送信装置は、第2符号化ブロックの最初のスロットに使用する位相変更値の情報を伝送する

という方法が考えられる。(a)の場合、端末は第1符号化ブロックの伝送を監視する必要があるため消費電力が増大してしまい、(b)の場合、データの伝送効率の低下を招くことになる。
したがって、上述のような位相変更値の割り当てには改善の余地がある。そこで、各符号化ブロックの最初のスロットを伝送するために使用する位相変更値を固定とする方法を提案する。したがって、図72に示すように、第2符号化ブロックの最初のスロットを伝送するために使用する位相変更値は、第1符号化ブロックの最初のスロットを伝送するために用いた位相変更値と同様に、#0とする。
同様に、図73に示すように、第3符号化ブロックの最初のスロットを伝送するために使用する位相変更値は、#3とするのではなく、第1、第2符号化ブロックの最初のスロットを伝送するために使用する位相変更値と同様に、#0とする。
以上のようにすることで、上述の(a)、(b)で発生する課題を抑制することができるという効果を得ることができる。
なお、本実施の形態では、符号化ブロックごとに位相変更値をイニシャライズする方法、つまり、いずれの符号化ブロックの最初のスロットに使用する位相変更値は、#0と固定と方法について述べたが、別の方法として、フレーム単位で行うことも可能である。例えば、プリアンブルや制御シンボル伝送後の情報を伝送するためのシンボルにおいて、最初のスロットで使用する位相変更値は#0と固定としてもよい。
例えば、図71において、フレームがプリアンブルから開始される、と解釈すると、第1フレームにおいて、最初の符号化ブロックは、第1符号化ブロックとなり、第2フレームにおいて、最初の符号ブロックは、第3符号化ブロックとなり、図72、図73を用いて上述で説明したようにした場合、上述の「フレーム単位で、最初のスロットで使用する位相変更値は(#0と)固定」の例となっている。
次に、DVB(Digital Video Broadcasting)−T2(T:Terrestrial)規格を用いた放送システムに適用する場合について説明する。はじめに、DVB―T2規格を用いた放送システムのフレーム構成について説明する。
図74は、DVB−T2規格における、放送局が送信する信号のフレーム構成の概要を示している。DVB−T2規格では、OFDM方式を用いているため、時間―周波数軸にフレームが構成されている。図74は、時間−周波数軸におけるフレーム構成を示しており、フレームは、P1 Signalling data(7401)、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)、Common PLP(7404)、PLP#1〜#N(7405_1〜7405_N)で構成されている(PLP:Physical Layer Pipe)。 (ここで、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)をP2シンボルと呼ぶ。)このように、P1 Signalling data(7401)、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)、Common PLP(7404)、PLP#1〜#N(7405_1〜7405_N)で構成されているフレームをT2フレームと名付けており、フレーム構成の一つの単位となっている。
P1 Signalling data(7401)により、受信装置が信号検出、周波数同期(周波数オフセット推定も含む)を行うためのシンボルであると同時に、フレームにおけるFFT(Fast Fourier Transform)サイズの情報、SISO(Single-Input Single-Output)/MISO(Multiple-Input Single-Output)のいずれの方式で変調信号を送信するかの情報等を伝送する。(SISO方式の場合、一つの変調信号を送信する方式で、MISO方式の場合、複数の変調信号を送信する方法であり、かつ、非特許文献9、16、17に示されている時空間ブロック符号を用いている。)
L1 Pre-Signalling data(7402)により、送信フレームで使用するガードインターバルの情報、PAPR(Peak to Average Power Ratio)を削減するために行う信号処理方法に関する情報、L1 Post-Signalling dataを伝送する際の変調方式、誤り訂正方式(FEC: Forward Error Correction)、誤り訂正方式の符号化率の情報、L1 Post-Signalling dataのサイズおよび情報サイズの情報、パイロットパターンの情報、セル(周波数領域)固有番号の情報、ノーマルモードおよび拡張モード(ノーマルモードと拡張モードでは、データ伝送に用いるサブキャリア数が異なる。)のいずれの方式を用いているかの情報等を伝送する。
L1 Post-Signalling data(7403)により、PLPの数の情報、使用する周波数領域に関する情報、各PLPの固有番号の情報、各PLPを伝送するのに使用する変調方式、誤り訂正方式、誤り訂正方式の符号化率の情報、各PLPの送信するブロック数の情報等を伝送する。
Common PLP(7404)、PLP#1〜#N(7405_1〜7405_N)は、データを伝送するための領域である。
図74のフレーム構成では、P1 Signalling data(7401)、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)、Common PLP(7404)、PLP#1〜#N(7405_1〜6105_N)は時分割で送信されているように記載しているが、実際は、同一時刻に2種類以上の信号が存在している。その例を図75に示す。図75に示すように、同一時刻に、L1 Pre-Signalling data、L1 Post-Signalling data、Common PLPが存在していたり、同一時刻に、PLP#1、PLP#2が存在したりすることもある。つまり、各信号は、時分割および周波数分割を併用し、フレームが構成されている。
図76は、DVB−T2規格における(例えば、放送局)の送信装置に対し、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を行う送信方法を適用した送信装置の構成の一例を示している。
PLP信号生成部7602は、PLP用の送信データ7601(複数PLP用のデータ)、制御信号7609を入力とし、制御信号7609に含まれる各PLPの誤り訂正符号化の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、PLPの(直交)ベースバンド信号7603を出力する。
P2シンボル信号生成部7605は、P2シンボル用送信データ7604、制御信号7609を入力とし、制御信号7609に含まれるP2シンボルの誤り訂正の情報、変調方式の情報等の情報に基づき、誤り訂正符号化、変調方式に基づくマッピングを行い、P2シンボルの(直交)ベースバンド信号7606を出力する。
制御信号生成部7608は、P1シンボル用の送信データ7607、P2シンボル用送信データ7604を入力とし、図74における各シンボル群(P1 Signalling data(7401)、L1 Pre-Signalling data(7402)、L1 Post-Signalling data(7403)、Common PLP(7404)、PLP#1〜#N(7405_1〜7405_N))の送信方法(誤り訂正符号、誤り訂正符号の符号化率、変調方式、ブロック長、フレーム構成、規則的にプリコーディング行列を切り替える送信方法を含む選択した送信方法、パイロットシンボル挿入方法、IFFT(Inverse Fast Fourier Transform)/FFTの情報等、PAPR削減方法の情報、ガードインターバル挿入方法の情報)の情報を制御信号7609として出力する。
フレーム構成部7610は、PLPのベースバンド信号7603、P2シンボルのベースバンド信号7606、制御信号7609を入力とし、制御信号に含まれるフレーム構成の情報に基づき、周波数、時間軸における並び替えを施し、フレーム構成にしたがった、ストリーム1の(直交)ベースバンド信号7611_1(マッピング後の信号、つまり、使用する変調方式に基づくベースバンド信号)、ストリーム2の(直交)ベースバンド信号7611_2(マッピング後の信号、つまり、使用する変調方式に基づくベースバンド信号)を出力する。
信号処理部7612は、ストリーム1のベースバンド信号7611_1、ストリーム2のベースバンド信号7611_2、制御信号7609を入力とし、制御信号7609に含まれる送信方法に基づいた信号処理後の変調信号1(7613_1)および信号処理後の変調信号2(7613_2)を出力する。
ここで特徴的な点は、送信方法として、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を行う送信方法が選択されたとき、信号処理部は、図6、図25、図26、図27、図28、図29、図69と同様に、プリコーディング後(またはプリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を行う処理を行い、この信号処理を行われた信号が、信号処理後の変調信号1(7613_1)および信号処理後の変調信号2(7613_2)となる。
パイロット挿入部7614_1は、信号処理後の変調信号1(7613_1)、制御信号7609を入力とし、制御信号7609に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号1(7613_1)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号7615_1を出力する。
パイロット挿入部7614_2は、信号処理後の変調信号2(7613_2)、制御信号7609を入力とし、制御信号7609に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号2(7613_2)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号7615_2を出力する。
IFFT(Inverse Fast Fourier Transform)部7616_1は、パイロットシンボル挿入後の変調信号7615_1、制御信号7609を入力とし、制御信号7609に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号7617_1を出力する。
IFFT部7616_2は、パイロットシンボル挿入後の変調信号7615_2、制御信号7609を入力とし、制御信号7609に含まれるIFFTの方法の情報に基づき、IFFTを施し、IFFT後の信号7617_2を出力する。
PAPR削減部7618_1は、IFFT後の信号7617_1、制御信号7609を入力とし、制御信号7609に含まれるPAPR削減に関する情報に基づき、IFFT後の信号7617_1にPAPR削減のための処理を施し、PAPR削減後の信号7619_1を出力する。
PAPR削減部7618_2は、IFFT後の信号7617_2、制御信号7609を入力とし、制御信号7609に含まれるPAPR削減に関する情報に基づき、IFFT後の信号7617_2にPAPR削減のための処理を施し、PAPR削減後の信号7619_2を出力する。
ガードインターバル挿入部7620_1は、PAPR削減後の信号7619_1、制御信号7609を入力とし、制御信号7609に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号7619_1にガードインターバルを挿入し、ガードインターバル挿入後の信号7621_1を出力する。
ガードインターバル挿入部7620_2は、PAPR削減後の信号7619_2、制御信号7609を入力とし、制御信号7609に含まれるガードインターバルの挿入方法に関する情報に基づき、PAPR削減後の信号7619_2にガードインターバルを挿入し、ガードインターバル挿入後の信号7621_2を出力する。
P1シンボル挿入部7622は、ガードインターバル挿入後の信号7621_1、ガードインターバル挿入後の信号7621_2、P1シンボル用の送信データ7607を入力とし、P1シンボル用の送信データ7607からP1シンボルの信号を生成し、ガードインターバル挿入後の信号7621_1に対し、P1シンボルを付加し、P1シンボルを付加した後の信号7623_1と、および、ガードインターバル挿入後の信号7621_2に対し、P1シンボルを付加し、P1シンボルを付加した後の信号7623_2とを出力する。なお、P1シンボルの信号は、P1シンボルを付加した後の信号7623_1、P1シンボルを付加した後の信号7623_2両者に付加されていてもよく、また、いずれもか一方に付加されていてもよい。一方に付加されている場合、付加されている信号の付加されている区間では、付加されていない信号には、ベースバンド信号としてゼロの信号が存在することになる。
無線処理部7624_1は、P1シンボルを付加した後の信号7623_1、制御信号7609を入力とし、周波数変換、増幅等の処理が施され、送信信号7625_1を出力する。そして、送信信号7625_1は、アンテナ7626_1から電波として出力される。
無線処理部7624_2は、P1シンボル用処理後の信号7623_2、制御信号7609を入力とし、周波数変換、増幅等の処理が施され、送信信号7625_2を出力する。そして、送信信号7625_2は、アンテナ7626_2から電波として出力される。
上述で説明したように、P1シンボル、P2シンボル、制御シンボル群により、各PLPの伝送方法(例えば、一つの変調信号を送信する送信方法、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を行う送信方法)、および、使用している変調方式の情報が、端末に伝送される。このとき、端末は、情報として必要なPLPのみを切り出して、復調(信号分離、信号検波を含む)、誤り訂正復号を行うと、端末の消費電力は少なくてすむ。したがって、図71〜図73を用いて説明したときと同様に、伝送方法として、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法を用いて伝送されるPLPの先頭のスロットで使用する位相変更値(#0と)固定とする方法を提案する。なお、PLPの伝送方法は上記に限ったものではなく、非特許文献9、非特許文献16、非特許文献17に示されているような時空間符号や、他の送信方法を指定することも可能である。
例えば、図74のようなフレーム構成により、放送局が、各シンボルを送信したものとする。このとき、一例として、PLP(混乱を避けるため#1から$1と変更する)$1とPLP$Kを、放送局が、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に位相変更を用いて送信するときの、周波数―時間軸におけるフレーム構成を図77に示す。
なお、前提として、以下の説明では、一例として、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法では、位相変更値を7つ用意し、7つの位相変更値を#0、#1、#2、#3、#4、#5、#6と名付ける。また、位相変更値は規則的、かつ、周期的に用いるものとする。つまり、位相変更値は、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、#0、#1、#2、#3、#4、#5、#6、・・・というように規則的にかつ、周期的に変更を行うものとする。
図77のように、PLP$1は、時刻T、キャリア3(図77の7701)をスロットの先頭とし、時刻T+4、キャリア4をスロットの最後(図77の7702)として、スロット(シンボル)が存在している(図77参照)。
つまり、PLP$1にとって、時刻T、キャリア3は第1番目のスロットであり、第2番目のスロットは時刻T、キャリア4であり、第3番目のスロットは時刻T、キャリア5であり、・・・、第7番目のスロットは時刻T+1、キャリア1であり、第8番目のスロットは時刻T+1、キャリア2であり、第9番目のスロットは時刻T+1、キャリア3であり、・・・、第14番目のスロットは時刻T+1、キャリア8であり、第15番目のスロットは時刻T+2、キャリア1であり、・・・、となる。
そして、PLP$Kは、時刻S、キャリア4(図77の7703)をスロットの先頭とし、時刻S+8、キャリア4をスロットの最後(図77の7704)として、スロット(シンボル)が存在している(図77参照)。
つまり、PLP$Kにとって、時刻S、キャリア4は第1番目のスロットであり、第2番目のスロットは時刻S、キャリア5であり、第3番目のスロットは時刻S、キャリア6であり、・・・、第5番目のスロットは時刻S、キャリア8であり、第9番目のスロットは時刻S+1、キャリア1であり、第10番目のスロットは時刻S+1、キャリア2であり、・・・、第16番目のスロットは時刻S+1、キャリア8であり、第17番目のスロットは時刻S+2、キャリア1であり、・・・、となる。
なお、各PLPの先頭のスロット(シンボル)の情報と最後のスロット(シンボル)の情報を含む各PLPが使用しているスロットの情報は、P1シンボル、P2シンボル、制御シンボル群等の制御シンボルにより、伝送されていることになる。
このとき、図71〜図73を用いて説明したときと同様に、PLP$1の先頭のスロットである、時刻T、キャリア3(図77の7701)のスロットは、位相変更値#0を用いて位相変更を行うものとする。同様に、PLP$K−1の最後のスロットである、時刻S、キャリア3(図77の7705)をスロットで用いている、位相変更値の番号にかかわらず、PLP$Kの先頭のスロットである、時刻S、キャリア4(図77の7703)のスロットは、プリコーディング行列#0を用いて位相変更を行うものとする。(ただし、これまで説明したように、位相変更を行う前に、プリコーディング(または、プリコーディングおよびベースバンド信号入れ替え)が行われているものとする。)
また、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法を用いて送信する他のPLPの先頭のスロットは、プリコーディング行列#0を用いてプリコーディングを行うものとする。
以上のようにすることで、上述で述べた実施の形態D2で説明した(a)および(b)の課題を抑制することができるという効果を得ることができる。
当然であるが、受信装置は、P1シンボル、P2シンボル、制御シンボル群等の制御シンボルに含む各PLPが使用しているスロットの情報から必要としているPLPを抽出して復調(信号分離、信号検波を含む)、誤り訂正復号を行うことになる。また、受信装置は、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法の位相変更規則について、予め知っており、(複数の規則がある場合は、送信装置が、使用する規則の情報を伝送し、受信装置はその情報を得て、使用している規則を知ることになる。)各PLPの先頭のスロットの番号に基づいて、位相変更の切り替え規則のタイミングを合わせることで、情報シンボルの復調(信号分離、信号検波を含む)が可能となる。
次に、図78のようなフレーム構成で(図78のシンボル群で構成されるフレームをメインフレームと呼ぶ。)、放送局(基地局)が変調信号を送信する場合を考える。図78において、図74と同様に動作するものについては、同一符号を付している。特徴的な点は、(端末の)受信装置において、受信信号のゲインコントロールを調整しやすいように、メインフレームにおいて、一つの変調信号を送信するサブフレームと、複数の変調信号を送信するサブフレームに分離されている点である。なお、「一つの変調信号を送信する」とは、一つの変調信号を一つのアンテナから送信する場合と同一の変調信号を複数生成し、この複数の信号を複数の異なるアンテナから送信する場合も含むものとする。
図78において、PLP#1(7405_1)〜PLP#N(7405_N)により、一つの変調信号を送信するサブフレーム7800を構成しており、サブフレーム7800は、PLPのみで構成されているとともに、複数変調信号により送信するPLPは存在しない。そして、PLP$1(7802_1)〜PLP$M(7802_M)により、複数の変調信号を送信するサブフレーム7801を構成しており、サブフレーム7801は、PLPのみで構成されているとともに、一つの変調信号を送信するPLPは存在しない。
このとき、これまで説明したときと同様に、サブフレーム7801において、プリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法を用いている場合、PLP(PLP$1(7802_1)〜PLP$M(7802_M))の先頭のスロットは、プリコーディング行列#0を用いてプリコーディングを行うものとする(プリコーディング行列のイニシャライズ、と呼ぶ)。ただし、PLP$1(7802_1)〜PLP$M(7802_M)において、別の送信方法、例えば、位相変更を行わないプリコーディング方法を用いる送信方法、時空間ブロック符号を用いる送信方法、空間多重MIMO伝送方法(図23参照)のいずれかを用いているPLPは、上記で述べたプリコーディング行列のイニシャライズは関係ないことになる。
また、図79のように、PLP$1は、第Xのメインフレームの複数の変調信号を送信するサブフレームの最初のPLPであり、PLP$1’は、第Y(ただしXとは異なる)のメインフレームの複数の変調信号を送信するサブフレームの最初のPLPであるものとする。そして、PLP$1、PLP$1’いずれもプリコーディング後(または、プリコーディングおよびベースバンド信号入れ替え後)の信号に、規則的に位相変更を行う送信方法を用いているものとする。なお、図79において、図77と同様のものは、同一符号を付している。
このとき、第Xのメインフレームの複数の変調信号を送信するサブフレームの最初のPLPであるPLP$1の先頭のスロット(図79の7701(時刻T、キャリア3のスロット))は、位相変更値#0を用いて位相変更を行うものとする。
同様に、第Yのメインフレームの複数の変調信号を送信するサブフレームの最初のPLPであるPLP$1’の先頭のスロット(図79の7901(時刻T’、キャリア7のスロット))は、位相変更値#0を用いて位相変更を行うものとする。
以上のように、各メインフレームにおいて、複数の変調信号を送信するサブフレームの最初のPLPの最初のスロットにおいて、位相変更値#0を用いて位相変更を行うものとすることを特徴とする。
このようにすることも、実施の形態D2で説明した(a)および(b)の課題を抑制するためには重要となる。
なお、PLP$1の先頭のスロット(図79の7701(時刻T、キャリア3のスロット))は位相変更値#0を用いて位相変更を行っているので、周波数軸に位相変更値を更新するとした場合、時刻T、キャリア4のスロットは位相変更値#1を用いて位相変更を行い、時刻T、キャリア5のスロットは位相変更値#2を用いて位相変更を行い、時刻T、キャリア6のスロットは位相変更値#3を用いて位相変更を行う、・・・、とする。
同様に、PLP$1’の先頭のスロット(図79の7901(時刻T’、キャリア7のスロット))は位相変更値#0を用いて位相変更を行っているので、周波数軸に位相変更値を更新するとした場合、時刻T’、キャリア8のスロットは位相変更値#1を用いて位相変更を行い、時刻T’+1、キャリア1のスロットは位相変更値#2を用いて位相変更を行い、時刻T’+2、キャリア1のスロットは位相変更値#3を用いて位相変更を行い、時刻T’+3、キャリア1のスロットは位相変更値#4を用いて位相変更を行う、・・・、とする。
なお、本実施の形態は、図4の送信装置の場合、図4の送信装置に対しOFDM方式のようなマルチキャリア方式に対応した場合、図67、図70の送信装置に対し図4のように、一つの符号化器と分配部を適用した場合を例に説明したが、図3の送信装置、図12の送信装置、図67の送信装置、図70の送信装置のように、s1、s2の2つのストリームを送信し、かつ、送信装置が、2つの符号化器を有している場合についても、本実施の形態で説明した位相変更値のイニシャライズを適用することは可能である。
なお、本明細書の発明に関連する送信装置の図面、図3、図4、図12、図13、図51、図52、図67、図70、図76等で、2つの送信アンテナから送信される変調信号をそれぞれ、変調信号#1、変調信号#2としたとき、変調信号#1の平均送信電力と変調信号#2の平均送信電力はどのように設定しても良い。例えば、両変調信号の平均送信電力を異なるように設定する場合、一般的な無線通信システムで用いられている送信電力制御の技術を適用することで、変調信号#1の平均送信電力と変調信号#2の平均送信電力を異なるように設定できる。このとき、送信電力制御は、ベースバンド信号の状態(例えば、用いる変調方式のマッピング時点で、送信電力制御を行う)で、信号の電力制御を行ってもよいし、アンテナの手前の電力増幅器(パワーアンプ)で、送信電力制御を行ってもよい。

(実施の形態F1)
実施の形態1−4、実施の形態A1、実施の形態C1−C7、実施の形態D1−D3及び実施の形態E1で説明したプリコーディング後の変調信号に対し、規則的に位相を変更する方法は、I−Q平面にマッピングされた任意のベースバンド信号s1とs2に対して適用可能である。そのため、実施の形態1−4、実施の形態A1、実施の形態C1−C7、実施の形態D1−D3及び実施の形態E1では、ベースバンド信号s1とs2について詳細に説明していない。一方、例えば、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を、誤り訂正符号化されたデータから生成されたベースバンド信号s1とs2に対して適用する場合、s1とs2の平均電力(平均値)を制御することによりさらに良好な受信品質を得られる可能性がある。本実施の形態では、誤り訂正符号化されたデータから生成されたベースバンド信号s1とs2に対して、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用する場合の、s1とs2の平均電力(平均値)の設定方法について述べる。
ここでは、一例として、ベースバンド信号s1に対して適用する変調方式がQPSK、ベースバンド信号s2に対して適用する変調方式が16QAMとして説明をする。
s1の変調方式がQPSKであるので、s1は1シンボルあたり2ビットのデータを伝送することになる。この伝送する2ビットをb0、b1と名付ける。これに対して、s2の変調方式は16QAMであるので、s2は1シンボルあたり4ビットのデータを伝送することになる。この伝送する4ビットをb2、b3、b4、b5と名付ける。送信装置は、s1の1シンボルとs2の1シンボルで構成される1スロットを送信するので、1スロットあたり、b0、b1、b2、b3、b4、b5の6ビットのデータを伝送することになる。
例えば、I−Q平面における16QAMの信号点配置の一例である図80では、(b2、b3、b4、b5)=(0、0、0、0)は(I、Q)=(3×g、3×g)に、(b2、b3、b4、b5)=(0、0、0、1)は(I、Q)=(3×g、1×g)に、(b2、b3、b4、b5)=(0、0、1、0)は(I、Q)=(1×g、3×g)に、(b2、b3、b4、b5)=(0、0、1、1)は(I、Q)=(1×g、1×g)に、(b2、b3、b4、b5)=(0、1、0、0)は(I、Q)=(3×g、−3×g)に、・・・、(b2、b3、b4、b5)=(1、1、1、0)は(I、Q)=(−1×g、−3×g)に、(b2、b3、b4、b5)=(1、1、1、1)は(I、Q)=(−1×g、−1×g)にマッピングされる。なお、図80の右肩に示すb2からb5は、それぞれI−Q平面に示す数値のそれぞれのビットとの並びを示している。
また、I−Q平面におけるQPSKの信号点配置の一例である図81では、(b0、b1)=(0、0)は(I、Q)=(1×h、1×h)に、(b0、b1)=(0、1)は(I、Q)=(1×h、−1×h)に、(b0、b1)=(1、0)は(I、Q)=(−1×h、1×h)に、(b0、b1)=(1、1)は(I、Q)=(−1×h、−1×h)に、マッピングされる。なお、図81の右肩に示すb0、b1は、それぞれI−Q平面に示す数値のそれぞれのビットとの並びを示している。
ここで、s1の平均電力とs2の平均電力を等しくした場合、つまり、図81に示すhが下記式(78)であらわされ、図80に示すgが下記式(79)であらわされる場合を仮定する。
Figure 2020061771
Figure 2020061771
この場合の受信装置が得る対数尤度比の関係を図82に示す。図82は、受信装置が対数尤度比を求めたとき、上記b0からb5の対数尤度比の絶対値を模式的に示した図である。図82において、8200はb0の対数尤度比の絶対値、8201はb1の対数尤度比の絶対値、8202はb2の対数尤度比の絶対値、8203はb3の対数尤度比の絶対値、8204はb4の対数尤度比の絶対値、8205はb5の対数尤度比の絶対値である。このとき、図82に示されるように、QPSKにより伝送されたb0およびb1の対数尤度比の絶対値と、16QAMにより伝送されたb2からb5の対数尤度比の絶対値とを比較すると、b0およびb1の対数尤度比の絶対値は、b2からb5の対数尤度比の絶対値より大きい。これは、即ち、b0およびb1の受信装置における信頼度がb2からb5の受信装置における信頼度よりも高いことになる。これは、図80においてgを式(79)のとおりとした場合、QPSKのI−Q平面における信号点の最小ユークリッド距離が、
Figure 2020061771
であるのに対し、図81において、hを式(78)のとおりとした場合、QPSKのI−Q平面における信号点の最少ユークリッド距離は、
Figure 2020061771
となるからである。
受信装置がこの状況で誤り訂正復号(例えば、通信システムがLDPC符号を用いている場合、sum-product復号等の信頼度伝播復号)を行った場合、「b0およびb1の対数尤度比の絶対値が、b2からb5の対数尤度比の絶対値より大きい」という信頼度の差により、b2からb5の対数尤度比の絶対値の影響を受け、受信装置のデータの受信品質が劣化するという課題が発生する。
この課題を克服するためには、図83に示すように、図82と比較して、「b0およびb1の対数尤度比の絶対値とb2からb5の対数尤度比の絶対値との差を小さく」すればよい。
そこで、「s1の平均電力(平均値)とs2の平均電力(平均値)を異なるようにする」ことを考える。図84、図85に、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)、および、重み付け合成(プリコーディング)部に関連する信号処理部の構成の例を示している。なお、図84において、図3、図6と同様に動作するものについては同一符号を付した。また、図85において、図3、図6、図84と同様に動作するものについては同一符号を付した。
以下、パワー変更部の動作について、いくつかの例を説明する。
(例1)
まず、図84を用いて、動作の一例を説明する。なお、s1(t)は、変調方式QPSKのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図81のとおりであり、hは式(78)のとおりである。また、s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
パワー変更部(8401B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。なお、uは実数とし、u>1.0とする。プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまり、ejθ(t)と表すことができる)とすると、次式が成立する。
Figure 2020061771
したがって、QPSKの平均電力と16QAMの平均電力の比は1:uと設定することになる。これにより、図83に示す対数尤度比の絶対値が得られる受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
例えば、QPSKの平均電力と16QAMの平均電力の比1:uについてuを、
Figure 2020061771
と設定すれば、QPSKのI−Q平面における信号点の最小ユークリッド距離と、16QAMのI−Q平面における信号点の最小ユークリッド距離とを等しくすることができ、良好な受信品質を得られる可能性がある。
ただし、2つの異なる変調方式のI−Q平面における信号点の最小ユークリッド距離を等しくするという条件は、あくまで、QPSKの平均電力と16QAMの平均電力との比を設定する方法の一例である。例えば、誤り訂正符号化に用いる誤り訂正符号の符号長や符号化率等のその他の条件によっては、パワー変更のための値uの値を2つの異なる変調方式のI−Q平面における信号点の最小ユークリッド距離が等しくなる値とは、異なる値(大きな値や小さな値)に設定する方が、良好な受信品質を得られる可能性がある。また、受信時に得られる候補信号点の最初距離を大きくすること、を考えると、例えば、
Figure 2020061771
と設定する方法が一例として考えられるが、システムとして求められる要求条件によって、適宜設定されることになる。詳細については後述する。
従来、送信電力制御は、一般的に、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
上述で、「制御信号(8400)により、パワー変更のための値uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値uの設定手法について詳しく説明する。
(例1−1)
送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をuLXという形で記載することとする。
例えば、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。このとき、例えば、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもある。重要なことは、(uL1000、uL1500、uL3000)の中に、2つ以上の値が存在することである。)
上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例1−2)
送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をurXという形で記載することとする。
例えば、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。このとき、例えば、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、ur1=ur2であることもある。重要なことは、(ur1、ur2、ur3)の中に、2つ以上の値が存在することである。)
なお、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例1−3)
受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
ここでは、例として、s1の変調方式をQPSKに固定するものとし、制御信号により、s2の変調方式を16QAMから64QAMに変更する(または、16QAM、64QAMのいずれかの設定が可能な)場合について考える。なお、s2(t)の変調方式を64QAMとする場合、s2(t)のマッピング方法としては、図86のとおりであり、図86においてkは
Figure 2020061771
であるとする。このようなマッピングを行うと、QPSKのとき図81に対しhを式(78)としたとき、と、16QAMのとき図80に対しgを式(79)としたときと、平均電力は等しくなる。また、64QAMのマッピングは、6ビットの入力から、I,Qの値が決定することになり、この点については、QPSK、16QAMのマッピングの説明と同様に実施することができる。
つまり、I−Q平面における64QAMの信号点配置の一例である図86では、(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)は(I、Q)=(7×k、7×k)に、(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、1)は(I、Q)=(7×k、5×k)に、(b0、b1、b2、b3、b4、b5)=(0、0、0、0、1、0)は(I、Q)=(5×k、7×k)に、(b0、b1、b2、b3、b4、b5)=(0、0、0、0、1、1)は(I、Q)=(5×k、5×k)に、(b0、b1、b2、b3、b4、b5)=(0、0、0、1、0、0)は(I、Q)=(7×k、1×k)に、・・・・、(b0、b1、b2、b3、b4、b5)=(1、1、1、1、1、0)は(I、Q)=(−3×k、−1×k)に、(b0、b1、b2、b3、b4、b5)=(1、1、1、1、1、1)は(I、Q)=(−3×k、−3×k)にマッピングされる。なお、図86の右肩に示すb0からb5は、それぞれI−Q平面に示す数値のそれぞれのビットとの並びを示している。
図84において、s2の変調方式が16QAMのときパワー変更部8401Bは、u=u16と設定し、s2の変調方式が64QAMのときu=u64と設定するものとする。このとき、最小ユークリッド距離の関係から、u16<u64とすると、s2の変調方式が16QAM、64QAMのうちいずれの場合であっても、受信装置が高いデータの受信品質を得ることができる。
なお、上述の説明において、「s1の変調方式をQPSKに固定」することとして説明したが、「s2の変調方式をQPSKに固定する」ことが考えられる。このとき、固定の変調方式(ここでは、QPSK)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、16QAMと64QAM)に対しては、パワー変更を行うものとする。つまり、この場合、送信装置は、図84に示す構成ではなく、図84に示した構成からパワー変更部8401Bを除き、s1(t)側にパワー変更部を設ける構成となる。すると、固定の変調方式(ここでは、QPSK)をs2に設定したとき、以下の関係式(86)が成立する。
Figure 2020061771
すると、「s2の変調方式をQPSKに固定し、s1の変調方式を16QAMから64QAMに変更(16QAM、64QAMいずれかに設定)」しても、u16<u64とするとよい。(なお、16QAMのときにパワー変更のために乗算された値がu16であり、64QAMのときにパワー変更のために乗算された値がu64であり、QPSKはパワー変更が行われないものとする。)
また、(s1の変調方式、s2の変調方式)のセットを、(QPSK、16QAM)または(16QAM、QPSK)または(QPSK、64QAM)または(64QAM、QPSK)のいずれかの設定が可能な場合、u16<u64の関係を満たすとよい。
以下、上述の内容を、一般化した場合について説明する。
s1の変調方式を固定とし、I−Q平面における信号点の数がc個の変調方式Cとする。また、s2の変調方式として、I−Q平面における信号点の数がa個の変調方式AとI−Q平面における信号点の数がb個の変調方式B(a>b>c)のいずれかの設定が可能であるとする。(ただし、変調方式Aのs2時点の平均電力値(平均値)と変調方式Bのs2時点の平均電力値(平均値)とは等しいものとする。)
このとき、s2の変調方式として、変調方式Aを設定したときに、設定するパワー変更のための値をuとする。また、s2の変調方式として、変調方式Bを設定したときに、設定するパワー変更のための値をuとする。このとき、u<uとすると、受信装置が高いデータの受信品質を得ることができる。
固定の変調方式(ここでは、変調方式C)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、変調方式Aと変調方式B)に対し、パワー変更を行うものと考える。すると、「s2の変調方式を変調方式Cと固定とし、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」する場合でも、u<uとするとよい。また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、u<uの関係を満たすとよい。
(例2)
図84を用いて、例1とは異なる動作の例を説明する。なお、s1(t)は、変調方式64QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、kは式(85)のとおりである。また、s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
パワー変更部(8401B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。なお、uは実数とし、u<1.0とする。プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまり、ejθ(t)と表すことができる)とすると、式(82)が成立する。
したがって、64QAMの平均電力と16QAMの平均電力の比は1:uと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
従来、送信電力制御は、一般的には、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
上述で、「制御信号(8400)により、パワー変更のための値uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値uの設定手法について詳しく説明する。
(例2−1)
送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をuLXという形で記載することとする。
例えば、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。このとき、例えば、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもある。重要なことは、(uL1000、uL1500、uL3000)の中に、2つ以上の値が存在することである。)
上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例2−2)
送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をurxという形で記載することとする。
例えば、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。このとき、例えば、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、ur1=ur2であることもある。重要なことは、(ur1、ur2、ur3)の中に、2つ以上の値が存在することである。)
なお、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例2−3)
受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
ここでは、例として、s1の変調方式を64QAMに固定するものとし、制御信号により、s2の変調方式を16QAMからQPSKに変更する(または、16QAM、QPSKのいずれかの設定が可能な)場合について考える。s1の変調方式を64QAMとする場合、s1(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)である。s2の変調方式を16QAMとする場合、s2(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)であり、また、s2(t)の変調方式をQPSKとする場合、s2(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)であるとする。
このようなマッピングを行うと、16QAMの場合とQPSKの場合とで平均電力(平均値)は等しくなる。
図84において、s2の変調方式が16QAMのときパワー変更部8401Bは、u=u16と設定し、s2の変調方式がQPSKのときu=uと設定するものとする。このとき、最小ユークリッド距離の関係から、u<u16とすると、s2の変調方式が16QAM、QPSKのうちいずれの場合であっても、受信装置が高いデータの受信品質を得ることができる。
なお、上述の説明において、「s1の変調方式を64QAMと固定」として説明したが、「s2の変調方式を64QAMと固定とし、s1の変調方式を16QAMからQPSKに変更(16QAM、QPSKいずれかに設定)」しても、u<u16とするとよい(例1−3での説明と同様に考えればよい。)。(なお、16QAMのときにパワー変更のために乗算された値がu16であり、QPSKのときにパワー変更のために乗算された値がuであり、64QAMはパワー変更が行われないものとする。)また、(s1の変調方式、s2の変調方式)のセットを、(64QAM、16QAM)または(16QAM、64QAM)または(64QAM、QPSK)または(QPSK、64QAM)のいずれかの設定が可能な場合、u<u16の関係を満たすとよい。
以下、上述の内容を、一般化した場合について説明する。
s1の変調方式を固定とし、I−Q平面における信号点の数がc個の変調方式Cとする。また、s2の変調方式として、I−Q平面における信号点の数がa個の変調方式AとI−Q平面における信号点の数がb個の変調方式B(c>b>a)のいずれかの設定が可能であるとする。(ただし、変調方式Aのs2時点の平均電力値(平均値)と変調方式Bのs2時点の平均電力値(平均値)とは等しいものとする。)
このとき、s2の変調方式として、変調方式Aを設定したときに、設定するパワー変更のための値をuとする。また、s2の変調方式として、変調方式Bを設定したときに、設定するパワー変更のための値をuとする。このとき、u<uとすると、受信装置が高いデータの受信品質を得ることができる。
固定の変調方式(ここでは、変調方式C)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、変調方式Aと変調方式B)に対し、パワー変更を行うものと考える。すると、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」する場合でも、u<uとするとよい。また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、u<uの関係を満たすとよい。
(例3)
図84を用いて、例1とは異なる動作の例を説明する。なお、s1(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。また、s2(t)は、変調方式64QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、kは式(85)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
パワー変更部(8401B)は、変調方式64QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(追加400)に基づき、設定したパワー変更のための値をuとすると、変調方式64QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。なお、uは実数とし、u>1.0とする。プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまり、ejθ(t)と表すことができる)とすると、式(82)が成立する。
したがって、16QAMの平均電力と64QAMの平均電力の比は1:uと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
従来、送信電力制御は、一般的には、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
上述で、「制御信号(8400)により、パワー変更のための値uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値uの設定手法について詳しく説明する。
(例3−1)
送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をuLXという形で記載することとする。
例えば、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。このとき、例えば、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもある。重要なことは、(uL1000、uL1500、uL3000)の中に、2つ以上の値が存在することである。)
上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例3−2)
送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をurxという形で記載することとする。
例えば、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。このとき、例えば、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、ur1=ur2であることもある。重要なことは、(ur1、ur2、ur3)の中に、2つ以上の値が存在することである。)
なお、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値が2つ以上存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値の中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点である。
(例3−3)
受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
ここでは、例として、s1の変調方式を16QAMに固定するものとし、制御信号により、s2の変調方式を64QAMからQPSKに変更する(または、64QAM、QPSKのいずれかの設定が可能な)場合について考える。s1の変調方式を16QAMとする場合、s2(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)である。s2の変調方式を64QAMとする場合、s1(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)であり、また、s2(t)の変調方式をQPSKとする場合、s2(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)であるとする。
このようなマッピングを行うと、16QAMの場合とQPSKの場合とで平均電力は等しくなる。
図84において、s2の変調方式が64QAMのときu=u64設定し、s2の変調方式がQPSKのときu=uと設定するものとする。このとき、最小ユークリッド距離の関係から、u<u64とすると、s2の変調方式が16QAM、64QAMいずれのときも、受信装置が高いデータの受信品質を得ることができる。
なお、上述の説明において、「s1の変調方式を16QAMに固定」するとして説明したが、「s2の変調方式を16QAMに固定し、s1の変調方式を64QAMからQPSKに変更(64QAM、QPSKいずれかに設定)」した場合であっても、u<u64とするとよい(例1−3での説明と同様に考えればよい。)。(なお、64QAMのときにパワー変更のために乗算された値がu64であり、QPSKのときにパワー変更のために乗算された値がuであり、16QAMはパワー変更が行われないものとする。)また、(s1の変調方式、s2の変調方式)のセットを、(16QAM、64QAM)または(64QAM、16QAM)または(16QAM、QPSK)または(QPSK、16QAM)のいずれかの設定が可能な場合、u<u64の関係を満たすとよい。
以下、上述の内容を、一般化した場合について説明する。
s1の変調方式を固定とし、I−Q平面における信号点の数がc個の変調方式Cとする。また、s2の変調方式として、I−Q平面における信号点の数がa個の変調方式AとI−Q平面における信号点の数がb個の変調方式B(c>b>a)のいずれかの設定が可能であるとする。(ただし、変調方式Aのs2時点の平均電力値(平均値)と変調方式Bのs2時点の平均電力値(平均値)とは等しいものとする。)
このとき、s2の変調方式として、変調方式Aを設定したときに、設定するパワー変更のための値をuとする。また、s2の変調方式として、変調方式Bを設定したときに、設定するパワー変更のための値をuとする。このとき、u<uとすると、受信装置が高いデータの受信品質を得ることができる。
固定の変調方式(ここでは、変調方式C)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、変調方式Aと変調方式B)に対し、パワー変更を行うものと考える。すると、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」する場合でも、u<uとするとよい。また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、u<uの関係を満たすとよい。
(例4)
上述では、s1、s2のうち、一方のパワーを変更する場合について述べたが、ここでは、s1、s2の両者のパワーを変更する場合について説明する。
図85を用いて、動作の一例を説明する。なお、s1(t)は、変調方式QPSKのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図81のとおりであり、hは式(78)のとおりである。また、s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
パワー変更部(8401A)は、変調方式QPSKのベースバンド信号(マッピング後の信号)307A、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をvとすると、変調方式QPSKのベースバンド信号(マッピング後の信号)307Aをv倍した信号(8402A)を出力する。
パワー変更部(8401B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。そして、u=v×w(w>1.0)とする。
規則的に位相を変更する方法におけるプリコーディング行列をF[t]とすると、次式(87)が成立する。
プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまりejθ(t)と表すことができる)とすると、次式(87)が成立する。
Figure 2020061771
したがって、QPSKの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:wと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
なお、式(83)、式(84)を考慮すると、QPSKの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:w=1:5あるいはQPSKの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:w=1:2が有効な例として考えられるが、システムとして求められる要求条件によって、適宜設定することが可能である。
従来、送信電力制御は、一般的に、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
上述で、「制御信号(8400)により、パワー変更のための値v、uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値v、uを設定について詳しく説明する。
(例4−1)
送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。同様にパワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値v、uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をそれぞれ、vLX、uLXという形で記載することとする。
例えば、ブロック長として1000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL3000を設定する。
一方、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。
このとき、例えば、vL1000、vL1500、vL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもあり、また、vL1000=vL1500であることもある。重要なことは、(vL1000、vL1500、vL3000)のセットの中に、2つ以上の値が存在することである。また、(uL1000、uL1500、uL3000)のセットの中に、2つ以上の値が存在することである。)なお、vLXとuLXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値uLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値uLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが一つの重要な点であり、また、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値vLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値vLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例4−2)
送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。また、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値v、uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をそれぞれ、vrx、urxという形で記載することとする。
例えば、符号化率としてr1が選択された場合、パワー変更部(8401A)はパワー変更のための値vr1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401A)はパワー変更のための値vr2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401A)はパワー変更のための値vr3を設定する。
また、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。
このとき、例えば、vr1、vr2、vr3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、vr1=vr2であることもあり、また、ur1=ur2であることもある。重要なことは、(vr1、vr2、vr3)のセットの中に、2つ以上の値が存在することである。また、(ur1、ur2、ur3)のセットの中に、2つ以上の値が存在することである。)なお、vrXとurXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
また、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値urxが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値urxの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点であり、また、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値vrXが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値vrXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例4−3)
受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
ここでは、例として、s1の変調方式をQPSKに固定とし、制御信号により、s2の変調方式を16QAMから64QAMに変更する(または、16QAM、64QAMのいずれかの設定が可能な)場合について考える。s1の変調方式をQPSKとする場合、s1(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)である。s2の変調方式を16QAMとする場合、s2(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)であり、また、s2(t)の変調方式を64QAMとする場合、s2(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)であるとする。
図85において、s1の変調方式をQPSKとし、s2の変調方式が16QAMとしたとき、v=αとし、u=α×w16設定するものとする。このとき、QPSKの平均電力と16QAMの平均電力の比はv:u=α:α×w16 =1:w16 となる。
そして、図85において、s1の変調方式をQPSKとしs2の変調方式が64QAMとしたとき、v=βとし、u=β×w64設定するものとする。このとき、QPSKの平均電力と64QAMの平均電力の比はv:u=β:β×w64 =1:w64 となる。このとき、最小ユークリッド距離の関係から、1.0<w16<w64とすると、s2の変調方式が16QAM、64QAMいずれのときも、受信装置が高いデータの受信品質を得ることができる。
なお、上述の説明において、「s1の変調方式をQPSKに固定」するとして説明したが、「s2の変調方式をQPSKに固定する」ことが考えられる。このとき、固定の変調方式(ここでは、QPSK)に対しては、パワー変更を行わず、複数の設定可能な変調方式(ここでは、16QAMと64QAM)に対し、パワー変更を行うものとする。すると、固定の変調方式(ここでは、QPSK)をs2に設定したとき、以下の関係式(88)が成立する。
Figure 2020061771
すると、「s2の変調方式をQPSKに固定し、s1の変調方式を16QAMから64QAMに変更(16QAM、64QAMいずれかに設定)」しても、1.0<w16<w64とするとよい。(なお、16QAMのときにパワー変更のために乗算された値がu=α×w16であり、64QAMのときにパワー変更のために乗算された値がu=β×w64であり、QPSKのパワー変更のための値は、複数の設定可能な変調方式が16QAMのときv=αであり、複数の設定可能な変調方式が64QAMのときv=βとなる。)また、(s1の変調方式、s2の変調方式)のセットを、(QPSK、16QAM)または(16QAM、QPSK)または(QPSK、64QAM)または(64QAM、QPSK)のいずれかの設定が可能な場合、1.0<w16<w64の関係を満たすとよい。
以下、上述の内容を、一般化した場合について説明する。
一般化した場合、s1の変調方式を固定とし、I−Q平面における信号点の数がc個の変調方式Cとする。s2の変調方式として、I−Q平面における信号点の数がa個の変調方式AとI−Q平面における信号点の数がb個の変調方式B(a>b>c)のいずれかの設定が可能であるとする。このとき、s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Aを設定したときの、その平均電力の比を1:w とする。s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Bを設定したときの、その平均電力の比を1:w とする。このとき、w<wとすると、受信装置が高いデータの受信品質を得ることができる。
したがって、上述の例では「s1の変調方式を変調方式Cに固定」するとして説明したが、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」した場合であっても、平均電力に関し、w<wとするとよい。(このとき、上述と同様に、変調方式Cの平均電力を1とした場合、変調方式Aの平均電力がw であり、変調方式Bの平均電力がw である。)また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、平均電力に関し、w<wの関係を満たすとよい。
(例5)
図85を用いて、例4とは異なる動作の例を説明する。なお、s1(t)は、変調方式64QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、kは式(85)のとおりである。また、s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
パワー変更部(8401A)は、変調方式64QAMのベースバンド信号(マッピング後の信号)307A、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をvとすると、変調方式64QAMのベースバンド信号(マッピング後の信号)307Aをv倍した信号(8402A)を出力する。
パワー変更部(8401B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。そして、u=v×w(w<1.0)とする。
プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまりejθ(t)と表すことができる)とすると、上述の式(87)が成立する。
したがって、64QAMの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:wと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
従来、送信電力制御は、一般的に、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
上述で、「制御信号(8400)により、パワー変更のための値v、uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値v、uを設定について詳しく説明する。
(例5−1)
送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。同様にパワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値v、uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をそれぞれ、vLX、uLXという形で記載することとする。
例えば、ブロック長として1000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL3000を設定する。
一方、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。
このとき、例えば、vL1000、vL1500、vL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもあり、また、vL1000=vL1500であることもある。重要なことは、(vL1000、vL1500、vL3000)のセットの中に、2つ以上の値が存在することである。また、(uL1000、uL1500、uL3000)のセットの中に、2つ以上の値が存在することである。)なお、vLXとuLXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値uLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値uLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが一つの重要な点であり、また、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値vLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値vLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例5−2)
送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。また、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値v、uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をそれぞれ、vrx、urxという形で記載することとする。
例えば、符号化率としてr1が選択された場合、パワー変更部(8401A)はパワー変更のための値vr1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401A)はパワー変更のための値vr2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401A)はパワー変更のための値vr3を設定する。
また、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。
このとき、例えば、vr1、vr2、vr3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、vr1=vr2であることもあり、また、ur1=ur2であることもある。重要なことは、(vr1、vr2、vr3)のセットの中に、2つ以上の値が存在することである。また、(ur1、ur2、ur3)のセットの中に、2つ以上の値が存在することである。)なお、vrXとurXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
また、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値urxが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値urxの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点であり、また、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値vrXが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値vrXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例5−3)
受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
ここでは、例として、s1の変調方式を64QAMに固定とし、制御信号により、s2の変調方式を16QAMからQPSKに変更する(または、16QAM、QPSKのいずれかの設定が可能な)場合について考える。s1の変調方式を64QAMとする場合、s1(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)である。s2の変調方式を16QAMとする場合、s2(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)であり、また、s2(t)の変調方式をQPSKとする場合、s2(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)であるとする。
図85において、s1の変調方式を64QAMとし、s2の変調方式が16QAMとしたとき、v=αとし、u=α×w16設定するものとする。このとき、64QAMの平均電力と16QAMの平均電力の比はv:u=α:α×w16 =1:w16 となる。
そして、図85において、s1の変調方式を64QAMとしs2の変調方式がQPSKとしたとき、v=βとし、u=β×w設定するものとする。このとき、64QAMの平均電力とQPSKの平均電力の比はv:u=β:β×w =1:w となる。このとき、最小ユークリッド距離の関係から、w<w16<1.0とすると、s2の変調方式が16QAM、QPSKいずれのときも、受信装置が高いデータの受信品質を得ることができる。
なお、上述の説明において、「s1の変調方式を64QAMに固定」するとして説明したが、「s2の変調方式を64QAMに固定し、s1の変調方式を16QAMからQPSKに変更(16QAM、QPSKいずれかに設定)」しても、w<w16<1.0とするとよい。(例4−3での説明と同様に考えればよい。)。(なお、16QAMのときにパワー変更のために乗算された値がu=α×w16であり、QPSKのときにパワー変更のために乗算された値がu=β×wであり、64QAMのパワー変更のための値は、複数の設定可能な変調方式が16QAMのときv=αであり、複数の設定可能な変調方式がQPSKのときv=βとなる。)また、(s1の変調方式、s2の変調方式)のセットを、(64QAM、16QAM)または(16QAM、64QAM)または(64QAM、QPSK)または(QPSK、64QAM)のいずれかの設定が可能な場合、w<w16<1.0の関係を満たすとよい。
以下、上述の内容を、一般化した場合について説明する。
一般化した場合、s1の変調方式を固定とし、I−Q平面における信号点の数がc個の変調方式Cとする。s2の変調方式として、I−Q平面における信号点の数がa個の変調方式AとI−Q平面における信号点の数がb個の変調方式B(c>b>a)のいずれかの設定が可能であるとする。このとき、s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Aを設定したときの、その平均電力の比を1:w とする。s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Bを設定したときの、その平均電力の比を1:w とする。このとき、w<wとすると、受信装置が高いデータの受信品質を得ることができる。
したがって、「s1の変調方式を変調方式Cに固定」するとして説明したが、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」した場合であっても、平均電力に関し、w<wとするとよい。(このとき、上述と同様に、変調方式Cの平均電力を1とした場合、変調方式Aの平均電力がw であり、変調方式Bの平均電力がw である。)また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、平均電力に関し、w<wの関係を満たすとよい。
(例6)
図85を用いて、例4とは異なる動作の例を説明する。なお、s1(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、gは式(79)のとおりである。また、s2(t)は、変調方式64QAMのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図86のとおりであり、kは式(85)のとおりである。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。
パワー変更部(8401A)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307A、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をvとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Aをv倍した信号(8402A)を出力する。
パワー変更部(8401B)は、変調方式64QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8400)を入力とし、制御信号(8400)に基づき、設定したパワー変更のための値をuとすると、変調方式64QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(8402B)を出力する。そして、u=v×w(w<1.0)とする。
プリコーディング後の変調信号に対し、規則的に位相を変更する方法におけるプリコーディング行列をF、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまりejθ(t)と表すことができる)とすると、上述の式(87)が成立する。
したがって、64QAMの平均電力と16QAMの平均電力の比はv:u=v:v×w=1:wと設定することになる。これにより、図83のような受信状態となるので、受信装置におけるデータの受信品質を向上させることができる。
従来、送信電力制御は、一般的に、通信相手からのフィードバック情報に基づいて、送信電力の制御を行っている。本実施の形態では、通信相手からのフィードバック情報とは関係なく、送信電力を制御している点が、本発明の特徴となり、この点について、詳しく説明する。
上述で、「制御信号(8400)により、パワー変更のための値v、uを設定する」ことを述べたが、以下では、さらに受信装置におけるデータの受信品質を向上させるための、制御信号(8400)によるパワー変更のための値v、uを設定について詳しく説明する。
(例6−1)
送信装置が複数のブロック長(符号化後の1ブロックを構成しているビット数であり、符号長とも呼ばれる)の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号のブロック長に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数のブロック長がサポートされている。サポートされている複数のブロック長から選択されたブロック長の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号のブロック長を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。同様にパワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択されたブロック長に応じてパワー変更のための値v、uを設定することである。ここでは、ブロック長Xに応じたパワー変更のための値をそれぞれ、vLX、uLXという形で記載することとする。
例えば、ブロック長として1000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401A)はパワー変更のための値vL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401A)はパワー変更のための値vL3000を設定する。
一方、ブロック長として1000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1000を設定し、ブロック長として1500が選択された場合、パワー変更部(8401B)はパワー変更のための値uL1500を設定し、ブロック長として3000が選択された場合、パワー変更部(8401B)はパワー変更のための値uL3000を設定する。
このとき、例えば、vL1000、vL1500、vL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、uL1000、uL1500、uL3000を、それぞれ異なる値とすることで、各符号長のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号長によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号長を変更しても、パワー変更のための値を変更する必要はない。(例えば、uL1000=uL1500であることもあり、また、vL1000=vL1500であることもある。重要なことは、(vL1000、vL1500、vL3000)のセットの中に、2つ以上の値が存在することである。また、(uL1000、uL1500、uL3000)のセットの中に、2つ以上の値が存在することである。)なお、vLXとuLXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
上述では、3つの符号長の場合を例に説明したがこれに限ったものではなく、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値uLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値uLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが一つの重要な点であり、また、送信装置において、符号長が2つ以上設定可能な際に、設定可能なパワー変更のための値vLXが2つ以上の存在し、符号長を設定した際、送信装置は、複数の設定可能なパワー変更のための値vLXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例6−2)
送信装置が複数の符号化率の誤り訂正符号をサポートしている場合に、s1及びs2の生成に用いられるデータに施された誤り訂正符号の符号化率に応じて、s1およびs2の平均電力を設定する方法について説明する。
誤り訂正符号としては、例えば、テイルバイティングを行ったターボ符号またはデュオバイナリーターボ符号、および、LDPC符号、のようなブロック符号があり、多くの通信システム、または、放送システムでは、複数の符号化率がサポートされている。サポートされている複数の符号化率から選択された符号化率の誤り訂正符号化が施された符号化後のデータは2系統に分配される。2系統に分配された符号化後のデータは、それぞれs1の変調方式とs2の変調方式で変調され、ベースバンド信号(マッピング後の信号)s1(t)及びs2(t)が生成される。
制御信号(8400)は、上記の選択した誤り訂正符号の符号化率を示す信号であり、パワー変更部(8401A)は、制御信号(8400)に応じてパワー変更のための値vを設定する。また、パワー変更部(8401B)は、制御信号(8400)に応じてパワー変更のための値uを設定する。
本発明の特徴は、パワー変更部(8401A、8401B)が、制御信号(8400)が示す選択された符号化率に応じてパワー変更のための値v、uを設定することである。ここでは、符号化率rxに応じたパワー変更のための値をそれぞれ、vrx、urxという形で記載することとする。
例えば、符号化率としてr1が選択された場合、パワー変更部(8401A)はパワー変更のための値vr1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401A)はパワー変更のための値vr2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401A)はパワー変更のための値vr3を設定する。
また、符号化率としてr1が選択された場合、パワー変更部(8401B)はパワー変更のための値ur1を設定し、符号化率としてr2が選択された場合、パワー変更部(8401B)はパワー変更のための値ur2を設定し、符号化率としてr3が選択された場合、パワー変更部(8401B)はパワー変更のための値ur3を設定する。
このとき、例えば、vr1、vr2、vr3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。同様に、ur1、ur2、ur3を、それぞれ異なる値とすることで、各符号化率のときで、高い誤り訂正能力を得ることが可能であることがある。ただし、設定する符号化率によっては、パワー変更のための値を変更しても効果を得ることができない場合がある。そのときは、符号化率を変更しても、パワー変更のための値を変更する必要はない。(例えば、vr1=vr2であることもあり、また、ur1=ur2であることもある。重要なことは、(vr1、vr2、vr3)のセットの中に、2つ以上の値が存在することである。また、(ur1、ur2、ur3)のセットの中に、2つ以上の値が存在することである。)なお、vrXとurXとが、平均電力値の比、1:wを満たすように設定されるのは上述したとおりである。
また、上記r1、r2、r3の一例としては、誤り訂正符号がLDPC符号の場合には、それぞれ1/2、2/3、3/4といった符号化率であることが考えられる。
上述では、3つの符号化率の場合を例に説明したがこれに限ったものではなく、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値urxが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値urxの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることが重要な点であり、また、送信装置において、符号化率が2つ以上設定可能な際に、設定可能なパワー変更のための値vrXが2つ以上の存在し、符号化率を設定した際、送信装置は、複数の設定可能なパワー変更のための値vrXの中からいずれかのパワー変更のための値を選択し、パワー変更を行うことができることも重要な点である。
(例6−3)
受信装置がよりよいデータの受信品質を得るためには以下を実施することが重要となる。
送信装置が複数の変調方式をサポートしている場合に、s1及びs2の生成に用いられる変調方式に応じて、s1およびs2の平均電力(平均値)を設定する方法について説明する。
ここでは、例として、s1の変調方式を16QAMに固定とし、制御信号により、s2の変調方式を64QAMからQPSKに変更する(または、16QAM、QPSKのいずれかの設定が可能な)場合について考える。s1の変調方式を16QAMとする場合、s1(t)のマッピング方法としては、図80のとおりであり、図80においてgは式(79)である。s2の変調方式を64QAMとする場合、s2(t)のマッピング方法としては、図86のとおりであり、図86においてkは式(85)であり、また、s2(t)の変調方式をQPSKとする場合、s2(t)のマッピング方法としては、図81のとおりであり、図81においてhは式(78)であるとする。
図85において、s1の変調方式を16QAMとし、s2の変調方式が64QAMとしたとき、v=αとし、u=α×w64設定するものとする。このとき、64QAMの平均電力と16QAMの平均電力の比はv:u=α:α×w64 =1:w64 となる。
そして、図85において、s1の変調方式を16QAMとしs2の変調方式がQPSKとしたとき、v=βとし、u=β×w設定するものとする。このとき、64QAMの平均電力とQPSKの平均電力の比はv:u=β:β×w =1:w となる。このとき、最小ユークリッド距離の関係から、w<w64とすると、s2の変調方式が64QAM、QPSKのいずれのときも、受信装置が高いデータの受信品質を得ることができる。
なお、上述の説明において、「s1の変調方式を16QAMに固定」するとして説明したが、「s2の変調方式を16QAMに固定し、s1の変調方式を64QAMからQPSKに変更(16QAM、QPSKいずれかに設定)」しても、w<w64とするとよい。(例4−3での説明と同様に考えればよい。)。(なお、16QAMのときにパワー変更のために乗算された値がu=α×w16であり、QPSKのときにパワー変更のために乗算された値がu=β×wであり、64QAMのパワー変更のための値は、複数の設定可能な変調方式が16QAMのときv=αであり、複数の設定可能な変調方式がQPSKのときv=βとなる。)また、(s1の変調方式、s2の変調方式)のセットを、(16QAM、64QAM)または(64QAM、16QAM)または(16QAM、QPSK)または(QPSK、16QAM)のいずれかの設定が可能な場合、w<w64の関係を満たすとよい。
以下、上述の内容を、一般化した場合について説明する。
一般化した場合、s1の変調方式を固定とし、I−Q平面における信号点の数がc個の変調方式Cとする。s2の変調方式として、I−Q平面における信号点の数がa個の変調方式AとI−Q平面における信号点の数がb個の変調方式B(c>b>a)のいずれかの設定が可能であるとする。このとき、s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Aを設定したときの、その平均電力の比を1:w とする。s1の変調方式が変調方式Cでその平均電力とs2の変調方式として、変調方式Bを設定したときの、その平均電力の比を1:w とする。このとき、w<wとすると、受信装置が高いデータの受信品質を得ることができる。
したがって、「s1の変調方式を変調方式Cに固定」するとして説明したが、「s2の変調方式を変調方式Cに固定し、s1の変調方式を変調方式Aから変調方式Bに変更(変調方式A、変調方式Bいずれかに設定)」した場合であっても、平均電力に関し、w<wとするとよい。(このとき、上述と同様に、変調方式Cの平均電力を1とした場合、変調方式Aの平均電力がw であり、変調方式Bの平均電力がw である。)また、(s1の変調方式、s2の変調方式)のセットを、(変調方式C、変調方式A)または(変調方式A、変調方式C)または(変調方式C、変調方式B)または(変調方式B、変調方式C)のいずれかの設定が可能な場合、平均電力に関し、w<wの関係を満たすとよい。
上記「実施の形態1」等に示した本明細書において、規則的に位相を変更する方法に用いるプリコーディング行列の式(36)において、α=1と設定すると、上記のように、「s1の変調方式とs2の変調方式が異なるとき、s1の平均電力とs2の平均電力を異なるようにする」としても、z1の平均電力とz2平均電力は等しくなり、送信装置が具備する送信電力増幅器のPAPR(Peak-to-Average Power Ratio)(ピーク電力対平均電力比)を大きくすることにつながらないため、送信装置の消費電力を少なくすることができるという効果を得ることができる。
ただし、α≠1でも、PAPRへの影響が少ない規則的に位相を変更する方法に用いるプリコーディング行列は存在する。例えば、実施の形態1における式(36)であらわされるプリコーディング行列を用い、規則的に位相を変更する方法を実現したとき、α≠1でも、PAPRの影響は少ない。

(受信装置の動作)
次に、受信装置の動作について、説明する。受信装置の動作については、実施の形態1等で説明したとおりであり、例えば、受信装置の構成は、図7、図8、図9に示されている。
図5の関係から、受信信号r1(t)、r2(t)は、チャネル変動値、h11(t)、h12(t)、h21(t)、h22(t)を用いると、図84、図85のように送信装置が変調信号を送信した場合、以下の2つの式のいずれかの関係が成立する。
例1、例2、例3の場合、図5から、以下の式(89)に示す関係を導くことができる。
Figure 2020061771
また、例1、例2、例3で説明したように、以下の式(90)のような関係となる場合もある。
Figure 2020061771
上記の関係を用いて、受信装置は、復調(検波)を行う(送信装置が送信したビットの推定を行う)ことになる(実施の形態1等で説明した場合と同様に実施すればよいことになる)。
一方、例4、例5、例6の場合、図5から、以下の式(91)に示す関係を導くことができる。
Figure 2020061771
また、例3、例4、例5で説明したように、以下の式(92)のような関係となる場合もある。
Figure 2020061771
上記の関係を用いて、受信装置は、復調(検波)を行う(送信装置が送信したビットの推定を行う)ことになる(実施の形態1等で説明した場合と同様に実施すればよいことになる)。
なお、例1〜例6では、パワー変更部を送信装置に追加する構成を示したが、マッピングの段階において、パワー変更を行ってもよい。
また、例1、例2、例3で説明したように、特に、式(89)に示したように図3、図4のマッピング部306Bが、u×s2(t)を出力する場合もあり、パワー変更部を省略してもよい。この場合、マッピング後の信号s1(t)およびマッピング後の信号u×s2(t)に対し、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用していることになる。
そして、例1、例2、例3で説明したように、特に、式(90)に示したように図3、図4のマッピング部306Aが、u×s1(t)を出力する場合もあり、パワー変更部を省略してもよい。この場合、マッピング後の信号u×s1(t)およびマッピング後の信号s2(t)に対し、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用していることになる。
また、例4、例5、例6の場合、特に、式(91)に示したように図3、図4のマッピング部306Aが、v×s1(t)、マッピング部306Bが、u×s2(t)を出力する場合もあり、いずれもパワー変更部を省略してもよい。この場合、マッピング後の信号v×s1(t)およびマッピング後の信号u×s2(t)に対し、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用していることになる。
そして、例4、例5、例6の場合、特に、式(92)に示したように図3、図4のマッピング部306Aが、u×s1(t)、マッピング部306Bが、v×s2(t)を出力する場合もあり、いずれもパワー変更部を省略してもよい。この場合、マッピング後の信号u×s1(t)およびマッピング後の信号v×s2(t)に対し、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用していることになる。
なお、式(89)〜(92)に示すFは、時間tに用いたプリコーディング行列であり、y(t)は位相変更値ある。受信装置は、上述で示した、r1(t)、r2(t)とs1(t)、s2(t)の関係を利用して、復調(検波)を行うことになる(実施の形態1等で説明した場合と同様に実施すればよいことになる)。ただし、上述で示した式には、雑音成分、周波数オフセット、チャネル推定誤差等の歪み成分は、式にあらわされておらず、これらを含んだ形で、復調(検波)が行われることになる。なお、送信装置がパワー変更を行うために使用するu、vの値については、送信装置が、これらに関する情報を送信するか、または、使用する送信モード(送信方法、変調方式、誤り訂正方式等)の情報を送信し、受信装置は、その情報を得ることで、送信装置が用いたu、vの値を知ることができ、これにより、上述で示した関係式を導き、復調(検波)を行うことになる。
本実施の形態では、時間軸方向にプリコーディング後の変調信号に対し、位相変更値を切り替える場合を例として説明したが、他の実施の形態の説明と同様に、OFDM方式のようなマルチキャリア伝送を用いている場合、周波数軸方向にプリコーディング後の変調信号に対し、位相変更値を切り替える場合についても、同様に実施することができる。このとき、本実施の形態で用いているtをf(周波数((サブ)キャリア))に置き換えることになる。
よって、時間軸方向にプリコーディング後の変調信号に対し、位相変更値を切り替える場合、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。そして、周波数軸方向にプリコーディング後の変調信号に対し、位相変更値を切り替える場合、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。
また、時間―周波数軸方向で、プリコーディング後の変調信号に対し、位相変更方法を切り替える場合についても他の実施の形態で述べたように同様に実施することが可能である。なお、本実施の形態におけるプリコーディング後の変調信号に対し、位相変更方法を切り替える方法は、本明細書で説明したプリコーディング後の変調信号に対し、位相変更方法を切り替える方法に限定されるものではない。
また、2ストリームのベースバンド信号s1(i)、s2(i)(ただし、iは、(時間、または、周波数(キャリア)の)順番をあらわす)に対し、規則的な位相変更およびプリコーディングを行い(順番はどちらが先であってもよい)生成された、両者の信号処理後のベースバンド信号z1(i)、z2(i)において、両者の信号処理後のベースバンド信号z1(i)の同相I成分をI(i)、直交成分をQ(i)とし、両者の信号処理後のベースバンド信号z2(i)の同相I成分をI(i)、直交成分をQ(i)とする。このとき、ベースバンド成分の入れ替えを行い、
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
とし、入れ替え後のベースバンド信号r1(i)に相当する変調信号を送信アンテナ1、入れ替え後のベースバンド信号r2(i)に相当する変調信号を送信アンテナ2から、同一時刻に同一周波数を用いて送信する、というように、入れ替え後のベースバンド信号r1(i)に相当する変調信号と入れ替え後のベースバンド信号r2(i)を異なるアンテナから、同一時刻に同一周波数を用いて送信するとしてもよい。また、
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i)、直交成分をI(i)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i)、直交成分をI(i)
としてもよい。また、上述では、2ストリームの信号に対し両者の信号処理を行い、両者の信号処理後の信号の同相成分と直交成分の入れ替えについて説明したが、これに限ったものではなく、2ストリームより多い信号に対し両者の信号処理後を行い、両者の信号処理後の信号の同相成分と直交成分の入れ替えを行うことも可能である。
加えて、以下のような信号の入れ替えを行ってもよい。例えば、

・入れ替え後のベースバンド信号r1(i)の同相成分をI(i)、直交成分をQ(i)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i)、直交成分をQ(i)

なお、この入れ替えについては、図55の構成により、実現することができる。
また、上記の例では、同一時刻(同一周波数((サブ)キャリア))のベースバンド信号の入れ替えを説明しているが、同一時刻のベースバンド信号の入れ替えでなくてもよい。例として、以下のように記述することができる
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をQ(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をI(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をI(i+v)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をI(i+w)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をI(i+w)、直交成分をQ(i+v)
・入れ替え後のベースバンド信号r2(i)の同相成分をQ(i+w)、直交成分をI(i+v)、入れ替え後のベースバンド信号r1(i)の同相成分をQ(i+v)、直交成分をI(i+w)

加えて、以下のような信号の入れ替えを行ってもよい。例えば、

・入れ替え後のベースバンド信号r(i)の同相成分をI(i+w)、直交成分をQ(i+w)、入れ替え後のベースバンド信号r(i)の同相成分をI(i+v)、直交成分をQ(i+v)

なお、これについても、図55の構成により、実現することができる。
図55は、上記の記載を説明するためのベースバンド信号入れ替え部5502を示す図である。図面1に示すように、両者の信号処理後のベースバンド信号z1(i)5501_1、z2(i)5501_2において、両者の信号処理後のベースバンド信号z1(i)5501_1の同相I成分をI(i)、直交成分をQ(i)とし、両者の信号処理後のベースバンド信号z2(i)5501_2の同相I成分をI(i)、直交成分をQ(i)とする。そして、入れ替え後のベースバンド信号r1(i)5503_1の同相成分をIr1(i)、直交成分をQr1(i)、入れ替え後のベースバンド信号r2(i)5503_2の同相成分をIr2(i)、直交成分をQr2(i)とすると、入れ替え後のベースバンド信号r1(i)5503_1の同相成分Ir1(i)、直交成分Qr1(i)、入れ替え後のベースバンド信号r2(i)5503_2の同相成分Ir2(i)、直交成分をQr2(i)は上述で説明したいずれかであらわされるものとする。なお、この例では、同一時刻(同一周波数((サブ)キャリア))の両者の信号処理後のベースバンド信号の入れ替えについて説明したが、上述のように、異なる時刻(異なる周波数((サブ)キャリア))の両者の信号処理後のベースバンド信号の入れ替えであってもよい。
また、上述の入れ替えは、規則的に入れ替え方法を切り替えてもよい。
例えば、
時間0において、
入れ替え後のベースバンド信号r1(0)の同相成分をI(0)、直交成分をQ(0)、入れ替え後のベースバンド信号r2(0)の同相成分をI(0)、直交成分をQ(0)
時間1において、
入れ替え後のベースバンド信号r1(1)の同相成分をI(1)、直交成分をQ(1)、入れ替え後のベースバンド信号r2(1)の同相成分をI(1)、直交成分をQ(1)
・・・
としてもよい、つまり、
時間2kのとき(kは整数)
入れ替え後のベースバンド信号r1(2k)の同相成分をI(2k)、直交成分をQ(2k)、入れ替え後のベースバンド信号r2(2k)の同相成分をI(2k)、直交成分をQ(2k)
とし、
時間2k+1のとき(kは整数)
入れ替え後のベースバンド信号r1(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)、入れ替え後のベースバンド信号r2(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)
としてもよい。
また、
時間2kのとき(kは整数)
入れ替え後のベースバンド信号r1(2k)の同相成分をI(2k)、直交成分をQ(2k)、入れ替え後のベースバンド信号r2(2k)の同相成分をI(2k)、直交成分をQ(2k)
とし、
時間2k+1のとき(kは整数)
入れ替え後のベースバンド信号r1(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)、入れ替え後のベースバンド信号r2(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)
としてもよい。
同様に、周波数軸方向で切り替えてもよい。つまり、
周波数((サブ)キャリア)2kのとき(kは整数)
入れ替え後のベースバンド信号r1(2k)の同相成分をI(2k)、直交成分をQ(2k)、入れ替え後のベースバンド信号r2(2k)の同相成分をI(2k)、直交成分をQ(2k)
とし、
周波数((サブ)キャリア)2k+1のとき(kは整数)
入れ替え後のベースバンド信号r1(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)、入れ替え後のベースバンド信号r2(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)
としてもよい。
また、
周波数((サブ)キャリア)2kのとき(kは整数)
入れ替え後のベースバンド信号r1(2k)の同相成分をI(2k)、直交成分をQ(2k)、入れ替え後のベースバンド信号r2(2k)の同相成分をI(2k)、直交成分をQ(2k)
とし、
周波数((サブ)キャリア)2k+1のとき(kは整数)
入れ替え後のベースバンド信号r1(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)、入れ替え後のベースバンド信号r2(2k+1)の同相成分をI(2k+1)、直交成分をQ(2k+1)
としてもよい。

(実施の形態G1)
本実施の形態では、一例として、QPSKのマッピングを施した変調信号と16QAMのマッピングを施した変調信号を送信する場合に、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定する方法の実施の形態F1と異なる方法について説明する。
実施の形態F1で説明したように、s1の変調信号の変調方式をQPSK、s2の変調信号の変調方式を16QAM(または、s1の変調信号の変調方式を16QAM、s2の変調信号の変調方式をQPSK)とし、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定した場合、送信装置が使用するプリコーディング行列によっては、送信装置が具備する送信電力増幅器のPAPR(Peak-to-Average Power Ratio)(ピーク電力対平均電力比)が大きくなり、送信装置の消費電力が大きくなるという課題が発生することがある。
本実施の形態では、「実施の形態1」等に示した本明細書において、規則的に位相を変更する方法に用いるプリコーディング行列の式(36)において、α≠1としても、PAPRへの影響が少ないプリコーディング後に規則的に位相変更を行う方法について述べる。
本実施の形態では、一例として、s1、s2の変調方式がQPSK、16QAMのいずれかであるときに関して説明を行う。
まず、QPSKのマッピング、および、16QAMのマッピング方法について説明を行う。なお、本実施の形態におけるs1、s2は、以下で述べるQPSKのマッピング、または、16QAMのマッピングいずれかに基づく信号であるものとする。
まず、16QAMのマッピングについて、図80を用いて説明する。図80は、同相I-直交Q平面における16QAMの信号点配置の例を示している。図80の信号点8000は、送信するビット(入力ビット)をb0〜b3とすると、例えば、送信するビットが(b0、b1、b2、b3)=(1、0、0、0)(この値は、図80に記載されている値である。)のとき、同相I-直交Q平面における座標は、(I,Q)=(−3×g、3×g)であり、このI,Qの値が、マッピング後の信号となる。なお、送信するビット(b0、b1、b2、b3)が他の値のときも、(b0、b1、b2、b3)にもとづき、図80から、(I,Q)のセットが決定し、I,Qの値が、マッピング後の信号(s1およびs2)となる。
次に、QPSKのマッピングについて、図81を用いて説明する。図81は、同相I-直交Q平面におけるQPSKの信号点配置の例を示している。図81の信号点8100は、送信するビット(入力ビット)をb0、b1とすると、例えば、送信するビットが(b0、b1)=(1、0)(この値は、図81に記載されている値である。)のとき、同相I-直交Q平面における座標は、(I,Q)=(−1×h、1×h)であり、このI,Qの値が、マッピング後の信号となる。なお、送信するビット(b0、b1)が他の値のときも、(b0、b1)にもとづき、図81から、(I,Q)のセットが決定し、I,Qの値が、マッピング後の信号(s1およびs2)となる。
なお、s1、s2の変調方式がQPSK、16QAMのいずれかであるとき、QPSKの平均電力と16QAMの平均電力を等しくするために、hは式(78)となり、gは式(79)となる。
図85に示したプリコーディング関連の信号処理部を用いた時、変調方式、パワー変更値、位相変更値の、時間軸(または、周波数軸、時間および周波数軸)における変更方法の例を図87、図88に示す。
図87の例では、時間t=0からt=11における、各時間の、設定する変調方式、パワー変更値(u、v)、位相変更値(y[t])を表として示している。なお、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。(図87では、時間軸で記載しているが、OFDM方式のようなマルチキャリア伝送方式を用いているとき、時間軸方向で、各種方法(変調方式、パワー変更値、位相変更値)を切り替えるのではなく、周波数(サブキャリア)軸方向で、各種方法を切り替えることも可能である。したがって、図87に示しているように、t=0をf=f0、t=1をf=f1、・・・と置き換えて考えればよい。(fは周波数(サブキャリア)を示しており、f0、f1、・・・は使用する周波数(サブキャリア)を示している。)このとき、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。)
図87に示すように、変調方式がQPSKのとき、QPSKの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、aを乗算することになる(aは実数)。そして、変調方式が16QAMのとき、16QAMの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、bを乗算することになる(bは実数)。
図87では、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として、y[0],y[1],y[2]の3種類を用意し、プリコーディング後に規則的に位相変更を行う方法としての切り替え周期は3となる。(t0〜t2、t3〜t5、・・・で周期を形成している。)なお、本実施の形態では、図85の例のように、プリコーディング後に、一方のプリコーディング後の信号に対し、位相変更を行うため、y[i]は絶対値が1の複素数(したがって、y[i]はejθとあらわすことができる)を扱う。しかし、本明細書に示したように、複数のプリコーディング後の信号に位相変更をすることも可能である。このとき、位相変更値は、複数のプリコーディング後の信号に対し、それぞれ存在することになる。
そして、s1(t)の変調方式は、t0〜t2ではQPSK、t3〜t5では16QAM、・・・となっており、s2(t)の変調方式は、t0〜t2では16QAM、t3〜t5ではQPSK、・・・となっている。したがって、(s1(t)の変調方式、s2(t)の変調方式)のセットは、(QPSK、16QAM)または(16QAM、QPSK)となっている。
このとき、重要となる点は、
「y[0]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在している点であり、同様に、y[1]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在しており、また、同様に、y[2]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する。」
ことである。
また、パワー変更部(8501A)は、s1(t)の変調方式がQPSKのとき、s1(t)にaを乗算し、a×s1(t)を出力することになり、s1(t)の変調方式が16QAMのとき、s1(t)にbを乗算し、b×s1(t)を出力することになる。
パワー変更部(8501B)は、s2(t)の変調方式がQPSKのとき、s2(t)にaを乗算し、a×s2(t)を出力することになり、s2(t)の変調方式が16QAMのとき、s2(t)にbを乗算し、b×s2(t)を出力することになる。
なお、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定する場合の方法については、実施の形態F1で説明したとおりである。
したがって、(s1(t)の変調方式、s2(t)の変調方式)のセットを考慮すると、図87に示すように、位相変更と変調方式切り替えを考慮したときの周期は6=3×2、(3:プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の数、2:各位相変更値において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する)となる。
以上のように、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在するようにすることで、QPSKの平均電力と16QAMの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
なお、上述の説明において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の場合で説明したが、これに限ったものではなく、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、64QAM)、(64QAM、QPSK)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(16QAM、64QAM)、(64QAM、16QAM)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(128QAM、64QAM)、(64QAM、128QAM)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(256QAM、64QAM)、(64QAM、256QAM)等であってもよく、つまり、異なる2つの変調方式を用意し、s1(t)の変調方式とs2(t)の変調方式を異なるように設定すれば、同様に実施することができる。
図88は、時間t=0からt=11における、各時間の、設定する変調方式、パワー変更値、位相変更値を表として示している。なお、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。(図88では、時間軸で記載しているが、OFDM方式のようなマルチキャリア伝送方式を用いているとき、時間軸方向で、各種方法を切り替えるのではなく、周波数(サブキャリア)軸方向で、各種方法を切り替えることも可能である。したがって、図88に示しているように、t=0をf=f0、t=1をf=f1、・・・と置き換えて考えればよい。(fは周波数(サブキャリア)を示しており、f0、f1、・・・は使用する周波数(サブキャリア)を示している。)このとき、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。)なお、図88は、図87で説明した要件を満たす、図87とは異なる例である。
図88に示すように、変調方式がQPSKのとき、QPSKの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、aを乗算することになる(aは実数)。そして、変調方式が16QAMのとき、16QAMの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、bを乗算することになる(bは実数)。
図88では、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として、y[0],y[1],y[2]の3種類を用意し、プリコーディング後に規則的に位相変更を行う方法としての切り替え周期は3となる。(t0〜t2、t3〜t5、・・・で周期を形成している。)
そして、s1(t)の変調方式は、時間軸において、QPSKと16QAMが交互に設定されるようになっており、また、この点については、s2(t)についても同様である。そして、(s1(t)の変調方式、s2(t)の変調方式)のセットは、(QPSK、16QAM)または(16QAM、QPSK)となっている。
このとき、重要となる点は、
「y[0]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在している点であり、同様に、y[1]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在しており、また、同様に、y[2]で位相変更を行う際の(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する。」
である。
また、パワー変更部(8501A)は、s1(t)の変調方式がQPSKのとき、s1(t)にaを乗算し、a×s1(t)を出力することになり、s1(t)の変調方式が16QAMのとき、s1(t)にbを乗算し、b×s1(t)を出力することになる。
パワー変更部(8501B)は、s2(t)の変調方式がQPSKのとき、s2(t)にaを乗算し、a×s2(t)を出力することになり、s2(t)の変調方式が16QAMのとき、s2(t)にbを乗算し、b×s2(t)を出力することになる。
したがって、(s1(t)の変調方式、s2(t)の変調方式)のセットを考慮すると、図88に示すように、位相変更と変調方式切り替えを考慮したときの周期は6=3×2、(3:プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の数、2:各位相変更値において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する)となる。
以上のように、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在するようにすることで、QPSKの平均電力と16QAMの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
なお、上述の説明において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の場合で説明したが、これに限ったものではなく、(s1(t)の変調方式、s2(t)の変調方式)のセットが(QPSK、64QAM)、(64QAM、QPSK)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(16QAM、64QAM)、(64QAM、16QAM)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(128QAM、64QAM)、(64QAM、128QAM)、(s1(t)の変調方式、s2(t)の変調方式)のセットが(256QAM、64QAM)、(64QAM、256QAM)等であってもよく、つまり、異なる2つの変調方式を用意し、s1(t)の変調方式とs2(t)の変調方式を異なるように設定すれば、同様に実施することができる。
また、各時間(各周波数)の、設定する変調方式、パワー変更値、位相変更値の関係は、図87、図88に限ったものではない。
以上をまとめると、以下の点が重要となる。
(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)が存在するようにし、変調方式Aの平均電力と変調方式Bの平均電力が異なるように設定する。
そして、パワー変更部(8501A)は、s1(t)の変調方式が変調方式Aのとき、s1(t)にaを乗算し、a×s1(t)を出力することになり、s1(t)の変調方式が変調方式Bのとき、s1(t)にbを乗算し、b×s1(t)を出力する。同様に、パワー変更部(8501B)は、s2(t)の変調方式が変調方式Aのとき、s2(t)にaを乗算し、a×s2(t)を出力することになり、s2(t)の変調方式が変調方式Bのとき、s2(t)にbを乗算し、b×s2(t)を出力する。
また、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値として、y[0]、y[1]、・・・、y[N−2]、y[N−1](つまり、y[k]において、kは0以上N−1以下)が存在するものとする。そして、y[k]において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在するものとする。(このとき、「すべてのkで、y[k]において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在する」としてもよいし、また、「y[k]において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在する、kが存在する」としてもよい。)
以上のように、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(s1(t)の変調方式、s2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在するようにすることで、変調方式Aの平均電力と変調方式Bの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
上記に関連し、以下では、s1(t)、s2(t)の生成方法について説明する。図3、図4に示したように、s1(t)はマッピング部306A、s2(t)はマッピング部306Bにより、生成される。したがって、上記の例では、図87、図88にしたがって、マッピング部306A、306Bは、QPSKのマッピングを行う場合と、16QAMのマッピングを行う場合の切り替えを行うことになる。
なお、図3、図4では、s1(t)を生成するためのマッピング部とs2(t)を生成するためのマッピング部を別々に設けているが、必ずしもこれに限ったものではなく、例えば、図89のように、マッピング部(8902)は、デジタルデータ(8901)を入力とし、例えば、図87、図88にしたがって、s1(t)、s2(t)を生成し、s1(t)をマッピング後の信号307Aとして出力し、また、s2(t)をマッピング後の信号307Bとして出力する。
図90は、図85、図89とは異なる重み付け合成部(プリコーディング部)周辺の構成の一例を示している。図90において、図3、図85と同様に動作するものについては、同一符号を付している。そして、図91は、図90に対し、時間t=0からt=11における、各時間の、設定する変調方式、パワー変更値、位相変更値を表として示している。なお、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。(図91では、時間軸で記載しているが、OFDM方式のようなマルチキャリア伝送方式を用いているとき、時間軸方向で、各種方法を切り替えるのではなく、周波数(サブキャリア)軸方向で、各種方法を切り替えることも可能である。したがって、図91に示しているように、t=0をf=f0、t=1をf=f1、・・・と置き換えて考えればよい。(fは周波数(サブキャリア)を示しており、f0、f1、・・・は使用する周波数(サブキャリア)を示している。)このとき、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。)
図91に示すように、変調方式がQPSKのとき、QPSKの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、aを乗算することになる(aは実数)。そして、変調方式が16QAMのとき、16QAMの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、bを乗算することになる(bは実数)。
図91では、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として、y[0],y[1],y[2]の3種類を用意し、プリコーディング後に規則的に位相変更を行う方法としての切り替え周期は3となる。(t0〜t2、t3〜t5、・・・で周期を形成している。)
そして、s1(t)の変調方式は、QPSKで固定となっており、s2(t)の変調方式は、16QAMで固定となっている。そして、図90の信号入れ替え部(9001)は、マッピング後の信号307A、307B、および、制御信号(8500)を入力とし、制御信号(8500)に基づき、マッピング後の信号307A、307Bに対し、入れ替え(入れ替えを行わない場合もある)を行い、入れ替え後の信号(9002A:Ω1(t))、および、入れ替え後の信号(9002B:Ω2(t))を出力する。
このとき、重要となる点は、
「y[0]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在している点であり、同様に、y[1]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在しており、また、同様に、y[2]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する。」
ことである。
また、パワー変更部(8501A)は、Ω1(t)の変調方式がQPSKのとき、Ω1(t)にaを乗算し、a×Ω1(t)を出力することになり、Ω1(t)の変調方式が16QAMのとき、Ω1(t)にbを乗算し、b×Ω1(t)を出力することになる。
パワー変更部(8501B)は、Ω2(t)の変調方式がQPSKのとき、Ω2(t)にaを乗算し、a×Ω2(t)を出力することになり、Ω2(t)の変調方式が16QAMのとき、Ω2(t)にbを乗算し、b×Ω2(t)を出力することになる。
なお、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定する場合の方法については、実施の形態F1で説明したとおりである。
したがって、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットを考慮すると、図91に示すように、位相変更と変調方式切り替えを考慮したときの周期は6=3×2、(3:プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の数、2:各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する)となる。
以上のように、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在するようにすることで、QPSKの平均電力と16QAMの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
なお、上述の説明において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の場合で説明したが、これに限ったものではなく、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、64QAM)、(64QAM、QPSK)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(16QAM、64QAM)、(64QAM、16QAM)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(128QAM、64QAM)、(64QAM、128QAM)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(256QAM、64QAM)、(64QAM、256QAM)等であってもよく、つまり、異なる2つの変調方式を用意し、Ω1(t)の変調方式とΩ2(t)の変調方式を異なるように設定すれば、同様に実施することができる。
図92は、図90に対し、時間t=0からt=11における、各時間の、設定する変調方式、パワー変更値、位相変更値を表として示しており、図91と異なる表である。なお、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。(図92では、時間軸で記載しているが、OFDM方式のようなマルチキャリア伝送方式を用いているとき、時間軸方向で、各種方法を切り替えるのではなく、周波数(サブキャリア)軸方向で、各種方法を切り替えることも可能である。したがって、図92に示しているように、t=0をf=f0、t=1をf=f1、・・・と置き換えて考えればよい。(fは周波数(サブキャリア)を示しており、f0、f1、・・・は使用する周波数(サブキャリア)を示している。)このとき、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。)
図92に示すように、変調方式がQPSKのとき、QPSKの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、aを乗算することになる(aは実数)。そして、変調方式が16QAMのとき、16QAMの変調信号に対しては、パワー変更部(ここでは、パワー変更部と呼んでいるが、振幅変更部、重み付け部と呼んでもよい。)では、bを乗算することになる(bは実数)。
図92では、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として、y[0],y[1],y[2]の3種類を用意し、プリコーディング後に規則的に位相変更を行う方法としての切り替え周期は3となる。(t0〜t2、t3〜t5、・・・で周期を形成している。)
そして、s1(t)の変調方式は、QPSKで固定となっており、s2(t)の変調方式は、16QAMで固定となっている。そして、図90の信号入れ替え部(9001)は、マッピング後の信号307A、307B、および、制御信号(8500)を入力とし、制御信号(8500)に基づき、マッピング後の信号307A、307Bに対し、入れ替え(入れ替えを行わない場合もある)を行い、入れ替え後の信号(9002A:Ω1(t))、および、入れ替え後の信号(9002B:Ω2(t))を出力する。
このとき、重要となる点は、
「y[0]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在している点であり、同様に、y[1]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在しており、また、同様に、y[2]で位相変更を行う際の(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する。」
ことである。
また、パワー変更部(8501A)は、Ω1(t)の変調方式がQPSKのとき、Ω1(t)にaを乗算し、a×Ω1(t)を出力することになり、Ω1(t)の変調方式が16QAMのとき、Ω1(t)にbを乗算し、b×Ω1(t)を出力することになる。
パワー変更部(8501B)は、Ω2(t)の変調方式がQPSKのとき、Ω2(t)にaを乗算し、a×Ω2(t)を出力することになり、Ω2(t)の変調方式が16QAMのとき、Ω2(t)にbを乗算し、b×Ω2(t)を出力することになる。
なお、QPSKのマッピングを施した変調信号の平均電力と16QAMのマッピングを施した変調信号の平均電力を異なるように設定する場合の方法については、実施の形態F1で説明したとおりである。
したがって、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットを考慮すると、図92に示すように、位相変更と変調方式切り替えを考慮したときの周期は6=3×2、(3:プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の数、2:各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在する)となる。
以上のように、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の両者が存在するようにすることで、QPSKの平均電力と16QAMの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
なお、上述の説明において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、16QAM)、(16QAM、QPSK)の場合で説明したが、これに限ったものではなく、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(QPSK、64QAM)、(64QAM、QPSK)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(16QAM、64QAM)、(64QAM、16QAM)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(128QAM、64QAM)、(64QAM、128QAM)、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(256QAM、64QAM)、(64QAM、256QAM)等であってもよく、つまり、異なる2つの変調方式を用意し、Ω1(t)の変調方式とΩ2(t)の変調方式を異なるように設定すれば、同様に実施することができる。
また、各時間(各周波数)の、設定する変調方式、パワー変更値、位相変更値の関係は、図91、図92に限ったものではない。
以上をまとめると、以下の点が重要となる。
(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)が存在するようにし、変調方式Aの平均電力と変調方式Bの平均電力が異なるように設定する。
そして、パワー変更部(8501A)は、Ω1(t)の変調方式が変調方式Aのとき、Ω1(t)にaを乗算し、a×Ω1(t)を出力することになり、Ω1(t)の変調方式が変調方式Bのとき、Ω1(t)にbを乗算し、b×Ω1(t)を出力する。同様に、パワー変更部(8501B)は、Ω2(t)の変調方式が変調方式Aのとき、Ω2(t)にaを乗算し、a×Ω2(t)を出力することになり、Ω2(t)の変調方式が変調方式Bのとき、Ω2(t)にbを乗算し、b×Ω2(t)を出力する。
また、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値として、y[0]、y[1]、・・・、y[N−2]、y[N−1](つまり、y[k]において、kは0以上N−1以下)が存在するものとする。そして、y[k]において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在するものとする。(このとき、「すべてのkで、y[k]において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在する」としてもよいし、また、「y[k]において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在する、kが存在する」としてもよい。)
以上のように、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)が存在するようにし、かつ、プリコーディング後に規則的に位相変更を行う方法で用いる位相変更値として用意した位相変更値の各位相変更値において、(Ω1(t)の変調方式、Ω2(t)の変調方式)のセットが(変調方式A、変調方式B)、(変調方式B、変調方式A)の両者が存在するようにすることで、変調方式Aの平均電力と変調方式Bの平均電力が異なるよう設定しても、送信装置が具備する送信電力増幅器のPAPRに与える影響を少なくすることができ、送信装置の消費電力に与える影響を少なくできるとともに、本明細書で説明したように、LOS環境での受信装置におけるデータの受信品質を改善することができるという効果を得ることができる。
次に、受信装置の動作について、説明する。受信装置の動作については、実施の形態1等で説明したとおりであり、例えば、受信装置の構成は、図7、図8、図9に示されている。
図5の関係から、受信信号r1(t)、r2(t)は、チャネル変動値、h11(t)、h12(t)、h21(t)、h22(t)を用いると、図87、図88、図91、図92のように送信装置が変調信号を送信した場合、以下の2つの式のいずれかの関係が成立する。
Figure 2020061771
Figure 2020061771
ただし、式(G1)、式(G2)に示すFは、時間tに用いたプリコーディング行列であり、y(t)は位相変更値ある。受信装置は、上記2つの式の関係を利用して、復調(検波)を行うことになる(実施の形態1の説明と同様に実施すればよいことになる)。ただし、上記2つの式には、雑音成分、周波数オフセット、チャネル推定誤差等の歪み成分は、式にあらわされておらず、これらを含んだ形で、復調(検波)が行われることになる。なお、送信装置がパワー変更を行うために使用するu、vの値については、送信装置が、これらに関する情報を送信するか、または、使用する送信モード(送信方法、変調方式、誤り訂正方式等)の情報を送信し、受信装置は、その情報を得ることで、送信装置が用いたu、vの値を知ることができ、これにより、上記2つの関係式を導き、復調(検波)を行うことになる。
本実施の形態では、時間軸方向に位相変更値を切り替える場合を例として説明するが、他の実施の形態の説明と同様に、OFDM方式のようなマルチキャリア伝送を用いている場合、周波数軸方向に位相変更値を切り替える場合についても、同様に実施することができる。このとき、本実施の形態で用いているtをf(周波数((サブ)キャリア))に置き換えることになる。また、時間―周波数軸方向で、位相変更値を切り替える場合についても同様に実施することが可能である。なお、本実施の形態におけるプリコーディング後に規則的に位相変更を行う方法は、本明細書で説明したプリコーディング後に規則的に位相変更を行う方法に限定されるものではなく、また、位相変更を行わず、プリコーディングを行う方式に対して、本実施の形態を適用しても、PAPRへの影響が少ない、という効果を得ることができる。

(実施の形態G2)
本実施の形態では、放送(または、通信)システムが、s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、回路規模を削減することができる、プリコーディング後に規則的に位相変更を行う方法について説明する。
まず、s1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法について述べる。
s1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法に用いるプリコーディング行列の例を実施の形態1で示している。プリコーディング行列Fは次式であれわされる。
Figure 2020061771
以下では、s1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法のプリコーディング行列として、式(G3)を用いる場合を例に説明する。
本実施の形態における、s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合の重み付け合成(プリコーディング)部周辺の構成を図93に示す。図93において、図3、図6、図85と同様に動作するものについては、同一符号を付し、ここでは説明を省略する。
図93のベースバンド信号入れ替え部9301は、プリコーディング後の信号309A(z1(t))およびプリコーディング・位相変更後の信号309B(z2(t))、制御信号8500を入力とし、制御信号8500が、「信号の入れ替えを行わない」ということを示している場合、信号9302A(r1(t))としてプリコーディング後の信号309A(z1(t))を出力し、信号9302B(r2(t))としてプリコーディング・位相変更後の信号309B(z2(t))を出力する。
そして、制御信号8500が、「信号の入れ替えを行う」ということを示している場合、ベースバンド信号入れ替え部8501は、
時間2kのとき(kは整数)
信号9302A(r1(2k))として、プリコーディング後の信号309A(z1(2k))を出力し、信号9302B(r2(2k))としてプリコーディング・位相変更後の信号309B(z2(2k))を出力する
とし、
時間2k+1のとき(kは整数)
信号9302A(r1(2k+1))としてプリコーディング・位相変更後の信号309B(z2(2k+1))を出力し、信号9302B(r2(2k+1))としてプリコーディング後の信号309A(z1(2k+1))を出力する。
また、
時間2kのとき(kは整数)
信号9302A(r1(2k))としてプリコーディング・位相変更後の信号309B(z2(2k))を出力し、信号9302B(r2(2k))としてプリコーディング後の信号309A(z1(2k))を出力する
とし、
時間2k+1のとき(kは整数)
信号9302A(r1(2k+1))として、プリコーディング後の信号309A(z1(2k+1))を出力し、信号9302B(r2(2k+1))としてプリコーディング・位相変更後の信号309B(z2(2k+1))を出力する。(ただし、上述の信号の入れ替えは、一つの例であり、これに限ったものではなく、「信号の入れ替えを行う」となった場合、信号の入れ替えを行うことがある、ということが重要となる。)
そして、図3、図4、図5、図12、図13等で説明したように、信号9302A(r1(t))は、z1(t)のかわりに、アンテナから送信される(ただし、図3、図4、図5、図12、図13等で示したように、所定の処理が行われる。)。また、信号9302B(r2(t))は、z2(t)のかわりに、アンテナから送信される(ただし、図3、図4、図5、図12、図13等で示したように、所定の処理が行われる。)。このとき、信号9302A(r1(t))と信号9302B(r2(t))は異なるアンテナから送信されることになる。
なお、この信号入れ替えは、プリコーディングを行っているシンボルに対して行われるのであって、他の挿入されているシンボル、例えば、パイロットシンボルやプリコーディングを行わない情報を伝送するためのシンボル(例えば、制御情報シンボル)には適用されないものとする。また、上述では、時間軸方向で、プリコーディング後に規則的に位相変更を行う方法を適用する場合について、説明しているが、これに限ったものではなく、周波数軸において、または、時間―周波数軸において、プリコーディング後に規則的に位相変更を行う方法を適用する場合でも同様に本実施の形態を適用することができ、また、信号入れ替えについても、上述では、時間軸方法で説明を行っているが、周波数軸において、または、時間―周波数軸において、信号入れ替えを行ってもよい。
次に、s1の変調方式が16QAM、s2の変調方式が16QAMの場合の図93の各部の動作について説明する。
s1(t)およびs2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)であるため、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。
パワー変更部(8501A)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307A、制御信号(8500)を入力とし、制御信号(8500)に基づき、設定したパワー変更のための値をvとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Aをv倍した信号(パワー変更後の信号:8502A)を出力する。
パワー変更部(8501B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8500)を入力とし、制御信号(8500)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(パワー変更後の信号:8502B)を出力する。
このとき、v=u=Ωであり、v:u=1:1とする。これにより、受信装置は、高いデータの受信品質を得ることができることになる。
重み付け合成部600は、パワー変更後の信号8502A(変調方式16QAMのベースバンド信号(マッピング後の信号)307Aをv倍した信号)およびパワー変更後の信号8502B(変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号)、信号処理方法に関する情報315を入力とし、重み付け合成方法に関する情報315の情報に基づいて、プリコーディング行列を決定し、プリコーディングが行われ、プリコーディング後の信号309A(z1(t))および、プリコーディング後の信号316B(z2’(t))を出力する。
位相変更部317Bは、プリコーディング後の信号316B(z2’(t))、信号処理方法に関する情報315を入力とし、プリコーディング後の信号316B(z2’(t))に対し、信号処理方法に関する情報315に基づく位相変更方法を施し、プリコーディング・位相変更後の信号309B(z2(t))を出力する。
このとき、プリコーディング後に規則的に位相変更を行う方法におけるプリコーディング行列をF、位相変更値をy(t)とすると、以下の関係式が成立する。
Figure 2020061771
ただし、y(t)は絶対値が1の複素数(したがって、y(t)はejθとあらわすことができる)である。
s1の変調方式が16QAM、s2の変調方式が16QAMのとき、プリコーディング後に規則的に位相変更を行う方法を適用したときのプリコーディング行列Fが、式(G3)であらわされたとき、実施の形態1で示したように、αとして、式(37)が適した値となる。αが式(37)であらわされたとき、z1(t)、z2(t)いずれも、図94のように、I−Q平面において、256点のいずれかの信号点に相当するベースバンド信号となる。なお、図94は一例であり、原点を中心に、位相を回転させた形の256点の信号点配置となることもある。
s1の変調方式が16QAM、s2の変調方式が16QAMであるので、重み付け合成、および、位相変更された信号であるz1(t)、z2(t)はいずれも、16QAMで4ビット、16QAMで4ビットの計8ビットが伝送されているので、図94のように256点の信号点となるが、このとき、信号点の最小ユークリッド距離が大きいため、受信装置において、よりよいデータの受信品質が得られることになる。
ベースバンド信号入れ替え部9301は、プリコーディング後の信号309A(z1(t))およびプリコーディング・位相変更後の信号309B(z2(t))、制御信号8500を入力とし、s1の変調方式が16QAM、s2の変調方式が16QAMであるので、制御信号8500が、「信号の入れ替えを行わない」ということを示しており、したがって、信号9302A(r1(t))としてプリコーディング後の信号309A(z1(t))を出力し、信号9302B(r2(t))としてプリコーディング・位相変更後の信号309B(z2(t))を出力する。
次に、s1の変調方式がQPSK、s2の変調方式が16QAMの場合の図116の各部の動作について説明する。
s1(t)は、変調方式QPSKのベースバンド信号(マッピング後の信号)とし、マッピング方法は、図81のとおりであり、hは式(78)のとおりである。s2(t)は、変調方式16QAMのベースバンド信号(マッピング後の信号)であるため、マッピング方法は、図80のとおりであり、gは式(79)のとおりである。
パワー変更部(8501A)は、変調方式QPSKのベースバンド信号(マッピング後の信号)307A、制御信号(8500)を入力とし、制御信号(8500)に基づき、設定したパワー変更のための値をvとすると、変調方式QPSKのベースバンド信号(マッピング後の信号)307Aをv倍した信号(パワー変更後の信号:8502A)を出力する。
パワー変更部(8501B)は、変調方式16QAMのベースバンド信号(マッピング後の信号)307B、制御信号(8500)を入力とし、制御信号(8500)に基づき、設定したパワー変更のための値をuとすると、変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号(パワー変更後の信号:8502B)を出力する。
このとき、実施の形態F1において、「QPSKの平均電力と16QAMの平均電力の比はv:u=1:5」にすると一つの良い例であることを示した。(これにより、受信装置は、高いデータの受信品質を得ることができることになる。)このときのプリコーディング後に規則的に位相変更を行う方法について以下で説明する。
重み付け合成部600は、パワー変更後の信号8502A(変調方式QPSKのベースバンド信号(マッピング後の信号)307Aをv倍した信号)およびパワー変更後の信号8502B(変調方式16QAMのベースバンド信号(マッピング後の信号)307Bをu倍した信号)、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315の情報に基づいて、プリコーディングが行われ、プリコーディング後の信号309A(z1(t))および、プリコーディング後の信号316B(z2’(t))を出力する。
このとき、プリコーディング後に規則的に位相変更を行う方法におけるプリコーディング行列をF、位相変更値をy(t)とすると、以下の関係式が成立する。
Figure 2020061771
ただし、y(t)は絶対値が1の複素数(したがって、y(t)はejθとあらわすことができる)である。
s1の変調方式がQPSK、s2の変調方式が16QAMのとき、プリコーディング後に規則的に位相変更を行う方法を適用したときのプリコーディング行列Fが、式(G3)であらわさたとき、s1の変調方式が16QAM、s2の変調方式が16QAMのときと同様、αとして、式(37)が適した値となる。その理由について説明する。
図95は、上述の送信状態における16QAMのI−Q平面における16点の信号点とQPSKのI−Q平面における4点の信号点の位置の関係を示しており、○は16QAMの信号点、●はQPSKの信号点である。図95からわかるように、16QAMの16個の信号点の内の4つとQPSKの4つの信号点とは重なる状態となる。このような状況で、プリコーディング後に規則的に位相変更を行う方法を適用したときのプリコーディング行列Fが、式(G3)であらわされ、αとして、式(37)とした場合、z1(t)及びz2(t)はいずれも、s1の変調方式が16QAM、s2の変調方式が16QAMである時の図94の256点の信号点に対し、64点抽出した信号点に相当するベースバンド信号となる。なお、図94は一例であり、原点を中心に、位相を回転させた形の256点の信号点配置となることもある。
s1の変調方式がQPSK、s2の変調方式が16QAMであるので、重み付け合成・位相変更された信号であるz1(t)、z2(t)はQPSK2ビット、16QAMで4ビットの計6ビットが伝送されているので、64点の信号点となるが、このとき、上述で説明したような64点の信号点となるので、信号点の最小ユークリッド距離が大きいため、受信装置において、よりよいデータの受信品質が得られることになる。
ベースバンド信号入れ替え部9301は、プリコーディング後の信号309A(z1(t))およびプリコーディング・位相変更後の信号309B(z2(t))、制御信号8500を入力とし、s1の変調方式がQPSK、s2の変調方式が16QAMであるので、制御信号8500が、「信号の入れ替えを行う」ということを示しているので、ベースバンド信号入れ替え部9301は、例えば、
時間2kのとき(kは整数)
信号9302A(r1(2k))として、プリコーディング後の信号309A(z1(2k))を出力し、信号9302B(r2(2k))としてプリコーディング・位相変更後の信号309B(z2(2k))を出力する
とし、
時間2k+1のとき(kは整数)
信号9302A(r1(2k+1))としてプリコーディング・位相変更後の信号309B(z2(2k+1))を出力し、信号9302B(r2(2k+1))としてプリコーディング後の信号309A(z1(2k+1))を出力する。
また、
時間2kのとき(kは整数)
信号9302A(r1(2k))としてプリコーディング・位相変更後の信号309B(z2(2k))を出力し、信号9302B(r2(2k))としてプリコーディング後の信号309A(z1(2k))を出力する
とし、
時間2k+1のとき(kは整数)
信号9302A(r1(2k+1))として、プリコーディング後の信号309A(z1(2k+1))を出力し、信号9302B(r2(2k+1))としてプリコーディング・位相変更後の信号309B(z2(2k+1))を出力する。
なお、上述では、s1の変調方式がQPSK、s2の変調方式が16QAMのとき、信号入れ替えを行うものとしている。このようにすることで、実施の形態F1で記載したように、PAPRの削減が可能なため、送信装置の消費電力を抑えることができるという効果を得ることができる。ただし、送信装置の消費電力を問題としない場合、s1の変調方式が16QAM、s2の変調方式が16QAMのときと同様に、信号の入れ替えを行わない、としてもよい。
また、s1の変調方式がQPSK、s2の変調方式が16QAMのとき、v:u=1:5とした場合がよい例であるので、このときを例に説明したが、v<uという条件で、s1の変調方式がQPSK、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法とs1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法を同一として、両者の場合で、良好な受信品質を得ることができる場合は存在する。したがって、v:u=1:5に限ったものではない。
以上のように、s1の変調方式がQPSK、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法とs1の変調方式が16QAM、s2の変調方式が16QAMの場合のプリコーディング後に規則的に位相変更を行う方法を同一の方法とすることで、送信装置の回路規模を削減することができるとともに、式(G4)および式(G5)、信号入れ替え方法、に基づいて、受信装置は、復調を行うことになるが、上記のように、信号点を共有しているため、受信候補信号点を求める演算部の共有が可能となるため、受信装置において、回路規模を削減することができるという効果を得ることができる。
なお、本実施の形態では、式(G3)を用いたプリコーディング後に規則的に位相変更を行う方法を例に説明したが、プリコーディング後に規則的に位相変更を行う方法はこれに限ったものではない。
本発明とポイントとなる点は、以下のようになる。
・s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法を同一とする。
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v<uの条件を満たす
ということになる。
なお、受信装置において、良好な受信品質を得ることができるよい例としては、
例1(以下の2つの項目を満たす。):
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v:u=1:5の条件を満たす。
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、いずれの場合も、同一のプリコーディング後に規則的に位相変更を行う方法を用いる。
例2(以下の2つの項目を満たす。):
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v<uの条件を満たす。
・s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法は同一であり、プリコーディング行列は式(G3)であらわされる。
例3(以下の2つの項目を満たす。):
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v<uの条件を満たす。
・s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法は同一であり、プリコーディング行列は式(G3)であらわされ、αは式(37)であらわされる。
例4(以下の2つの項目を満たす。):
・s1の変調方式が16QAM、s2の変調方式が16QAMの場合v=uであり、s1の変調方式がQPSK、s2の変調方式が16QAMの場合、v:u=1:5の条件を満たす。
・s1の変調方式がQPSK、s2の変調方式が16QAMの場合とs1の変調方式が16QAM、s2の変調方式が16QAMの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法は同一であり、プリコーディング行列は式(G3)であらわされ、αは式(37)であらわされる。
なお、本実施の形態は、変調方式をQPSKおよび16QAMのときを例に説明したがこれに限ったものではない。したがって、本実施の形態を拡張すると、以下のように考えることができる。変調方式Aと変調方式Bがあり、変調方式AのI−Q平面における信号点数をa、変調方式BのI−Q平面における信号点の数をbとし、a<bとする。すると、本発明のポイントは以下のように与えることができる。
以下の2つの項目を満たす。
・s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合とs1の変調方式が変調方式B、s2の変調方式が変調方式Bの場合をサポートしている場合、両者の場合で使用するプリコーディング後に規則的に位相変更を行う方法を同一とする。
・s1の変調方式が変調方式B、s2の変調方式が変調方式Bの場合v=uであり、s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合、v<uの条件を満たす。
このとき、図93を用いて説明したベースバンド信号入れ替えは、実施してもよいし、実施しなくてもよい。ただし、s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合、PAPRの影響を考慮すると、上記で述べたベースバンド信号入れ替えを実施するとよい。
または、以下の2つの項目を満たす。
・s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合とs1の変調方式が変調方式B、s2の変調方式が変調方式Bの場合をサポートしている場合、両者の場合でプリコーディング後に規則的に位相変更を行う方法は同一であり、プリコーディング行列は式(G3)であらわされる。
・s1の変調方式が変調方式B、s2の変調方式が変調方式Bの場合v=uであり、s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合、v<uの条件を満たす。
このとき、図93を用いて説明したベースバンド信号入れ替えは、実施してもよいし、実施しなくてもよい。ただし、s1の変調方式が変調方式A、s2の変調方式が変調方式Bの場合、PAPRの影響を考慮すると、上記で述べたベースバンド信号入れ替えを実施するとよい。
変調方式Aと変調方式Bのセットとしては、(変調方式A、変調方式B)が(QPSK、16QAM)、(16QAM、64QAM)、(64QAM、128QAM)、(64QAM、256QAM)等がある。
上述の説明では、一方のプリコーディング後の信号に対し、位相変更を行う場合を例に説明しているが、これに限ったものではなく、本明細書に示したように、複数のプリコーディング後の信号に位相変更をする場合についても、本実施の形態を実施することができ、上述で述べた、変調信号のセットとプリコーディング行列の関係(本発明とポイントとなる点)を満たすとよい。
また、本実施の形態では、プリコーディング行列Fを式(G3)として説明したがこれに限ったものではなく、例えば、
Figure 2020061771
Figure 2020061771
Figure 2020061771
Figure 2020061771
Figure 2020061771
のいずれかに設定しもよい。ただし、式(G9)、式(G10)において、θ11、θ21、λは固定値である(単位はラジアン)。
本実施の形態では、時間軸方向に位相変更値を切り替える場合を例として説明するが、他の実施の形態の説明と同様に、OFDM方式のようなマルチキャリア伝送を用いている場合、周波数軸方向に位相変更値を切り替える場合についても、同様に実施することができる。このとき、本実施の形態で用いているtをf(周波数((サブ)キャリア))に置き換えることになる。また、時間―周波数軸方向で、位相変更値を切り替える場合についても同様に実施することが可能である。なお、本実施の形態におけるプリコーディング後に規則的に位相変更を行う方法は、本明細書で説明したプリコーディング後に規則的に位相変更を行う方法に限定されるものではない。
また、受信装置は、本実施の形態における2つの変調方式の設定パターンいずれにおいても、実施の形態F1で述べた受信方法を用いて、復調、検波が行われることになる。
(実施の形態I1)
本実施の形態では、s1の変調方式、s2の変調方式を8QAM(8 Quadrature Amplitude Modulation)としたときのプリコーディング後の信号に位相変更を施す信号処理方法について説明する。
本実施の形態は、実施の形態1等で説明した、プリコーディングの信号に対し、位相変更を行う信号処理方法を適用する際の、8QAMのマッピング方法に関するものである。本実施の形態では、実施の形態1等で説明した、図6のプリコーディング(重み付け合成)を施した後に、位相変更を行う信号処理方法において、s1(t)の変調方式を8QAM、s2(t)の変調方式を8QAMとする。図96に、同相I―直交Q平面における8QAMの信号点配置を示す。図96において、平均(送信)電力をzと設定する場合、図96におけるuの値は、次式で与えられる。
Figure 2020061771
なお、QPSKのときに平均電力をzと設定した場合に用いられる係数は式(78)に示されており、16QAMのときに平均電力をzと設定した場合に用いられる係数は式(79)に示されており、64QAMのときに平均電力をzと設定した場合に用いられる係数は式(85)に示されており、送信装置が、変調方式として、QPSK、16QAM、64QAM、8QAMが選択可能であり、8QAMの平均電力とQPSK、16QAM、64QAMの平均電力と同一とするためには、式(#I1)は重要な値となる。
図96において、送信する3ビットであるb0、b1、b2が“b0 b1 b2”=“000”のとき、信号点として、9601が選択され、信号点9601に相当するI、Q(I=1×u、Q=1×u)が、8QAMの同相成分(I)、直交成分(Q)となる。“b0 b1 b2”が“001”から“111”のときも同様に、8QAMの同相成分(I)、直交成分(Q)が生成される。
次に、s1の変調方式が8QAM、s2の変調方式が8QAMのときのプリコーディングを施した後に位相変更を行う信号処理方法について説明する。
本実施の形態におけるプリコーディングを施した後に位相変更を行う信号処理方法に関する構成は、実施の形態1等で述べた図6のとおりである。図6において、マッピング後の信号307A(s1(t))の変調方式は8QAMであり、マッピング後の信号307B(s2(t))の変調方式で8QAMであることが、本実施の形態の特徴となる。
そして、図6の重み付け合成部600は、プリコーディングを施す。このとき用いられるプリコーディングのための行列(F)は、実施の形態G2で示した式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかが例として考えられる。ただし、これらのプリコーディング行列は例であり、他の式であらわされる行列をプリコーディング行列として用いてもよい。
次に、プリコーディング行列が式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかのようにあらわされたとき、適切なαの値の一例について説明する。
実施の形態1で説明したように、プリコーディング、および、位相変更を施した後の信号を図6のように、z1(t)、z2(t)(t:時間)とあらわす。このとき、z1(t)、z2(t)は、同一周波数(同一(サブ)キャリア)の信号であり、異なるアンテナから送信される(なお、ここでは、一例として時間軸の信号を例に説明するが、他の実施の形態で説明したように、z1(f)、z2(f)(fは(サブ)キャリア)であってもよい。このとき、z1(f)、z2(f)は、同一時間の信号であり、異なるアンテナから送信される。)
z1(t)、z2(t)はいずれも、変調方式が8QAMの信号と8QAMの信号が重み付け合成された信号であるので、8QAMで3ビット、2系統で、計6ビットが伝送されると考えると、信号点が重ならない場合、64点の信号点が存在することになる。
図97は、プリコーディング行列が式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかのとき、適切なαの値の一例であるα=3/2(または、2/3)としたときのプリコーディング後の信号z1(t)、z2(t)の同相I―直交Q平面における信号点の一例を示している。図97に示すように、α=3/2(または、2/3)とすると、隣接する信号点の信号点の距離が等しい場合が多く、これにより、64点の信号点が、同相I―直交Q平面において、密に配置されることになる。
ここで、z1(t)、z2(t)は、図5のように異なるアンテナから送信されることになるが、このとき、送信アンテナ2本のうち、いずれか一方で送信した信号が、端末の受信装置において、伝播しないような状況を考える。図97では、信号点の縮退(信号点の数が64点より少ない値となること)が発生しておらず、また、64点の信号点が、同相I―直交Q平面において、密に配置されていることから、受信装置において、検波、および、誤り訂正復号を行った結果、高いデータの受信品質を得ることができるという効果を得ることができる。
次に、図96と異なる信号点配置の8QAMについて説明する。実施の形態1等で説明した、図6のプリコーディング(重み付け合成)を施した後に、位相変更を行う信号処理方法において、s1の変調方式を8QAM、s2の変調方式を8QAMとする。図98に、図96とは異なる同相I―直交Q平面における8QAMの信号点配置を示す。
図98において、平均送信電力をzと設定する場合、図98におけるvの値は、次式で与えられる。
Figure 2020061771
なお、QPSKのときに平均電力をzと設定した場合に用いられる係数は式(78)に示されており、16QAMのときに平均電力をzと設定した場合に用いられる係数は式(79)に示されており、64QAMのときに平均電力をzと設定した場合に用いられる係数は式(85)に示されており、送信装置が、変調方式として、QPSK、16QAM、64QAM、8QAMが選択可能であり、8QAMの平均電力とQPSK、16QAM、64QAMの平均電力と同一とするためには、式(#I2)は重要な値となる。
図98において、送信する3ビットであるb0、b1、b2が“b0 b1 b2”=“000”のとき、信号点として、9801が選択され、信号点9801に相当するI、Q(I=2×v、Q=2×v)が、8QAMの同相成分(I)、直交成分(Q)となる。“b0 b1 b2”が“001”から“111”のときも同様に、8QAMの同相成分(I)、直交成分(Q)が生成される。
次に、s1の変調方式が図98の8QAM、s2の変調方式が図98の8QAMのときのプリコーディングを施した後に位相変更を行う信号処理方法について説明する。
本実施の形態におけるプリコーディングを施した後に位相変更を行う信号処理方法に関する構成は、実施の形態1等で述べた図6のとおりである。図6において、マッピング後の信号307A(s1(t))の変調方式は図98の8QAMであり、マッピング後の信号307B(s2(t))の変調方式で図98の8QAMであることが、ここでの特徴となる。
そして、図6の重み付け合成部600は、プリコーディングを施す。このとき用いられるプリコーディングのための行列(F)は、実施の形態G2で示した式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかが例として考えられる。ただし、これらのプリコーディング行列は例であり、他の式であらわされる行列をプリコーディング行列として用いてもよい。
次に、プリコーディング行列が式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかのようにあらわされたとき、適切なαの値の一例について説明する。
実施の形態1で説明したように、プリコーディング、および、位相変更を施した後の信号を図6のように、z1(t)、z2(t)(t:時間)とあらわす。このとき、z1(t)、z2(t)は、同一周波数(同一(サブ)キャリア)の信号であり、異なるアンテナから送信される(なお、ここでは、一例として時間軸の信号を例に説明するが、他の実施の形態で説明したように、z1(f)、z2(f)(fは(サブ)キャリア)であってもよい。このとき、z1(f)、z2(f)は、同一時間の信号であり、異なるアンテナから送信される。)
z1(t)、z2(t)はいずれも、変調方式が8QAMの信号と8QAMの信号が重み付け合成された信号であるので、8QAMで3ビット、2系統で、計6ビットが伝送されると考えると、信号点が重ならない場合、64点の信号点が存在することになる。
図99は、プリコーディング行列が式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかのとき、適切なαの値の一例であるα=3/2(または、2/3)としたときのプリコーディング後の信号z1(t)、z2(t)の同相I―直交Q平面における信号点の一例を示している。図99に示すように、α=3/2(または、2/3)とすると、隣接する信号点の信号点の距離が等しい場合が多く、これにより、64点の信号点が、同相I―直交Q平面において、密に配置されることになる。
ここで、z1(t)、z2(t)は、図5のように異なるアンテナから送信されることになるが、このとき、送信アンテナ2本のうち、いずれか一方で送信した信号が、端末の受信装置において、伝播しないような状況を考える。図99では、信号点の縮退(信号点の数が64点より少ない値となること)が発生しておらず、また、64点の信号点が、同相I―直交Q平面において、密に配置されていることから、受信装置において、検波、および、誤り訂正復号を行った結果、高いデータの受信品質を得ることができるという効果を得ることができる。
なお、図6の位相変更部317Bにおける位相変更方法の実施方法については、本明細書で記載したとおりである(他の実施の形態において記載したとおりである)。
次に、本実施の形態における受信装置の動作について説明する。
上述で説明した図6の、プリコーディング、および、位相変更を施したとき、図5から、以下の関係を導くことができる。
Figure 2020061771
なお、Fはプリコーディング行列であり、y(t)は位相変更値である。受信装置は、上述で示した、r1(t)、r2(t)とs1(t)、s2(t)の関係を利用して、復調(検波)を行うことになる(実施の形態1等で説明と同様に実施すればよいことになる)。ただし、上述で示した式には、雑音成分、周波数オフセット、チャネル推定誤差等の歪み成分は、式にあらわされておらず、これらを含んだ形で、復調(検波)が行われることになる。したがって、受信信号、チャネル推定値、プリコーディング行列、位相変更値に基づき、復調(検波)が行われることになる。なお、検波した結果得られるものは、ハード値(「0」「1」の結果)、ソフト値(対数尤度、または、対数尤度比)いずれであってもよく、検波して得られた結果ものに基づき、誤り訂正復号が行われることになる。
本実施の形態では、時間軸方向に位相変更値を切り替える場合を例として説明したが、他の実施の形態の説明と同様に、OFDM方式のようなマルチキャリア伝送を用いている場合、周波数軸方向に位相変更値を切り替える場合についても、同様に実施することができる。このとき、本実施の形態で用いているtをf(周波数((サブ)キャリア))に置き換えることになる。
よって、時間軸方向に位相変更値を切り替える場合、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。そして、周波数軸方向に位相変更値を切り替える場合、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。また、時間―周波数軸方向で、位相変更値を切り替える場合についても他の実施の形態で述べたように同様に実施することが可能である。
また、図13に示しているように、信号z1(t)、z2(t)(または、z1(f)、z2(f)、または、z1(t,f)、z2(t,f))に対し、(例えば、シンボル単位で)並び替えを行ってもよい。

(実施の形態I2)
本実施の形態では、s1の変調方式、s2の変調方式を8QAM(8 Quadrature Amplitude Modulation)としたときのプリコーディング後の信号に位相変更を施す信号処理方法において、実施の形態I1とは異なる方法について説明する。
本実施の形態は、実施の形態G2で説明した、プリコーディングの信号に対し、位相変更を行う信号処理方法を適用する際の、8QAMのマッピング方法に関するものである。本実施の形態における、プリコーディング(重み付け合成)を施した後に、位相変更を行う信号処理方法に関する構成図は、図100のとおりであり、図93と同様に動作するものについては、同一符号を付している。
図100において、s1(t)の変調方式を8QAM、s2(t)の変調方式を8QAMとする。図96に、同相I―直交Q平面における8QAMの信号点配置を示す。図96において、平均(送信)電力をzと設定する場合、図96におけるuの値は、式(#I1)で与えられる。
なお、QPSKのときに平均電力をzと設定した場合に用いられる係数は式(78)に示されており、16QAMのときに平均電力をzと設定した場合に用いられる係数は式(79)に示されており、64QAMのときに平均電力をzと設定した場合に用いられる係数は式(85)に示されており、送信装置が、変調方式として、QPSK、16QAM、64QAM、8QAMが選択可能であり、8QAMの平均電力とQPSK、16QAM、64QAMの平均電力と同一とするためには、式(#I1)は重要な値となる。
図96において、送信する3ビットであるb0、b1、b2が“b0 b1 b2”=“000”のとき、信号点として、9601が選択され、信号点9601に相当するI、Q(I=1×u、Q=1×u)が、8QAMの同相成分(I)、直交成分(Q)となる。“b0 b1 b2”が“001”から“111”のときも同様に、8QAMの同相成分(I)、直交成分(Q)が生成される。
次に、s1の変調方式が8QAM、s2の変調方式が8QAMのときのプリコーディングを施した後に位相変更を行う信号処理方法について説明する。
本実施の形態におけるプリコーディングを施した後に位相変更を行う信号処理方法に関する構成は、図100のとおりである。図100において、マッピング後の信号307A(s1(t))の変調方式は8QAMであり、マッピング後の信号307B(s2(t))の変調方式で8QAMであることが、本実施の形態の一つの特徴となる。
そして、図100の重み付け合成部600は、プリコーディングを施す。このとき用いられるプリコーディングのための行列(F)は、実施の形態G2で示した式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかが例として考えられる。ただし、これらのプリコーディング行列は例であり、他の式であらわされる行列をプリコーディング行列として用いてもよい。
図100の重み付け合成部600は、プリコーディング後の信号z1(t)およびz2’(t)を出力することになるが、本実施の形態では、プリコーディング後の信号z2’(t)に対し、位相変更を施す。したがって、図100の位相変更部317Bは、プリコーディング後の信号316B(z2’(t))を入力とし、位相変更を施し、位相変更後の信号309B(z2(t))を出力する。
そして、図100のベースバンド信号入れ替え部9301は、プリコーディング後の信号309A(z1(t))および位相変更後の信号309B(z2’(t))を入力とし、ベースバンド信号入れ替え(ベースバンド信号出力セット選択)を行い、ベースバンド信号9302A(r1(t))および9302B(r2(t))を出力する。
このとき、ベースバンド信号9302A(r1(t))および9302B(r2(t))の構成方法について、図101および図102を例に説明する。
図101は、時間t=0からt=11における位相変更値およびr1(t)、r2(t)の構成方法の一例を示している。図101に示すように、図100の位相変更部317Bのために、位相変更値として、y[0]、y[1]、y[2]の異なる3種類の値を用意する。そして、図101に示すように、周期3による位相変更の切り替えを行う。
(r1(t)、r2(t))のセットは、(z1(t)、z2(t))または、(z2(t)、z1(t))のセットのいずれかを選択する。図101では、
(r1(t=0)、r2(t=0))=(z1(t=0)、z2(t=0))
(r1(t=1)、r2(t=1))=(z1(t=1)、z2(t=1))
(r1(t=2)、r2(t=2))=(z1(t=2)、z2(t=2))
(r1(t=3)、r2(t=3))=(z2(t=3)、z1(t=3))
(r1(t=4)、r2(t=4))=(z2(t=4)、z1(t=4))
(r1(t=5)、r2(t=5))=(z2(t=5)、z1(t=5))



となるようにしている。このときの特徴として、位相変更値y[i]が選択された際(i=0、1、2)、(r1(t)、r2(t))=(z1(t)、z2(t))が成立する場合と(r1(t)、r2(t))=(z2(t)、z1(t))が成立する場合が存在する。したがって、図101に記述したように、位相変更とベースバンド信号入れ替え(ベースバンド信号出力セット選択)を考慮したときの周期は、位相変更の周期の2倍である6となっている。
なお、図101では、位相変更の周期を3としているが、これに限ったものではなく、例えば、位相変更の周期をNとした場合、「位相変更値y[i]が選択された際(i=0、1、、・・・、N−2、N−1(iは0以上N−1以下の整数))、(r1(t)、r2(t))=(z1(t)、z2(t))が成立する場合と(r1(t)、r2(t))=(z2(t)、z1(t))が成立する場合が存在する」ようにし、位相変更とベースバンド信号入れ替え(ベースバンド信号出力セット選択)を考慮したときの周期は、位相変更の周期の2倍である2×Nとすることが本実施の形態の特徴となり、図100のベースバンド信号入れ替え部9301はこのようなベースバンド信号出力選択を行うことになる。
図102は、図101とは異なる、時間t=0からt=11における位相変更値およびr1(t)、r2(t)の構成方法の例である。図102においても、
「位相変更の周期をNとした場合、位相変更値y[i]が選択された際(i=0、1、・・・、N−2、N−1(iは0以上N−1以下の整数))、(r1(t)、r2(t))=(z1(t)、z2(t))が成立する場合と(r1(t)、r2(t))=(z2(t)、z1(t))が成立する場合が存在するようにし、位相変更とベースバンド信号入れ替え(ベースバンド信号出力セット選択)を考慮したときの周期は、位相変更の周期の2倍である2×Nとする」
が成立している。なお、図101、図102は、例であり、図101、図102に限らず、上記条件を満たすと、受信装置において、高いデータの受信品質を得ることができる。
次に、プリコーディング行列が式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかのようにあらわされたとき、適切なαの値の一例について説明する。
プリコーディング、および、位相変更を施した後の信号を図100のように、z1(t)、z2(t)(t:時間)とあらわす。このとき、z1(t)、z2(t)は、同一周波数(同一(サブ)キャリア)の信号であり、異なるアンテナから送信される(なお、ここでは、一例として時間軸の信号を例に説明するが、他の実施の形態で説明したように、z1(f)、z2(f)(fは(サブ)キャリア)であってもよい。このとき、z1(f)、z2(f)は、同一時間の信号であり、異なるアンテナから送信される。)
z1(t)、z2(t)いずれも、変調方式が8QAMの信号と8QAMの信号が重み付け合成された信号であるので、8QAMで3ビット、2系統で、計6ビットが伝送されると考えると、信号点が重ならない場合、64点の信号点が存在することになる。
図97は、プリコーディング行列が式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかのとき、適切なαの値の一例であるα=3/2(または、2/3)としたときのプリコーディング後の信号z1(t)、z2(t)の同相I―直交Q平面における信号点の一例を示している。図97に示すように、α=3/2(または、2/3)とすると、隣接する信号点の信号点の距離が等しい場合が多く、これにより、64点の信号点が、同相I―直交Q平面において、密に配置されることになる。
ここで、z1(t)、z2(t)は、r1(t)、r2(t)に変換され、図5のように異なるアンテナから送信されることになるが、このとき、送信アンテナ2本のうち、いずれか一方で送信した信号が、端末の受信装置において、伝播しないような状況を考える。図97では、信号点の縮退(信号点の数が64点より少ない値となること)が発生しておらず、また、64点の信号点が、同相I―直交Q平面において、密に配置されていることから、受信装置において、検波、および、誤り訂正復号を行った結果、高いデータの受信品質を得ることができるという効果を得ることができる。
次に、図96と異なる信号点配置の8QAMについて説明する。図100のプリコーディング(重み付け合成)を施した後に、位相変更を行う信号処理方法において、s1の変調方式を8QAM、s2の変調方式を8QAMとする。図98に、図96とは異なる同相I―直交Q平面における8QAMの信号点配置を示す。
図98において、平均送信電力をzと設定する場合、図98におけるvの値は、式(#I2)で与えられる。
なお、QPSKのときに平均電力をzと設定した場合に用いられる係数は式(78)に示されており、16QAMのときに平均電力をzと設定した場合に用いられる係数は式(79)に示されており、64QAMのときに平均電力をzと設定した場合に用いられる係数は式(85)に示されており、送信装置が、変調方式として、QPSK、16QAM、64QAM、8QAMが選択可能であり、8QAMの平均電力とQPSK、16QAM、64QAMの平均電力と同一とするためには、式(#I2)は重要な値となる。
図98において、送信する3ビットであるb0、b1、b2が“b0 b1 b2”=“000”のとき、信号点として、9801が選択され、信号点9801に相当するI、Q(I=2×v、Q=2×v)が、8QAMの同相成分(I)、直交成分(Q)となる。“b0 b1 b2”が“001”から“111”のときも同様に、8QAMの同相成分(I)、直交成分(Q)が生成される。
次に、s1の変調方式が図98の8QAM、s2の変調方式が図98の8QAMのときのプリコーディングを施した後に位相変更を行う信号処理方法について説明する。
本実施の形態におけるプリコーディングを施した後に位相変更を行う信号処理方法に関する構成は、図100のとおりである。図100において、マッピング後の信号307A(s1(t))の変調方式は図98の8QAMであり、マッピング後の信号307B(s2(t))の変調方式で図98の8QAMであることが、本実施の形態の一つの特徴となる。
そして、図100の重み付け合成部600は、プリコーディングを施す。このとき用いられるプリコーディングのための行列(F)は、実施の形態G2で示した式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかが例として考えられる。ただし、これらのプリコーディング行列は例であり、他の式であらわされる行列をプリコーディング行列として用いてもよい。
図100の重み付け合成部600は、プリコーディング後の信号z1(t)およびz2’(t)を出力することになるが、本実施の形態では、プリコーディング後の信号z2’(t)に対し、位相変更を施す。したがって、図100の位相変更部317Bは、プリコーディング後の信号316B(z2’(t))を入力とし、位相変更を施し、位相変更後の信号309B(z2(t))を出力する。
そして、図100のベースバンド信号入れ替え部9301は、プリコーディング後の信号309A(z1(t))および位相変更後の信号309B(z2’(t))を入力とし、ベースバンド信号入れ替え(ベースバンド信号出力セット選択)を行い、ベースバンド信号9302A(r1(t))および9302B(r2(t))を出力する。
このとき、ベースバンド信号9302A(r1(t))および9302B(r2(t))の構成方法について、図101および図102を例に説明する。
図101は、時間t=0からt=11における位相変更値およびr1(t)、r2(t)の構成方法の一例を示している。図101に示すように、図100の位相変更部317Bのために、位相変更値として、y[0]、y[1]、y[2]の異なる3種類の値を用意する。そして、図101に示すように、周期3による位相変更の切り替えを行う。
(r1(t)、r2(t))のセットは、(z1(t)、z2(t))または、(z2(t)、z1(t))のセットのいずれかを選択する。図101では、
(r1(t=0)、r2(t=0))=(z1(t=0)、z2(t=0))
(r1(t=1)、r2(t=1))=(z1(t=1)、z2(t=1))
(r1(t=2)、r2(t=2))=(z1(t=2)、z2(t=2))
(r1(t=3)、r2(t=3))=(z2(t=3)、z1(t=3))
(r1(t=4)、r2(t=4))=(z2(t=4)、z1(t=4))
(r1(t=5)、r2(t=5))=(z2(t=5)、z1(t=5))



となるようにしている。このときの特徴として、位相変更値y[i]が選択された際(i=0、1、2)、(r1(t)、r2(t))=(z1(t)、z2(t))が成立する場合と(r1(t)、r2(t))=(z2(t)、z1(t))が成立する場合が存在する。したがって、図101に記述したように、位相変更とベースバンド信号入れ替え(ベースバンド信号出力セット選択)を考慮したときの周期は、位相変更の周期の2倍である6となっている。
なお、図101では、位相変更の周期を3としているが、これに限ったものではなく、例えば、位相変更の周期をNとした場合、「位相変更値y[i]が選択された際(i=0、1、、・・・、N−2、N−1(iは0以上N−1以下の整数))、(r1(t)、r2(t))=(z1(t)、z2(t))が成立する場合と(r1(t)、r2(t))=(z2(t)、z1(t))が成立する場合が存在する」ようにし、位相変更とベースバンド信号入れ替え(ベースバンド信号出力セット選択)を考慮したときの周期は、位相変更の周期の2倍である2×Nとすることが本実施の形態の特徴となり、図100のベースバンド信号入れ替え部9301はこのようなベースバンド信号出力選択を行うことになる。
図102は、図101とは異なる、時間t=0からt=11における位相変更値およびr1(t)、r2(t)の構成方法の例である。図102においても、
「位相変更の周期をNとした場合、位相変更値y[i]が選択された際(i=0、1、・・・、N−2、N−1(iは0以上N−1以下の整数))、(r1(t)、r2(t))=(z1(t)、z2(t))が成立する場合と(r1(t)、r2(t))=(z2(t)、z1(t))が成立する場合が存在するようにし、位相変更とベースバンド信号入れ替え(ベースバンド信号出力セット選択)を考慮したときの周期は、位相変更の周期の2倍である2×Nとする」
が成立している。なお、図101、図102は、例であり、図101、図102に限らず、上記条件を満たすと、受信装置において、高いデータの受信品質を得ることができる。
次に、プリコーディング行列が式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかのようにあらわされたとき、適切なαの値の一例について説明する。
プリコーディング、および、位相変更を施した後の信号を図100のように、z1(t)、z2(t)(t:時間)とあらわす。このとき、z1(t)、z2(t)は、同一周波数(同一(サブ)キャリア)の信号であり、異なるアンテナから送信される(なお、ここでは、一例として時間軸の信号を例に説明するが、他の実施の形態で説明したように、z1(f)、z2(f)(fは(サブ)キャリア)であってもよい。このとき、z1(f)、z2(f)は、同一時間の信号であり、異なるアンテナから送信される。)
z1(t)、z2(t)いずれも、変調方式が8QAMの信号と8QAMの信号が重み付け合成された信号であるので、8QAMで3ビット、2系統で、計6ビットが伝送されると考えると、信号点が重ならない場合、64点の信号点が存在することになる。
図99は、プリコーディング行列が式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のいずれかのとき、適切なαの値の一例であるα=3/2(または、2/3)としたときのプリコーディング後の信号z1(t)、z2(t)の同相I―直交Q平面における信号点の一例を示している。図99に示すように、α=3/2(または、2/3)とすると、隣接する信号点の信号点の距離が等しい場合が多く、これにより、64点の信号点が、同相I―直交Q平面において、密に配置されることになる。
ここで、z1(t)、z2(t)は、r1(t)、r2(t)に変換され、図5のように異なるアンテナから送信されることになるが、このとき、送信アンテナ2本のうち、いずれか一方で送信した信号が、端末の受信装置において、伝播しないような状況を考える。図99では、信号点の縮退(信号点の数が64点より少ない値となること)が発生しておらず、また、64点の信号点が、同相I―直交Q平面において、密に配置されていることから、受信装置において、検波、および、誤り訂正復号を行った結果、高いデータの受信品質を得ることができるという効果を得ることができる。
なお、図100の位相変更部317Bにおける位相変更方法の実施方法については、本明細書で記載したとおりである(他の実施の形態において記載したとおりである)。
次に、本実施の形態における受信装置の動作について説明する。
上述で説明した図100の、プリコーディング、および、位相変更を施したとき、図5から、以下のいずれかの関係を導くことができる。
Figure 2020061771
Figure 2020061771
なお、Fはプリコーディング行列であり、y(t)は位相変更値であり、r1(t)、r2(t)は、図5におけるr1(t)、r2(t)である。受信装置は、上述で示した、r1(t)、r2(t)とs1(t)、s2(t)の関係を利用して、復調(検波)を行うことになる(実施の形態1等で説明と同様に実施すればよいことになる)。ただし、上述で示した式には、雑音成分、周波数オフセット、チャネル推定誤差等の歪み成分は、式にあらわされておらず、これらを含んだ形で、復調(検波)が行われることになる。したがって、受信信号、チャネル推定値、プリコーディング行列、位相変更値に基づき、復調(検波)が行われることになる。なお、検波した結果得られるものは、ハード値(「0」「1」の結果)、ソフト値(対数尤度、または、対数尤度比)いずれであってもよく、検波して得られた結果ものに基づき、誤り訂正復号が行われることになる。
本実施の形態では、時間軸方向に位相変更値を切り替える場合を例として説明したが、他の実施の形態の説明と同様に、OFDM方式のようなマルチキャリア伝送を用いている場合、周波数軸方向に位相変更値を切り替える場合についても、同様に実施することができる。このとき、本実施の形態で用いているtをf(周波数((サブ)キャリア))に置き換えることになる。
よって、時間軸方向に位相変更値を切り替える場合、z1(t)、z2(t)において、同一時間のz1(t)、z2(t)は、異なるアンテナから、同一周波数を用いて送信されることになる。そして、周波数軸方向に位相変更値を切り替える場合、z1(f)、z2(f)において、同一周波数(同一サブキャリア)のz1(f)、z2(f)は、異なるアンテナから、同一時間を用いて送信されることになる。また、時間―周波数軸方向で、位相変更値を切り替える場合についても他の実施の形態で述べたように同様に実施することが可能である。
また、図13に示しているように、信号z1(t)、z2(t)(または、z1(f)、z2(f)、または、z1(t,f)、z2(t,f))に対し、(例えば、シンボル単位で)並び替えを行ってもよい。

なお、本明細書において、BPSK、QPSK、8QAM、16QAM、64QAM等の変調方式を例に説明したが、変調方式はこれに限ったものではなく、PAM(Pulse Amplitude Modulation)を用いてもよく、また、I−Q平面における2個、4個、8個、16個、64個、128個、256個、1024個等の信号点の配置方法(2個、4個、8個、16個、64個、128個、256個、1024個等の信号点をもつ変調方式)は、本明細書で示した方法(例えば、QPSKの信号点配置、16QAMの信号点配置等)に限ったものではない。したがって、複数のビットに基づき同相成分と直交成分を出力するという機能がマッピング部での機能となり、その後、プリコーディングおよび位相変更を施すことが本発明の一つの有効な機能となる。

(実施の形態J1)
実施の形態F1、実施の形態G1、実施の形態G2において、変調信号s1(プリコーディングおよび位相変更前の変調信号)と変調信号s2(プリコーディングおよび位相変更前の変調信号)において、s1の変調方式とs2の変調方式が異なる、特に、s1の変調方式の変調多値数とs2の変調多値数が異なる場合のプリコーディングおよび位相変更方法について説明した。
また、実施の形態C1において、式(52)を用いたプリコーディングに対し、プリコーディング後の変調信号に位相変更を行う送信方法について説明した。
本実施の形態では、s1の変調方式とs2の変調方式が異なる場合に、式(52)を用いたプリコーディングに対し、プリコーディング後の変調信号に位相変更を行う送信方法適用する場合について説明する。特に、s1の変調方式とs2の変調方式が異なる場合に、式(52)を用いたプリコーディングに対し、プリコーディング後の変調信号に位相変更を行う送信方法と、一つの変調信号を一つのアンテナから送信する送信方法と切り替える場合のアンテナの使用方法について説明する。(なお、プリコーディングおよび位相変更を用いた送信方法と一つの変調信号を一つのアンテナから送信する送信方法を切り替えることについては、実施の形態3、実施の形態A1で述べている。)
例えば、図3、図4、図12等の送信装置が、変調信号s1と変調信号s2に対し、プリコーディングおよび位相変更を施す送信方法と一つの変調信号を一つのアンテナから送信方法を切り替える場合について考える。このときの図3、図4、図12等の送信装置のフレーム構成を図103に示す。図103において、図103(a)は、変調信号s1のフレーム構成、図103(b)は変調信号s2のフレーム構成の一例を示している。なお、図103において、横軸は時間、縦軸は周波数とし、変調信号s1と変調信号s2は同一(共通)の周波数帯域を用いているものとする。
図103に示すように、時間t0から時間t1の間は、情報を伝送するためのシンボルを含むフレーム#1−s1(10301―1)が変調信号s1に存在するものとする。一方、時間t0から時間t1において、変調信号s2は送信しないものとする。
時間t2から時間t3の間では、情報を伝送するためのシンボルを含むフレーム#2−s1(10302−1)が変調信号s1に存在するものとする。また、時間t2から時間t3の間において、情報を伝送するためのシンボルを含むフレーム#2−s2(10302−2)が変調信号s2に存在するものとする。
時間t4から時間t5の間は、情報を伝送するためのシンボルを含むフレーム#3−s1(10303―1)が変調信号s1に存在するものとする。一方、時間t4から時間t5において、変調信号s2は送信しないものとする。
本実施の形態において、前にも述べたように、特に、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施し、また、s1の変調信号のために用いる変調方式とs2の変調信号のために用いる変調方式が異なる場合を扱うものとする。一例として、異なる変調方式として、QPSK、16QAMの場合について以下で説明する。実施の形態F1、実施の形態G1、実施の形態G2で述べたように、QPSKの変調信号と16QAMの変調信号をプリコーディングおよび位相変更を施して送信する場合、QPSKの変調信号の平均電力をGQPSK、16QAMの平均電力をG16QAMとしたとき、受信装置において、良好なデータの受信品質を得るためには、G16QAM>GQPSKとするとよい。
なお、QPSKのI−Q平面における信号点配置、パワー変更方法(パワー変更値の設定方法)、平均電力の与え方については、実施の形態F1、実施の形態G1、実施の形態G2で述べたとおりであり、また、16QAMのI−Q平面における信号点配置、パワー変更方法(パワー変更値の設定方法)、平均電力の与え方についても実施の形態F1、実施の形態G1、実施の形態G2で述べたとおりである。
そして、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施した場合、図85から、図85におけるz1(t)=u×s1(t)となり、z2(t)=y(t)×v×s2(t)となる。したがって、z1(t)を送信する送信アンテナの平均送信電力は、s1(t)に割り当てた変調方式の平均電力となり、z2(t)を送信する送信アンテナの平均送信電力は、s2(t)に割り当てた変調方式の平均電力となる。
次に、s1の変調方式とs2の変調方式が異なる場合に、式(52)を用いたプリコーディングに対し、プリコーディング後の変調信号に位相変更を行う送信方法と、一つの変調信号を一つのアンテナから送信する送信方法と切り替え場合のアンテナの使用方法について説明する。前にも述べたように、特に、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施し、また、s1の変調信号のために用いる変調方式の変調多値数とs2の変調信号のために用いる変調方式の変調多値数が異なるものとする。
一つの変調信号を一つのアンテナから送信する送信方法で使用するアンテナを第1アンテナと名付ける。また、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施し、また、s1の変調信号のために用いる変調方式の変調多値数とs2の変調信号のために用いる変調方式の変調多値数が異なるものとしたとき、s1の変調信号のために用いる変調方式の変調多値数をMs1、s2の変調信号のために用いる変調方式の変調多値数をMs2としたとき、Ms1>Ms2とする。このとき、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施す送信方法を用いる場合、変調多値数の大きい変調方式の変調信号(平均電力の大きい変調方式の変調信号)、つまり、ここでは、s1の変調信号のプリコーディング後の信号、つまり、図85におけるz1(t)=u×s1(t)を第1アンテナから送信することを提案する。したがって、例として、s1の変調信号の変調方式を16QAM、s2の変調信号の変調方式をQPSKとして以下では説明を行う。(なお、変調方式の組み合わせはこれに限ったものではない。例えば、(s1の変調信号の変調方式、s2の変調信号の変調方式)のセットは、(64QAM、16QAM)、(256QAM、64QAM)、(1024QAM、256QAM)、(4096QAM、1024QAM)、(64QAM、QPSK)、(256QAM、16QAM)、(1024QAM、64QAM)、(4096QAM、256QAM)等であってもよい。)
図104は、図103のように送信方法を切り替えた場合の送信電力の切り替え方法を示している。
図103に示すように、時間t0から時間t1の間は、情報を伝送するためのシンボルを含むフレーム#1−s1(10301―1)が変調信号s1に存在するものとする。一方、時間t0から時間t1において、変調信号s2は送信しないものとする。したがって、図104に示すように、変調信号s1は、アンテナ312Aから、送信電力Pで送信される。このとき、アンテナ312Bから、変調信号s1と同一の周波数帯域では、変調信号は送信されないものとする。(ただし、OFDM等のマルチキャリア方式を用いているとき、変調信号s1とは異なる周波数帯域の変調信号をアンテナ312Bから送信してもよい。また、変調信号s1が存在していないシンボルにおいて、制御シンボル、プリアンブル、リファレンスシンボル、パイロットボルをアンテナ312Bから送信していてもよい。したがって、図104において、送信電力「0」と記載しているが、例外的に、アンテナ312Bからシンボルを送信していることはある。)
図103に示すように、時間t2から時間t3の間では、情報を伝送するためのシンボルを含むフレーム#2−s1(10302−1)が変調信号s1に存在するものとする。また、時間t2から時間t3の間において、情報を伝送するためのシンボルを含むフレーム#2−s2(10302−2)が変調信号s2に存在するものとする。送信装置は式(52)を用いたプリコーディング、および位相変更を施す送信方法を適用するので、図104に示すように、送信装置は、変調信号s1に相当する変調信号を、アンテナ312Aから、送信電力P’で送信する。前述でも説明したように、変調信号s1の変調方式は、例えば16QAMであるものとする。このとき、送信装置は、変調信号s2に相当する変調信号を、アンテナ312Bから、送信電力P’’で送信する。前述でも説明したように、変調信号s2の変調方式は、例えばQPSKであるものとする。前述でも説明したように、P’>P’’が成立する。
図103に示すように、時間t4から時間t5の間は、情報を伝送するためのシンボルを含むフレーム#3−s1(10303―1)が変調信号s1に存在するものとする。一方、時間t4から時間t5において、変調信号s2は送信しないものとする。したがって、図104に示すように、変調信号s1は、アンテナ312Aから、送信電力Pで送信される。このとき、アンテナ312Bから、変調信号s1と同一の周波数帯域では、変調信号は送信されないものとする。(ただし、OFDM等のマルチキャリア方式を用いているとき、変調信号s1とは異なる周波数帯域の変調信号をアンテナ312Bから送信してもよい。また、変調信号s1が存在していないシンボルにおいて、制御シンボル、プリアンブル、リファレンスシンボル、パイロットボルをアンテナ312Bから送信していてもよい。したがって、図104において、送信電力「0」と記載しているが、例外的に、アンテナ312Bからシンボルを送信していることはある。)
以上のような提案のアンテナ使用方法を実施したときの効果について説明する。図104において、アンテナ312Aの送信電力は、P、P’、Pのように変化する(第1の送信電力配分方法と名付ける)。もう一方の方法としては、送信電力がP、P’’、Pと変化することになる(第2の送信電力配分方法と名付ける)。このとき、第1の送信電力配分方法のほうが、第2の送信電力方法より、送信電力の変化が小さい。アンテナ312Aの前に送信電力増幅器、アンテナ312Bの前に送信電力増幅器が配置されているが、「送信電力の変化が小さい」と送信電力増幅器に与える負荷が少ないため、消費電力を少なくすることができるという利点がある。したがって、第1の送信電力方法のほうが好適である。また、「送信電力の変化が小さい」と、受信装置において、受信信号に対し、自動利得制御を行うことになるが、この制御を容易に行うことができるという効果を得ることにもつながる。
図104において、アンテナ312Bの送信電力は、0、P’’、0のように変化する(第3の送信電力配分方法と名付ける)。もう一方の方法としては、送信電力が、0、P’’、0と変化することになる(第4の送信電力配分方法)。
このとき、第3の送信電力配分方法のほうが、第4の送信電力方法より、送信電力の変化が小さい。前述と同様、第3の送信電力方法のほうが、消費電力の低減という点で、好適である。また、「送信電力の変化が小さい」と、受信装置において、受信信号に対し、自動利得制御を行うことになるが、この制御を容易に行うことができるという効果を得ることにもつながる。
以上のように、第1の送信電力配分方法と第3の送信電力配分方法とを同時に実施することになる、提案のアンテナ使用方法は、上記のような利点を備える好適なアンテナ使用方法である。
なお、上記では、図85のように、z2’(t)から、z2(t)とするために位相変更部を設置しているが、図105に示すように、z1’(t)から、z1(t)とするために位相変更部を設置してもよい。以下では、このときの実施方法について説明する。
前にも述べたように、特に、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施し、また、s1の変調信号のために用いる変調方式とs2の変調信号のために用いる変調方式が異なる場合を扱うものとする。一例として、異なる変調方式として、QPSK、16QAMの場合について以下で説明する。実施の形態F1、実施の形態G1、実施の形態G2で述べたように、QPSKの変調信号と16QAMの変調信号をプリコーディングおよび位相変更を施して送信する場合、QPSKの変調信号の平均電力をGQPSK、16QAMの平均電力をG16QAMとしたとき、受信装置において、良好なデータの受信品質を得るためには、G16QAM>GQPSKとするとよい。
なお、QPSKのI−Q平面における信号点配置、パワー変更方法(パワー変更値の設定方法)、平均電力の与え方については、実施の形態F1、実施の形態G1、実施の形態G2で述べたとおりであり、また、16QAMのI−Q平面における信号点配置、パワー変更方法(パワー変更値の設定方法)、平均電力の与え方についても実施の形態F1、実施の形態G1、実施の形態G2で述べたとおりである。
そして、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施した場合、図105から、図105におけるz1(t)=y(t)×u×s1(t)となり、z2(t)=v×s2(t)となる。したがって、z1(t)を送信する送信アンテナの平均送信電力は、s1(t)に割り当てた変調方式の平均電力となり、z2(t)を送信する送信アンテナの平均送信電力は、s2(t)に割り当てた変調方式の平均電力となる。
次に、s1の変調方式とs2の変調方式が異なる場合に、式(52)を用いたプリコーディングに対し、プリコーディング後の変調信号に位相変更を行う送信方法と、一つの変調信号を一つのアンテナから送信する送信方法と切り替え場合のアンテナの使用方法について説明する。前にも述べたように、特に、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施し、また、s1の変調信号のために用いる変調方式の変調多値数とs2の変調信号のために用いる変調方式の変調多値数が異なるものとする。
一つの変調信号を一つのアンテナから送信する送信方法で使用するアンテナを第1アンテナと名付ける。また、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施し、また、s1の変調信号のために用いる変調方式の変調多値数とs2の変調信号のために用いる変調方式の変調多値数が異なるものとしたとき、s1の変調信号のために用いる変調方式の変調多値数をMs1、s2の変調信号のために用いる変調方式の変調多値数をMs2としたとき、Ms1>Ms2とする。このとき、s1の変調信号とs2の変調信号を、同一周波数帯域を用いて同時に送信する際、式(52)を用いたプリコーディング、および位相変更を施す送信方法を用いる場合、変調多値数の大きい変調方式の変調信号(平均電力の大きい変調方式の変調信号)、つまり、ここでは、s1の変調信号のプリコーディング後の信号、つまり、図105におけるz1(t)=y(t)×u×s1(t)を第1アンテナから送信することを提案する。したがって、例として、s1の変調信号の変調方式を16QAM、s2の変調信号の変調方式をQPSKとして以下では説明を行う。(なお、変調方式の組み合わせはこれに限ったものではない。例えば、(s1の変調信号の変調方式、s2の変調信号の変調方式)のセットは、(64QAM、16QAM)、(256QAM、64QAM)、(1024QAM、256QAM)、(4096QAM、1024QAM)、(64QAM、QPSK)、(256QAM、16QAM)、(1024QAM、64QAM)、(4096QAM、256QAM)等であってもよい。)
図104は、図103のように送信方法を切り替えた場合の送信電力の切り替え方法を示している。
図103に示すように、時間t0から時間t1の間は、情報を伝送するためのシンボルを含むフレーム#1−s1(10301―1)が変調信号s1に存在するものとする。一方、時間t0から時間t1において、変調信号s2は送信しないものとする。したがって、図104に示すように、変調信号s1は、アンテナ312Aから、送信電力Pで送信される。このとき、アンテナ312Bから、変調信号s1と同一の周波数帯域では、変調信号は送信されないものとする。(ただし、OFDM等のマルチキャリア方式を用いているとき、変調信号s1とは異なる周波数帯域の変調信号をアンテナ312Bから送信してもよい。また、変調信号s1が存在していないシンボルにおいて、制御シンボル、プリアンブル、リファレンスシンボル、パイロットボルをアンテナ312Bから送信していてもよい。したがって、図104において、送信電力「0」と記載しているが、例外的に、アンテナ312Bからシンボルを送信していることはある。)
図103に示すように、時間t2から時間t3の間では、情報を伝送するためのシンボルを含むフレーム#2−s1(10302−1)が変調信号s1に存在するものとする。また、時間t2から時間t3の間において、情報を伝送するためのシンボルを含むフレーム#2−s2(10302−2)が変調信号s2に存在するものとする。送信装置は式(52)を用いたプリコーディング、および位相変更を施す送信方法を適用するので、図104に示すように、送信装置は、変調信号s1に相当する変調信号を、アンテナ312Aから、送信電力P’で送信する。前述でも説明したように、変調信号s1の変調方式は、例えば16QAMであるものとする。このとき、送信装置は、変調信号s2に相当する変調信号を、アンテナ312Bから、送信電力P’’で送信する。前述でも説明したように、変調信号s2の変調方式は、例えばQPSKであるものとする。前述でも説明したように、P’>P’’が成立する。
図103に示すように、時間t4から時間t5の間は、情報を伝送するためのシンボルを含むフレーム#3−s1(10303―1)が変調信号s1に存在するものとする。一方、時間t4から時間t5において、変調信号s2は送信しないものとする。したがって、図104に示すように、変調信号s1は、アンテナ312Aから、送信電力Pで送信される。このとき、アンテナ312Bから、変調信号s1と同一の周波数帯域では、変調信号は送信されないものとする。(ただし、OFDM等のマルチキャリア方式を用いているとき、変調信号s1とは異なる周波数帯域の変調信号をアンテナ312Bから送信してもよい。また、変調信号s1が存在していないシンボルにおいて、制御シンボル、プリアンブル、リファレンスシンボル、パイロットボルをアンテナ312Bから送信していてもよい。したがって、図104において、送信電力「0」と記載しているが、例外的に、アンテナ312Bからシンボルを送信していることはある。)
以上のような提案のアンテナ使用方法を実施したときの効果について説明する。図104において、アンテナ312Aの送信電力は、P、P’、Pのように変化する(第1の送信電力配分方法と名付ける)。もう一方の方法としては、送信電力がP、P’’、Pと変化することになる(第2の送信電力配分方法と名付ける)。このとき、第1の送信電力配分方法のほうが、第2の送信電力方法より、送信電力の変化が小さい。アンテナ312Aの前に送信電力増幅器、アンテナ312Bの前に送信電力増幅器が配置されているが、「送信電力の変化が小さい」と送信電力増幅器に与える負荷が少ないため、消費電力を少なくすることができるという利点がある。したがって、第1の送信電力方法のほうが好適である。また、「送信電力の変化が小さい」と、受信装置において、受信信号に対し、自動利得制御を行うことになるが、この制御を容易に行うことができるという効果を得ることにもつながる。
図104において、アンテナ312Bの送信電力は、0、P’’、0のように変化する(第3の送信電力配分方法と名付ける)。もう一方の方法としては、送信電力が、0、P’’、0と変化することになる(第4の送信電力配分方法)。
このとき、第3の送信電力配分方法のほうが、第4の送信電力方法より、送信電力の変化が小さい。前述と同様、第3の送信電力方法のほうが、消費電力の低減という点で、好適である。また、「送信電力の変化が小さい」と、受信装置において、受信信号に対し、自動利得制御を行うことになるが、この制御を容易に行うことができるという効果を得ることにもつながる。
以上のように、第1の送信電力配分方法と第3の送信電力配分方法とを同時に実施することになる、提案のアンテナ使用方法は、上記のような利点を備える好適なアンテナ使用方法である。
上述では、図85、図105の2つの例を説明した。このとき、位相変更をz1(t)、z2(t)のいずれか一方に与える例を説明したが、図85と図105を組み合わせ、両者に対し、位相変更を与える場合についても、上述の2つの例と同様に実施することが可能である。このとき、位相変更部を、図85、105からわかるようにz1(t)のため位相変更部、z2(t)の位相変更部の2つの位相変更部を具備することになる。したがって、構成図は、図106のとおりとなる。なお、図106において、同一時刻(または、同一周波数(同一キャリア))で、位相変更部317Aと317B両者とも位相変更を与えてもよい。また、同一時刻(または、同一周波数(同一キャリア))で、位相変更部317Aのみ、位相変更を施してもよく、一方で、同一時刻(または、同一周波数(同一キャリア))で、位相変更部317Bのみ、位相変更を施してもよい。(なお、位相変更を施していないとき、zx’(t)=zx(t)が成立する(x=1、2)。)。
また、本実施の形態では、図85、図105、図106の重み付け合成部800におけるプリコーディングとして、式(52)を例に説明したがこれに限ったものではなく、例えば、式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)としてもよい。このとき、z1(t)の平均電力が、z2(t)の平均電力より大きくなるように、式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)のαを設定すればよい。また、z1(t)の平均電力が、z2(t)の平均電力より大きくなるようなプリコーディング行列であれば、式(52)、式(G3)、式(G6)、式(G7)、式(G8)、式(G9)、式(G10)以外のプリコーディング行列を用いてもよい。

(cyclic Q delayについて)
本明細書の中で記載したCyclic Q Delayの適用について述べる。非特許文献10において、Cyclic Q Delay(サイクリックQディレイ)の概要が記載されている。以下では、Cyclic Q Delayを用いたときのs1,s2の生成方法の具体的な例について説明する。
図107は、変調方式が16QAMのときの同相I―直交Q平面における信号点の配置の一例を示している。入力ビットをb0、b1、b2、b3としたとき、b0 b1 b2 b3は0000から1111の値のいずれかとなり、例えば、b0 b1 b2 b3が0000であらわされるとき、図107の信号点10701を選択し、信号点10701に基づく同相成分の値をベースバンド信号の同相成分とし、信号点10701に基づく直交成分の値をベースバンド信号の直交成分とする。b0 b1 b2 b3が他の値であるときも同様にして、ベースバンド信号の同相成分と直交成分を生成する。
図108は、サイクリックQディレイを適用したときの(バイナリー)データから変調信号s1(t)(t:時間)(または、s1(f)、f:周波数)およびs2(t)(t:時間)(または、s2(f)、f:周波数)を生成するための信号生成部の構成の一例を示している。
マッピング部10802は、データ10801、および、制御信号10306を入力とし、制御信号10306に基づく変調方式、例えば、変調方式として16QAMが選択されている場合、図107の規則にしたがって、マッピングを行い、マッピング後のベースバンド信号の同相成分10803_Aおよび直交成分10803_Bを出力する。なお、変調方式は16QAMに限ったものではなく、他の変調方式の場合も同様に実施することができる。
このとき、図107におけるb0、b1、b2、b3に対応する時点1のデータをb01、b11、b21、b31であらわすものとする。マッピング部10802は、時点1のデータをb01、b11、b21、b31に基づき、時点1のベースバンド信号の同相成分I1および直交成分Q1を出力する。同様に、マッピング部10802は、時点2のべースバンド信号の同相成分I2および直交成分Q2、・・・を出力する。
記憶および信号入れ替え部10804は、ベースバンド信号の同相成分10803_Aおよび直交成分10803_B、制御信号10306を入力とし、制御信号10306に基づき、ベースバンド信号の同相成分10803_Aおよび直交成分10803_Bを記憶、信号の組み替えを行い、変調信号s1(t)(10805_A)および変調信号s2(t)(10805_B)を出力する。なお、変調信号s1(t)、s2(t)の生成方法については、以下で詳細に説明を行う。
明細書で記載したように、変調信号s1(t)、s2(t)に対し、プリコーディングおよび位相変更を施すことになる。このとき、本明細書で示したように、いずれかの段階で、位相変更、パワー変更、信号入れ替え等の信号処理を施してもよい。そして、変調信号s1(t)、s2(t)に対し、プリコーディングおよび位相変更を行うことにより得られた変調信号r1(t)およびr2(t)は、同一(共通)時間に、同一周波数帯域を用いて送信される。
なお、上述では、時間軸tで説明したが、OFDM等のマルチキャリア伝送方式を用いたときは、s1(t)、s2(t)をs1(f)、s2(f)(f:(サブ)キャリア)と考えることができる。このとき、変調信号s1(f)、s2(f)に対し、規則的にプリコーディング行列を切り替えるプリコーディング方法を適用することで得られた変調信号r1(f)およびr2(f)は、同一(共通)時間に送信される(当然、r1(f)、r2(f)は同一周波数帯域の信号である。)。また、本明細書で示したように、s1(t)、s2(t)をs1(t,f)、s2(t,f)と考えることもできる。
次に、変調信号s1(t)、s2(t)の生成方法について説明する。図109は、サイクリックQディレイを用いたときの、s1(t)、s2(t)の生成方法の第1の例である。
図109(a)は、図108のマッピング部10802で得られた、ベースバンド信号の同相成分および直交成分を示している。図109(a)に示されているように、また、図108のマッピング部10802の説明を行ったように、時点1のベースバンド信号の同相成分I1および直交成分Q1、時点2のべースバンド信号の同相成分I2および直交成分Q2、時点3のべースバンド信号の同相成分I3および直交成分Q3、・・・の順に、マッピング部10802はベースバンド信号の同相成分および直交成分を出力する。
図109(b)は、図108の記憶および信号入れ替え部10804において、信号入れ替えを行ったときのベースバンド信号の同相成分と直交成分のセットの例を示している。図109(b)では、時点1と時点2、時点3と時点4、時点5と時点6、つまり、時点2i+1と時点2i+2(iは0以上の整数)をセットとし、セット内、例えば、時点1と時点2において、ベースバンド信号の直交成分の入れ替えを行っている。
したがって、ベースバンド信号の同相成分は信号の入れ替えを行っていないため、時点1のベースバンド信号の同相成分はI1、時点2のベースバンド信号の同相成分はI2、時点3のベースバンド信号の同相成分はI3、・・・となっている。
そして、ベースバンド信号の直交成分はセット内内で信号の入れ替えを行っているので、時点1のベースバンド信号の直交成分はQ2、時点2のベースバンド信号の直交成分はQ1、時点3のベースバンド信号の直交成分はQ4、時点4のベースバンド信号の直交成分はQ3、・・・となる。
図109(c)は、プリコーディングおよび位相変更を施す方法を適用する際、プリコーディング前の変調信号s1(t)、s2(t)の構成の一例を示している。例えば、図109(c)に示すように、図109(b)のように生成したベースバンド信号を交互に、s1(t)、s2(t)に割り当てる。したがって、s1(t)の第1スロットは(I1,Q2)、s2(t)の第1スロットは(I2,Q1)となる。s1(t)の第2スロットは(I3,Q4)、s2(t)の第2スロットは(I4,Q3)、・・・となる。
なお、図109は、時間軸方向を例に説明しているが、周波数軸方向であっても同様に実施することができる(上述で説明したとおりである)。このとき、s1(f)、s2(f)と記述することになる。
そして、第Nスロットのs1(t)と第Nスロットのs2(t)に対し、プリコーディングおよび位相変更が行われ、第Nスロットのプリコーディング・位相変更後の信号r1(t)、r2(t)を得るになる。この点については、本明細書の中で説明したとおりである。
図110は、図109の第Nスロットのs1(t)、s2(t)を得るための、図108とは異なる構成方法を示している。マッピング部11002は、データ11001、制御信号11004を入力とし、制御信号11004に基づく変調方式に基づく、例えば、図109の入れ替えを考慮したマッピングを行い、マッピング後の信号(ベースバンド信号の同相成分および直交成分)を生成し、マッピング後の信号から変調信号s1(t)(11003_A)および変調信号s2(t)(11003_B)を生成し、出力する。なお、変調信号s1(t)(11003_A)は、図108の変調信号10805_Aと同一であり、また、変調信号s2(t)(11003_B)は、図108の変調信号10805_Bと同一であり、図109(c)に示したとおりである。したがって、変調信号s1(t)(11003_A)の第1スロットは(I1,Q2)、変調信号s2(t)(11003_B)の第1スロットは(I2,Q1)となり、変調信号s1(t)(11003_A)の第2スロットは(I3,Q4)、変調信号s2(t)(11003_B)の第2スロットは(I4,Q3)、・・・となる。
補足のために、図110のマッピング部11002における、変調信号s1(t)(11003_A)の第1スロット(I1,Q2)、変調信号s2(t)(11003_B)の第1スロット(I2,Q1)の生成方法について説明する。
図110において、11001はデータとなるが、時点1におけるデータをb01、b11、b21、b31、時点2のデータをb02、b12、b22、b32とする。図110のマッピング部11002は、b01、b11、b21、b31およびb02、b12、b22、b32から、上記で説明したI1、Q1、I2、Q2を生成する。そして、図110のマッピング部11002は、I1、Q1、I2、Q2から変調信号s1(t)、s2(t)を生成することができる。
図111は、図109の第Nスロットのs1(t)、s2(t)を得るための、図108、図110とは異なる構成方法を示している。マッピング部11101_Aは、データ11001、制御信号11004を入力とし、制御信号11004に基づく変調方式に基づく、例えば、図109の入れ替えを考慮したマッピングを行い、マッピング後の信号(ベースバンド信号の同相成分および直交成分)を生成し、マッピング後の信号から変調信号s1(t)(11003_A)を生成し、出力する。マッピング部11101_Bは、データ11001、制御信号11004を入力とし、制御信号11004に基づく変調方式に基づく、例えば、図109の入れ替えを考慮したマッピングを行い、マッピング後の信号(ベースバンド信号の同相成分および直交成分)を生成し、マッピング後の信号から変調信号s2(t)(11003_B)を生成し、出力する。
なお、マッピング部11101_Aの入力であるデータ11001とマッピング部11101_Bの入力であるデータ11001は、当然、同一のデータである。また、変調信号s1(t)(11003_A)は、図108の変調信号10805_Aと同一であり、また、変調信号s2(t)(11003_B)は、図108の変調信号10805_Bと同一であり、図109(c)に示したとおりである。
したがって、変調信号s1(t)(11003_A)の第1スロットは(I1,Q2)、変調信号s2(t)(11003_B)の第1スロットは(I2,Q1)となり、変調信号s1(t)(11003_A)の第2スロットは(I3,Q4)、変調信号s2(t)(11003_B)の第2スロットは(I4,Q3)、・・・となる。
補足のために、図111のマッピング部11101_Aにおける、変調信号s1(t)(11003_A)の第1スロット(I1,Q2)の生成方法について説明する。図111において、11001はデータとなるが、時点1におけるデータをb01、b11、b21、b31、時点2のデータをb02、b12、b22、b32とする。図111のマッピング部11101_Aは、b01、b11、b21、b31およびb02、b12、b22、b32から、上記で説明したI1、Q2を生成する。そして、図111のマッピング部11101_Aは、I1、Q2から変調信号s1(t)を生成することができる。
図111のマッピング部11101_Bにおける、変調信号s2(t)(11003_B)の第1スロット(I2,Q1)の生成方法について説明する。図111において、11001はデータとなるが、時点1におけるデータをb01、b11、b21、b31、時点2のデータをb02、b12、b22、b32とする。図111のマッピング部11101_Bは、b01、b11、b21、b31およびb02、b12、b22、b32から、上記で説明したI2、Q1を生成する。そして、図111のマッピング部11101_Bは、I2、Q1からs2(t)を生成することができる。
次に、サイクリックQディレイを用いたときのs1(t)、s2(t)の生成方法の図109とは異なる、第2の例を図112に示す。なお、図112において、図109と同一のもの(ベースバンド信号の同相成分および直交成分)については、同一の記号を付している。
図112(a)は、図108のマッピング部10802で得られた、ベースバンド信号の同相成分および直交成分を示している。図112(a)は、図109(a)と同一であるので、説明は省略する。
図112(b)は、信号入れ替えを行う前のs1(t)、s2(t)のベースバンド信号の同相成分および直交成分の構成を示しており、図112(b)では、時点2i+1のベースバンド信号はs1(t)に割り当てられ、時点2i+2のベースバンド信号はs2(t)に割り当てられている(iは0以上の整数)。
図112(c)は、図108の記憶および信号入れ替え部10804において、信号入れ替えを行ったときのベースバンド信号の同相成分と直交成分のセットの例を示している。図112(c)の特徴(図109と異なる点)は、s1(t)内で信号入れ替え、および、s2(t)内で信号入れ替えを行っている点である。
したがって、図112(c)では、図112(b)に対し、s1(t)において、Q1とQ3の入れ替えを行っており、Q5とQ7の入れ替えを行っており、以降同様の入れ替えを行う。また、図112(c)では、図112(b)に対し、s2(t)において、Q2とQ4の入れ替えを行っており、Q6とQ8の入れ替えを行っており、以降同様の入れ替えを行う。
よって、s1(t)の第1スロットのベースバンド信号の同相成分はI1、直交成分はQ3となり、s2(t)の第1スロットのベースバンド信号の同相成分はI2、直交成分はQ4となる。また、s1(t)の第2スロットのベースバンド信号の同相成分はI3、直交成分はQ1となり、s2(t)の第2スロットのベースバンド信号の同相成分はI4、直交成分はQ2となる。第3、第4スロットは図112(c)のようにあらわされることになり、以降のスロットも同様となる。
そして、第Nスロットのs1(t)と第Nスロットのs2(t)に対し、プリコーディングおよび位相変更が行われ、第Nスロットのプリコーディング・位相変更後の信号r1(t)、r2(t)を得るになる。この点については、本明細書の中で説明したとおりである。
図113は、図112の第Nスロットのs1(t)、s2(t)を得るための、図108とは異なる構成方法を示している。マッピング部11002は、データ11001、制御信号11004を入力とし、制御信号11004に基づく変調方式に基づく、例えば、図112の入れ替えを考慮したマッピングを行い、マッピング後の信号(ベースバンド信号の同相成分および直交成分)を生成し、マッピング後の信号から変調信号s1(t)(11003_A)および変調信号s2(t)(11003_B)を生成し、出力する。なお、変調信号s1(t)(11003_A)は、図108の変調信号10805_Aと同一であり、また、変調信号s2(t)(11003_B)は、図108の変調信号10805_Bと同一であり、図112(c)に示したとおりである。したがって、変調信号s1(t)(11003_A)の第1スロットは(I1,Q3)、変調信号s2(t)(11003_B)の第1スロットは(I2,Q4)となり、変調信号s1(t)(11003_A)の第2スロットは(I3,Q1)、変調信号s2(t)(11003_B)の第2スロットは(I4,Q2)、・・・となる。
補足のために、図113のマッピング部11002における、変調信号s1(t)(11003_A)の第1スロットは(I1,Q3)、変調信号s2(t)(11003_B)の第1スロットは(I2,Q4)、変調信号s1(t)(11003_A)の第2スロットは(I3,Q1)、変調信号s2(t)(11003_B)の第1スロットは(I4,Q2)、の生成方法について説明する。
図113において、11001はデータとなるが、時点1におけるデータをb01、b11、b21、b31、時点2のデータをb02、b12、b22、b32、時点3のデータをb03、b13、b23、b33、時点4のデータをb04、b14、b24、b34とする。図113のマッピング部11002は、b01、b11、b21、b31およびb02、b12、b22、b32およびb03、b13、b23、b33およびb04、b14、b24、b34から、上記で説明したI1、Q1、I2、Q2、I3、Q3、I4、Q4を生成する。そして、図113のマッピング部11002は、I1、Q1、I2、Q2、I3、Q3、I4、Q4から変調信号s1(t)、s2(t)を生成することができる。
図114は、図112の第Nスロットのs1(t)、s2(t)を得るための、図108、図113とは異なる構成方法を示している。分配部11401は、データ11001、制御信号11004を入力とし、制御信号11004に基づき、データを分配し、第1データ11402_Aおよび第2データ11402_Bを出力する。マッピング部11101_Aは、第1データ11402_A、制御信号11004を入力とし、制御信号11004に基づく変調方式に基づく、例えば、図112の入れ替えを考慮したマッピングを行い、マッピング後の信号(ベースバンド信号の同相成分および直交成分)を生成し、マッピング後の信号から変調信号s1(t)(11003_A)を生成し、出力する。マッピング部11101_Bは、第2データ11402_B、制御信号11004を入力とし、制御信号11004に基づく変調方式に基づく、例えば、図112の入れ替えを考慮したマッピングを行い、マッピング後の信号(ベースバンド信号の同相成分および直交成分)を生成し、マッピング後の信号から変調信号s2(t)(11003_B)を生成し、出力する。
変調信号s1(t)(11003_A)の第1スロットは(I1,Q3)、変調信号s2(t)(11003_B)の第1スロットは(I2,Q4)となり、変調信号s1(t)(11003_A)の第2スロットは(I3,Q1)、変調信号s2(t)(11003_B)の第2スロットは(I4,Q2)、・・・となる。
補足のために、図114のマッピング部11101_Aにおける、変調信号s1(t)(11003_A)の第1スロット(I1,Q3)、第2スロット(I3,Q1)の生成方法について説明する。図114において、11001はデータとなるが、時点1におけるデータをb01、b11、b21、b31、時点2のデータをb02、b12、b22、b32、時点3のデータをb03、b13、b23、b33、時点4のデータをb04、b14、b24、b34とする。分配部11401は、時点1におけるデータをb01、b11、b21、b31および時点3のデータをb03、b13、b23、b33を第1データ11402_Aとして出力し、時点2のデータをb02、b12、b22、b32および時点4のデータをb04、b14、b24、b34を第2データ802_Bとして出力する。図114のマッピング部11101_Aは、b01、b11、b21、b31およびb03、b13、b23、b33から、第1スロットは(I1,Q3)、第2スロット(I3,Q1)を生成することになる。第3スロット以降も同様の操作が行われる。
図114のマッピング部11101_Bにおける、変調信号s2(t)(11003_B)の第1スロット(I2,Q4)、第2スロット(I4,Q2)の生成方法について説明する。図114のマッピング部11101_Bは、時点2のデータをb02、b12、b22、b32および時点4のデータをb04、b14、b24、b34から、第1スロットは(I2,Q4)、第2スロット(I4,Q2)を生成することになる。第3スロット以降も同様の操作が行われる。
以上、2つのサイクリックQディレイの方法について説明したが、図109のように、スロット内で信号入れ替えを行った場合、受信装置の復調(検波)部において、候補信号点の数を抑えることができるので、演算規模(回路規模)を少なくすることができる、という利点がある。一方、図112のように、s1(t)の信号内、s2(t)の信号内で信号入れ替えを行った場合、受信装置の復調(検波)部において、候補信号点の数が多くなるが、時間ダイバーシチゲイン(周波数軸上で入れ替えを行った場合、周波数ダイバーシチゲイン)を得ることができ、データの受信品質がさらに向上する可能性があるという利点がある。
なお、上述の説明では、変調方式を16QAMとしたときを例に説明しているが、これに限ったものではなく、QPSK、8QAM、32QAM、64QAM、128QAM、256QAM等の変調方式の場合についても同様に実施することができる。
また、サイクリックQディレイの方法は、上述の2つの方法に限ったものではない。例えば、上述の2つの例では、いずれも、ベースバンド信号の直交成分について入れ替えを行っているが、同相成分を入れ替えてもよい。また、2つの時点で入れ替えを行っている(例えば、時点1と時点2でベースバンド信号の直交成分を入れ替える)を行っているが、複数の時点で、ベースバンド信号の同相成分または(「および」であってもよい)直交成分の信号入れ替えを行ってもよい。したがって、図109(a)のようにベースバンド信号の同相成分と直交成分を発生させ、サイクリックQディレイを行った場合、「時点iのサイクリックQディレイ後のベースバンド信号の同相成分はIi、時点iのサイクリックQディレイ後のベースバンド信号の直交成分はQj(i≠j)とあらわせるシンボルが存在する」、または、「時点iのサイクリックQディレイ後のベースバンド信号の同相成分はIj、時点iのサイクリックQディレイ後のベースバンド信号の直交成分はQi(i≠j)とあらわせるシンボルが存在する」、または、「時点iのサイクリックQディレイ後のベースバンド信号の同相成分はIj、時点iのサイクリックQディレイ後のベースバンド信号の直交成分はQk(i≠j、i≠k、j≠k)とあらわせるシンボルが存在する」、ことになる。
そして、上述で述べたサイクリックQディレイを施すことにより得られた変調信号s1(t)(または、s1(f)、または、s1(t、f))、変調信号s2(t)(または、s2(f)、または、s2(t、f))に対し、プリコーディングおよび位相変更を施すことになる。(ただし、本明細書で示したように、いずれかの段階で、位相変更、パワー変更、信号入れ替え等の信号処理を施してもよい。)このとき、サイクリックQディレイを施すことにより得られた変調信号に対して適用するプリコーディングおよび位相変更を施す方法として、本明細書で説明したすべてのプリコーディングおよび位相変更を施す方法を適用することが可能である。

<実施の形態M>
本実施の形態では、例えば、本明細書で記載したように、放送局がプリコーディングを行い、かつ、位相変更を行うことによって得られた複数の変調信号を複数のアンテナから(同一周波数帯域を用い、同一時刻に)送信し、放送局が送信した複数の変調信号を受信する際の、家庭内への信号の引き込み方法の例について説明する。(なお、プリコーディング行列は、本明細書に記載したプリコーディング行列いずれであってもよく、また、本明細書とは異なるプリコーディング行列を用いた場合にも、本実施の形態の家庭内への信号の引き込み方法を実施することは可能である。加えて、本明細書では、プリコーディングとともに位相変更を施す送信方法について説明しているが、本実施の形態で説明する家庭内への信号の引き込み方法は、位相変更を施していない場合、および、プリコーディングを施さない場合についても、実施することが可能である。)
図115に示す受信システム11501は、中継装置11502と家庭内のテレビ11503、11505から構成されており、特に、中継装置11502は、複数の住宅に対し、放送局が送信した変調信号を受信し、配信するための装置となる。なお、ここでは、一例として、テレビを例に説明するが、テレビに限ったものではなく、情報を必要とする端末であれば同様に実施することができる。
中継装置11502は、放送波(放送局が送信した複数の変調信号)を受信する機能を備えており、中継装置11502は、テレビ11503へは1本のケーブル11504を通して受信した信号を送る機能と、テレビ11505へは2本のケーブル11506a、11506bを通して受信した信号を送る機能の両者を有していることが特徴となる。
なお、中継装置11502は、例えば、高層ビルなどの影響で電波受信が困難な住宅密集地のために、高層ビルの屋上などに建てられるという設置方法があり、これにより、各住宅では、放送局が送信した変調信号に対し、良好な受信品質を得ることができる。そして、放送局が同一周波数を用いて送信した複数の変調信号を、各住宅では、得ることができるので、データの伝送速度が向上するという効果を得ることができる。
本明細書で説明しているように、放送局が、同一周波数帯の複数の変調信号を異なるアンテナを用いて送信した際、中継装置が、前記の複数の変調信号を受信し、家庭(住宅)に、1本の信号線を用いて中継する際の詳細の動作について、図116を用いて説明する。
次に、図116を用いて、1本の信号で家庭内へ引き込む場合の詳細について説明する。
図116に示すように、中継装置11502は、2本のアンテナ#1、アンテナ#2を用いて、放送波(放送局が送信した複数の変調信号)を受信する。
周波数変換部11611は、アンテナ#1で受信した受信信号を中間周波数#1に変換する(この信号を中間周波数#1の信号と呼ぶ)。
周波数変換部11612は、アンテナ#2で受信した受信信号を中間周波数#2(中間周波数#1とは周波数帯が異なる)に変換する(この信号を中間周波数#2の信号と呼ぶ)。
そして、加算器11613は、中間周波数#1の信号と中間周波数#2の信号を加算する。したがって、周波数分割を行うことで、アンテナ#1で受信した受信信号とアンテナ#2で受信した受信信号を伝送することになる。
テレビ11503では、分岐器11623にて1本の信号線からの信号を2本に分岐する。
そして、周波数変換部11621は、中間周波数#1に関する周波数変換を行い、ベースバンド信号#1を得る。したがって、ベースバンド信号#1は、アンテナ#1で受信した受信信号に相当する信号となる。
また、周波数変換部11622は、中間周波数#2に関する周波数変換を行い、ベースバンド信号#2を得る。したがって、ベースバンド信号#2は、アンテナ#2で受信した受信信号に相当する信号となる。
なお、家庭内への引き込みに使用される中間周波数#1および#2は、中継装置およびテレビの間で予め決められた周波数帯を用いてもよいし、中継装置11502が使用した中間周波数#1および#2に関する情報を、テレビ11503に対して何らかの通信媒体を用いて送信してもよい。また、テレビ11503が、中継装置11502に対し、使用して欲しい中間周波数#1および#2を何らかの通信媒体を用いて送信(指示)してもよい。
MIMO検波部11624は、MLD(最尤検出,Maximum Likelihood Detection)などのMIMO用の検波を行い、各ビットの対数尤度比を得る。(この点については、他の実施の形態で説明したとおりである。)(ここでは、MIMO検波部と呼んでいるが、検波の信号処理は、一般に知られているMIMO検波部と同様の動作となるので、MIMO検波部と呼んでいる。ただし、家庭内への引き込みの伝送方法は、一般的なMIMOシステムとは異なり、アンテナ#1で受信した受信信号とアンテナ#2で受信した受信信号を周波数分割方式を用いて伝送している。以降では、このような場合についてもMIMO検波部と呼ぶが、「検波部」と考えればよい。)
なお、本明細書で記載したように、放送局が、プリコーディングを行い、かつ、位相変更を行うことによって得られた複数の変調信号を複数のアンテナから送信している場合、他の実施の形態で説明したように、MIMO検波部11624は、プリコーディング・位相変更を反映させて、検波を行い、例えば、各ビットの対数尤度比を出力することになる。

続いて、図117を用いて、2本の信号で家庭内へ引き込む場合の例(方法1〜方法2)について説明する。
(方法1:中間周波数で引き込み)
方法1は、図117に示すように、アンテナ#1で受信した受信信号を中間周波数#1の信号に変換し、アンテナ#2で受信した受信信号を中間周波数#2の信号に変換し、中間周波数#1の信号と中間周波数#2の信号を別々の信号線(11506aおよび1506b)で、家庭内のテレビ11505へと引き込むものである。この場合、中間周波数#1と中間周波数#2とは同一の周波数であってもよいし、異なる周波数であってもよい。
(方法2:RF周波数で引き込み)
方法2は、アンテナ#1で受信した受信信号、および、アンテナ#2で受信した受信信号いずれも中継装置が受信した周波数(RF周波数)のままで家庭内に引き込むものである。すなわち、図118に示すように、中継装置11502において、アンテナ#1で受信した受信信号、および、アンテナ#2で受信した受信信号は、それぞれ、周波数変換機能を有さない中継部11811、11812を経由し、そして、ケーブル(信号線)11506a、ケーブル(信号線)11506bを経る。したがって、アンテナ#1で受信した受信信号、および、アンテナ#2で受信した受信信号は、RF周波数のままで家庭内のテレビ11505に引き込まれることになる。なお、中継部11811、11812において波形整形(帯域制限、ノイズ除去等)を行っても構わない。

なお、家庭内への信号引き込み方法において、テレビ側で中継された受信信号が中間周波数を利用しているか、あるいは、RF周波数を使用しているか、を判断し、使用している周波数によって、適宜動作を切り替える構成も考えられる。
図119に示すように、テレビ11901は、判定部11931を備える。判定部11931は、受信した受信信号レベルをモニタすることで、受信信号が中間周波数を使用しているか、あるいは、RF周波数を使用しているか、を判定する。
中間周波数を使用していると判定すると、判定部11931は、制御信号11932により、周波数変換部11621に中間周波数#1に関する周波数変換を行うように指示し、周波数変換部11622に中間周波数#2に関する周波数変換を行うように指示する。
RF周波数を使用していると判定すると、判定部11931は、制御信号11932により、周波数変換部11621、11622にRF周波数に関する周波数変換を行うように指示する。
そして、周波数変換後の信号は、MIMO検波部11624により自動的に検波されることとなる。
なお、判定部11931による自動判定ではなく、テレビ11901が備えるスイッチ(例えば、スイッチ)により、家庭内への引き込み方に関する設定(「信号線を1本としているか、あるいは、信号線を複数本としているか」、「RF周波数を使用しているか、あるいは、中間周波数を使用しているか」など
)が行えるようにしても構わない。
図115から図119を用いて、放送局が同一周波数帯域の複数の変調信号を複数のアンテナを用いて送信した際、中継装置を介し、家庭内に信号線を引き込む方法について説明したが、本明細書で説明したように、放送局は、「同一周波数帯域の複数の変調信号を複数のアンテナを用いて送信する送信方法」と「一つの変調信号を一つのアンテナ(または、複数のアンテナ)を用いて送信する送信方法」を適宜切り替える、あるいは、周波数分割を行い、例えば、周波数帯域Aでは「同一周波数帯域の複数の変調信号を複数のアンテナを用いて送信する送信方法」を用い、周波数帯域Bでは「一つの変調信号を一つのアンテナ(または、複数のアンテナ)を用いて送信する送信方法」というように、変調信号を送信する場合を考えることができる。
放送局が「同一周波数帯域の複数の変調信号を複数のアンテナを用いて送信する送信方法」と「一つの変調信号を一つのアンテナ(または、複数のアンテナ)を用いて送信する送信方法」を適宜切り替えている場合において、「同一周波数帯域の複数の変調信号を複数のアンテナを用いて送信する送信方法」を用いている場合は、上述で説明したように、家庭内に「信号線を1本、あるいは、信号線を複数本」で引き込む方法のいずれかにより、テレビは、放送局が送信したデータを得ることができる。
そして、「一つの変調信号を一つのアンテナ(または、複数のアンテナ)を用いて送信する送信方法」を用いている場合、同様に、家庭内に「信号線を1本、あるいは、信号線を複数本」で引き込む方法のいずれかにより、テレビは、放送局が送信したデータを得ることができる。なお、信号線を1本としている場合は、図116において、アンテナ#1、アンテナ#2、両者で、信号を受信してもよい。(このとき、テレビ11505のMIMO検波部11624は、最大比合成を行うと、高いデータの受信品質を得ることができる。)また、一方のアンテナで受信した受信信号のみを家庭内に伝送してもよい。このときは、加算器11613は加算の動作をせずに、一方の信号をそのまま通過させることになる。(このとき、テレビ11505のMIMO検波部11624は、MIMOのための検波を行うのではなく、一つの変調信号が送信され受信したときの一般的な検波(復調)が行われることになる。)
また、周波数分割を行い、例えば、周波数帯域Aでは「同一周波数帯域の複数の変調信号を複数のアンテナを用いて送信する送信方法」を用い、周波数帯域Bでは「一つの変調信号を一つのアンテナ(または、複数のアンテナ)を用いて送信する送信方法」というように、変調信号を送信する場合、テレビは、周波数帯域ごとに、上述で述べたような検波(復調)が行われることになる。つまり、テレビが、周波数帯域Aの変調信号を復調する場合、図116から図119を用いて説明したような検波(復調)が行われることになる。そして、周波数帯域Bの変調信号を復調する場合は、上述で説明した、「一つの変調信号を一つのアンテナ(または、複数のアンテナ)を用いて送信する送信方法」のときの検波(復調)が行われることになる。また、周波数帯域A、B以外の周波数帯域が存在していても同様に実施することができる。
なお、図115の中継システムでは、一例として、複数の住宅が共通のアンテナを使用する際の中継システムを示している。したがって、アンテナで受信した受信信号を複数の住宅に対し、配信しているが、別の実施の方法として、図115に相当する中継システムを各住宅が個別に保有していてもよい。このとき、図115では、中継器装置を介し、各住宅に、配線が届くようなイメージ図を示しているが、各住宅が個別に中継システムを保有しているとき、その住宅にのみ配線されることになる。そして、配線の本数は1本であってもよいし、複数であってもよい。

図115における中継システムに対し、新たな構成を付加した中継装置を図120に示す。
中継装置12010は、地上(terrestrial)デジタルテレビ放送の電波を受信するためのアンテナ12000_1で受信した受信信号12001_1と、地上(terrestrial)デジタルテレビ放送の電波を受信するためのアンテナ12000_2で受信した受信信号12001_2と、衛星放送の電波を受信するためのBS(Broadcasting Satellite)(用の)アンテナ12000_3で受信した受信信号12001_3とを入力とし、合成信号12008を出力する。中継装置12010は、フィルタ12003と、複数変調信号存在用周波数変換部12004と、合成部12007とを含んで構成される。
アンテナ12001_1及びアンテナ12001_2で受信する受信信号(12001_1、12001_2)に対応する放送局が送信する変調信号は、模式的に、図121(a)のように示すことができる。なお、図121(a)(b)において、横軸は周波数であり、四角の部分の周波数帯域に送信信号が存在していることを意味している。
図121(a)において、チャンネル1(CH_1)が存在している周波数帯域では、同一の周波数帯域に他の送信信号が存在していないため、地上波の電波を送信する放送局が、(一つの)チャンネル1(CH_1)の変調信号のみをアンテナから送信することを意味している。同様に、チャンネルL(CH_L)が存在している周波数帯域では、同一の周波数帯域に他の送信信号が送信していないため、地上波の電波を送信する放送局が、(一つの)チャンネルL(CH_L)の変調信号のみをアンテナから送信することを意味している。
一方、図121(a)において、チャンネルK(CH_K)が存在している周波数帯域では、同一の周波数帯域に2つの変調信号が存在している。(したがって、図121(a)では、同一周波数帯域に2つの四角が存在している。ストリーム(Stream)1、ストリーム(Stream)2と記述している。)このときストリーム1の変調信号、およびストリーム2の変調信号は、それぞれ異なるアンテナから、同一時間に送信される。なお、ストリーム1およびストリーム2は、前にも述べたように、プリコーディングおよび位相変更を施すことによって得られた変調信号であってもよいし、プリコーディングのみを行って得られた変調信号であってもよいし、プリコーディングを行わずに得られた変調信号であってもよい。同様に、チャンネルM(CH_M)が存在している周波数帯域では、同一の周波数帯域に2つの変調信号が存在している。(したがって、図121(a)では、同一周波数帯域に2つの四角が存在している。ストリーム(Stream)1、ストリーム(Stream)2と記述している。)このとき、ストリーム1の変調信号、およびストリーム2の変調信号は、それぞれ異なるアンテナから、同一時間に送信される。なお、ストリーム1およびストリーム2は、前にも述べたように、プリコーディングおよび位相変更を施すことによって得られた変調信号であってもよいし、プリコーディングのみを行って得られた変調信号であってもよいし、プリコーディングを行わずに得られた変調信号であってもよい。
また、BSアンテナ12000_3で受信した受信信号12001_3に対応する放送局(衛星)が送信する変調信号は、模式的に図121(b)のように示すことができる。
図121(b)において、BSチャンネル1(CH1)が存在している周波数帯域では、同一の周波数帯域に他の送信信号が存在していないため、衛星放送の電波を送信する放送局が、(一つの)チャンネル1(CH1)の変調信号のみをアンテナから送信することを意味している。同様に、BSチャンネル2(CH2)が存在している周波数帯域では、同一の周波数帯域に他の送信信号が存在していないため、衛星放送の電波を送信する放送局が、(一つの)チャンネルL(CH2)の変調信号のみをアンテナから送信することを意味している。
なお、図121(a)と図121(b)は同一周波数帯域の周波数割り当てを示している。
図120では、地上波(terrestrial)の放送局が送信する変調信号とBSが送信する変調信号を例として記載されているが、これに限ったものではなく、CS(communications satellite)が送信する変調信号が存在していてもよいし、他の異なる放送システムが送信する変調信号が存在していてもよい。このとき、図120では、各放送システムが送信する変調信号を受信するための受信部が存在することになる。
受信信号12001_1を受け付けたフィルタ12003は、受信信号12001_1に含まれる「複数の変調信号が存在する周波数帯域の信号」をカットし、フィルタリング後の信号12005を出力する。
例えば、受信信号12001_1の周波数割り当てが、図121(a)であるとすると、フィルタ12003は、図122(b)に示すように、チャンネルKとチャンネルMとの周波数帯域の信号が除去された信号12005を出力する。
複数変調信号存在用周波数変換部12004は、本実施の形態において、上述で中継装置(11502等)として説明した装置の機能を有する。具体的には、放送局で同一周波数帯域に複数の変調信号を異なるアンテナを用いて同一時間に送信された周波数帯域の信号を検出し、検出された信号に対して、周波数変換を行う。即ち、複数変調信号存在用周波数変換部12004は、「複数の変調信号が存在する周波数帯域の信号」が2つの異なる周波数帯に存在するように変換を行う。
例えば、複数変調信号存在用周波数変換部12004が図116に示す構成を備えていて、複数変調信号存在用周波数変換部12004は、2つのアンテナで受信した受信信号のうち、「複数の変調信号が存在する周波数帯域の信号」を2つの中間周波数に変換し、その結果、元の周波数帯域とは異なる周波数帯域に変換する構成になっている。
図120の複数変調信号存在用周波数変換部12004は、受信信号12001_1を入力としており、図123に示すように、複数の変調信号(複数のストリーム)が存在している周波数帯域、つまり、チャネルK(CH_K)12301、および、チャネルM(CH_M)12302の信号を抽出し、この2つの周波数帯域の変調信号それぞれを異なる周波数帯域に変換する。したがって、チャネルK(CH_K)12301の信号は、図123(b)のように、周波数帯域12303の信号に変換され、また、チャネルM(CH_M)12302の信号は、図123(b)のように周波数帯域12304の信号に変換される。
加えて、図120の複数変調信号存在用周波数変換部12004は、受信信号12001_2を入力としており、図123に示すように、複数の変調信号(複数のストリーム)が存在している周波数帯域、つまり、チャネルK(CH_K)12301、および、チャネルM(CH_M)12302の信号を抽出し、この2つの周波数帯域の変調信号それぞれを異なる周波数帯域に変換する。したがって、チャネルK(CH_K)12301の信号は、図123(b)のように、周波数帯域12305の信号に変換され、また、チャネルM(CH_M)12302の信号は、図123(b)のように周波数帯域12306の信号に変換される。
そして、図120の複数変調信号存在用周波数変換部12004は、図123の(b)に示した4つの周波数帯域の成分を含む信号を出力する。
なお、図123において、図123(a)と図123(b)の横軸は周波数であり、図123(a)と図123(b)は同一周波数帯域の周波数割り当てを示している。図123(a)の示している信号の存在する周波数帯域と図123(b)の信号が存在する周波数帯域は重ならないものとする。
図120の合成部12007は、フィルタ12003が出力した信号(12005)と、複数変調信号存在用周波数変換部12004が出力した信号(12006)と、BSアンテナ12000_3から入力された信号(12001_3)を入力とし、周波数軸上での合成を行う。したがって、図120の合成部12007は、図125の周波数成分を持つ信号(12008)を得、出力する。テレビ12009は、この信号(12008)を入力とすることになる。したがって、1本の信号線を引き込むことで、高いデータの受信品質でテレビを視聴することができる。
次に、別の例として、複数変調信号存在用周波数変換部12004が図116に示す構成を備えていて、複数変調信号存在用周波数変換部12004は、2つのアンテナで受信した受信信号のうち、「複数の変調信号が存在する周波数帯域の信号」をそのままの周波数帯域と1つの中間周波数帯域とする方法について説明する。
図120の複数変調信号存在用周波数変換部12004は、受信信号12001_1を入力としており、図124に示すように、複数の変調信号(複数のストリーム)が存在している周波数帯域、つまり、チャネルK(CH_K)12401、および、チャネルM(CH_M)12402の信号を抽出し、この2つの周波数帯域の変調信号それぞれを異なる周波数帯域に変換する。したがって、チャネルK(CH_K)12401の信号は、図124(b)のように、周波数帯域12403の信号に変換され、また、チャネルM(CH_M)12402の信号は、図124(b)のように周波数帯域12404の信号に変換される。
加えて、図120の複数変調信号存在用周波数変換部12004は、受信信号12001_2を入力としており、図124に示すように、複数の変調信号(複数のストリーム)が存在している周波数帯域、つまり、チャネルK(CH_K)12401、および、チャネルM(CH_M)12402の信号を抽出し、それぞれ、元の周波数帯域と同一の周波数帯域に配置する。したがって、チャネルK(CH_K)12401の信号は、図124(b)のように、周波数帯域12405の信号になり、また、チャネルM(CH_M)12402の信号は、図124(b)のように、周波数帯域12406の信号になる。
そして、図120の複数変調信号存在用周波数変換部12004は、図124の(b)に示した4つの周波数帯域の成分を含む信号を出力する。
なお、図124において、図124(a)と図124(b)の横軸は周波数であり、図124(a)と図124(b)は同一周波数帯域の周波数割り当てを示している。12401と12405は同一の周波数帯域であり、また、12402と12406は同一の周波数帯域となる。
図120の合成部12007は、フィルタ12003が出力した信号(12005)と、複数変調信号存在用周波数変換部12004が出力した信号(12006)と、BSアンテナ12000_3から入力された信号(12001_3)を入力とし、周波数軸上での合成を行う。したがって、図120の合成部12007は、図126の周波数成分を持つ信号(12008)を得、出力する。テレビ12009は、この信号(12008)を入力とすることになる。したがって、1本の信号線を引き込むことで、高いデータの受信品質でテレビを視聴することができる。
したがって、周波数軸における放送局が送信する信号のうち、複数の変調信号を複数のアンテナで(同一周波数帯域を用い、同一時刻に)送信する送信方法を使用している周波数帯域に対し、上記で記載した家庭内への信号線の引き込みを行うことで、テレビ(端末)は高いデータの受信品質を得ることができ、かつ、家庭内における信号線の配線を少なくすることができるという利点がある。このとき、上述のように、放送局が1つの変調信号を1本以上のアンテナを用いて送信する送信方法を用いた周波数帯域が存在してもよい。
なお、本実施の形態においては、図115(図127(a))に示すように、中継装置を例えば集合住宅の屋上等に配置する例を説明した。しかしながら、中継装置の配置位置は、これに限るものではなく、上述したように、例えば、図127(b)に示すように、各家庭のテレビ等に信号を引き込む場合に、1個人住宅につき、1つ配される構成であってもよい。あるいは、図127(c)に示すように、ケーブルテレビ事業者が、放送波(放送局が送信した複数の変調信号)を受信して、各家庭等に受信した放送波を有線(ケーブル)で再配信する場合に、ケーブル事業者の中継システムの一部として用いられてもよい。
即ち、本実施の形態において示した図116、図117、図118、図119、図120のそれぞれの中継装置は、図127(a)のように、集合住宅の屋上等に配置してもよいし、図127(b)に示すように、各家庭のテレビ等へ信号を引き込む場合に、1個人住宅につき、1つ配されるとしてもよいし、図127(c)に示すように、ケーブルテレビ事業者が、放送波(放送局が送信した複数の変調信号)を受信して、各家庭等に受信した放送波を有線(ケーブル)で再配信する場合に、ケーブル事業者の中継システムの一部として用いられてもよい。

<実施の形態N>
本実施の形態においては、本明細書で記載した実施の形態において示したように、プリコーディングを行うとともに、規則的に位相変更を行って複数のアンテナから同一周波数帯域に同時に送信された複数の変調信号を受信し、ケーブルテレビ(有線)で再配信するシステムについて説明する。(なお、プリコーディング行列は、本明細書に記載したプリコーディング行列いずれであってもよく、また、本明細書とは異なるプリコーディング行列を用いた場合にも、本実施の形態を実施することは可能である。加えて、本明細書では、プリコーディングとともに位相変更を施す送信方法について説明しているが、本実施の形態で説明する方法は、位相変更を施していない場合、および、プリコーディングを施さない場合についても、実施することが可能である。)
ケーブルテレビ事業者は、無線で送信された放送波の電波を受信する装置を保有しており、放送波が届きにくい、例えば各家庭に、有線でデータ(例えば、動画、音声、データ情報等)を再配信しており、広義においては、インターネットの接続サービス、電話回線の接続サービスを提供している場合もある。
放送局が複数の変調信号を(同一周波数帯で同一時間に)複数のアンテナで送信する場合に、このケーブルテレビ事業者において、問題が発生する場合がある。以下でその問題について説明する。
放送局が各放送波を送信するための送信周波数は予め定められていものとする。図128において、横軸周波数であり、図128に示すように、放送局があるチャンネル(図128の場合は、CH_K)において、複数の変調信号を(同一周波数帯で同一時間に)複数のアンテナで送信したとする。なお、CH_Kのストリーム1(Stream1)とストリーム2(Stream2)では異なるデータを含んでおり、ストリーム1(Stream1)とストリーム2(Stream2)から複数の変調信号が生成されることになる。
このとき、放送局は、ケーブルテレビ事業者に、無線で、チャンネルK(CH_K)の複数の変調信号が(同一周波数帯で同一時間に)複数のアンテナを用いて送信することになる。したがって、ケーブルテレビ事業者は、本明細書で記載した実施の形態に示したように、チャンネルK(CH_K)の周波数帯に対して、放送局が複数のアンテナを用いて同時に送信した信号を受信し、復調・復号することになる。
しかし、図128に示すように、チャンネルK(CH_K)では、複数の変調信号(図128の場合2つ)が送信されているため、これらをそのままパススルー方式でケーブル(1本の有線)に配信した場合、ケーブルの先の各家庭では、チャンネルK(CH_K)に含まれるデータのデータの受信品質が大きく劣化する。
そこで、上記実施の形態Mに示したように、ケーブルテレビ事業者は、チャンネルK(CH_K)の複数の受信信号に対してそれぞれ周波数変換を行って、2以上の異なる周波数帯に変換し、合成した信号を送信することも考えられるが、他の周波数帯は別のチャンネルや衛星放送チャンネルなどに占有されて使用が困難の場合がある。
そこで、本実施の形態においては、周波数変換が困難な場合であっても、放送局が送信した同一周波数帯で同一時間に送信された複数の変調信号を、有線で再配信する手法を開示する。
図129に、ケーブルテレビ事業者における中継装置の構成を示す。ここでは、2×2MIMOの通信システムの場合、つまり、放送局が、2つの変調信号を同一周波数帯で同一時間に送信し、中継装置が2つのアンテナを用いて受信する場合を示す。
ケーブルテレビ事業者の中継装置は、受信部12902と配信用データ生成部12904を備える。
アンテナ12900_1及びアンテナ12900_2で受信された受信信号(12900_1、12900_2)は、本明細書で記載したように、受信部12902において、プリコーディングの逆変換処理、および/または、位相を戻す処理などが施され、受信部12902は、データ信号rs1(12803_1)とデータ信号rs2(12803_2)を得て、配信用データ生成部12804に出力する。また、受信部12902は、受信した信号の復調・復号に利用した信号処理方法に関する情報および放送局が変調信号を送信するのに用いた送信方法に関する情報を、信号処理方法に関する情報12903_3として配信用データ生成部12904に出力する。
なお、図129では、受信部12902が、データ信号rs1(12803_1)とデータ信号rs2(12803_2)の2系統でデータを出力する場合を示しているが、これに限ったものではなく(ここでは一例)、例えば、データを1系統で出力してもよい。
具体的には、受信部12902は、本明細書で記載した図7に示す無線部703_X、703_Y、変調信号z1のチャネル変動推定部705_1、変調信号z2のチャネル変動推定部705_2、変調信号Z1のチャネル変動推定部707_1、変調信号Z2のチャネル変動推定部707_2、制御情報復号部709、信号処理部711とからなる構成を備える。図129に示すアンテナ12900_1及び12900_2はそれぞれ、図7に示すアンテナ701_X及び701_Yに対応する。ただし、本実施の形態において信号処理部711は、実施の形態1の図8に示される信号処理部とは異なり、図130に示す構成を備える。
図130に示すように、本実施の形態に係る受信部12902が備える信号処理部は、INNER MIMO 検波部803と、記憶部815と、対数尤度算出部13002Aと、対数尤度算出部13002Bと、硬判定部13004Aと、硬判定部13004Bと、係数生成部13001とからなる。
図130においては、図8と共通する部分については、同一の符号を付し、ここでは、その説明を割愛する。
対数尤度算出部13002Aは、図8に示す対数尤度算出部805Aと同様に対数尤度を算出し、対数尤度信号13003Aを硬判定部13004Aに出力する。
同様に、対数尤度算出部13002Bは、図8に示す対数尤度算出部805Bと同様に対数尤度を算出し、対数尤度信号13003Bを硬判定部13004Bに出力する。
硬判定部13004Aは、対数尤度信号13003Aに対して硬判定を行って、そのビット値を得、これをデータ信号rs1(12903_1)として、配信用データ生成部12904に出力する。
同様に硬判定部13004Bは、対数尤度信号13003Bに対して硬判定を行って、そのビット値を得、これをデータ信号rs2(12903_2)として、配信用データ生成部12904に出力する。
係数生成部13001は、係数生成部819と同様に、係数を生成してINNER MIMO検波部803に出力するほか、放送局(送信装置)が通知した送信方法の情報(用いた固定のプリコーディング行列及び位相を変更していた場合の位相変更パターンを特定するための情報や変調方式等)に関する信号818から、2つの信号に用いられた少なくとも変調方式に係る情報を抽出し、この変調方式に係る情報を含む信号処理方法の情報に関する信号12903_3を配信用データ生成部12904に出力する。
以上の説明からわかるように、受信部12902は、対数尤度を求めて硬判定を行うところまでの復調は行うものの、ここの一例では、誤り訂正までは実行していない。
なお、図130では、対数尤度算出部、硬判定部を具備した構成を取っているが、INNER MIMO検波部803が軟判定を行わず、硬判定を行ってもよく、この場合、対数尤度算出部、硬判定部を具備する必要がない。また、硬判定の結果をrs1、rs2とする必要はなく、各ビットの軟判定の結果をrs1、rs2としてもよい。
図129の配信用データ生成部12904は、データ信号rs1(12903_1)とデータ信号rs2(12903_2)と信号処理方法に関する情報12903_3とを入力とし、配信信号12905を生成して、契約先の各家庭などに配信する。
ここから、図129の配信用データ生成部12904が配信信号12905を生成する方法について、図131〜図133を用いて詳細に説明する。
図131は、配信用データ生成部12904の構成を示すブロック図である。図131に示すように、配信用データ生成部12904は、結合部13101と、変調部13103と、配信部13105とから構成される。
結合部13101は、データ信号rs1(12903_1)とデータ信号rs2(12903_2)と信号処理方法に関する情報および放送局が変調信号を送信するのに用いた送信方法に関する情報(12903_3)とを入力とし、信号処理方法に関する情報および放送局が変調信号を送信するのに用いた送信方法に関する情報で定められるデータ信号rs1とデータ信号rs2とをまとめてデータ結合信号13102を変調部13103に出力する。なお、図131では、データ信号rs1(12903_1)とデータ信号rs2(12903_2)を記載しているが、上述で述べたように、図130において、rs1とrs2を束ねて1系統でデータを出力する構成が考えられる。この場合、図131における結合部13101は削除することが可能である。
変調部13103は、データ結合信号13102と信号処理方法に関する情報および放送局が変調信号を送信するのに用いた送信方法に関する情報12903_3とを入力とし、設定した変調方式にしたがったマッピングを行い、変調信号13104を生成し、出力する。変調方式の設定方法の詳細については後述する。
配信部13105は、変調信号13104と信号処理方法に関する情報および放送局が変調信号を送信するのに用いた送信方法12903_3を入力とし、変調信号13104と各家庭のテレビ受信機などにおける復調・復号のための制御情報として、変調信号13104に用いられた変調方式の情報のほか、誤り訂正符号の情報(符号の情報、誤り訂正符号の符号化率等)を示す制御情報とを含んだ配信信号12905を、契約先の各家庭などに、ケーブル(有線)を介して配信する。
図131の結合部13101及び変調部13103における処理の詳細を図132及び図133を用いて説明する。
図132は、配信用データ生成部12904への入力であるデータ信号rs1とデータ信号rs2との概念図である。図132においては、横軸に時間軸をとり、図132の四角それぞれは、各時間で一度に配信されなければならないデータブロックを示している。誤り訂正符号として組織符号を用いていてもよいし、非組織符号を用いていてもよい。当該データブロックは、誤り訂正符号化後のデータで構成されているものとする。
ここでデータ信号rs1及びデータ信号rs2を送信するのに用いられた変調方式はともに16QAMであったとする。言い換えると、図128のチャネルK(CH_K)のストリーム1(Stream1)を送信するために使用する変調方式を16QAM、ストリーム2(Stream2)を送信するために使用する変調方式を16QAMとする。
この場合、データ信号rs1の1シンボルを構成するビット数は4ビットであり、データ信号rs2の1シンボルを構成するビット数は4ビットとなるので、図132に示す各データブロック(rs1_1、rs1_2、rs1_3、rs1_4、rs2_1、rs2_2、rs2_3、rs2_4)はそれぞれ4bitのデータということになる。
図132に示すように、データrs1_1及びデータrs2_1は時刻t1で復調され、データrs1_2及びデータrs2_2は時刻t2で復調され、データrs1_3及びデータrs2_3は時刻t3で復調され、データrs1_4及びデータrs2_4は時刻t4で復調されたデータであるとする。
なお、図132に示したデータrs1_1、rs1_2はともに、同じタイミングで各家庭などに配信されると、放送局が送信したデータが、テレビ(端末)に届くまでの遅延が小さいという利点がある。同様に、データrs1_2、rs2_2も同じタイミングで、データrs1_3、rs2_3も同じタイミングで、データrs1_4、rs2_4も同じタイミングで配信されるとよい。
そのため、図129の配信用データ生成部12904は、受信部12902から受け付けたデータ信号rs1とデータ信号rs2とから、同じタイミングで送信されたデータ(シンボル)を一つに束ね、一つのシンボルで送信できるように処理を実行する。
即ち、図133に示すように、rs1_1の1シンボルとrs2_1の1シンボルとを併せたデータで、一つのデータシンボルを構成する。具体的には、仮にrs1_1が硬判定により「0000」という4bitのデータであると判定され、rs1_2が「1111」という4bitのデータであると判定されていた場合に、図132に示すrs1_1+rs2_1は、「00001111」というデータになる。この8bitのデータを一つのデータシンボルとする。同様に、rs1_2の1シンボルとrs2_2の1シンボルとを併せたデータrs1_2+rs2_2を一つのデータシンボルとし、rs1_3の1シンボルとrs2_3の1シンボルとを併せたデータrs1_3+rs2_3を一つのデータシンボルとし、rs1_4の1シンボルとrs2_4の1シンボルとを併せたデータrs1_4+rs2_4を一つのデータシンボルとする。なお、図133は、横軸に時間軸をとり、一つの四角は一度に送信されるべきデータシンボルを示している。また、図133においては、便宜上「+」という記号で、表現しているが図133における「+」は加算を意味するものではない。図133においては、「+」は、単純に二つのデータを並べた形のデータにしたものであることを意味する。
ところで、データrs1_1+rs2_1、rs1_2+rs2_2、rs1_3+rs2_3、rs1_4+rs2_4はそれぞれ8bitのデータであり、同時に各家庭に配信しなければならないデータである。しかし、データ信号rs1、rs2がそれぞれ送信するのに用いられた変調方式は16QAMであるが、16QAMでは、8bitのデータを同時にまとめて送ることができない。
そこで、変調部13103は、入力されたデータ結合信号13102を、一度に8bitのデータを送信できる変調方式、即ち、256QAMで変調する。つまり、変調部13103は、2つのデータ信号の送信に用いられた変調方式の情報を信号処理に関する情報12903_3から取得し、得られた2つの変調方式それぞれのコンスタレーションポイント数を乗算して得られる値をコンスタレーションポイント数とする変調方式で変調する。そして、変調部13103は、新たな変調方式(ここでの説明では256QAM)で変調して得られる変調信号13104を配信部13105に出力する。
なお、放送局から送信された変調信号が1つの場合は、受信部12902及び配信用データ生成部12904は、そのままパススルー方式で受信した信号をそのままケーブル(有線)に配信する。(ここでは、硬判定を行って、再度変調を行う方法で説明しているが、これに限ったものではなく、例えば、受信した信号自身を増幅して、送信してもよい。)
図129において、ケーブル(有線)で配信された配信信号12905は、図134に示すテレビ受信機13400で受信される。図134に示すテレビ受信機13400は、図37に示す受信機3700と略同等の構成を備え、同様の機能を備えるものについては、同じ符号を付し、説明を割愛する。
ケーブル13401から配信信号12905を受け付けたチューナ3701は、指定されているチャンネルの信号を抽出し、復調部13402に出力する。
復調部13402は、図37に示す復調部3700の機能に加え、更に以下の機能を備える。復調部13402は、配信信号12905に含まれる制御情報に従って、チューナ3701から伝達された信号が放送局から同一周波数帯に同一時間で2以上の変調信号が送信されたものであったことを検出すると、当該制御情報に従って、入力された1つの信号を2以上の信号に分割する。即ち、図133の状態の信号を図132の状態に戻す処理を実行し、得られた信号をストリーム入出力部3703に出力することになる。復調部13402は、受信した信号の対数尤度を求め、硬判定を行って、得られたデータを、複数の信号が混合されている比率に応じて、分割し、分割後のデータに対して、誤り訂正等の処理を行って、データを得る。
このようにして、ケーブル(有線)で配信された放送を各家庭などのテレビ受信機13400は、放送局からケーブルテレビ事業者まで同一周波数帯に同一時間で複数の変調信号の送信がなされたチャネルも復調・復号することができる。
ところで、本実施の形態において2つのデータ信号rs1、rs2の送信に用いられた変調方式はともに16QAMであるとしたが、複数の変調信号を送信するにあたってそれぞれの変調信号に用いる変調方式の組み合わせは、16QAMと16QAMの組み合わせに限るものではない。一例として、以下の表2に示すような組み合わせが考えられる。
Figure 2020061771
表2は、放送局が生成する2つのストリームの数(表2の送信変調信号数)と、2つのストリームを生成するのに用いた変調方式の組み合わせ(表2の#1は、ストリーム1の変調方式であり、#2は、ストリーム2の変調方式となる)と、各組み合わせに対して変調部13103で再変調する際に用いる変調方式である再変調方式とを対応付けた表である。
図131において、変調部13103が入力とする信号処理方法に関する情報および放送局が変調信号を送信するのに用いた送信方法に関する情報12903_3で示される変調方式の組み合わせに一致するものに対応している再変調方式が変調部13103で用いられる変調方式ということになる。ここで示す組み合わせは一例であり、表2からわかるように再変調方式のコンスタレーションポイント数は、2つのストリームの変調方式のセットのコンスタレーションポイント数の乗算値、つまり、#1で使用する変調方式のI(同相)−Q(直交)平面における信号点の数と#2で使用する変調方式のI(同相)−Q(直交)平面における信号点の数を乗算した値に相当する。なお、再変調方式のコンスタレーションポイント数(I(同相)−Q(直交)平面における再変調方式の信号点の数)が、この乗算値を上回っていれば、表2に示す再変調方式以外の変調方式を用いてもよい。
更には、放送局が送信するストリーム数が3以上の場合であっても、それぞれのストリームで用いた変調方式のコンスタレーションポイント数の乗算値から変調部13103で用いる変調方式が決定される。
なお、本実施の形態においては、中継装置においては、硬判定を行って、データの結合を行う場合を示したが、これは軟判定であってもよい。軟判定を用いたとき、軟判定値の値に基づき、再変調方式のマッピングしたベースバンド信号を補正する必要がある。
また、上述で記載したように、図129において、rs1とrs2が存在する構成となっているが、これらを1つに束ねて、受信部12902は出力してもよい。このとき、データ線は1つとなるが、ストリーム1の1シンボルで伝送するビット数が4、ストリーム2の1シンボルで伝送するビット数が4のとき、前記の1つに束ねたデータ線では、8ビットを1つのシンボルとして、受信部12902は出力することになる。このとき、図131の変調部13103が、再変調に用いる変調方式は、上述の説明と同様となり、例えば、256QAMとなる。つまり、表2を用いることができる。
図135には、図129に示したケーブルテレビ事業者における中継装置の別構成例を示す。図135に示す中継装置の受信部13502と、配信用データ生成部13504とは、図129に示したものとは異なり、放送局で複数の変調信号が同一周波数帯で同一時間に送信された信号についてのみ処理を実行する。そして、配信用データ生成部13504は、複数の信号を上述で説明したように結合し、変調方式を放送局からの送信時とは異なる変調方式で変調した信号を、その周波数帯に乗せた信号13505を生成し、出力する。
一方、アンテナ12900_1で受信した受信信号12901_1は、受信部13502以外に、フィルタ13506にも供給される。
フィルタ13506は、受信信号12901_1から、放送局で複数の変調信号が同一時間で、同一周波数帯で送信された場合に、その周波数帯の信号のみをカットして、フィルタリング後の信号13507を合成部13508に出力する。
そして、合成部13508は、フィルタリング後の信号13507と、配信用データ生成部13504から出力された信号13505とを合成して、配信信号12905を生成し、ケーブル(有線)で各家庭などに配信する。
このような構成にすることで、ケーブルテレビ事業者の中継装置は、複数の変調信号が同一時間に送信された周波数帯以外の周波数帯の信号については処理を行わずにすむ。
なお、本実施の形態においては、ケーブルテレビ事業者における中継装置について説明したが、これに限定されるものではない。本実施の形態に示す中継装置は、図127(c)に示す形態に該当するが、これに限らず、図127(a)(b)に示すように、集合住宅用の中継装置、あるいは、各個人宅用の中継装置などとして使用することができる。
また、本実施の形態においては、複数の変調信号が送信された周波数帯域に対して周波数変換を行わないこととしたが、複数の変調信号が送信された周波数帯域に対して実施の形態Mに示したような周波数変換を行ってもよい。

(実施の形態O)
他の実施の形態では、プリコーディングを行うとともに規則的に位相変更処理を行う方法を、放送系に用いる場合について述べたが、本実施の形態では、通信系に用いる場合を説明する。通信系に用いる場合には、図136に示すように、以下の3つの通信形態が考えられる。
(1)マルチキャスト通信の場合・・・他の実施の形態と同様、基地局は、プリコーディングを行うとともに、規則的に位相変更を行う送信方法を用いると、多くの端末に対し、データを伝送することが可能となる。
例えば、基地局13601から携帯端末13602a〜13602cへとコンテンツを一斉配信するマルチキャスト通信に用いることができる(図136(a))
(2)ユニキャスト通信、かつ、closed-loopの場合(通信端末からフィードバック情報がある場合(CSI(Channel State Information)の情報をフィードバック、または、端末側で、基地局に使用して欲しいプリコーディング行列を指定))・・・基地局は、用意しているプリコーディング行列から、端末が送信したCSIの情報、および/または、基地局に使用して欲しいプリコーディング行列の情報に基づき、プリコーディング行列を選択し、それを用いて、複数の変調信号に対し、プリコーディングを施し、複数の変調信号を複数のアンテナから同一時間、同一周波数帯域を用い、送信する。図136(b)に一例を示す。
(3)ユニキャスト通信、かつ、open-loopの場合(通信端末からの情報に基づき、プリコーディング行列を変更しない)・・・基地局は、プリコーディングを行うとともに、規則的に位相変更を行う送信方法を用いる。図136(c)に一例を示す。
なお、図136では、基地局と通信端末との間の通信例を図示しているが、基地局同士、あるいは、通信端末同士の通信であってもよい。
以下、これらの通信形態を実現するための基地局(送信機)と携帯端末(受信機)との構成について説明する。
図137は、本実施の形態に係る基地局の送受信機の構成例である。図137に示す基地局の送受信機は、図4に示した送信機の構成と同等の機能を有するものについては、同じ符号を付して説明を割愛し、異なる構成について説明する。
図137に示すように、基地局の送受信機は、図4に示した構成に加え、更に、アンテナ13701と、無線部13703と、フィードバック情報解析部13704とを備える。また、信号処理方法情報生成部314に代えて信号処理方法情報生成部13714を、位相変更部317Bに代えて位相変更部13717を備える。
アンテナ13701は、基地局の送受信機の通信相手が送信したデータを受信するためのアンテナである。このとき、図137に示した基地局の受信機の部分では、通信相手が送信したフィードバック情報を得ることになる。
無線部13703は、アンテナ13701で受信した受信信号13702を復調・復号し、得られたデータ信号13704をフィードバック情報解析部13705に出力する。
フィードバック情報解析部13705は、データ信号13704から通信相手が送信した、フィードバック情報、例えば、CSIの情報、および/または、基地局に使用して欲しいプリコーディング行列の情報、基地局に要求する通信方法(マルチキャスト通信なのかユニキャスト通信なのかの要求情報、および、open-loopなのかclosed-loopなのかの要求情報)を取得し、フィードバック情報13706として出力する。
信号処理方法情報生成部13714は、フレーム構成信号13713及びフィードバック情報13706を入力とし、フレーム構成信号13713及びフィードバック情報13706の両者に基づき(端末の要求を優先してもよいし、基地局の希望を優先してもよい。)、本実施の形態の(1)(2)(3)のいずれかの送信方法とするかを決定し、決定した通信方法の情報を含む制御情報13715を出力する。なお、本実施の形態の(1)(3)の送信方法を選択した場合、プリコーディングを行うとともに、規則的に位相変更を行う送信方法に関する情報、本実施の形態の(2)の送信方法を選択した場合、使用するプリコーディング行列の情報が、制御信号13715に含まれることになる。
重み付け合成部308A、308Bは、決定した通信方法の情報を含む制御情報13715を入力とし、指定されたプリコーディング行列に基づき、プリコーディングの処理を行うことになる。
位相変更部13717は、決定した通信方法の情報を含む制御情報13715を入力とし、本実施の形態の(1)(3)の送信方法を選択している場合、位相変更部13717の入力であるプリコーディング後の信号316Bに対して規則的な位相変更処理を施し、本実施の形態の(2)の送信方法を選択している場合、位相変更部13717の入力であるプリコーディング後の信号316Bに対して指定された位相で固定的な位相変更処理を実行する(位相変更の処理を施さなくてもよい。)。そして、位相変更部13717は、位相変更後の信号309Bを出力する。
こうすることで、送信機では、上記3つの場合に対応した送信が実行できる。なお、基地局は、本実施の形態の(1)(2)(3)のいずれかの送信方法のいずれかの選択をしたか、等の送信方法の情報を通信相手である端末に通知するために、無線部310Aは、決定した通信方法の情報を含む制御情報13715を入力としている。無線部310Aは、決定した通信方法の情報を伝送するためのシンボルを生成し、送信フレームに挿入し、このシンボルを含む送信信号311Aは、アンテナ312Aから電波として送出される。
図138は、本実施の形態に係る端末の受信機の構成例を示す図である。図138に示すように、受信機は、受信部13803と、CSI生成部13805と、フィードバック情報生成部13807と、送信部13809とを備える。
受信部13803は、上記実施の形態1の図7、図8に示した構成と同等の構成を備え、アンテナ13801Aで受信した受信信号13802Aと、アンテナ13801Bで受信した受信信号13802Bとを入力として、送信機で送信されたデータを得る。
このとき、受信部13803は、データを得る過程で得られたチャネル推定情報の信号13804をCSI生成部13805に出力する。チャネル推定情報の信号13804は、例えば、図7に示す各チャネル変動推定部(705_1、705_2、707_1、707_2)から出力されるものとする。
CSI生成部13805は、入力されたチャネル推定情報の信号13804を基に、送信機にフィードバックするフィードバック情報(CSI:Channel State Information)の元となるCQI(Channel Quality Information)、RI(Rank Indication)、PCI(Phase Change Information)を生成して、フィードバック情報生成部13807に出力する。CQI、RIは、従来通りの手法で生成する。PCIは、受信機にとって、より好適に信号を受信できるであろう、基地局の送信機において位相変更値を決定するうえで、有用な情報であり、CSI生成部13805は、入力されたチャネル推定情報の信号13804から、より好適な情報をPCIとして生成する。(有用な情報としては、例えば、直接波成分の影響度合い、チャネル推定値の位相変動の状況など、が考えられる。)
フィードバック情報生成部13807は、CSI生成部13805により生成されたCQI、RI、PCIからCSIを生成する。図139には、フィードバック情報(CSI)のフレーム構成例を示す。なお、ここでは、CSIには、PMI(Precoding Matrix Indicator)を含まない形を示しているが、CSIには、PMIが含まれていてもよい。PMIは、受信機において希望する送信機で行ってほしいプリコーディングのためのプリコーディング行列を指定する情報である。
送信部13809は、フィードバック情報生成部13807から伝達されたフィードバック情報(CSI)を変調し、変調信号13810をアンテナ13811から送信機に送信する。
なお、端末は、図139の情報すべてを基地局にフィードバックしてもよいし、図139の一部を基地局にフィードバックしてもよい。また、フィードバックする情報は、図139の情報に限ったものではない。基地局は、端末からのフィードバック情報を一つの目安とし、本実施の形態の(1)(2)(3)のいずれかの送信方法を選択することになるが、基地局は複数の変調信号を複数のアンテナを用いて送信する送信方法を必ずしも選択する必要はなく、端末からのフィードバック情報に基づき、他の送信方法、例えば、1つの変調信号を1本以上のアンテナから送信する送信方法を選択してもよい。
以上のようにすることで、本実施の形態の(1)(2)(3)に記載した通信形態に対し、好適な送信方法を選択することができ、これにより、いずれの通信形態の場合も、端末は良好なデータの受信品質を得ることが可能となる。
(実施の形態P1)
本明細書で説明した、データを伝送するシンボルにおいて、ベースバンド信号(変調方式に基づいてマッピングした信号)s1とs2に対して、プリコーディングと規則的な位相変更を行った後の変調信号(データシンボル)に、一般的には、パイロットシンボル(SP(Scattered Pilot))や制御情報を伝送するシンボルなどを挿入する。
パイロットシンボルは、例えば、PSK変調を用いて変調したシンボルであり、かつ、規則にしたがって、PSK変調を施されたシンボルであり、受信機は、受信した受信信号から、送信器が送信したパイロットシンボルを容易に推定することが可能であり、したがって、受信機は、パイロットシンボルを用いて、周波数同期(および、周波数オフセット推定)、時間同期、(各変調信号の)チャネル推定(CSI(Channel State Information)の推定)、等を行うことになる。
本明細書で説明した、データを伝送するシンボルにおいて、ベースバンド信号(変調方式に基づいてマッピングした信号)s1とs2に対して、プリコーディングと規則的な位相変更を行った後の変調信号をz1、z2としたとき、変調信号z1、z2の平均電力を等しくする場合と、平均電力を変更することにより、z1の平均電力変更後の信号の平均電力とz2の平均電力変更後の信号の平均電力を異なるようにする場合を説明したが、両者いずれの場合も周波数推定、時間同期、チャネル推定の精度を確保するためには、パイロットシンボルの挿入方法、特に、パイロットシンボルの平均電力(I−Q平面における信号点振幅(パイロットシンボルのための信号点と原点との距離)(または、信号点パワー(パイロットシンボルのための信号点と原点とのパワー))を前記の2つの場合で、大きく変更しないほうがよい。
プリコーディングと規則的な位相変更を行った後の変調信号z1及びz2に平均電力の等しいパイロットシンボルを同じパターンを用いて挿入するとき、プリコーディングと規則的な位相変更を行った後のz1のうちのプリコーディングと規則的な位相変更を行ったシンボルの平均電力GD1とプリコーディングと規則的な位相変更を行った後のz2のうちのプリコーディングと規則的な位相変更を行ったシンボルの平均電力GD2が等しくないように設定しようとする(本明細書の中で具体例を説明している)。そして、プリコーディングと規則的な位相変更を行った後のz1のうちのプリコーディングと規則的な位相変更を行ったシンボルとパイロットシンボル、制御シンボル等を含む送信信号(つまり、第1のアンテナから送信される送信信号)の平均電力G1とプリコーディングと規則的な位相変更を行った後のz2のうちのプリコーディングと規則的な位相変更を行ったシンボルとパイロットシンボル、制御シンボル等を含む送信信号(つまり、第1のアンテナとは異なる第2のアンテナから送信される送信信号)の平均電力G2との比G1/G2は、GD1/GD2と一致しない。
そのため、例えば、プリコーディングと規則的な位相変更を行った後のz1のうちのプリコーディングと規則的な位相変更を行ったシンボルの平均電力GD1がプリコーディングと規則的な位相変更を行った後のz2のうちのプリコーディングと規則的な位相変更を行ったシンボルの平均電力GD2の1/2(電力レベル比3dB)である場合、第1のアンテナから送信される送信信号の平均電力G1と第2のアンテナから送信される送信信号の平均電力G2の比G1/G2は1/2ではなく、G1/G2はパイロットシンボルの挿入頻度と平均電力によって変化することになる。ここで、受信機における受信データの受信品質の向上とデータ伝送速度の向上の両立を図ろうとした場合、パイロットシンボルの挿入パターンは1種類ではなく、挿入頻度も1種類ではないシステムとなる。図142に時間―周波数軸におけるパイロットシンボルの挿入パターンの例を示す。なお、図142(a)、図142(b)はいずれも図示されているキャリア数および時刻に限られたものではなく、キャリア数(横軸)、時刻(縦軸)ともに任意の大きさでよいし、図示されていないキャリアおよび時刻については図示されているパターンの繰り返しである。
図142について、図140を用いて詳しく説明する。
図140に、DVB−T2規格における(例えば、放送局の)送信装置に対し、プリコーディング後の信号に位相変更を行う送信装置の構成の一例を示している。なお、図140において、図76と同様に動作するものについては同一符号を付した。なお、図140の動作の説明は後で行う。ここでは、図142のフレーム構成について詳しく説明する。
図142(a)は、送信信号の周波数―時間軸におけるフレーム構成であり、図140のアンテナ7626_1から送信される送信信号のフレーム構成が図142(a)の場合、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)となる。
このとき、図140のアンテナ7626_1から送信される送信信号において、パイロットシンボルが挿入されている周波数、時間では、BPSK変調に基づいたシンボルとなる。同様に、図140のアンテナ7626_2から送信される送信信号において、パイロットシンボルが挿入されている周波数、時間では、BPSK変調に基づいたシンボルとなる。
図140のアンテナアンテナ7626_1から送信される送信信号において、データシンボルが挿入されている周波数、時間では、後に示す式(#P4)において、θが0またはπラジアンのときは、データシンボルにはs1の成分のみが含まれる。また、θがπ/2または(3×π)/2ラジアンのときは、データシンボルにはs2の成分のみが含まれる。また、0ラジアン≦θ<2×πラジアン、かつ、θ≠0ラジアン、かつ、θ≠πラジアン、かつ、θ≠π/2ラジアン、かつ、θ≠(3×π)/2ラジアンのとき、データシンボルにはs1およびs2の成分が含まれることとなる。
図140のアンテナアンテナ7626_2から送信される送信信号において、データシンボルが挿入されている周波数、時間では、後に示す式(#P4)において、θが0またはπラジアンのときは、データシンボルにはs2の成分のみが含まれる。また、θがπ/2または(3×π)/2ラジアンのときは、データシンボルにはs1の成分のみが含まれる。また、0ラジアン≦θ<2×πラジアン、かつ、θ≠0ラジアン、かつ、θ≠πラジアン、かつ、θ≠π/2ラジアン、かつ、θ≠(3×π)/2ラジアンのとき、データシンボルにはs1およびs2の成分が含まれることとなる。
図142(b)は図142(a)とは異なる周波数―時間軸におけるフレーム構成であり、図142(a)とパイロットシンボルの挿入頻度が異なる点が特徴となる。また、図140のアンテナ7626_1から送信される送信信号のフレーム構成が図142(b)の場合、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)となる。
このとき、図140のアンテナ7626_1から送信される送信信号において、パイロットシンボルが挿入されている周波数、時間では、BPSK変調に基づいたシンボルとなる。同様に、図140のアンテナ7626_2から送信される送信信号において、パイロットシンボルが挿入されている周波数、時間では、BPSK変調に基づいたシンボルとなる。
図140のアンテナアンテナ7626_1から送信される送信信号において、データシンボルが挿入されている周波数、時間では、後に示す式(#P4)において、θが0またはπラジアンのときは、データシンボルにはs1の成分のみが含まれる。また、θがπ/2または(3×π)/2ラジアンのときは、データシンボルにはs2の成分のみが含まれる。また、0ラジアン≦θ<2×πラジアン、かつ、θ≠0ラジアン、かつ、θ≠πラジアン、かつ、θ≠π/2ラジアン、かつ、θ≠(3×π)/2ラジアンのとき、データシンボルにはs1およびs2の成分が含まれることとなる。
図140のアンテナアンテナ7626_2から送信される送信信号において、データシンボルが挿入されている周波数、時間では、後に示す式(#P4)において、θが0またはπラジアンのときは、データシンボルにはs2の成分のみが含まれる。また、θがπ/2または(3×π)/2ラジアンのときは、データシンボルにはs1の成分のみが含まれる。また、0ラジアン≦θ<2×πラジアン、かつ、θ≠0ラジアン、かつ、θ≠πラジアン、かつ、θ≠π/2ラジアン、かつ、θ≠(3×π)/2ラジアンのとき、データシンボルにはs1およびs2の成分が含まれることとなる。
なお、図142では、パイロットシンボルとデータシンボルのみで構成されている図となっているが、制御シンボル等のシンボルが含まれていてもよいし、また、一方の送信シンボルのみにシンボルが存在する(もう一方にはシンボルが存在しない)というような周波数、時間が存在してもよい。また、データシンボルは、他の実施の形態で説明したようにプリコーディング・位相変更を施したシンボルであってもよいし、プリコーディングを行ったシンボルであってもよいし、プリコーディングを行っていないシンボル(つまり、所定の変調方式によってマッピングされたシンボル)であってもよいし、プリコーディングを行っていないシンボルに対し、位相変更を行ったシンボルであってもよい。
実施の形態F1、実施の形態G1−G2では、誤り訂正符号化されたデータから生成されたベースバンド信号(所定の変調方式によってマッピングされた信号)s1とs2に対して、プリコーディング後の変調信号に対し、規則的に位相を変更する方法を適用する場合の、s1とs2の平均電力(平均値)の設定方法について説明した。また、実施の形態J1では、プリコーディングと規則的な位相変更を行った後のz1の平均電力(平均値)とプリコーディングと規則的な位相変更を行った後のz2の平均電力(平均値)が異なる場合について説明した。
本実施の形態では、実施の形態F1、実施の形態G1−G2、実施の形態J1を組み合わせて考え、プリコーディングと規則的な位相変更を行った後の変調信号p1(t)(図140参照)のうちのプリコーディングと規則的な位相変更を行ったシンボルの平均電力GD1とプリコーディングと規則的な位相変更を行った後の変調信号p2(t)(図140参照)のうちのプリコーディングと規則的な位相変更を行ったシンボルの平均電力GD2が等しくないように設定し、例えば、平均電力が等しいパイロットシンボルを同じパターン(フレームにおける挿入方法)を用いて挿入し、第1のアンテナ(図140の7626_1)から送信する送信信号の平均電力と第2のアンテナ(図140の7626_2)から送信する送信信号の平均電力とを所望の比率にするための、プリコーディング後のベースバンド信号の平均電力の設定方法について説明する。
なお、前提として、以下の説明では、誤り訂正符号化されたデータから生成されたベースバンド信号(所定の変調方式によってマッピングされた信号)s1の平均電力とs2の平均電力は等しいものであるとして説明する。
図140に、DVB−T2規格における(例えば、放送局の)送信装置に対し、プリコーディング後の信号に位相変更を行う送信装置の構成の一例を示している。なお、図140において、図76と同様に動作するものについては同一符号を付した。
パイロット挿入部7614_1は、信号処理後の変調信号p1(7613_1)、制御信号7609を入力とし、制御信号7609に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号p1(7613_1)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号x1(7615_1)を出力する。
パイロット挿入部7614_2は、信号処理後の変調信号p2(7613_2)、制御信号7609を入力とし、制御信号7609に含まれるパイロットシンボルの挿入方法に関する情報に基づき、信号処理後の変調信号p2(7613_2)にパイロットシンボルを挿入し、パイロットシンボル挿入後の変調信号x2(7615_2)を出力する。
この点について、図144を用いて、パイロットシンボルのI−Q平面における信号点配置とパイロットシンボルの平均電力について説明する。図144は、パイロットシンボルのI−Q平面における信号点配置を示しており、ここでは、一例として、パイロットシンボルに用いる変調方式はBPSK(Binary Phase Shift Keying)とする。したがって、パイロットシンボルは図144の2つの○のいずれかの信号点をとることになる。したがって、パイロットシンボルのI−Q平面における座標は、(I,Q)=(1×vp、0)または(−1×vp、0)となる。このとき、パイロットシンボルの平均電力はvp 2となる。(なお、パイロットシンボルの信号点と原点との距離の2乗(パイロットシンボルのパワー)はvp 2、パイロットシンボルの信号点と原点との距離(パイロットシンボルの振幅)はvpとなる。)そして、以下で詳しく説明するが、vpの値は、パイロットシンボルの挿入方法(挿入間隔等)により変更される。例えば、図142(a)のフレーム構成と図142(b)のフレーム構成でvpの値を変えてもよい。また、図142(a)において、2種類以上のvpの値を用意し、いずれかの値を選択し、用いてもよい。同様に、図142(b)において、2種類以上のvpの値を用意し、いずれかの値を選択し、用いてもよい。
図140の信号処理部7612を構成する、パワー変更部、および、重み付け合成部の構成の例を図141、図143に示している。なお、図141において、図3、図6、図85と同様に動作するものについては同一符号を付した。また、図143において、図3、図6、図85、図140と同様に動作するものについては同一符号を付した。
以下では、第1の送信アンテナから送信される送信信号tr1(7623_1)と第2の送信アンテナから送信される送信信号tr2(7623_2)との平均電力レベルを所望の比にするための、プリコーディング後のベースバンド信号の平均電力を制御するための方法について詳しく説明する。
(例1)
まず、図141を用いて、動作の一例を説明する。s1(t)、s2(t)は所定の変調方式によりマッピングされたベースバンド信号である。なお、tは時間であり、本実施の形態では、時間軸方向を例として説明する。(本明細書の他の実施の形態で説明したように、tをf(周波数)に変更しても同様に実施することが可能である。)
図141のパワー変更部(14101A)は、プリコーディング後のベースバンド信号309Aと、制御信号(14100)とを入力とし、制御信号(14100)に基づき、設定したパワー変更のための値をQとすると、プリコーディング後のベースバンド信号309AをQ倍した信号(パワー変更後の信号14103A)(p1(t))を出力する。なお、パワー変更後の信号14103A(p1(t))は、図140の7613_1(p1(t))に相当する。
パワー変更部(14101B)は、プリコーディング後のベースバンド信号316Bと、制御信号(14100)とを入力とし、制御信号(14100)に基づき、設定したパワー変更のための値をqとすると、プリコーディング後のベースバンド信号316Bをq倍した信号(パワー変更後の信号14102B)(p2’(t))を出力する。
位相変更部(317B)は、パワー変更後の信号14102B(p2’(t))及び信号処理方法に関する情報315を入力とし、パワー変更後の信号14102B(p2’(t))の位相を規則的に変更して、位相変更後の信号14103B(p2(t))を出力する。なお、位相変更後の信号14103B(p2(t))は、図140の7613_2(p2(t))に相当する。
また、制御信号(8500)、制御信号(14100)および信号処理に関する情報315は、図140に示される信号処理部(7612)に対して制御信号生成部(7608)が送出する制御信号7609の一部であり、Q及びqは0以外の実数である。
このとき、プリコーディング行列をFとし、プリコーディング後の変調信号に対し、規則的に位相を変更する方法において、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまりejθ(t)と表すことができる)とすると、次式が成立する。
Figure 2020061771
ここで、プリコーディング行列Fを
Figure 2020061771
とすると、
Figure 2020061771
となる。
よって、プリコーディング行列Fは、式(#P2)の代わりに、次式で表されてもよい。
Figure 2020061771
図141とは別の構成である図143でも、図141と同様の動作を実現することができる。よって、図143の動作について説明する。
図143が図141と異なる点は、位相変更部317Bとパワー変更部14101Bの順番を入れ替えている点である。
図143の位相変更部(317B)は、プリコーディング後のベースバンド信号316B、および、信号処理方法に関する情報315を入力とし、信号処理方法に関する情報315に基づき、プリコーディング後のベースバンド信号316Bの位相を規則的に変更して、位相変更後の信号14301B(p2’ ’(t))を出力する。
パワー変更部14101Bは、位相変更後の信号14301B(p2’ ’(t))および、制御信号14100を入力とし、制御信号(14100)に基づき、設定したパワー変更のための値をqとすると、位相変更後の信号14301B(p2’ ’(t))をq倍した信号(パワー変更後の信号14302B)(p2(t))を出力する。なお、パワー変更後の信号14302B(p2(t))は、図140の7613_2(p2(t))に相当する。
このとき、プリコーディング行列をFとし、プリコーディング後の変調信号に対し、規則的に位相を変更する方法において、規則的に位相変更を行うための位相変更値をy(t)(y(t)は絶対値が1の虚数(実数を含む)、つまりejθ(t)と表すことができる)とすると、次式が成立する。
Figure 2020061771
ここで、プリコーディング行列Fを式(#P2)とすると、
Figure 2020061771
となる。
よって、プリコーディング行列Fは、式(#P2)の代わりに、式(#P4)で表されてもよい。
なお、式(#P3)および式(#P6)から、図140で得られるp1(t)と図141で得られるp1(t)は等しく、図140で得られるp2(t)と図141で得られるp2(t)は等しい。
ところで、「第1の送信アンテナから送信される送信信号tr1(7623_1)と第2の送信アンテナから送信される送信信号tr2(7623_2)との平均電力レベルを所望の比にする」と記載したが、送信するフレーム内に、一つの変調信号のみを送信するシンボルが存在した場合、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力レベル」と「第2の送信アンテナから送信される送信信号tr2(7623_2)との平均電力レベル」の規定方法は複数ある。そこで、本実施の形態では、一つの変調信号のみを送信するシンボルが存在しない場合、つまり、図142を用いて、「第1の送信アンテナから送信される送信信号tr1(7623_1)と第2の送信アンテナから送信される送信信号tr2(7623_2)との平均電力レベルを所望の比にする」本発明の方法について説明する。
なお、図140において、P1シンボル挿入部7622が存在しているが、P1シンボルは、一つの変調信号により送信される。したがって、図142のフレーム構成でパイロットシンボルとデータシンボルを送信する場合について考えればよいことになる。
以下で、本発明の具体的な要件について説明するが、その要件は、上記のような場合とは異なるフレーム構成の場合、例えば、一つの変調信号によりデータシンボルを送信する場合、また、送信フレームにP1シンボルが挿入されている場合についても、有用な要件である。
図140において、パイロットシンボル挿入後の変調信号をx1(t)及びx2(t)とし、変調信号p1(t)および変調信号p2(t)に挿入されるパイロットシンボルの平均電力をGP、パイロットシンボル挿入後の変調信号x1(t)及びx2(t)における、全シンボルに対するパイロットシンボルの割合をPsとする。
また、プリコーディングと規則的な位相変更を行った後のp1(t)(図140参照)のうちのプリコーディングと規則的な位相変更を行ったシンボルの平均電力GD1とプリコーディングと規則的な位相変更を行った後のp2(t)(図140参照)のうちのプリコーディングと規則的な位相変更を行ったシンボルの平均電力GD2とする。
すると、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力G1、第2の送信アンテナから送信される送信信号tr2(7623_2)との平均電力G1は
Figure 2020061771
としてもよい。
ここで、第1の送信アンテナより送信される信号tr1(t)の平均電力が第2の送信アンテナより送信される信号tr2(t)の平均電力の1/2である、つまり、G1: G2=1:2のときのプリコーディング後のベースバンド信号の平均電力を制御する方法について説明する。
例えば、パイロットシンボルの挿入方法について、次の4通りで行うものとする。
<規則#1>
フレームの挿入間隔(挿入方法)を図142(a)とし、パイロットシンボルのマッピング方法をvp=z×v1とする。つまり、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボル、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルいずれもvp=z×v1とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#2>
フレームの挿入間隔(挿入方法)を図142(a)とし、パイロットシンボルのマッピング方法をvp=z×v2(ただしv1≠v2)とする。つまり、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボル、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルいずれもvp=z×v2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#3>
フレームの挿入間隔(挿入方法)を図142(b)とし、パイロットシンボルのマッピング方法をvp=z×v3とする。つまり、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボル、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルいずれもvp=z×v3とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#4>
フレームの挿入間隔(挿入方法)を図142(b)とし、パイロットシンボルのマッピング方法をvp=z×v4(ただしv3≠v4)とする。つまり、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボル、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルいずれもvp=z×v4とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
なお、パイロットシンボル挿入後の変調信号x1(t)及びx2(t)に<規則#i>の方法(iは1以上4以下の整数)でパイロットシンボルを挿入した場合、(第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)は、全シンボル数に占めるパイロットシンボル数の割合をPsiとすると、
G1=vp 2×Psi+GD1×(1−Psi)=z2×vi 2×Psi+GD1×(1−Psi
で表される。
同様に、第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)は、
G2=z2×vi 2×Psi+GD2×(1−Psi
で表される。
(例1−1)
ベースバンド信号s1(t)の変調方式がQPSK、ベースバンド信号s2(t)の変調方式が16QAMとし、s1(t)、s2(t)に対し、プリコーディングを行う場合を例に説明する。
QPSKのI−Q平面における信号点配置は図81のとおりであり、16QAMのI−Q平面における信号点配置は図80のとおりである。そして、QPSKのベースバンド信号であるs1(t)の平均電力と16QAMのベースバンド信号であるs2(t)の平均電力を等しくするために、以下の2つの式を満たすものとする。
Figure 2020061771
Figure 2020061771
なお、この点については、実施の形態F1においても説明している。
そして、(例1−1)では、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)とするものとする。(G1:G2を所望の比、1:2にする。)
そのときの、図140の信号処理部7612の動作、つまり、図141(または、図143)の動作について説明する。
QPSKのベースバンド信号であるs1(t)とし、16QAMのベースバンド信号であるs2(t)としたとき、受信装置において、高いデータの受信品質を得るために、プリコーディング行列Fは、式(#P2)に対してα=0(すなわち、式(#P4)に対してθ=0°(0度(0 degree)))
Figure 2020061771
とする。なお、式(#P10)の代わりに、
Figure 2020061771
を用いてもよい。
そして、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値はv2=u2=0.5と設定する。
このとき、変調信号p1(t)及びp2(t)は、
Figure 2020061771
で表されるので、変調信号p1(t)の平均電力(シンボル1つあたりのI−Q平面における信号点振幅の2乗の平均値)はGD1=Q22×2h2=Q22/2、p2(t)の平均電力はGD2=q22×10g2=q22/2となる。
そして、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqは、上述したように変調信号p1(t)及びp2(t)に挿入されるパイロットシンボルの平均電力(つまり、図144におけるvp)とパイロットシンボルの挿入頻度に応じて、変更することになる。
この点について、例を用いて説明する。
上述で述べたパイロットシンボルの挿入方法<規則#1>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#1及びq#1とする。(なお、Q#1<q#1が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#2>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#2及びq#2とする。(なお、Q#2<q#2が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#3>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#3及びq#3とする。(なお、Q#3<q#3が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#4>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#4及びq#4とする。(なお、Q#4<q#4が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−1>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−2>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
パイロットシンボルの挿入方法は、上記の<規則#1>から<規則#4>とは異なる方法も考えられる。例えば、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が異なっていてもよい。(なお、受信装置におけるチャネル推定の推定精度の向上という点では、上記の<規則#1>から<規則#4>のように、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)は等しいほうがよい。)(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
例えば、パイロットシンボルの挿入方法について、次の4通りで行うものとする。
<規則#5>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,2が成立する。ただし、v5,1≠v5,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#6>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,2が成立する。ただし、v6,1≠v6,2とする。また、v5,1≠v6,1かつv5,2≠v6,1が成立するか、または、v5,1≠v6,2かつv5,2≠v6,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#7>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,2が成立する。ただし、v7,1≠v7,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#8>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,2が成立する。ただし、v8,1≠v8,2とする。また、v7,1≠v8,1かつv7,2≠v8,1が成立するか、または、v7,1≠v8,2かつv7,2≠v8,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
ベースバンド信号s1(t)の変調方式がQPSK、ベースバンド信号s2(t)の変調方式が16QAM、および、各変調方式のマッピング方法は上述で説明したとおりであるものとする。また、プリコーディング方法、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値についても上述で説明したとおり(θ=0°、v2=u2=0.5)であるものとする。
上述で述べたパイロットシンボルの挿入方法<規則#5>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#5及びq#5とする。(なお、Q#5<q#5が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#6>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#6及びq#6とする。(なお、Q#6<q#6が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#7>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#7及びq#7とする。(なお、Q#7<q#7が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#8>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#8及びq#8とする。(なお、Q#8<q#8が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−3>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−4>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
なお、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#4>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しいパイロットシンボル挿入方法と、上述で述べたパイロットシンボルの挿入方法<規則#5>から<規則#8>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しくないパイロットシンボル挿入方法、のいずれかのパイロットシンボル挿入方法を送信装置が選択するとしてもよい。
例えば、送信装置が、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#8>のいずれかのパイロットシンボル挿入方法を選択して、変調信号を送信する場合を考える。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−5>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−6>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
(例1−2)
ベースバンド信号s1(t)の変調方式が16QAM、ベースバンド信号s2(t)の変調方式が16QAMとし、s1(t)、s2(t)に対し、プリコーディングを行う場合を例に説明する。
16QAMのI−Q平面における信号点配置は図80のとおりである。そして、16QAMのベースバンド信号であるs1(t)の平均電力と16QAMのベースバンド信号であるs2(t)の平均電力を等しくするために、式(#P9)を満たすものとする。なお、この点については、実施の形態F1においても説明している。
そして、(例1−2)では、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)とするものとする。(G1:G2を所望の比、1:2にする。)
そのときの、図140の信号処理部7612の動作、つまり、図141(または、図143)の動作について説明する。
16QAMのベースバンド信号であるs1(t)とし、16QAMのベースバンド信号であるs2(t)としたとき、受信装置において、高いデータの受信品質を得るために、プリコーディング行列Fは、式(#P4)に対してθ=25°(25度(25 degree))とする。
そして、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値はv2=u2=0.5と設定する。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqは、上述したように変調信号p1(t)及びp2(t)に挿入されるパイロットシンボルの平均電力(つまり、図144におけるvp)とパイロットシンボルの挿入頻度に応じて、変更することになる。
この点について、例を用いて説明する。
上述で述べたパイロットシンボルの挿入方法<規則#1>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#1及びq#1とする。(なお、Q#1<q#1が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#2>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#2及びq#2とする。(なお、Q#2<q#2が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#3>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#3及びq#3とする。(なお、Q#3<q#3が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#4>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#4及びq#4とする。(なお、Q#4<q#4が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−7>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−8>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
パイロットシンボルの挿入方法は、上記の<規則#1>から<規則#4>とは異なる方法も考えられる。例えば、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が異なっていてもよい。(なお、受信装置におけるチャネル推定の推定精度の向上という点では、上記の<規則#1>から<規則#4>のように、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)は等しいほうがよい。)(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
例えば、パイロットシンボルの挿入方法について、(例1−1)と同様、次の4通りで行うものとする。
<規則#5>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,2が成立する。ただし、v5,1≠v5,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#6>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,2が成立する。ただし、v6,1≠v6,2とする。また、v5,1≠v6,1かつv5,2≠v6,1が成立するか、または、v5,1≠v6,2かつv5,2≠v6,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#7>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,2が成立する。ただし、v7,1≠v7,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#8>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,2が成立する。ただし、v8,1≠v8,2とする。また、v7,1≠v8,1かつv7,2≠v8,1が成立するか、または、v7,1≠v8,2かつv7,2≠v8,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
ベースバンド信号s1(t)の変調方式が16QAM、ベースバンド信号s2(t)の変調方式が16QAM、および、各変調方式のマッピング方法は上述で説明したとおりであるものとする。また、プリコーディング方法、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値についても上述で説明したとおり(θ=25°、v2=u2=0.5)であるものとする。
上述で述べたパイロットシンボルの挿入方法<規則#5>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#5及びq#5とする。(なお、Q#5<q#5が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#6>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#6及びq#6とする。(なお、Q#6<q#6が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#7>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#7及びq#7とする。(なお、Q#7<q#7が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#8>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#8及びq#8とする。(なお、Q#8<q#8が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−9>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−10>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
なお、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#4>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しいパイロットシンボル挿入方法と、上述で述べたパイロットシンボルの挿入方法<規則#5>から<規則#8>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しくないパイロットシンボル挿入方法、のいずれかのパイロットシンボル挿入方法を送信装置が選択するとしてもよい。
例えば、送信装置が、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#8>のいずれかのパイロットシンボル挿入方法を選択して、変調信号を送信する場合を考える。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−11>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−12>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
(例1−3)
ベースバンド信号s1(t)の変調方式が16QAM、ベースバンド信号s2(t)の変調方式が64QAMとし、s1(t)、s2(t)に対し、プリコーディングを行う場合を例に説明する。
16QAMのI−Q平面における信号点配置は図80のとおりである。また、64QAMのI−Q平面における信号点配置は図86のとおりである。そして、16QAMのベースバンド信号であるs1(t)の平均電力と64QAMのベースバンド信号であるs2(t)の平均電力を等しくするために、式(#P9)および、次式を満たすものとする。
Figure 2020061771
なお、この点については、実施の形態F1においても説明している。
そして、(例1−3)では、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)とするものとする。(G1:G2を所望の比、1:2にする。)
そのときの、図140の信号処理部7612の動作、つまり、図141(または、図143)の動作について説明する。
16QAMのベースバンド信号であるs1(t)とし、64QAMのベースバンド信号であるs2(t)としたとき、受信装置において、高いデータの受信品質を得るために、プリコーディング行列Fは、式(#P4)に対してθ=15°(15度(15 degree))とする。
そして、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値はv2=u2=0.5と設定する。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqは、上述したように変調信号p1(t)及びp2(t)に挿入されるパイロットシンボルの平均電力(つまり、図144におけるvp)とパイロットシンボルの挿入頻度に応じて、変更することになる。
この点について、例を用いて説明する。
上述で述べたパイロットシンボルの挿入方法<規則#1>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#1及びq#1とする。(なお、Q#1<q#1が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#2>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#2及びq#2とする。(なお、Q#2<q#2が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#3>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#3及びq#3とする。(なお、Q#3<q#3が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#4>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#4及びq#4とする。(なお、Q#4<q#4が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−13>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−14>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
パイロットシンボルの挿入方法は、上記の<規則#1>から<規則#4>とは異なる方法も考えられる。例えば、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が異なっていてもよい。(なお、受信装置におけるチャネル推定の推定精度の向上という点では、上記の<規則#1>から<規則#4>のように、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)は等しいほうがよい。)(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
例えば、パイロットシンボルの挿入方法について、(例1−1)(例1−2)と同様、次の4通りで行うものとする。
<規則#5>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,2が成立する。ただし、v5,1≠v5,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#6>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,2が成立する。ただし、v6,1≠v6,2とする。また、v5,1≠v6,1かつv5,2≠v6,1が成立するか、または、v5,1≠v6,2かつv5,2≠v6,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#7>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,2が成立する。ただし、v7,1≠v7,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#8>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,2が成立する。ただし、v8,1≠v8,2とする。また、v7,1≠v8,1かつv7,2≠v8,1が成立するか、または、v7,1≠v8,2かつv7,2≠v8,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
ベースバンド信号s1(t)の変調方式が16QAM、ベースバンド信号s2(t)の変調方式が64QAM、および、各変調方式のマッピング方法は上述で説明したとおりであるものとする。また、プリコーディング方法、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値についても上述で説明したとおり(θ=15°、v2=u2=0.5)であるものとする。
上述で述べたパイロットシンボルの挿入方法<規則#5>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#5及びq#5とする。(なお、Q#5<q#5が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#6>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#6及びq#6とする。(なお、Q#6<q#6が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#7>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#7及びq#7とする。(なお、Q#7<q#7が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#8>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#8及びq#8とする。(なお、Q#8<q#8が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−15>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−16>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
なお、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#4>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しいパイロットシンボル挿入方法と、上述で述べたパイロットシンボルの挿入方法<規則#5>から<規則#8>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しくないパイロットシンボル挿入方法、のいずれかのパイロットシンボル挿入方法を送信装置が選択するとしてもよい。
例えば、送信装置が、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#8>のいずれかのパイロットシンボル挿入方法を選択して、変調信号を送信する場合を考える。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/2(G1=G2/2、つまり、G1:G2=1:2)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/2」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−17>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−18>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
(例2)
次に、第1の送信アンテナより送信される信号tr1(t)の平均電力が第2の送信アンテナより送信される信号tr2(t)の平均電力の1/4である、つまり、G1: G2=1:4のときのプリコーディング後のベースバンド信号の平均電力を制御する方法について説明する。
上述と同様に、パイロットシンボルの挿入方法として上述で述べた<規則#1>から<規則#4>を用いるものとする。
(例2−1)
ベースバンド信号s1(t)の変調方式がQPSK、ベースバンド信号s2(t)の変調方式が16QAMとし、s1(t)、s2(t)に対し、プリコーディングを行う場合を例に説明する。
QPSKのI−Q平面における信号点配置は図81のとおりであり、16QAMのI−Q平面における信号点配置は図80のとおりである。そして、QPSKのベースバンド信号であるs1(t)の平均電力と16QAMのベースバンド信号であるs2(t)の平均電力を等しくするために、式(#P8)、式(#P9)を満たすものとする。なお、この点については、実施の形態F1においても説明している。
そして、(例2−1)では、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)とするものとする。(G1:G2を所望の比、1:4にする。)
そのときの、図140の信号処理部7612の動作、つまり、図141(または、図143)の動作について説明する。
QPSKのベースバンド信号であるs1(t)とし、16QAMのベースバンド信号であるs2(t)としたとき、受信装置において、高いデータの受信品質を得るために、プリコーディング行列Fは、式(#P4)に対してθ=0°(0度(0 degree))とする。したがって、プリコーディング行列Fは式(#P10)となる。なお、式(#P10)の代わりに、式(#P11)を用いてもよい。
そして、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値はv2=u2=0.5と設定する。
そして、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqは、上述したように変調信号p1(t)及びp2(t)に挿入されるパイロットシンボルの平均電力(つまり、図144におけるvp)とパイロットシンボルの挿入頻度に応じて、変更することになる。
この点について、例を用いて説明する。
上述で述べたパイロットシンボルの挿入方法<規則#1>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#1及びq#1とする。(なお、Q#1<q#1が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#2>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#2及びq#2とする。(なお、Q#2<q#2が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#3>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#3及びq#3とする。(なお、Q#3<q#3が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#4>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#4及びq#4とする。(なお、Q#4<q#4が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−19>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−20>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
パイロットシンボルの挿入方法は、上記の<規則#1>から<規則#4>とは異なる方法も考えられる。例えば、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が異なっていてもよい。(なお、受信装置におけるチャネル推定の推定精度の向上という点では、上記の<規則#1>から<規則#4>のように、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)は等しいほうがよい。)(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
例えば、パイロットシンボルの挿入方法について、(例1−1)(例1−2)(例1−3)と同様、次の4通りで行うものとする。
<規則#5>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,2が成立する。ただし、v5,1≠v5,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#6>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,2が成立する。ただし、v6,1≠v6,2とする。また、v5,1≠v6,1かつv5,2≠v6,1が成立するか、または、v5,1≠v6,2かつv5,2≠v6,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#7>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,2が成立する。ただし、v7,1≠v7,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#8>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,2が成立する。ただし、v8,1≠v8,2とする。また、v7,1≠v8,1かつv7,2≠v8,1が成立するか、または、v7,1≠v8,2かつv7,2≠v8,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
ベースバンド信号s1(t)の変調方式がQPSK、ベースバンド信号s2(t)の変調方式が16QAM、および、各変調方式のマッピング方法は上述で説明したとおりであるものとする。また、プリコーディング方法、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値についても上述で説明したとおり(θ=0°、v2=u2=0.5)であるものとする。
上述で述べたパイロットシンボルの挿入方法<規則#5>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#5及びq#5とする。(なお、Q#5<q#5が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#6>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#6及びq#6とする。(なお、Q#6<q#6が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#7>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#7及びq#7とする。(なお、Q#7<q#7が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#8>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#8及びq#8とする。(なお、Q#8<q#8が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−21>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−22>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
なお、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#4>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しいパイロットシンボル挿入方法と、上述で述べたパイロットシンボルの挿入方法<規則#5>から<規則#8>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しくないパイロットシンボル挿入方法、のいずれかのパイロットシンボル挿入方法を送信装置が選択するとしてもよい。
例えば、送信装置が、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#8>のいずれかのパイロットシンボル挿入方法を選択して、変調信号を送信する場合を考える。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−23>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−24>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
(例2−2)
ベースバンド信号s1(t)の変調方式が16QAM、ベースバンド信号s2(t)の変調方式が16QAMとし、s1(t)、s2(t)に対し、プリコーディングを行う場合を例に説明する。
16QAMのI−Q平面における信号点配置は図80のとおりである。そして、16QAMのベースバンド信号であるs1(t)の平均電力と16QAMのベースバンド信号であるs2(t)の平均電力を等しくするために、式(#P9)を満たすものとする。なお、この点については、実施の形態F1においても説明している。
そして、(例2−2)では、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)とするものとする。(G1:G2を所望の比、1:4にする。)
そのときの、図140の信号処理部7612の動作、つまり、図141(または、図143)の動作について説明する。
16QAMのベースバンド信号であるs1(t)とし、16QAMのベースバンド信号であるs2(t)としたとき、受信装置において、高いデータの受信品質を得るために、プリコーディング行列Fは、式(#P4)に対してθ=0°(0度(0 degree))とする。したがって、プリコーディング行列Fは式(#P10)となる。なお、式(#P10)の代わりに、式(#P11)を用いてもよい。
そして、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値はv2=u2=0.5と設定する。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqは、上述したように変調信号p1(t)及びp2(t)に挿入されるパイロットシンボルの平均電力(つまり、図144におけるvp)とパイロットシンボルの挿入頻度に応じて、変更することになる。
この点について、例を用いて説明する。
上述で述べたパイロットシンボルの挿入方法<規則#1>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#1及びq#1とする。(なお、Q#1<q#1が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#2>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#2及びq#2とする。(なお、Q#2<q#2が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#3>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#3及びq#3とする。(なお、Q#3<q#3が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#4>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#4及びq#4とする。(なお、Q#4<q#4が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−25>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−26>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
パイロットシンボルの挿入方法は、上記の<規則#1>から<規則#4>とは異なる方法も考えられる。例えば、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が異なっていてもよい。(なお、受信装置におけるチャネル推定の推定精度の向上という点では、上記の<規則#1>から<規則#4>のように、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)は等しいほうがよい。)(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
例えば、パイロットシンボルの挿入方法について、(例2−1)と同様、次の4通りで行うものとする。
<規則#5>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,2が成立する。ただし、v5,1≠v5,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#6>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,2が成立する。ただし、v6,1≠v6,2とする。また、v5,1≠v6,1かつv5,2≠v6,1が成立するか、または、v5,1≠v6,2かつv5,2≠v6,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#7>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,2が成立する。ただし、v7,1≠v7,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#8>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,2が成立する。ただし、v8,1≠v8,2とする。また、v7,1≠v8,1かつv7,2≠v8,1が成立するか、または、v7,1≠v8,2かつv7,2≠v8,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
ベースバンド信号s1(t)の変調方式が16QAM、ベースバンド信号s2(t)の変調方式が16QAM、および、各変調方式のマッピング方法は上述で説明したとおりであるものとする。また、プリコーディング方法、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値についても上述で説明したとおり(θ=0°、v2=u2=0.5)であるものとする。
上述で述べたパイロットシンボルの挿入方法<規則#5>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#5及びq#5とする。(なお、Q#5<q#5が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#6>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#6及びq#6とする。(なお、Q#6<q#6が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#7>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#7及びq#7とする。(なお、Q#7<q#7が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#8>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#8及びq#8とする。(なお、Q#8<q#8が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−27>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−28>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
なお、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#4>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しいパイロットシンボル挿入方法と、上述で述べたパイロットシンボルの挿入方法<規則#5>から<規則#8>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しくないパイロットシンボル挿入方法、のいずれかのパイロットシンボル挿入方法を送信装置が選択するとしてもよい。
例えば、送信装置が、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#8>のいずれかのパイロットシンボル挿入方法を選択して、変調信号を送信する場合を考える。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−29>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−30>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
(例2−3)
ベースバンド信号s1(t)の変調方式が16QAM、ベースバンド信号s2(t)の変調方式が64QAMとし、s1(t)、s2(t)に対し、プリコーディングを行う場合を例に説明する。
16QAMのI−Q平面における信号点配置は図80のとおりである。また、64QAMのI−Q平面における信号点配置は図86のとおりである。そして、16QAMのベースバンド信号であるs1(t)の平均電力と64QAMのベースバンド信号であるs2(t)の平均電力を等しくするために、式(#P9)および、式(#P13)を満たすものとする。なお、この点については、実施の形態F1においても説明している。
そして、(例1−3)では、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)とするものとする。(G1:G2を所望の比、1:4にする。)
そのときの、図140の信号処理部7612の動作、つまり、図141(または、図143)の動作について説明する。
16QAMのベースバンド信号であるs1(t)とし、64QAMのベースバンド信号であるs2(t)としたとき、受信装置において、高いデータの受信品質を得るために、プリコーディング行列Fは、式(#P4)に対してθ=0°(0度(0 degree))とする。したがって、プリコーディング行列Fは式(#P10)となる。なお、式(#P10)の代わりに、式(#P11)を用いてもよい。
そして、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値はv2=u2=0.5と設定する。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqは、上述したように変調信号p1(t)及びp2(t)に挿入されるパイロットシンボルの平均電力(つまり、図144におけるvp)とパイロットシンボルの挿入頻度に応じて、変更することになる。
この点について、例を用いて説明する。
上述で述べたパイロットシンボルの挿入方法<規則#1>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#1及びq#1とする。(なお、Q#1<q#1が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#2>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#2及びq#2とする。(なお、Q#2<q#2が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#3>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#3及びq#3とする。(なお、Q#3<q#3が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#4>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#4及びq#4とする。(なお、Q#4<q#4が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−31>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−32>
iを1以上4以下の整数とし、jを1以上4以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
パイロットシンボルの挿入方法は、上記の<規則#1>から<規則#4>とは異なる方法も考えられる。例えば、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が異なっていてもよい。(なお、受信装置におけるチャネル推定の推定精度の向上という点では、上記の<規則#1>から<規則#4>のように、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)は等しいほうがよい。)(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
例えば、パイロットシンボルの挿入方法について、(例2−1)(例2−2)と同様、次の4通りで行うものとする。
<規則#5>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v5,2が成立する。ただし、v5,1≠v5,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#6>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(a)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(a)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v6,2が成立する。ただし、v6,1≠v6,2とする。また、v5,1≠v6,1かつv5,2≠v6,1が成立するか、または、v5,1≠v6,2かつv5,2≠v6,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#7>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v7,2が成立する。ただし、v7,1≠v7,2とする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
<規則#8>
図140のアンテナ7626_1から送信される送信信号のフレーム構成は、図142(b)、図140のアンテナ7626_2から送信される送信信号のフレーム構成も図142(b)とする。そして、図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,1が成立し、図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルにおいて、vp=z×v8,2が成立する。ただし、v8,1≠v8,2とする。また、v7,1≠v8,1かつv7,2≠v8,1が成立するか、または、v7,1≠v8,2かつv7,2≠v8,2が成立するものとする。(なお、vpは、上述で述べたとおりであり、図144に記載されているとおりである。)
ベースバンド信号s1(t)の変調方式が16QAM、ベースバンド信号s2(t)の変調方式が64QAM、および、各変調方式のマッピング方法は上述で説明したとおりであるものとする。また、プリコーディング方法、図141(図143)のパワー変更部8501A、8501Bにおけるパワー変更のための値についても上述で説明したとおり(θ=0°、v2=u2=0.5)であるものとする。
上述で述べたパイロットシンボルの挿入方法<規則#5>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#5及びq#5とする。(なお、Q#5<q#5が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#6>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#6及びq#6とする。(なお、Q#6<q#6が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#7>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#7及びq#7とする。(なお、Q#7<q#7が成立する。)
同様に、上述で述べたパイロットシンボルの挿入方法<規則#8>において、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)を満たすために、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqをそれぞれQ#8及びq#8とする。(なお、Q#8<q#8が成立する。)
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−33>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−34>
iを5以上8以下の整数とし、jを5以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
なお、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#4>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しいパイロットシンボル挿入方法と、上述で述べたパイロットシンボルの挿入方法<規則#5>から<規則#8>のように図140のアンテナ7626_1から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)と図140のアンテナ7626_2から送信される送信信号に含まれるパイロットシンボルの平均電力(vpの値)が等しくないパイロットシンボル挿入方法、のいずれかのパイロットシンボル挿入方法を送信装置が選択するとしてもよい。
例えば、送信装置が、上述で述べたパイロットシンボルの挿入方法<規則#1>から<規則#8>のいずれかのパイロットシンボル挿入方法を選択して、変調信号を送信する場合を考える。
第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の1/4(G1=G2/4、つまり、G1:G2=1:4)に設定すると記載したが、実際は、「第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の約1/4」に設定することになる。このとき、第1の送信アンテナから送信される送信信号tr1(7623_1)平均電力(変調信号x1(t)の平均電力)を第2の送信アンテナから送信される送信信号tr2(7623_2)(変調信号x2(t)の平均電力)の差が大きいため、パイロットシンボルの挿入方法により、図141(図143)のパワー変更部14101A、14101Bにおけるパワー変更のための値Q及びqを変更する必要がある。
したがって、以下の条件を満たすことになる。
<条件#P−35>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、Q#i≠Q#jを満たすi,jが存在する。
同様に、以下の条件を満たすことになる。
<条件#P−36>
iを1以上8以下の整数とし、jを1以上8以下の整数とし、i≠jを満たし、q#i≠q#jを満たすi,jが存在する。
以上の説明は、例であるが、本実施の形態で説明した発明を一般化すると、以下のようになる。
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図141(または、図143)において、パワー変更部14101A、および、パワー変更部14101Bは、送信フレームのおけるパイロットシンボルの挿入頻度(例えば、周波数軸においてパイロットシンボルの挿入間隔を変更する、または、時間軸においてパイロットシンボルの挿入間隔を変更する、または、周波数軸・時間軸の両者においてパイロットシンボルの挿入間隔を変更する)により、それぞれ、Qの値、qの値を変更することがある。」
または、
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図141(または、図143)において、パワー変更部14101A、および、パワー変更部14101Bは、パイロットシンボルの平均電力の値(vpの値)(図144参照)により、それぞれ、Qの値、qの値を変更することがある。」
または、
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図141(または、図143)において、パワー変更部14101A、および、パワー変更部14101Bは、送信フレームのおけるパイロットシンボルの挿入頻度(例えば、周波数軸においてパイロットシンボルの挿入間隔を変更する、または、時間軸においてパイロットシンボルの挿入間隔を変更する、または、周波数軸・時間軸の両者においてパイロットシンボルの挿入間隔を変更する)、および、パイロットシンボルの平均電力の値(vpの値)(図144参照)により、それぞれ、Qの値、qの値を変更することがある。」
なお、上述の(例1−1)から(例1−3)および(例2−1)から(例2−3)において、データシンボルとパイロットシンボルが存在するフレーム構成で説明したが、これに限ったものではなく、P1シンボルや他のシンボルが存在していたときも、上述で述べた一般化した本発明の内容を満たすことが重要となる。
このようにすることで、送信装置は、第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比を満たし、その条件下で、受信装置は、パイロットシンボルを用いたチャネル推定におけるチャネル推定精度を向上させることができるので、良好なデータの受信品質を確保することができるという利点がある。
なお、例えば、図140の送信装置が、上述で述べたようにQの値、および、qの値を変更した場合、図140の送信装置が送信した変調信号を受信する受信装置では、図140の送信装置が送信した送信方法に関する情報を得ることで、使用したQの値、および、qの値を推定し、それを反映させて、例えば、式(#P1)(または、式(#P3)、または式(#P12))の関係式を知り、加えて、チャネル推定値(チャネル行列)を用いて、検波(復調)を行うことになる。したがって、送信装置は、使用したQの値、および、qの値が推定可能な情報を含むシンボルを送信することが重要であり、また、受信装置は、このシンボルを受信することで、データを検波(検波)することが可能となる。
(その他補足)
上記では、p2’(t)に位相の変更を実行する構成となっているがこれに限ったものではない。例えば、図141において、パワー変更部14101Aの後にも、位相変更部を配置してもよい。また、実施の形態2で説明したように、位相の変更を実行する(ブロック線図上での)位置としては、重み付け合成部600によるプリコーディングの前で実行することとしてもよく、図141または図143に示した構成に代えて、位相変更部317Bを重み付け合成部600の前段に設ける構成としてもよい。また、位相の変更は、両変調信号s1(t)、s2(t)の双方に対して実行してもよい。したがって、上述のようにプリコーディングの前に位相の変更を実行してもよく、s1(t)とs2(t)のそれぞれに対して重み付け合成部600の前段に設ける構成としてもよい。
また、必ずしも、位相変更部が必要ということではなく、例えば、図141において、位相変更部317Bがない場合についても、上述で述べたパワー変更部14101A及び14101Bの動作を実行すると、本実施の形態で述べた効果を得ることができる。
上記では、プリコーディング前にベースバンド信号s1(t)、s2(t)の双方に対してパワー変更部14101A及び14101Bによりパワー変更を実行する構成となっているがこれに限ったものではない。実施の形態F1で説明したように、パワー変更部14101Bを省略する構成であってもよく(図145参照)、このとき図141または図143においてq=1に固定した構成と同等となる。このとき、本発明は、以下のように考えることができる。
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図145において、パワー変更部14101Aは、送信フレームのおけるパイロットシンボルの挿入頻度(例えば、周波数軸においてパイロットシンボルの挿入間隔を変更する、または、時間軸においてパイロットシンボルの挿入間隔を変更する、または、周波数軸・時間軸の両者においてパイロットシンボルの挿入間隔を変更する)により、Qの値を変更することがある。」
または、
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図145において、パワー変更部14101Aは、パイロットシンボルの平均電力の値(vpの値)(図144参照)により、Qの値を変更することがある。」
または、
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図145において、パワー変更部14101Aは、送信フレームのおけるパイロットシンボルの挿入頻度(例えば、周波数軸においてパイロットシンボルの挿入間隔を変更する、または、時間軸においてパイロットシンボルの挿入間隔を変更する、または、周波数軸・時間軸の両者においてパイロットシンボルの挿入間隔を変更する)、および、パイロットシンボルの平均電力の値(vpの値)(図144参照)により、Qの値を変更することがある。」
あるいは、パワー変更部14101Aを省略する構成であってもよく(図146参照)、このとき図141または図143においてQ=1に固定した構成と同等となる。このとき、本発明は、以下のように考えることができる。
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図146において、パワー変更部14101Bは、送信フレームのおけるパイロットシンボルの挿入頻度(例えば、周波数軸においてパイロットシンボルの挿入間隔を変更する、または、時間軸においてパイロットシンボルの挿入間隔を変更する、または、周波数軸・時間軸の両者においてパイロットシンボルの挿入間隔を変更する)により、qの値を変更することがある。」
または、
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図146において、パワー変更部14101Bは、パイロットシンボルの平均電力の値(vpの値)(図144参照)により、qの値を変更することがある。」
または、
「第1の送信アンテナより送信される信号tr1の平均電力と第2の送信アンテナより送信される信号tr2の平均電力の比を所定の比に設定し、これを満たすために、図146において、パワー変更部14101Bは、送信フレームのおけるパイロットシンボルの挿入頻度(例えば、周波数軸においてパイロットシンボルの挿入間隔を変更する、または、時間軸においてパイロットシンボルの挿入間隔を変更する、または、周波数軸・時間軸の両者においてパイロットシンボルの挿入間隔を変更する)、および、パイロットシンボルの平均電力の値(vpの値)(図144参照)により、qの値を変更することがある。」
また、上記では、ベースバンド信号s1とs2との変調方式の組み合わせについて、(s1の変調方式、s2の変調方式)が(16QAM、16QAM)、(QPSK、16QAM)、(16QAM、64QAM)のいずれかである場合を説明したがこれに限ったものではない。ベースバンド信号s1とs2との変調方式の組み合わせが上記以外であってもよい。
また、上記では、プリコーディング行列Fが式(#P2)または式(#P4)で表される場合について説明したがこれに限ったものではない。例えば、プリコーディング行列Fが
Figure 2020061771
Figure 2020061771
Figure 2020061771
Figure 2020061771
Figure 2020061771
のいずれかであってもよい。ただし、式(#P17)、式(#P18)において、θ11、θ21、λは固定値である。また、本明細書で示したプリコーディング行列いずれを用いてもよい。
(実施の形態Q1)
本実施の形態では、上記の各実施の形態で説明したプリコーディング後の信号に位相変更を施す方法において用いることができるプリコーディング行列の一例について説明する。
(例1)
以下では、16QAMのマッピングを施した2つの変調信号にプリコーディングを施し、プリコーディング後の信号に位相変更を施す方法において用いることができるプリコーディング行列の一例について説明する。
16QAMのマッピングについて、図80を用いて説明する。図80は、同相I−直交Q平面における16QAMの信号点配置の例を示している。図80の信号点8000は、送信するビット(入力ビット)をb0〜b3とすると、例えば、送信するビットが(b0、b1、b2、b3)=(1、0、0、0)(この値は、図80に記載されている値である。)のとき、同相I−直交Q平面における座標は、(I,Q)=(−3×g、3×g)であり、このI,Qの値が、マッピング後の信号となる。なお、送信するビット(b0、b1、b2、b3)が他の値のときも、(b0、b1、b2、b3)にもとづき、図80から、(I,Q)のセットが決定し、I,Qの値が、マッピング後の信号(s1およびs2)となる。
なお、s1、s2の変調方式を16QAM以外の変調方式に切り替えた場合に、16QAMの平均電力と他の変調方式の平均電力を等しくするgの値の一例は、式(79)である。
本実施の形態において一例として説明する、以下の式(#Q1)は、変調信号s1(t)及びs2(t)にプリコーディングと位相変更を施して生成されるベースバンド信号z1(t)及びz2(t)を表す。
Figure 2020061771
以下では、プリコーディングの前後でパワー変更を行わない場合について説明する。その場合、式(#Q1)におけるパワー変更のための値であるQ、q及びv、uは、それぞれQ=q=0.5とv=u=0.5に設定され、式(#Q1)は式(#Q2)のように変形することができる。
Figure 2020061771
以下では、送信装置が上記の式(#Q1)または式(#Q2)に従って、変調方式が16QAMの変調信号s1(t)、s2(t)に対してプリコーディングと位相変更を施す場合に、受信装置において高い受信品質を得ることができるプリコーディング行列の例について説明する。まず、プリコーディング行列として以下の式(#Q3)を用いる場合について説明する。
Figure 2020061771
このとき、αの値は
Figure 2020061771

に設定される。
s1(t)とs2(t)の変調方式がそれぞれ16QAMであり、プリコーディング行列においてαが式(#Q4)を満たすとき、z1(t)及びz2(t)はいずれも図147に示すI−Q平面において互いに異なる位置に配置された256点の信号点のいずれかに相当するベースバンド信号となる。なお、図147に示す信号点配置は位相回転が施されていない場合、すなわち位相回転量が0の場合の信号点配置である。位相回転量が0(または2πの整数倍)でない場合、z2(t)の信号点配置は図147に示すI−Q平面上の信号点を原点を中心に位相を回転させた信号点配置となる。
変調方式が16QAMであるs1(t)及びs2(t)はそれぞれ4ビットのデータから生成される。そのため、s1(t)とs2(t)に式(#Q3)のプリコーディング行列に従ったプリコーディングを施して生成されたz1(t)及びz2(t)は、いずれも計8ビットのデータから生成されたベースバンド信号である。上述したとおり、αが式(#Q4)を満たすとき、プリコーディング後の信号はいずれも、I−Q平面上の互いに異なる位置に配置された256点の信号点のいずれかに相当するベースバンド信号となる。すなわち、8ビットのデータが取り得る256通りの値と、図147に示すI−Q平面上の256点の信号点とは一対一に対応しており、互いに異なる8ビットのデータから生成されたプリコーディング後の信号が、I−Q平面上の同じ位置に配置されることはない。
一方、αの値によっては互いに異なる値を有する第1のデータ及び第2のデータから生成されたz1(t)がI−Q平面上で重複する、すなわちI−Q平面上において同じ位置に配置される場合がある。その場合、受信側においてz1(t)とz2(t)を完全に分離することができたとしてもz1(t)からは伝送されているデータが第1のデータであるのか第2のデータであるのかを判別することができず、データの受信品質が低下する可能性がある。このような問題は、z2(t)においても同様に発生する可能性がある。これに対し、αが式(#Q4)を満たす場合は、図147に示すI−Q平面上の256点の信号点の位置と8ビットのデータの値が一対一に対応しているため信号点位置の重複は起こらず、信号点位置の重複がある場合と比較して高い受信品質を得ることができる可能性が高い。
特に、αが式(#Q4)を満たす場合は、図147に示すI−Q平面上の256点の信号点の位置と8ビットのデータの値が一対一に対応するだけでなく、図147に示すI−Q平面上の256点の信号点のうち、右上、右下、左上、左下の4点を除く、252点の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、αが式(#Q4)を満たす場合は、受信装置において高い受信品質を得られる可能性が高い。
次に、プリコーディング行列として式(#Q3)ではなく、以下の式(#Q5)を用いる場合について説明する。
Figure 2020061771
このとき、θの値は
Figure 2020061771

に設定される。
これにより、z1(t)及びz2(t)はいずれも図147に示す256点の信号点のいずれかに相当するベースバンド信号となり、式(#Q3)のプリコーディング行列においてαが式(#Q4)を満たすときと同様に、受信装置において高い受信品質を得ることができる。
なお、θの値は、近似値として
Figure 2020061771

に設定されても、θが式(#Q6)を満たす場合と同様の効果が得られる。
また、上記では、プリコーディング行列Fが式(#Q3)または式(#Q5)で表される場合について説明したがこれに限ったものではない。例えばプリコーディング行列Fが
Figure 2020061771

Figure 2020061771

Figure 2020061771

のいずれかであり、且つαが式(#Q4)を満たす場合であってもよい。また、例えばプリコーディング行列Fが
Figure 2020061771

Figure 2020061771

Figure 2020061771

のいずれかであり、且つθが式(#Q6)または、式(#Q7)を満たす場合であってもよい。
また、上記では、ベースバンド信号z1(t)及びz2(t)が式(#Q1)または式(#Q2)で表される場合について説明したが、ベースバンド信号z1(t)及びz2(t)は式(#Q1)とは異なる式で表すこともできる。例えば、ベースバンド信号z1(t)及びz2(t)は
Figure 2020061771

で表すこともできる。ただし、θ11(t)、θ21(t)はtの関数であり、λは0を含むπ/2の整数倍の値である。この場合も、αが式(#Q4)を満たしていれば、式(#Q1)または式(#Q2)においてプリコーディング行列として式(#Q3)を使用し、αが式(#Q4)を満たす場合と同様の効果を得ることができる。
なお、本実施の形態では、プリコーディングの前後でパワー変更を行わない場合について説明したが、プリコーディングの前にはパワー変更を行わず、プリコーディングの後にはパワー変更を行う構成としてもよい。その場合、変調信号s1(t)及びs2(t)にプリコーディングとパワー変更を行った後のベースバンド信号の信号点配置は、図147に示すI−Q平面上の256点の信号点をパワー変更のための値Q及びqに応じて振幅を変更したものとなる。
なお、本実施の形態では、プリコーディング後の信号に位相変更を施す方法であることを前提に説明したが、位相変更を施さない場合であっても上述のプリコーディングを施すことによりプリコーディング後の信号は、図147に示す256点の信号点のいずれかに相当するベースバンド信号となる。そのため、プリコーディング後に位相変更を行わないシステムにおいても、上述の各プリコーディングを施すことにより受信装置において高い受信品質を得ることができる可能性が高い。
(例2)
以下では、64QAMのマッピングを施した2つの変調信号にプリコーディングを施し、プリコーディング後の信号に位相変更を施す方法において用いることができるプリコーディング行列の一例について説明する。
64QAMのマッピングについて、図86を用いて説明する。図86は、同相I−直交Q平面における64QAMの信号点配置の例を示している。図86の信号点8600は、送信するビット(入力ビット)をb0〜b5とすると、例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(1、0、0、0、0、0)(この値は、図86に記載されている値である。)のとき、同相I−直交Q平面における座標は、(I,Q)=(−7×k、7×k)であり、このI,Qの値が、マッピング後の信号となる。なお、送信するビット(b0、b1、b2、b3、b4、b5)が他の値のときも、(b0、b1、b2、b3、b4、b5)にもとづき、図86から、(I,Q)のセットが決定し、I,Qの値が、マッピング後の信号(s1およびs2)となる。
なお、s1、s2の変調方式を64QAM以外の変調方式に切り替えた場合に、64QAMの平均電力と他の変調方式の平均電力を等しくするkの値の一例は、式(85)である。
以下では、送信装置が上記の式(#Q1)または式(#Q2)に従って、変調方式が64QAMの変調信号s1(t)、s2(t)に対してプリコーディングと位相変更を施す場合に、受信装置において高い受信品質を得ることができるプリコーディング行列の例について説明する。まず、プリコーディング行列として式(#Q3)を用いる場合について説明する。
変調信号s1(t)及びs2(t)が変調方式として64QAMを使用している場合、式(#Q3)においてαを
Figure 2020061771

に設定する。
この場合、z1(t)及びz2(t)はいずれも図148に示すI−Q平面において互いに異なる位置に配置された4096点の信号点のいずれかに相当するベースバンド信号となる。なお、図148に示す信号点配置は位相回転が施されていない場合、すなわち位相回転量が0の場合の信号点配置である。位相回転量が0(または2πの整数倍)でない場合、z2(t)の信号点配置は図148に示すI−Q平面上の信号点を原点を中心に位相を回転させた信号点配置となる。
変調方式が64QAMであるs1(t)及びs2(t)はそれぞれ6ビットのデータから生成される。そのため、s1(t)とs2(t)に式(#Q3)のプリコーディング行列に従ったプリコーディングを施して生成されたz1(t)及びz2(t)は、いずれも計12ビットのデータから生成されたベースバンド信号である。上述したとおり、αが式(#Q15)を満たすとき、プリコーディング後の信号はいずれも、I−Q平面上の互いに異なる位置に配置された4096点の信号点のいずれかに相当するベースバンド信号となる。すなわち、12ビットのデータが取り得る4096通りの値と、図148に示すI−Q平面上の4096点の信号点とは一対一に対応しており、互いに異なる12ビットのデータから生成されたプリコーディング後の信号が、I−Q平面上の同じ位置に配置されることはない。
一方、αの値によっては互いに異なる値を有する第1のデータ及び第2のデータから生成されたz1(t)がI−Q平面上で重複する、すなわちI−Q平面上において同じ位置に配置される場合がある。その場合、受信側においてz1(t)とz2(t)を完全に分離することができたとしてもz1(t)からは伝送されているデータが第1のデータであるのか第2のデータであるのかを判別することができず、データの受信品質が低下する可能性がある。このような問題は、z2(t)においても同様に発生する可能性がある。これに対し、αが式(#Q15)を満たす場合は、図148に示すI−Q平面上の4096点の信号点の位置と12ビットのデータの値が一対一に対応しているため信号点位置の重複は起こらず、信号点位置の重複がある場合と比較して高い受信品質を得ることができる可能性が高い。
特に、αが式(#Q15)を満たす場合は、図148に示すI−Q平面上の4096点の信号点の位置と12ビットのデータの値が一対一に対応するだけでなく、図147に示すI−Q平面上の4096点の信号点のうち、右上、右下、左上、左下の4点を除く、4092点の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、αが式(#Q15)を満たす場合は、受信装置において高い受信品質を得られる可能性が高い。
次に、プリコーディング行列として式(#Q3)ではなく、以下の式(#Q5)を用いる場合について説明する。
変調信号s1(t)及びs2(t)が変調方式として64QAMを使用している場合、式(#Q5)においてθを
Figure 2020061771

に設定する。
これにより、z1(t)及びz2(t)はいずれも図148に示す4096点の信号点のいずれかに相当するベースバンド信号となり、式(#Q3)のプリコーディング行列においてαが式(#Q15)を満たすときと同様に、受信装置において高い受信品質を得ることができる。
なお、θの値は、近似値として
Figure 2020061771

に設定されても、θが式(#Q16)を満たす場合と同様の効果が得られる。
また、上記では、プリコーディング行列Fが式(#Q3)または式(#Q5)で表される場合について説明したが、これに限ったものではない。例えばプリコーディング行列Fが、式(#Q8)、式(#Q9)、式(#Q10)のいずれかであり、且つαが式(#Q15)を満たす場合であってもよい。また、例えばプリコーディング行列Fが式(#Q11)、式(#Q12)、式(#Q13)のいずれかであり、且つθが式(#Q16)または、式(#Q17)を満たす場合であってもよい。
また、上記では、ベースバンド信号z1(t)及びz2(t)が式(#Q1)または式(#Q2)で表される場合について説明したが、ベースバンド信号z1(t)及びz2(t)が式(#14)で表され、αが式(#Q15)を満たす場合であってもよい。
なお、本実施の形態では、プリコーディングの前後でパワー変更を行わない場合について説明したが、プリコーディングの前にはパワー変更を行わず、プリコーディングの後にはパワー変更を行う構成としてもよい。その場合、変調信号s1(t)及びs2(t)にプリコーディングとパワー変更を行った後のベースバンド信号の信号点配置は、図148に示すI−Q平面上の4096点の信号点をパワー変更のための値Q及びqに応じて振幅を変更したものとなる。
なお、本実施の形態では、プリコーディング後の信号に位相変更を施す方法であることを前提に説明したが、位相変更を施さない場合であっても上述のプリコーディングを施すことによりプリコーディング後の信号は、図148に示す4096点の信号点のいずれかに相当するベースバンド信号となる。そのため、プリコーディング後に位相変更を行わないシステムにおいても、上述の各プリコーディングを施すことにより受信装置において高い受信品質を得ることができる可能性が高い。
(例3)
以下では、256QAMのマッピングを施した2つの変調信号にプリコーディングを施し、プリコーディング後の信号に位相変更を施す方法において用いることができるプリコーディング行列の一例について説明する。
256QAMのマッピングについて、図149を用いて説明する。図149は、同相I−直交Q平面における256QAMの信号点配置の例を示している。図149の信号点14900は、送信するビット(入力ビット)をb0〜b7とすると、例えば、送信するビットが(b0、b1、b2、b3、b4、b5、b6、b7)=(1、0、0、0、0、0、0、0)(この値は、図149に記載されている値である。)のとき、同相I−直交Q平面における座標は、(I,Q)=(−15×r、15×r)であり、このI,Qの値が、マッピング後の信号となる。なお、送信するビット(b0、b1、b2、b3、b4、b5、b6、b7)が他の値のときも、(b0、b1、b2、b3、b4、b5、b6、b7)にもとづき、図149から、(I,Q)のセットが決定し、I,Qの値が、マッピング後の信号(s1およびs2)となる。
なお、s1、s2の変調方式を256QAM以外の変調方式に切り替えた場合に、256QAMの平均電力と他の変調方式の平均電力を等しくするrの値の一例は、式(#Q18)である。
Figure 2020061771
なお、式(#Q18)におけるzは、式(79)、式(85)と同じ値であればどのような値であってもよい。一例としては、式(#Q18)、式(79)及び式(85)においてz=1が共通に使用される。
以下では、送信装置が上記の式(#Q1)または式(#Q2)に従って、変調方式が256QAMの変調信号s1(t)、s2(t)に対してプリコーディングと位相変更を施す場合に、受信装置において高い受信品質を得ることができるプリコーディング行列の例について説明する。まず、プリコーディング行列として式(#Q3)を用いる場合について説明する。
変調信号s1(t)及びs2(t)が変調方式として256QAMを使用している場合、式(#Q3)においてαを
Figure 2020061771

に設定する。
この場合、z1(t)及びz2(t)はI−Q平面において互いに異なる位置に配置された65536点の信号点のいずれかに相当するベースバンド信号となる。なお、変調信号s1(t)及びs2(t)が変調方式として256QAMを使用している場合については、信号点の数が65536点と多く、図面では信号点の識別が困難なため、本明細書では図面を省略している。
変調方式が256QAMであるs1(t)及びs2(t)はそれぞれ8ビットのデータから生成される。そのため、s1(t)とs2(t)に式(#Q3)のプリコーディング行列に従ったプリコーディングを施して生成されたz1(t)及びz2(t)は、いずれも計16ビットのデータから生成されたベースバンド信号である。すなわち、16ビットのデータが取り得る65536通りの値と、上述したI−Q平面上の互いに異なる位置に配置された65536点の信号点とは一対一に対応しており、互いに異なる16ビットのデータから生成されたプリコーディング後の信号が、I−Q平面上の同じ位置に配置されることはない。
一方、αの値によっては互いに異なる値を有する第1のデータ及び第2のデータから生成されたz1(t)がI−Q平面上で重複する、すなわちI−Q平面上において同じ位置に配置される場合がある。その場合、受信側においてz1(t)とz2(t)を完全に分離することができたとしてもz1(t)からは伝送されているデータが第1のデータであるのか第2のデータであるのかを判別することができず、データの受信品質が低下する可能性がある。このような問題は、z2(t)においても同様に発生する可能性がある。これに対し、αが式(#Q19)を満たす場合は、I−Q平面上の互いに異なる位置に対置された65536点の信号点の位置と16ビットのデータの値が一対一に対応しているため信号点位置の重複は起こらず、信号点位置の重複がある場合と比較して高い受信品質を得ることができる可能性が高い。
特に、αが式(#Q19)を満たす場合は、I−Q平面上の互いに異なる位置に配置された65536点の信号点の位置と16ビットのデータの値が一対一に対応するだけでなく、I−Q平面上の65536点の信号点のうち、右上、右下、左上、左下の4点を除く、65532点の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、αが式(#Q19)を満たす場合は、受信装置において高い受信品質を得られる可能性が高い。
次に、プリコーディング行列として式(#Q3)ではなく、以下の式(#Q5)を用いる場合について説明する。
変調信号s1(t)及びs2(t)が変調方式として256QAMを使用している場合、式(#Q5)においてθを
Figure 2020061771

に設定する。
これにより、z1(t)及びz2(t)はいずれもI−Q平面上の互いに異なる位置に配置された65536点の信号点のいずれかに相当するベースバンド信号となり、式(#Q3)のプリコーディング行列においてαが式(#Q19)を満たすときと同様に、受信装置において高い受信品質を得ることができる。
なお、θの値は、近似値として
Figure 2020061771

に設定されても、θが式(#Q20)を満たす場合と同様の効果が得られる。
また、上記では、プリコーディング行列Fが式(#Q3)または式(#Q5)で表される場合について説明したが、これに限ったものではない。例えばプリコーディング行列Fが、式(#Q8)、式(#Q9)、式(#Q10)のいずれかであり、且つαが式(#Q19)を満たす場合であってもよい。また、例えばプリコーディング行列Fが式(#Q11)、式(#Q12)、式(#Q13)のいずれかであり、且つθが式(#Q20)または、式(#Q21)を満たす場合であってもよい。
また、上記では、ベースバンド信号z1(t)及びz2(t)が式(#Q1)または式(#Q2)で表される場合について説明したが、ベースバンド信号z1(t)及びz2(t)が式(#14)で表され、αが式(#Q19)を満たす場合であってもよい。
なお、本実施の形態では、プリコーディングの前後でパワー変更を行わない場合について説明したが、プリコーディングの前にはパワー変更を行わず、プリコーディングの後にはパワー変更を行う構成としてもよい。その場合、変調信号s1(t)及びs2(t)にプリコーディングとパワー変更を行った後のベースバンド信号の信号点配置は、I−Q平面上の互いに異なる位置に配置された65536点の信号点をパワー変更のための値Q及びqに応じて振幅を変更したものとなる。
なお、本実施の形態では、プリコーディング後の信号に位相変更を施す方法であることを前提に説明したが、位相変更を施さない場合であっても上述のプリコーディングを施すことによりプリコーディング後の信号は、I−Q平面上の互いに異なる位置に配置された65536点の信号点のいずれかに相当するベースバンド信号となる。そのため、プリコーディング後に位相変更を行わないシステムにおいても、上述の各プリコーディングを施すことにより受信装置において高い受信品質を得ることができる可能性が高い。
(実施の形態R1)
本実施の形態では、プリコーディング後の信号に位相変更を施す方法において用いることができるプリコーディング行列の一例について説明する。
図150は、基地局(放送局、アクセスポイント等)の送信装置において、伝送方式を切り替えが可能としたときの、変調信号を生成する部分の構成の一例を示している。
本実施の形態では、切り替え可能な伝送方式の一つとして、2つのストリームを送信する(MIMO(Multiple Input Multiple Output)方式)伝送方法があるものとする。
基地局(放送局、アクセスポイント等)の送信装置が、二つのストリームを送信する場合の伝送方法について、図150を用いて説明する。
図150の符号化部15002は、情報15001および、制御信号15012を入力とし、制御信号15012に含まれる符号化率、符号長(ブロック長)の情報に基づき、符号化を行い、符号化後のデータ15003を出力する。
マッピング部15004は、符号化後のデータ15003、制御信号15012を入力とする。そして、制御信号15012が、伝送方式として、二つのストリームを送信することを指定したものとする。加えて、制御信号15012が二つのストリームの各変調方式として、変調方式αと変調方式βを指定したものとする。なお、変調方式αはxビットのデータを変調する変調方式、変調方式βはyビットのデータを変調する変調方式とする。(例えば16QAM(16 Quadrature Amplitude Modulation)の場合、4ビットのデータを変調する変調方式であり、64QAM(64 Quadrature Amplitude Modulation)の場合、6ビットのデータを変調する変調方式である。)
すると、マッピング部15004は、x+yビットのデータのうちのxビットのデータに対し、変調方式αで変調し、ベースバンド信号s(t)(15005A)を生成、出力し、また、残りのyビットのデータのデータに対し、変調方式βで変調し、ベースバンド信号s(t)(15005B)を出力する。(なお、図150では、マッピング部を一つとしているが、これとは別の構成として、s(t)を生成するためのマッピング部とs(t)を生成するためのマッピング部が別々に存在していてもよい。このとき、符号化後のデータ15003は、s(t)を生成するためのマッピング部とs(t)を生成するためのマッピング部に振り分けられることになる。)
なお、s(t)およびs(t)は複素数で表現され(ただし、複素数、実数、いずれであってもよい)、また、tは時間である。なお、OFDM(Orthogonal Frequency Division Multiplexing)等のマルチキャリアを用いた伝送方式を用いている場合、sおよびsは、s(f)およびs(f)のように周波数fの関数、または、s(t,f)およびs(t,f)のように時間t、周波数fの関数と考えることもできる。
以降では、ベースバンド信号、プリコーディング行列、位相変更等を時間tの関数として説明しているが、周波数fの関数、時間tおよび周波数fの関数と考えてもよい。
したがって、ベースバンド信号、プリコーディング行列、位相変更等をシンボル番号iの関数として説明を進めている場合もあるが、この場合、時間tの関数、周波数fの関数、時間tおよび周波数fの関数と考えればよい。つまり、シンボル、ベースバンド信号を、時間軸方向で生成し、配置してもよいし、周波数軸方向で生成し、配置してもよい。また、シンボル、ベースバンド信号を、時間軸方向および周波数軸方向で生成し、配置してもよい。
パワー変更部15006A(パワー調整部15006A)は、ベースバンド信号s(t)(15005A)、および、制御信号15012を入力とし、制御信号15012に基づき、実数Pを設定し、P×s(t)をパワー変更後の信号15007Aとして出力する。(なお、Pを実数としているが、複素数であってもよい。)
同様に、パワー変更部15006B(パワー調整部15006B)は、ベースバンド信号s(t)(15005B)、および、制御信号15012を入力とし、実数Pを設定し、P×s(t)をパワー変更後の信号15007Bとして出力する。(なお、Pを実数としているが、複素数であってもよい。)
重み付け合成部15008は、パワー変更後の信号15007A、パワー変更後の信号15007B、および、制御信号15012を入力とし、制御信号15012に基づき、プリコーディング行列F(またはF(i))を設定する。スロット番号(シンボル番号)をiとすると、重み付け合成部15008は、以下の演算を行う。
Figure 2020061771
ここで、a(i)、b(i)、c(i)、d(i)は、複素数で表現でき(実数であってもよい)、a(i)、b(i)、c(i)、d(i)のうち、3つ以上が0(ゼロ)であってはならない。なお、プリコーディング行列はiの関数であってもよいし、iの関数ではなくてもよい。そして、プリコーディング行列がiの関数のとき、プリコーディング行列がスロット番号(シンボル番号)により切り替わることになる。
そして、重み付け合成部15008は、式(R1)におけるu(i)を重み付け合成後の信号15009Aとして出力し、式(R1)におけるu(i)を重み付け合成後の信号15009Bとして出力する。
パワー変更部15010Aは、重み付け合成後の信号15009A(u(i))、および、制御信号15012を入力とし、制御信号15012に基づき、実数Qを設定し、Q×u(t)をパワー変更後の信号15011A(z(i))として出力する。(なお、Qを実数としているが、複素数であってもよい。)
同様に、パワー変更部15010Bは、重み付け合成後の信号15009B(u(i))、および、制御信号15012を入力とし、制御信号15012に基づき、実数Qを設定し、Q×u(t)をパワー変更後の信号15011A(z(i))として出力する。(なお、Qを実数としているが、複素数であってもよい。)
したがって、以下の式が成立する。
Figure 2020061771
次に、図150とは異なる二つのストリームを送信する場合の伝送方法について、図151を用いて説明する。なお、図151において、図150と同様に動作するものについては、同一符号を付している。
位相変更部15101は、式(R1)におけるu(i)を重み付け合成後の信号15009Bおよび制御信号15012を入力とし、制御信号15012に基づき、式(R1)におけるu(i)を重み付け合成後の信号15009Bの位相を変更する。したがって、式(R1)におけるu(i)を重み付け合成後の信号15009Bの位相を変更後の信号は、ejθ(i)×u(i)とあらわされ、ejθ(i)×u(i)が位相変更後の信号15102として、位相変更部15101は、出力する(jは虚数単位)。なお、変更する位相の値は、θ(i)のようにiの関数であることが特徴的な部分となる。
そして、図151のパワー変更部15010Aおよび15010Bは、入力信号のパワー変更をそれぞれ行う。したがって、図151におけるパワー変更部15010Aおよび15010Bのそれぞれの出力z(i)、z(i)は、次式のようにあらわされる。
Figure 2020061771
なお、式(R3)を実現する方法として、図151と異なる構成として、図152がある。図151と図152の異なる点は、パワー変更部と位相変更部の順番が入れ替わっている点である。(パワー変更を行う、位相変更を行うという機能自身はかわらない。)このとき、z(i)、z(i)は、次式のようにあらわされる。
Figure 2020061771
なお、式(R3)のz(i)と式(R4)のz(i)は等しく、また、式(R3)のz(i)と式(R4)のz(i)も等しい。
式(R3)および式(R4)における変更する位相の値θ(i)は、例えば、θ(i+1)―θ(i)が固定値となるように設定すると、直接波が支配的な電波伝搬環境において、受信装置は、良好なデータの受信品質が得られる可能性が高い。ただし、変更する位相の値θ(i)の与え方は、この例に限ったものではない。
図153は、図150から図152で得られた信号z(i)、z(i)に対し、施す信号処理部の構成の一例を示している。
挿入部15304Aは、信号z(i)(15301A)、パイロットシンボル15302A、制御情報シンボル15303A、制御信号15012を入力とし、制御信号15012に含まれるフレーム構成にしたがって、信号(シンボル)z(i)(15301A)に、パイロットシンボル15302A、制御情報シンボル15303Aを挿入し、フレーム構成にしたがった、変調信号15305Aを出力する。
なお、パイロットシンボル15302A、制御情報シンボル15303Aは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部15306Aは、変調信号15305Aおよび制御信号15012を入力とし、制御信号15012に基づき、変調信号15305Aに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号15307Aを出力し、送信信号15307Aはアンテナ15308Aから電波として出力される。
挿入部15304Bは、信号z(i)(15301B)、パイロットシンボル15302B、制御情報シンボル15303B、制御信号15012を入力とし、制御信号15012に含まれるフレーム構成にしたがって、信号(シンボル)z(i)(15301B)に、パイロットシンボル15302B、制御情報シンボル15303Bを挿入し、フレーム構成にしたがった、変調信号15305Bを出力する。
なお、パイロットシンボル15302B、制御情報シンボル15303Bは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部15306Bは、変調信号15305Bおよび制御信号15012を入力とし、制御信号15012に基づき、変調信号15305Bに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号15307Bを出力し、送信信号15307Bはアンテナ15308Bから電波として出力される。
ここで、信号z(i)(15301A)と信号z(i)(15301B)において、iが同一番号の信号z(i)(15301A)と信号z(i)(15301B)は、同一(共通)の周波数を同一時間にそれぞれ異なるアンテナから送信されることになる。(つまり、MIMO方式を用いた伝送方法となる。)
また、パイロットシンボル15302Aおよびパイロットシンボル15302Bは、受信装置において、信号検出、周波数オフセットの推定、ゲインコントロール、チャネル推定等を行うためのシンボルであり、ここでは、パイロットシンボルと名付けているが、リファレンスシンボル等、別の呼び方をしてもよい。
そして、制御情報シンボル15303Aおよび制御情報シンボル15303Bは、送信装置が用いた変調方式の情報、伝送方式の情報、プリコーディング方式の情報、誤り訂正符号方式の情報、誤り訂正符号の符号化率の情報、誤り訂正符号のブロック長(符号長)の情報等を、受信装置に伝送するためのシンボルである。なお、制御情報シンボル15303Aおよび制御情報シンボル15303Bの一方のみで、制御情報シンボルを送信してもよい。
図154は、二つのストリームを送信する場合の時間―周波数におけるフレーム構成の一例を示している。図154において、横軸周波数、縦軸時間であり、一例として、キャリア1からキャリア38、時間$1から時間$11のシンボルの構成を示している。
図154は、図153のアンテナ15306Aから送信する送信信号のフレーム構成とアンテナ15308Bから送信する送信信号のフレームを同時に示している。
図154において、図153のアンテナ15306Aから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z(i)に相当する。そして、パイロットシンボルは、パイロットシンボル15302Aに相当する。
図154において、図153のアンテナ15306Bから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z(i)に相当する。そして、パイロットシンボルは、パイロットシンボル15302Bに相当する。
(したがって、上述でも説明したように、信号z(i)(15301A)と信号z(i)(15301B)において、iが同一番号の信号z(i)(15301A)と信号z(i)(15301B)は、同一(共通)の周波数を同一時間にそれぞれ異なるアンテナから送信されることになる。また、パイロットシンボルの構成は、図154に限ったものではなく、例えば、パイロットシンボルの時間間隔、周波数間隔は、図5Rに限ったものではない。そして、図5Rでは、図153のアンテナ15306Aおよび図153のアンテナ15306Bから、同一時刻、同一周波数(同一(サブ)キャリア)にパイロットシンボルが送信されるフレーム構成としているが、これに限ったものではなく、例えば、時間A、周波数a((サブ)キャリアa)において、図153のアンテナ15306Aにパイロットシンボルを配置し、時間A、周波数a((サブ)キャリアa)において、図153のアンテナ15306Bにはシンボルを配置しないとし、時間B、周波数b((サブ)キャリアb)において、図153のアンテナ15306Aにシンボルを配置しないとし、時間B、周波数b((サブ)キャリアb)において、図153のアンテナ15306Bにパイロットシンボルを配置する、とする構成としてもよい。
なお、図154では、データシンボルとパイロットシンボルしか記述していないが、他のシンボル、例えば、制御情報シンボル等のシンボルがフレームに含まれていてもよい。
図150から図152において、パワー変更部の一部(または、すべて)が存在する場合を例に説明したが、パワー変更部の一部がない場合も考えられる。
例えば、図150において、パワー変更部15006A(パワー調整部15006A)、パワー変更部15006B(パワー調整部15006B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図150において、パワー変更部15010A(パワー調整部15010A)、パワー変更部15010B(パワー調整部15010B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図150において、パワー変更部15006A(パワー調整部15006A)、パワー変更部15006B(パワー調整部15006B)、パワー変更部15010A(パワー調整部15010A)、パワー変更部15010B(パワー調整部15010B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図151または図152において、パワー変更部15006A(パワー調整部15006A)、パワー変更部15006B(パワー調整部15006B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図151または図152において、パワー変更部15010A(パワー調整部15010A)、パワー変更部15010B(パワー調整部15010B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図151または図152において、パワー変更部15006A(パワー調整部15006A)、パワー変更部15006B(パワー調整部15006B)、パワー変更部15010A(パワー調整部15010A)、パワー変更部15010B(パワー調整部15010B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
次に、上述で説明した、2つのストリームを送信する(MIMO(Multiple Input Multiple Output)方式)伝送方法を用いたときの具体的なプリコーディング行列の設定方法について説明する。
(例1)
以下では、図150から図152のマッピング部15004において、s(t)(s(i))を得るための変調方式を16QAMとし、s(t)(s(i))を得るための変調方式を64QAMとし、例えば、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成の例について説明する。
まず、16QAMのマッピング方法について説明する。図155は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図155において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。
16QAMの16個の信号点(図155の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)、となる(w16は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図155における信号点15501にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(3w16,3w16)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図155のとおりである。16QAMの16個の信号点(図155の「○」)(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図155に限ったものではない。そして、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図150から図152のベースバンド信号(s(t)またはs(t))となる。
64QAMのマッピング方法について説明する。図156は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図156において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図156の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図156における信号点15601にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図156のとおりである。64QAMの64個の信号点(図156の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図156に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図150から図152のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図150〜図152において、ベースバンド信号15005A(s(t)(s(i)))の変調方式を16QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を64QAMとし、プリコーディング行列の構成について説明する。
このとき、図150〜図152のマッピング部15004の出力であるベースバンド信号15005A(s(t)(s(i)))の平均電力とベースバンド信号15005B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、以下の関係式が成立する。
Figure 2020061771
Figure 2020061771
なお、式(R11)および式(R12)において、zは0より大きい実数とする。そして、
<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列F
Figure 2020061771

の構成について、以下で((例1−1)〜(例1−8))詳しく説明する。
(例1−1)
上述の<1>から<9>のいずれかの場合において、プリコーディング行列Fを以下にいずれかに設定するものとする。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R14)、式(R15)、式(R16)、式(R17)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
また、本実施の形態(本明細書の中で共通である)において、複素平面における、例えば、偏角のような、位相の単位は、「ラジアン(radian)」としている。(例外的にdegree(「度」)を用いるときは、単位を示している。)
複素平面を利用すると、複素数の極座標による表示として極形式で表示できる。複素数 z = a + jb (a、bはともに実数であり、jは虚数単位である)に、複素平面上の点 (a, b) を対応させたとき、この点が極座標で[r, θ] とあらわされるなら、
a=r×cosθ、
b=r×sinθ
式(49)

が成り立ち、r は z の絶対値 (r = |z|) であり、θ が偏角 (argument)となる。そして、z = a + jbは、rejθとあらわされる。したがって、例えば、式(R14)から式(R17)において、ejπと記載しているが、偏角πの単位は「ラジアン(radian)」となる。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
ところで、ベースバンド信号15005A(s(t)(s(i)))の変調方式を16QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を64QAMとなる。したがって、上述のようにプリコーディング(および、位相変更、パワー変更)を行い、変調信号を各アンテナから送信する場合、時間uの(単位)時間、周波数(キャリア)vにより、図153のアンテナ15308Aから送信するシンボルとアンテナ15308Bから送信するシンボルにより送信される総ビット数は、(16QAMを用いることによる)4ビットと(64QAMを用いることによる)6ビットの和の10ビットとなる。
16QAMのマッピングのための入力ビットをb0,16、b1,16、b2,16、b3,16、64QAMのマッピングのための入力ビットをb0,64、b1,64、b2,64、b3,64、b4,64、b5,64としたとき、式(R18)、式(R19)、式(R20)、式(R21)のいずれのαに設定しても、
信号z(t)(z(i))において、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在し、
同様に、信号z(t)(z(i))においても、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在する。
上述で、
「式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値」として、式(R18)〜式(R21)を記載したが、この点について説明する。
信号z(t)(z(i))において、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在することになるが、この210=1024個の信号点が、同相I−直交Q平面において、重ならずに、1024個の信号点として存在することが望まれる。
なぜなら、信号z(t)(z(i))を送信するアンテナから送信された変調信号が受信装置に届かない場合、受信装置は、信号z(t)(z(i))を用いて、検波、および、誤り訂正復号を行うことになるが、このとき、受信装置が高いデータの受信品質を得るためには、「重ならずに、1024個の信号点」存在するとよいからである。
プリコーディング行列Fを式(R14)、式(R15)、式(R16)、式(R17)のいずれかに設定し、式(R18)、式(R19)、式(R20)、式(R21)のようにαを設定した場合、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の配置は図157のようになる。なお、図157において、横軸I、縦軸Q、「●」が信号点となる。
図157からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R14)、式(R15)、式(R16)、式(R17)のいずれかに設定し、式(R18)、式(R19)、式(R20)、式(R21)のようにαを設定した場合、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の配置は図158のようになる。なお、図158において、横軸I、縦軸Q、「●」が信号点となる。
図158からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例1−2)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R22)、式(R24)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R26)、式(R27)、式(R28)、式(R29)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R22)、式(R23)、式(R24)、式(R25)のいずれかに設定し、式(R26)、式(R27)、式(R28)、式(R29)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図157のようになる。なお、図157において、横軸I、縦軸Q、「●」が信号点となる。
図157からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R22)、式(R23)、式(R24)、式(R25)のいずれかに設定し、式(R26)、式(R27)、式(R28)、式(R29)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図158のようになる。なお、図158において、横軸I、縦軸Q、「●」が信号点となる。
図158からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例1−3)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R31)、式(R32)、式(R33)、式(R34)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R31)、式(R32)、式(R33)、式(R34)のいずれかに設定し、式(R35)、式(R36)、式(R37)、式(R38)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図159のようになる。なお、図159において、横軸I、縦軸Q、「●」が信号点となる。
図159からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R31)、式(R32)、式(R33)、式(R34)のいずれかに設定し、式(R35)、式(R36)、式(R37)、式(R38)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図160のようになる。なお、図160において、横軸I、縦軸Q、「●」が信号点となる。
図160からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例1−4)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R39)、式(R41)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R43)、式(R44)、式(R45)、式(R46)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R39)、式(R40)、式(R41)、式(R42)のいずれかに設定し、式(R43)、式(R44)、式(R45)、式(R46)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図159のようになる。なお、図159において、横軸I、縦軸Q、「●」が信号点となる。
図159からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R39)、式(R40)、式(R41)、式(R42)のいずれかに設定し、式(R43)、式(R44)、式(R45)、式(R46)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図160のようになる。なお、図160において、横軸I、縦軸Q、「●」が信号点となる。
図160からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例1−5)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R48)、式(R49)、式(R50)、式(R51)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R48)、式(R49)、式(R50)、式(R51)のいずれかに設定し、式(R52)、式(R53)、式(R54)、式(R55)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図161のようになる。なお、図161において、横軸I、縦軸Q、「●」が信号点となる。
図161からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R48)、式(R49)、式(R50)、式(R51)のいずれかに設定し、式(R52)、式(R53)、式(R54)、式(R55)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図162のようになる。なお、図162において、横軸I、縦軸Q、「●」が信号点となる。
図162からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例1−6)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R56)、式(R58)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R60)、式(R61)、式(R62)、式(R63)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R56)、式(R57)、式(R58)、式(R59)のいずれかに設定し、式(R60)、式(R61)、式(R62)、式(R63)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図161のようになる。なお、図161において、横軸I、縦軸Q、「●」が信号点となる。
図161からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R56)、式(R57)、式(R58)、式(R59)のいずれかに設定し、式(R60)、式(R61)、式(R62)、式(R63)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図162のようになる。なお、図162において、横軸I、縦軸Q、「●」が信号点となる。
図162からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例1−7)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R65)、式(R66)、式(R67)、式(R68)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R65)、式(R66)、式(R67)、式(R68)のいずれかに設定し、式(R69)、式(R70)、式(R71)、式(R72)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図163のようになる。なお、図163において、横軸I、縦軸Q、「●」が信号点となる。
図163からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R65)、式(R66)、式(R67)、式(R68)のいずれかに設定し、式(R69)、式(R70)、式(R71)、式(R72)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図164のようになる。なお、図164において、横軸I、縦軸Q、「●」が信号点となる。
図164からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例1−8)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R73)、式(R75)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R77)、式(R78)、式(R79)、式(R80)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R73)、式(R74)、式(R75)、式(R76)のいずれかに設定し、式(R77)、式(R78)、式(R79)、式(R80)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図163のようになる。なお、図163において、横軸I、縦軸Q、「●」が信号点となる。
図163からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R73)、式(R74)、式(R75)、式(R76)のいずれかに設定し、式(R77)、式(R78)、式(R79)、式(R80)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図164のようになる。なお、図164において、横軸I、縦軸Q、「●」が信号点となる。
図164からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例2)
以下では、図150から図152のマッピング部15004において、s(t)(s(i))を得るための変調方式を64QAMとし、s(t)(s(i))を得るための変調方式を16QAMとし、例えば、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成の例について説明する。
まず、16QAMのマッピング方法について説明する。図155は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図155において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。
16QAMの16個の信号点(図155の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)、となる(w16は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図155における信号点15501にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(3w16,3w16)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図155のとおりである。16QAMの16個の信号点(図155の「○」)(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図155に限ったものではない。そして、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図150から図152のベースバンド信号(s(t)またはs(t))となる。
64QAMのマッピング方法について説明する。図156は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図156において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図156の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図156における信号点15601にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図156のとおりである。64QAMの64個の信号点(図156の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図156に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図150から図152のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図150〜図152において、ベースバンド信号15005A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を16QAMとし、プリコーディング行列の構成について説明する。
このとき、図150〜図152のマッピング部15004の出力であるベースバンド信号15005A(s(t)(s(i)))の平均電力とベースバンド信号15005B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、以下の関係式が成立する。
Figure 2020061771

Figure 2020061771
なお、式(R82)および式(R83)において、zは0より大きい実数とする。そして、
<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列F
Figure 2020061771

の構成について、以下で((例2−1)〜(例2−8))詳しく説明する。
(例2−1)
上述の<1>から<9>のいずれかの場合において、プリコーディング行列Fを以下にいずれかに設定するものとする。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R85)、式(R86)、式(R87)、式(R88)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
ところで、ベースバンド信号15005A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を16QAMとなる。したがって、上述のようにプリコーディング(および、位相変更、パワー変更)を行い、変調信号を各アンテナから送信する場合、時間uの(単位)時間、周波数(キャリア)vにより、図153のアンテナR408Aから送信するシンボルとアンテナR408Bから送信するシンボルにより送信される総ビット数は、(16QAMを用いることによる)4ビットと(64QAMを用いることによる)6ビットの和の10ビットとなる。
16QAMのマッピングのための入力ビットをb0,16、b1,16、b2,16、b3,16、64QAMのマッピングのための入力ビットをb0,64、b1,64、b2,64、b3,64、b4,64、b5,64としたとき、式(R89)、式(R90)、式(R91)、式(R92)のいずれのαに設定しても、
信号z(t)(z(i))において、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在し、
同様に、信号z(t)(z(i))においても、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在する。
上述で、
「式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値」として、式(R89)〜式(R92)を記載したが、この点について説明する。
信号z(t)(z(i))において、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在することになるが、この210=1024個の信号点が、同相I−直交Q平面において、重ならずに、1024個の信号点として存在することが望まれる。
なぜなら、信号z(t)(z(i))を送信するアンテナから送信された変調信号が受信装置に届かない場合、受信装置は、信号z(t)(z(i))を用いて、検波、および、誤り訂正復号を行うことになるが、このとき、受信装置が高いデータの受信品質を得るためには、「重ならずに、1024個の信号点」存在するとよいからである。
プリコーディング行列Fを式(R85)、式(R86)、式(R87)、式(R88)のいずれかに設定し、式(R89)、式(R90)、式(R91)、式(R92)のようにαを設定した場合、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の配置は図161のようになる。なお、図161において、横軸I、縦軸Q、「●」が信号点となる。
図161からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R85)、式(R86)、式(R87)、式(R88)のいずれかに設定し、式(R89)、式(R90)、式(R91)、式(R92)のようにαを設定した場合、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の配置は図162のようになる。なお、図162において、横軸I、縦軸Q、「●」が信号点となる。
図162からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例2−2)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R93)、式(R95)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R97)、式(R98)、式(R99)、式(R100)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R93)、式(R94)、式(R95)、式(R96)のいずれかに設定し、式(R97)、式(R98)、式(R99)、式(R100)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図161のようになる。なお、図161において、横軸I、縦軸Q、「●」が信号点となる。
図161からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R93)、式(R94)、式(R95)、式(R96)のいずれかに設定し、式(R97)、式(R98)、式(R99)、式(R100)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図162のようになる。なお、図162において、横軸I、縦軸Q、「●」が信号点となる。
図162からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例2−3)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R102)、式(R103)、式(R104)、式(R105)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R102)、式(R103)、式(R104)、式(R105)のいずれかに設定し、式(R106)、式(R107)、式(R108)、式(R109)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図163のようになる。なお、図163において、横軸I、縦軸Q、「●」が信号点となる。
図163からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R102)、式(R103)、式(R104)、式(R105)のいずれかに設定し、式(R106)、式(R107)、式(R108)、式(R109)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図164のようになる。なお、図164において、横軸I、縦軸Q、「●」が信号点となる。
図164からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例2−4)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R110)、式(R112)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771
または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R114)、式(R115)、式(R116)、式(R117)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R110)、式(R111)、式(R112)、式(R113)のいずれかに設定し、式(R114)、式(R115)、式(R116)、式(R117)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図163のようになる。なお、図163において、横軸I、縦軸Q、「●」が信号点となる。
図163からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R110)、式(R111)、式(R112)、式(R113)のいずれかに設定し、式(R114)、式(R115)、式(R116)、式(R117)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図164のようになる。なお、図164において、横軸I、縦軸Q、「●」が信号点となる。
図164からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例2−5)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R119)、式(R120)、式(R121)、式(R122)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R119)、式(R120)、式(R121)、式(R122)のいずれかに設定し、式(R123)、式(R124)、式(R125)、式(R126)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図157のようになる。なお、図157において、横軸I、縦軸Q、「●」が信号点となる。
図157からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R119)、式(R120)、式(R121)、式(R122)のいずれかに設定し、式(R123)、式(R124)、式(R125)、式(R126)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図158のようになる。なお、図158において、横軸I、縦軸Q、「●」が信号点となる。
図158からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例2−6)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R127)、式(R129)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R131)、式(R132)、式(R133)、式(R134)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R127)、式(R128)、式(R129)、式(R130)のいずれかに設定し、式(R131)、式(R132)、式(R133)、式(R134)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図157のようになる。なお、図157において、横軸I、縦軸Q、「●」が信号点となる。
図157からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R127)、式(R128)、式(R129)、式(R130)のいずれかに設定し、式(R131)、式(R132)、式(R133)、式(R134)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図158のようになる。なお、図158において、横軸I、縦軸Q、「●」が信号点となる。
図158からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例2−7)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R136)、式(R137)、式(R138)、式(R139)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771
または、
Figure 2020061771
プリコーディング行列Fを式(R136)、式(R137)、式(R138)、式(R139)のいずれかに設定し、式(R140)、式(R141)、式(R142)、式(R143)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図159のようになる。なお、図159において、横軸I、縦軸Q、「●」が信号点となる。
図159からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R136)、式(R137)、式(R138)、式(R139)のいずれかに設定し、式(R140)、式(R141)、式(R142)、式(R143)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図160のようになる。なお、図160において、横軸I、縦軸Q、「●」が信号点となる。
図160からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例2−8)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R144)、式(R146)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R148)、式(R149)、式(R150)、式(R151)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R144)、式(R145)、式(R146)、式(R147)のいずれかに設定し、式(R148)、式(R149)、式(R150)、式(R151)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図159のようになる。なお、図159において、横軸I、縦軸Q、「●」が信号点となる。
図159からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R144)、式(R145)、式(R146)、式(R147)のいずれかに設定し、式(R148)、式(R149)、式(R150)、式(R151)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の信号z(t)(z(i))における同相I―直交Q平面の信号点の配置は、図160のようになる。なお、図160において、横軸I、縦軸Q、「●」が信号点となる。
図160からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例3)
以下では、図150から図152のマッピング部15004において、s(t)(s(i))を得るための変調方式を64QAMとし、s(t)(s(i))を得るための変調方式を256QAMとし、例えば、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成の例について説明する。
まず、64QAMのマッピング方法について説明する。図156は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図156において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図156の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図156における信号点15601にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図156のとおりである。64QAMの64個の信号点(図156の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図156に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図150から図152のベースバンド信号(s(t)またはs(t))となる。
256QAMのマッピング方法について説明する。図165は、同相I−直交Q平面における256QAMの信号点配置の例を示している。なお、図165において、256個の○が256QAMの信号点である。
256QAMの256個の信号点(図165の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、

(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

、となる(w256は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5、b6、b7とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5、b6、b7)=(0、0、0、0、0、0、0、0)の場合、図165における信号点16501にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(15w256,15w256)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5、b6、b7)に基づき、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係の一例は図165のとおりである。256QAMの256個の信号点(図165の「○」)
(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

の直下にb0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の値が示されている。b0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、256QAM時のb0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係は、図165に限ったものではない。そして、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図150から図152のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図150〜図152において、ベースバンド信号15005A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を256QAMとし、プリコーディング行列の構成について説明する。
このとき、図150〜図152のマッピング部15004の出力であるベースバンド信号15005A(s(t)(s(i)))の平均電力とベースバンド信号15005B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、以下の関係式が成立する。
Figure 2020061771
Figure 2020061771
なお、式(R153)および式(R154)において、zは0より大きい実数とする。そして、
<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列F
Figure 2020061771

の構成について、以下で((例3−1)〜(例3−8))詳しく説明する。
(例3−1)
上述の<1>から<9>のいずれかの場合において、プリコーディング行列Fを以下にいずれかに設定するものとする。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R156)、式(R157)、式(R158)、式(R159)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771
または、
Figure 2020061771
ところで、ベースバンド信号15005A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を256QAMとなる。したがって、上述のようにプリコーディング(および、位相変更、パワー変更)を行い、変調信号を各アンテナから送信する場合、時間uの(単位)時間、周波数(キャリア)vにより、図153のアンテナR408Aから送信するシンボルとアンテナR408Bから送信するシンボルにより送信される総ビット数は、(64QAMを用いることによる)6ビットと(256QAMを用いることによる)8ビットの和の14ビットとなる。
64QAMのマッピングのための入力ビットをb0,64、b1,64、b2,64、b3,64、b4,64、b5,64、256QAMのマッピングのための入力ビットをb0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256としたとき、式(R160)、式(R161)、式(R162)、式(R163)のいずれのαに設定しても、
信号z(t)(z(i))において、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在し、
同様に、信号z(t)(z(i))においても、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在する。
上述で、
「式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値」として、式(R160)〜式(R163)を記載したが、この点について説明する。
信号z(t)(z(i))において、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在することになるが、この214=16384個の信号点が、同相I−直交Q平面において、重ならずに、16384個の信号点として存在することが望まれる。
なぜなら、信号z(t)(z(i))を送信するアンテナから送信された変調信号が受信装置に届かない場合、受信装置は、信号z(t)(z(i))を用いて、検波、および、誤り訂正復号を行うことになるが、このとき、受信装置が高いデータの受信品質を得るためには、「重ならずに、16384個の信号点」存在するとよいからである。
プリコーディング行列Fを式(R156)、式(R157)、式(R158)、式(R159)のいずれかに設定し、式(R160)、式(R161)、式(R162)、式(R163)のようにαを設定した場合、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図166のとおりであり、第二象限に存在する信号点配置は図167のとおりであり、第三象限に存在する信号点配置は図168のとおりであり、第四象限に存在する信号点配置は図169のとおりである。なお、図166、図167、図168、図169において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図166、図167、図168、図169からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図166の最右最上、図169の最右最下、図167の最左最上、図168の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R156)、式(R157)、式(R158)、式(R159)のいずれかに設定し、式(R160)、式(R161)、式(R162)、式(R163)のようにαを設定した場合、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図170のとおりであり、第二象限に存在する信号点配置は図171のとおりであり、第三象限に存在する信号点配置は図172のとおりであり、第四象限に存在する信号点配置は図173のとおりである。なお、図170、図171、図172、図173において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図170、図171、図172、図173からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例3−2)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R153)および式(R154)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R164)、式(R166)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R168)、式(R169)、式(R170)、式(R171)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R164)、式(R165)、式(R166)、式(R167)のいずれかに設定し、式(R168)、式(R169)、式(R170)、式(R171)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図166のとおりであり、第二象限に存在する信号点配置は図167のとおりであり、第三象限に存在する信号点配置は図168のとおりであり、第四象限に存在する信号点配置は図169のとおりである。なお、図166、図167、図168、図169において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図166、図167、図168、図169からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図166の最右最上、図169の最右最下、図167の最左最上、図168の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R164)、式(R165)、式(R166)、式(R167)のいずれかに設定し、式(R168)、式(R169)、式(R170)、式(R171)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図170のとおりであり、第二象限に存在する信号点配置は図171のとおりであり、第三象限に存在する信号点配置は図172のとおりであり、第四象限に存在する信号点配置は図173のとおりである。なお、図170、図171、図172、図173において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図170、図171、図172、図173からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例3−3)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R153)および式(R154)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R173)、式(R174)、式(R175)、式(R176)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R173)、式(R174)、式(R175)、式(R176)のいずれかに設定し、式(R177)、式(R178)、式(R179)、式(R180)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図174のとおりであり、第二象限に存在する信号点配置は図175のとおりであり、第三象限に存在する信号点配置は図176のとおりであり、第四象限に存在する信号点配置は図177のとおりである。なお、図174、図175、図176、図177において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図174、図175、図176、図177からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図174の最右最上、図177の最右最下、図175の最左最上、図176の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R173)、式(R174)、式(R175)、式(R176)のいずれかに設定し、式(R177)、式(R178)、式(R179)、式(R180)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図178のとおりであり、第二象限に存在する信号点配置は図179のとおりであり、第三象限に存在する信号点配置は図180のとおりであり、第四象限に存在する信号点配置は図181のとおりである。なお、図178、図179、図180、図181において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図178、図179、図180、図181からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例3−4)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R153)および式(R154)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R181)、式(R183)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R185)、式(R186)、式(R187)、式(R188)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R181)、式(R182)、式(R183)、式(R184)のいずれかに設定し、式(R185)、式(R186)、式(R187)、式(R188)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図174のとおりであり、第二象限に存在する信号点配置は図175のとおりであり、第三象限に存在する信号点配置は図176のとおりであり、第四象限に存在する信号点配置は図177のとおりである。なお、図174、図175、図176、図177において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図174、図175、図176、図177からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図174の最右最上、図177の最右最下、図175の最左最上、図176の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R181)、式(R182)、式(R183)、式(R184)のいずれかに設定し、式(R185)、式(R186)、式(R187)、式(R188)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図178のとおりであり、第二象限に存在する信号点配置は図179のとおりであり、第三象限に存在する信号点配置は図180のとおりであり、第四象限に存在する信号点配置は図181のとおりである。なお、図178、図179、図180、図181において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図178、図179、図180、図181からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例3−5)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R153)および式(R154)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R190)、式(R191)、式(R192)、式(R193)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R190)、式(R191)、式(R192)、式(R193)のいずれかに設定し、式(R194)、式(R195)、式(R196)、式(R197)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図182のとおりであり、第二象限に存在する信号点配置は図183のとおりであり、第三象限に存在する信号点配置は図184のとおりであり、第四象限に存在する信号点配置は図185のとおりである。なお、図182、図183、図184、図185において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図182、図183、図184、図185からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図182の最右最上、図185の最右最下、図183の最左最上、図184の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R190)、式(R191)、式(R192)、式(R193)のいずれかに設定し、式(R194)、式(R195)、式(R196)、式(R197)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図186のとおりであり、第二象限に存在する信号点配置は図187のとおりであり、第三象限に存在する信号点配置は図188のとおりであり、第四象限に存在する信号点配置は図189のとおりである。なお、図186、図187、図188、図189において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図186、図187、図188、図189からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例3−6)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R153)および式(R154)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R198)、式(R200)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R202)、式(R203)、式(R204)、式(R205)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R198)、式(R199)、式(R200)、式(R201)のいずれかに設定し、式(R202)、式(R203)、式(R204)、式(R205)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図182のとおりであり、第二象限に存在する信号点配置は図183のとおりであり、第三象限に存在する信号点配置は図184のとおりであり、第四象限に存在する信号点配置は図185のとおりである。なお、図182、図183、図184、図185において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図182、図183、図184、図185からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図182の最右最上、図185の最右最下、図183の最左最上、図184の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R198)、式(R199)、式(R200)、式(R201)のいずれかに設定し、式(R202)、式(R203)、式(R204)、式(R205)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図186のとおりであり、第二象限に存在する信号点配置は図187のとおりであり、第三象限に存在する信号点配置は図188のとおりであり、第四象限に存在する信号点配置は図189のとおりである。なお、図186、図187、図188、図189において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図186、図187、図188、図189からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例3−7)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R153)および式(R154)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R207)、式(R208)、式(R209)、式(R210)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R207)、式(R208)、式(R209)、式(R210)のいずれかに設定し、式(R211)、式(R212)、式(R213)、式(R214)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図190のとおりであり、第二象限に存在する信号点配置は図191のとおりであり、第三象限に存在する信号点配置は図192のとおりであり、第四象限に存在する信号点配置は図193のとおりである。なお、図190、図191、図192、図193において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図190、図191、図192、図193からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図190の最右最上、図193の最右最下、図191の最左最上、図192の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R207)、式(R208)、式(R209)、式(R210)のいずれかに設定し、式(R211)、式(R212)、式(R213)、式(R214)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図194のとおりであり、第二象限に存在する信号点配置は図195のとおりであり、第三象限に存在する信号点配置は図196のとおりであり、第四象限に存在する信号点配置は図197のとおりである。なお、図194、図195、図196、図197において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図194、図195、図196、図197からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例3−8)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R153)および式(R154)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R215)、式(R217)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R219)、式(R220)、式(R221)、式(R222)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R215)、式(R216)、式(R217)、式(R218)のいずれかに設定し、式(R219)、式(R220)、式(R221)、式(R222)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図190のとおりであり、第二象限に存在する信号点配置は図191のとおりであり、第三象限に存在する信号点配置は図192のとおりであり、第四象限に存在する信号点配置は図193のとおりである。なお、図190、図191、図192、図193において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図190、図191、図192、図193からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図190の最右最上、図193の最右最下、図191の最左最上、図192の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R215)、式(R216)、式(R217)、式(R218)のいずれかに設定し、式(R219)、式(R220)、式(R221)、式(R222)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図194のとおりであり、第二象限に存在する信号点配置は図195のとおりであり、第三象限に存在する信号点配置は図196のとおりであり、第四象限に存在する信号点配置は図197のとおりである。なお、図194、図195、図196、図197において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図194、図195、図196、図197からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例4)
以下では、図150から図152のマッピング部15004において、s(t)(s(i))を得るための変調方式を256QAMとし、s(t)(s(i))を得るための変調方式を64QAMとし、例えば、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成の例について説明する。
まず、64QAMのマッピング方法について説明する。図156は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図156において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図156の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図156における信号点15601にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図156のとおりである。64QAMの64個の信号点(図156の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図156に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図150から図152のベースバンド信号(s(t)またはs(t))となる。
256QAMのマッピング方法について説明する。図165は、同相I−直交Q平面における256QAMの信号点配置の例を示している。なお、図165において、256個の○が256QAMの信号点である。
256QAMの256個の信号点(図165の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、

(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

、となる(w256は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5、b6、b7とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5、b6、b7)=(0、0、0、0、0、0、0、0)の場合、図165における信号点16501にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(15w256,15w256)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5、b6、b7)に基づき、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係の一例は図165のとおりである。256QAMの256個の信号点(図165の「○」)
(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

の直下にb0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の値が示されている。b0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、256QAM時のb0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係は、図165に限ったものではない。そして、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図150から図152のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図150〜図152において、ベースバンド信号15005A(s(t)(s(i)))の変調方式を256QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を64QAMとし、プリコーディング行列の構成について説明する。
このとき、図150〜図152のマッピング部15004の出力であるベースバンド信号15005A(s(t)(s(i)))の平均電力とベースバンド信号15005B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、以下の関係式が成立する。
Figure 2020061771

Figure 2020061771
なお、式(R224)および式(R225)において、zは0より大きい実数とする。そして、
<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列F
Figure 2020061771

の構成について、以下で((例4−1)〜(例4−8))詳しく説明する。
(例4−1)
上述の<1>から<9>のいずれかの場合において、プリコーディング行列Fを以下にいずれかに設定するものとする。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R227)、式(R228)、式(R229)、式(R230)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
ところで、ベースバンド信号15005A(s(t)(s(i)))の変調方式を256QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を64QAMとなる。したがって、上述のようにプリコーディング(および、位相変更、パワー変更)を行い、変調信号を各アンテナから送信する場合、時間uの(単位)時間、周波数(キャリア)vにより、図153のアンテナR408Aから送信するシンボルとアンテナR408Bから送信するシンボルにより送信される総ビット数は、(64QAMを用いることによる)6ビットと(256QAMを用いることによる)8ビットの和の14ビットとなる。
64QAMのマッピングのための入力ビットをb0,64、b1,64、b2,64、b3,64、b4,64、b5,64、256QAMのマッピングのための入力ビットをb0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256としたとき、式(R231)、式(R232)、式(R233)、式(R234)のいずれのαに設定しても、
信号z(t)(z(i))において、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在し、
同様に、信号z(t)(z(i))においても、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在する。
上述で、
「式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値」として、式(R231)〜式(R234)を記載したが、この点について説明する。
信号z(t)(z(i))において、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在することになるが、この214=16384個の信号点が、同相I−直交Q平面において、重ならずに、16384個の信号点として存在することが望まれる。
なぜなら、信号z(t)(z(i))を送信するアンテナから送信された変調信号が受信装置に届かない場合、受信装置は、信号z(t)(z(i))を用いて、検波、および、誤り訂正復号を行うことになるが、このとき、受信装置が高いデータの受信品質を得るためには、「重ならずに、16384個の信号点」存在するとよいからである。
プリコーディング行列Fを式(R227)、式(R228)、式(R229)、式(R230)のいずれかに設定し、式(R231)、式(R232)、式(R233)、式(R234)のようにαを設定した場合、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図182のとおりであり、第二象限に存在する信号点配置は図183のとおりであり、第三象限に存在する信号点配置は図184のとおりであり、第四象限に存在する信号点配置は図185のとおりである。なお、図182、図183、図184、図185において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図182、図183、図184、図185からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図182の最右最上、図185の最右最下、図183の最左最上、図184の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R227)、式(R228)、式(R229)、式(R230)のいずれかに設定し、式(R231)、式(R232)、式(R233)、式(R234)のようにαを設定した場合、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図186のとおりであり、第二象限に存在する信号点配置は図187のとおりであり、第三象限に存在する信号点配置は図188のとおりであり、第四象限に存在する信号点配置は図189のとおりである。なお、図186、図187、図188、図189において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図186、図187、図188、図189からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例4−2)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R224)および式(R225)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R235)、式(R237)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R239)、式(R240)、式(R241)、式(R242)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R235)、式(R236)、式(R237)、式(R238)のいずれかに設定し、式(R239)、式(R240)、式(R241)、式(R242)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図182のとおりであり、第二象限に存在する信号点配置は図183のとおりであり、第三象限に存在する信号点配置は図184のとおりであり、第四象限に存在する信号点配置は図185のとおりである。なお、図182、図183、図184、図185において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図182、図183、図184、図185からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図182の最右最上、図185の最右最下、図183の最左最上、図184の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R235)、式(R236)、式(R237)、式(R238)のいずれかに設定し、式(R239)、式(R240)、式(R241)、式(R242)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図186のとおりであり、第二象限に存在する信号点配置は図187のとおりであり、第三象限に存在する信号点配置は図188のとおりであり、第四象限に存在する信号点配置は図189のとおりである。なお、図186、図187、図188、図189において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図186、図187、図188、図189からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例4−3)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R224)および式(R225)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R244)、式(R245)、式(R246)、式(R247)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R244)、式(R245)、式(R246)、式(R247)のいずれかに設定し、式(R248)、式(R249)、式(R250)、式(R251)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図190のとおりであり、第二象限に存在する信号点配置は図191のとおりであり、第三象限に存在する信号点配置は図192のとおりであり、第四象限に存在する信号点配置は図193のとおりである。なお、図190、図191、図192、図193において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図190、図191、図192、図193からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図190の最右最上、図193の最右最下、図191の最左最上、図192の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R244)、式(R245)、式(R246)、式(R247)のいずれかに設定し、式(R248)、式(R249)、式(R250)、式(R251)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図194のとおりであり、第二象限に存在する信号点配置は図195のとおりであり、第三象限に存在する信号点配置は図196のとおりであり、第四象限に存在する信号点配置は図197のとおりである。なお、図194、図195、図196、図197において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図194、図195、図196、図197からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例4−4)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R224)および式(R225)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R252)、式(R254)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R256)、式(R257)、式(R258)、式(R259)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R252)、式(R253)、式(R254)、式(R255)のいずれかに設定し、式(R256)、式(R257)、式(R258)、式(R259)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図190のとおりであり、第二象限に存在する信号点配置は図191のとおりであり、第三象限に存在する信号点配置は図192のとおりであり、第四象限に存在する信号点配置は図193のとおりである。なお、図190、図191、図192、図193において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図190、図191、図192、図193からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図190の最右最上、図193の最右最下、図191の最左最上、図192の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R252)、式(R253)、式(R254)、式(R255)のいずれかに設定し、式(R256)、式(R257)、式(R258)、式(R259)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図194のとおりであり、第二象限に存在する信号点配置は図195のとおりであり、第三象限に存在する信号点配置は図196のとおりであり、第四象限に存在する信号点配置は図197のとおりである。なお、図194、図195、図196、図197において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図194、図195、図196、図197からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例4−5)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R224)および式(R225)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R261)、式(R262)、式(R263)、式(R264)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R261)、式(R262)、式(R263)、式(R264)のいずれかに設定し、式(R265)、式(R266)、式(R267)、式(R268)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図166のとおりであり、第二象限に存在する信号点配置は図167のとおりであり、第三象限に存在する信号点配置は図168のとおりであり、第四象限に存在する信号点配置は図169のとおりである。なお、図166、図167、図168、図169において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図166、図167、図168、図169からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図166の最右最上、図169の最右最下、図167の最左最上、図168の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R261)、式(R262)、式(R263)、式(R264)のいずれかに設定し、式(R265)、式(R266)、式(R267)、式(R268)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図170のとおりであり、第二象限に存在する信号点配置は図171のとおりであり、第三象限に存在する信号点配置は図172のとおりであり、第四象限に存在する信号点配置は図173のとおりである。なお、図170、図171、図172、図173において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図170、図171、図172、図173からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例4−6)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R224)および式(R225)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R269)、式(R271)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R273)、式(R274)、式(R275)、式(R276)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R269)、式(R270)、式(R271)、式(R272)のいずれかに設定し、式(R273)、式(R274)、式(R275)、式(R276)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図166のとおりであり、第二象限に存在する信号点配置は図167のとおりであり、第三象限に存在する信号点配置は図168のとおりであり、第四象限に存在する信号点配置は図169のとおりである。なお、図166、図167、図168、図169において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図166、図167、図168、図169からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図166の最右最上、図169の最右最下、図167の最左最上、図168の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R269)、式(R270)、式(R271)、式(R272)のいずれかに設定し、式(R273)、式(R274)、式(R275)、式(R276)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図170のとおりであり、第二象限に存在する信号点配置は図171のとおりであり、第三象限に存在する信号点配置は図172のとおりであり、第四象限に存在する信号点配置は図173のとおりである。なお、図170、図171、図172、図173において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図170、図171、図172、図173からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例4−7)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R224)および式(R225)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R278)、式(R279)、式(R280)、式(R281)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(R278)、式(R279)、式(R280)、式(R281)のいずれかに設定し、式(R282)、式(R283)、式(R284)、式(R285)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図174のとおりであり、第二象限に存在する信号点配置は図175のとおりであり、第三象限に存在する信号点配置は図176のとおりであり、第四象限に存在する信号点配置は図177のとおりである。なお、図174、図175、図176、図177において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図174、図175、図176、図177からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図174の最右最上、図177の最右最下、図175の最左最上、図176の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R278)、式(R279)、式(R280)、式(R281)のいずれかに設定し、式(R282)、式(R283)、式(R284)、式(R285)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図178のとおりであり、第二象限に存在する信号点配置は図179のとおりであり、第三象限に存在する信号点配置は図180のとおりであり、第四象限に存在する信号点配置は図181のとおりである。なお、図178、図179、図180、図181において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図178、図179、図180、図181からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
(例4−8)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R224)および式(R225)が成立し、

<1>式(R2)において、P =P とした場合
<2>式(R3)において、P =P とした場合
<3>式(R4)において、P =P とした場合
<4>式(R5)の場合
<5>式(R6)において、P =P とした場合
<6>式(R7)の場合
<7>式(R8)の場合
<8>式(R9)において、P =P とした場合
<9>式(R10)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R286)、式(R288)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(R2)、式(R3)、式(R4)、式(R5)、式(R6)、式(R7)、式(R8)、式(R9)、式(R10)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R290)、式(R291)、式(R292)、式(R293)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(R286)、式(R287)、式(R288)、式(R289)のいずれかに設定し、式(R290)、式(R291)、式(R292)、式(R293)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図174のとおりであり、第二象限に存在する信号点配置は図175のとおりであり、第三象限に存在する信号点配置は図176のとおりであり、第四象限に存在する信号点配置は図177のとおりである。なお、図174、図175、図176、図177において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図174、図175、図176、図177からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図174の最右最上、図177の最右最下、図175の最左最上、図176の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(R286)、式(R287)、式(R288)、式(R289)のいずれかに設定し、式(R290)、式(R291)、式(R292)、式(R293)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、信号z(t)(z(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図178のとおりであり、第二象限に存在する信号点配置は図179のとおりであり、第三象限に存在する信号点配置は図180のとおりであり、第四象限に存在する信号点配置は図181のとおりである。なお、図178、図179、図180、図181において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図178、図179、図180、図181からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
次に、(例1)〜(例4)を変形したプリコーディング方法について説明する。図150において、ベースバンド信号15011A(z(t)(z(i)))およびベースバンド信号15011B(z(t)(z(i)))が、次式のいずれかであらわされる場合を考える。
Figure 2020061771
Figure 2020061771
ただし、θ11(i)、θ21(i)はiの(時間、または、周波数の)関数であり、λは固定の値であり、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
そして、(例1)の変形として、ベースバンド信号15005A(s(t)(s(i)))の変調方式を16QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を64QAMとし、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R11)および式(R12)が成立し、
式(R295)、式(R296)のαにおいて、
式(R18)、式(R19)、式(R20)、式(R21)、
式(R35)、式(R36)、式(R37)、式(R38)、
式(R52)、式(R53)、式(R54)、式(R55)、
式(R69)、式(R70)、式(R71)、式(R72)の
いずれかを用いても、(例1)と同様の効果を得ることができる。
(例2)の変形として、ベースバンド信号15005A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を16QAMとし、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(R82)および式(R83)が成立し、
式(R295)、式(R296)のαにおいて、
式(R89)、式(R90)、式(R91)、式(R92)、
式(R106)、式(R107)、式(R108)、式(R109)、
式(R123)、式(R124)、式(R125)、式(R126)、
式(R140)、式(R141)、式(R142)、式(R143)の
いずれかを用いても、(例2)と同様の効果を得ることができる。
(例3)の変形として、ベースバンド信号15005A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を256QAMとし、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R153)および式(R154)が成立し、
式(R295)、式(R296)のαにおいて、
式(R160)、式(R161)、式(R162)、式(R163)、
式(R177)、式(R178)、式(R179)、式(R180)、
式(R194)、式(R195)、式(R196)、式(R197)、
式(R211)、式(R212)、式(R213)、式(R214)の
いずれかを用いても、(例3)と同様の効果を得ることができる。
(例4)の変形として、ベースバンド信号15005A(s(t)(s(i)))の変調方式を256QAM、ベースバンド信号15005B(s(t)(s(i)))の変調方式を64QAMとし、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(R224)および式(R225)が成立し、
式(R295)、式(R296)のαにおいて、
式(R231)、式(R232)、式(R233)、式(R234)、
式(R248)、式(R249)、式(R250)、式(R251)、
式(R265)、式(R266)、式(R267)、式(R268)、
式(R282)、式(R283)、式(R284)、式(R285)の
いずれかを用いても、(例4)と同様の効果を得ることができる。
次に、(例1)〜(例4)およびその変形例を用いて送信装置が変調信号を送信したときの受信装置の動作について説明する。
図198に、送信アンテナと受信アンテナの関係を示している。送信装置の送信アンテナ#1(19802A)から変調信号#1(19801A)が送信され、アンテナ#2(19802B)から変調信号#2(19801B)が送信されるものとする。
そして、受信装置の受信アンテナ#1(19803X)および受信アンテナ#2(19803Y)では、送信装置が送信した変調信号を受信(受信信号1980Xおよび受信信号19804Yを得る。)することになるが、このとき、送信アンテナ#1(19802A)から受信アンテナ#1(19803X)の伝搬係数をh11(t)とし、送信アンテナ#1(19802A)から受信アンテナ#2(19803Y)の伝搬係数をh21(t)とし、送信アンテナ#2(19802B)から受信アンテナ#1(19803X)の伝搬係数をh12(t)とし、送信アンテナ#2(19802B)から受信アンテナ#2(19803Y)の伝搬係数をh22(t)とする。(tは時間)
図199は受信装置の構成の一例である。無線部19902Xは、受信アンテナ#1(19803X)で受信した受信信号19901Xを入力とし、増幅、周波数変換等の処理を施し、信号19903Xを出力する。
信号処理部19904Xは、例えば、OFDM方式を用いている場合であれば、フーリエ変換、パラレルシリアル変換等の処理を施し、ベースバンド信号19905Xを得る。このとき、ベースバンド信号19905Xをr’(t)とあらわすものとする。
無線部19902Yは、受信アンテナ#2(19803Y)で受信した受信信号19901Yを入力とし、増幅、周波数変換等の処理を施し、信号19903Yを出力する。
信号処理部19904Yは、例えば、OFDM方式を用いている場合であれば、フーリエ変換、パラレルシリアル変換等の処理を施し、ベースバンド信号19905Yを得る。このとき、ベースバンド信号19905Yをr’(t)とあらわすものとする。
チャネル推定部19906Xは、ベースバンド信号19905Xを入力とし、例えば、図155のフレーム構成におけるパイロットシンボルから、チャネル推定(伝搬係数の推定)を行い、チャネル推定信号19907Xを出力する。なお、チャネル推定信号19907Xは、h11(t)の推定信号であるものとし、h’11(t)とあらわすものとする。
チャネル推定部19908Xは、ベースバンド信号19905Xを入力とし、例えば、図155のフレーム構成におけるパイロットシンボルから、チャネル推定(伝搬係数の推定)を行い、チャネル推定信号19909Xを出力する。なお、チャネル推定信号19909Xは、h12(t)の推定信号であるものとし、h’12(t)とあらわすものとする。
チャネル推定部19906Yは、ベースバンド信号19905Yを入力とし、例えば、図155のフレーム構成におけるパイロットシンボルから、チャネル推定(伝搬係数の推定)を行い、チャネル推定信号19907Yを出力する。なお、チャネル推定信号19907Yは、h21(t)の推定信号であるものとし、h’21(t)とあらわすものとする。
チャネル推定部19908Yは、ベースバンド信号19905Yを入力とし、例えば、図155のフレーム構成におけるパイロットシンボルから、チャネル推定(伝搬係数の推定)を行い、チャネル推定信号19909Yを出力する。なお、チャネル推定信号19909Yは、h22(t)の推定信号であるものとし、h’22(t)とあらわすものとする。
制御情報復調部19910は、ベースバンド信号5005Xおよびベースバンド信号1990Yを入力とし、データ(シンボル)とともに送信装置が送信した送信方法、変調方式、送信電力等に関する情報を含む制御情報を伝送するためのシンボルを復調(検波・復号)し、制御情報19911を出力する。
上述で説明した送信方法のいずれかを用いて送信装置は、変調信号を送信していることになる。したがって、以下のいずれかの送信方法となる。
<1>式(R2)の送信方法
<2>式(R3)の送信方法
<3>式(R4)の送信方法
<4>式(R5)の送信方法
<5>式(R6)の送信方法
<6>式(R7)の送信方法
<7>式(R8)の送信方法
<8>式(R9)の送信方法
<9>式(R10)の送信方法
<10>式(R295)の送信方法
<11>式(R296)の送信方法
ところで、式(R2)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R3)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R4)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R5)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R6)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R7)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R8)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R9)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R10)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R295)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(R296)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
検波部19912は、ベースバンド信号19905X、19905Y、チャネル推定信号19907X、19909X、19907Y、19909Y、および、制御情報19911を入力とする。そして、制御情報19911に基づくことで、上記の式(R297)、式(R298)、式(R299)、式(R300)、式(R301)、式(R302)、式(R303)、式(R304)、式(R305)、式(R306)、式(R307)のいずれかの関係式が成立しているかが、検波部19912はわかる。
そこで、式(R297)、式(R298)、式(R299)、式(R300)、式(R301)、式(R302)、式(R303)、式(R304)、式(R305)、式(R306)、式(R307)のいずれかの関係式に基づいて、検波部19912は、s(t)(s(i))およびs(t)(s(i))により伝送されるデータの各ビットの検波を行い(各ビットの対数尤度、または、各ビットの対数尤度比を求める)、検波結果19913を出力する。
そして、復号部19914は、検波結果19913を入力とし、誤り訂正符号の復号を行い、受信データ19915を出力する。
以上、本実施の形態では、MIMO伝送方式におけるプリコーディング方法、および、そのプリコーディング方法を用いた送信装置および受信装置の構成について説明した。本プリコーディング方法を用いることにより、受信装置において、高いデータの受信品質を得ることができるという効果を得ることができる。
なお、他の実施の形態で説明したように、送信アンテナ、受信アンテナにおいて、複数のアンテナにより一つのアンテナを構成してもよい。また、受信装置において、受信アンテナを2本具備している場合の受信装置について説明したが、これに限ったものではなく、受信アンテナを3本以上具備していても、同様に、実施することで、受信データを得ることができる。
また、本実施の形態のプリコーディング方法は、シングルキャリア方式、OFDM方式、ウェーブレット変換を用いたOFDM方式等のマルチキャリア方式、スペクトル拡散方式を適用したときも、同様に実施することができる。
(実施の形態R2)
本実施の形態では、2つの送信号の送信平均電力が異なるときのプリコーディング方法について説明する。
図204は、基地局(放送局、アクセスポイント等)の送信装置において、伝送方式を切り替えが可能としたときの、変調信号を生成する部分の構成の一例を示している。
本実施の形態では、切り替え可能な伝送方式の一つとして、2つのストリームを送信する(MIMO(Multiple Input Multiple Output)方式)伝送方法があるものとする。
基地局(放送局、アクセスポイント等)の送信装置が、二つのストリームを送信する場合の伝送方法について、図204を用いて説明する。
図204の符号化部20402は、情報20401および、制御信号20412を入力とし、制御信号20412に含まれる符号化率、符号長(ブロック長)の情報に基づき、符号化を行い、符号化後のデータ20403を出力する。
マッピング部20404は、符号化後のデータ20403、制御信号20412を入力とする。そして、制御信号20412が、伝送方式として、二つのストリームを送信することを指定したものとする。加えて、制御信号20412が二つのストリームの各変調方式として、変調方式αと変調方式βを指定したものとする。なお、変調方式αはxビットのデータを変調する変調方式、変調方式βはyビットのデータを変調する変調方式とする。(例えば16QAM(16 Quadrature Amplitude Modulation)の場合、4ビットのデータを変調する変調方式であり、64QAM(64 Quadrature Amplitude Modulation)の場合、6ビットのデータを変調する変調方式である。)
すると、マッピング部20404は、x+yビットのデータのうちのxビットのデータに対し、変調方式αで変調し、ベースバンド信号s(t)(20405A)を生成、出力し、また、残りのyビットのデータのデータに対し、変調方式βで変調し、ベースバンド信号s(t)(20405B)を出力する。(なお、図204では、マッピング部を一つとしているが、これとは別の構成として、s(t)を生成するためのマッピング部とs(t)を生成するためのマッピング部が別々に存在していてもよい。このとき、符号化後のデータ20403は、s(t)を生成するためのマッピング部とs(t)を生成するためのマッピング部に振り分けられることになる。)
なお、s(t)およびs(t)は複素数で表現され(ただし、複素数、実数、いずれであってもよい)、また、tは時間である。なお、OFDM(Orthogonal Frequency Division Multiplexing)等のマルチキャリアを用いた伝送方式を用いている場合、sおよびsは、s(f)およびs(f)のように周波数fの関数、または、s(t,f)およびs(t,f)のように時間t、周波数fの関数と考えることもできる。
以降では、ベースバンド信号、プリコーディング行列、位相変更等を時間tの関数として説明しているが、周波数fの関数、時間tおよび周波数fの関数と考えてもよい。
したがって、ベースバンド信号、プリコーディング行列、位相変更等をシンボル番号iの関数として説明を進めている場合もあるが、この場合、時間tの関数、周波数fの関数、時間tおよび周波数fの関数と考えればよい。つまり、シンボル、ベースバンド信号を、時間軸方向で生成し、配置してもよいし、周波数軸方向で生成し、配置してもよい。また、シンボル、ベースバンド信号を、時間軸方向および周波数軸方向で生成し、配置してもよい。
パワー変更部20406A(パワー調整部20406A)は、ベースバンド信号s(t)(20405A)、および、制御信号20412を入力とし、制御信号20412に基づき、実数Pを設定し、P×s(t)をパワー変更後の信号20407Aとして出力する。(なお、Pを実数としているが、複素数であってもよい。)
同様に、パワー変更部20406B(パワー調整部20406B)は、ベースバンド信号s(t)(20405B)、および、制御信号20412を入力とし、実数Pを設定し、P×s(t)をパワー変更後の信号20407Bとして出力する。(なお、Pを実数としているが、複素数であってもよい。)
重み付け合成部20408は、パワー変更後の信号20407A、パワー変更後の信号20407B、および、制御信号20412を入力とし、制御信号20412に基づき、プリコーディング行列F(またはF(i))を設定する。スロット番号(シンボル番号)をiとすると、重み付け合成部20408は、以下の演算を行う。
Figure 2020061771
ここで、a(i)、b(i)、c(i)、d(i)は、複素数で表現でき(実数であってもよい)、a(i)、b(i)、c(i)、d(i)のうち、3つ以上が0(ゼロ)であってはならない。なお、プリコーディング行列はiの関数であってもよいし、iの関数でなくてもよい。そして、プリコーディング行列がiの関数のとき、プリコーディング行列がスロット番号(シンボル番号)により切り替わることになる。
そして、重み付け合成部20408は、式(R308)におけるu(i)を重み付け合成後の信号20409Aとして出力し、式(R308)におけるu(i)を重み付け合成後の信号20409Bとして出力する。
パワー変更部20410Aは、重み付け合成後の信号20409A(u(i))、および、制御信号20412を入力とし、制御信号20412に基づき、実数Qを設定し、Q×u(t)をパワー変更後の信号20411A(z(i))として出力する。(なお、Qを実数としているが、複素数であってもよい。)
同様に、パワー変更部20410Bは、重み付け合成後の信号20409B(u(i))、および、制御信号20412を入力とし、制御信号20412に基づき、実数Qを設定し、Q×u(t)をパワー変更後の信号20411A(z(i))として出力する。(なお、Qを実数としているが、複素数であってもよい。)
したがって、以下の式が成立する。
Figure 2020061771
次に、図204とは異なる二つのストリームを送信する場合の伝送方法について、図205を用いて説明する。なお、図205において、図204と同様に動作するものについては、同一符号を付している。
位相変更部20501は、式(R308)におけるu(i)を重み付け合成後の信号20409Bおよび制御信号20412を入力とし、制御信号20412に基づき、式(R308)におけるu(i)を重み付け合成後の信号20409Bの位相を変更する。したがって、式(R308)におけるu(i)を重み付け合成後の信号20409Bの位相を変更後の信号は、ejθ(i)×u(i)とあらわされ、ejθ(i)×u(i)が位相変更後の信号20502として、位相変更部20501は、出力する(jは虚数単位)。なお、変更する位相の値は、θ(i)のようにiの関数であることが特徴的な部分となる。
そして、図205のパワー変更部20410Aおよび20410Bは、入力信号のパワー変更をそれぞれ行う。したがって、図205におけるパワー変更部20410Aおよび20410Bのそれぞれの出力z(i)、z(i)は、次式のようにあらわされる。
Figure 2020061771
なお、式(R310)を実現する方法として、図205と異なる構成として、図206がある。図205と図206の異なる点は、パワー変更部と位相変更部の順番が入れ替わっている点である。(パワー変更を行う、位相変更を行うという機能自身はかわらない。)このとき、z(i)、z(i)は、次式のようにあらわされる。
Figure 2020061771
なお、式(R310)のz(i)と式(R311)のz(i)は等しく、また、式(R310)のz(i)と式(R311)のz(i)も等しい。
式(R310)および式(R311)における変更する位相の値θ(i)は、例えば、θ(i+1)―θ(i)が固定値となるように設定すると、直接波が支配的な電波伝搬環境において、受信装置は、良好なデータの受信品質が得られる可能性が高い。ただし、変更する位相の値θ(i)の与え方は、この例に限ったものではない。
図207は、図204から図206で得られた信号z(i)、z(i)に対し、施す信号処理部の構成の一例を示している。
挿入部20704Aは、信号z(i)(S401A)、パイロットシンボル20702A、制御情報シンボル20703A、制御信号20412を入力とし、制御信号20412に含まれるフレーム構成にしたがって、信号(シンボル)z(i)(S401A)に、パイロットシンボル20702A、制御情報シンボル20703Aを挿入し、フレーム構成にしたがった、変調信号20705Aを出力する。
なお、パイロットシンボル20702A、制御情報シンボル20703Aは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部20706Aは、変調信号20705Aおよび制御信号20412を入力とし、制御信号20412に基づき、変調信号20705Aに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号20707Aを出力し、送信信号20707Aはアンテナ20708Aから電波として出力される。
挿入部20704Bは、信号z(i)(S401B)、パイロットシンボル20702B、制御情報シンボル20703B、制御信号20412を入力とし、制御信号20412に含まれるフレーム構成にしたがって、信号(シンボル)z(i)(S401B)に、パイロットシンボル20702B、制御情報シンボル20703Bを挿入し、フレーム構成にしたがった、変調信号20705Bを出力する。
なお、パイロットシンボル20702B、制御情報シンボル20703Bは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部20706Bは、変調信号20705Bおよび制御信号20412を入力とし、制御信号20412に基づき、変調信号20705Bに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号20707Bを出力し、送信信号20707Bはアンテナ20708Bから電波として出力される。
ここで、信号z(i)(S401A)と信号z(i)(S401B)において、iが同一番号の信号z(i)(S401A)と信号z(i)(S401B)は、同一(共通)の周波数を同一時間にそれぞれ異なるアンテナから送信されることになる。(つまり、MIMO方式を用いた伝送方法となる。)
また、パイロットシンボル20702Aおよびパイロットシンボル20702Bは、受信装置において、信号検出、周波数オフセットの推定、ゲインコントロール、チャネル推定等を行うためのシンボルであり、ここでは、パイロットシンボルと名付けているが、リファレンスシンボル等、別の呼び方をしてもよい。
そして、制御情報シンボル20703Aおよび制御情報シンボル20703Bは、送信装置が用いた変調方式の情報、伝送方式の情報、プリコーディング方式の情報、誤り訂正符号方式の情報、誤り訂正符号の符号化率の情報、誤り訂正符号のブロック長(符号長)の情報等を、受信装置に伝送するためのシンボルである。なお、制御情報シンボル20703Aおよび制御情報シンボル20703Bの一方のみで、制御情報シンボルを送信してもよい。
図208は、二つのストリームを送信する場合の時間―周波数におけるフレーム構成の一例を示している。図208において、横軸周波数、縦軸時間であり、一例として、キャリア1からキャリア38、時間$1から時間$11のシンボルの構成を示している。
図208は、図207のアンテナ20706Aから送信する送信信号のフレーム構成とアンテナ20708Bから送信する送信信号のフレームを同時に示している。
図208において、図207のアンテナ20706Aから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z(i)に相当する。そして、パイロットシンボルは、パイロットシンボル20702Aに相当する。
図208において、図207のアンテナ20706Bから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z(i)に相当する。そして、パイロットシンボルは、パイロットシンボル20702Bに相当する。
(したがって、上述でも説明したように、信号z(i)(S401A)と信号z(i)(S401B)において、iが同一番号の信号z(i)(S401A)と信号z(i)(S401B)は、同一(共通)の周波数を同一時間にそれぞれ異なるアンテナから送信されることになる。また、パイロットシンボルの構成は、図208に限ったものではなく、例えば、パイロットシンボルの時間間隔、周波数間隔は、図208に限ったものではない。そして、図208では、図207のアンテナ20706Aおよび図207のアンテナ20706Bから、同一時刻、同一周波数(同一(サブ)キャリア)にパイロットシンボルが送信されるフレーム構成としているが、これに限ったものではなく、例えば、時間A、周波数a((サブ)キャリアa)において、図207のアンテナ20706Aにパイロットシンボルを配置し、時間A、周波数a((サブ)キャリアa)において、図207のアンテナ20706Bにはシンボルを配置しないとし、時間B、周波数b((サブ)キャリアb)において、図207のアンテナ20706Aにシンボルを配置しないとし、時間B、周波数b((サブ)キャリアb)において、図207のアンテナ20706Bにパイロットシンボルを配置する、とする構成としてもよい。
なお、図208では、データシンボルとパイロットシンボルしか記述していないが、他のシンボル、例えば、制御情報シンボル等のシンボルがフレームに含まれていてもよい。
図204から図206において、パワー変更部の一部(または、すべて)が存在する場合を例に説明したが、パワー変更部の一部がない場合も考えられる。
例えば、図204において、パワー変更部20406A(パワー調整部20406A)、パワー変更部20406B(パワー調整部20406B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図204において、パワー変更部20410A(パワー調整部20410A)、パワー変更部20410B(パワー調整部20410B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図204において、パワー変更部20406A(パワー調整部20406A)、パワー変更部20406B(パワー調整部20406B)、パワー変更部20410A(パワー調整部20410A)、パワー変更部20410B(パワー調整部20410B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図205または図206において、パワー変更部20406A(パワー調整部20406A)、パワー変更部20406B(パワー調整部20406B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図205または図206において、パワー変更部20410A(パワー調整部20410A)、パワー変更部20410B(パワー調整部20410B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図205または図206において、パワー変更部20406A(パワー調整部20406A)、パワー変更部20406B(パワー調整部20406B)、パワー変更部20410A(パワー調整部20410A)、パワー変更部20410B(パワー調整部20410B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
次に、ベースバンド信号s(t)(20405A)ベースバンド信号s(t)(20405B)を生成するための変調方式のマッピング方法の例として、QPSK、16QAM、64QAM、256QAMのマッピング方法について説明する。
QPSKのマッピング方法について説明する。図200は、同相I−直交Q平面におけるQPSKの信号点配置の例を示している。なお、図200において、4つの○がQPSKの信号点であり、横軸I、縦軸Qとなる。
QPSKの4つの信号点(図200の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、(w,w)、(−w,w)、(w,−w)、(−w,−w)となる(wは0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1とする。例えば、送信するビットが(b0、b1)=(0、0)の場合、図200における信号点R101にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(w,w)となる。
つまり、送信するビット(b0、b1)に基づき、(QPSK変調時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0 b1のセット(0 0〜1 1)と信号点の座標の関係の一例は図200のとおりである。QPSKの4つの信号点(図200の「○」)(w,w)、(−w,w)、(w,−w)、(−w,−w)の直下にb0 b1のセット0 0〜1 1の値が示されている。b0 b1のセット0 0〜1 1の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、QPSK時のb0 b1のセット(0 0〜1 1)と信号点の座標の関係は、図200に限ったものではない。そして、(QPSK変調時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、ベースバンド信号(s(t)またはs(t))となる。
16QAMのマッピング方法について説明する。図201は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図201において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。
16QAMの16個の信号点(図201の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)、となる(w16は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図201における信号点R201にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(3w16,3w16)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図201のとおりである。16QAMの16個の信号点(図201の「○」)(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図201に限ったものではない。そして、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、ベースバンド信号(s(t)またはs(t))となる。
64QAMのマッピング方法について説明する。図202は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図202において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図202の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図202における信号点R301にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図202のとおりである。64QAMの64個の信号点(図202の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図202に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、ベースバンド信号(s(t)またはs(t))となる。
256QAMのマッピング方法について説明する。図203は、同相I−直交Q平面における256QAMの信号点配置の例を示している。なお、図203において、256個の○が256QAMの信号点である。
256QAMの256個の信号点(図203の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

、となる(w256は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5、b6、b7とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5、b6、b7)=(0、0、0、0、0、0、0、0)の場合、図203における信号点R401にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(15w256,15w256)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5、b6、b7)に基づき、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係の一例は図203のとおりである。256QAMの256個の信号点(図203の「○」)
(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

の直下にb0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の値が示されている。b0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、256QAM時のb0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係は、図203に限ったものではない。そして、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、ベースバンド信号(s(t)またはs(t))となる。
このとき、図204〜図206のマッピング部20404の出力であるベースバンド信号20405A(s(t)(s(i)))の平均電力とベースバンド信号20405B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明したQPSKのマッピング方法のところで記載した係数w、上述で説明した16QAMのマッピング方法のところで記載した係数w16、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、以下の関係式が成立する。
Figure 2020061771

Figure 2020061771

Figure 2020061771

Figure 2020061771
DVB規格では、MIMO伝送方法おいて、2本のアンテナから、変調信号#1、変調信号#2を送信する際、変調信号#1の送信平均電力と変調信号#2の送信平均電力を異なるように設定する場合が存在する。一例として、上述において、式(R309)、式(R310)、式(R311)、式(R312)、式(R315)の場合において、Q≠Qの場合となる。
さらに具体的な例として、以下を考える。
<1>式(R309)において、プリコーディング行列F(または、F(i))が以下のいずれかの式であらわされる場合。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R322)、式(R323)、式(R324)、式(R325)、式(R326)、式(R327)、式(R328)、式(R329)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(R330)、式(R332)、式(R334)、式(R336)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
ただし、θ11(i)、θ21(i)はiの(時間、または、周波数の)関数であり、λは固定の値であり、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
<2>式(R310)において、プリコーディング行列F(または、F(i))が、式(15)から式(30)のいずれかの式であらわされる場合。
<3>式(R311)において、プリコーディング行列F(または、F(i))が、式(15)から式(30)のいずれかの式であらわされる場合。
<4>式(R312)において、プリコーディング行列F(または、F(i))が、式(15)から式(34)のいずれかの式であらわされる場合。
<5>式(R315)において、プリコーディング行列F(または、F(i))が、式(15)から式(30)のいずれかの式であらわされる場合。
また、<1>から<5>において、s(t)の変調方式とs(t)の変調方式(s(i)の変調方式とs(i)の変調方式)は異なるものとする。
以上において、本実施の形態の重要となる点について説明する。なお、以下で説明する点は、<1>から<5>におけるプリコーディング方法のとき、特に、重要となるが、<1>から<5>におけるプリコーディング方法において、式(15)から式(34)以外のプリコーディング行列を用いたときも実施することが可能である。
<1>から<5>におけるs(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数(同相I−直交Q平面における信号点の数、例えば、16QAMのとき変調多値数は16となる)を2(gは1以上の整数)、<1>から<5>におけるs(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数(同相I−直交Q平面における信号点の数、例えば、64QAMのとき変調多値数は64となる)を2(hは1以上の整数)とする。(なお、g≠hとする。)
すると、s(t)(s(i))の1シンボルによりgビットのデータ、s(t)(s(i))の1シンボルによりhビットのデータが伝送されることになる。よって、s(t)(s(i))1シンボルとs(t)(s(i))1シンボルで形成される1スロットでは、g+hビットが伝送されることになる。このとき、高い空間ダイバーシチゲインを得るためには、以下の条件が重要となる。
<条件R−1>
式(R309)、または、式(R310)、または、式(R311)、または、式(R312)、または、式(R315)のいずれかのプリコーディング(ただし、プリコーディング以外の処理も含む)を施した場合、プリコーディング等の処理を施した後の信号z(t)(z(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
加えて、プリコーディング等の処理を施した後の信号z(t)(z(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
次に、<条件R−1>を別の表現を行うとともに、さらなる追加条件について、式(R309)、式(R310)、式(R311)、式(R312)、式(R315)それぞれにわけて説明を行う。
(Case 1)
固定のプリコーディング行列を用い、式(R309)の処理を行った場合:
式(R309)の演算の途中段階の式として、以下の式を考える。
Figure 2020061771

(なお、Case 1の場合、プリコーディング行列Fは固定のプリコーディング行列とする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。)
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、以下の条件が成立すると、高い空間ダイバーシチゲインを得ることができる。
<条件R−2>
式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
加えて、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、式(R309)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、以下の条件を考える。
<条件R−3>
式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D>D(DはDより大きい)が成立する。
ところで、図252に、送信アンテナと受信アンテナの関係を示している。送信装置の送信アンテナ#1(25202A)から変調信号#1(25201A)が送信され、送信アンテナ#2(25202B)から変調信号#2(25201B)が送信されるものとする。このとき、送信アンテナ#1(25202A)からz(t)(z(i))(つまり、u(t)(u(i)))を送信し、送信アンテナ#2(25202B)からz(t)(z(i))(つまり、u(t)(u(i)))を送信するものとする。
そして、受信装置の受信アンテナ#1(25203X)および受信アンテナ#2(25203Y)では、送信装置が送信した変調信号を受信(受信信号2020Xおよび受信信号25204Yを得る。)することになるが、このとき、送信アンテナ#1(25202A)から受信アンテナ#1(25203X)の伝搬係数をh11(t)とし、送信アンテナ#1(25202A)から受信アンテナ#2(25203Y)の伝搬係数をh21(t)とし、送信アンテナ#2(25202B)から受信アンテナ#1(25203X)の伝搬係数をh12(t)とし、送信アンテナ#2(25202B)から受信アンテナ#2(25203Y)の伝搬係数をh22(t)とする。(tは時間)
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−3>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−3’>が成立するとよい。
<条件R−3’>
式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D<D(DはDより小さい)が成立する。
Case 1において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 2)
式(R322)から式(R337)のプリコーディング行列のいずれかのプリコーディング行列を用い、式(R309)の処理を行った場合:
式(R309)の演算の途中段階の式として、式(R342)を考える。なお、Case 2の場合、プリコーディング行列Fは固定のプリコーディング行列とし、プリコーディング行列Fは式(R322)から式(R337)のいずれかであらわされるものとする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、<条件R−2>が成立すると、高い空間ダイバーシチゲインを得ることができる。
そして、式(R309)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、Case 1のときと同様に、<条件R―3>が成立することを考える。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−3>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
また、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
<条件R−3’’>
<条件R−3>が成立するとともに、式(R309)において、P=Pが成立する。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−3’’>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−3’>が成立するとよい。
また、同様の理由から、|Q|<|Q|のとき、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
<条件R−3’’’>
<条件R−3’>が成立するとともに、式(R309)において、P=Pが成立する。
Case 2において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 3)
式(R338)から式(R341)のプリコーディング行列のいずれかのプリコーディング行列を用い、式(R309)の処理を行った場合:
式(R309)の演算の途中段階の式として、式(R342)を考える。なお、Case 3の場合、プリコーディング行列Fは時間(または、周波数)によって、プリコーディング行列が切り替わるものとする。そして、プリコーディング行列F(F(i))は式(R338)から式(R341)のいずれかであらわされるものとする。
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、以下の<条件R−4>が成立すると、高い空間ダイバーシチゲインを得ることができる。
<条件R−4>
シンボル番号iがN以上M以下(Nは整数、Mは整数とし、N<M(MはNより小さい)とする。)において、s(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式が固定(切り替わらない)、および、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式が固定(切り替わらない)ものとする。
そして、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
加えて、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、式(R309)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、<条件R―5>が成立することを考える。
<条件R−5>
シンボル番号iがN以上M以下(Nは整数、Mは整数とし、N<M(MはNより小さい)とする。)において、s(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式が固定(切り替わらない)、および、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式が固定(切り替わらない)ものとする。
シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、シンボル番号iにおいて、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をD(i)とする(なお、D(i)は0(ゼロ)以上の実数となる(D(i)≧0)。D(i)が0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、シンボル番号iにおいて、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をD(i)とする(なお、D(i)は0(ゼロ)以上の実数となる(D(i)≧0)。D(i)が0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、D(i)>D(i)(D(i)はD(i)より大きい)が成立する。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−5>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
また、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
<条件R−5’>
<条件R−5>が成立するとともに、式(R309)において、P=Pが成立する。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−5’>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−5’’>が成立するとよい。
<条件R−5’’>
シンボル番号iがN以上M以下(Nは整数、Mは整数とし、N<M(MはNより小さい)とする。)において、s(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式が固定(切り替わらない)、および、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式が固定(切り替わらない)ものとする。
シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、シンボル番号iにおいて、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をD(i)とする(なお、D(i)は0(ゼロ)以上の実数となる(D(i)≧0)。D(i)が0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、 シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R342)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、シンボル番号iにおいて、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をD(i)とする(なお、D(i)は0(ゼロ)以上の実数となる(D(i)≧0)。D(i)が0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、D(i)<D(i)(D(i)はD(i)より小さい)が成立する。
また、同様の理由から、|Q|<|Q|のとき、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
<条件R−5’’’>
<条件R−5’’>が成立するとともに、式(R309)において、P=Pが成立する。
Case 3において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 4)
固定のプリコーディング行列を用い、式(R310)の処理を行った場合:
式(R310)の演算の途中段階の式として、以下の式を考える。
Figure 2020061771

(なお、Case 4の場合、プリコーディング行列Fは固定のプリコーディング行列とする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。)
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、以下の条件が成立すると、高い空間ダイバーシチゲインを得ることができる。
<条件R−6>
式(R343)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
加えて、式(R343)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、式(R310)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、以下の条件を考える。
<条件R−7>
式(R343)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R343)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D>D(DはDより大きい)が成立する。
ところで、図252に、送信アンテナと受信アンテナの関係を示している。送信装置の送信アンテナ#1(25202A)から変調信号#1(25201A)が送信され、送信アンテナ#2(25202B)から変調信号#2(25201B)が送信されるものとする。このとき、送信アンテナ#1(25202A)からz(t)(z(i))(つまり、u(t)(u(i)))を送信し、送信アンテナ#2(25202B)からz(t)(z(i))(つまり、u(t)(u(i)))を送信するものとする。
そして、受信装置の受信アンテナ#1(25203X)および受信アンテナ#2(25203Y)では、送信装置が送信した変調信号を受信(受信信号2020Xおよび受信信号25204Yを得る。)することになるが、このとき、送信アンテナ#1(25202A)から受信アンテナ#1(25203X)の伝搬係数をh11(t)とし、送信アンテナ#1(25202A)から受信アンテナ#2(25203Y)の伝搬係数をh21(t)とし、送信アンテナ#2(25202B)から受信アンテナ#1(25203X)の伝搬係数をh12(t)とし、送信アンテナ#2(25202B)から受信アンテナ#2(25203Y)の伝搬係数をh22(t)とする。(tは時間)
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−7>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−7’>が成立するとよい。
<条件R−7’>
式(R343)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R343)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D<D(DはDより小さい)が成立する。
Case 4において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 5)
式(R322)から式(R337)のプリコーディング行列のいずれかのプリコーディング行列を用い、式(R310)の処理を行った場合:
式(R310)の演算の途中段階の式として、式(R343)を考える。なお、Case 5の場合、プリコーディング行列Fは固定のプリコーディング行列とし、プリコーディング行列Fは式(R322)から式(R337)のいずれかであらわされるものとする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、<条件R−6>が成立すると、高い空間ダイバーシチゲインを得ることができる。
そして、式(R310)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、Case 4のときと同様に、<条件R―7>が成立することを考える。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R―7>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
また、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
<条件R−7’’>
<条件R−7>が成立するとともに、式(R310)において、P=Pが成立する。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−7’’>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−7’>が成立するとよい。
また、同様の理由から、|Q|<|Q|のとき、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
<条件R−7’’’>
<条件R−7’>が成立するとともに、式(R310)において、P=Pが成立する。
Case 5において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 6)
固定のプリコーディング行列を用い、式(R311)の処理を行った場合:
式(R311)の演算の途中段階の式として、以下の式を考える。
Figure 2020061771

(なお、Case 6の場合、プリコーディング行列Fは固定のプリコーディング行列とする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。)
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、以下の条件が成立すると、高い空間ダイバーシチゲインを得ることができる。
<条件R−8>
式(R344)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
加えて、式(R344)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、式(R311)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、以下の条件を考える。
<条件R−9>
式(R344)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R344)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D>D(DはDより大きい)が成立する。
ところで、図252に、送信アンテナと受信アンテナの関係を示している。送信装置の送信アンテナ#1(25202A)から変調信号#1(25201A)が送信され、送信アンテナ#2(25202B)から変調信号#2(25201B)が送信されるものとする。このとき、送信アンテナ#1(25202A)からz(t)(z(i))(つまり、u(t)(u(i)))を送信し、送信アンテナ#2(25202B)からz(t)(z(i))(つまり、u(t)(u(i)))を送信するものとする。
そして、受信装置の受信アンテナ#1(25203X)および受信アンテナ#2(25203Y)では、送信装置が送信した変調信号を受信(受信信号2020Xおよび受信信号25204Yを得る。)することになるが、このとき、送信アンテナ#1(25202A)から受信アンテナ#1(25203X)の伝搬係数をh11(t)とし、送信アンテナ#1(25202A)から受信アンテナ#2(25203Y)の伝搬係数をh21(t)とし、送信アンテナ#2(25202B)から受信アンテナ#1(25203X)の伝搬係数をh12(t)とし、送信アンテナ#2(25202B)から受信アンテナ#2(25203Y)の伝搬係数をh22(t)とする。(tは時間)
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−9>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−9’>が成立するとよい。
<条件R−9’>
式(R344)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R344)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D<D(DはDより小さい)が成立する。
Case 6において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 7)
式(R322)から式(R337)のプリコーディング行列のいずれかのプリコーディング行列を用い、式(R311)の処理を行った場合:
式(R311)の演算の途中段階の式として、式(R344)を考える。なお、Case 7の場合、プリコーディング行列Fは固定のプリコーディング行列とし、プリコーディング行列Fは式(R322)から式(R337)のいずれかであらわされるものとする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、<条件R−8>が成立すると、高い空間ダイバーシチゲインを得ることができる。
そして、式(R311)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、Case 6のときと同様に、<条件R―9>が成立することを考える。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R―9>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
また、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
<条件R−9’’>
<条件R―9>が成立するとともに、式(R311)において、P=Pが成立する。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−9’’>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−9’>が成立するとよい。
また、同様の理由から、|Q|<|Q|のとき、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
<条件R−9’’’>
<条件R−9’>が成立するとともに、式(R311)において、P=Pが成立する。
Case 7において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 8)
固定のプリコーディング行列を用い、式(R312)の処理を行った場合:
式(R312)の演算の途中段階の式として、以下の式を考える。
Figure 2020061771

(なお、Case 8の場合、プリコーディング行列Fは固定のプリコーディング行列とする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。)
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、以下の条件が成立すると、高い空間ダイバーシチゲインを得ることができる。
<条件R−10>
式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
加えて、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、式(R312)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、以下の条件を考える。
<条件R−11>
式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D>D(DはDより大きい)が成立する。
ところで、図252に、送信アンテナと受信アンテナの関係を示している。送信装置の送信アンテナ#1(25202A)から変調信号#1(25201A)が送信され、送信アンテナ#2(25202B)から変調信号#2(25201B)が送信されるものとする。このとき、送信アンテナ#1(25202A)からz(t)(z(i))(つまり、u(t)(u(i)))を送信し、送信アンテナ#2(25202B)からz(t)(z(i))(つまり、u(t)(u(i)))を送信するものとする。
そして、受信装置の受信アンテナ#1(25203X)および受信アンテナ#2(25203Y)では、送信装置が送信した変調信号を受信(受信信号2020Xおよび受信信号25204Yを得る。)することになるが、このとき、送信アンテナ#1(25202A)から受信アンテナ#1(25203X)の伝搬係数をh11(t)とし、送信アンテナ#1(25202A)から受信アンテナ#2(25203Y)の伝搬係数をh21(t)とし、送信アンテナ#2(25202B)から受信アンテナ#1(25203X)の伝搬係数をh12(t)とし、送信アンテナ#2(25202B)から受信アンテナ#2(25203Y)の伝搬係数をh22(t)とする。(tは時間)
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−11>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−11’>が成立するとよい。
<条件R−11’>
式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D<D(DはDより小さい)が成立する。
Case 8において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 9)
式(R322)から式(R337)のプリコーディング行列のいずれかのプリコーディング行列を用い、式(R312)の処理を行った場合:
式(R312)の演算の途中段階の式として、式(R345)を考える。なお、Case 9の場合、プリコーディング行列Fは固定のプリコーディング行列とし、プリコーディング行列Fは式(R322)から式(R337)のいずれかであらわされるものとする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、<条件R−10>が成立すると、高い空間ダイバーシチゲインを得ることができる。
そして、式(R312)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、Case 8のときと同様に、<条件R―11>が成立することを考える。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−11>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−11’>が成立するとよい。
Case 9において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 10)
式(R338)から式(R341)のプリコーディング行列のいずれかのプリコーディング行列を用い、式(R312)の処理を行った場合:
式(R312)の演算の途中段階の式として、式(R345)を考える。なお、Case 10の場合、プリコーディング行列Fは時間(または、周波数)によって、プリコーディング行列が切り替わるものとする。そして、プリコーディング行列F(F(i))は式(R338)から式(R341)のいずれかであらわされるものとする。
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、以下の<条件R−12>が成立すると、高い空間ダイバーシチゲインを得ることができる。
<条件R−12>
シンボル番号iがN以上M以下(Nは整数、Mは整数とし、N<M(MはNより小さい)とする。)において、s(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式が固定(切り替わらない)、および、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式が固定(切り替わらない)ものとする。
そして、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
加えて、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、式(R312)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、<条件R―13>が成立することを考える。
<条件R−13>
シンボル番号iがN以上M以下(Nは整数、Mは整数とし、N<M(MはNより小さい)とする。)において、s(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式が固定(切り替わらない)、および、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式が固定(切り替わらない)ものとする。
シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、シンボル番号iにおいて、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をD(i)とする(なお、D(i)は0(ゼロ)以上の実数となる(D(i)≧0)。D(i)が0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、 シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、シンボル番号iにおいて、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をD(i)とする(なお、D(i)は0(ゼロ)以上の実数となる(D(i)≧0)。D(i)が0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、D(i)>D(i)(D(i)はD(i)より大きい)が成立する。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−13>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
また、以下の条件が成立しても、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−13’’>が成立するとよい。
<条件R−13’’>
シンボル番号iがN以上M以下(Nは整数、Mは整数とし、N<M(MはNより小さい)とする。)において、s(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式が固定(切り替わらない)、および、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式が固定(切り替わらない)ものとする。
シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、シンボル番号iにおいて、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をD(i)とする(なお、D(i)は0(ゼロ)以上の実数となる(D(i)≧0)。D(i)が0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、式(R345)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、シンボル番号iにおいて、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をD(i)とする(なお、D(i)は0(ゼロ)以上の実数となる(D(i)≧0)。D(i)が0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、シンボル番号iがN以上M以下としたとき、これを満たす、すべてのiで、D(i)<D(i)(D(i)はD(i)より小さい)が成立する。
Case 10において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 11)
固定のプリコーディング行列を用い、式(R315)の処理を行った場合:
式(R315)の演算の途中段階の式として、以下の式を考える。
Figure 2020061771

(なお、Case 11の場合、プリコーディング行列Fは固定のプリコーディング行列とする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。)
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、以下の条件が成立すると、高い空間ダイバーシチゲインを得ることができる。
<条件R−14>
式(R346)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
加えて、式(R346)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)
そして、式(R315)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、以下の条件を考える。
<条件R−15>
式(R346)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R346)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D>D(DはDより大きい)が成立する。
ところで、図252に、送信アンテナと受信アンテナの関係を示している。送信装置の送信アンテナ#1(25202A)から変調信号#1(25201A)が送信され、送信アンテナ#2(25202B)から変調信号#2(25201B)が送信されるものとする。このとき、送信アンテナ#1(25202A)からz(t)(z(i))(つまり、u(t)(u(i)))を送信し、送信アンテナ#2(25202B)からz(t)(z(i))(つまり、u(t)(u(i)))を送信するものとする。
そして、受信装置の受信アンテナ#1(25203X)および受信アンテナ#2(25203Y)では、送信装置が送信した変調信号を受信(受信信号2020Xおよび受信信号25204Yを得る。)することになるが、このとき、送信アンテナ#1(25202A)から受信アンテナ#1(25203X)の伝搬係数をh11(t)とし、送信アンテナ#1(25202A)から受信アンテナ#2(25203Y)の伝搬係数をh21(t)とし、送信アンテナ#2(25202B)から受信アンテナ#1(25203X)の伝搬係数をh12(t)とし、送信アンテナ#2(25202B)から受信アンテナ#2(25203Y)の伝搬係数をh22(t)とする。(tは時間)
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R−15>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−15’>が成立するとよい。
<条件R−15’>
式(R346)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
また、式(R346)の信号u(t)(u(i))の1シンボルにおいて、同相I―直交Q平面において、候補となる信号点の数は2g+h個となる。(1シンボルにおいて、g+hビットのデータの取り得る値すべてに対し、同相I―直交Q平面に、信号点を作成すると、2g+h個の信号点を作成することができる。この数が、候補となる信号点の数となる。)そして、同相I―直交Q平面において、u(t)(u(i))の2g+h個の候補となる信号点の最小ユークリッド距離をDとする(なお、Dは0(ゼロ)以上の実数となる(D≧0)。Dが0(ゼロ)のとき、2g+h個の信号点のうち、同相I―直交Q平面において、同一の位置に存在する信号点が存在することになる。)。
このとき、D<D(DはDより小さい)が成立する。
Case 11において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
(Case 12)
式(R322)から式(R337)のプリコーディング行列のいずれかのプリコーディング行列を用い、式(R315)の処理を行った場合:
式(R315)の演算の途中段階の式として、式(R346)を考える。なお、Case 12の場合、プリコーディング行列Fは固定のプリコーディング行列とし、プリコーディング行列Fは式(R322)から式(R337)のいずれかであらわされるものとする。(ただし、s(t)(s(i))における変調方式、および/または、s(t)(s(i))における変調方式が切り替わった場合、プリコーディング行列が切り替わってもよい。
(t)(s(i))(つまり、ベースバンド信号20405A)の変調方式の変調多値数を2(gは1以上の整数)、s(t)(s(i))(つまり、ベースバンド信号20405B)の変調方式の変調多値数を2(hは1以上の整数)とし、g≠hとする。
このとき、<条件R−14>が成立すると、高い空間ダイバーシチゲインを得ることができる。
そして、式(R315)において、|Q|>|Q|(Qの絶対値がQの絶対値より大きい。)としたとき、Case 11のときと同様に、<条件R―15>が成立することを考える。
このとき、|Q|>|Q|が成立することから、z(t)(z(i))(つまり、u(t)(u(i)))の変調信号の受信状態が、受信データの受信品質の支配的な要因となる可能性がある。したがって、<条件R―15>を満たすことにより、受信装置は、高いデータの受信品質を得ることができる可能性が高くなる。
なお、同様に理由から、|Q|<|Q|のとき、<条件R−15’>が成立するとよい。
Case 12において、例えば、s(t)(s(i))における変調方式、および、s(t)(s(i))における変調方式として、上述で述べたように、QPSK、16QAM、64QAM、256QAMを適用することになる。このとき、具体的なマッピング方法については、本実施の形態の上述で説明したとおりとなる。ただし、QPSK、16QAM、64QAM、256QAM以外の変調方式を用いてもよい。
以上、本実施の形態で述べたように、プリコーディングを行った後の2つの変調信号を異なるアンテナから送信する送信方法において、平均送信電力が大きいほうの変調信号の信号点の同相I―直交Q平面における最小ユークリッド距離を大きくすることで、受信装置は、高いデータの受信品質を得ることができるという効果を得ることができる可能性が高くなる。
なお、他の実施の形態で説明したように、送信アンテナ、受信アンテナにおいて、複数のアンテナにより一つのアンテナを構成してもよい。
また、本実施の形態のプリコーディング方法は、シングルキャリア方式、OFDM方式、ウェーブレット変換を用いたOFDM方式等のマルチキャリア方式、スペクトル拡散方式を適用したときも、同様に実施することができる。
そして、本実施の形態に関する具体的な例については、以降の実施の形態で、詳しく説明するとともに、受信装置に動作についても説明を行うものとする。
(実施の形態S1)
本実施の形態では、実施の形態R2で述べた2つの送信号の送信平均電力が異なるときのプリコーディング方法のより具体的な例を説明する。
図204は、基地局(放送局、アクセスポイント等)の送信装置において、伝送方式を切り替えが可能としたときの、変調信号を生成する部分の構成の一例を示している。
基地局(放送局、アクセスポイント等)の送信装置について、図204を用いて説明する。
図204の符号化部20402は、情報20401および、制御信号20412を入力とし、制御信号20412に含まれる符号化率、符号長(ブロック長)の情報に基づき、符号化を行い、符号化後のデータ20403を出力する。
マッピング部20404は、符号化後のデータ20403、制御信号20412を入力とする。そして、制御信号20412が、伝送方式として、二つのストリームを送信することを指定したものとする。加えて、制御信号20412が二つのストリームの各変調方式として、変調方式αと変調方式βを指定したものとする。なお、変調方式αはxビットのデータを変調する変調方式、変調方式βはyビットのデータを変調する変調方式とする。(例えば16QAM(16 Quadrature Amplitude Modulation)の場合、4ビットのデータを変調する変調方式であり、64QAM(64 Quadrature Amplitude Modulation)の場合、6ビットのデータを変調する変調方式である。)
すると、マッピング部20404は、x+yビットのデータのうちのxビットのデータに対し、変調方式αで変調し、ベースバンド信号s(t)(20405A)を生成、出力し、また、残りのyビットのデータのデータに対し、変調方式βで変調し、ベースバンド信号s(t)(20405B)を出力する。(なお、図204では、マッピング部を一つとしているが、これとは別の構成として、s(t)を生成するためのマッピング部とs(t)を生成するためのマッピング部が別々に存在していてもよい。このとき、符号化後のデータ20403は、s(t)を生成するためのマッピング部とs(t)を生成するためのマッピング部に振り分けられることになる。)
なお、s(t)およびs(t)は複素数で表現され(ただし、複素数、実数、いずれであってもよい)、また、tは時間である。なお、OFDM(Orthogonal Frequency Division Multiplexing)等のマルチキャリアを用いた伝送方式を用いている場合、sおよびsは、s(f)およびs(f)のように周波数fの関数、または、s(t,f)およびs(t,f)のように時間t、周波数fの関数と考えることもできる。
以降では、ベースバンド信号、プリコーディング行列、位相変更等を時間tの関数として説明しているが、周波数fの関数、時間tおよび周波数fの関数と考えてもよい。
したがって、ベースバンド信号、プリコーディング行列、位相変更等をシンボル番号iの関数として説明を進めている場合もあるが、この場合、時間tの関数、周波数fの関数、時間tおよび周波数fの関数と考えればよい。つまり、シンボル、ベースバンド信号を、時間軸方向で生成し、配置してもよいし、周波数軸方向で生成し、配置してもよい。また、シンボル、ベースバンド信号を、時間軸方向および周波数軸方向で生成し、配置してもよい。
パワー変更部20406A(パワー調整部20406A)は、ベースバンド信号s(t)(20405A)、および、制御信号20412を入力とし、制御信号20412に基づき、実数Pを設定し、P×s(t)をパワー変更後の信号20407Aとして出力する。(なお、Pを実数としているが、複素数であってもよい。)
同様に、パワー変更部20406B(パワー調整部20406B)は、ベースバンド信号s(t)(20405B)、および、制御信号20412を入力とし、実数Pを設定し、P×s(t)をパワー変更後の信号20407Bとして出力する。(なお、Pを実数としているが、複素数であってもよい。)
重み付け合成部20408は、パワー変更後の信号20407A、パワー変更後の信号20407B、および、制御信号20412を入力とし、制御信号20412に基づき、プリコーディング行列F(またはF(i))を設定する。スロット番号(シンボル番号)をiとすると、重み付け合成部20408は、以下の演算を行う。
Figure 2020061771
ここで、a(i)、b(i)、c(i)、d(i)は、複素数で表現でき(実数であってもよい)、a(i)、b(i)、c(i)、d(i)のうち、3つ以上が0(ゼロ)であってはならない。なお、プリコーディング行列はiの関数であってもよいし、iの関数ではなくてもよい。そして、プリコーディング行列がiの関数のとき、プリコーディング行列がスロット番号(シンボル番号)により切り替わることになる。
そして、重み付け合成部20408は、式(S1)におけるu(i)を重み付け合成後の信号20409Aとして出力し、式(S1)におけるu(i)を重み付け合成後の信号20409Bとして出力する。
パワー変更部20410Aは、重み付け合成後の信号20409A(u(i))、および、制御信号20412を入力とし、制御信号20412に基づき、実数Qを設定し、Q×u(t)をパワー変更後の信号20411A(z(i))として出力する。(なお、Qを実数としているが、複素数であってもよい。)
同様に、パワー変更部20410Bは、重み付け合成後の信号20409B(u(i))、および、制御信号20412を入力とし、制御信号20412に基づき、実数Qを設定し、Q×u(t)をパワー変更後の信号20411A(z(i))として出力する。(なお、Qを実数としているが、複素数であってもよい。)
したがって、以下の式が成立する。
Figure 2020061771
次に、図204とは異なる二つのストリームを送信する場合の伝送方法について、図205を用いて説明する。なお、図205において、図204と同様に動作するものについては、同一符号を付している。
位相変更部20501は、式(S1)におけるu(i)を重み付け合成後の信号20409Bおよび制御信号20412を入力とし、制御信号20412に基づき、式(S1)におけるu(i)を重み付け合成後の信号20409Bの位相を変更する。したがって、式(S1)におけるu(i)を重み付け合成後の信号20409Bの位相を変更後の信号は、ejθ(i)×u(i)とあらわされ、ejθ(i)×u(i)が位相変更後の信号20502として、位相変更部20501は、出力する(jは虚数単位)。なお、変更する位相の値は、θ(i)のようにiの関数であることが特徴的な部分となる。
そして、図205のパワー変更部20410Aおよび20410Bは、入力信号のパワー変更をそれぞれ行う。したがって、図205におけるパワー変更部20410Aおよび20410Bのそれぞれの出力z(i)、z(i)は、次式のようにあらわされる。
Figure 2020061771
なお、式(S3)を実現する方法として、図205と異なる構成として、図206がある。図205と図206の異なる点は、パワー変更部と位相変更部の順番が入れ替わっている点である。(パワー変更を行う、位相変更を行うという機能自身はかわらない。)このとき、z(i)、z(i)は、次式のようにあらわされる。
Figure 2020061771
なお、式(S3)のz(i)と式(S4)のz(i)は等しく、また、式(S3)のz(i)と式(S4)のz(i)も等しい。
式(S3)および式(S4)における変更する位相の値θ(i)は、例えば、θ(i+1)―θ(i)が固定値となるように設定すると、直接波が支配的な電波伝搬環境において、受信装置は、良好なデータの受信品質が得られる可能性が高い。ただし、変更する位相の値θ(i)の与え方は、この例に限ったものではない。
図207は、図204から図206で得られた信号z(i)、z(i)に対し、施す信号処理部の構成の一例を示している。
挿入部20704Aは、信号z(i)(20701A)、パイロットシンボル20702A、制御情報シンボル20703A、制御信号20412を入力とし、制御信号20412に含まれるフレーム構成にしたがって、信号(シンボル)z(i)(20701A)に、パイロットシンボル20702A、制御情報シンボル20703Aを挿入し、フレーム構成にしたがった、変調信号20705Aを出力する。
なお、パイロットシンボル20702A、制御情報シンボル20703Aは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部20706Aは、変調信号20705Aおよび制御信号20412を入力とし、制御信号20412に基づき、変調信号20705Aに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号20707Aを出力し、送信信号20707Aはアンテナ20708Aから電波として出力される。
挿入部20704Bは、信号z(i)(20701B)、パイロットシンボル20702B、制御情報シンボル20703B、制御信号20412を入力とし、制御信号20412に含まれるフレーム構成にしたがって、信号(シンボル)z(i)(20701B)に、パイロットシンボル20702B、制御情報シンボル20703Bを挿入し、フレーム構成にしたがった、変調信号20705Bを出力する。
なお、パイロットシンボル20702B、制御情報シンボル20703Bは、BPSK(Binary Phase Shift Keying)やQPSK(Quadrature Phase Shift Keying)等で変調されたシンボルである(他の変調方式を用いてもよい。)。
無線部20706Bは、変調信号20705Bおよび制御信号20412を入力とし、制御信号20412に基づき、変調信号20705Bに対し、周波数変換、増幅等の処理を施し(OFDM方式を用いているときは、逆フーリエ変換等の処理を行う。)、送信信号20707Bを出力し、送信信号20707Bはアンテナ20708Bから電波として出力される。
ここで、信号z(i)(20701A)と信号z(i)(20701B)において、iが同一番号の信号z(i)(20701A)と信号z(i)(20701B)は、同一(共通)の周波数を同一時間にそれぞれ異なるアンテナから送信されることになる。(つまり、MIMO方式を用いた伝送方法となる。)
また、パイロットシンボル20702Aおよびパイロットシンボル20702Bは、受信装置において、信号検出、周波数オフセットの推定、ゲインコントロール、チャネル推定等を行うためのシンボルであり、ここでは、パイロットシンボルと名付けているが、リファレンスシンボル等、別の呼び方をしてもよい。
そして、制御情報シンボル20703Aおよび制御情報シンボル20703Bは、送信装置が用いた変調方式の情報、伝送方式の情報、プリコーディング方式の情報、誤り訂正符号方式の情報、誤り訂正符号の符号化率の情報、誤り訂正符号のブロック長(符号長)の情報等を、受信装置に伝送するためのシンボルである。なお、制御情報シンボル20703Aおよび制御情報シンボル20703Bの一方のみで、制御情報シンボルを送信してもよい。
図208は、二つのストリームを送信する場合の時間―周波数におけるフレーム構成の一例を示している。図208において、横軸周波数、縦軸時間であり、一例として、キャリア1からキャリア38、時間$1から時間$11のシンボルの構成を示している。
図208は、図207のアンテナ20706Aから送信する送信信号のフレーム構成とアンテナ20708Bから送信する送信信号のフレームを同時に示している。
図208において、図207のアンテナ20706Aから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z(i)に相当する。そして、パイロットシンボルは、パイロットシンボル20702Aに相当する。
図208において、図207のアンテナ20706Bから送信する送信信号のフレームの場合、データシンボルは、信号(シンボル)z(i)に相当する。そして、パイロットシンボルは、パイロットシンボル20702Bに相当する。
(したがって、上述でも説明したように、信号z(i)(20701A)と信号z(i)(20701B)において、iが同一番号の信号z(i)(20701A)と信号z(i)(20701B)は、同一(共通)の周波数を同一時間にそれぞれ異なるアンテナから送信されることになる。また、パイロットシンボルの構成は、図208に限ったものではなく、例えば、パイロットシンボルの時間間隔、周波数間隔は、図208に限ったものではない。そして、図208では、図207のアンテナ20706Aおよび図207のアンテナ20706Bから、同一時刻、同一周波数(同一(サブ)キャリア)にパイロットシンボルが送信されるフレーム構成としているが、これに限ったものではなく、例えば、時間A、周波数a((サブ)キャリアa)において、図207のアンテナ20706Aにパイロットシンボルを配置し、時間A、周波数a((サブ)キャリアa)において、図207のアンテナ20706Bにはシンボルを配置しないとし、時間B、周波数b((サブ)キャリアb)において、図207のアンテナ20706Aにシンボルを配置しないとし、時間B、周波数b((サブ)キャリアb)において、図207のアンテナ20706Bにパイロットシンボルを配置する、とする構成としてもよい。
なお、図208では、データシンボルとパイロットシンボルしか記述していないが、他のシンボル、例えば、制御情報シンボル等のシンボルがフレームに含まれていてもよい。
図204から図206において、パワー変更部の一部(または、すべて)が存在する場合を例に説明したが、パワー変更部の一部がない場合も考えられる。
例えば、図204において、パワー変更部20406A(パワー調整部20406A)、パワー変更部20406B(パワー調整部20406B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図204において、パワー変更部20410A(パワー調整部20410A)、パワー変更部20410B(パワー調整部20410B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図204において、パワー変更部20406A(パワー調整部20406A)、パワー変更部20406B(パワー調整部20406B)、パワー変更部20410A(パワー調整部20410A)、パワー変更部20410B(パワー調整部20410B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図205または図206において、パワー変更部20406A(パワー調整部20406A)、パワー変更部20406B(パワー調整部20406B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図205または図206において、パワー変更部20410A(パワー調整部20410A)、パワー変更部20410B(パワー調整部20410B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
また、図205または図206において、パワー変更部20406A(パワー調整部20406A)、パワー変更部20406B(パワー調整部20406B)、パワー変更部20410A(パワー調整部20410A)、パワー変更部20410B(パワー調整部20410B)が存在しない場合、z(i)およびz(i)は以下のようにあらわされる。
Figure 2020061771
次に、上述で説明した、2つのストリームを送信する(MIMO(Multiple Input Multiple Output)方式)伝送方法を用いたときの、実施の形態R2で述べた2つの送信号の送信平均電力が異なるときのプリコーディング方法のより具体的な例を説明する。
(例1)
以下では、図204から図206のマッピング部20404において、s(t)(s(i))を得るための変調方式を16QAMとし、s(t)(s(i))を得るための変調方式を64QAMとし、例えば、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成とパワー変更に関する条件の例について説明する。
まず、16QAMのマッピング方法について説明する。図209は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図209において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。
16QAMの16個の信号点(図209の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)、となる(w16は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図209における信号点15901にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(3w16,3w16)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図209のとおりである。16QAMの16個の信号点(図209の「○」)(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図209に限ったものではない。そして、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
64QAMのマッピング方法について説明する。図210は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図210において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図210の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図210における信号点16001にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図210のとおりである。64QAMの64個の信号点(図210の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図210に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図204〜図206において、ベースバンド信号20405A(s(t)(s(i)))の変調方式を16QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を64QAMとし、プリコーディング行列の構成について説明する。
このとき、図204〜図206のマッピング部20404の出力であるベースバンド信号20405A(s(t)(s(i)))の平均電力とベースバンド信号20405B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、以下の関係式が成立する。
Figure 2020061771

Figure 2020061771

なお、式(S11)および式(S12)において、zは0より大きい実数とする。そして、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列F
Figure 2020061771
の構成、および、QとQの関係について、以下で((例1−1)〜(例1−8))詳しく説明する。
(例1−1)
上述の<1>から<5>のいずれかの場合において、プリコーディング行列Fを以下にいずれかに設定するものとする。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S14)、式(S15)、式(S16)、式(S17)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
また、本実施の形態(本明細書の中で共通である)において、複素平面における、例えば、偏角のような、位相の単位は、「ラジアン(radian)」としている。(例外的にdegree(「度」)を用いるときは、単位を示している。)
複素平面を利用すると、複素数の極座標による表示として極形式で表示できる。複素数 z = a + jb (a、bはともに実数であり、jは虚数単位である)に、複素平面上の点 (a, b) を対応させたとき、この点が極座標で[r, θ] とあらわされるなら、
a=r×cosθ、
b=r×sinθ

式(49)

が成り立ち、r は z の絶対値 (r = |z|) であり、θ が偏角 (argument)となる。そして、z = a + jbは、rejθとあらわされる。したがって、例えば、式(S14)から式(S17)において、ejπと記載しているが、偏角πの単位は「ラジアン(radian)」となる。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
ところで、ベースバンド信号20405A(s(t)(s(i)))の変調方式を16QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を64QAMとなる。したがって、上述のようにプリコーディング(および、位相変更、パワー変更)を行い、変調信号を各アンテナから送信する場合、時間uの(単位)時間、周波数(キャリア)vにより、図207のアンテナ20708Aから送信するシンボルとアンテナ20708Bから送信するシンボルにより送信される総ビット数は、(16QAMを用いることによる)4ビットと(64QAMを用いることによる)6ビットの和の10ビットとなる。
16QAMのマッピングのための入力ビットをb0,16、b1,16、b2,16、b3,16、64QAMのマッピングのための入力ビットをb0,64、b1,64、b2,64、b3,64、b4,64、b5,64としたとき、式(S18)、式(S19)、式(S20)、式(S21)のいずれのαに設定しても、
信号z(t)(z(i))において、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在し、
同様に、信号z(t)(z(i))においても、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在する。
上述で、
「式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値」として、式(S18)〜式(S21)を記載したが、この点について説明する。
信号z(t)(z(i))において、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在することになるが、この210=1024個の信号点が、同相I−直交Q平面において、重ならずに、1024個の信号点として存在することが望まれる。
なぜなら、信号z(t)(z(i))を送信するアンテナから送信された変調信号が受信装置に届かない場合、受信装置は、信号z(t)(z(i))を用いて、検波、および、誤り訂正復号を行うことになるが、このとき、受信装置が高いデータの受信品質を得るためには、「重ならずに、1024個の信号点」存在するとよいからである。
プリコーディング行列Fを式(S14)、式(S15)、式(S16)、式(S17)のいずれかに設定し、式(S18)、式(S19)、式(S20)、式(S21)のようにαを設定した場合、同相I―直交Q平面における、実施の形態R2で説明した信号u(t)(u(i))において、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の配置は図211のようになる。なお、図211において、横軸I、縦軸Q、「●」が信号点となる。
図211からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S14)、式(S15)、式(S16)、式(S17)のいずれかに設定し、式(S18)、式(S19)、式(S20)、式(S21)のようにαを設定した場合、同相I―直交Q平面における、実施の形態R2で説明した信号u(t)(u(i))において、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の配置は図212のようになる。なお、図212において、横軸I、縦軸Q、「●」が信号点となる。
図212からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図211の1024個の信号点の最小ユークリッド距離をDとし、図212の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R2より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例1−2)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、式(S22)、式(S24)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S26)、式(S27)、式(S28)、式(S29)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S22)、式(S23)、式(S24)、式(S25)のいずれかに設定し、式(S26)、式(S27)、式(S28)、式(S29)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図211のようになる。なお、図211において、横軸I、縦軸Q、「●」が信号点となる。
図211からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S22)、式(S23)、式(S24)、式(S25)のいずれかに設定し、式(S26)、式(S27)、式(S28)、式(S29)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図212のようになる。なお、図212において、横軸I、縦軸Q、「●」が信号点となる。
図212からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図211の1024個の信号点の最小ユークリッド距離をDとし、図212の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R2より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例1−3)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、式(S31)、式(S32)、式(S33)、式(S34)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S31)、式(S32)、式(S33)、式(S34)のいずれかに設定し、式(S35)、式(S36)、式(S37)、式(S38)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図213のようになる。なお、図213において、横軸I、縦軸Q、「●」が信号点となる。
図213からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S31)、式(S32)、式(S33)、式(S34)のいずれかに設定し、式(S35)、式(S36)、式(S37)、式(S38)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図214のようになる。なお、図214において、横軸I、縦軸Q、「●」が信号点となる。
図214からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図213の1024個の信号点の最小ユークリッド距離をDとし、図214の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R2より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例1−4)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、式(S39)、式(S41)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S43)、式(S44)、式(S45)、式(S46)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S39)、式(S40)、式(S41)、式(S42)のいずれかに設定し、式(S43)、式(S44)、式(S45)、式(S46)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図213のようになる。なお、図213において、横軸I、縦軸Q、「●」が信号点となる。
図213からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S39)、式(S40)、式(S41)、式(S42)のいずれかに設定し、式(S43)、式(S44)、式(S45)、式(S46)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図214のようになる。なお、図214において、横軸I、縦軸Q、「●」が信号点となる。
図214からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図213の1024個の信号点の最小ユークリッド距離をDとし、図214の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R2より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例1−5)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、式(S48)、式(S49)、式(S50)、式(S51)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S48)、式(S49)、式(S50)、式(S51)のいずれかに設定し、式(S52)、式(S53)、式(S54)、式(S55)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図215のようになる。なお、図215において、横軸I、縦軸Q、「●」が信号点となる。
図215からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S48)、式(S49)、式(S50)、式(S51)のいずれかに設定し、式(S52)、式(S53)、式(S54)、式(S55)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図216のようになる。なお、図216において、横軸I、縦軸Q、「●」が信号点となる。
図216からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図215の1024個の信号点の最小ユークリッド距離をDとし、図216の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R2より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例1−6)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、
<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、式(S56)、式(S58)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S60)、式(S61)、式(S62)、式(S63)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、

Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S56)、式(S57)、式(S58)、式(S59)のいずれかに設定し、式(S60)、式(S61)、式(S62)、式(S63)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図215のようになる。なお、図215において、横軸I、縦軸Q、「●」が信号点となる。
図215からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S56)、式(S57)、式(S58)、式(S59)のいずれかに設定し、式(S60)、式(S61)、式(S62)、式(S63)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図216のようになる。なお、図216において、横軸I、縦軸Q、「●」が信号点となる。
図216からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図215の1024個の信号点の最小ユークリッド距離をDとし、図216の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R2より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例1−7)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S65)、式(S66)、式(S67)、式(S68)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、

Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、

Figure 2020061771
プリコーディング行列Fを式(S65)、式(S66)、式(S67)、式(S68)のいずれかに設定し、式(S69)、式(S70)、式(S71)、式(S72)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図217のようになる。なお、図217において、横軸I、縦軸Q、「●」が信号点となる。
図217からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S65)、式(S66)、式(S67)、式(S68)のいずれかに設定し、式(S69)、式(S70)、式(S71)、式(S72)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R2で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図218のようになる。なお、図218において、横軸I、縦軸Q、「●」が信号点となる。
図218からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図217の1024個の信号点の最小ユークリッド距離をDとし、図218の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例1−8)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、式(S73)、式(S75)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S77)、式(S78)、式(S79)、式(S80)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S73)、式(S74)、式(S75)、式(S76)のいずれかに設定し、式(S77)、式(S78)、式(S79)、式(S80)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図217のようになる。なお、図217において、横軸I、縦軸Q、「●」が信号点となる。
図217からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S73)、式(S74)、式(S75)、式(S76)のいずれかに設定し、式(S77)、式(S78)、式(S79)、式(S80)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図218のようになる。なお、図218において、横軸I、縦軸Q、「●」が信号点となる。
図218からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図217の1024個の信号点の最小ユークリッド距離をDとし、図218の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例1−補足)
(例1−1)〜(例1−8)では、高いデータの受信品質を得られる可能性のあるαの値の例、および、θの値の例を示したが、αの値、および、θの値は、これらの値でなくても、実施の形態R1に示した条件を満たすことで、高いデータの受信品質が得られることがある。
(例2)
以下では、図204から図206のマッピング部20404において、s(t)(s(i))を得るための変調方式を64QAMとし、s(t)(s(i))を得るための変調方式を16QAMとし、例えば、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成とパワー変更に関する条件の例について説明する。
まず、16QAMのマッピング方法について説明する。図209は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図209において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。
16QAMの16個の信号点(図209の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)、となる(w16は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図209における信号点15901にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(3w16,3w16)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図209のとおりである。16QAMの16個の信号点(図209の「○」)(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図209に限ったものではない。そして、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
64QAMのマッピング方法について説明する。図210は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図210において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図210の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図210における信号点16001にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図210のとおりである。64QAMの64個の信号点(図210の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図210に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図204〜図206において、ベースバンド信号20405A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を16QAMとし、プリコーディング行列の構成について説明する。
このとき、図204〜図206のマッピング部20404の出力であるベースバンド信号20405A(s(t)(s(i)))の平均電力とベースバンド信号20405B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、以下の関係式が成立する。
Figure 2020061771

Figure 2020061771
なお、式(S82)および式(S83)において、zは0より大きい実数とする。そして、
<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列F
Figure 2020061771

の構成、および、QとQの関係について、以下で((例2−1)〜(例2−8))詳しく説明する。
(例2−1)
上述の<1>から<5>のいずれかの場合において、プリコーディング行列Fを以下のいずれかに設定するものとする。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S85)、式(S86)、式(S87)、式(S88)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、

Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、

Figure 2020061771
ところで、ベースバンド信号20405A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を16QAMとなる。したがって、上述のようにプリコーディング(および、位相変更、パワー変更)を行い、変調信号を各アンテナから送信する場合、時間uの(単位)時間、周波数(キャリア)vにより、図207のアンテナ20708Aから送信するシンボルとアンテナ20708Bから送信するシンボルにより送信される総ビット数は、(16QAMを用いることによる)4ビットと(64QAMを用いることによる)6ビットの和の10ビットとなる。
16QAMのマッピングのための入力ビットをb0,16、b1,16、b2,16、b3,16、64QAMのマッピングのための入力ビットをb0,64、b1,64、b2,64、b3,64、b4,64、b5,64としたとき、式(S89)、式(S90)、式(S91)、式(S92)のいずれのαに設定しても、
信号z(t)(z(i))において、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在し、
同様に、信号z(t)(z(i))においても、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在する。
上述で、
「式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値」として、式(S89)〜式(S92)を記載したが、この点について説明する。
信号z(t)(z(i))において、
(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在することになるが、この210=1024個の信号点が、同相I−直交Q平面において、重ならずに、1024個の信号点として存在することが望まれる。
なぜなら、信号z(t)(z(i))を送信するアンテナから送信された変調信号が受信装置に届かない場合、受信装置は、信号z(t)(z(i))を用いて、検波、および、誤り訂正復号を行うことになるが、このとき、受信装置が高いデータの受信品質を得るためには、「重ならずに、1024個の信号点」存在するとよいからである。
プリコーディング行列Fを式(S85)、式(S86)、式(S87)、式(S88)のいずれかに設定し、式(S89)、式(S90)、式(S91)、式(S92)のようにαを設定した場合、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の配置は図215のようになる。なお、図215において、横軸I、縦軸Q、「●」が信号点となる。
図215からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S85)、式(S86)、式(S87)、式(S88)のいずれかに設定し、式(S89)、式(S90)、式(S91)、式(S92)のようにαを設定した場合、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の配置は図216のようになる。なお、図216において、横軸I、縦軸Q、「●」が信号点となる。
図216からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図215の1024個の信号点の最小ユークリッド距離をDとし、図216の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例2−2)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S93)、式(S95)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S97)、式(S98)、式(S99)、式(S100)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S93)、式(S94)、式(S95)、式(S96)のいずれかに設定し、式(S97)、式(S98)、式(S99)、式(S100)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図215のようになる。なお、図215において、横軸I、縦軸Q、「●」が信号点となる。
図215からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S93)、式(S94)、式(S95)、式(S96)のいずれかに設定し、式(S97)、式(S98)、式(S99)、式(S100)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図216のようになる。なお、図216において、横軸I、縦軸Q、「●」が信号点となる。
図216からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図215の1024個の信号点の最小ユークリッド距離をDとし、図216の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例2−3)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S102)、式(S103)、式(S104)、式(S105)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S102)、式(S103)、式(S104)、式(S105)のいずれかに設定し、式(S106)、式(S107)、式(S108)、式(S109)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図217のようになる。なお、図217において、横軸I、縦軸Q、「●」が信号点となる。
図217からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S102)、式(S103)、式(S104)、式(S105)のいずれかに設定し、式(S106)、式(S107)、式(S108)、式(S109)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図218のようになる。なお、図218において、横軸I、縦軸Q、「●」が信号点となる。
図218からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図217の1024個の信号点の最小ユークリッド距離をDとし、図218の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例2−4)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S110)、式(S112)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S114)、式(S115)、式(S116)、式(S117)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S110)、式(S111)、式(S112)、式(S113)のいずれかに設定し、式(S114)、式(S115)、式(S116)、式(S117)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図217のようになる。なお、図217において、横軸I、縦軸Q、「●」が信号点となる。
図217からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S110)、式(S111)、式(S112)、式(S113)のいずれかに設定し、式(S114)、式(S115)、式(S116)、式(S117)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図218のようになる。なお、図218において、横軸I、縦軸Q、「●」が信号点となる。
図218からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図217の1024個の信号点の最小ユークリッド距離をDとし、図218の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例2−5)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S119)、式(S120)、式(S121)、式(S122)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S119)、式(S120)、式(S121)、式(S122)のいずれかに設定し、式(S123)、式(S124)、式(S125)、式(S126)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図211のようになる。なお、図211において、横軸I、縦軸Q、「●」が信号点となる。
図211からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S119)、式(S120)、式(S121)、式(S122)のいずれかに設定し、式(S123)、式(S124)、式(S125)、式(S126)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図212のようになる。なお、図212において、横軸I、縦軸Q、「●」が信号点となる。
図212からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図211の1024個の信号点の最小ユークリッド距離をDとし、図212の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例2−6)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S127)、式(S129)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S131)、式(S132)、式(S133)、式(S134)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、

Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S127)、式(S128)、式(S129)、式(S130)のいずれかに設定し、式(S131)、式(S132)、式(S133)、式(S134)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図211のようになる。なお、図211において、横軸I、縦軸Q、「●」が信号点となる。
図211からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S127)、式(S128)、式(S129)、式(S130)のいずれかに設定し、式(S131)、式(S132)、式(S133)、式(S134)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図212のようになる。なお、図212において、横軸I、縦軸Q、「●」が信号点となる。
図212からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図211の1024個の信号点の最小ユークリッド距離をDとし、図212の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例2−7)
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S136)、式(S137)、式(S138)、式(S139)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:

Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S136)、式(S137)、式(S138)、式(S139)のいずれかに設定し、式(S140)、式(S141)、式(S142)、式(S143)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図213のようになる。なお、図213において、横軸I、縦軸Q、「●」が信号点となる。
図213からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S136)、式(S137)、式(S138)、式(S139)のいずれかに設定し、式(S140)、式(S141)、式(S142)、式(S143)のようにαを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図214のようになる。なお、図214において、横軸I、縦軸Q、「●」が信号点となる。
図214からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図213の1024個の信号点の最小ユークリッド距離をDとし、図214の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例2−8)
次に、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S144)、式(S146)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S148)、式(S149)、式(S150)、式(S151)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S144)、式(S145)、式(S146)、式(S147)のいずれかに設定し、式(S148)、式(S149)、式(S150)、式(S151)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図213のようになる。なお、図213において、横軸I、縦軸Q、「●」が信号点となる。
図213からわかるように、信号点は、重ならずに、1024個存在していることがわかる。また、同相I―直交Q平面における1024個の信号点のうち、最右最上、最右最下、最左最上、最左最下の4個を除く、1020個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S144)、式(S145)、式(S146)、式(S147)のいずれかに設定し、式(S148)、式(S149)、式(S150)、式(S151)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図214のようになる。なお、図214において、横軸I、縦軸Q、「●」が信号点となる。
図214からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図213の1024個の信号点の最小ユークリッド距離をDとし、図214の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例2−補足)
(例2−1)〜(例2−8)では、高いデータの受信品質を得られる可能性のあるαの値の例、および、θの値の例を示したが、αの値、および、θの値は、これらの値でなくても、実施の形態R1に示した条件を満たすことで、高いデータの受信品質が得られることがある。
(例3)
以下では、図204から図206のマッピング部20404において、s(t)(s(i))を得るための変調方式を64QAMとし、s(t)(s(i))を得るための変調方式を256QAMとし、例えば、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成とパワー変更に関する条件の例について説明する。
まず、64QAMのマッピング方法について説明する。図210は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図210において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図210の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図210における信号点16001にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図210のとおりである。64QAMの64個の信号点(図210の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図210に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる
256QAMのマッピング方法について説明する。図219は、同相I−直交Q平面における256QAMの信号点配置の例を示している。なお、図219において、256個の○が256QAMの信号点である。
256QAMの256個の信号点(図219の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

、となる(w256は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5、b6、b7とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5、b6、b7)=(0、0、0、0、0、0、0、0)の場合、図219における信号点16901にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(15w256,15w256)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5、b6、b7)に基づき、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係の一例は図219のとおりである。256QAMの256個の信号点(図219の「○」)
(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

の直下にb0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の値が示されている。b0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、256QAM時のb0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係は、図219に限ったものではない。そして、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図204〜図206において、ベースバンド信号20405A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を256QAMとし、プリコーディング行列の構成について説明する。
このとき、図204〜図206のマッピング部20404の出力であるベースバンド信号20405A(s(t)(s(i)))の平均電力とベースバンド信号20405B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、以下の関係式が成立する。
Figure 2020061771

Figure 2020061771
なお、式(S153)および式(S154)において、zは0より大きい実数とする。そして、
<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列F
Figure 2020061771

の構成について、以下で((例3−1)〜(例3−8))詳しく説明する。
(例3−1)
上述の<1>から<5>のいずれかの場合において、プリコーディング行列Fを以下にいずれかに設定するものとする。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S156)、式(S157)、式(S158)、式(S159)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、

Figure 2020061771
αが虚数のとき:

Figure 2020061771

または、

Figure 2020061771
ところで、ベースバンド信号20405A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を256QAMとなる。したがって、上述のようにプリコーディング(および、位相変更、パワー変更)を行い、変調信号を各アンテナから送信する場合、時間uの(単位)時間、周波数(キャリア)vにより、図207のアンテナ20708Aから送信するシンボルとアンテナ20708Bから送信するシンボルにより送信される総ビット数は、(64QAMを用いることによる)6ビットと(256QAMを用いることによる)8ビットの和の14ビットとなる。
64QAMのマッピングのための入力ビットをb0,64、b1,64、b2,64、b3,64、b4,64、b5,64、256QAMのマッピングのための入力ビットをb0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256としたとき、式(S160)、式(S161)、式(S162)、式(S163)のいずれのαに設定しても、
信号z(t)(z(i))において、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在し、
同様に、信号z(t)(z(i))においても、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在する。
上述で、
「式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値」として、式(S160)〜式(S163)を記載したが、この点について説明する。
信号z(t)(z(i))において、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在することになるが、この214=16384個の信号点が、同相I−直交Q平面において、重ならずに、16384個の信号点として存在することが望まれる。
なぜなら、信号z(t)(z(i))を送信するアンテナから送信された変調信号が受信装置に届かない場合、受信装置は、信号z(t)(z(i))を用いて、検波、および、誤り訂正復号を行うことになるが、このとき、受信装置が高いデータの受信品質を得るためには、「重ならずに、16384個の信号点」存在するとよいからである。
プリコーディング行列Fを式(S156)、式(S157)、式(S158)、式(S159)のいずれかに設定し、式(S160)、式(S161)、式(S162)、式(S163)のようにαを設定した場合、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図220のとおりであり、第二象限に存在する信号点配置は図221のとおりであり、第三象限に存在する信号点配置は図222のとおりであり、第四象限に存在する信号点配置は図223のとおりである。なお、図220、図221、図222、図223において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図220、図221、図222、図223からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図220の最右最上、図223の最右最下、図221の最左最上、図222の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S156)、式(S157)、式(S158)、式(S159)のいずれかに設定し、式(S160)、式(S161)、式(S162)、式(S163)のようにαを設定した場合、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図224のとおりであり、第二象限に存在する信号点配置は図225のとおりであり、第三象限に存在する信号点配置は図226のとおりであり、第四象限に存在する信号点配置は図227のとおりである。なお、図224、図225、図226、図227において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図224、図225、図226、図227からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図220、図221、図222、図223の16384個の信号点の最小ユークリッド距離をDとし、図224、図225、図226、図227の16384個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例3−2)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S153)および式(S154)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S164)、式(S166)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S168)、式(S169)、式(S170)、式(S171)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S164)、式(S165)、式(S166)、式(S167)のいずれかに設定し、式(S168)、式(S169)、式(S170)、式(S171)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図220のとおりであり、第二象限に存在する信号点配置は図221のとおりであり、第三象限に存在する信号点配置は図222のとおりであり、第四象限に存在する信号点配置は図223のとおりである。なお、図220、図221、図222、図223において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図220、図221、図222、図223からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図220の最右最上、図223の最右最下、図221の最左最上、図222の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S164)、式(S165)、式(S166)、式(S167)のいずれかに設定し、式(S168)、式(S169)、式(S170)、式(S171)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図224のとおりであり、第二象限に存在する信号点配置は図225のとおりであり、第三象限に存在する信号点配置は図226のとおりであり、第四象限に存在する信号点配置は図227のとおりである。なお、図224、図225、図226、図227において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図224、図225、図226、図227からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図220、図221、図222、図223の16384個の信号点の最小ユークリッド距離をDとし、図224、図225、図226、図227の16384個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例3−3)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S153)および式(S154)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、

Figure 2020061771
または、

Figure 2020061771
なお、式(S173)、式(S174)、式(S175)、式(S176)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S173)、式(S174)、式(S175)、式(S176)のいずれかに設定し、式(S177)、式(S178)、式(S179)、式(S180)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図228のとおりであり、第二象限に存在する信号点配置は図229のとおりであり、第三え象限に存在する信号点配置は図230のとおりであり、第四象限に存在する信号点配置は図231のとおりである。なお、図228、図229、図230、図231において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図228、図229、図230、図231からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図228の最右最上、図231の最右最下、図229の最左最上、図230の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S173)、式(S174)、式(S175)、式(S176)のいずれかに設定し、式(S177)、式(S178)、式(S179)、式(S180)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図232のとおりであり、第二象限に存在する信号点配置は図233のとおりであり、第三象限に存在する信号点配置は図234のとおりであり、第四象限に存在する信号点配置は図235のとおりである。なお、図232、図233、図234、図235において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図232、図233、図234、図235からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図228、図229、図230、図231の16384個の信号点の最小ユークリッド距離をDとし、図232、図233、図234、図235の16384個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例3−4)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S153)および式(S154)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S181)、式(S183)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S185)、式(S186)、式(S187)、式(S188)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S181)、式(S182)、式(S183)、式(S184)のいずれかに設定し、式(S185)、式(S186)、式(S187)、式(S188)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図228のとおりであり、第二象限に存在する信号点配置は図229のとおりであり、第三象限に存在する信号点配置は図230のとおりであり、第四象限に存在する信号点配置は図231のとおりである。なお、図228、図229、図230、図231において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図228、図229、図230、図231からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図228の最右最上、図231の最右最下、図229の最左最上、図230の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S181)、式(S182)、式(S183)、式(S184)のいずれかに設定し、式(S185)、式(S186)、式(S187)、式(S188)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図232のとおりであり、第二象限に存在する信号点配置は図233のとおりであり、第三象限に存在する信号点配置は図234のとおりであり、第四象限に存在する信号点配置は図235のとおりである。なお、図232、図233、図234、図235において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図232、図233、図234、図235からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図228、図229、図230、図231の16384個の信号点の最小ユークリッド距離をDとし、図232、図233、図234、図235の16384個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例3−5)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S153)および式(S154)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S190)、式(S191)、式(S192)、式(S193)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:

Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S190)、式(S191)、式(S192)、式(S193)のいずれかに設定し、式(S194)、式(S195)、式(S196)、式(S197)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図236のとおりであり、第二象限に存在する信号点配置は図237のとおりであり、第三象限に存在する信号点配置は図238のとおりであり、第四象限に存在する信号点配置は図239のとおりである。なお、図236、図237、図238、図239において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図236、図237、図238、図239からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図236の最右最上、図239の最右最下、図237の最左最上、図238の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S190)、式(S191)、式(S192)、式(S193)のいずれかに設定し、式(S194)、式(S195)、式(S196)、式(S197)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図240のとおりであり、第二象限に存在する信号点配置は図241のとおりであり、第三象限に存在する信号点配置は図242のとおりであり、第四象限に存在する信号点配置は図243のとおりである。なお、図240、図241、図242、図243において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図240、図241、図242、図243からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図236、図237、図238、図239の16384個の信号点の最小ユークリッド距離をDとし、図240、図241、図242、図243の16384個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例3−6)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S153)および式(S154)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S198)、式(S200)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S202)、式(S203)、式(S204)、式(S205)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S198)、式(S199)、式(S200)、式(S201)のいずれかに設定し、式(S202)、式(S203)、式(S204)、式(S205)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図236のとおりであり、第二象限に存在する信号点配置は図237のとおりであり、第三象限に存在する信号点配置は図238のとおりであり、第四象限に存在する信号点配置は図239のとおりである。なお、図236、図237、図238、図239において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図236、図237、図238、図239からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図236の最右最上、図239の最右最下、図237の最左最上、図238の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S198)、式(S199)、式(S200)、式(S201)のいずれかに設定し、式(S202)、式(S203)、式(S204)、式(S205)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図240のとおりであり、第二象限に存在する信号点配置は図241のとおりであり、第三象限に存在する信号点配置は図242のとおりであり、第四象限に存在する信号点配置は図243のとおりである。なお、図240、図241、図242、図243において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図240、図241、図242、図243からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図236、図237、図238、図239の16384個の信号点の最小ユークリッド距離をDとし、図240、図241、図242、図243の16384個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例3−7)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S153)および式(S154)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S207)、式(S208)、式(S209)、式(S210)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S207)、式(S208)、式(S209)、式(S210)のいずれかに設定し、式(S211)、式(S212)、式(S213)、式(S214)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図244のとおりであり、第二象限に存在する信号点配置は図245のとおりであり、第三象限に存在する信号点配置は図246のとおりであり、第四象限に存在する信号点配置は図247のとおりである。なお、図244、図245、図246、図247において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図244、図245、図246、図247からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図244の最右最上、図247の最右最下、図245の最左最上、図246の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S207)、式(S208)、式(S209)、式(S210)のいずれかに設定し、式(S211)、式(S212)、式(S213)、式(S214)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図248のとおりであり、第二象限に存在する信号点配置は図249のとおりであり、第三象限に存在する信号点配置は図250のとおりであり、第四象限に存在する信号点配置は図251のとおりである。なお、図248、図249、図250、図251において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図248、図249、図250、図251からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図244、図245、図246、図247の16384個の信号点の最小ユークリッド距離をDとし、図248、図249、図250、図251の16384個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例3−8)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S153)および式(S154)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S215)、式(S217)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S219)、式(S220)、式(S221)、式(S222)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S215)、式(S216)、式(S217)、式(S218)のいずれかに設定し、式(S219)、式(S220)、式(S221)、式(S222)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図244のとおりであり、第二象限に存在する信号点配置は図245のとおりであり、第三象限に存在する信号点配置は図246のとおりであり、第四象限に存在する信号点配置は図247のとおりである。なお、図244、図245、図246、図247において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図244、図245、図246、図247からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図244の最右最上、図247の最右最下、図245の最左最上、図246の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S215)、式(S216)、式(S217)、式(S218)のいずれかに設定し、式(S219)、式(S220)、式(S221)、式(S222)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図248のとおりであり、第二象限に存在する信号点配置は図249のとおりであり、第三象限に存在する信号点配置は図250のとおりであり、第四象限に存在する信号点配置は図251のとおりである。なお、図248、図249、図250、図251において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図248、図249、図250、図251からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図244、図245、図246、図247の16384個の信号点の最小ユークリッド距離をDとし、図248、図249、図250、図251の16384個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例3−補足)
(例3−1)〜(例3−8)では、高いデータの受信品質を得られる可能性のあるαの値の例、および、θの値の例を示したが、αの値、および、θの値は、これらの値でなくても、実施の形態R1に示した条件を満たすことで、高いデータの受信品質が得られることがある。
(例4)
以下では、図204から図206のマッピング部20404において、s(t)(s(i))を得るための変調方式を256QAMとし、s(t)(s(i))を得るための変調方式を64QAMとし、例えば、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成とパワー変更に関する条件の例について説明する。
まず、64QAMのマッピング方法について説明する。図210は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図210において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図210の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図210における信号点16001にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図210のとおりである。64QAMの64個の信号点(図210の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図210に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる
256QAMのマッピング方法について説明する。図219は、同相I−直交Q平面における256QAMの信号点配置の例を示している。なお、図219において、256個の○が256QAMの信号点である。
256QAMの256個の信号点(図219の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

となる(w256は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5、b6、b7とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5、b6、b7)=(0、0、0、0、0、0、0、0)の場合、図219における信号点16901にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(15w256,15w256)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5、b6、b7)に基づき、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係の一例は図219のとおりである。256QAMの256個の信号点(図219の「○」)
(15w256,15w256)、(15w256,13w256)、(15w256,11w256)、(15w256,9w256)、(15w256,7w256)、(15w256,5w256)、(15w256,3w256)、(15w256,w256)、
(15w256,―15w256)、(15w256,―13w256)、(15w256,―11w256)、(15w256,―9w256)、(15w256,―7w256)、(15w256,―5w256)、(15w256,―3w256)、(15w256,―w256)、

(13w256,15w256)、(13w256,13w256)、(13w256,11w256)、(13w256,9w256)、(13w256,7w256)、(13w256,5w256)、(13w256,3w256)、(13w256,w256)、
(13w256,―15w256)、(13w256,―13w256)、(13w256,―11w256)、(13w256,―9w256)、(13w256,―7w256)、(13w256,―5w256)、(13w256,―3w256)、(13w256,―w256)、

(11w256,15w256)、(11w256,13w256)、(11w256,11w256)、(11w256,9w256)、(11w256,7w256)、(11w256,5w256)、(11w256,3w256)、(11w256,w256)、
(11w256,―15w256)、(11w256,―13w256)、(11w256,―11w256)、(11w256,―9w256)、(11w256,―7w256)、(11w256,―5w256)、(11w256,―3w256)、(11w256,―w256)、

(9w256,15w256)、(9w256,13w256)、(9w256,11w256)、(9w256,9w256)、(9w256,7w256)、(9w256,5w256)、(9w256,3w256)、(9w256,w256)、
(9w256,―15w256)、(9w256,―13w256)、(9w256,―11w256)、(9w256,―9w256)、(9w256,―7w256)、(9w256,―5w256)、(9w256,―3w256)、(9w256,―w256)、

(7w256,15w256)、(7w256,13w256)、(7w256,11w256)、(7w256,9w256)、(7w256,7w256)、(7w256,5w256)、(7w256,3w256)、(7w256,w256)、
(7w256,―15w256)、(7w256,―13w256)、(7w256,―11w256)、(7w256,―9w256)、(7w256,―7w256)、(7w256,―5w256)、(7w256,―3w256)、(7w256,―w256)、

(5w256,15w256)、(5w256,13w256)、(5w256,11w256)、(5w256,9w256)、(5w256,7w256)、(5w256,5w256)、(5w256,3w256)、(5w256,w256)、
(5w256,―15w256)、(5w256,―13w256)、(5w256,―11w256)、(5w256,―9w256)、(5w256,―7w256)、(5w256,―5w256)、(5w256,―3w256)、(5w256,―w256)、

(3w256,15w256)、(3w256,13w256)、(3w256,11w256)、(3w256,9w256)、(3w256,7w256)、(3w256,5w256)、(3w256,3w256)、(3w256,w256)、
(3w256,―15w256)、(3w256,―13w256)、(3w256,―11w256)、(3w256,―9w256)、(3w256,―7w256)、(3w256,―5w256)、(3w256,―3w256)、(3w256,―w256)、

(w256,15w256)、(w256,13w256)、(w256,11w256)、(w256,9w256)、(w256,7w256)、(w256,5w256)、(w256,3w256)、(w256,w256)、
(w256,―15w256)、(w256,―13w256)、(w256,―11w256)、(w256,―9w256)、(w256,―7w256)、(w256,―5w256)、(w256,―3w256)、(w256,―w256)、

(−15w256,15w256)、(−15w256,13w256)、(−15w256,11w256)、(−15w256,9w256)、(−15w256,7w256)、(−15w256,5w256)、(−15w256,3w256)、(−15w256,w256)、
(−15w256,―15w256)、(−15w256,―13w256)、(−15w256,―11w256)、(−15w256,―9w256)、(−15w256,―7w256)、(−15w256,―5w256)、(−15w256,―3w256)、(−15w256,―w256)、

(−13w256,15w256)、(−13w256,13w256)、(−13w256,11w256)、(−13w256,9w256)、(−13w256,7w256)、(−13w256,5w256)、(−13w256,3w256)、(−13w256,w256)、
(−13w256,―15w256)、(−13w256,―13w256)、(−13w256,―11w256)、(−13w256,―9w256)、(−13w256,―7w256)、(−13w256,―5w256)、(−13w256,―3w256)、(−13w256,―w256)、

(−11w256,15w256)、(−11w256,13w256)、(−11w256,11w256)、(−11w256,9w256)、(−11w256,7w256)、(−11w256,5w256)、(−11w256,3w256)、(−11w256,w256)、
(−11w256,―15w256)、(−11w256,―13w256)、(−11w256,―11w256)、(−11w256,―9w256)、(−11w256,―7w256)、(−11w256,―5w256)、(−11w256,―3w256)、(−11w256,―w256)、

(−9w256,15w256)、(−9w256,13w256)、(−9w256,11w256)、(−9w256,9w256)、(−9w256,7w256)、(−9w256,5w256)、(−9w256,3w256)、(−9w256,w256)、
(−9w256,―15w256)、(−9w256,―13w256)、(−9w256,―11w256)、(−9w256,―9w256)、(−9w256,―7w256)、(−9w256,―5w256)、(−9w256,―3w256)、(−9w256,―w256)、

(−7w256,15w256)、(−7w256,13w256)、(−7w256,11w256)、(−7w256,9w256)、(−7w256,7w256)、(−7w256,5w256)、(−7w256,3w256)、(−7w256,w256)、
(−7w256,―15w256)、(−7w256,―13w256)、(−7w256,―11w256)、(−7w256,―9w256)、(−7w256,―7w256)、(−7w256,―5w256)、(−7w256,―3w256)、(−7w256,―w256)、

(−5w256,15w256)、(−5w256,13w256)、(−5w256,11w256)、(−5w256,9w256)、(−5w256,7w256)、(−5w256,5w256)、(−5w256,3w256)、(−5w256,w256)、
(−5w256,―15w256)、(−5w256,―13w256)、(−5w256,―11w256)、(−5w256,―9w256)、(−5w256,―7w256)、(−5w256,―5w256)、(−5w256,―3w256)、(−5w256,―w256)、

(−3w256,15w256)、(−3w256,13w256)、(−3w256,11w256)、(−3w256,9w256)、(−3w256,7w256)、(−3w256,5w256)、(−3w256,3w256)、(−3w256,w256)、
(−3w256,―15w256)、(−3w256,―13w256)、(−3w256,―11w256)、(−3w256,―9w256)、(−3w256,―7w256)、(−3w256,―5w256)、(−3w256,―3w256)、(−3w256,―w256)、

(−w256,15w256)、(−w256,13w256)、(−w256,11w256)、(−w256,9w256)、(−w256,7w256)、(−w256,5w256)、(−w256,3w256)、(−w256,w256)、
(−w256,―15w256)、(−w256,―13w256)、(−w256,―11w256)、(−w256,―9w256)、(−w256,―7w256)、(−w256,―5w256)、(−w256,―3w256)、(−w256,―w256)、

の直下にb0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の値が示されている。b0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、256QAM時のb0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係は、図219に限ったものではない。そして、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図204〜図206において、ベースバンド信号20405A(s(t)(s(i)))の変調方式を256QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を64QAMとし、プリコーディング行列の構成について説明する。
このとき、図204〜図206のマッピング部20404の出力であるベースバンド信号20405A(s(t)(s(i)))の平均電力とベースバンド信号20405B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、以下の関係式が成立する。
Figure 2020061771

Figure 2020061771
なお、式(S224)および式(S225)において、zは0より大きい実数とする。そして、
<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列F
Figure 2020061771

の構成について、以下で((例4−1)〜(例4−8))詳しく説明する。
(例4−1)
上述の<1>から<5>のいずれかの場合において、プリコーディング行列Fを以下にいずれかに設定するものとする。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S227)、式(S228)、式(S229)、式(S230)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、

Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、

Figure 2020061771
ところで、ベースバンド信号20405A(s(t)(s(i)))の変調方式を256QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を64QAMとなる。したがって、上述のようにプリコーディング(および、位相変更、パワー変更)を行い、変調信号を各アンテナから送信する場合、時間uの(単位)時間、周波数(キャリア)vにより、図207のアンテナ20708Aから送信するシンボルとアンテナ20708Bから送信するシンボルにより送信される総ビット数は、(64QAMを用いることによる)6ビットと(256QAMを用いることによる)8ビットの和の14ビットとなる。
64QAMのマッピングのための入力ビットをb0,64、b1,64、b2,64、b3,64、b4,64、b5,64、256QAMのマッピングのための入力ビットをb0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256としたとき、式(S231)、式(S232)、式(S233)、式(S234)のいずれのαに設定しても、
信号z(t)(z(i))において、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在し、
同様に、信号z(t)(z(i))においても、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在する。
上述で、
「式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値」として、式(S231)〜式(S234)を記載したが、この点について説明する。
信号z(t)(z(i))において、
(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)が(0,0,0,0,0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1,1,1,1,1)に対応する信号点が同相I―直交Q平面に存在することになるが、この214=16384個の信号点が、同相I−直交Q平面において、重ならずに、16384個の信号点として存在することが望まれる。
なぜなら、信号z(t)(z(i))を送信するアンテナから送信された変調信号が受信装置に届かない場合、受信装置は、信号z(t)(z(i))を用いて、検波、および、誤り訂正復号を行うことになるが、このとき、受信装置が高いデータの受信品質を得るためには、「重ならずに、16384個の信号点」存在するとよいからである。
プリコーディング行列Fを式(S227)、式(S228)、式(S229)、式(S230)のいずれかに設定し、式(S231)、式(S232)、式(S233)、式(S234)のようにαを設定した場合、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図236のとおりであり、第二象限に存在する信号点配置は図237のとおりであり、第三象限に存在する信号点配置は図238のとおりであり、第四象限に存在する信号点配置は図239のとおりである。なお、図236、図237、図238、図239において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図236、図237、図238、図239からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図236の最右最上、図239の最右最下、図237の最左最上、図238の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S227)、式(S228)、式(S229)、式(S230)のいずれかに設定し、式(S231)、式(S232)、式(S233)、式(S234)のようにαを設定した場合、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図240のとおりであり、第二象限に存在する信号点配置は図241のとおりであり、第三象限に存在する信号点配置は図242のとおりであり、第四象限に存在する信号点配置は図243のとおりである。なお、図240、図241、図242、図243において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図240、図241、図242、図243からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図236、図237、図238、図239の16384個の信号点の最小ユークリッド距離をDとし、図240、図241、図242、図243の16384個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例4−2)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S224)および式(S225)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S235)、式(S237)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S239)、式(S240)、式(S241)、式(S242)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S235)、式(S236)、式(S237)、式(S238)のいずれかに設定し、式(S239)、式(S240)、式(S241)、式(S242)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図236のとおりであり、第二象限に存在する信号点配置は図237のとおりであり、第三象限に存在する信号点配置は図238のとおりであり、第四象限に存在する信号点配置は図239のとおりである。なお、図236、図237、図238、図239において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図236、図237、図238、図239からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図236の最右最上、図239の最右最下、図237の最左最上、図238の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S235)、式(S236)、式(S237)、式(S238)のいずれかに設定し、式(S239)、式(S240)、式(S241)、式(S242)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図240のとおりであり、第二象限に存在する信号点配置は図241のとおりであり、第三象限に存在する信号点配置は図242のとおりであり、第四象限に存在する信号点配置は図243のとおりである。なお、図240、図241、図242、図243において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図240、図241、図242、図243からわかるように、信号点は、重ならずに、16384個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図236、図237、図238、図239の16384個の信号点の最小ユークリッド距離をDとし、図240、図241、図242、図243の16384個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例4−3)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S224)および式(S225)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S244)、式(S245)、式(S246)、式(S247)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S244)、式(S245)、式(S246)、式(S247)のいずれかに設定し、式(S248)、式(S249)、式(S250)、式(S251)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図244のとおりであり、第二象限に存在する信号点配置は図245のとおりであり、第三象限に存在する信号点配置は図246のとおりであり、第四象限に存在する信号点配置は図247のとおりである。なお、図244、図245、図246、図247において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図244、図245、図246、図247からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図244の最右最上、図247の最右最下、図245の最左最上、図246の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S244)、式(S245)、式(S246)、式(S247)のいずれかに設定し、式(S248)、式(S249)、式(S250)、式(S251)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図248のとおりであり、第二象限に存在する信号点配置は図249のとおりであり、第三象限に存在する信号点配置は図250のとおりであり、第四象限に存在する信号点配置は図251のとおりである。なお、図248、図249、図250、図251において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図248、図249、図250、図251からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図244、図245、図246、図247の16384個の信号点の最小ユークリッド距離をDとし、図248、図249、図250、図251の16384個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例4−4)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S224)および式(S225)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S252)、式(S254)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S256)、式(S257)、式(S258)、式(S259)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S252)、式(S253)、式(S254)、式(S255)のいずれかに設定し、式(S256)、式(S257)、式(S258)、式(S259)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図244のとおりであり、第二象限に存在する信号点配置は図245のとおりであり、第三象限に存在する信号点配置は図246のとおりであり、第四象限に存在する信号点配置は図247のとおりである。なお、図244、図245、図246、図247において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図244、図245、図246、図247からわかるように、同相I―直交Q平面に、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図244の最右最上、図247の最右最下、図245の最左最上、図246の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S252)、式(S253)、式(S254)、式(S255)のいずれかに設定し、式(S256)、式(S257)、式(S258)、式(S259)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図248のとおりであり、第二象限に存在する信号点配置は図249のとおりであり、第三象限に存在する信号点配置は図250のとおりであり、第四象限に存在する信号点配置は図251のとおりである。なお、図248、図249、図250、図251において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図248、図249、図250、図251からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図244、図245、図246、図247の16384個の信号点の最小ユークリッド距離をDとし、図248、図249、図250、図251の16384個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例4−5)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S224)および式(S225)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S261)、式(S262)、式(S263)、式(S264)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S261)、式(S262)、式(S263)、式(S264)のいずれかに設定し、式(S265)、式(S266)、式(S267)、式(S268)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図220のとおりであり、第二象限に存在する信号点配置は図221のとおりであり、第三象限に存在する信号点配置は図222のとおりであり、第四象限に存在する信号点配置は図223のとおりである。なお、図220、図221、図222、図223において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図220、図221、図222、図223からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図220の最右最上、図223の最右最下、図221の最左最上、図222の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S261)、式(S262)、式(S263)、式(S264)のいずれかに設定し、式(S265)、式(S266)、式(S267)、式(S268)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図224のとおりであり、第二象限に存在する信号点配置は図225のとおりであり、第三象限に存在する信号点配置は図226のとおりであり、第四象限に存在する信号点配置は図227のとおりである。なお、図224、図225、図226、図227において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図224、図225、図226、図227からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図220、図221、図222、図223の16384個の信号点の最小ユークリッド距離をDとし、図224、図225、図226、図227の16384個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例4−6)
次に、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S224)および式(S225)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S269)、式(S271)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S273)、式(S274)、式(S275)、式(S276)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S269)、式(S270)、式(S271)、式(S272)のいずれかに設定し、式(S273)、式(S274)、式(S275)、式(S276)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図220のとおりであり、第二象限に存在する信号点配置は図221のとおりであり、第三象限に存在する信号点配置は図222のとおりであり、第四象限に存在する信号点配置は図223のとおりである。なお、図220、図221、図222、図223において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図220、図221、図222、図223からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図220の最右最上、図223の最右最下、図221の最左最上、図222の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S269)、式(S270)、式(S271)、式(S272)のいずれかに設定し、式(S273)、式(S274)、式(S275)、式(S276)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図224のとおりであり、第二象限に存在する信号点配置は図225のとおりであり、第三象限に存在する信号点配置は図226のとおりであり、第四象限に存在する信号点配置は図227のとおりである。なお、図224、図225、図226、図227において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図224、図225、図226、図227からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図220、図221、図222、図223の16384個の信号点の最小ユークリッド距離をDとし、図224、図225、図226、図227の16384個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例4−7)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S224)および式(S225)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S278)、式(S279)、式(S280)、式(S281)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのαの値について考える。
式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのαの値として、以下がある。
αが実数のとき:
Figure 2020061771

または、
Figure 2020061771
αが虚数のとき:
Figure 2020061771

または、
Figure 2020061771
プリコーディング行列Fを式(S278)、式(S279)、式(S280)、式(S281)のいずれかに設定し、式(S282)、式(S283)、式(S284)、式(S285)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図228のとおりであり、第二象限に存在する信号点配置は図229のとおりであり、第三象限に存在する信号点配置は図230のとおりであり、第四象限に存在する信号点配置は図231のとおりである。なお、図228、図229、図230、図231において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図228、図229、図230、図231からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図228の最右最上、図231の最右最下、図229の最左最上、図230の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S278)、式(S279)、式(S280)、式(S281)のいずれかに設定し、式(S282)、式(S283)、式(S284)、式(S285)のようにαを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図232のとおりであり、第二象限に存在する信号点配置は図233のとおりであり、第三象限に存在する信号点配置は図234のとおりであり、第四象限に存在する信号点配置は図235のとおりである。なお、図232、図233、図234、図235において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図232、図233、図234、図235からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図228、図229、図230、図231の16384個の信号点の最小ユークリッド距離をDとし、図232、図233、図234、図235の16384個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例4−8)
上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S224)および式(S225)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fを以下のいずれかに設定する場合を考える。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S286)、式(S288)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771
なお、式(S290)、式(S291)、式(S292)、式(S293)において、tan-1(x)は、逆三角関数(inverse trigonometric function)(三角関数の定義域を適当に制限したものの逆関数)であり、
Figure 2020061771

となる。また、「tan-1(x)」は、「Tan-1(x)」、「arctan(x)」、「Arctan(x)」と記載してもよい。そして、nは整数とする。
プリコーディング行列Fを式(S286)、式(S287)、式(S288)、式(S289)のいずれかに設定し、式(S290)、式(S291)、式(S292)、式(S293)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図228のとおりであり、第二象限に存在する信号点配置は図229のとおりであり、第三象限に存在する信号点配置は図230のとおりであり、第四象限に存在する信号点配置は図231のとおりである。なお、図228、図229、図230、図231において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図228、図229、図230、図231からわかるように、信号点は、重ならずに、16384個存在していることがわかる。また、同相I―直交Q平面における16384個の信号点のうち、図228の最右最上、図231の最右最下、図229の最左最上、図230の最左最下の4個を除く、16380個の信号点における最も近接する他の信号点との間のユークリッド距離が互いに等しくなっている。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S286)、式(S287)、式(S288)、式(S289)のいずれかに設定し、式(S290)、式(S291)、式(S292)、式(S293)のようにθを設定した場合、上述と同様に考えると、同相I―直交Q平面における、実施の形態R1で説明した信号u(t)(u(i))において、(b0,64、b1,64、b2,64、b3,64、b4,64、b5,64、b0,256、b1,256、b2,256、b3,256、b4,256、b5,256、、b6,256、b7,256)に対応する信号点のうち、第一象限に存在する信号点の配置は図232のとおりであり、第二象限に存在する信号点配置は図233のとおりであり、第三象限に存在する信号点配置は図234のとおりであり、第四象限に存在する信号点配置は図235のとおりである。なお、図232、図233、図234、図235において、横軸I、縦軸Q、「●」が信号点、「△」が原点(0)となる。
図232、図233、図234、図235からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図228、図229、図230、図231の16384個の信号点の最小ユークリッド距離をDとし、図232、図233、図234、図235の16384個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例4−補足)
(例4−1)〜(例4−8)では、高いデータの受信品質を得られる可能性のあるαの値の例、および、θの値の例を示したが、αの値、および、θの値は、これらの値でなくても、実施の形態R1に示した条件を満たすことで、高いデータの受信品質が得られることがある。
(変形例)
次に、(例1)〜(例4)を変形したプリコーディング方法について説明する。図204において、ベースバンド信号20411A(z(t)(z(i)))およびベースバンド信号20411B(z(t)(z(i)))が、次式のいずれかであらわされる場合を考える。
Figure 2020061771

Figure 2020061771
ただし、θ11(i)、θ21(i)はiの(時間、または、周波数の)関数であり、λは固定の値であり、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
そして、(例1)の変形として、ベースバンド信号20405A(s(t)(s(i)))の変調方式を16QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を64QAMとし、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、
式(S295)、式(S296)のαにおいて、
式(S18)、式(S19)、式(S20)、式(S21)のいずれかを用い、かつ、Q>Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S35)、式(S36)、式(S37)、式(S38)のいずれかを用い、かつ、Q>Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S52)、式(S53)、式(S54)、式(S55)のいずれかを用い、かつ、Q<Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S69)、式(S70)、式(S71)、式(S72)のいずれかを用い、かつ、Q<Qとする、
としても、(例1)と同様の効果を得ることができる。
(例2)の変形として、ベースバンド信号20405A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を16QAMとし、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S82)および式(S83)が成立し、
式(S295)、式(S296)のαにおいて、
式(S89)、式(S90)、式(S91)、式(S92)のいずれかを用い、かつ、Q<Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S106)、式(S107)、式(S108)、式(S109)のいずれかを用い、かつ、Q<Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S123)、式(S124)、式(S125)、式(S126)のいずれかを用い、かつ、Q>Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S140)、式(S141)、式(S142)、式(S143)のいずれかを用い、かつ、Q>Qとする、
としても、(例2)と同様の効果を得ることができる。
(例3)の変形として、ベースバンド信号20405A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を256QAMとし、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S153)および式(S154)が成立し、
式(S295)、式(S296)のαにおいて、
式(S160)、式(S161)、式(S162)、式(S163)、のいずれかを用い、かつ、Q>Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S177)、式(S178)、式(S179)、式(S180)、のいずれかを用い、かつ、Q>Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S194)、式(S195)、式(S196)、式(S197)、のいずれかを用い、かつ、Q<Qとする、
または、
式(S295)、式(S296)のαにおいて、
式(S211)、式(S212)、式(S213)、式(S214)ののいずれかを用い、かつ、Q<Qとする、

としても、(例3)と同様の効果を得ることができる。
(例4)の変形として、ベースバンド信号20405A(s(t)(s(i)))の変調方式を256QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を64QAMとし、上述で説明した64QAMのマッピング方法のところで記載した係数w64および上述で説明した256QAMのマッピング方法のところで記載した係数w256に関して、式(S224)および式(S225)が成立し、
式(S295)、式(S296)のαにおいて、
式(S231)、式(S232)、式(S233)、式(S234)のいずれかを用い、かつ、Q<Qとする、
式(S295)、式(S296)のαにおいて、
式(S248)、式(S249)、式(S250)、式(S251)のいずれかを用い、かつ、Q<Qとする、
式(S295)、式(S296)のαにおいて、
式(S265)、式(S266)、式(S267)、式(S268)のいずれかを用い、かつ、Q>Qとする、
式(S295)、式(S296)のαにおいて、
式(S282)、式(S283)、式(S284)、式(S285)のいずれかを用い、かつ、Q>Qとする、
としても、(例4)と同様の効果を得ることができる。
なお、上述の変形例では、高いデータの受信品質を得られる可能性のあるαの値の例、および、θの値の例を示したが、αの値、および、θの値は、これらの値でなくても、実施の形態R1に示した条件を満たすことで、高いデータの受信品質が得られることがある。
次に、(例1)〜(例4)および、その変更例とは異なる例を説明する。
(例5)
以下では、図204から図206のマッピング部20404において、s(t)(s(i))を得るための変調方式を16QAMとし、s(t)(s(i))を得るための変調方式を64QAMとし、例えば、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成とパワー変更に関する条件の例について説明する。
まず、16QAMのマッピング方法について説明する。図209は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図209において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。
16QAMの16個の信号点(図209の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)、となる(w16は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図209における信号点15901にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(3w16,3w16)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図209のとおりである。16QAMの16個の信号点(図209の「○」)(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図209に限ったものではない。そして、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
64QAMのマッピング方法について説明する。図210は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図210において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図210の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図210における信号点16001にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図210のとおりである。64QAMの64個の信号点(図210の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図210に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図204〜図206において、ベースバンド信号20405A(s(t)(s(i)))の変調方式を16QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を64QAMとし、プリコーディング行列の構成について説明する。
このとき、図204〜図206のマッピング部20404の出力であるベースバンド信号20405A(s(t)(s(i)))の平均電力とベースバンド信号20405B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)、および、式(S12)が成立する。なお、式(S11)および式(S12)において、zは0より大きい実数とする。そして、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fの構成、および、QとQの関係について、以下で説明する。
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fとして、式(S22)、式(S23)、式(S24)、式(S25)のいずれかの式を考える。
なお、式(S22)、式(S24)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、nは整数とする。
プリコーディング行列Fを式(S22)、式(S23)、式(S24)、式(S25)のいずれかに設定し、式(S297)、式(S298)、式(S299)、式(S300)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図254のようになる。なお、図254において、横軸I、縦軸Q、「●」が信号点となる。
図254からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S22)、式(S23)、式(S24)、式(S25)のいずれかに設定し、式(S297)、式(S298)、式(S299)、式(S300)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図255のようになる。なお、図255において、横軸I、縦軸Q、「●」が信号点となる。
図255からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図254の1024個の信号点の最小ユークリッド距離をDとし、図255の1024個の信号点の最小ユークリッド距離をDとする。すると、D>Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q>Qが成立するとよいことになる。
(例5−補足)
上述の例では、高いデータの受信品質を得られる可能性のあるθの値の例を示したが、θの値は、これらの値でなくても、実施の形態R1に示した条件を満たすことで、高いデータの受信品質が得られることがある。
(例6)
以下では、図204から図206のマッピング部20404において、s(t)(s(i))を得るための変調方式を64QAMとし、s(t)(s(i))を得るための変調方式を16QAMとし、例えば、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)のいずれかのプリコーディング、および/または、パワー変更を行ったときのプリコーディング行列(F)の構成とパワー変更に関する条件の例について説明する。
まず、16QAMのマッピング方法について説明する。図209は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図209において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。
16QAMの16個の信号点(図209の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)、となる(w16は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図209における信号点15901にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(3w16,3w16)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図209のとおりである。16QAMの16個の信号点(図209の「○」)(3w16,3w16)、(3w16,w16)、(3w16,−w16)、(3w16,−3w16)、(w16,3w16)、(w16,w16)、(w16,−w16)、(w16,−3w16)、(―w16,3w16)、(―w16,w16)、(―w16,−w16)、(―w16,−3w16)、(―3w16,3w16)、(―3w16,w16)、(―3w16,−w16)、(―3w16,−3w16)の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図209に限ったものではない。そして、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
64QAMのマッピング方法について説明する。図210は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図210において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
64QAMの64個の信号点(図210の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64
となる(w64は0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図210における信号点16001にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7w64,7w64)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図210のとおりである。64QAMの64個の信号点(図210の「○」)(7w64,7w64)、(7w64,5w64)、(7w64,3w64)、(7w64,w64)、(7w64,−w64)、(7w64,−3w64)、(7w64,―5w64)、(7w64,―7w64
(5w64,7w64)、(5w64,5w64)、(5w64,3w64)、(5w64,w64)、(5w64,−w64)、(5w64,−3w64)、(5w64,―5w64)、(5w64,―7w64
(3w64,7w64)、(3w64,5w64)、(3w64,3w64)、(3w64,w64)、(3w64,−w64)、(3w64,−3w64)、(3w64,―5w64)、(3w64,―7w64
(w64,7w64)、(w64,5w64)、(w64,3w64)、(w64,w64)、(w64,−w64)、(w64,−3w64)、(w64,―5w64)、(w64,―7w64

(−w64,7w64)、(−w64,5w64)、(−w64,3w64)、(−w64,w64)、(−w64,−w64)、(−w64,−3w64)、(−w64,―5w64)、(−w64,―7w64
(−3w64,7w64)、(−3w64,5w64)、(−3w64,3w64)、(−3w64,w64)、(−3w64,−w64)、(−3w64,−3w64)、(−3w64,―5w64)、(−3w64,―7w64
(−5w64,7w64)、(−5w64,5w64)、(−5w64,3w64)、(−5w64,w64)、(−5w64,−w64)、(−5w64,−3w64)、(−5w64,―5w64)、(−5w64,―7w64
(−7w64,7w64)、(−7w64,5w64)、(−7w64,3w64)、(−7w64,w64)、(−7w64,−w64)、(−7w64,−3w64)、(−7w64,―5w64)、(−7w64,―7w64)の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図210に限ったものではない。そして、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qを複素表現した値が、図204から図206のベースバンド信号(s(t)またはs(t))となる。
ここでの例では、図204〜図206において、ベースバンド信号20405A(s(t)(s(i)))の変調方式を64QAM、ベースバンド信号20405B(s(t)(s(i)))の変調方式を16QAMとし、プリコーディング行列の構成について説明する。
このとき、図204〜図206のマッピング部20404の出力であるベースバンド信号20405A(s(t)(s(i)))の平均電力とベースバンド信号20405B(s(t)(s(i)))平均電力を等しくするのが一般的となる。したがって、上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(82)、および、式(83)が成立する。なお、式(S82)および式(S83)において、zは0より大きい実数とする。そして、
<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列F
の構成、および、QとQの関係について、以下で説明する。
上述で説明した16QAMのマッピング方法のところで記載した係数w16および上述で説明した64QAMのマッピング方法のところで記載した係数w64に関して、式(S11)および式(S12)が成立し、

<1>式(S2)において、P =P とした場合
<2>式(S3)において、P =P とした場合
<3>式(S4)において、P =P とした場合
<4>式(S5)の場合
<5>式(S8)の場合
の演算を行うときのプリコーディング行列Fとして、式(S93)、式(S94)、式(S95)、式(S96)のいずれかの式を考える。
なお、式(S93)、式(S95)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
このとき、受信装置が良好なデータの受信品質を得るためのθの値について考える。
まず、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)における信号z(t)(z(i))に着目し、受信装置が良好なデータの受信品質を得るためのθの値として、以下がある。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、nは整数とする。
プリコーディング行列Fを式(S93)、式(S94)、式(S95)、式(S96)のいずれかに設定し、式(S301)、式(S302)、式(S303)、式(S304)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図254のようになる。なお、図254において、横軸I、縦軸Q、「●」が信号点となる。
図254からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、プリコーディング行列Fを式(S93)、式(S94)、式(S95)、式(S96)のいずれかに設定し、式(S301)、式(S302)、式(S303)、式(S304)のようにθを設定した場合、上述と同様に考えると、(b0,16、b1,16、b2,16、b3,16、b0,64、b1,64、b2,64、b3,64、b4,64、b5,64)が(0,0,0,0,0,0,0,0,0,0)に対応する信号点から(1,1,1,1,1,1,1,1,1,1)に対応する信号点の実施の形態R1で説明した信号u(t)(u(i))における同相I―直交Q平面の信号点の配置は、図255のようになる。なお、図255において、横軸I、縦軸Q、「●」が信号点となる。
図255からわかるように、信号点は、重ならずに、1024個存在していることがわかる。そのため、受信装置において高い受信品質を得られる可能性が高い。
そして、図254の1024個の信号点の最小ユークリッド距離をDとし、図255の1024個の信号点の最小ユークリッド距離をDとする。すると、D<Dが成立する。したがって、実施の形態R1より、式(S2)、式(S3)、式(S4)、式(S5)、式(S8)において、Q≠Qの場合、Q<Qが成立するとよいことになる。
(例6−補足)
上述の例では、高いデータの受信品質を得られる可能性のあるθの値の例を示したが、θの値は、これらの値でなくても、実施の形態R1に示した条件を満たすことで、高いデータの受信品質が得られることがある。
次に、(例1)〜(例4)およびその変形例、(例5)、(例6)を用いて送信装置が変調信号を送信したときの受信装置の動作について説明する。
図252に、送信アンテナと受信アンテナの関係を示している。送信装置の送信アンテナ#1(25202A)から変調信号#1(25201A)が送信され、アンテナ#2(25202B)から変調信号#2(25201B)が送信されるものとする。
そして、受信装置の受信アンテナ#1(25203X)および受信アンテナ#2(25203Y)では、送信装置が送信した変調信号を受信(受信信号2020Xおよび受信信号25204Yを得る。)することになるが、このとき、送信アンテナ#1(25202A)から受信アンテナ#1(25203X)の伝搬係数をh11(t)とし、送信アンテナ#1(25202A)から受信アンテナ#2(25203Y)の伝搬係数をh21(t)とし、送信アンテナ#2(25202B)から受信アンテナ#1(25203X)の伝搬係数をh12(t)とし、送信アンテナ#2(25202B)から受信アンテナ#2(25203Y)の伝搬係数をh22(t)とする。(tは時間)
図253は受信装置の構成の一例である。無線部25302Xは、受信アンテナ#1(25203X)で受信した受信信号25301Xを入力とし、増幅、周波数変換等の処理を施し、信号25303Xを出力する。
信号処理部25304Xは、例えば、OFDM方式を用いている場合であれば、フーリエ変換、パラレルシリアル変換等の処理を施し、ベースバンド信号25305Xを得る。このとき、ベースバンド信号25305Xをr’(t)とあらわすものとする。
無線部25302Yは、受信アンテナ#2(25203Y)で受信した受信信号25301Yを入力とし、増幅、周波数変換等の処理を施し、信号25303Yを出力する。
信号処理部25304Yは、例えば、OFDM方式を用いている場合であれば、フーリエ変換、パラレルシリアル変換等の処理を施し、ベースバンド信号25305Yを得る。このとき、ベースバンド信号25305Yをr’(t)とあらわすものとする。
チャネル推定部25306Xは、ベースバンド信号25305Xを入力とし、例えば、図209のフレーム構成におけるパイロットシンボルから、チャネル推定(伝搬係数の推定)を行い、チャネル推定信号25307Xを出力する。なお、チャネル推定信号25307Xは、h11(t)の推定信号であるものとし、h’11(t)とあらわすものとする。
チャネル推定部25308Xは、ベースバンド信号25305Xを入力とし、例えば、図209のフレーム構成におけるパイロットシンボルから、チャネル推定(伝搬係数の推定)を行い、チャネル推定信号25309Xを出力する。なお、チャネル推定信号25309Xは、h12(t)の推定信号であるものとし、h’12(t)とあらわすものとする。
チャネル推定部25306Yは、ベースバンド信号25305Yを入力とし、例えば、図209のフレーム構成におけるパイロットシンボルから、チャネル推定(伝搬係数の推定)を行い、チャネル推定信号25307Yを出力する。なお、チャネル推定信号25307Yは、h21(t)の推定信号であるものとし、h’21(t)とあらわすものとする。
チャネル推定部25308Yは、ベースバンド信号25305Yを入力とし、例えば、図209のフレーム構成におけるパイロットシンボルから、チャネル推定(伝搬係数の推定)を行い、チャネル推定信号25309Yを出力する。なお、チャネル推定信号25309Yは、h22(t)の推定信号であるものとし、h’22(t)とあらわすものとする。
制御情報復調部25310は、ベースバンド信号25305Xおよびベースバンド信号25305Yを入力とし、データ(シンボル)とともに送信装置が送信した送信方法、変調方式、送信電力等に関する情報を含む制御情報を伝送するためのシンボルを復調(検波・復号)し、制御情報25311を出力する。
上述で説明した送信方法のいずれかを用いて送信装置は、変調信号を送信していることになる。したがって、以下のいずれかの送信方法となる。
<1>式(S2)の送信方法
<2>式(S3)の送信方法
<3>式(S4)の送信方法
<4>式(S5)の送信方法
<5>式(S6)の送信方法
<6>式(S7)の送信方法
<7>式(S8)の送信方法
<8>式(S9)の送信方法
<9>式(S10)の送信方法
<10>式(S295)の送信方法
<11>式(S296)の送信方法
ところで、式(S2)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S3)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S4)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S5)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S6)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S7)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S8)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S9)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S10)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S295)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
式(S296)の方法で送信された場合、以下の関係が成立する。
Figure 2020061771
検波部25312は、ベースバンド信号25305X、25305Y、チャネル推定信号25307X、25309X、25307Y、25309Y、および、制御情報25311を入力とする。そして、制御情報25311に基づくことで、上記の式(S305)、式(S306)、式(S307)、式(S308)、式(S309)、式(S310)、式(S311)、式(S312)、式(S313)、式(S314)、式(S315)のいずれかの関係式が成立しているかが、検波部25312はわかる。
そこで、式(S305)、式(S306)、式(S307)、式(S308)、式(S309)、式(S310)、式(S311)、式(S312)、式(S313)、式(S314)、式(S315)のいずれかの関係式に基づいて、検波部25312は、s(t)(s(i))およびs(t)(s(i))により伝送されるデータの各ビットの検波を行い(各ビットの対数尤度、または、各ビットの対数尤度比を求める)、検波結果25313を出力する。
そして、復号部25314は、検波結果25313を入力とし、誤り訂正符号の復号を行い、受信データ25315を出力する。
以上、本実施の形態では、MIMO伝送方式におけるプリコーディング方法、および、そのプリコーディング方法を用いた送信装置および受信装置の構成について説明した。本プリコーディング方法を用いることにより、受信装置において、高いデータの受信品質を得ることができるという効果を得ることができる。
なお、他の実施の形態で説明したように、送信アンテナ、受信アンテナにおいて、複数のアンテナにより一つのアンテナを構成してもよい。また、受信装置において、受信アンテナを2本具備している場合の受信装置について説明したが、これに限ったものではなく、受信アンテナを3本以上具備していても、同様に、実施することで、受信データを得ることができる。
また、本実施の形態のプリコーディング方法は、シングルキャリア方式、OFDM方式、ウェーブレット変換を用いたOFDM方式等のマルチキャリア方式、スペクトル拡散方式を適用したときも、同様に実施することができる。
(補足1)
本明細書では、第1の変調方式に基づいた変調信号と第2の変調信号に基づいた変調信号に対し、信号処理を施し、複数のアンテナから複数の送信信号を送信する方法のいくつかの例について説明した。その際、変調方式として、16QAM、64QAM、256QAMを適用する場合について説明している。そして、16QAM、64QAM、256QAMについての具体的なマッピング方法については、いくつかの実施の形態で説明している。
以下では、16QAM、64QAM、256QAMのマッピング方法等の別の構成方法について説明する。なお、以下で説明する16QAM、64QAM、256QAMを本明細書の上記各実施の形態に対し適用してもよく、このとき、各実施の形態で説明した効果を得ることができる。
16QAMを拡張化した場合について説明する。
16QAMのマッピング方法について説明する。図256は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図256において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。また、図256においてf>0(fは0より大きい実数)であり、f≠3、かつ、f≠1であるものとする。
16QAMの16個の信号点(図256の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(3×w16a,3×w16a)、(3×w16a,f×w16a)、(3×w16a,−f×w16a)、(3×w16a,−3×w16a)、(f×w16a,3×w16a)、(f×w16a,f×w16a)、(f×w16a,−f×w16a)、(f×w16a,−3×w16a)、(―f×w16a,3×w16a)、(―f×w16a,f×w16a)、(―f×w16a,−f×w16a)、(―f×w16a,−3×w16a)、(―3×w16a,3×w16a)、(―3×w16a,f×w16a)、(―3×w16a,−f×w16a)、(―3×w16a,−3×w16a)、となる(w16aは0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図256における信号点25601にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(3×w16a,3×w16a)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図256のとおりである。16QAMの16個の信号点(図256の「○」)
(3×w16a,3×w16a)、(3×w16a,f×w16a)、(3×w16a,−f×w16a)、(3×w16a,−3×w16a)、(f×w16a,3×w16a)、(f×w16a,f×w16a)、(f×w16a,−f×w16a)、(f×w16a,−3×w16a)、(―f×w16a,3×w16a)、(―f×w16a,f×w16a)、(―f×w16a,−f×w16a)、(―f×w16a,−3×w16a)、(―3×w16a,3×w16a)、(―3×w16a,f×w16a)、(―3×w16a,−f×w16a)、(―3×w16a,−3×w16a
の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図256に限ったものではない。
図256の16個の信号点に対し、「信号点1」「信号点2」・・・「信号点15」「信号点16」と名付ける。(16個の信号点が存在するので、「信号点1」から「信号点16」が存在することになる。)同相I―直交Q平面において、「信号点i」と原点の距離をDiとする。このとき、w16aを以下のように与える。
Figure 2020061771
すると、マッピング後のベースバンド信号の平均パワーはzとなる。
なお、上述の説明において、図80、図155、図201、図209などと同等になる場合をuniform-16QAMと呼び、それ以外の場合をnon-uniform 16QAMと呼ぶ。 64QAMのマッピング方法について説明する。図257は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図257において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。図257においてg>0(gは0より大きい実数)、かつ、g>0(gは0より大きい実数)、かつ、g>0(gは0より大きい実数)であり、
{{g≠7、かつ、g≠7、かつ、g≠7}が成立する}、
かつ、{{(g1、、g)≠(1、3、5)、かつ、(g1、、g)≠(1、5、3)、かつ、(g1、、g)≠(3、1、5)、かつ、(g1、、g)≠(3、5、1)、かつ、(g1、、g)≠(5、1、3)、かつ、(g1、、g)≠(5、3、1)}が成立する}、
かつ、{{g≠g、かつ、g≠g、かつ、g≠g}が成立する}
であるものとする。
64QAMの64個の信号点(図257の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、
(7×w64a,7×w64a)、(7×w64a,g×w64a)、(7×w64a,g×w64a)、(7×w64a,g×w64a)、(7×w64a,−g×w64a)、(7×w64a,−g×w64a)、(7×w64a,―g×w64a)、(7×w64a,―7×w64a

(g×w64a,7×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,−g×w64a)、(g×w64a,−g×w64a)、(g×w64a,―g×w64a)、(g×w64a,―7×w64a

(g×w64a,7×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,−g×w64a)、(g×w64a,−g×w64a)、(g×w64a,―g×w64a)、(g×w64a,―7×w64a

(g×w64a,7×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,−g×w64a)、(g×w64a,−g×w64a)、(g×w64a,―g×w64a)、(g×w64a,―7×w64a

(−g×w64a,7×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,―g×w64a)、(−g×w64a,―7×w64a

(−g×w64a,7×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,―g×w64a)、(−g×w64a,―7×w64a

(−g×w64a,7×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,―g×w64a)、(−g×w64a,―7×w64a

(−7×w64a,7×w64a)、(−7×w64a,g×w64a)、(−7×w64a,g×w64a)、(−7×w64a,g×w64a)、(−7×w64a,−g×w64a)、(−7×w64a,−g×w64a)、(−7×w64a,―g×w64a)、(−7×w64a,―7×w64a

となる(w64aは0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図257における信号点25701にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(7×w64a,7×w64a)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図257のとおりである。64QAMの64個の信号点(図257の「○」)

(7×w64a,7×w64a)、(7×w64a,g×w64a)、(7×w64a,g×w64a)、(7×w64a,g×w64a)、(7×w64a,−g×w64a)、(7×w64a,−g×w64a)、(7×w64a,―g×w64a)、(7×w64a,―7×w64a

(g×w64a,7×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,−g×w64a)、(g×w64a,−g×w64a)、(g×w64a,―g×w64a)、(g×w64a,―7×w64a

(g×w64a,7×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,−g×w64a)、(g×w64a,−g×w64a)、(g×w64a,―g×w64a)、(g×w64a,―7×w64a

(g×w64a,7×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,g×w64a)、(g×w64a,−g×w64a)、(g×w64a,−g×w64a)、(g×w64a,―g×w64a)、(g×w64a,―7×w64a

(−g×w64a,7×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,―g×w64a)、(−g×w64a,―7×w64a

(−g×w64a,7×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,―g×w64a)、(−g×w64a,―7×w64a

(−g×w64a,7×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,−g×w64a)、(−g×w64a,―g×w64a)、(−g×w64a,―7×w64a

(−7×w64a,7×w64a)、(−7×w64a,g×w64a)、(−7×w64a,g×w64a)、(−7×w64a,g×w64a)、(−7×w64a,−g×w64a)、(−7×w64a,−g×w64a)、(−7×w64a,―g×w64a)、(−7×w64a,―7×w64a

の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図257に限ったものではない。
図257の64個の信号点に対し、「信号点1」「信号点2」・・・「信号点63」「信号点64」と名付ける。(64個の信号点が存在するので、「信号点1」から「信号点64」が存在することになる。)同相I―直交Q平面において、「信号点i」と原点の距離をDiとする。このとき、w64aを以下のように与える。
Figure 2020061771
すると、マッピング後のベースバンド信号の平均パワーはzとなる。
なお、上述の説明において、図86、図156、図202、図210などと同等になる場合をuniform-64QAMと呼び、それ以外の場合をnon-uniform 64QAMと呼ぶ。
256QAMのマッピング方法について説明する。図258は、同相I−直交Q平面における256QAMの信号点配置の例を示している。なお、図258において、256個の○が256QAMの信号点であり、横軸I、縦軸Qとなる。図258においてh>0(hは0より大きい実数)、かつ、h>0(hは0より大きい実数)、かつ、h>0(hは0より大きい実数)、かつ、h>0(hは0より大きい実数)、かつ、h>0(hは0より大きい実数)、かつ、h>0(hは0より大きい実数)、かつ、h>0(hは0より大きい実数)であり、
{{h≠15、かつ、h≠15、かつ、h≠15、かつ、h≠15、かつ、h≠15、かつ、h≠15、かつ、h≠15}が成立する}、
かつ、
{{a1は1以上7以下の整数、かつ、a2は1以上7以下の整数、かつ、a3は1以上7以下の整数、かつ、a4は1以上7以下の整数、かつ、a5は1以上7以下の整数、かつ、a6は1以上7以下の整数、かつ、a7は1以上7以下の整数}が成立し、{xは1以上7以下の整数、かつ、yは1以上7以下の整数、かつ、x≠y}が成立したとき、{すべてのx、すべてのyで、ax≠ayが成立する}とき、(ha1、a2、ha3、ha4、ha5、ha6、ha7)≠(1、3、5、7、9、11、13)が成立する。}
かつ、{{h≠h、かつ、h≠h、かつ、h≠h、かつ、h≠h、かつ、h≠h、かつ、h≠h
かつ、h≠h、かつ、h≠h、かつ、h≠h、かつ、h≠h、かつ、h≠h
かつ、h≠h、かつ、h≠h、かつ、h≠h、かつ、h≠h
かつ、h≠h、かつ、h≠h、かつ、h≠h
かつ、h≠h、かつ、h≠h
かつ、h≠h}が成立する}
であるものとする。
256QAMの256個の信号点(図258の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、

(15×w256a,15×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、
(15×w256a,―15×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(−15×w256a,15×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、
(−15×w256a,―15×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

となる(w256aは0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5、b6、b7とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5、b6、b7)=(0、0、0、0、0、0、0、0)の場合、図258における信号点25801にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(15×w256a,15×w256a)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5、b6、b7)に基づき、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係の一例は図258のとおりである。256QAMの256個の信号点(図258の「○」)

(15×w256a,15×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、(15×w256a,h×w256a)、
(15×w256a,―15×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、(15×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(h×w256a,15×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、(h×w256a,h×w256a)、
(h×w256a,―15×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、(h×w256a,―h×w256a)、

(−15×w256a,15×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、(−15×w256a,h×w256a)、
(−15×w256a,―15×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、(−15×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

(−h×w256a,15×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、(−h×w256a,h×w256a)、
(−h×w256a,―15×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、(−h×w256a,―h×w256a)、

の直下にb0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の値が示されている。b0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、256QAM時のb0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係は、図258に限ったものではない。
図258の256個の信号点に対し、「信号点1」「信号点2」・・・「信号点255」「信号点256」と名付ける。(256個の信号点が存在するので、「信号点1」から「信号点256」が存在することになる。)同相I―直交Q平面において、「信号点i」と原点の距離をDiとする。このとき、w256aを以下のように与える。
Figure 2020061771
すると、マッピング後のベースバンド信号の平均パワーはzとなる。
なお、上述の説明において、図149、図165、図203、図219などと同等になる場合をuniform-256QAMと呼び、それ以外の場合をnon-uniform 256QAMと呼ぶ。
(補足2)
本明細書では、第1の変調方式に基づいた変調信号と第2の変調信号に基づいた変調信号に対し、信号処理を施し、複数のアンテナから複数の送信信号を送信する方法のいくつかの例について説明した。その際、変調方式として、16QAM、64QAM、256QAMを適用する場合について説明している。そして、16QAM、64QAM、256QAMについての具体的なマッピング方法については、いくつかの実施の形態で説明している。
以下では、16QAM、64QAM、256QAMのマッピング方法等の別の構成方法について説明する。なお、以下で説明する16QAM、64QAM、256QAMを本明細書の各実施の形態に対し適用してもよく、このとき、各実施の形態で説明した効果を得ることができる。
16QAMのマッピング方法について説明する。図259は、同相I−直交Q平面における16QAMの信号点配置の例を示している。なお、図259において、16個の○が16QAMの信号点であり、横軸I、縦軸Qとなる。
また、図259においてk>0(kは0より大きい実数)、かつ、k>0(kは0より大きい実数)であり、k≠1、かつ、k≠1、かつ、k≠kであるものとする。
16QAMの16個の信号点(図259の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、

(k×w16c,k×w16c)、(k×w16c,1×w16c)、(k×w16c,−1×w16c)、(k×w16c,−k×w16c)、(1×w16c,k×w16c)、(1×w16c,1×w16c)、(1×w16c,−1×w16c)、(1×w16c,−k×w16c)、(―1×w16c,k×w16c)、(―1×w16c,1×w16c)、(―1×w16c,−1×w16c)、(―1×w16c,−k×w16c)、(―k×w16c,k×w16c)、(―k×w16c,1×w16c)、(―k×w16c,−1×w16c)、(―k×w16c,−k×w16c)、

となる(w16cは0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3とする。例えば、送信するビットが(b0、b1、b2、b3)=(0、0、0、0)の場合、図259における信号点25901にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(k×w16c,k×w16c)となる。
つまり、送信するビット(b0、b1、b2、b3)に基づき、(16QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係の一例は図259のとおりである。16QAMの16個の信号点(図259の「○」)

(k×w16c,k×w16c)、(k×w16c,1×w16c)、(k×w16c,−1×w16c)、(k×w16c,−k×w16c)、(1×w16c,k×w16c)、(1×w16c,1×w16c)、(1×w16c,−1×w16c)、(1×w16c,−k×w16c)、(―1×w16c,k×w16c)、(―1×w16c,1×w16c)、(―1×w16c,−1×w16c)、(―1×w16c,−k×w16c)、(―k×w16c,k×w16c)、(―k×w16c,1×w16c)、(―k×w16c,−1×w16c)、(―k×w16c,−k×w16c)、

の直下にb0、b1、b2、b3のセット0000〜1111の値が示されている。b0、b1、b2、b3のセット0000〜1111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、16QAM時のb0、b1、b2、b3のセット(0000〜1111)と信号点の座標の関係は、図259に限ったものではない。
図259の16個の信号点に対し、「信号点1」「信号点2」・・・「信号点15」「信号点16」と名付ける。(16個の信号点が存在するので、「信号点1」から「信号点16」が存在することになる。)同相I―直交Q平面において、「信号点i」と原点の距離をDiとする。このとき、w16cを以下のように与える。
Figure 2020061771
すると、マッピング後のベースバンド信号の平均パワーはzとなる。なお、上述で説明した16QAMの効果については、後で説明する。
64QAMのマッピング方法について説明する。図260は、同相I−直交Q平面における64QAMの信号点配置の例を示している。なお、図260において、64個の○が64QAMの信号点であり、横軸I、縦軸Qとなる。
図260において、
「m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)であり、
{m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m
かつ、
{m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m
かつ、
{m≠m、または、m≠m、または、m≠m、または、m≠mが成立する。}
が成立する。」

または、
「m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)であり、
{m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m
かつ、
{m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m
かつ、
{m≠m、または、m≠m、または、m≠m、または、m≠mが成立する。}
かつ、
{m=m、または、m=m、または、m=m、または、m=mが成立する。}
が成立する。」

ものとする。
64QAMの64個の信号点(図260の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、

(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,−m×w64c)、(m×w64c,−m×w64c)、(m×w64c,―m×w64c)、(m×w64c,―m×w64c

(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,−m×w64c)、(m×w64c,−m×w64c)、(m×w64c,―m×w64c)、(m×w64c,―m×w64c

(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,−m×w64c)、(m×w64c,−m×w64c)、(m×w64c,―m×w64c)、(m×w64c,―m×w64c

(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,−m×w64c)、(m×w64c,−m×w64c)、(m×w64c,―m×w64c)、(m×w64c,―m×w64c

(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,―m×w64c)、(−m×w64c,―m×w64c

(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,―m×w64c)、(−m×w64c,―m×w64c

(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,―m×w64c)、(−m×w64c,―m×w64c

(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,―m×w64c)、(−m×w64c,―m×w64c

となる(w64cは0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5)=(0、0、0、0、0、0)の場合、図260における信号点26001にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(m×w64c,m×w64c)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5)に基づき、(64QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係の一例は図260のとおりである。64QAMの64個の信号点(図260の「○」)

(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,−m×w64c)、(m×w64c,−m×w64c)、(m×w64c,―m×w64c)、(m×w64c,―m×w64c

(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,−m×w64c)、(m×w64c,−m×w64c)、(m×w64c,―m×w64c)、(m×w64c,―m×w64c

(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,−m×w64c)、(m×w64c,−m×w64c)、(m×w64c,―m×w64c)、(m×w64c,―m×w64c

(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,m×w64c)、(m×w64c,−m×w64c)、(m×w64c,−m×w64c)、(m×w64c,―m×w64c)、(m×w64c,―m×w64c

(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,―m×w64c)、(−m×w64c,―m×w64c

(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,―m×w64c)、(−m×w64c,―m×w64c

(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,―m×w64c)、(−m×w64c,―m×w64c

(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,−m×w64c)、(−m×w64c,―m×w64c)、(−m×w64c,―m×w64c

の直下にb0、b1、b2、b3、b4、b5のセット000000〜111111の値が示されている。b0、b1、b2、b3、b4、b5のセット000000〜111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、64QAM時のb0、b1、b2、b3、b4、b5のセット(000000〜111111)と信号点の座標の関係は、図260に限ったものではない。
図260の64個の信号点に対し、「信号点1」「信号点2」・・・「信号点63」「信号点64」と名付ける。(64個の信号点が存在するので、「信号点1」から「信号点64」が存在することになる。)同相I―直交Q平面において、「信号点i」と原点の距離をDiとする。このとき、w64cを以下のように与える。
Figure 2020061771

すると、マッピング後のベースバンド信号の平均パワーはzとなる。なお、効果については、後で説明する。
256QAMのマッピング方法について説明する。図261は、同相I−直交Q平面における256QAMの信号点配置の例を示している。なお、図261において、256個の○が256QAMの信号点であり、横軸I、縦軸Qとなる。
図261において、
「n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、

かつ、n>0(nは0より大きい実数)、かつ、n10>0(n10は0より大きい実数)、かつ、n11>0(n11は0より大きい実数)、かつ、n12>0(n12は0より大きい実数)、かつ、n13>0(n13は0より大きい実数)、かつ、n14>0(n14は0より大きい実数)、かつ、n15>0(n15は0より大きい実数)、かつ、n16>0(n16は0より大きい実数)であり、

{n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n
かつ、n≠n
かつ、
{n≠n10、かつ、n≠n11、かつ、n≠n12、かつ、n≠n13、かつ、n≠n14、かつ、n≠n15、かつ、n≠n16
かつ、n10≠n11、かつ、n10≠n12、かつ、n10≠n13、かつ、n10≠n14、かつ、n10≠n15、かつ、n10≠n16
かつ、n11≠n12、かつ、n11≠n13、かつ、n11≠n14、かつ、n11≠n15、かつ、n11≠n16
かつ、n12≠n13、かつ、n12≠n14、かつ、n12≠n15、かつ、n12≠n16
かつ、n13≠n14、かつ、n13≠n15、かつ、n13≠n16
かつ、n14≠n15、かつ、n14≠n16
かつ、n15≠n16
かつ、
{n≠n、または、n≠n10、または、n≠n11、または、n≠n12、または、n≠n13、または、n≠n14、または、n≠n15、または、n≠n16が成立する。}
が成立する。」
または、
「n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、
かつ、n>0(nは0より大きい実数)、かつ、n10>0(n10は0より大きい実数)、かつ、n11>0(n11は0より大きい実数)、かつ、n12>0(n12は0より大きい実数)、かつ、n13>0(n13は0より大きい実数)、かつ、n14>0(n14は0より大きい実数)、かつ、n15>0(n15は0より大きい実数)、かつ、n16>0(n16は0より大きい実数)であり、
{n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n
かつ、n≠n
かつ、
{n≠n10、かつ、n≠n11、かつ、n≠n12、かつ、n≠n13、かつ、n≠n14、かつ、n≠n15、かつ、n≠n16
かつ、n10≠n11、かつ、n10≠n12、かつ、n10≠n13、かつ、n10≠n14、かつ、n10≠n15、かつ、n10≠n16
かつ、n11≠n12、かつ、n11≠n13、かつ、n11≠n14、かつ、n11≠n15、かつ、n11≠n16
かつ、n12≠n13、かつ、n12≠n14、かつ、n12≠n15、かつ、n12≠n16
かつ、n13≠n14、かつ、n13≠n15、かつ、n13≠n16
かつ、n14≠n15、かつ、n14≠n16
かつ、n15≠n16
かつ、
{n≠n、または、n≠n10、または、n≠n11、または、n≠n12、または、n≠n13、または、n≠n14、または、n≠n15、または、n≠n16が成立する。}
かつ、
{n=n、または、n=n10、または、n=n11、または、n=n12、または、n=n13、または、n=n14、または、n=n15、または、n=n16が成立する。}
が成立する。」

ものとする。
256QAMの256個の信号点(図261の「○」が信号点である。)の同相I−直交Q平面におけるそれぞれの座標は、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

となる(w256cは0より大きい実数となる。)。
ここで、送信するビット(入力ビット)をb0、b1、b2、b3、b4、b5、b6、b7とする。例えば、送信するビットが(b0、b1、b2、b3、b4、b5、b6、b7)=(0、0、0、0、0、0、0、0)の場合、図261における信号点26101にマッピングされ、マッピング後のベースバンド信号の同相成分をI、直交成分をQとすると、(I,Q)=(n×w256c,n16×w256c)となる。
つまり、送信するビット(b0、b1、b2、b3、b4、b5、b6、b7)に基づき、(256QAM時の)マッピング後のベースバンド信号の同相成分I、直交成分Qが決定される。なお、b0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係の一例は図261のとおりである。256QAMの256個の信号点(図261の「○」)

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(n×w256c,n16×w256c)、(n×w256c,n15×w256c)、(n×w256c,n14×w256c)、(n×w256c,n13×w256c)、(n×w256c,n12×w256c)、(n×w256c,n11×w256c)、(n×w256c,n10×w256c)、(n×w256c,n×w256c)、
(n×w256c,―n16×w256c)、(n×w256c,―n15×w256c)、(n×w256c,―n14×w256c)、(n×w256c,―n13×w256c)、(n×w256c,―n12×w256c)、(n×w256c,―n11×w256c)、(n×w256c,―n10×w256c)、(n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

(−n×w256c,n16×w256c)、(−n×w256c,n15×w256c)、(−n×w256c,n14×w256c)、(−n×w256c,n13×w256c)、(−n×w256c,n12×w256c)、(−n×w256c,n11×w256c)、(−n×w256c,n10×w256c)、(−n×w256c,n×w256c)、
(−n×w256c,―n16×w256c)、(−n×w256c,―n15×w256c)、(−n×w256c,―n14×w256c)、(−n×w256c,―n13×w256c)、(−n×w256c,―n12×w256c)、(−n×w256c,―n11×w256c)、(−n×w256c,―n10×w256c)、(−n×w256c,―n×w256c)、

の直下にb0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の値が示されている。b0、b1、b2、b3、b4、b5、b6、b7のセット00000000〜11111111の直上の信号点(「○」)の同相I−直交Q平面におけるそれぞれの座標が、マッピング後のベースバンド信号の同相成分Iおよび直交成分Qとなる。なお、256QAM時のb0、b1、b2、b3、b4、b5、b6、b7のセット(00000000〜11111111)と信号点の座標の関係は、図261に限ったものではない。
図261の256個の信号点に対し、「信号点1」「信号点2」・・・「信号点255」「信号点256」と名付ける。(256個の信号点が存在するので、「信号点1」から「信号点256」が存在することになる。)同相I―直交Q平面において、「信号点i」と原点の距離をDiとする。このとき、w256cを以下のように与える。
Figure 2020061771
すると、マッピング後のベースバンド信号の平均パワーはzとなる。なお、効果については、後で説明する。
次に、上述で説明したQAMを使用したときの効果について説明する。
まず、送信装置と受信装置の構成について説明する。
図262は、送信装置の構成の一例である。誤り訂正符号化部26202は、情報26201を入力とし、LDPC符号やターボ符号等の誤り訂正符号化を行い、誤り訂正符号化後のデータ26203を出力する。
インタリーブ部26204は、誤り訂正符号化後のデータ26203を入力とし、データの並び換えを行い、インタリーブ後のデータ26205を出力する。
マッピング部26206は、インタリーブ後のデータ26205を入力とし、送信装置が設定した変調方式に基づいてマッピングを行い、直交ベースバンド信号(同相I成分と直交Q成分)26207を出力する。
無線部26208は、直交ベースバンド信号26207を入力とし、直交変調、周波数変換、増幅等の処理を行い、送信信号26209を出力する。そして、送信信号26209は電波として、アンテナ26210から出力される。
図263は、図262の送信装置が送信した変調信号を受信する受信装置の構成の一例である。
無線部26303は、アンテナ26301で受信した受信信号26302を入力とし、周波数変換、直交復調等の処理を施し、直交ベースバンド信号26304を出力する。
デマッピング部26305は、直交ベースバンド信号26304を入力とし、周波数オフセット推定および除去、チャネル変動(伝送路変動)の推定を行うと共に、データシンボルにおける各ビットの、例えば、対数尤度比を推定し、対数尤度比信号26306を出力する。
デインタリーブ部26307は、対数尤度比信号26306を入力とし、並び替えを行い、デインタリーブ後の対数尤度比信号26308を出力する。
復号部26309は、デインタリーブ後の対数尤度比信号26308を入力とし、誤り訂正符号の復号を行い、受信データ26310を出力する。
効果を説明するにあたり、16QAMの場合を例にして説明する。以下の2つの場合(<16QAM#3>および<16QAM#4>)を比較する。
<16QAM#3>(補足1)で説明した16QAMであり、同相I―直交Q平面における信号点の配置は図256に示したとおりである。
<16QAM#4>同相I―直交Q平面における信号点の配置は図259に示したとおりであり、上述で説明したように、k>0(kは0より大きい実数)、かつ、k>0(kは0より大きい実数)であり、k≠1、かつ、k≠1、かつ、k≠kであるものとする。
16QAMでは、上述でも説明したようにb0、b1、b2、b3の4ビットが伝送される。そして、<16QAM#3>としたとき、受信装置において、各ビットの対数尤度比を求めた場合、4ビットは「2ビットの高品位のビット、2ビットの低品位のビット」にわかれる。一方、<16QAM#4>としたとき、「k>0(kは0より大きい実数)、かつ、k>0(kは0より大きい実数)であり、k≠1、かつ、k≠1、かつ、k≠kであるものとする。」の条件により、「1ビットの高品位のビット、2ビットの中品位のビット、1ビットの低品位のビット」にわかれる。以上のように、4ビットの品質の配分が、<16QAM#3>と<16QAM#4>により異なる。このような状況で、図263の復号部26309で誤り訂正符号の復号を行った場合、使用する誤り訂正符号によっては、<16QAM#4>としたほうが、受信装置において、高いデータの受信品質を得ることができる可能性がある。
なお、64QAMにおいて、同相I―直交Q平面における信号点の配置を図260のようにした場合、上述の説明と同様に、受信装置において、高いデータの受信品質を得ることができる可能性がある。このとき、上述で説明した、

「m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)であり、
{m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m
かつ、
{m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m
かつ、
{m≠m、または、m≠m、または、m≠m、または、m≠mが成立する。}
が成立する。」

または、

「m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)、かつ、m>0(mは0より大きい実数)であり、
{m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m
かつ、
{m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m、かつ、m≠m
かつ、
{m≠m、または、m≠m、または、m≠m、または、m≠mが成立する。}
かつ、
{m=m、または、m=m、または、m=m、または、m=mが成立する。}
が成立する。」
ものとする。

が重要な条件であり、補足2で説明した信号点配置と異なる点である。
同様に、256QAMにおいて、同相I―直交Q平面における信号点の配置を図261のようにした場合、上述の説明と同様に、受信装置において、高いデータの受信品質を得ることができる可能性がある。このとき、上述で説明した、

「n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、
かつ、n>0(nは0より大きい実数)、かつ、n10>0(n10は0より大きい実数)、かつ、n11>0(n11は0より大きい実数)、かつ、n12>0(n12は0より大きい実数)、かつ、n13>0(n13は0より大きい実数)、かつ、n14>0(n14は0より大きい実数)、かつ、n15>0(n15は0より大きい実数)、かつ、n16>0(n16は0より大きい実数)であり、
{n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n
かつ、n≠n
かつ、
{n≠n10、かつ、n≠n11、かつ、n≠n12、かつ、n≠n13、かつ、n≠n14、かつ、n≠n15、かつ、n≠n16
かつ、n10≠n11、かつ、n10≠n12、かつ、n10≠n13、かつ、n10≠n14、かつ、n10≠n15、かつ、n10≠n16
かつ、n11≠n12、かつ、n11≠n13、かつ、n11≠n14、かつ、n11≠n15、かつ、n11≠n16
かつ、n12≠n13、かつ、n12≠n14、かつ、n12≠n15、かつ、n12≠n16
かつ、n13≠n14、かつ、n13≠n15、かつ、n13≠n16
かつ、n14≠n15、かつ、n14≠n16
かつ、n15≠n16
かつ、
{n≠n、または、n≠n10、または、n≠n11、または、n≠n12、または、n≠n13、または、n≠n14、または、n≠n15、または、n≠n16が成立する。}
が成立する。」

または、

「n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、かつ、n>0(nは0より大きい実数)、
かつ、n>0(nは0より大きい実数)、かつ、n10>0(n10は0より大きい実数)、かつ、n11>0(n11は0より大きい実数)、かつ、n12>0(n12は0より大きい実数)、かつ、n13>0(n13は0より大きい実数)、かつ、n14>0(n14は0より大きい実数)、かつ、n15>0(n15は0より大きい実数)、かつ、n16>0(n16は0より大きい実数)であり、
{n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n、かつ、n≠n
かつ、n≠n、かつ、n≠n
かつ、n≠n
かつ、
{n≠n10、かつ、n≠n11、かつ、n≠n12、かつ、n≠n13、かつ、n≠n14、かつ、n≠n15、かつ、n≠n16
かつ、n10≠n11、かつ、n10≠n12、かつ、n10≠n13、かつ、n10≠n14、かつ、n10≠n15、かつ、n10≠n16
かつ、n11≠n12、かつ、n11≠n13、かつ、n11≠n14、かつ、n11≠n15、かつ、n11≠n16
かつ、n12≠n13、かつ、n12≠n14、かつ、n12≠n15、かつ、n12≠n16
かつ、n13≠n14、かつ、n13≠n15、かつ、n13≠n16
かつ、n14≠n15、かつ、n14≠n16
かつ、n15≠n16
かつ、
{n≠n、または、n≠n10、または、n≠n11、または、n≠n12、または、n≠n13、または、n≠n14、または、n≠n15、または、n≠n16が成立する。}
かつ、
{n=n、または、n=n10、または、n=n11、または、n=n12、または、n=n13、または、n=n14、または、n=n15、または、n=n16が成立する。}
が成立する。」

が重要な条件であり、(補足1)で説明した信号点配置と異なる点である。
なお、図262、図263では、詳細の構成を省略しているが、他の実施の形態で説明しているOFDM方式、スペクトル拡散通信方式を用いて、変調信号の送信、および、受信を行う場合であっても、同様に実施することが可能である。
また、上記実施の形態で説明したMIMO伝送方式や時空間ブロック符号(Space-Time Block Codes)などの時空間符号(Space-Time Codes)(ただし、シンボルを周波数軸に並べてもよい。)、プリコーディング行うまたはプリコーディングを行わないMIMO伝送方式において、上述で説明した16QAM、64QAM、256QAMを用いてもデータの受信品質が向上する可能性がある。
(補足3)
当然であるが、本明細書において説明した実施の形態、その他の内容を複数組み合わせて、実施してもよい。
また、各実施の形態、その他の内容については、あくまでも例であり、例えば、「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を例示していても、別の「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を適用した場合でも同様の構成で実施することが可能である。
変調方式については、本明細書で記載している変調方式以外の変調方式を使用しても、本明細書において説明した実施の形態、その他の内容を実施することが可能である。例えば、APSK(Amplitude Phase Shift Keying)(例えば、16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSKなど)、PAM(Pulse Amplitude Modulation)(例えば、4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAMなど)、PSK(Phase Shift Keying)(例えば、BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, 4096PSKなど)、QAM(Quadrature Amplitude Modulation)(例えば、4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, 4096QAMなど)などを適用してもよいし、また、各変調方式において、均一マッピング、非均一マッピングとしてもよい。
(補足4)
本明細書の中で、第1の変調方式にしたがった変調信号s1および第2の変調方式にしたがったs2に対し、パワー変更、プリコーディング(重み付け合成)、位相変更、パワー変更などの処理を行う構成(例えば、図3、図4、図12、図51、図52、図53、図54、図56、図67、図70、図84、図85、図89、図90、図93、図105、図106、図137、図141、図143、図145、図146、図150、図151、図152、図204、図205、図206など)について説明してきた。これらの処理にかわり、以下で説明する処理を行い、本明細書の各実施の形態を実施してもよい。以下では、その処理方法について説明する。
図264、図265は、本明細書の中で説明した「第1の変調方式にしたがった変調信号s1および第2の変調方式にしたがったs2に対し、パワー変更、プリコーディング、位相変更、パワー変更などの処理を行う構成」の変形例である。
図264、図265では、重み付け合成(プリコーディング)の前に位相変更部を追加した構成となっている。なお、図150と同様に動作するものについては、同一番号を付しており、詳細の動作については、説明を省略する。
図264の位相変更部26402は、マッピング部15004から出力された変調信号26401に対して、他方の変調信号15005Aとはその位相が異なるように位相変更処理を施し、位相変更後の変調信号s2(t)(15005B)をパワー変更部15006Bに出力する。
図265の位相変更部26502は、マッピング部15004から出力された変調信号26501に対して、他方の変調信号15005Aとはその位相が異なるように位相変更処理を施し、位相変更後の変調信号s2(t)(15005B)をパワー変更部15006Bに出力する。
図266は、図264に示した送信装置の構成例の変形例である。また、図267は、図265に示した送信装置の構成例の変形例である。
図266の位相変更部26602は、マッピング部15004から出力された変調信号26601に対して、位相変更部26402で施す第1の位相変更処理に対し、第2の位相変更処理を施し、位相変更後の変調信号s1(t)(15005A)をパワー変更部15006Aに出力する。
図267の位相変更部26702は、マッピング部15004から出力された変調信号26701に対して、位相変更部26502で施す第1の位相変更処理に対し、第2の位相変更処理を施し、位相変更後の変調信号s1(t)(15005A)をパワー変更部15006Aに出力する。
図266、図267に示すように、マッピング部から出力された変調信号の一方だけでなく双方の信号に対して位相変更を行ってもよい。
なお、位相変更部(26402、26502、26602、26702)の位相変更処理は以下の数式で表すことができる。
Figure 2020061771

ここで、λ(i)は位相であり、λ(i)はi(例えば、時間、周波数、スロット)の関数であり、I、Qは、それぞれ、入力される信号の同相I成分、直交Q成分であり、位相変更部(26402、26502、26602、26702)は、I’、Q’を出力する。
(補足5)
本明細書の中で、重み付け合成(プリコーディング)のための行列Fを示しているが、以下で記載するようなプリコーディング行列F(またはF(i))を用いても、本明細書の各実施の形態を実施することができる。
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、式(H10)、式(H11)、式(H12)、式(H13)、式(H14)、式(H15)、式(H16)、式(H17)において、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

なお、式(H18)、式(H20)、式(H22)、式(H24)において、βは実数であってもよいし、虚数であってもよい。ただし、βは0(ゼロ)ではない。
または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

または、
Figure 2020061771

ただし、θ11(i)、θ21(i)、λ(i)はiの(時間、または、周波数の)関数であり、λは固定の値であり、αは実数であってもよいし、虚数であってもよく、βは実数であってもよいし、虚数であってもよい。ただし、αは0(ゼロ)ではない。そして、βも0(ゼロ)ではない。
また、これら以外のプリコーディング行列を用いても、本明細書の各実施の形態を実施することが可能である。
本発明は、複数のアンテナからそれぞれ異なる変調信号を送信する無線システムに広く適用でき、例えばOFDM−MIMO通信システムに適用して好適である。また、複数の送信箇所を持つ有線通信システム(例えば、PLC(Power Line Communication)システム、光通信システム、DSL(Digital Subscriber Line:デジタル加入者線)システム)において、MIMO伝送を行う場合についても適用することができ、このとき、複数の送信箇所を用いて、本発明で説明したような複数の変調信号を送信することになる。また、変調信号は、複数の送信箇所から送信されてもよい。
302A,302B 符号化器
304A,304B インタリーバ
306A,306B マッピング部
314 信号処理方法情報生成部
308A,308B 重み付け合成部
310A,310B 無線部
312A,312B アンテナ
317A,317B 位相変更部
402 符号化器
404 分配部
504#1,504#2 送信アンテナ
505#1,505#2 受信アンテナ
600 重み付け合成部
701_X,701_Y アンテナ
703_X,703_Y 無線部
705_1 チャネル変動推定部
705_2 チャネル変動推定部
707_1 チャネル変動推定部
707_2 チャネル変動推定部
709 制御情報復号部
711 信号処理部
803 INNER MIMO検波部
805A,805B 対数尤度算出部
807A,807B デインタリーバ
809A,809B 対数尤度比算出部
811A,811B Soft−in/soft−outデコーダ
813A,813B インタリーバ
815 記憶部
819 係数生成部
901 Soft−in/soft−outデコーダ
903 分配部
1201A,1201B OFDM方式関連処理部
1302A,1302A シリアルパラレル変換部
1304A,1304B 並び換え部
1306A,1306B 逆高速フーリエ変換部
1308A,1308B 無線部

Claims (8)

  1. 第1の送信局と第2の送信局とを含む送信システムが実施する送信方法であって、
    第1の送信局において、第1のベースバンド信号列に含まれる各ベースバンド信号に対して、それぞれが周波数領域の関数で表される複数の位相変更パターンから選択された位相変更パターンに従って第1の位相変更処理を施して第1の送信信号列を生成し、
    第2の送信局において、第2のベースバンド信号列に含まれる各ベースバンド信号に対して、それぞれが周波数領域の関数で表される複数の位相変更パターンから選択された位相変更パターンに従って第2の位相変更処理を施して第2の送信信号列を生成し、前記第2のベースバンド信号列は、前記第1のベースバンド信号列と同一であり、
    第1の送信局において、制御情報から生成された第1の制御情報信号列を変換して第1のOFDM信号を生成し、前記第1の送信信号列を変換して第2のOFDM信号を生成し、
    第2の送信局において、第2の制御情報信号列を変換して第3のOFDM信号を生成し、前記第2の送信信号列を変換して第4のOFDM信号を生成し、前記第2の制御情報信号列は前記第1の制御情報信号列と同一であり、
    前記第1の送信局において、前記第1のOFDM信号及び第2のOFDM信号を送信し、
    前記第2の送信局において、前記第3のOFDM信号及び第4のOFDM信号を送信し、
    前記制御情報は、前記第1の位相変更処理及び前記第2の位相変更処理で用いられている位相変更パターンを示す情報を含み、
    前記第1の制御情報信号列は前記第1の位相変更処理が施されず、前記第2の制御情報信号列は前記第2の位相変更処理が施されず、
    前記第1のベースバンド信号列のベースバンド信号は同相−直交(I−Q)平面上に配置された信号点で表され、前記信号点のN×N個の候補点はI軸成分が所定の配置パターンに従ってI軸上で非均一に配置されたN個の候補値のいずれかをとり、Q軸成分が前記所定の配置パターンに従ってQ軸上で非均一に配置されたN個の候補値のいずれかをとり、
    前記Nは16である
    送信方法。
  2. 前記第2のOFDM信号は、前記第1の送信信号列の間に第1のパイロット信号が挿入されており、
    前記第4のOFDM信号は、前記第1の送信信号列の間に第2のパイロット信号が挿入されており、
    前記第1の送信信号列の平均電力は前記第2の送信信号列の平均電力よりも大きく、前記第1のパイロット信号の平均電力は前記第2のパイロット信号の平均電力と等しい、
    請求項1記載の送信方法。
  3. 第1の送信局と第2の送信局とを含む送信システムであって、
    前記第1の送信局は、
    第1のベースバンド信号列に含まれる各ベースバンド信号に対して、それぞれが周波数領域の関数で表される複数の位相変更パターンから選択された位相変更パターンに従って第1の位相変更処理を施して第1の送信信号列を生成する第1の位相変更部と、
    制御情報から生成された第1の制御情報信号列を変換して第1のOFDM信号を生成し、前記第1の送信信号列を変換して第2のOFDM信号を生成する第1のIFFT部と、
    前記第1のOFDM信号及び第2のOFDM信号を送信する第1のアンテナと、を備え、
    前記第2の送信局は、
    第2のベースバンド信号列に含まれる各ベースバンド信号に対して、それぞれが周波数領域の関数で表される複数の位相変更パターンから選択された位相変更パターンに従って第2の位相変更処理を施して第2の送信信号列を生成し、前記第2のベースバンド信号列は、前記第1のベースバンド信号列と同一である、第2の位相変更部と、
    第2の制御情報信号列を変換して第3のOFDM信号を生成し、前記第2の送信信号列を変換して第4のOFDM信号を生成し、前記第2の制御情報信号列は前記第1の制御情報信号列と同一である、第2のIFFT部と、
    前記第3のOFDM信号及び第4のOFDM信号を送信する第2のアンテナと、を備え、
    前記制御情報は、前記第1の位相変更処理及び前記第2の位相変更処理で用いられている位相変更パターンを示す情報を含み、
    前記第1の制御情報信号列は前記第1の位相変更処理が施されず、前記第2の制御情報信号列は前記第2の位相変更処理が施されず、
    前記第1のベースバンド信号列のベースバンド信号は同相−直交(I−Q)平面上に配置された信号点で表され、前記信号点のN×N個の候補点はI軸成分が所定の配置パターンに従ってI軸上で非均一に配置されたN個の候補値のいずれかをとり、Q軸成分が前記所定の配置パターンに従ってQ軸上で非均一に配置されたN個の候補値のいずれかをとり、
    前記Nは16である
    送信システム。
  4. 前記第2のOFDM信号は、前記第1の送信信号列の間に第1のパイロット信号が挿入されており、
    前記第4のOFDM信号は、前記第1の送信信号列の間に第2のパイロット信号が挿入されており、
    前記第1の送信信号列の平均電力は前記第2の送信信号列の平均電力よりも大きく、前記第1のパイロット信号の平均電力は前記第2のパイロット信号の平均電力と等しい、
    請求項3記載の送信システム。
  5. 送信システムから送信された信号を受信する受信装置が実施する受信方法であって、
    前記送信システムが備える第1のアンテナから送信される第1のOFDM信号と第2のアンテナから送信される第3のOFDM信号を受信して得られる第1の受信信号を取得し、前記第1のアンテナから送信される第2のOFDM信号と、前記第2のアンテナから送信される第4のOFDM信号とを受信して得られる第2の受信信号を取得し、前記第1のOFDM信号、前記第2のOFDM信号、前記第3のOFDM信号及び前記第4のOFDM信号は所定の信号生成処理に基づいて生成される信号であり、前記第1のOFDM信号及び前記第3のOFDM信号は制御情報を伝送するための信号であり、
    前記第1の受信信号から得られる制御情報に基づいて前記第2の受信信号を復調して受信データを生成し、
    前記所定の信号生成処理は、
    第1のベースバンド信号列に含まれる各ベースバンド信号に対して、それぞれが周波数領域の関数で表される複数の位相変更パターンから選択された位相変更パターンに従って第1の位相変更処理を施して第1の送信信号列を生成し、
    第2のベースバンド信号列に含まれる各ベースバンド信号に対して、それぞれが周波数領域の関数で表される複数の位相変更パターンから選択された位相変更パターンに従って第2の位相変更処理を施して第2の送信信号列を生成し、前記第2のベースバンド信号列は、前記第1のベースバンド信号列と同一であり、
    前記制御情報から生成された第1の制御情報信号列を変換して第1のOFDM信号を生成し、前記第1の送信信号列を変換して第2のOFDM信号を生成し、
    第2の制御情報信号列を変換して第3のOFDM信号を生成し、前記第2の送信信号列を変換して第4のOFDM信号を生成し、前記第2の制御情報信号列は前記第1の制御情報信号列と同一である、
    処理であり、
    前記制御情報は、前記第1の位相変更処理及び前記第2の位相変更処理で用いられている位相変更パターンを示す情報を含み、
    前記第1の制御情報信号列は前記第1の位相変更処理が施されておらず、前記第2の制御情報信号列は前記第2の位相変更処理が施されておらず、
    前記第1のベースバンド信号列のベースバンド信号は同相−直交(I−Q)平面上に配置された信号点で表され、前記信号点のN×N個の候補点はI軸成分が所定の配置パターンに従ってI軸上で非均一に配置されたN個の候補値のいずれかをとり、Q軸成分が前記所定の配置パターンに従ってQ軸上で非均一に配置されたN個の候補値のいずれかをとり、
    前記Nは16である
    受信方法。
  6. 前記第2のOFDM信号は、前記第1の送信信号列の間に第1のパイロット信号が挿入されており、
    前記第4のOFDM信号は、前記第1の送信信号列の間に第2のパイロット信号が挿入されており、
    前記第1の送信信号列の平均電力は前記第2の送信信号列の平均電力よりも大きく、前記第1のパイロット信号の平均電力は前記第2のパイロット信号の平均電力と等しい、
    請求項5記載の受信方法。
  7. 送信システムから送信された信号を受信する受信装置であって、
    前記送信システムが備える第1のアンテナから送信される第1のOFDM信号と第2のアンテナから送信される第3のOFDM信号を受信して得られる第1の受信信号を取得し、前記第1のアンテナから送信される第2のOFDM信号と、前記第2のアンテナから送信される第4のOFDM信号とを受信して得られる第2の受信信号を取得し、前記第1のOFDM信号、前記第2のOFDM信号、前記第3のOFDM信号及び前記第4のOFDM信号は所定の信号生成処理に基づいて生成される信号であり、前記第1のOFDM信号及び前記第3のOFDM信号は制御情報を伝送するための信号である、取得部と、
    前記第1の受信信号から得られる制御情報に基づいて前記第2の受信信号を復調して受信データを生成する、復調部と、
    前記所定の信号生成処理は、
    第1のベースバンド信号列に含まれる各ベースバンド信号に対して、それぞれが周波数領域の関数で表される複数の位相変更パターンから選択された位相変更パターンに従って第1の位相変更処理を施して第1の送信信号列を生成し、
    第2のベースバンド信号列に含まれる各ベースバンド信号に対して、それぞれが周波数領域の関数で表される複数の位相変更パターンから選択された位相変更パターンに従って第2の位相変更処理を施して第2の送信信号列を生成し、前記第2のベースバンド信号列は、前記第1のベースバンド信号列と同一であり、
    前記制御情報から生成された第1の制御情報信号列を変換して第1のOFDM信号を生成し、前記第1の送信信号列を変換して第2のOFDM信号を生成し、
    第2の制御情報信号列を変換して第3のOFDM信号を生成し、前記第2の送信信号列を変換して第4のOFDM信号を生成し、前記第2の制御情報信号列は前記第1の制御情報信号列と同一である、
    処理であり、
    前記制御情報は、前記第1の位相変更処理及び前記第2の位相変更処理で用いられている位相変更パターンを示す情報を含み、
    前記第1の制御情報信号列は前記第1の位相変更処理が施されておらず、前記第2の制御情報信号列は前記第2の位相変更処理が施されておらず、
    前記第1のベースバンド信号列のベースバンド信号は同相−直交(I−Q)平面上に配置された信号点で表され、前記信号点のN×N個の候補点はI軸成分が所定の配置パターンに従ってI軸上で非均一に配置されたN個の候補値のいずれかをとり、Q軸成分が前記所定の配置パターンに従ってQ軸上で非均一に配置されたN個の候補値のいずれかをとり、
    前記Nは16である
    受信装置。
  8. 前記第2のOFDM信号は、前記第1の送信信号列の間に第1のパイロット信号が挿入されており、
    前記第4のOFDM信号は、前記第1の送信信号列の間に第2のパイロット信号が挿入されており、
    前記第1の送信信号列の平均電力は前記第2の送信信号列の平均電力よりも大きく、前記第1のパイロット信号の平均電力は前記第2のパイロット信号の平均電力と等しい、
    請求項7記載の受信装置。
JP2019237039A 2012-12-07 2019-12-26 信号生成方法、送信装置、受信方法および受信装置 Active JP7113256B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012268858 2012-12-07
JP2012268858 2012-12-07
JP2012268859 2012-12-07
JP2012268859 2012-12-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017244962A Division JP6695050B2 (ja) 2012-12-07 2017-12-21 信号生成方法、送信装置、受信方法および受信装置

Publications (2)

Publication Number Publication Date
JP2020061771A true JP2020061771A (ja) 2020-04-16
JP7113256B2 JP7113256B2 (ja) 2022-08-05

Family

ID=50883114

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2014550943A Active JP5869697B2 (ja) 2012-12-07 2013-12-06 信号生成方法、送信装置、受信方法および受信装置
JP2016001564A Active JP6098959B2 (ja) 2012-12-07 2016-01-07 信号生成方法、送信装置、受信方法および受信装置
JP2017022528A Active JP6273626B2 (ja) 2012-12-07 2017-02-09 信号生成方法、送信装置、受信方法および受信装置
JP2017244962A Active JP6695050B2 (ja) 2012-12-07 2017-12-21 信号生成方法、送信装置、受信方法および受信装置
JP2019237039A Active JP7113256B2 (ja) 2012-12-07 2019-12-26 信号生成方法、送信装置、受信方法および受信装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2014550943A Active JP5869697B2 (ja) 2012-12-07 2013-12-06 信号生成方法、送信装置、受信方法および受信装置
JP2016001564A Active JP6098959B2 (ja) 2012-12-07 2016-01-07 信号生成方法、送信装置、受信方法および受信装置
JP2017022528A Active JP6273626B2 (ja) 2012-12-07 2017-02-09 信号生成方法、送信装置、受信方法および受信装置
JP2017244962A Active JP6695050B2 (ja) 2012-12-07 2017-12-21 信号生成方法、送信装置、受信方法および受信装置

Country Status (4)

Country Link
US (11) US9374141B2 (ja)
EP (1) EP2930871B1 (ja)
JP (5) JP5869697B2 (ja)
WO (1) WO2014087674A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429639B2 (en) * 2012-05-01 2016-08-30 Ohio University Terrestrial position and timing system
JP5869697B2 (ja) * 2012-12-07 2016-02-24 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 信号生成方法、送信装置、受信方法および受信装置
WO2014169048A1 (en) * 2013-04-09 2014-10-16 Interdigital Patent Holdings, Inc. Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks
JPWO2015037342A1 (ja) * 2013-09-10 2017-03-02 ソニー株式会社 通信装置及び通信方法
CA2956957C (en) * 2014-08-07 2019-02-12 ONE Media, LLC Dynamic configuration of a flexible orthogonal frequency division multiplexing phy transport data frame
WO2016022287A1 (en) 2014-08-07 2016-02-11 Coherent Logix, Incorporated Multi-partition radio frames
KR102214101B1 (ko) * 2014-09-05 2021-02-09 삼성전자주식회사 반복 검출 및 복호 수신 방법 및 장치
JP6666331B2 (ja) * 2015-03-26 2020-03-13 株式会社Nttドコモ 無線通信制御方法および無線通信システム
WO2017014591A1 (en) * 2015-07-23 2017-01-26 Samsung Electronics Co., Ltd. Transmitting apparatus, receiving apparatus, and control methods thereof
US10411944B2 (en) 2016-02-29 2019-09-10 Panasonic Intellectual Property Corporation Of America Transmission method, transmission device, reception method, and reception device
TWI627846B (zh) * 2016-03-30 2018-06-21 晨星半導體股份有限公司 等化增強模組、解調變系統以及等化增強方法
WO2018012520A1 (ja) * 2016-07-14 2018-01-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法、および受信装置
BR112018074457A2 (pt) * 2016-07-15 2019-03-19 Panasonic Intellectual Property Corporation Of America aparelho de transmissão e método de transmissão
US9847802B1 (en) * 2016-08-16 2017-12-19 Xilinx, Inc. Reconfiguration of single-band transmit and receive paths to multi-band transmit and receive paths in an integrated circuit
US9742549B1 (en) * 2016-09-29 2017-08-22 Analog Devices Global Apparatus and methods for asynchronous clock mapping
WO2018116411A1 (ja) * 2016-12-21 2018-06-28 日本電気株式会社 変調方法、復号方法、変調装置および復調装置
WO2019013058A1 (ja) * 2017-07-12 2019-01-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および送信方法
FR3094481B1 (fr) * 2019-03-29 2021-07-23 Frecnsys Interrogation de capteurs à ondes acoustiques
US11101842B2 (en) * 2019-04-18 2021-08-24 Qualcomm Incorporated Interference mitigation techniques in directional beamforming repeaters
US11848654B2 (en) * 2019-06-05 2023-12-19 Wilson Electronics, Llc Power amplifier (PA)-filter output power tuning
CN112152671B (zh) * 2020-10-29 2021-09-28 国网江西省电力有限公司经济技术研究院 一种mimo电力线载波通信方法及系统
CN113543125B (zh) * 2021-06-24 2023-05-09 杭州华宏通信设备有限公司 一种5g阵列天线的加密传输方法
US11736320B2 (en) * 2022-02-14 2023-08-22 Ultralogic 6G, Llc Multiplexed amplitude-phase modulation for 5G/6G noise mitigation
TWI792954B (zh) * 2022-03-23 2023-02-11 瑞昱半導體股份有限公司 處理峰均功率比的通訊裝置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506473A (ja) * 1993-12-03 1996-07-09 フィリップス エレクトロニクス ネムローゼ フェン ノートシャップ ディジタル通信システム及び斯種のシステムに使用する受信機
JP2001094529A (ja) * 1999-09-21 2001-04-06 Sanyo Electric Co Ltd Ofdm受信装置におけるパイロット信号抽出回路
JP2001358694A (ja) * 2000-04-18 2001-12-26 Lucent Technol Inc 直交周波数分割多重(ofdm)方式に基づくスペクトラム拡散多元接続ワイヤレスシステムにおける移動ユーザユニットで用いられる装置
WO2007029745A1 (ja) * 2005-09-07 2007-03-15 Sharp Kabushiki Kaisha 放送基地局装置、携帯端末装置、階層変調方式設定方法、放送システム、および階層変調方式設定プログラム
WO2012144205A1 (ja) * 2011-04-19 2012-10-26 パナソニック株式会社 信号生成方法及び信号生成装置

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4409743B2 (ja) * 2000-02-25 2010-02-03 パナソニック株式会社 無線通信装置及び無線通信方式
US7023933B2 (en) * 2000-10-20 2006-04-04 Matsushita Electric Industrial Co., Ltd. Radio communication apparatus
JP4119696B2 (ja) * 2001-08-10 2008-07-16 松下電器産業株式会社 送信装置、受信装置及び無線通信方法
JP3997890B2 (ja) * 2001-11-13 2007-10-24 松下電器産業株式会社 送信方法及び送信装置
US7224744B2 (en) * 2002-04-22 2007-05-29 Regents Of The University Of Minnesota Space-time multipath coding schemes for wireless communication systems
US7280604B2 (en) * 2002-04-22 2007-10-09 Regents Of The University Of Minnesota Space-time doppler coding schemes for time-selective wireless communication channels
DE60306298T2 (de) * 2002-10-25 2007-04-26 Matsushita Electric Industrial Co., Ltd., Kadoma Schaltung, Empfänger und Verfahren zur Phasenfehlerkorrektur unter Auswahl eines innerhalb der Präambel gemessenen Phasenfehlers in Abhängigkeit des zeitlichen Auftretens eines Einzelwortes
US7773694B2 (en) * 2003-07-02 2010-08-10 Panasonic Corporation Communication apparatus and communication method
US7864903B2 (en) 2003-11-21 2011-01-04 Panasonic Corporation Multi-antenna reception apparatus, multi-antenna reception method, multi-antenna transmission apparatus and multi-antenna communication system
JP4460412B2 (ja) 2003-11-26 2010-05-12 パナソニック株式会社 受信装置及び部分ビット判定方法
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US20050180312A1 (en) * 2004-02-18 2005-08-18 Walton J. R. Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US8169889B2 (en) * 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US7702027B2 (en) * 2004-03-11 2010-04-20 Panasonic Corporation Data transmission method and data reception method
KR100621432B1 (ko) * 2004-04-21 2006-09-08 삼성전자주식회사 복수의 송신 안테나들을 사용하는 다중셀 직교 주파수분할 다중 방식 통신시스템에서 채널 추정 장치 및 방법
DE102004038834B4 (de) * 2004-08-10 2006-11-02 Siemens Ag Verfahren zum Erzeugen von Präambel- und Signalisierungsstrukturen in einem MIMO-OFDM-Übertragungssystem
US20070249400A1 (en) * 2004-08-10 2007-10-25 Koji Kaneko Base Station and Mobile Station in Mobile Communication System and Direction Detecting Method
US7352691B2 (en) * 2004-12-10 2008-04-01 Texas Instruments Incorporated Double difference phase detection
WO2006075733A1 (ja) 2005-01-17 2006-07-20 Sharp Kabushiki Kaisha 通信装置
US7978759B1 (en) * 2005-03-24 2011-07-12 Marvell International Ltd. Scalable equalizer for multiple-in-multiple-out (MIMO) wireless transmission
US20060245390A1 (en) * 2005-04-28 2006-11-02 Yukihiro Omoto Base station and mobile station constituting mobile communication system
EP1895728A1 (en) * 2006-08-28 2008-03-05 Sony Deutschland Gmbh Equalizing structure and equalizing method
US8111771B2 (en) * 2007-06-19 2012-02-07 Samsung Electronics Co., Ltd. Wireless communication apparatus and method using beamforming
US8000413B2 (en) * 2007-08-20 2011-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Selective signal demodulation method and apparatus
KR101370916B1 (ko) * 2007-08-22 2014-03-10 엘지전자 주식회사 다수의 부 반송파를 이용하는 다중 안테나 시스템에서의,데이터 송수신 방법
JP2009171155A (ja) * 2008-01-15 2009-07-30 Panasonic Corp マルチアンテナ送信方法及びマルチアンテナ送信装置
JP5047834B2 (ja) * 2008-02-15 2012-10-10 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
KR101401592B1 (ko) * 2008-05-16 2014-06-27 고려대학교 산학협력단 다중 입력 다중 출력 시스템에서 공간 다중화를 위한 장치및 방법
US9112562B2 (en) * 2008-09-02 2015-08-18 Intel Corporation Techniques utilizing adaptive codebooks for beamforming in wireless networks
US8437438B2 (en) * 2009-07-07 2013-05-07 National University Corporation Shizuoka University Diversity reception device
JP5540733B2 (ja) * 2010-01-29 2014-07-02 富士通セミコンダクター株式会社 信号処理装置,信号処理方法とそれを有する受信装置
CN102986155B (zh) * 2010-06-17 2015-09-02 松下电器(美国)知识产权公司 预编码方法、发送装置
JP5578617B2 (ja) * 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信方法、送信装置、受信方法および受信装置
US8948305B2 (en) * 2010-11-16 2015-02-03 Panasonic Intellectual Property Corporation Of America Transmission method, transmission apparatus, reception method and reception apparatus
KR101998085B1 (ko) * 2010-12-10 2019-07-09 선 페이턴트 트러스트 송신방법, 송신장치, 수신방법 및 수신장치
KR102134657B1 (ko) * 2010-12-10 2020-07-16 선 페이턴트 트러스트 통신장치 및 통신방법
JP5578619B2 (ja) * 2010-12-10 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 送信装置および受信装置
KR20120067872A (ko) * 2010-12-16 2012-06-26 한국전자통신연구원 무선통신 시스템에서의 상향링크 제어신호 전송 방법 및 그 장치
US8929493B2 (en) * 2011-02-01 2015-01-06 Blackberry Limited Mixed rank downlink compound multi-user interference alignment scheme
WO2012104675A1 (en) * 2011-02-01 2012-08-09 Research In Motion Limited Downlink multi-user interference alignment scheme
JP5672489B2 (ja) * 2011-02-08 2015-02-18 ソニー株式会社 データ処理装置、及び、データ処理方法
CN107612597B (zh) * 2011-02-18 2021-01-05 太阳专利托管公司 信号生成方法及信号生成装置
JP5540146B2 (ja) * 2011-02-21 2014-07-02 パナソニック株式会社 プリコーディング方法、プリコーディング装置
US20120224651A1 (en) * 2011-03-03 2012-09-06 Yutaka Murakami Signal generation method and signal generation apparatus
US9008225B2 (en) 2011-04-19 2015-04-14 Panasonic Intellectual Property Corporation Of America Pre-coding method and pre-coding device
EP3451559B1 (en) * 2011-04-19 2021-07-21 Sun Patent Trust Communication method and device
EP3787196B1 (en) * 2011-04-19 2022-06-01 Sun Patent Trust Transmission and reception method and apparatus
JP5690201B2 (ja) * 2011-04-27 2015-03-25 シャープ株式会社 通信システム、移動局装置、基地局装置、通信方法および集積回路
US20120300877A1 (en) * 2011-05-27 2012-11-29 Yutaka Murakami Precoding method, transmitting device, and receiving device
EP2597805A4 (en) * 2011-06-24 2013-07-24 Panasonic Corp SENDING DEVICE, TRANSMISSION PROCEDURE, RECEPTION DEVICE AND RECEPTION PROCEDURE
EP3506535B1 (en) * 2011-06-24 2021-02-24 Sun Patent Trust Transmission device, transmission method, receiving device and receiving method
WO2012176460A1 (ja) * 2011-06-24 2012-12-27 パナソニック株式会社 送信装置、送信方法、受信装置および受信方法
WO2012176461A1 (ja) * 2011-06-24 2012-12-27 パナソニック株式会社 送信装置、送信方法、受信装置および受信方法
WO2012176458A1 (ja) * 2011-06-24 2012-12-27 パナソニック株式会社 送信装置、送信方法、受信装置および受信方法
CN103814539B (zh) * 2011-09-08 2017-04-12 太阳专利托管公司 信号生成方法及信号生成装置
EP2854318B1 (en) * 2012-05-22 2020-11-04 Sun Patent Trust Transmission method and transmission system
JP5869697B2 (ja) * 2012-12-07 2016-02-24 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 信号生成方法、送信装置、受信方法および受信装置
CN107566089B (zh) * 2013-01-11 2020-08-21 太阳专利托管公司 发送装置、发送方法、接收装置及接收方法
EP3104540B1 (en) * 2014-02-07 2021-09-15 Panasonic Intellectual Property Corporation of America Transmission device, transmission method, receiving device and receiving method
US9497056B2 (en) * 2014-06-09 2016-11-15 Allen LeRoy Limberg Conveying metadata by modulation of pilot carriers in COFDM broadcasting
JP6140747B2 (ja) * 2015-03-09 2017-05-31 パナソニック株式会社 送信装置及び量子化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506473A (ja) * 1993-12-03 1996-07-09 フィリップス エレクトロニクス ネムローゼ フェン ノートシャップ ディジタル通信システム及び斯種のシステムに使用する受信機
JP2001094529A (ja) * 1999-09-21 2001-04-06 Sanyo Electric Co Ltd Ofdm受信装置におけるパイロット信号抽出回路
JP2001358694A (ja) * 2000-04-18 2001-12-26 Lucent Technol Inc 直交周波数分割多重(ofdm)方式に基づくスペクトラム拡散多元接続ワイヤレスシステムにおける移動ユーザユニットで用いられる装置
WO2007029745A1 (ja) * 2005-09-07 2007-03-15 Sharp Kabushiki Kaisha 放送基地局装置、携帯端末装置、階層変調方式設定方法、放送システム、および階層変調方式設定プログラム
WO2012144205A1 (ja) * 2011-04-19 2012-10-26 パナソニック株式会社 信号生成方法及び信号生成装置

Also Published As

Publication number Publication date
US11362709B1 (en) 2022-06-14
JP5869697B2 (ja) 2016-02-24
US20190052325A1 (en) 2019-02-14
US20160248491A1 (en) 2016-08-25
US11843430B2 (en) 2023-12-12
US10298302B2 (en) 2019-05-21
JP6098959B2 (ja) 2017-03-22
JP2018078618A (ja) 2018-05-17
US11082100B2 (en) 2021-08-03
US11575415B2 (en) 2023-02-07
US20220271807A1 (en) 2022-08-25
US10868593B2 (en) 2020-12-15
US10498413B2 (en) 2019-12-03
US10014919B2 (en) 2018-07-03
JPWO2014087674A1 (ja) 2017-01-05
JP6695050B2 (ja) 2020-05-20
US20200136688A1 (en) 2020-04-30
JP2016106471A (ja) 2016-06-16
US20150295625A1 (en) 2015-10-15
US20230121118A1 (en) 2023-04-20
JP2017126994A (ja) 2017-07-20
JP7113256B2 (ja) 2022-08-05
WO2014087674A1 (ja) 2014-06-12
US10158407B2 (en) 2018-12-18
US20210013938A1 (en) 2021-01-14
US9374141B2 (en) 2016-06-21
US20180278304A1 (en) 2018-09-27
US20190386722A1 (en) 2019-12-19
EP2930871A1 (en) 2015-10-14
EP2930871A4 (en) 2015-11-18
US10574314B2 (en) 2020-02-25
US20190229784A1 (en) 2019-07-25
EP2930871B1 (en) 2018-03-07
JP6273626B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6695050B2 (ja) 信号生成方法、送信装置、受信方法および受信装置
JP6986723B2 (ja) 信号生成方法及び信号生成装置
JP6817598B2 (ja) 信号生成方法及び信号生成装置
JP6917562B2 (ja) 送信方法、受信方法、送信装置及び受信装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220222

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220512

R150 Certificate of patent or registration of utility model

Ref document number: 7113256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150