JP2020059923A - アルミニウム合金クラッド材および熱交換器 - Google Patents

アルミニウム合金クラッド材および熱交換器 Download PDF

Info

Publication number
JP2020059923A
JP2020059923A JP2019234333A JP2019234333A JP2020059923A JP 2020059923 A JP2020059923 A JP 2020059923A JP 2019234333 A JP2019234333 A JP 2019234333A JP 2019234333 A JP2019234333 A JP 2019234333A JP 2020059923 A JP2020059923 A JP 2020059923A
Authority
JP
Japan
Prior art keywords
aluminum alloy
brazing
intermetallic compound
content
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019234333A
Other languages
English (en)
Inventor
路英 吉野
Michihide Yoshino
路英 吉野
岩尾 祥平
Shohei Iwao
祥平 岩尾
江戸 正和
Masakazu Edo
正和 江戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2019234333A priority Critical patent/JP2020059923A/ja
Publication of JP2020059923A publication Critical patent/JP2020059923A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

【課題】耐粒界腐食性に優れるアルミニウム合金クラッド材および熱交換器を提供する。【解決手段】アルミニウム合金クラッド材は、質量%で、Mn:0.8〜2.0%、Cu:0.1〜1.5%、Si:0.2〜1.2%、Fe:0.05〜1.0%を含有し、残部がAlおよび不可避不純物からなる組成を有し、Mn含有量とSi含有量の比率が1.5〜3.0の範囲にあり、ろう付熱処理後の粒界上に存在する、斜方晶であるMn系金属間化合物の数密度が3個/100μm以下であり、ろう付熱処理後に、粒内に分散するMn系金属間化合物の数密度が0.6個/μm2以上であるアルミニウム合金材に、ろう材がクラッドされており、アルミニウム合金クラッド材を熱交換器に用いることができる。【選択図】なし

Description

本発明は、耐粒界腐食性に優れるアルミニウム合金クラッド材および熱交換器に関する。
従来、熱交換器用のアルミニウム合金には、耐食性に優れていることから、Al−Mn系合金である3003合金が使用されており、最近では、Al−Mn系合金に、高強度化のために、Cuを添加したり、Mnを増量した合金が提案されている。
一般にAl−Mn系合金は、粒界腐食感受性が低いとされているが、MnやCu添加量が多い高強度材の場合には、ろう付後に緩慢に冷却されると粒界腐食が発生することが知られている。粒界腐食が発生した場合、自動車熱交材のような薄肉材では内容物漏洩などの重大な問題を引き起こすためその対策が必要である。
特開2015−30878号公報
Al−Mn系合金の粒界腐食は、ろう付冷却中での添加元素の粒界析出が原因であると考えられるから、冷却速度を速めることで粒界腐食を回避することが可能である。ただし、熱交換器の大きさや製造上の制約から冷却速度の制御が困難な場合がある。そこで、冷却速度の制約なしに、粒界腐食の発生を抑制したいという要望がある。
本願発明は、上記事情を背景としてなされたものであり、格別な冷却速度の制約を受けることなく、耐粒界腐食性に優れるアルミニウム合金クラッド材および熱交換器を提供することを目的とする。
本発明では、成分中のMn/Si比を所定値とすること、ろう付熱処理後の粒界上に存在する、結晶構造が斜方晶であるMn系金属間化合物の密度を所定量以下にすることで、Mn、Cu量が高い場合であっても粒界腐食の発生を防止することができることを見出し、本発明を完成するに至った。さらに、粒内に分散する金属間化合物の数密度を所定量以上とすることで一層の効果が得られることを見出だした。
すなわち、本発明のアルミニウム合金クラッド材は、質量比で、Mn:0.8〜2.0%、Cu:0.1〜1.5%、Si:0.2〜1.2%、Fe:0.05〜1.0%を含有し、残部がAlおよび不可避不純物からなり、Mn含有量とSi含有量の比率が1.5〜3.0の範囲にあり、
ろう付熱処理後に、粒界上に存在する、結晶構造が斜方晶であるMn系金属間化合物の数密度が3個/100μm以下であり、ろう付熱処理後に、粒内に分散するMn系金属間化合物の数密度が0.6個/μm以上であるアルミニウム合金材に、ろう材がクラッドされていることを特徴とする。
第2の本発明の熱交換器は、前記発明のアルミニウム合金クラッド材を用いた熱交換器である。
以下に、本発明における限定理由について説明する。なお、成分含有量はいずれも質量%で示される。
Mn:0.8〜2.0%
Mnは、マトリックス中にAl−Mn、Al−Mn−Si、Al−Mn−Fe、Al−Mn−Fe−Si金属間化合物を形成することで材料強度を高める効果を有している。Mn含有量が0.8%未満では、前記効果が十分ではなく、2.0%を超えると鋳造時に巨大な金属間化合物が生成し、製造が困難となるため、Mn含有量を前記範囲とする。なお、同様の理由で、Mn含有量は、下限を1.4%とするのが好ましく、上限を1.8%とするのが望ましい。
Fe:0.05〜1.0%
Feは、マトリックス中に、Al−Mn−Fe金属間化合物およびAl−Mn−Fe−Si金属間化合物を形成することで材料強度を高める作用がある。Fe含有量が0.05%未満であると、鋳造時に割れを生じやすくなり、1.0%を超えると鋳造時に巨大金属間化合物が晶出し、製造が困難となるため、Fe含有量を0.05〜1.0%とする。なお、同様の理由で、Fe含有量は下限を0.15%とするのが好ましく、上限を0.4%とするのが好ましい。
Cu:0.1〜1.5%
Cuは、マトリックス中に固溶して材料強度を高める効果を有している。Cu含有量が0.1%未満では、その効果が十分ではなく、1.5%を超えると鋳造時に割れを生じやすくなり、製造が困難となるため、Cu含有量を上記範囲とする。なお、同様の理由で、Cu含有量は、下限を0.4%とするのが望ましく、上限を1.3%とするのが好ましい。
Si:0.2〜1.2%
Siは、Mn系化合物に取り込まれることでMn系化合物の結晶構造を斜方晶構造のAl−Mnから立方晶構造のAl−Mn−Siに変化させて、粒界でAl−Cu金属間化合物が異質核として析出するのを妨げる作用がある。これによって、粒界でAl−Cu化合物が析出するのを抑制し、粒界近傍でCu欠乏層が形成されるのを抑制する作用がある。また、Siは、粒内におけるMn系化合物の析出を促進し、粒内のMn固溶度を減じて粒界近傍でMn欠乏層が形成されるのを抑制する作用がある。Si含有量が0.2%未満では、上記した効果が十分ではなく、1.2%を超えると余剰となって、Siがろう付冷却時に粒界に単体Siとして析出することで、粒界近傍にSi欠乏層を形成しやすくなるため、Si含有量を0.2〜1.2%とする。なお、同様の理由で、Si含有量は、下限を0.4%とするのが好ましく、上限を1.1%とするのが好ましい。
(Mn含有量とSi含有量の比率が1.5〜3.0)
Mn含有量とSi含有量の比率であるMn/Si比は、ろう付冷却前のマトリックス中に固溶しているSi量の目安となる。Mn/Si比が1.5未満の場合、固溶Si量が多いため、粒内でのMn系金属間化合物の析出が少なく、一方で粒界に優先的にMn系化合物が析出するため粒界腐食が発生しやすくなる。一方、Mn/Si比が3.0超の場合には、固溶Si量が少ないため、粒界に粗大な単体Siが析出しやすくなることで粒界腐食が発生する。このため、Mn/Si比を上記範囲に定める。
なお、同様の理由で、Mn/Si比は、下限を1.8とするのが好ましく、上限を2.5とするのが好ましい。
また、本発明のアルミニウム合金では、Alの他に、不可避不純物を含有することができる。
(粒界上に存在する、斜方晶のMn系金属間化合物の数密度が3個/100μm以下)
ろう付冷却後の冷却過程において、600〜300℃の温度域にてMn系金属間化合物の析出が生じ、300℃以下の温度域にてMn系金属間化合物を析出サイトとしてCu系金属間化合物の析出が生じる。ここでMn系金属間化合物の結晶構造が斜方晶構造の場合、Cu系金属間化合物の異質核として作用しやすい。粒界上に存在するMn系金属間化合物の結晶構造が斜方晶であるものの数密度が3個/100μm以下とすることでCu系金属間化合物の粒界析出を効果的に防止でき、その結果、粒界近傍のCu欠乏層の形成を抑制して粒界腐食発生を抑えることができる。
(ろう付熱処理後の粒内に分散するMn系金属間化合物の数密度が0.6個/μm以上)
ろう付熱処理後の粒内に分散するMn系金属間化合物の数密度が0.6個/μm未満の場合、粒内のMn固溶量が高く、粒界と粒内の固溶Mn量に差が生じるため、粒界近傍にMn欠乏層が形成されやすくなり粒界腐食が発生しやすくなる。一方、粒内に分散するMn系金属間化合物の数密度が0.6個/μm以上の場合には粒内の固溶Mn濃度が十分に低くなっているため、粒界にMn系金属間化合物の析出が生じていても粒界近傍にMn欠乏層が形成されにくいため、粒界腐食の発生を防止できる。
ろう付熱処理後の粒内に分散するMn系金属間化合物の数密度は、Mn、Si添加量やMn/Si比によって決まるが、ろう付前のMn系金属間化合物の数密度によっても影響される。これは、ろう付前に分散しているMn系金属間化合物はろう付時の約600℃加熱時にマトリックス中に固溶するものと、固溶せず残存するものがあるためである。ろう付前のMn系金属間化合物の数密度は、例えば均質化処理条件によって制御することが可能である。Mn系金属間化合物が析出しやすい温度で長時間の均質化を実施した場合、ろう付前のMn系金属間化合物の数密度が増加する。
以下に、(1)Mn/Si比が1.5未満の場合、(2)Mn/Si比が1.5〜3.0の場合、(3)Mn/Si比が3.0超の場合に分けて、Al−Mn−Cu−Si合金のろう付後の粒界腐食発生機構を説明する。
(1)Mn/Si比が1.5未満の場合
ろう付熱処理時は、アルミニウム合金材は600℃の高温にさらされるので材料中に添加されたMn、Si、Cuが過飽和に固溶した状態となる。その状態から冷却された場合、過飽和に固溶したこれらの元素が析出する。600〜300℃の温度範囲にて斜方晶構造のAl−Mn金属間化合物が粒界上に優先的に析出することで粒界近傍に粒界に沿う形で粒内よりもMn濃度が希薄なMn欠乏層が形成される。さらに300℃以下の温度域にて粒界上のAl−Mn金属間化合物を異質核サイトとしてAl−Cu金属間化合物が析出することで粒界近傍に粒界に沿う形でCu欠乏層が形成される。MnおよびCuはAlの電位を貴にする元素であるため、これら欠乏層の電位は周辺よりも卑となり、粒界近傍が優先的に腐食することで粒界腐食が発生する。
粒界でのAl−Cu金属間化合物の析出は、斜方晶構造のAl−Mn化合物がない場合には生じない。したがって、粒界での斜方晶構造のAl−Mn化合物の数密度を所定値以下にすることはAl−Mn金属間化合物とAl−Cu金属間化合物の両方の数密度を規定していることに等しい。
(2)Mn/Si比が1.5〜3.0の場合
ろう付熱処理時は、アルミニウム合金材は約600℃の高温にさらされるので材料中に添加されたMn、Si、Cuが過飽和に固溶した状態となる。その状態から冷却された場合(例えば20℃/秒以下の冷却速度による冷却)、過飽和に固溶したこれらの元素が析出する。600〜300℃の温度範囲にてAl−Mn系金属間化合物が析出するが、Mn/Si比が1.5〜3.0の場合にはSiの存在によってAl−Mn系化合物の析出が促進される。そのため、粒界、粒内ともに立方晶構造のAl−Mn−Si化合物が析出し、粒界近傍でのMn欠乏層の形成が抑制される。さらに、300℃以下の温度域での粒界上へのAl−Cu金属間化合物が析出も生じにくくなる。これは、Al−Mn−Si化合物の結晶構造が立方晶構造であり、Al−Cu金属間化合物の異質核として作用しにくいためである。したがって、粒界近傍でのCu欠乏層の形成も抑制される。そのため、粒界腐食が発生しない。
(3)Mn/Si比が3.0超の場合
ろう付熱処理時は、アルミニウム合金材は約600℃の高温にさらされるので材料中に添加されたMn、Si、Cuが過飽和に固溶した状態となる。その状態から冷却された場合、過飽和に固溶したこれらの元素が析出する。600〜300℃の温度範囲にてAl−Mn系金属間化合物が析出するが、Mn/Si比が1.5〜3.0の場合にはSiの存在によってAl−Mn系化合物の析出が促進される。そのため、粒界、粒内ともにAl−Mn−Si化合物が析出し、粒界近傍でのMn欠乏層の形成が抑制される。さらに、300℃以下の温度域での粒界上へのAl−Cu金属間化合物が析出も生じない。Al−Mn−Si化合物の結晶構造が立方晶構造であり、Al−Cu金属間化合物の異質核として作用しにくいためである。したがって、粒界近傍でのCu欠乏層の形成も抑制される。しかし、Mn/Si比が3.0超の場合、過剰に存在するSiが、粒界に優先的に粗大な単体Siとして析出するため、粒界近傍にSi欠乏層が形成され、粒界腐食が発生する。
Feが添加されている場合、Al−Mn金属間化合物はMnの一部がFeで置換されたAl−Mn−Fe金属間化合物に変化するが、結晶構造は変化しないため、粒界腐食に対してはAl−Mn金属間化合物と同様の影響を持つ。また、Al−Mn−Si金属間化合物でもMnの一部がFeで置換されたAl−Mn−Fe−Si金属間化合物に変化するが、結晶構造は変化しないため、粒界腐食に対してはAl−Mn−Si金属間化合物と同様の影響を持つ。
なお、Al−Mn系金属間化合物の結晶構造は、Mn/Si比によって斜方晶構造か立方晶構造に連続的に変化する。
以上、説明したように、本発明によれば、粒界近傍に腐食を招く層の形成が抑制され、粒界腐食を効果的に防止することができるアルミニウム合金材が得られる。
以下に、本発明の一実施形態を説明する。
本発明のアルミニウム合金材における組成と、Mn/Si比を有するアルミニウム合金を、半連続鋳造により鋳造し、得られた材料に400〜620℃の条件範囲で均質化処理を実施し、その後、熱間圧延、冷間圧延により、厚さ2〜8mmの板材を得ることができる。冷間圧延に際しては中間焼鈍を行ってもよく、その際には、200〜430℃の条件によって実施することができる。
板材は、単材としてもよく、ろう材などをクラッドしたクラッド材としてもよい。
板材は、ろう付け材料として使用することができ。例えば590〜620℃、577℃以上での保持時間1〜30minの条件でろう付けを行うことができる。ろう付け後の冷却速度は特に限定されるものではないが、例えば、20〜120℃/minで行うことができる。
ろう付け後の用途は特に限定されるものではないが、熱交換製品に好適に用いることができる。
以下に、本発明の実施例を説明する。
表1に示す組成(残部Alと不可避不純物)のアルミニウム合金を半連続鋳造により鋳造した。得られた材料に、表1に示す条件で均質化処理を実施し、その後、熱間圧延、中間焼鈍を含む冷間圧延により、厚さ1.0mmのH16調質のブレージングシートを作製した。中間焼鈍は、400℃×5minの条件で行った。
作製した材料に、ろう付相当の熱処理(昇温速度40℃/min、600℃×10min)を施した後、腐食試験に供して評価を行った。
(耐粒界腐食性の評価)
ろう付熱処理後のブレージングシートから20×100mmのサンプルを切り出し、10×20mmの暴露面積を残し、マスキングして、Cl−:300ppm、SO −:100ppm溶液中で、電気量1mA/cm×5時間の電気量においてアノード溶解試験を行った。アノード溶解試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に10分間浸漬して腐食生成物を除去した後、腐食部の樹脂埋めし、エメリー研磨、バフ研磨により鏡面としたのち、光学顕微鏡で断面観察を実施して、粒界および粒内の溶解状態を確認することで粒界腐食発生の有無を調査した。
上記試験結果を表1に示した。表中の評価項目は以下の基準で記載した。
(粒界腐食の有無)
(1)×:粒界のみが優先的に腐食
(2)○:粒界と粒内が同程度に腐食
(3)○○:粒内のみが腐食
Figure 2020059923
なお、本発明について、上記実施形態および実施例に基づいて説明したが、本発明の範囲が前記説明の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは前記実施形態に対し適宜の変更が可能である。

Claims (2)

  1. 質量比で、Mn:0.8〜2.0%、Cu:0.1〜1.5%、Si:0.2〜1.2%、Fe:0.05〜1.0%を含有し、残部がAlおよび不可避不純物からなり、Mn含有量とSi含有量の比率が1.5〜3.0の範囲にあり、
    ろう付熱処理後に、粒界上に存在する、結晶構造が斜方晶であるMn系金属間化合物の数密度が3個/100μm以下であり、ろう付熱処理後に、粒内に分散するMn系金属間化合物の数密度が0.6個/μm以上であるアルミニウム合金材に、ろう材がクラッドされているアルミニウム合金クラッド材。
  2. 請求項1に記載のアルミニウム合金クラッド材を用いた熱交換器。
JP2019234333A 2019-12-25 2019-12-25 アルミニウム合金クラッド材および熱交換器 Pending JP2020059923A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019234333A JP2020059923A (ja) 2019-12-25 2019-12-25 アルミニウム合金クラッド材および熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019234333A JP2020059923A (ja) 2019-12-25 2019-12-25 アルミニウム合金クラッド材および熱交換器

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015203798A Division JP6639862B2 (ja) 2015-10-15 2015-10-15 耐粒界腐食性に優れるアルミニウム合金材

Publications (1)

Publication Number Publication Date
JP2020059923A true JP2020059923A (ja) 2020-04-16

Family

ID=70219424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019234333A Pending JP2020059923A (ja) 2019-12-25 2019-12-25 アルミニウム合金クラッド材および熱交換器

Country Status (1)

Country Link
JP (1) JP2020059923A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542393A (ja) * 1999-04-14 2002-12-10 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー ろう付け用シート
US20060141282A1 (en) * 2003-09-18 2006-06-29 Toshiki Ueda Aluminum alloy composite for brazing and heat exchanger including the same
JP2008231555A (ja) * 2007-03-23 2008-10-02 Furukawa Sky Kk 熱交換器用高耐食アルミニウム合金複合材およびその製造方法
JP2009191293A (ja) * 2008-02-12 2009-08-27 Kobe Steel Ltd 疲労特性に優れたアルミニウム合金積層板
CN101724770A (zh) * 2009-12-09 2010-06-09 长沙众兴铝业有限公司 一种高强高耐蚀性钎焊铝合金箔材及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542393A (ja) * 1999-04-14 2002-12-10 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー ろう付け用シート
US20060141282A1 (en) * 2003-09-18 2006-06-29 Toshiki Ueda Aluminum alloy composite for brazing and heat exchanger including the same
JP2008231555A (ja) * 2007-03-23 2008-10-02 Furukawa Sky Kk 熱交換器用高耐食アルミニウム合金複合材およびその製造方法
JP2009191293A (ja) * 2008-02-12 2009-08-27 Kobe Steel Ltd 疲労特性に優れたアルミニウム合金積層板
CN101724770A (zh) * 2009-12-09 2010-06-09 长沙众兴铝业有限公司 一种高强高耐蚀性钎焊铝合金箔材及其制造方法

Similar Documents

Publication Publication Date Title
JP6492017B2 (ja) アルミニウム合金材及びその製造方法、並びにアルミニウム合金クラッド材及びその製造方法
TWI557234B (zh) Aluminum alloy fin sheet for heat exchangers with excellent weldability and sag resistance and its manufacturing method
JP5491927B2 (ja) アルミニウム合金ブレージングシート
JP6412103B2 (ja) 構造用アルミニウム合金板及びその製造方法
JP2012207302A (ja) 熱処理型Al−Zn−Mg系アルミニウム合金押出材の製造方法
JP2005220375A (ja) 熱交換器用高強度アルミニウム合金フィン材およびその製造方法
CN107075620B (zh) 具有高强度·高耐腐蚀性·高原材料伸长率的铝合金钎焊板
JP6557476B2 (ja) アルミニウム合金フィン材
KR102033820B1 (ko) 알루미늄 핀 합금 및 그 제조 방법
JP6604699B2 (ja) アルミニウム合金製クラッド材及びその製造方法
EP0365367B1 (en) Brazeable aluminum alloy sheet and process for its manufacture
JP5195837B2 (ja) 熱交換器用アルミニウム合金フィン材
JP2015196858A (ja) アルミニウム合金積層板
JP2008081767A (ja) 電子部品用チタン銅
JP6719219B2 (ja) 成形性に優れる高強度アルミニウム合金板及びその製造方法
TWI696706B (zh) 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法
JP5537256B2 (ja) アルミニウム合金ブレージングシート
JP7102647B2 (ja) アルミニウム合金ブレージングシート
JP6639862B2 (ja) 耐粒界腐食性に優れるアルミニウム合金材
JP2020059923A (ja) アルミニウム合金クラッド材および熱交換器
JP5466080B2 (ja) アルミニウム合金ブレージングシート
JP2015096650A (ja) 成形性に優れる高強度アルミニウム合金板及びその製造方法
JP6526434B2 (ja) アルミニウム合金フィン材
JP5306836B2 (ja) 強度及び耐食性に優れたアルミニウム合金ブレージングシート
JPS6173856A (ja) アルミニウム−マグネシウム合金

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210824