JP2020056049A - Composite substrate for heat dissipation material, method for manufacturing the same, and heat dissipation unit - Google Patents

Composite substrate for heat dissipation material, method for manufacturing the same, and heat dissipation unit Download PDF

Info

Publication number
JP2020056049A
JP2020056049A JP2018184993A JP2018184993A JP2020056049A JP 2020056049 A JP2020056049 A JP 2020056049A JP 2018184993 A JP2018184993 A JP 2018184993A JP 2018184993 A JP2018184993 A JP 2018184993A JP 2020056049 A JP2020056049 A JP 2020056049A
Authority
JP
Japan
Prior art keywords
substrate
bonding layer
carbon
heat dissipation
composite substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018184993A
Other languages
Japanese (ja)
Other versions
JP7096999B2 (en
Inventor
尚志 本間
Hisashi Honma
尚志 本間
大鹿 高歳
Takatoshi Oshika
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018184993A priority Critical patent/JP7096999B2/en
Publication of JP2020056049A publication Critical patent/JP2020056049A/en
Application granted granted Critical
Publication of JP7096999B2 publication Critical patent/JP7096999B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide: a composite substrate for heat dissipation materials excellent in adhesion to a heat dissipation material, such as Cu and having high heat dissipation effect; a method for manufacturing the same; and a heat dissipation unit.SOLUTION: The method for manufacturing a composite substrate comprises the steps of: inserting a carbon based substrate into a chemical vapor deposition apparatus; introducing a reactant gas into the chemical vapor deposition apparatus; and chemically vapor-depositing a metal component on the surface of the carbon based substrate to form a bonding layer on the surface of the carbon based substrate. The reactant gas consists of 2-10 capacity% of a metal chloride gas of the metal component constituting the bonding layer and the remainder consisting of hydrogen gas; the bonding layer has metal carbide formed on an interface with at least the carbon based substrate; the carbon based material is preferably formed of a lamination structure obtained by laminating sheet-like graphene; and the metal component constituting the bonding layer is preferably Ti, Cr or Zr.SELECTED DRAWING: Figure 1

Description

本発明は、炭素系材料基板の上に接合用材料(以下、接合層)を形成した放熱材料用複合基板および放熱材料用複合基板の製造方法と放熱ユニットに関する。
より詳しくは、グラフェンあるいはグラファイトを含む炭素系材料からなる高熱伝導性基板と他の放熱基板との接合を容易にするために、炭素系材料からなる基板(以下、「炭素系基板」という)に接合層を形成した放熱材料用複合基板及びその製造方法と、前記放熱材料用複合基板の接合層と他の放熱基板とを接合した放熱効果にすぐれた放熱ユニットに関する。
The present invention relates to a composite substrate for a heat dissipation material in which a joining material (hereinafter, a joining layer) is formed on a carbon-based material substrate, a method of manufacturing the composite substrate for a heat dissipation material, and a heat dissipation unit.
More specifically, a substrate made of a carbon-based material (hereinafter, referred to as a `` carbon-based substrate '') is used in order to facilitate bonding between a high thermal conductive substrate made of a carbon-based material containing graphene or graphite and another heat dissipation substrate. The present invention relates to a heat dissipation material composite substrate having a bonding layer formed thereon, a method of manufacturing the same, and a heat dissipation unit having an excellent heat dissipation effect in which the bonding layer of the heat dissipation material composite substrate is joined to another heat dissipation substrate.

グラフェンをはじめとした炭素系材料からなる基板は、高熱伝導性かつ軽量であることから、車載向けのパワー半導体素子やその回路周辺からの放熱基板としての応用が期待される。特に近年注目を集める電気自動車への応用を考えた場合、素子の大電流化に伴い放熱効率の向上、車体軽量化を目的とした軽量部材の使用が増加することが予想され、放熱基板としてグラフェンの応用が期待されている。   A substrate made of a carbon-based material such as graphene has high thermal conductivity and is lightweight, so that it is expected to be used as a power semiconductor device for a vehicle and a heat dissipation substrate from the periphery of the circuit. In particular, considering the application to electric vehicles, which have been attracting attention in recent years, it is expected that the use of lightweight members for the purpose of improving the heat dissipation efficiency and reducing the body weight will increase with the increase in the current of the element. The application of is expected.

従来は、放熱基板と半導体素子は半田で接合し、冷却器側には、Cuの放熱基板を利用する場合が一般的であったが、非特許文献1のように放熱基板の一部を高熱伝導性のグラファイトにすることにより、全体の放熱特性の改善を期待できる例が記載されている。   Conventionally, the heat dissipation board and the semiconductor element were joined by soldering, and a heat dissipation board made of Cu was generally used on the cooler side. An example is described in which conductive graphite can be expected to improve the overall heat radiation characteristics.

大同大学 紀要 50巻(2014)pp133−137Bulletin of Daido University 50 (2014) pp133-137

グラフェンをはじめとした炭素系材料を放熱材料として使用するにあたり、他の金属製の放熱部材や半導体素子とを半田などを用いて接合することが必須となるが、炭素系材料と金属材料との化学的親和性が著しく小さいため、直接接合することが困難であった。   When using a carbon-based material such as graphene as a heat-dissipating material, it is essential to join other metal-made heat-dissipating members and semiconductor elements using solder or the like. Due to the extremely low chemical affinity, direct bonding was difficult.

本発明の目的の一つは、グラフェンをはじめとした高熱伝導性の炭素系材料と金属材料との接合性を改善するために、炭素系基板に接合層を形成した複合基板の新たな製造方法を提供することである。
また、本発明の他の目的は、前記複合基板の放熱効果及び強度を向上させることであり、炭素系材料がグラフェン又はグラファイトの積層構造体から構成されている場合の、強度の向上及び層間剥離強度を向上させることである。
さらに、本発明の他の目的は、すぐれた放熱効果を発揮する複合基板、放熱ユニットを提供することである。
An object of the present invention is to provide a new method of manufacturing a composite substrate in which a bonding layer is formed on a carbon-based substrate in order to improve the bondability between a carbon material having high thermal conductivity such as graphene and a metal material. It is to provide.
Another object of the present invention is to improve the heat radiation effect and the strength of the composite substrate, and to improve the strength and delamination when the carbon-based material is composed of a laminated structure of graphene or graphite. It is to improve the strength.
Still another object of the present invention is to provide a composite board and a heat radiating unit exhibiting an excellent heat radiating effect.

本発明の第1の特徴は、
炭素系基板を化学蒸着装置に装入する工程、
前記化学蒸着装置内に反応ガスを導入する工程、
前記炭素系基板表面に金属成分を化学蒸着させて前記炭素系基板表面に接合層を形成する工程、
を含む複合基板の製造方法において、
前記反応ガスは、接合層を構成する金属成分の金属塩化物ガスを2〜10容量%と残部は水素ガスからなり、
前記接合層は、少なくとも前記炭素系基板との界面で金属炭化物を形成している放熱材料用複合基板の製造方法にある。
The first feature of the present invention is that
Loading a carbon-based substrate into a chemical vapor deposition apparatus,
Introducing a reaction gas into the chemical vapor deposition apparatus,
Forming a bonding layer on the carbon-based substrate surface by chemical vapor deposition of a metal component on the carbon-based substrate surface;
In the method for manufacturing a composite substrate including
The reaction gas is composed of 2 to 10% by volume of a metal chloride gas of a metal component constituting the bonding layer and a balance of hydrogen gas,
In the method for manufacturing a composite substrate for a heat dissipation material, wherein the bonding layer forms a metal carbide at least at an interface with the carbon-based substrate.

また、本発明の第2の特徴は、前記複合基板の炭素系基板が、シート状のグラフェンを積層したグラフェン積層構造体で構成されている点にある。   A second feature of the present invention resides in that the carbon-based substrate of the composite substrate is constituted by a graphene laminated structure in which sheet-like graphene is laminated.

さらに、本発明の第3の特徴は、前記複合基板と、放熱器または半導体素子とが前記接合層を介して接合されている放熱ユニットにある。   Further, a third feature of the present invention resides in a heat dissipation unit in which the composite substrate and a radiator or a semiconductor element are joined via the joining layer.

炭素系材料と金属材料は、一般的に化学親和性が乏しいため、接合が困難であるとされてきたが、本発明によれば、グラフェン、グラファイト等の炭素系材料からなる炭素系基板の表面に、化学蒸着法により接合層を容易に形成することができ、そして、形成された接合層と炭素系基板との少なくとも界面には金属炭化物が生成するため、炭素系基板と接合層との密着性にすぐれた複合基板を得ることができる。
そして、前記複合基板の接合層と、例えばCuからなる放熱器または半導体素子を接合した放熱ユニットは、接合強度が高く、かつ、極めて高い放熱効率が得られる。
It has been considered that bonding between a carbon-based material and a metal material is generally difficult due to poor chemical affinity. However, according to the present invention, the surface of a carbon-based substrate made of a carbon-based material such as graphene or graphite is used. In addition, a bonding layer can be easily formed by a chemical vapor deposition method, and a metal carbide is generated at least at an interface between the formed bonding layer and the carbon-based substrate. A composite substrate having excellent properties can be obtained.
The heat radiation unit in which the bonding layer of the composite substrate is bonded to a radiator or a semiconductor element made of, for example, Cu has high bonding strength and extremely high heat radiation efficiency.

本発明の複合基板の断面概略模式図の一例を示し、(a)は炭素系基板1の表面の両面(上面及び下面)に接合層2を形成したものであり、(b)は炭素系基板1の表面の片面(上面)のみに接合層2を形成したものである。1 shows an example of a schematic cross-sectional view of a composite substrate of the present invention, in which (a) shows a bonding substrate 2 formed on both surfaces (upper and lower surfaces) of the surface of a carbon-based substrate 1 and (b) shows a carbon-based substrate In this example, the bonding layer 2 is formed only on one surface (upper surface) of the surface 1. 本発明の複合基板の断面概略模式図の他の例を示し、(a)は炭素系材料からなる基板1の表面の両面(上面及び下面)と側面に接合層2を形成したものであり、(b)は基板1の表面の上面に下部接合層(例えば、基板との界面にTi炭化物が形成されている層)と上部接合層(例えば、Ti窒化物からなる層)の積層構造からなる接合層2を形成したものである。FIG. 3A shows another example of a schematic cross-sectional view of the composite substrate of the present invention. FIG. 4A shows a substrate 1 made of a carbon-based material, in which a bonding layer 2 is formed on both surfaces (upper surface and lower surface) and side surfaces thereof. (B) has a laminated structure of a lower bonding layer (for example, a layer in which Ti carbide is formed at the interface with the substrate) on the upper surface of the surface of the substrate 1 and an upper bonding layer (for example, a layer made of Ti nitride). The bonding layer 2 is formed. 本発明の炭素系材料からなる基板1として、グラフェン積層体を用いた場合の、シート状のグラフェンの積層形態の一例を示すが、図3に図示するように、シート状のグラフェンの積層方向(図中、矢印で示す)が、複合基板の伝熱方向(図中、矢印で示す)に対して直交する方向とほぼ一致していることが好ましい積層形態である。An example of a stack of graphene sheets is shown in the case where a graphene laminate is used as the substrate 1 made of the carbon-based material of the present invention. As shown in FIG. In the stacking mode, it is preferable that the direction indicated by an arrow in the figure) substantially coincides with the direction orthogonal to the heat transfer direction (indicated by the arrow in the figure) of the composite substrate.

本発明の第1の特徴である複合基板の製造方法によれば、化学蒸着法で接合層を形成するに際し、反応ガスとして、接合層を構成する金属成分(例えば、Ti)の金属塩化物ガス(例えば、TiClガス)と水素ガスのみを使用することによって、例えば、図1(a)、(b)に示す金属成分主体の接合層2を形成することができるとともに、炭素系基板1と接合層2の界面に金属炭化物(例えば、TiC。図示せず)を形成することができる。
従来、炭素系材料と金属材料の密着性の高い接合は困難であったが、本発明においては、炭素系基板と接合層の界面に金属炭化物を形成することにより、炭素系材料と金属材料の密着性にすぐれた複合基板を得ることができる。
According to the method of manufacturing a composite substrate according to the first aspect of the present invention, when forming a bonding layer by a chemical vapor deposition method, a metal chloride gas of a metal component (for example, Ti) constituting the bonding layer is used as a reactive gas. By using only (for example, TiCl 4 gas) and hydrogen gas, for example, the bonding layer 2 mainly composed of a metal component shown in FIGS. 1A and 1B can be formed. A metal carbide (for example, TiC; not shown) can be formed at the interface of the bonding layer 2.
Conventionally, it has been difficult to bond a carbon-based material and a metal material with high adhesiveness. However, in the present invention, by forming a metal carbide at the interface between the carbon-based substrate and the bonding layer, the carbon-based material and the metal material are bonded together. A composite substrate with excellent adhesion can be obtained.

前記接合層を構成する金属成分は、Ti、Cr及びZrから選ばれる何れか一種の金属成分であることが好ましく、接合層を構成する金属成分がTiの場合には、金属塩化物ガスはTiClガスであり、接合層を構成する金属成分がCrの場合、金属塩化物ガスはCrClガスであり、接合層を構成する金属成分がZrの場合、金属塩化物ガスはZrClガスである。
また、化学蒸着の好ましい蒸着条件は、次のとおりである。
反応ガス組成(容量%):金属塩化物ガス 2〜10%,残部は水素ガス、
反応雰囲気温度:950〜1050℃、
反応雰囲気圧力:6〜20kPa、
反応時間:30〜240分(ただし、形成する接合層の所望厚さによる)
The metal component forming the bonding layer is preferably any one metal component selected from Ti, Cr, and Zr. When the metal component forming the bonding layer is Ti, the metal chloride gas is TiCl When the metal component forming the bonding layer is Cr, the metal chloride gas is CrCl 3 gas, and when the metal component forming the bonding layer is Zr, the metal chloride gas is ZrCl 4 gas. .
Preferred conditions for chemical vapor deposition are as follows.
Reaction gas composition (% by volume): metal chloride gas 2 to 10%, the balance being hydrogen gas
Reaction atmosphere temperature: 950 to 1050 ° C.
Reaction atmosphere pressure: 6-20 kPa,
Reaction time: 30 to 240 minutes (depending on the desired thickness of the bonding layer to be formed)

炭素系基板表面に、Ti、Cr、Zr等の金属成分を化学蒸着させて接合層を形成すると、炭素系基板表面と接合層間での界面反応により、Ti炭化物、Cr炭化物あるいはZr炭化物等の金属炭化物が、前記炭素系基板表面と接合層との界面に生成することにより、炭素系基板と接合層との密着性が向上した複合基板を得ることができる。
特に、前記炭素系基板表面と接合層との界面に形成される金属炭化物が、Tiの炭化物である場合には、基板を構成する炭素系材料であるグラフェンあるいはグラファイトとの親和性が高いことに加え、放熱材料として広く用いられるCuとの合金を形成しやすいことから、密着性、密着強度にすぐれた接合層を構成する金属成分としてはTiが好ましい。
When a metal component such as Ti, Cr, or Zr is chemically vapor-deposited on the surface of the carbon-based substrate to form a bonding layer, an interface reaction between the carbon-based substrate surface and the bonding layer causes a metal such as Ti carbide, Cr carbide, or Zr carbide. Since the carbide is generated at the interface between the surface of the carbon-based substrate and the bonding layer, a composite substrate having improved adhesion between the carbon-based substrate and the bonding layer can be obtained.
In particular, when the metal carbide formed at the interface between the carbon-based substrate surface and the bonding layer is a carbide of Ti, it has high affinity with graphene or graphite, which is a carbon-based material constituting the substrate. In addition, since an alloy with Cu, which is widely used as a heat dissipation material, is easily formed, Ti is preferable as a metal component constituting a bonding layer having excellent adhesion and adhesion strength.

本発明の前記複合基板において、接合層を形成する基板表面は、炭素系基板の表面の片面のみ、あるいは両面とすることができる(図1(a)、(b)参照)。
また、炭素系基板の表面の片面のみ、あるいは両面に接合層を形成するとともに、炭素系基板の表面の側面の一部あるいは全面に、接合層を形成することができる(図2(a)参照)。
In the composite substrate of the present invention, the surface of the substrate on which the bonding layer is formed may be only one surface or both surfaces of the carbon-based substrate (see FIGS. 1A and 1B).
In addition, a bonding layer can be formed on only one side or both sides of the surface of the carbon-based substrate, and a bonding layer can be formed on part or all of the side surface of the surface of the carbon-based substrate (see FIG. 2A). ).

図1(a)、(b)、図2(a)においては、単層からなる接合層を示しているが、接合層は必ずしも単層である必要はなく、例えば、図2(b)に示されるように複数層の積層構造(例えば、図2(b)では、下部接合層と上部接合層の二層構造)として形成されていても良い。
例えば、炭素系基板に接する接合層(例えば、図2(b)の「下部接合層」)の表面に、窒化物からなる接合層(上部接合層)を形成する場合は、金属塩化物ガスに加えNガスを含有する反応ガスを用いて蒸着すればよく、また、炭化物からなる接合層(上部接合層)を形成する場合は、例えば、金属塩化物ガスに加えCHガスを含有する反応ガスを用いて成膜すればよい。
なお、図2(b)の前記下部接合層は炭素系基板の表面直上に形成されていることから、炭素系基板との界面に金属炭化物が当然に形成されている。
接合層を複数層の積層構造として構成する場合には、炭素系基板に接していない接合層(図2(b)の「上部接合層」参照)は、従来から知られている通常の化学蒸着法により任意の接合層を成膜することができる。
さらに、上部接合層も単層である必要はなく、複数層の積層構造として構成されていてもよい。
ただし、本発明の複合基板を放熱材料として適用する場合には、接合層は、単層構造であるか積層構造であるかにかかわらず、熱伝導性を低下させる接合層の形成を避けなければならないことは当然である。
なお、接合層の厚さ(積層構造からなる接合層の場合には、合計厚さ)は、好ましくは0.1〜10μmである。その理由は、厚さが0.1μm未満であると十分な密着性が得られず、一方、厚さが10μmを超えると、接合層を設けることによる熱伝導の低下が無視できなくなり、放熱特性が低下するためである。
1A, 1B, and 2A show a single-layer bonding layer, the bonding layer does not necessarily have to be a single layer. For example, FIG. As shown, it may be formed as a multilayer structure of a plurality of layers (for example, in FIG. 2B, a two-layer structure of a lower bonding layer and an upper bonding layer).
For example, when a bonding layer (upper bonding layer) made of nitride is formed on the surface of a bonding layer (for example, “lower bonding layer” in FIG. 2B) in contact with a carbon-based substrate, the metal chloride gas is used. In addition, deposition may be performed using a reaction gas containing N 2 gas. When a bonding layer (upper bonding layer) made of carbide is formed, for example, a reaction containing CH 4 gas in addition to metal chloride gas may be used. The film may be formed using a gas.
Since the lower bonding layer in FIG. 2B is formed immediately above the surface of the carbon-based substrate, a metal carbide is naturally formed at the interface with the carbon-based substrate.
When the bonding layer is configured as a multilayer structure having a plurality of layers, the bonding layer that is not in contact with the carbon-based substrate (see “upper bonding layer” in FIG. 2B) is formed by a conventional chemical vapor deposition. An arbitrary bonding layer can be formed by the method.
Furthermore, the upper bonding layer does not need to be a single layer, and may be configured as a multilayer structure having a plurality of layers.
However, when the composite substrate of the present invention is applied as a heat dissipation material, regardless of whether the bonding layer has a single-layer structure or a laminated structure, it is necessary to avoid forming a bonding layer that reduces thermal conductivity. It is natural that this must not be done.
The thickness of the bonding layer (the total thickness in the case of a bonding layer having a laminated structure) is preferably 0.1 to 10 μm. The reason is that if the thickness is less than 0.1 μm, sufficient adhesion cannot be obtained. On the other hand, if the thickness exceeds 10 μm, the decrease in heat conduction due to the provision of the bonding layer cannot be ignored, and the heat dissipation characteristics cannot be ignored. Is to be reduced.

本発明の複合基板は、半導体素子や他の放熱材料と、金属成分主体の接合層を介して密着性にすぐれた状態で容易に接合することが可能となる。   The composite substrate of the present invention can be easily bonded to a semiconductor element or another heat dissipation material with excellent adhesion through a bonding layer mainly composed of a metal component.

本発明の炭素系基板における炭素系材料は、高熱伝導性を有するシート状のグラフェン又はグラファイトを積層した積層構造体で構成されることが好ましい。
ただ、シート状のグラフェン又はグラファイトを積層した積層構造体は、熱伝導率に異方性があるため、これを放熱材料用基板として用いる場合、所望の放熱(伝熱)方向に応じて、高放熱効果を得るために積層構造体におけるシート状のグラフェン又はグラファイトの積層方向を定める必要がある。
具体的には、炭素系基板の熱伝導率が、基板の厚み方向に高熱伝導率を示し、基板の厚み方向と直交する基板面方向の少なくとも1方向に低熱伝導率を示す異方性を有するように積層構造体の積層方向を定める必要がある。
より具体的には、図3に示す複合基板において、シート状のグラフェン又はグラファイトを積層した積層構造体からなる炭素系基板1は、基板の厚み方向(図3中、「伝熱方向」で示す)に高熱伝導率を示し、基板の厚み方向と直交する基板面方向(図3中、「積層方向」で示す)の少なくとも1方向に低熱伝導率を示す異方性を有することから、図3に示すように積層構造体の積層方向を定める必要がある。
また、図3に示す方向に、シート状のグラフェン又はグラファイトを積層した積層構造体の積層方向を定め、図2(a)に示すように炭素系基板の側面にも接合層を形成した場合には、本発明の複合基板は、半導体素子や他の放熱材料との接合の容易性に加え、複合基板としての強度の向上(積層方向に力が作用した場合の剥離強度の向上)を図ることができる。
なお、炭素系基板の厚さは、好ましくは1〜30mmである。その理由は、1mm未満であると、薄すぎて十分な放熱能力を有することができず、一方、30mmを超えると、基板が大型化し過ぎてしまうためである。
It is preferable that the carbon-based material in the carbon-based substrate of the present invention is constituted by a laminated structure in which sheet-like graphene or graphite having high thermal conductivity is laminated.
However, since a laminated structure in which sheet-like graphene or graphite is laminated has anisotropy in thermal conductivity, when this is used as a substrate for a heat-dissipating material, it depends on the desired heat-dissipating (heat-transfer) direction. In order to obtain a heat radiation effect, it is necessary to determine the laminating direction of the sheet-like graphene or graphite in the laminated structure.
Specifically, the thermal conductivity of the carbon-based substrate has high thermal conductivity in the thickness direction of the substrate, and has anisotropy of low thermal conductivity in at least one direction of the substrate surface direction orthogonal to the thickness direction of the substrate. It is necessary to determine the stacking direction of the stacked structure as described above.
More specifically, in the composite substrate shown in FIG. 3, the carbon-based substrate 1 composed of a laminated structure in which sheet-like graphene or graphite is laminated is indicated by the thickness direction of the substrate (in FIG. 3, the “heat transfer direction”). 3) has a high thermal conductivity, and has anisotropy indicating a low thermal conductivity in at least one direction of a substrate surface direction (indicated by “stacking direction” in FIG. 3) orthogonal to the thickness direction of the substrate. It is necessary to determine the lamination direction of the laminated structure as shown in FIG.
In addition, when the lamination direction of the laminated structure in which the sheet-like graphene or graphite is laminated is determined in the direction shown in FIG. 3, and the bonding layer is formed also on the side surface of the carbon-based substrate as shown in FIG. The composite substrate of the present invention is intended to improve the strength of the composite substrate (improve the peel strength when a force acts in the laminating direction) in addition to the ease of bonding with the semiconductor element and other heat radiating materials. Can be.
In addition, the thickness of the carbon-based substrate is preferably 1 to 30 mm. The reason is that if it is less than 1 mm, it is too thin to have sufficient heat radiation capability, while if it exceeds 30 mm, the substrate becomes too large.

本発明の複合基板の接合層を介して放熱器や半導体素子を接合した、放熱ユニットを得ることができるが、放熱器の形状は板状に限定されるものではない。また、放熱器の材質は、Cu、Al、AlN、Alを例示することができる。 A radiator unit in which a radiator or a semiconductor element is bonded via the bonding layer of the composite substrate of the present invention can be obtained, but the shape of the radiator is not limited to a plate. In addition, examples of the material of the radiator include Cu, Al, AlN, and Al 2 O 3 .

本発明の実施例について説明する。 An embodiment of the present invention will be described.

接合層の形成:
図3に示すような積層方向を有する、シート状のグラフェンを積層した積層構造体からなる厚さ4mmで縦と横が共に100mmの大きさの炭素系基板1を用意した。
次いで、図1(b)に示されるように炭素系基板1の片面(上面)に、接合層2を形成した。
接合層2としては、TiClガスを反応ガスとして用いた化学蒸着法によって膜厚3.5μmになるように形成した。
化学蒸着の条件は、次のとおりである。
反応ガス組成(容量%) : TiCl 4%、残部H
反応雰囲気温度:1020℃、
反応雰囲気圧力:8kPa、
反応時間 :120分
上記の条件でTiを蒸着形成したところ、炭素系基板1の表面に接合層2として層厚3.5μmのTiの炭化物を含む層が生成していることが観察された。
このようにして、炭素系基板1の表面に、Tiの炭化物が含まれる接合層を形成した本発明の複合基板を作製した。
Formation of bonding layer:
A carbon-based substrate 1 having a thickness of 4 mm and a size of 100 mm in both length and width was prepared from a stacked structure in which sheet-like graphene was stacked, having a stacking direction as shown in FIG.
Next, as shown in FIG. 1B, a bonding layer 2 was formed on one surface (upper surface) of the carbon-based substrate 1.
The bonding layer 2 was formed to have a thickness of 3.5 μm by a chemical vapor deposition method using TiCl 4 gas as a reaction gas.
The conditions for chemical vapor deposition are as follows.
Reaction gas composition (% by volume): TiCl 4 4%, balance H 2 ,
Reaction atmosphere temperature: 1020 ° C,
Reaction atmosphere pressure: 8 kPa,
Reaction time: 120 minutes When Ti was formed by vapor deposition under the above conditions, it was observed that a 3.5 μm thick layer containing Ti carbide was formed as the bonding layer 2 on the surface of the carbon-based substrate 1.
Thus, a composite substrate of the present invention in which a bonding layer containing a carbide of Ti was formed on the surface of the carbon-based substrate 1 was produced.

次に、複合基板に形成された接合層(Ti炭化物を含有)に、厚さ30mm、縦と横が共に100mmの大きさの純銅板を放熱板として接触させ、真空中で300℃、10MPaの加圧下で接合することにより、放熱ユニットを作製した。
この放熱ユニットにおいては、複合基板と純銅板からなる放熱板の密着性はすぐれ、かつ、放熱効果も高いものであった。
Next, a pure copper plate having a thickness of 30 mm and a length of 100 mm both in length and width is brought into contact with a bonding layer (containing Ti carbide) formed on the composite substrate as a heat sink, and is heated to 300 ° C. and 10 MPa in vacuum. By joining under pressure, a heat dissipation unit was produced.
In this heat dissipation unit, the adhesion between the composite substrate and the heat dissipation plate made of a pure copper plate was excellent, and the heat dissipation effect was also high.

本発明の複合基板は、他の放熱材料と組み合わせることにより、放熱材料とのすぐれた密着性を有するとともに、すぐれた放熱効果を発揮する放熱ユニットとしての利用が期待される。
The composite substrate of the present invention is expected to be used as a heat dissipating unit having excellent adhesion to a heat dissipating material and exhibiting an excellent heat dissipating effect by being combined with another heat dissipating material.

Claims (8)

炭素系材料からなる基板を化学蒸着装置に装入する工程、
前記化学蒸着装置内に反応ガスを導入する工程、
前記炭素系材料からなる基板の表面に金属成分を化学蒸着させて、前記炭素系材料からなる基板の表面に接合層を形成する工程、を含む複合基板の製造方法において、
前記反応ガスは、接合層を構成する金属成分の金属塩化物ガスを2〜10容量%と残部は水素ガスからなり、
前記接合層は、少なくとも前記炭素系材料からなる基板との界面に金属炭化物が形成されていることを特徴とする放熱材料用複合基板の製造方法。
Loading a substrate made of a carbon-based material into a chemical vapor deposition apparatus,
Introducing a reaction gas into the chemical vapor deposition apparatus,
A metal component is chemically vapor-deposited on the surface of the substrate made of the carbon-based material to form a bonding layer on the surface of the substrate made of the carbon-based material.
The reaction gas is composed of 2 to 10% by volume of a metal chloride gas of a metal component constituting the bonding layer and a balance of hydrogen gas,
The method for manufacturing a composite substrate for a heat dissipation material, wherein a metal carbide is formed at least at an interface of the bonding layer with a substrate made of the carbon-based material.
前記接合層を構成する金属成分はTiであり、前記金属塩化物ガスはTiClガスであり、炭素系材料からなる基板と接合層との界面にTiの炭化物が形成されていることを特徴とする請求項1に記載の放熱材料用複合基板の製造方法。 The metal component constituting the bonding layer is Ti, the metal chloride gas is TiCl 4 gas, and a carbide of Ti is formed at an interface between the substrate made of a carbon-based material and the bonding layer. The method for manufacturing a composite substrate for a heat dissipation material according to claim 1. 前記接合層を構成する金属成分はCrまたはZrであり、前記金属塩化物ガスはCrClガスまたはZrClガスであり、炭素系材料からなる基板と接合層との界面にCrの炭化物またはZrの炭化物が形成されていることを特徴とする請求項1に記載の放熱材料用複合基板の製造方法。 The metal component constituting the bonding layer is Cr or Zr, the metal chloride gas is CrCl 3 gas or ZrCl 4 gas, and the interface between the substrate made of a carbon-based material and the bonding layer is made of Cr carbide or Zr. The method for producing a composite substrate for a heat dissipation material according to claim 1, wherein a carbide is formed. 請求項1乃至3のいずれか一項に記載の炭素系材料からなる基板において、前記炭素系材料が、シート状のグラフェンを積層した積層構造体で構成されていることを特徴とする請求項1乃至3のいずれか一項に記載の放熱材料用複合基板の製造方法。 4. The substrate made of the carbon-based material according to claim 1, wherein the carbon-based material is configured by a laminated structure in which sheet-like graphene is laminated. 5. 4. The method for manufacturing a composite substrate for a heat dissipation material according to any one of claims 1 to 3. 請求項1乃至4のいずれかに記載の放熱材料用複合基板において、炭素系材料からなる基板の表面の片面のみ、あるいは両面に、接合層が形成されていることを特徴とする放熱材料用複合基板。   5. The composite substrate for a heat dissipation material according to claim 1, wherein a bonding layer is formed on only one side or both sides of the surface of the substrate made of a carbon-based material. substrate. 請求項5に記載の放熱材料用複合基板において、炭素系材料からなる基板の表面の側面の一部あるいは全面に、接合層がさらに形成されていることを特徴とする放熱材料用複合基板。   The composite substrate for a heat radiation material according to claim 5, wherein a bonding layer is further formed on a part or the whole of a side surface of the surface of the substrate made of a carbon-based material. 請求項5または6に記載の放熱材料用複合基板において、前記炭素系材料からなる基板の熱伝導率が、基板の厚み方向に高熱伝導率を示し、基板の厚み方向と直交する基板面方向の少なくとも1方向に低熱伝導率を示す異方性を有することを特徴とする放熱材料用複合基板。 7. The composite substrate for a heat dissipation material according to claim 5, wherein the thermal conductivity of the substrate made of the carbon-based material shows a high thermal conductivity in a thickness direction of the substrate, and is in a substrate surface direction orthogonal to the thickness direction of the substrate. A composite substrate for a heat-radiating material, having anisotropy exhibiting low thermal conductivity in at least one direction. 請求項5乃至7の何れか一項に記載の放熱材料用複合基板と、放熱器または半導体素子とが前記接合層を介して接合されていることを特徴とする放熱ユニット。
A heat dissipation unit, wherein the heat dissipation material composite substrate according to any one of claims 5 to 7 and a radiator or a semiconductor element are joined via the joining layer.
JP2018184993A 2018-09-28 2018-09-28 Manufacturing method of composite board for heat dissipation material and heat dissipation unit Active JP7096999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018184993A JP7096999B2 (en) 2018-09-28 2018-09-28 Manufacturing method of composite board for heat dissipation material and heat dissipation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184993A JP7096999B2 (en) 2018-09-28 2018-09-28 Manufacturing method of composite board for heat dissipation material and heat dissipation unit

Publications (2)

Publication Number Publication Date
JP2020056049A true JP2020056049A (en) 2020-04-09
JP7096999B2 JP7096999B2 (en) 2022-07-07

Family

ID=70106544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184993A Active JP7096999B2 (en) 2018-09-28 2018-09-28 Manufacturing method of composite board for heat dissipation material and heat dissipation unit

Country Status (1)

Country Link
JP (1) JP7096999B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211368A (en) * 1986-12-04 1988-09-02 サントル ナショナル ドゥ ラ ルシュルシュ サイエンティフィーク −セー エン エール エス Method for coating carbon fiber with carbide and carbon fiber coated with carbide
JPH0578977A (en) * 1991-09-12 1993-03-30 Nippon Cement Co Ltd Production of surface-coated carbon fiber
JPH10330177A (en) * 1997-05-30 1998-12-15 Matsushita Electric Ind Co Ltd Metal/graphite composite and radiator using the same
JP2011023670A (en) * 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element, and method of manufacturing the same
JP2012160605A (en) * 2011-02-01 2012-08-23 Allied Material Corp Manufacturing method of heat dissipation substrate and composite used for the same
JP2017028207A (en) * 2015-07-27 2017-02-02 株式会社東芝 Thermal diffusion plate and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211368A (en) * 1986-12-04 1988-09-02 サントル ナショナル ドゥ ラ ルシュルシュ サイエンティフィーク −セー エン エール エス Method for coating carbon fiber with carbide and carbon fiber coated with carbide
JPH0578977A (en) * 1991-09-12 1993-03-30 Nippon Cement Co Ltd Production of surface-coated carbon fiber
JPH10330177A (en) * 1997-05-30 1998-12-15 Matsushita Electric Ind Co Ltd Metal/graphite composite and radiator using the same
JP2011023670A (en) * 2009-07-17 2011-02-03 Thermo Graphitics Co Ltd Anisotropic thermally-conductive element, and method of manufacturing the same
JP2012160605A (en) * 2011-02-01 2012-08-23 Allied Material Corp Manufacturing method of heat dissipation substrate and composite used for the same
JP2017028207A (en) * 2015-07-27 2017-02-02 株式会社東芝 Thermal diffusion plate and manufacturing method of the same

Also Published As

Publication number Publication date
JP7096999B2 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
JP2016026391A (en) Anisotropic thermal conduction element and manufacturing method
JP2012142547A (en) Joining structure of thermal diffusion member, cooling structure of heating element, and method for joining thermal diffusion member
JP6423731B2 (en) Semiconductor module
JP5504842B2 (en) Power module substrate, power module substrate with heat sink, power module, and method for manufacturing power module substrate
JP5621698B2 (en) Heating element module and manufacturing method thereof
JP2023033290A (en) Bonded body and dielectric circuit board
JP2001177024A (en) Heat diffusing composite plate
CN112839799A (en) Carbonaceous member with metal layer and heat conductive plate
WO2018180159A1 (en) Method for producing insulated circuit board with heat sink
JPH08241942A (en) Thin-film laminate
JP2010098057A (en) Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JP6775848B2 (en) Heat dissipation plate material
WO2019188614A1 (en) Semiconductor package
JP7230432B2 (en) Joined body and insulating circuit board
JP2020053613A (en) Composite substrate
CN111682002B (en) Heat radiation plate
JP5640569B2 (en) Power module substrate manufacturing method
JP7096999B2 (en) Manufacturing method of composite board for heat dissipation material and heat dissipation unit
JP2010245400A (en) Composite laminate board and manufacturing process thereof
WO2019106874A1 (en) Insulating substrate and heat dissipation device
JP6040570B2 (en) Heat exchanger
JP6819385B2 (en) Manufacturing method of semiconductor devices
JP2019075564A (en) Heat sink plate
JP6673635B2 (en) Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink
JP2013138267A (en) Substrate for power module with heat sink, power module with heat sink, and substrate for power module with buffer layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7096999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150