JP6775848B2 - Heat dissipation plate material - Google Patents

Heat dissipation plate material Download PDF

Info

Publication number
JP6775848B2
JP6775848B2 JP2019072555A JP2019072555A JP6775848B2 JP 6775848 B2 JP6775848 B2 JP 6775848B2 JP 2019072555 A JP2019072555 A JP 2019072555A JP 2019072555 A JP2019072555 A JP 2019072555A JP 6775848 B2 JP6775848 B2 JP 6775848B2
Authority
JP
Japan
Prior art keywords
layer
copper
plate material
heat radiating
radiating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019072555A
Other languages
Japanese (ja)
Other versions
JP2020150244A (en
Inventor
チョ,ミョン−ファン
キム,イルホ
イ,ソク−ウ
ヨン−ソク キム
ヨン−ソク キム
Original Assignee
ザ グッドシステム コーポレーション
ザ グッドシステム コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ グッドシステム コーポレーション, ザ グッドシステム コーポレーション filed Critical ザ グッドシステム コーポレーション
Publication of JP2020150244A publication Critical patent/JP2020150244A/en
Application granted granted Critical
Publication of JP6775848B2 publication Critical patent/JP6775848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、放熱板材に関し、より詳細には、高出力素子のパッケージング用に適切に使用することができる放熱板材であって、アルミナ(Al)のようなセラミック素材を含む素子と接合させても、良好な接合が可能となるように、セラミック素材と類似したレベルの熱膨張係数を有し、かつ、高出力素子で発生する多量の熱を迅速に外部に排出できる高い熱伝導度を示す放熱板材に関する。 The present invention relates to a heat radiating plate material, and more specifically, a heat radiating plate material that can be appropriately used for packaging a high output element and includes an element containing a ceramic material such as alumina (Al 2 O 3 ). High thermal conductivity that has a coefficient of thermal expansion similar to that of ceramic materials and can quickly discharge a large amount of heat generated by high-power elements to the outside so that good bonding is possible even when bonded. It relates to a heat radiation plate material showing a degree.

最近、情報通信および国防分野の核心技術としてGaN系化合物半導体を利用した高出力増幅素子が注目を集めている。 Recently, high-power amplification devices using GaN-based compound semiconductors have been attracting attention as core technologies in the fields of information communication and national defense.

このような高出力電子素子や光素子では、一般素子に比べて多くの熱が発生し、このように発生した多量の熱を効率的に排出できるパッケージング技術が必要である。 Such high-power electronic devices and optical devices generate more heat than general devices, and packaging technology capable of efficiently discharging the large amount of heat generated in this way is required.

現在、GaN系化合物半導体を活用した高出力半導体素子には、タングステン(W)/銅(Cu)の2層複合素材、銅(Cu)とモリブデン(Mo)の2相(phase)複合素材、銅(Cu)/銅−モリブデン(Cu−Mo)合金/銅(Cu)の3層複合素材、銅(Cu)/モリブデン(Mo)/銅(Cu)/モリブデン(Mo)/銅(Cu)の多層複合素材のように比較的良好な熱伝導度と低い熱膨張係数を有する金属基複合板材が使用されている。 Currently, high-power semiconductor elements that utilize GaN-based compound semiconductors include a two-layer composite material of tungsten (W) / copper (Cu), a two-phase composite material of copper (Cu) and molybdenum (Mo), and copper. (Cu) / copper-molybdenum (Cu-Mo) alloy / copper (Cu) three-layer composite material, copper (Cu) / copper (Mo) / copper (Cu) / copper (Mo) / copper (Cu) multilayer A metal-based composite plate material having relatively good thermal conductivity and a low thermal expansion coefficient, such as a composite material, is used.

ところが、これらの複合板材の厚さ方向の熱伝導度は、最大200〜300W/mK程度であり、実際にそれ以上の高い熱伝導度を具現しないので、数百ワット級のパワートランジスターのような素子に適用するための新しい放熱素材あるいは放熱基板が市場で至急に要求されている。また、銅(Cu)/モリブデン(Mo)/銅(Cu)/モリブデン(Mo)/銅(Cu)の多層複合素材の場合、各層間の結合力が低いという問題点もある。 However, the thermal conductivity of these composite plates in the thickness direction is about 200 to 300 W / mK at the maximum, and since it does not actually realize higher thermal conductivity, it is similar to a power transistor of several hundred watt class. There is an urgent need in the market for new heat-dissipating materials or heat-dissipating substrates for application to devices. Further, in the case of a multilayer composite material of copper (Cu) / molybdenum (Mo) / copper (Cu) / molybdenum (Mo) / copper (Cu), there is also a problem that the bonding force between each layer is low.

一方、半導体素子を製造する工程には、アルミナ(Al)のようなセラミック素材とのブレージング接合工程が必須である。 On the other hand, in the process of manufacturing a semiconductor element, a brazing bonding process with a ceramic material such as alumina (Al 2 O 3 ) is indispensable.

このようなブレージング接合工程は、約800℃以上の高温で行われるので、金属複合材基板とセラミック素材間の熱膨張係数の差異によって、ブレージング接合過程で反りや破損が発生し、このような反りや破損は、素子の信頼性に致命的な影響を与えるようになる。 Since such a brazing joining process is performed at a high temperature of about 800 ° C. or higher, warpage or breakage occurs in the brazing joining process due to the difference in the coefficient of thermal expansion between the metal composite substrate and the ceramic material, and such warping occurs. And damage will have a fatal effect on the reliability of the device.

このような要求に対応するために、本発明者らは、下記特許文献2に開示されたように、銅(Cu)からなるカバー層(第1層、第5層)と、銅(Cu)とモリブデン(Mo)の合金からなる中間層(第2層、第4層)と、放熱板材の上下面に平行な方向に沿って銅(Cu)層とモリブデン(Mo)層が交互に繰り返される構造を有するコア層からなる放熱板材を提示したが、この構造の放熱板材は、セラミック素材の熱膨張係数と同一または類似しながらも、400W/mK以上の優れた熱伝導度を示すが、複雑な構造によって製造工程数と工程費用が増加する問題点がある。 In order to meet such demands, the present inventors, as disclosed in Patent Document 2 below, cover layers (first layer, fifth layer) made of copper (Cu) and copper (Cu). Intermediate layers (second and fourth layers) made of an alloy of molybdenum (Mo) and copper (Cu) layers and molybdenum (Mo) layers are alternately repeated along the direction parallel to the upper and lower surfaces of the heat radiation plate material. Although a heat radiating plate material composed of a core layer having a structure is presented, the heat radiating plate material having this structure exhibits excellent thermal conductivity of 400 W / mK or more, although it is the same as or similar to the coefficient of thermal expansion of the ceramic material, but is complicated. There is a problem that the number of manufacturing processes and the process cost increase due to the structure.

この故、より簡単な工程で製造できる構造を有し、かつ、厚さ方向に優れた熱伝導性を示すと同時に、厚さ方向に垂直な面方向にセラミック素材と類似したレベル熱膨張係数を具現することができる放熱板材の開発が要求されている。 Therefore, it has a structure that can be manufactured by a simpler process, exhibits excellent thermal conductivity in the thickness direction, and at the same time, has a level thermal expansion coefficient similar to that of ceramic materials in the plane direction perpendicular to the thickness direction. There is a demand for the development of heat dissipation plate materials that can be realized.

日本国特許公開第2016−127197号公報Japanese Patent Publication No. 2016-127197 韓国特許公開第2018−0097021号公報Korean Patent Publication No. 2018-097021

本発明の課題は、厚さ方向に300W/mK以上の優れた熱伝導性と共に、厚さ方向に垂直な面方向に7×10−6/K〜12×10−6/Kのレベルの熱膨張係数を具現することができる放熱板材を提供することにある。 An object of the present invention, together with excellent thermal conductivity above 300 W / mK in the thickness direction, of the level of 7 × 10 -6 / K~12 × 10 -6 / K in a plane direction perpendicular to the thickness direction thermal An object of the present invention is to provide a heat radiating plate material capable of realizing an expansion coefficient.

前記課題を解決するために、本発明は、銅(Cu)または銅(Cu)合金からなる第1層と、前記第1層上に形成され、銅(Cu)とモリブデン(Mo)を含む合金からなる第2層と、前記第2層上に形成され、銅(Cu)または銅(Cu)合金からなる第3層と、前記第3層上に形成され、銅(Cu)とモリブデン(Mo)を含む合金からなる第4層と、前記第4層上に形成され、銅(Cu)または銅(Cu)合金からなる第5層とを含む放熱板材であって、前記第1層、第3層および第5層の厚さは、10〜1,000μmであり、前記第2層と第4層の厚さは、10〜60μmであり、前記放熱板材全体に含まれるモリブデン(Mo)の含量は、3〜15重量%である、放熱板材を提供する。 In order to solve the above problems, the present invention comprises a first layer made of copper (Cu) or a copper (Cu) alloy, and an alloy formed on the first layer and containing copper (Cu) and molybdenum (Mo). A second layer composed of, a third layer formed on the second layer and made of copper (Cu) or a copper (Cu) alloy, and formed on the third layer, copper (Cu) and molybdenum (Mo). A heat-dissipating plate material containing a fourth layer made of an alloy containing) and a fifth layer formed on the fourth layer and made of copper (Cu) or a copper (Cu) alloy, wherein the first layer and the first layer. The thickness of the third layer and the fifth layer is 10 to 1,000 μm, the thickness of the second layer and the fourth layer is 10 to 60 μm, and the thickness of the molybdenum (Mo) contained in the entire heat radiating plate material is Provided is a radiating plate material having a content of 3 to 15% by weight.

本発明による放熱板材は、銅(Cu)層と銅(Cu)−モリブデン(Mo)合金層からなる5層積層構造と、銅(Cu)層および銅(Cu)−モリブデン(Mo)合金層のそれぞれの厚さに対する制御と、放熱板材全体で占めるモリブデン(Mo)の含量の制御を通じて、従来の5層積層構造で具現しにくい厚さ方向に300W/mK以上(より好ましくは350W/mK以上)の優れた熱伝導度とともに、7〜12×10−6/Kの範囲の面方向の熱膨張係数を具現することができるので、一般素子に比べて多くの熱が発生する高出力電子素子や光素子のパッケージングに適切に使用することができる。 The heat radiating plate material according to the present invention has a five-layer laminated structure consisting of a copper (Cu) layer and a copper (Cu) -molybdenum (Mo) alloy layer, and a copper (Cu) layer and a copper (Cu) -molybdenum (Mo) alloy layer. 300 W / mK or more (more preferably 350 W / mK or more) in the thickness direction, which is difficult to realize with the conventional 5-layer laminated structure, through control for each thickness and control of the content of molybdenum (Mo) in the entire heat radiation plate material. Since it is possible to realize a thermal expansion coefficient in the plane direction in the range of 7 to 12 × 10-6 / K together with the excellent thermal conductivity of molybdenum, high-power electronic devices that generate more heat than general devices It can be appropriately used for packaging optical elements.

また、本発明による放熱板材は、5個の層を積層する単純な構造からなるので、製造が容易であり、製造費用を節減することができる。 Further, since the heat radiating plate material according to the present invention has a simple structure in which five layers are laminated, it is easy to manufacture and the manufacturing cost can be reduced.

図1は、放熱板材の厚さ方向と面方向とを説明するための図である。FIG. 1 is a diagram for explaining the thickness direction and the surface direction of the heat radiating plate material. 図2は、本発明の技術的概念を説明するための図である。FIG. 2 is a diagram for explaining the technical concept of the present invention. 図3は、本発明の一実施形態による放熱板材の積層構造を示す図である。FIG. 3 is a diagram showing a laminated structure of heat radiating plate materials according to an embodiment of the present invention.

以下、添付の図面を参照して本発明の好ましい実施例を詳細に説明する。しかしながら、下記に例示する本発明の実施例は、様々な他の形態に変形され得、本発明の範囲が下記に詳述する実施例に限定されるものではない。本発明の実施例は、当業界において平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the examples of the present invention illustrated below can be transformed into various other forms, and the scope of the present invention is not limited to the examples detailed below. The embodiments of the present invention are provided to more fully explain the present invention to those with average knowledge in the art.

本発明者らは、格子構造のような複雑な構造でなく、単純な積層構造を有し、かつ、図1に示された面方向(厚さ方向に垂直な方向を意味する)に7〜12×10−6/Kの熱膨張係数を示し、厚さ方向に300W/mK以上の優れた熱伝導度を具現し、層間の結合力を良好に維持できる放熱板材について研究した。 The present inventors have a simple laminated structure rather than a complicated structure such as a lattice structure, and have 7 to 7 to 7 in the plane direction (meaning the direction perpendicular to the thickness direction) shown in FIG. We studied a heat-dissipating plate material that exhibits a coefficient of thermal expansion of 12 × 10-6 / K, realizes excellent thermal conductivity of 300 W / mK or more in the thickness direction, and can maintain good bonding force between layers.

その結果、図2に示されたように、銅(Cu)層と銅(Cu)−モリブデン(Mo)の合金層間の境界面の面積が増加するほど(Cu−Mo合金層よりもCu/Cu−Mo/Cu層の3層構造の境界面の面積が増加し、Cu/Cu−Mo/Cu層の3層構造よりもCu/Cu−Mo/Cu層/Cu−Mo層/Cu層の5層構造の境界面の面積が増加する)、少ないモリブデン(Mo)の含量でも低い熱膨張係数を具現することができる点、銅(Cu)層と銅(Cu)−モリブデン(Mo)の合金層間には、十分な結合力を得ることができる点、銅(Cu)−モリブデン(Mo)合金層の厚さを所定の範囲に低く制御する場合、放熱板材の厚さ方向の熱伝導度を高めることができる点などを考慮して、本発明に至るようになった。 As a result, as shown in FIG. 2, as the area of the interface between the copper (Cu) layer and the copper (Cu) -molybdenum (Mo) alloy layer increases (Cu / Cu more than the Cu-Mo alloy layer). The area of the interface of the three-layer structure of the −Mo / Cu layer is increased, and the Cu / Cu—Mo / Cu layer / Cu—Mo layer / Cu layer is 5 more than the three-layer structure of the Cu / Cu—Mo / Cu layer. (The area of the interface of the layer structure increases), a low thermal expansion coefficient can be realized even with a small content of molybdenum (Mo), and an alloy layer between a copper (Cu) layer and copper (Cu) -molybdenum (Mo) In addition, a sufficient bonding force can be obtained, and when the thickness of the copper (Cu) -molybdenum (Mo) alloy layer is controlled to be low within a predetermined range, the thermal conductivity in the thickness direction of the heat dissipation plate material is increased. The present invention has come to be made in consideration of the points that can be achieved.

本発明による放熱板材は、銅(Cu)または銅(Cu)合金からなる第1層と、前記第1層上に形成され、銅(Cu)とモリブデン(Mo)を含む合金からなる第2層と、前記第2層上に形成され、銅(Cu)または銅(Cu)合金からなる第3層と、前記第3層上に形成され、銅(Cu)とモリブデン(Mo)を含む合金からなる第4層と、前記第4層上に形成され、銅(Cu)または銅(Cu)合金からなる第5層とを含み、前記第1層、第3層および第5層の厚さは、10〜1,000μmであり、前記第2層と第4層の厚さは、10〜60μmであり、前記放熱板材全体に含まれるモリブデン(Mo)の含量は、3〜15重量%であることを特徴とする。 The heat radiating plate material according to the present invention has a first layer made of copper (Cu) or a copper (Cu) alloy, and a second layer formed on the first layer and made of an alloy containing copper (Cu) and molybdenum (Mo). And a third layer formed on the second layer and made of copper (Cu) or a copper (Cu) alloy, and an alloy formed on the third layer and containing copper (Cu) and molybdenum (Mo). 4th layer and a 5th layer formed on the 4th layer and made of copper (Cu) or a copper (Cu) alloy, the thickness of the 1st layer, the 3rd layer and the 5th layer is , 10 to 1,000 μm, the thickness of the second layer and the fourth layer is 10 to 60 μm, and the content of molybdenum (Mo) contained in the entire heat radiation plate material is 3 to 15% by weight. It is characterized by that.

本発明による放熱板材は、銅(Cu)層/銅(Cu)−モリブデン(Mo)合金層/銅(Cu)層/銅(Cu)−モリブデン(Mo)合金層/銅(Cu)層の5層構造からなるが、このように少なくとも5層構造を形成することによって、銅(Cu)層/銅(Cu)−モリブデン(Mo)合金層間の境界面の面積を広げることができるので、放熱板材に含まれる銅(Cu)−モリブデン(Mo)合金層の厚さを薄く維持しながらも、面方向に7〜12×10−6/Kの熱膨張係数を具現することができる。 The heat radiating plate material according to the present invention is 5 of copper (Cu) layer / copper (Cu) -molybdenum (Mo) alloy layer / copper (Cu) layer / copper (Cu) -molybdenum (Mo) alloy layer / copper (Cu) layer. Although it has a layered structure, by forming at least a five-layer structure in this way, the area of the interface between the copper (Cu) layer / copper (Cu) -molybdenum (Mo) alloy layers can be expanded, so that the heat dissipation plate material While maintaining the thickness of the copper (Cu) -molybdenum (Mo) alloy layer contained in the above as thin, it is possible to realize a thermal expansion coefficient of 7 to 12 × 10-6 / K in the plane direction.

前記第1層、第3層および第5層は、銅(Cu)99重量%以上の銅(Cu)はもちろん、多様な合金元素を含む銅(Cu)合金からなり得、銅(Cu)合金の場合、放熱特性を考慮するとき、銅(Cu)を80重量%以上、好ましくは90重量%以上、より好ましくは95重量%以上含むことができる。 The first layer, the third layer, and the fifth layer may be made of a copper (Cu) alloy containing 99% by weight or more of copper (Cu) as well as various alloying elements, and may be a copper (Cu) alloy. In the case of, copper (Cu) can be contained in an amount of 80% by weight or more, preferably 90% by weight or more, and more preferably 95% by weight or more when considering the heat dissipation characteristics.

前記第2層と第4層は、銅(Cu)とモリブデン(Mo)を含む合金からなるが、この合金は、銅(Cu):5〜40重量%、モリブデン(Mo):60〜95重量%を含むことが好ましいが、これは、銅(Cu)含量が5重量%未満なら、銅(Cu)層との結合力を良好に維持しにくく、厚さ方向の熱伝導度が減少し、40重量%超過なら、面方向の熱膨張係数を低く維持しにくいためである。 The second layer and the fourth layer are made of an alloy containing copper (Cu) and molybdenum (Mo), and this alloy has copper (Cu): 5 to 40% by weight and molybdenum (Mo): 60 to 95% by weight. It is preferable to contain%, but this is because if the copper (Cu) content is less than 5% by weight, it is difficult to maintain good bonding force with the copper (Cu) layer, and the thermal conductivity in the thickness direction decreases. This is because if it exceeds 40% by weight, it is difficult to keep the coefficient of thermal expansion in the plane direction low.

前記第1層、第3層および第5層の厚さは、10〜1,000μmの範囲を維持する場合、放熱板材の面方向の熱膨張係数を12×10−6/Kの範囲に維持し、厚さ方向の熱伝導度を300W/mK以上に具現することができるので、前記範囲に維持することが好ましい。 When the thickness of the first layer, the third layer and the fifth layer is maintained in the range of 10 to 1,000 μm, the coefficient of thermal expansion in the surface direction of the heat radiating plate material is maintained in the range of 12 × 10-6 / K. However, since the thermal conductivity in the thickness direction can be realized at 300 W / mK or more, it is preferable to maintain the thermal conductivity in the above range.

前記第2層と第4層の厚さは、10μm未満の場合、面方向の熱膨張係数を7〜12×10−6/Kの範囲に維持することが難しく、60μm超過の場合、厚さ方向の熱伝導度を300W/mK以上に維持しにくいので、10〜60μmの範囲に維持することが好ましい。 When the thickness of the second layer and the fourth layer is less than 10 μm, it is difficult to maintain the coefficient of thermal expansion in the plane direction in the range of 7 to 12 × 10-6 / K, and when it exceeds 60 μm, the thickness is increased. Since it is difficult to maintain the thermal conductivity in the direction at 300 W / mK or more, it is preferable to maintain it in the range of 10 to 60 μm.

前記放熱板材全体において、モリブデン(Mo)の含量は、3重量%未満の場合、面方向の熱膨張係数を12×10−6/Kの範囲以下に具現しにくく、モリブデン(Mo)の含量は、15重量%超過の場合、厚さ方向の熱伝導度を300W/mK以上に具現しにくいので、3〜15重量%の範囲に維持することが好ましく、5〜10重量%の範囲に維持することが、面方向の熱膨張係数および熱伝導度の側面からより好ましい。 When the content of molybdenum (Mo) in the entire heat radiation plate material is less than 3% by weight, it is difficult to realize the coefficient of thermal expansion in the plane direction within the range of 12 × 10-6 / K, and the content of molybdenum (Mo) is If it exceeds 15% by weight, it is difficult to realize the thermal conductivity in the thickness direction to 300 W / mK or more. Therefore, it is preferably maintained in the range of 3 to 15% by weight, and maintained in the range of 5 to 10% by weight. This is more preferable in terms of the coefficient of thermal expansion in the plane direction and the thermal conductivity.

前記放熱板材において、放熱板材の面方向の熱膨張係数は、7×10−6/K〜12×10−6/Kであることが好ましいが、この範囲を外れる場合、セラミック素子との接合または使用時に熱膨張係数の差異による不良が発生しやすいためである。 In the cooling plate, the thermal expansion coefficient in the planar direction of the cooling plate is preferably a 7 × 10 -6 / K~12 × 10 -6 / K, when outside this range, the bonding between the ceramic element or This is because defects are likely to occur due to the difference in the coefficient of thermal expansion during use.

前記放熱板材において、厚さ方向の熱伝導度は、300W/mK以上であり、より好ましくは350W/mK以上であってもよい。。 In the heat radiating plate material, the thermal conductivity in the thickness direction may be 300 W / mK or more, more preferably 350 W / mK or more. ..

前記放熱板材において、全体厚さが0.05mm未満であるか、10mmを超過する場合、本発明の構造を有する放熱板材を用いて面方向の熱膨張係数は、7×10−6/K〜12×10−6/Kと、厚さ方向の熱伝導度300W/mK以上を具現しにくいので、全体厚さは、前記範囲に維持することが好ましい。 When the total thickness of the heat radiating plate material is less than 0.05 mm or exceeds 10 mm, the thermal expansion coefficient in the plane direction using the heat radiating plate material having the structure of the present invention is 7 × 10 -6 / K ~. Since it is difficult to realize a thermal conductivity of 12 × 10-6 / K and a thermal conductivity of 300 W / mK or more in the thickness direction, it is preferable to maintain the overall thickness within the above range.

前記放熱板材において、前記第2層および第4層の厚さの合計が全体放熱板材の厚さの5%未満である場合、面方向の熱膨張係数は、7×10−6/K〜12×10−6/Kを具現することが容易でなく、15%超過の場合、厚さ方向の熱伝導度を具現することが容易でないので、5〜15%の範囲を維持することが好ましい。 In the heat radiating plate material, when the total thickness of the second layer and the fourth layer is less than 5% of the total thickness of the heat radiating plate material, the coefficient of thermal expansion in the plane direction is 7 × 10 -6 / K to 12 It is not easy to realize × 10-6 / K, and when it exceeds 15%, it is not easy to realize thermal conductivity in the thickness direction, so it is preferable to maintain the range of 5 to 15%.

[実施例]
図3は、本発明の一実施形態による放熱板材の積層構造を示す図である。
[Example]
FIG. 3 is a diagram showing a laminated structure of heat radiating plate materials according to an embodiment of the present invention.

図3に示されたように、本発明の実施例による放熱板材1は、銅(Cu)からなる第1層10と、前記第1層10の上面に形成され、銅(Cu)−モリブデン(Mo)合金からなる第2層20と、前記第2層20の上面に形成され、銅(Cu)からなる第3層30と、前記第3層30の上面に形成され、銅(Cu)−モリブデン(Mo)合金からなる第4層40と、前記第4層40の上面に形成され、銅(Cu)からなる第5層50とを含んでなる。 As shown in FIG. 3, the heat radiating plate material 1 according to the embodiment of the present invention is formed on the first layer 10 made of copper (Cu) and the upper surface of the first layer 10 and is formed of copper (Cu) -molybdenum (Cu). Mo) Formed on the upper surface of the second layer 20 made of an alloy and the upper surface of the second layer 20, and formed on the upper surface of the third layer 30 made of copper (Cu) and the third layer 30, copper (Cu)-. It includes a fourth layer 40 made of a molybdenum (Mo) alloy and a fifth layer 50 formed on the upper surface of the fourth layer 40 and made of copper (Cu).

このうち、前記第1層10と第5層50は、銅(Cu)を99重量%以上含有する銅(Cu)からなり、その厚さは、それぞれ約200μmであり、前記第3層30は、銅(Cu)を99重量%以上含有する銅(Cu)からなり、その厚さは、約600μmであり、前記第2層20および第4層40は、それぞれ銅(Cu)−モリブデン(Mo)合金(Cu:30重量%、Mo:70重量%)からなり、その厚さは、約50μmである。 Of these, the first layer 10 and the fifth layer 50 are made of copper (Cu) containing 99% by weight or more of copper (Cu), and the thickness thereof is about 200 μm, respectively, and the third layer 30 is , Copper (Cu) containing 99% by weight or more of copper (Cu), the thickness thereof is about 600 μm, and the second layer 20 and the fourth layer 40 are copper (Cu) -molybdenum (Mo), respectively. ) Alloy (Cu: 30% by weight, Mo: 70% by weight), the thickness of which is about 50 μm.

以上のような構造を有する放熱板材1は、次のような工程によって製造した。 The heat radiating plate material 1 having the above structure was manufactured by the following steps.

まず、厚さ約200μm、長さ100mm、幅100mmの銅(Cu)板材を第1層10および第5層50の素材として準備し、厚さ約600μm、長さ100mm、幅100mmの銅(Cu)板材を第3層30の素材として準備し、厚さ約50μm、長さ100mm、幅100mmの銅(Cu)−モリブデン(Mo)合金板材(Cu30重量%−Mo60重量%)を第2層20および第4層40の素材として用意した。 First, a copper (Cu) plate having a thickness of about 200 μm, a length of 100 mm, and a width of 100 mm is prepared as a material for the first layer 10 and the fifth layer 50, and a copper (Cu) having a thickness of about 600 μm, a length of 100 mm, and a width of 100 mm is prepared. ) A plate material is prepared as a material for the third layer 30, and a copper (Cu) -molybdenum (Mo) alloy plate material (Cu30% by weight-Mo60% by weight) having a thickness of about 50 μm, a length of 100 mm, and a width of 100 mm is used as the material of the second layer 20. And prepared as a material for the fourth layer 40.

次に、前記準備した板材を図3の積層構造で積層した後、加圧焼結方式で接合した。この際、焼結温度は、900℃とし、焼結後には、焼結炉内で冷却させる方式で冷却した。 Next, the prepared plate materials were laminated by the laminated structure shown in FIG. 3 and then joined by a pressure sintering method. At this time, the sintering temperature was set to 900 ° C., and after sintering, the sintering was performed by cooling in a sintering furnace.

このように製造された放熱板材には、銅(Cu)層と銅(Cu)−モリブデン(Mo)層間の熱膨張係数の差異によって、銅(Cu)層に強い引張応力が作用する膨張状態になり、このように引張応力が作用した状態で放熱板材を接合する、例えばブレージング工程で放熱板材の温度が上昇すると、応力が解消されることによって、既にある程度膨張した状態の銅(Cu)が追加に膨張する比率を減らして、全体的に放熱板材の熱膨張係数を低減するようになる。また、本発明によって製造された放熱板材において熱伝導度に不利な銅(Cu)−モリブデン(Mo)層の厚さは、それぞれ約50μmに低く維持されているので、厚さ方向の熱伝導度を高めることができるようになる。 The heat radiation plate material produced in this way is in an expanded state in which a strong tensile stress acts on the copper (Cu) layer due to the difference in the coefficient of thermal expansion between the copper (Cu) layer and the copper (Cu) -molybdenum (Mo) layer. Therefore, when the heat radiating plate material is joined in the state where the tensile stress is applied, for example, when the temperature of the heat radiating plate material rises in the brazing step, the stress is relieved and copper (Cu) already expanded to some extent is added. By reducing the rate of expansion to, the coefficient of thermal expansion of the heat dissipation plate material is reduced as a whole. Further, in the heat radiating plate material produced by the present invention, the thickness of each of the copper (Cu) -molybdenum (Mo) layers, which is disadvantageous for thermal conductivity, is maintained as low as about 50 μm, so that the thermal conductivity in the thickness direction is maintained. Will be able to increase.

一方、本発明の実施例では、それぞれの板材を準備した後、加圧焼結方式を使用して接合したが、メッキ、蒸着法のような多様な方法で本発明による積層構造を具現することができることはもちろんである。 On the other hand, in the embodiment of the present invention, after preparing each plate material, they are joined by using a pressure sintering method, but the laminated structure according to the present invention is realized by various methods such as plating and thin film deposition. Of course, you can do it.

このように製造された放熱板材の層間接合力を評価するために、万能材料試験機(AG−300kNX)を使用して、界面が破断されるまで一定の変形速度(1mm/min)でテストした結果、相当な荷重(約28kN)に耐えることができることが確認された。すなわち、一定のレベルの結合力を確保することができることが確認された。 In order to evaluate the interlayer bonding force of the heat radiating plate material thus produced, a universal material tester (AG-300 kNX) was used and tested at a constant deformation rate (1 mm / min) until the interface was broken. As a result, it was confirmed that it can withstand a considerable load (about 28 kN). That is, it was confirmed that a certain level of binding force can be secured.

下記の表1は、本発明の一実施形態によって製造した放熱板材の面方向の熱膨張係数と、厚さ方向の熱伝導度(放熱板材において任意の10ヶ所を選定して測定した結果を平均した値)を測定した結果と、純銅板材の熱伝導度と熱膨張係数を測定した結果とを比較したものである。 Table 1 below shows the average coefficient of thermal expansion in the surface direction and the thermal conductivity in the thickness direction (results measured by selecting any 10 locations in the heat radiating plate material) manufactured by one embodiment of the present invention. This is a comparison between the result of measuring the value obtained) and the result of measuring the thermal conductivity and the coefficient of thermal expansion of the pure copper plate.

前記表1から確認されるように、本発明の実施例による放熱板材の熱膨張係数は、面方向において、10.8×10−6/Kの熱膨張係数を示すが、このような値は、半導体素子や光素子のような電子素子を構成するセラミック物質の熱膨張係数と類似しているので、これら素子の実装時に発生する反りや剥離の問題を減らすことができる。 As confirmed from Table 1, the coefficient of thermal expansion of the heat dissipation plate material according to the embodiment of the present invention shows a coefficient of thermal expansion of 10.8 × 10-6 / K in the plane direction, and such a value is Since it is similar to the coefficient of thermal expansion of ceramic materials constituting electronic elements such as semiconductor elements and optical elements, it is possible to reduce the problems of warpage and peeling that occur when these elements are mounted.

また、本発明の実施例による放熱板材の厚さ方向の熱伝導度は、350W/mKを超過するレベルであるが、これは、銅だけからなる板材(比較例)に近接するほど優れているので、発熱量が多い高出力素子の放熱板材用にも適用され得るレベルである。 Further, the thermal conductivity in the thickness direction of the heat radiating plate material according to the embodiment of the present invention is at a level exceeding 350 W / mK, which is superior as it approaches the plate material made of only copper (comparative example). Therefore, it is a level that can be applied to a heat radiating plate material of a high output element that generates a large amount of heat.

1 放熱板材
10 第1層(Cu層)
20 第2層(Cu−Mo層)
30 第3層(Cu層)
40 第4層(Cu−Mo層)
50 第5層(Cu層)
1 Heat dissipation plate material 10 1st layer (Cu layer)
20 Second layer (Cu-Mo layer)
30 Third layer (Cu layer)
40 Fourth layer (Cu-Mo layer)
50 5th layer (Cu layer)

Claims (8)

銅(Cu)または銅(Cu)合金からなる第1層と、
前記第1層上に形成され、銅(Cu)とモリブデン(Mo)を含む合金からなる第2層と、
前記第2層上に形成され、銅(Cu)または銅(Cu)合金からなる第3層と、
前記第3層上に形成され、銅(Cu)とモリブデン(Mo)を含む合金からなる第4層と、
前記第4層上に形成され、銅(Cu)または銅(Cu)合金からなる第5層と、を含む放熱板材であって、
前記第1層、第3層および第5層の厚さは、10〜1,000μmであり、
前記第2層と第4層の厚さは、10〜60μmであり、
前記放熱板材全体に含まれるモリブデン(Mo)の含量は、3〜15重量%であ
前記第1層、第3層および第5層の銅(Cu)含量は、99重量%以上である、
放熱板材。
A first layer made of copper (Cu) or a copper (Cu) alloy,
A second layer formed on the first layer and made of an alloy containing copper (Cu) and molybdenum (Mo),
A third layer formed on the second layer and made of copper (Cu) or a copper (Cu) alloy,
A fourth layer formed on the third layer and made of an alloy containing copper (Cu) and molybdenum (Mo),
A heat radiating plate material formed on the fourth layer and containing a fifth layer made of copper (Cu) or a copper (Cu) alloy.
The thickness of the first layer, the third layer and the fifth layer is 10 to 1,000 μm.
The thickness of the second layer and the fourth layer is 10 to 60 μm.
The content of molybdenum (Mo) contained in the entire said cooling plate is Ri 3-15 wt% der,
The copper (Cu) content of the first layer, the third layer and the fifth layer is 99% by weight or more.
Heat dissipation plate material.
前記放熱板材全体に含まれるモリブデン(Mo)の含量は、5〜10重量%である、請求項1に記載の放熱板材。 The heat radiating plate material according to claim 1, wherein the content of molybdenum (Mo) contained in the entire heat radiating plate material is 5 to 10% by weight. 前記第2層と第4層は、銅(Cu)5〜40重量%と、残部がモリブデン(Mo)と不可避な不純物からなる、請求項1に記載の放熱板材。 The heat radiating plate material according to claim 1, wherein the second layer and the fourth layer are composed of 5 to 40% by weight of copper (Cu), molybdenum (Mo) and unavoidable impurities in the balance. 前記放熱板材の面方向の熱膨張係数が7〜12×10−6/Kである、請求項1に記載の放熱板材。 The heat radiating plate material according to claim 1, wherein the thermal expansion coefficient in the surface direction of the heat radiating plate material is 7 to 12 × 10 -6 / K. 前記放熱板材の厚さ方向の熱伝導度は、300W/mK以上である、請求項に記載の放熱板材。 The heat radiating plate material according to claim 4 , wherein the heat radiating plate material has a thermal conductivity of 300 W / mK or more in the thickness direction. 前記放熱板材の厚さ方向の熱伝導度は、350W/mK以上である、請求項に記載の放熱板材。 The heat radiating plate material according to claim 4 , wherein the heat radiating plate material has a thermal conductivity of 350 W / mK or more in the thickness direction. 前記放熱板材の全体厚さは、0.05〜10mmである、請求項1に記載の放熱板材。 The heat radiating plate material according to claim 1, wherein the total thickness of the heat radiating plate material is 0.05 to 10 mm. 前記第2層および第4層の厚さの合計は、全体放熱板材の厚さの5〜15%を占める、請求項に記載の放熱板材。
The heat radiating plate material according to claim 7 , wherein the total thickness of the second layer and the fourth layer occupies 5 to 15% of the total thickness of the heat radiating plate material.
JP2019072555A 2019-03-11 2019-04-05 Heat dissipation plate material Active JP6775848B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0027445 2019-03-11
KR1020190027445A KR20200108599A (en) 2019-03-11 2019-03-11 Heat sink plate

Publications (2)

Publication Number Publication Date
JP2020150244A JP2020150244A (en) 2020-09-17
JP6775848B2 true JP6775848B2 (en) 2020-10-28

Family

ID=72426135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019072555A Active JP6775848B2 (en) 2019-03-11 2019-04-05 Heat dissipation plate material

Country Status (3)

Country Link
JP (1) JP6775848B2 (en)
KR (1) KR20200108599A (en)
WO (1) WO2020184772A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021002904T5 (en) 2020-05-22 2023-03-16 Thk Co., Ltd. workpiece holding device
WO2022172856A1 (en) * 2021-02-10 2022-08-18 住友電気工業株式会社 Composite material, heat spreader, and semiconductor package
WO2022172855A1 (en) * 2021-02-10 2022-08-18 住友電気工業株式会社 Composite material, heat spreader and semiconductor package

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862737B1 (en) * 2005-10-18 2006-12-27 栄樹 津島 Cladding material and manufacturing method thereof, cladding material molding method, and heat dissipation substrate using cladding material
JP5719740B2 (en) * 2011-09-30 2015-05-20 株式会社日立製作所 Wiring material and semiconductor module using the same
KR101612346B1 (en) * 2014-05-19 2016-04-15 (주)메탈라이프 Cladding material and method for manufacturing the same, and heat sink using the cladding material
JP2016127197A (en) 2015-01-07 2016-07-11 新日鉄住金マテリアルズ株式会社 Heat dissipation substrate
JP6233677B1 (en) * 2016-08-31 2017-11-22 Jfe精密株式会社 Heat sink and manufacturing method thereof
KR101949694B1 (en) 2017-02-22 2019-02-19 주식회사 더굿시스템 Heat sink plate

Also Published As

Publication number Publication date
JP2020150244A (en) 2020-09-17
KR20200108599A (en) 2020-09-21
WO2020184772A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
EP3057125B1 (en) Substrate for heat sink-equipped power module, and production method for same
JP6775848B2 (en) Heat dissipation plate material
JP3862737B1 (en) Cladding material and manufacturing method thereof, cladding material molding method, and heat dissipation substrate using cladding material
US6129993A (en) Heat spreader and method of making the same
JP6233677B1 (en) Heat sink and manufacturing method thereof
KR101949694B1 (en) Heat sink plate
JPH09312361A (en) Composite material for electronic component and its manufacture
JP2011023475A (en) Insulating substrate, insulating circuit board, semiconductor device, method of manufacturing the insulating substrate, and method of manufacturing the insulating circuit board
JP6786090B2 (en) Heat dissipation plate material
JPH0769750A (en) Bonded ceramic structure
WO2019180914A1 (en) Electronic-component-mounted module
JP2012191004A (en) Manufacturing method of substrate for power module and substrate for power module
JPH08102570A (en) Ceramic circuit board
JP5614127B2 (en) Power module substrate and manufacturing method thereof
JP6774252B2 (en) Insulation substrate manufacturing method and insulation substrate
JP6756189B2 (en) Manufacturing method for power module board with heat sink and power module board with heat sink
JPS61119051A (en) Semiconductor device
JP6673635B2 (en) Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink
KR102263934B1 (en) Heat sink plate
JP6237058B2 (en) Power module substrate with copper plate and method for manufacturing power module substrate with copper plate
KR102257877B1 (en) Heat sink plate
JPH09312364A (en) Composite material for electronic component and its manufacture
JP2009182209A (en) Semiconductor device
JPH0529509A (en) Board for semiconductor
JPH10173109A (en) Power semiconductor module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200930

R150 Certificate of patent or registration of utility model

Ref document number: 6775848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250