JP2020053782A - 固体撮像素子、および、撮像装置 - Google Patents

固体撮像素子、および、撮像装置 Download PDF

Info

Publication number
JP2020053782A
JP2020053782A JP2018179610A JP2018179610A JP2020053782A JP 2020053782 A JP2020053782 A JP 2020053782A JP 2018179610 A JP2018179610 A JP 2018179610A JP 2018179610 A JP2018179610 A JP 2018179610A JP 2020053782 A JP2020053782 A JP 2020053782A
Authority
JP
Japan
Prior art keywords
circuit
pixel
imaging device
current source
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018179610A
Other languages
English (en)
Inventor
凌平 川崎
Ryohei Kawasaki
凌平 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Priority to JP2018179610A priority Critical patent/JP2020053782A/ja
Priority to PCT/JP2019/028751 priority patent/WO2020066245A1/ja
Priority to US17/271,004 priority patent/US11323645B2/en
Publication of JP2020053782A publication Critical patent/JP2020053782A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/766Addressed sensors, e.g. MOS or CMOS sensors comprising control or output lines used for a plurality of functions, e.g. for pixel output, driving, reset or power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/767Horizontal readout lines, multiplexers or registers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors

Abstract

【課題】画素毎に差動入力回路を設けた固体撮像素子において、消費電力を低減する。【解決手段】比較結果出力回路310において、固体撮像素子(受光チップ201)は、電流源回路327と、一対の差動トランジスタ227、228とデジタル信号生成部380とを備える。この固体撮像素子において電流源回路327は、所定のイネーブル信号が入力された場合には所定の定電流を供給する。一対の差動トランジスタ227と228は、画素回路により生成されたアナログ信号と所定の参照信号との差分を増幅した差動増幅信号を前記定電流を用いて生成する。デジタル信号生成部380は、差動増幅信号からデジタル信号を生成する。【選択図】図7

Description

本技術は、固体撮像素子、および、撮像装置に関する。詳しくは、差動入力回路を用いてアナログ信号をデジタル信号に変換する固体撮像素子、および、撮像装置に関する。
従来より、固体撮像素子などにおいては、構造が単純であるため、アナログ信号とランプ信号との比較結果が反転したときのカウンタ値をデジタル信号として保持するアナログデジタル変換回路が広く用いられている。例えば、アナログ信号およびランプ信号を比較する差動入力回路と、その差動入力回路の出力が反転した際のカウンタ値をデジタル信号として保持するデータ記憶部とを画素毎に配置した固体撮像素子が提案されている(例えば、特許文献1参照。)。
国際公開第2016/136448号公報
上述の従来技術では、アナログ信号をデジタル信号に変換する回路を画素毎に配置することにより、全画素で同時にAD(Analog to Digital)変換を行う。このため、上述の固体撮像素子では、カラムごとにADC(Analog to Digital Converter)を配置して行単位でAD変換を行う場合と比較して、高速に画像データを読み出す。しかしながら、この従来技術では、全画素のうち一部を間引いて読み出す際に、間引く画素の差動入力回路にはアナログ信号が入力されないが、差動入力回路には一般に定電流源が配置され、入力が無い期間においても、その定電流が流れてしまう。そのため、消費電力を十分に低減することができなくなってしまう。差動入力回路への電源電圧の供給を停止すれば、定電流を遮断することができるが、電源電圧を再投入してから安定するまでに時間がかかるため、電源電圧の供給停止は望ましくない。
本技術はこのような状況に鑑みて生み出されたものであり、画素毎に差動入力回路を設けた固体撮像素子において、消費電力を低減することを目的とする。
本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、所定のイネーブル信号に従って所定の定電流を供給する電流源回路と、画素回路により生成されたアナログ信号と所定の参照信号との差分を増幅した差動増幅信号を上記定電流を用いて生成する一対の差動トランジスタと、上記差動増幅信号からデジタル信号を生成するデジタル信号生成部とを具備する固体撮像素子、および、その制御方法である。これにより、イネーブル信号に従って一対の差動トランジスタに定電流が供給されるという作用をもたらす。
また、この第1の側面において、上記電流源回路は、上記定電流を供給する電流源と、上記イネーブル信号に従って上記電流源と上記一対の差動トランジスタに共通に接続されたコモンノードとの間の経路を開閉するスイッチング素子とを備えてもよい。これにより、イネーブル信号に従って、コモンノードと電流源との間の経路が開閉されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、所定の受光チップに配置され、上記電流源回路は、所定の回路チップに配置される構成であってもよい。これにより、受光チップの回路規模が削減されるという作用をもたらす。
また、この第1の側面において、上記画素回路と上記電流源回路の一部とは、所定の受光チップに配置され、上記電流源回路の残りは、所定の回路チップに配置される構成であってもよい。これにより、回路チップの回路規模が削減されるという作用をもたらす。
また、この第1の側面において、上記電流源回路は、所定のバイアス電圧に応じた電流を上記定電流として供給する電流源と、上記イネーブル信号に従って上記バイアス電圧を上記電流源に供給するバイアス電圧供給回路とを備えてもよい。これにより、バイアス電圧の供給または停止により、定電流が供給または遮断されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、所定の受光チップに配置され、上記電流源回路は、所定の回路チップに配置される構成であってもよい。これにより、受光チップの回路規模が削減されるという作用をもたらす。
また、この第1の側面において、上記画素回路と上記電流源回路の一部とは、所定の受光チップに配置され、上記電流源回路の残りは、所定の回路チップに配置される構成であってもよい。これにより、回路チップの回路規模が削減されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、光電変換により電荷を生成する光電変換素子と、上記電荷を蓄積して上記電荷の量に応じた電圧の信号を上記アナログ信号として生成する浮遊拡散層と、転送が指示されると上記電荷を上記光電変換素子から上記浮遊拡散層へ転送する転送トランジスタとを備えてもよい。これにより、光電変換により転送された電荷の量に応じたアナログ信号が生成されるという作用をもたらす。
また、この第1の側面において、上記画素回路は、排出が指示されると上記光電変換素子から上記電荷を排出する排出トランジスタをさらに備えてもよい。これにより、光電変換素子から電荷が排出されるという作用をもたらす。
また、この第1の側面において、上記画素回路がそれぞれに設けられた複数の画素を二次元格子状に配列した画素領域をさらに具備し、上記画素領域内の隣接する一対の画素の一方は、上記一対の画素のそれぞれの上記浮遊拡散層を接続する接続トランジスタをさらに備えてもよい。これにより、アナログ信号が加算平均されるという作用をもたらす。
また、この第1の側面において、上記画素回路がそれぞれに設けられた複数の画素を二次元格子状に配列した画素領域をさらに具備し、上記電流源回路は、上記画素の行のうち有効にする行を示す行イネーブル信号と上記画素の列のうち有効にする列を示す列イネーブル信号とから上記イネーブル信号を生成する論理ゲートを含むものであってもよい。これにより、画素毎に有効または無効に設定されるという作用をもたらす。
また、この第1の側面において、前記画素回路がそれぞれに設けられた複数の画素を設けた画素ブロックを配列した画素領域をさらに具備し、前記複数の画素は、浮遊拡散層を共有し、前記画素回路は、光電変換により電荷を生成する光電変換素子と、転送が指示されると前記電荷を前記光電変換素子から前記浮遊拡散層へ転送する転送トランジスタと
を備えてもよい。これにより、浮遊拡散層を共有した複数の画素によりアナログ信号が順に生成されるという作用をもたらす。
また、この第1の側面において、上記画素回路がそれぞれに設けられた複数の画素を含む画素ブロックを配列した画素領域をさらに具備し、上記電流源回路は、上記画素ブロックの行のうち有効にする行を示す行イネーブル信号と上記画素ブロックの列のうち有効にする列を示す列イネーブル信号とから上記イネーブル信号を生成する論理ゲートを含み、上記画素ブロック内の上記複数の画素は、上記論理ゲートを共有してもよい。これにより、画素ブロックごとに有効または無効に設定されるという作用をもたらす。
また、この第1の側面において、上記電流源回路は、上記デジタル信号が生成されたときに上記定電流を遮断してもよい。これにより、消費電力がさらに削減されるという作用をもたらす。
また、本技術の第2の側面は、所定のイネーブル信号に従って所定の定電流を供給する電流源回路と、画素回路により生成されたアナログ信号と所定の参照信号との差分を増幅した差動増幅信号を上記定電流を用いて生成する一対の差動トランジスタと、上記差動増幅信号からデジタル信号を生成するデジタル信号生成部と、上記デジタル信号を処理するロジック回路とを具備する撮像装置である。これにより、イネーブル信号に従って一対の差動トランジスタに定電流が供給され、デジタル信号が生成されるという作用をもたらす。
本技術の第1の実施の形態における撮像装置の一構成例を示すブロック図である。 本技術の第1の実施の形態における固体撮像素子の積層構造の一例を示す図である。 本技術の第1の実施の形態における受光チップの一構成例を示すブロック図である。 本技術の第1の実施の形態における回路チップの一構成例を示すブロック図である。 本技術の第1の実施の形態におけるクラスタの一構成例を示すブロック図である。 本技術の第1の実施の形態における画素とクラスタ内の回路との接続関係の一例を示す斜視図である。 本技術の第1の実施の形態における画素および比較結果出力回路の一構成例を示す回路図である。 本技術の第1の実施の形態における画素内の素子のレイアウトを示す平面図である。 本技術の第1の実施の形態における画素内の端子の配置の一例を示す図である。 本技術の第1の実施の形態におけるイネーブル信号の利用方法を説明するための図である。 本技術の第1の実施の形態における固体撮像素子の動作の一例を示すフローチャートである。 本技術の第1の実施の形態の第1の変形例における画素回路の一構成例を示す回路図である。 本技術の第1の実施の形態の第2の変形例における画素回路の一構成例を示す回路図である。 本技術の第1の実施の形態の第3の変形例における画素の一構成例を示す回路図である。 本技術の第1の実施の形態の第4の変形例におけるクラスタの一構成例を示すブロック図である。 本技術の第1の実施の形態の第4の変形例におけるNOR(否定論理積)ゲートを配置した比較結果出力回路の一構成例を示す回路図である。 本技術の第1の実施の形態の第4の変形例におけるNOR(否定論理積)ゲートを配置していない比較結果出力回路の一構成例を示す回路図である。 本技術の第1の実施の形態の第5の変形例における比較結果出力回路の一構成例を示す回路図である。 本技術の第1の実施の形態の第6の変形例における画素および比較結果出力回路の一構成例を示す回路図である。 本技術の第2の実施の形態における比較結果出力回路の一構成例を示す回路図である。 本技術の第2の実施の形態の変形例における画素および比較結果出力回路の一構成例を示す回路図である。 車両制御システムの概略的な構成例を示すブロック図である。 撮像部の設置位置の一例を示す説明図である。
以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
1.第1の実施の形態(イネーブル信号に従って定電流を供給または遮断する例)
2.第2の実施の形態(イネーブル信号に従ってバイアス電圧の印加または停止により定電流を供給または遮断する例)
3.移動体への応用例
<1.第1の実施の形態>
[撮像装置の構成例]
図1は、本技術の第1の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、画像データを撮像するための装置であり、光学部110、固体撮像素子200およびDSP(Digital Signal Processing)回路120を備える。さらに撮像装置100は、表示部130、操作部140、バス150、フレームメモリ160、記憶部170および電源部180を備える。撮像装置100としては、例えば、デジタルスチルカメラなどのデジタルカメラの他、撮像機能を持つスマートフォンやパーソナルコンピュータ、車載カメラ等が想定される。
光学部110は、被写体からの光を集光して固体撮像素子200に導くものである。固体撮像素子200は、垂直同期信号VSYNCに同期して、光電変換により画像データを生成するものである。ここで、垂直同期信号VSYNCは、撮像のタイミングを示す所定周波数の周期信号である。固体撮像素子200は、生成した画像データをDSP回路120に信号線209を介して供給する。
DSP回路120は、固体撮像素子200からの画像データに対して所定の信号処理を実行するものである。このDSP回路120は、処理後の画像データをバス150を介してフレームメモリ160などに出力する。
表示部130は、画像データを表示するものである。表示部130としては、例えば、液晶パネルや有機EL(Electro Luminescence)パネルが想定される。操作部140は、ユーザの操作に従って操作信号を生成するものである。
バス150は、光学部110、固体撮像素子200、DSP回路120、表示部130、操作部140、フレームメモリ160、記憶部170および電源部180が互いにデータをやりとりするための共通の経路である。
フレームメモリ160は、画像データを保持するものである。記憶部170は、画像データなどの様々なデータを記憶するものである。電源部180は、固体撮像素子200、DSP回路120や表示部130などに電源を供給するものである。
[固体撮像素子の構成例]
図2は、本技術の第1の実施の形態における固体撮像素子200の積層構造の一例を示す図である。この固体撮像素子200は、回路チップ202と、その回路チップ202に積層された受光チップ201とを備える。これらの基板は、ビアなどの接続部を介して電気的に接続される。なお、ビアの他、Cu−Cu接合やバンプ、TCI(ThruChip Interface)などの誘導結合通信技術により接続することもできる。
図3は、本技術の第1の実施の形態における受光チップ201の一構成例を示す平面図である。この受光チップ201には、画素領域210と、Vドライバ231および232と、Hドライバ233と、DAC(Digital to Analog Converter)234とが配置される。また、画素領域210には、複数の画素ブロック211が二次元格子状に配列される。それぞれの画素ブロック211には、複数の画素220が配列される。例えば、画素ブロック211には、2行×4列の8個の画素220が配列される。なお、画素ブロック211内の画素数は8個に限定されない。
画素220は、光電変換によりアナログ信号を生成するものである。また、この画素220内の差動対のトランジスタと、後述する回路チップ202内のカレントミラー回路とを接続した回路は、アナログ信号とDAC234からの参照信号との差分を増幅する差動増幅器として動作する。
Vドライバ231および232は、読み出す対象の行の画素220を駆動し、差動増幅信号を出力させるものである。例えば、Vドライバ231は、奇数行を駆動し、Vドライバ232は、偶数行を駆動する。また、Hドライバ233は、列単位で画素220を駆動する。なお、Vドライバ231および232のそれぞれが駆動する行を必ずしも偶数行、奇数行などに分ける必要は無い。例えば、セトリングを速くする目的で、Vドライバ231および232が同じ行を駆動することもできる。
DAC234は、DA(Digital to Analog)変換により、スロープ状に変化するアナログのランプ信号を参照信号として生成するものである。このDAC234は、生成した参照信号を画素領域210内の全画素に供給する。
図4は、本技術の第1の実施の形態における回路チップ202の一構成例を示すブロック図である。この回路チップ202には、AD変換回路領域250と、Vドライバ261および262と、Hドライバ263と、ロジック回路264とが配置される。AD変換回路領域250には、複数のクラスタ300が二次元格子状に配列される。クラスタ300は、画素ブロック211ごとに設けられ、画素ブロック211の個数をN(Nは、整数)個とすると、クラスタ300もN個設けられる。画素ブロック211とクラスタ300とは、1対1で接続される。
クラスタ300は、対応する画素ブロック211からのアナログの差動増幅信号を画素毎にデジタル信号に変換し、ロジック回路264に画素データとして供給するものである。
Vドライバ261および262は、クラスタ300内の回路を駆動してデジタル信号を生成させるものである。例えば、Vドライバ261は、奇数行に対応する回路を駆動し、Vドライバ262は、偶数行に対応する回路を駆動する。あるいは、Vドライバ261および262は、同じ行の回路を駆動する。また、Hドライバ263は、生成されたデジタル信号をクラスタ300からロジック回路264へ画素データとして転送させるものである。
ロジック回路264は、転送された画素データに対して画素毎にCDS(Correlated Double Sampling)処理などの各種の信号処理を行うものである。このロジック回路264は、処理後の画素データからなる画像データをDSP回路120に供給する。
[クラスタの構成例]
図5は、本技術の第1の実施の形態におけるクラスタ300の一構成例を示すブロック図である。クラスタ300には、画素ブロック211内の画素毎に、比較結果出力回路310およびデータ記憶部360が配置される。画素ブロック211内の画素数が8個である場合には、比較結果出力回路310およびデータ記憶部360は、それぞれ8個ずつ配置される。また、AD変換回路領域250において、クラスタ300の列ごとに、時刻コード転送部370が配置される。クラスタ300の列数がM(Mは、整数)である場合、時刻コード転送部370もM個配置される。ある列のクラスタ300の個数をL(Lは、整数)個とすると、それらのL個のクラスタ300は、その列に対応する1つの時刻コード転送部370を共有する。
また、8個の比較結果出力回路310のそれぞれは、クラスタ300に対応する画素ブロック211内の8個の画素220と1対1に接続される。例えば、画素220がベイヤー配列で配列される場合、画素ブロック211内の2行×4列のうち、左側の2行×2列にR(Red)、Gb(Green)、B(Blue)およびGr(Green)の画素が配列される。また、右側の2行×2列にも同様にR、Gb、BおよびGr画素が配列される。この配列において、左側のR、Gb、BおよびGr画素は、左側の4個の比較結果出力回路310に接続され、右側のR、Gb、BおよびGr画素は、右側の4個の比較結果出力回路310に接続される。
時刻コード転送部370は、時刻コードを生成するカウンタ(不図示)からクラスタ300へ時刻コードを転送し、クラスタ300からロジック回路264に時刻コードを転送するものである。この時刻コードは、参照信号がスロープ状に変化する期間内の時刻を示す。
比較結果出力回路310は、対応する画素220からの差動増幅信号に対して、電圧変換や増幅処理を行うものである。この比較結果出力回路310は、処理後の信号を、アナログ信号および参照信号の比較結果としてデータ記憶部360に出力する。
データ記憶部360は、比較結果が反転したタイミングにおいて時刻コードを画素データとして保持するものである。そして、データ記憶部360は、保持した時刻コード(すなわち、画素データ)を時刻コード転送部370を介してロジック回路264に出力する。これにより、アナログの差動増幅信号は、デジタルの画素データに変換される。
図6は、本技術の第1の実施の形態における画素220とクラスタ300内の回路との接続関係の一例を示す斜視図である。
画素ブロック211内のm(mは、整数)行、n(nは、整数)列の画素220の座標を(m、n)とする。左側の座標(0、0)、(0、1)、(1、0)および(1、1)にGb画素、B画素、R画素およびGr画素が配置される。また、右側の座標(0、2)、(0、3)、(1、2)および(1、3)にもGb画素、B画素、R画素およびGr画素が配置される。このような配列は、ベイヤー配列と呼ばれる。なお、ベイヤー配列以外の配列により画素を配列することもできる。例えば、R、G、BおよびW(White)画素を配列することもできる。
左側のR、Gb、BおよびGr画素は、左側の4個の比較結果出力回路310に接続され、右側のR、Gb、BおよびGr画素は、右側の4個の比較結果出力回路310に接続される。なお、同図において、「AD」は、比較結果出力回路310を示し、「MEM」は、データ記憶部360を示す。
[画素および比較結果出力回路の構成例]
図7は、本技術の第1の実施の形態における画素220および比較結果出力回路310の一構成例を示す回路図である。
受光チップ201には、画素220が配置され、その画素220内には、画素回路221と、差動トランジスタ227および228とが配置される。
画素回路221は、光電変換によりアナログ信号を生成するものである。この画素回路221は、例えば、リセットトランジスタ222、浮遊拡散層223、転送トランジスタ224、フォトダイオード225および排出トランジスタ226を備える。リセットトランジスタ222、転送トランジスタ224、フォトダイオード225および排出トランジスタ226として、例えば、N型のMOS(Metal-Oxide-Semiconductor)トランジスタが用いられる。
フォトダイオード225は、光電変換により電荷を生成するものである。排出トランジスタ226は、ドライバ(Vドライバ231など)からの駆動信号OFGにより排出が指示されるとフォトダイオード225から電荷を排出するものである。
転送トランジスタ224は、ドライバからの転送信号TXにより転送が指示されると、露光終了時にフォトダイオード225から浮遊拡散層223へ電荷を転送するものである。
浮遊拡散層223は、転送された電荷を蓄積して蓄積した電荷量に応じた電圧のアナログ信号SIGを生成するものである。
リセットトランジスタ222は、ドライバからのリセット信号AZにより初期化が指示されると、浮遊拡散層223を初期化するものである。
差動トランジスタ227および228は、アナログ信号SIGと参照信号RMPとの差分を定電流を用いて増幅し、差動増幅信号DIFとして出力するものである。これらの差動トランジスタ227および228として、例えば、N型のMOSトランジスタが用いられる。差動トランジスタ227および228のそれぞれのソースは、コモンノードを介して回路チップ202内の回路に共通に接続される。また、差動トランジスタ228のゲートは、浮遊拡散層223に接続され、差動トランジスタ227のゲートは、DAC234に接続される。
また、比較結果出力回路310には、P型トランジスタ321、322および323と、N型トランジスタ324と、電流源トランジスタ325と、NORゲート326と、デジタル信号生成部380とが配置される。デジタル信号生成部380には、電圧変換回路330と、正帰還回路340と、インバータ351および352と、データ記憶部360とが配置される。P型トランジスタ321、P型トランジスタ322、P型トランジスタ323、N型トランジスタ324および電流源トランジスタ325として、例えば、MOSトランジスタが用いられる。
P型トランジスタ321、322および323は、電源電圧HVの端子に並列に接続される。また、P型トランジスタ321のゲートは、自身のドレインとP型トランジスタ322のゲートとに接続される。また、P型トランジスタ321のドレインは、信号線329−1を介して差動トランジスタ227のドレインに接続され、P型トランジスタ322のドレインは、信号線329−2を介して差動トランジスタ228のドレインに接続される。また、P型トランジスタ323のゲートは、P型トランジスタ322のドレインに接続され、ドレインは電圧変換回路330に接続される。
P型トランジスタ321、322および323からなる回路は、上述の接続構成により、カレントミラー回路として機能する。このカレントミラー回路から、電圧変換回路330へ差動増幅信号DIFが出力される。
また、N型トランジスタ324のドレインは、信号線329−3を介して差動トランジスタ227および228のコモンノードに接続され、ソースは、電流源トランジスタ325のドレインに接続される。
NORゲート326は、行イネーブル信号XVBIASEN_iと、列イネーブル信号XHBIASEN_jとの否定論理積をN型トランジスタ324のゲートへ出力するものである。ここで、行イネーブル信号XVBIASEN_iは、i(iは整数)行を有効にするか否かを指示するイネーブル信号であり、Vドライバ261などのドライバにより生成される。列イネーブル信号XHBIASEN_jは、j(jは整数)行を有効にするか否かを指示するイネーブル信号であり、Hドライバ263などのドライバにより生成される。また、ドライバは、行や列を有効にする際に、対応するイネーブル信号に「0」を設定し、無効にする際にそのイネーブル信号に「1」を設定する。また、行イネーブル信号XVBIASEN_iは、i行の画素に接続された比較結果出力回路310に入力され、列イネーブル信号XHBIASEN_jは、j行の画素に接続された比較結果出力回路310に入力される。
NORゲート326は、行イネーブル信号XVBIASEN_iおよび列イネーブル信号XHBIASEN_jが両方とも有効を示す場合に、N型トランジスタ324を閉状態に制御し、いずれかが無効である場合にN型トランジスタ324を開状態に制御する。なお、NORゲート326は、特許請求の範囲に記載の論理ゲートの一例である。
電流源トランジスタ325のゲートには、所定のバイアス電圧Vbiasが印加され、ソースは接地される。
上述の接続構成により、電流源トランジスタ325は、バイアス電圧Vbiasに応じた定電流を供給する電流源として機能する。また、N型トランジスタ324は、イネーブル信号に従って、差動トランジスタ227および228のコモンノードと、電流源トランジスタ325との間の経路を開閉する。なお、電流源トランジスタ325は、特許請求の範囲に記載の電流源の一例である。また、N型トランジスタ324は、特許請求の範囲に記載のスイッチング素子の一例である。
Vドライバ261などのドライバは、全画素の一部を間引いて読み出す際に、間引く画素に対応する行または列を対応するイネーブル信号により無効に設定する。無効に設定された画素の差動入力回路320は、定電流の流れないスタンバイ状態となる。これにより、イネーブル信号に関わらず、定電流を流す構成と比較して、差動入力回路320の消費電力を削減することができる。定電流を遮断する方法としては、電源電圧HVの供給停止も考えられるが、電源の再投入から電圧が安定するまでに時間を要するため、好ましくない。
また、N型トランジスタ324、電流源トランジスタ325およびNORゲート326からなる回路は、イネーブル信号に従って定電流を供給する電流源回路327として機能する。
電圧変換回路330は、差動入力回路320からの差動増幅信号DIFの電圧を変換するものである。この電圧変換回路330は、N型トランジスタ331を備える。N型トランジスタ331として、例えば、MOSトランジスタが用いられる。このN型トランジスタ331は、差動入力回路320と正帰還回路340との間に挿入され、そのゲートには、電源電圧HVより低い電源電圧LVが印加される。
正帰還回路340は、出力の一部を入力(差動増幅信号)に加算して正帰還信号PFBとして出力するものである。この正帰還回路340は、P型トランジスタ341および342と、N型トランジスタ343と、NORゲート344とを備える。P型トランジスタ341、P型トランジスタ342およびN型トランジスタ343として、例えば、MOSトランジスタが用いられる。
P型トランジスタ341、P型トランジスタ342およびN型トランジスタ343は、電源電圧LVの端子と接地端子との間において直列に接続される。P型トランジスタ341のゲートには、Vドライバ261などのドライバからの駆動信号INI2が入力され、N型トランジスタ343には、Vドライバ261などのドライバからの駆動信号INI1が入力される。
NORゲート344の2つの入力端子の一方は、P型トランジスタ342およびN型トランジスタ343の接続端子に接続され、他方には、Vドライバ261などのドライバからの駆動信号FORCEVCOが入力される。NORゲート344は、入力信号の否定論理積を正帰還信号PFBとしてP型トランジスタ342のゲートとインバータ351とに出力するものである。
インバータ351は、正帰還信号PFBを反転して比較結果XVCOとしてインバータ352およびデータ記憶部360に出力するものである。インバータ352は、比較結果XVCOを反転して比較結果VCOとしてデータ記憶部360に出力するものである。
上述の電圧変換回路330、正帰還回路340およびデータ記憶部360からなる回路は、差動増幅信号DIFからデジタル信号を生成するデジタル信号生成部380として機能する。
なお、N型トランジスタ324および電流源トランジスタ325については、後述するように受光チップ201に配置することもできるが、同図に例示したように回路チップ202に配置することにより、受光チップ201の回路規模を削減することができる。
図8は、本技術の第1の実施の形態における画素220内の素子のレイアウトを示す平面図である。同図は、光軸に垂直な所定方向から見た画素220の平面図の一例である。
画素220には、リセットトランジスタ222、転送トランジスタ224、フォトダイオード225および排出トランジスタ226と、差動トランジスタ227および228とが配置される。フォトダイオード225の一辺に転送トランジスタ224および排出トランジスタ226が配置され、それらの周辺にリセットトランジスタ222、差動トランジスタ227および228が配置される。
図7に例示したようにN型トランジスタ324および電流源トランジスタ325を回路チップ202に配置したため、それらを受光チップ201内の画素220に配置する必要が無くなる。これにより、図8に例示するように、画素220のトランジスタ数を削減することができる。
図9は、本技術の第1の実施の形態における画素内の端子の配置の一例を示す図である。図7に例示したように、画素220は、信号線329−1、329−2および329−3を介して回路チップ202とCu−Cu接続などにより電気的に接続される。このため、これらの信号線に対応する端子212、213および214が画素ごとに配置される。画素220の形状を正方形とし、その一辺の長さをAとする。この場合に、端子212および213は、それらの中央の間隔が2A/3となるように配置される。また、端子212および213のそれぞれの中央と、端子214の中央との間の間隔はA/2となるように配置される。
図10は、本技術の第1の実施の形態におけるイネーブル信号の利用方法を説明するための図である。固体撮像素子200は、画素領域210の一部の領域を読み出すクロップ処理を行うことができる。また、固体撮像素子200は、行や列の単位で画素を間引く間引き処理を行うこともできる。前者のクロップ処理は、画角を狭くする際に用いられる。後者の間引き処理は、画像データ内の画素数を少なくするために用いられる。固体撮像素子200内のVドライバ231等のドライバは、クロップ処理や間引き処理において、読み出す画素のみを駆動し、残りの画素を駆動しない。また、ドライバは、クロップ処理や間引き処理において、読み出す画素に対応する行および列をイネーブル信号により有効にし、残りを無効にする。
例えば、AD変換回路領域250の左端をX1、右端をX6とし、上端をY1、下端をY6とする。ドライバが行イネーブル信号XVBIASEN_iにより、Y1乃至Y6の全行を有効にし、列イネーブル信号XHBIASEN_jによりX1乃至X6の全列を有効にした場合、フル画角の画像データが読み出される。
また、一点鎖線で囲まれた領域の左端をX2、右端をX5とし、上端をY2、下端をY5とする。ドライバが行イネーブル信号XVBIASEN_iおよび列イネーブル信号XHBIASEN_jにより、Y2乃至Y5の行とX2乃至X5の列とを有効にし、残りの行および列を無効にした場合を考える。この場合には、例えば、クロップ処理によりスーパー35ミリメートル(mm)の画角の画像データが読み出される。
また、太い点線で囲まれた領域の左端をX3、右端をX4とし、上端をY3、下端をY4とする。ドライバが行イネーブル信号XVBIASEN_iおよび列イネーブル信号XHBIASEN_jにより、Y3乃至Y4の行とX3乃至X4の列とを有効にし、残りの行および列を無効にした場合を考える。この場合には、例えば、クロップ処理により4Kの画角の画像データが読み出される。なお、クロップ処理により読み出す画角は、スーパー35ミリメートルや4Kの画角に限定されず、任意に設定することができる。
また、行や列を間引く場合、ドライバは、間引く行や列をイネーブル信号により無効に設定する。例えば、奇数行および奇数列を間引き、偶数行および偶数列を読み出す場合、ドライバは、偶数行および偶数列をイネーブル信号により有効に設定し、残りを無効にする。これにより、画像データの画素数(言い換えれば、解像度)を削減することができる。画素数の削減により、画像データの読出し速度が向上し、固体撮像素子200の撮像時の消費電力が低下する。
[固体撮像素子の動作例]
図11は、本技術の第1の実施の形態における固体撮像素子200の動作の一例を示すフローチャートである。この動作は、例えば、画像データを撮像するための所定のアプリケーションが実行されたときに開始される。
固体撮像素子200は、クロップ処理により読み出す範囲をイネーブル信号により設定する(ステップS901)。そして、固体撮像素子200は、その範囲内の全画素のアナログ信号をAD変換し(ステップS902)、CDS処理などの信号処理を行う(ステップS903)。ステップS903の後に、固体撮像素子200は、撮像のための動作を終了する。複数の画像データを連続して撮像する際には、垂直同期信号に同期してステップS901乃至S903が繰り返し実行される。
このように、本技術の第1の実施の形態では、電流源回路327がイネーブル信号に従って差動トランジスタ227および228へ定電流を供給または遮断する。これにより、イネーブル信号に関わらずに常に定電流を供給する場合と比較して差動入力回路320の消費電力を削減することができる。
[第1の変形例]
上述の第1の実施の形態では、画素回路221ごとに3つのトランジスタを配置していたが、画素数の増大に伴って画素領域210の回路規模が増大してしまう。この第1の実施の形態の第1の変形例の画素回路221は、画素回路221のトランジスタ数を削減した点において第1の実施の形態と異なる。
図12は、本技術の第1の実施の形態の第1の変形例における画素回路221の一構成例を示す回路図である。この第1の実施の形態の第1の変形例の画素回路221は、排出トランジスタ226が設けられていない点において第1の実施の形態と異なる。
第1の実施の形態の第1の変形例において、Vドライバ231等のドライバは、フォトダイオード225から電荷を排出させる際に、リセット信号AZおよび転送信号TXを同時に送信する。
このように、本技術の第1の実施の形態の第1の変形例では、画素回路221から排出トランジスタ226を削減したため、排出トランジスタ226を設ける第1の実施の形態と比較して、画素領域210の回路規模を削減することができる。
[第2の変形例]
上述の第1の実施の形態では、画素回路221ごとに3つのトランジスタを配置していたが、画素数の増大に伴って画素領域210の回路規模が増大してしまう。この第1の実施の形態の第2の変形例の画素領域210は、複数の画素220が浮遊拡散層223を共有する点において第1の実施の形態と異なる。
図13は、本技術の第1の実施の形態の第2の変形例における画素ブロック211の一構成例を示す回路図である。この第1の実施の形態の第2の変形例の画素ブロック211は、複数(8個など)の画素回路221が、浮遊拡散層223を共有する点において第1の実施の形態と異なる。画素回路221のそれぞれには、転送トランジスタ224、フォトダイオード225および排出トランジスタ226が配置される。複数の画素回路221のそれぞれの転送トランジスタ224は、共有する浮遊拡散層223へ順に電荷を転送する。また、差動トランジスタ227および差動トランジスタ228およびリセットトランジスタ222も、複数の画素回路221により共有される。1つの画素回路221と、差動トランジスタ227および228と、リセットトランジスタ222および浮遊拡散層223とにより、1つの画素220が構成される。
なお、第2の変形例の固体撮像素子200に、第1の変形例を適用することもできる。
このように、本技術の第1の実施の形態の第2の変形例によれば、複数の画素回路221が浮遊拡散層223を共有するため、浮遊拡散層223を共有しない第1の実施の形態と比較して、画素回路221の回路規模を削減することができる。
[第3の変形例]
上述の第1の実施の形態では、全画素のうち一部の画素データを間引いて読み出していたが、間引き処理により画像データの画素数が少なくなり、画質が低下するおそれがある。この第1の実施の形態の第3の変形例の固体撮像素子200は、アナログ信号の加算平均により、画質の低下を抑制する点において第1の実施の形態と異なる。
図14は、本技術の第1の実施の形態の第3の変形例における画素220の一構成例を示す回路図である。この第1の実施の形態の第3の変形例の画素220は、隣接する一対の画素220の一方に、接続トランジスタ229がさらに配置される点において第1の実施の形態と異なる。接続トランジスタ229として、例えば、N型のMOSトランジスタが用いられる。
接続トランジスタ229は、ドライバからの駆動信号FDLINKに従って隣接する一対の画素220のそれぞれの浮遊拡散層223を接続するものである。駆動信号FDLINKは、例えば、間引き処理の際に供給される。浮遊拡散層223の接続により、一対の画素220のそれぞれの浮遊拡散層223の生成したアナログ信号が加算平均される。加算平均により、ノイズが低減され、間引き処理による画質の低下を抑制することができる。
なお、一対の画素220のアナログ信号を加算平均しているが、隣接する3つ以上の画素220のそれぞれの浮遊拡散層223を接続し、加算平均を行ってもよい。また、第3の変形例の固体撮像素子200に、第1または第2の変形例を適用することもできる。
このように、本技術の第1の実施の形態の第3の変形例によれば、接続トランジスタ229が、隣接する一対の画素220のそれぞれの浮遊拡散層223を接続するため、それらの画素220のそれぞれのアナログ信号を加算平均することができる。これにより、間引き処理による画質の低下を抑制することができる。
[第4の変形例]
上述の第1の実施の形態では、ドライバは、行および列の単位でイネーブル信号を供給していたが、行数や列数が多くなるほど、イネーブル信号を伝送する信号線が増大してしまう。この第1の実施の形態の第4の変形例の固体撮像素子200は、複数の画素(例えば、隣接する4画素)からなるブロック単位でイネーブル信号を供給する点において第1の実施の形態と異なる。
図15は、本技術の第1の実施の形態の第4の変形例におけるクラスタ300の一構成例を示すブロック図である。この第1の実施の形態の第4の変形例のクラスタ300は、隣接する4画素ごとにイネーブル信号が供給される点において第1の実施の形態と異なる。
第1の実施の形態の第4の変形例の画素220は、例えば、隣接する4画素の色が同一となるように配列される。例えば、クラスタ300の左側の2行×2列の4画素は、全てR、Gb、B、Grのいずれかの画素(Gb画素など)であり、右側の2行×2列の4画素は、左側と異なる同色の画素(B画素など)である。色の同じ4画素からなる画素ブロックを以下、「同色画素ブロック」と称する。
ドライバは、左側の4画素のいずれかに対応する比較結果出力回路310に行イネーブル信号XVBIASEN_iおよび列イネーブル信号XHBIASEN_jを供給する。また、ドライバは、画素ブロック211内の右側の4画素のいずれかに対応する比較結果出力回路310に行イネーブル信号XVBIASEN_iおよび列イネーブル信号XHBIASEN_jを供給する。ここで、行イネーブル信号XVBIASEN_iは、同色画素ブロックの行ごとに生成され、列イネーブル信号XHBIASEN_jは、同色画素ブロックの列ごとに生成される。
左側の4つの比較結果出力回路310のうちイネーブル信号が入力される回路には、NOR(否定論理積)ゲート326が配置され、残りの3つにはNORゲート326が配置されない。そして、左側の4つの比較結果出力回路310は、1つのNORゲート326を共有する。NORゲート326が配置されない比較結果出力回路310のそれぞれには、NORゲート326が配置された比較結果出力回路310からの否定論理積信号NORが入力される。右側の4つの比較結果出力回路310についても同様である。なお、隣接する4画素でNORゲート326を共有しているが、この構成に限定されない。例えば、互いに隣接していないが、近傍にある複数の画素がNORゲート326を共有することもできる。具体的には、ベイヤー配列においてR画素は、水平方向および垂直方向に沿ってG画素を挟んで1画素置きに配列され、その配列における近傍の4つのR画素などがNORゲート326を共有する。
図16は、本技術の第1の実施の形態の第4の変形例におけるNORゲート326を配置した比較結果出力回路310の一構成例を示す回路図である。この第1の実施の形態の第4の変形例のNORゲート326は、否定論理積信号NORを生成し、N型トランジスタ324と、隣接する3つの比較結果出力回路310とに供給する。
図17は、本技術の第1の実施の形態の第4の変形例におけるNORゲート326を配置していない比較結果出力回路310の一構成例を示す回路図である。この第1の実施の形態の第4の変形例のN型トランジスタ324のゲートには、隣接する比較結果出力回路310からの否定論理積信号NORが入力される。
図15乃至図17に例示した構成により、固体撮像素子200は、同色画素ブロックごとに、そのブロック内の4画素を有効または無効に設定することができる。これにより、イネーブル信号を伝送する信号線の本数を第1の実施の形態と比較して削減することができる。
また、第4の変形例の固体撮像素子200に、第1乃至第3の変形例のそれぞれを適用することもできる。
このように、本技術の第1の実施の形態の第4の変形例によれば、固体撮像素子200は、イネーブル信号により、同色画素ブロックごとに有効または無効に設定することができる。これにより、イネーブル信号により画素毎に有効または無効にする第1の実施の形態と比較して、イネーブル信号を伝送する信号線の本数を削減することができる。
[第5の変形例]
上述の第1の実施の形態では、有効に設定した画素に対応する差動入力回路320はスタンバイ状態に制御されずに定電流が流れていたが、この構成では、撮像を行う期間が長くなるほど、消費電力が増大するおそれがある。この第1の実施の形態の第5の変形例の固体撮像素子200は、AD変換終了後に差動入力回路320をスタンバイ状態に制御することにより消費電力をさらに低減した点において第1の実施の形態と異なる。
図18は、本技術の第1の実施の形態の第5の変形例における比較結果出力回路310の一構成例を示す回路図である。この第1の実施の形態の第5の変形例の比較結果出力回路310において、インバータ351は、比較結果XVCOを、さらにNORゲート326に供給する。また、NORゲート326は、行イネーブル信号XVBIASEN_i、列イネーブル信号XHBIASEN_jおよび比較結果XVCOの否定論理積をN型トランジスタ324のゲートに出力する。
露光終了後に比較結果XVCOがハイレベルからローレベルに反転したタイミングでAD変換が終了する。このため、スタンバイ状態でない有効な画素であっても比較結果XVCOが反転した(すなわち、デジタル信号が生成された)タイミングにおいて、定電流が遮断され、差動入力回路320はスタンバイ状態に移行する。これにより、消費電力をさらに低減することができる。
なお、第5の変形例の固体撮像素子200に、第1乃至第4の変形例のそれぞれを適用することもできる。
このように、本技術の第1の実施の形態の第5の変形例によれば、NORゲート326は、デジタル信号が生成されたタイミングにおいて定電流を遮断するため、デジタル信号生成後も定電流を供給する場合と比較して消費電力を低減することができる。
[第6の変形例]
上述の第1の実施の形態では、N型トランジスタ324および電流源トランジスタ325の両方を回路チップ202に配置していたが、この構成では、画素数が多くなるほど、回路チップ202の回路規模が増大するおそれがある。この第1の実施の形態の第6の変形例の固体撮像素子200は、N型トランジスタ324および電流源トランジスタ325を受光チップ201に配置した点において第1の実施の形態と異なる。
図19は、本技術の第1の実施の形態の第6の変形例における画素220および比較結果出力回路310の一構成例を示す回路図である。この第1の実施の形態の第5の変形例のN型トランジスタ324および電流源トランジスタ325は、受光チップ201に配置される点において第1の実施の形態と異なる。
なお、第6の変形例の固体撮像素子200に、第1乃至第5の変形例のそれぞれを適用することもできる。
このように、本技術の第1の実施の形態の第6の変形例では、N型トランジスタ324および電流源トランジスタ325が受光チップ201に配置される。これにより、それらのトランジスタを回路チップ202に配置する場合と比較して回路チップ202の回路規模を削減することができる。
<第2の実施の形態>
上述の第1の実施の形態では、固体撮像素子200は、電流源トランジスタ325と、差動トランジスタ227および228のコモンノードとの間にN型トランジスタ324を挿入していた。しかし、この構成では、N型トランジスタ324のオン抵抗により、コモンノードの電圧が変動するおそれがある。また、NORゲート326からの信号の振幅が、コモンノードへ伝送するおそれがある。この第2の実施の形態の差動入力回路320は、電流源トランジスタ325へのバイアス電圧を供給または遮断する点において第1の実施の形態と異なる。
図20は、本技術の第2の実施の形態における比較結果出力回路310の一構成例を示す回路図である。この第2の比較結果出力回路310は、N型トランジスタ324の代わりに、N型トランジスタ353および354と、インバータ355とを備える点において第1の実施の形態と異なる。
また、第2の実施の形態において電流源トランジスタ325は、差動トランジスタ227および228のコモンノードと接地端子との間に挿入される。N型トランジスタ353は、バイアス電圧Vbiasの端子と、電流源トランジスタ325のゲートとの間に挿入される。NORゲート326は、イネーブル信号の否定論理積をN型トランジスタ353のゲートとインバータ355とに出力する。N型トランジスタ354は、電流源トランジスタ325のゲートと接地端子との間に挿入される。インバータ355は、NORゲート326から出力された信号を反転し、N型トランジスタ354のゲートに供給する。
上述の接続構成により、N型トランジスタ353および354と、インバータ355とからなる回路は、イネーブル信号に従って、電流源トランジスタ325のゲートへのバイアス電圧Vbiasを供給または遮断する。なお、N型トランジスタ353および354と、インバータ355とからなる回路は、特許請求の範囲に記載のバイアス電圧供給回路の一例である。電流源トランジスタ325と、差動トランジスタ227および228のコモンノードとの間にN型トランジスタ324が配置されないため、N型トランジスタ324のオン抵抗により、コモンノードの電圧が変動することが無い。また、NORゲート326からの信号の振幅が、コモンノードへ伝送することが抑制される。
なお、第2の実施の形態の固体撮像素子200に、第1乃至第5の変形例のそれぞれを適用することもできる。
このように、本技術の第2の実施の形態では、電流源回路327がイネーブル信号に従って電流源トランジスタ325のゲートへのバイアス電圧Vbiasを供給または遮断する。これにより、電流源トランジスタ325と、差動トランジスタ227および228のコモンノードとの間のN型トランジスタ324を削減することができる。N型トランジスタ324の削減により、そのオン抵抗により、コモンノードの電圧が変動することが無くなり、NORゲート326からの信号の振幅がコモンノードへ伝送することが抑制される。
[変形例]
上述の第2の実施の形態では、N型トランジスタ324および電流源トランジスタ325の両方を回路チップ202に配置していたが、この構成では、画素数が多くなるほど、回路チップ202の回路規模が増大するおそれがある。この第2の実施の形態の変形例の固体撮像素子200は、N型トランジスタ324および電流源トランジスタ325を受光チップ201に配置した点において第2の実施の形態と異なる。
図21は、本技術の第2の実施の形態の変形例における画素220および比較結果出力回路310の一構成例を示す回路図である。この第2の実施の形態の変形例のN型トランジスタ324および電流源トランジスタ325は、受光チップ201に配置される点において第2の実施の形態と異なる。
このように、本技術の第2の実施の形態の変形例では、N型トランジスタ324および電流源トランジスタ325が受光チップ201に配置される。これにより、それらのトランジスタを回路チップ202に配置する場合と比較して回路チップ202の回路規模を削減することができる。
<3.移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図22は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図22に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図22の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図23は、撮像部12031の設置位置の例を示す図である。
図23では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図23には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031に適用され得る。具体的には、図1の撮像装置100は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、撮像部12031の消費電力をさらに低減することが可能になる。
なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
なお、本技術は以下のような構成もとることができる。
(1)所定のイネーブル信号に従って所定の定電流を供給する電流源回路と、
画素回路により生成されたアナログ信号と所定の参照信号との差分を増幅した差動増幅信号を前記定電流を用いて生成する一対の差動トランジスタと、
前記差動増幅信号からデジタル信号を生成するデジタル信号生成部と
を具備する固体撮像素子。
(2)前記電流源回路は、
前記定電流を供給する電流源と、
前記イネーブル信号に従って前記電流源と前記一対の差動トランジスタに共通に接続されたコモンノードとの間の経路を開閉するスイッチング素子と
を備える前記(1)記載の固体撮像素子。
(3)前記画素回路は、所定の受光チップに配置され、
前記電流源回路は、所定の回路チップに配置される
前記(2)記載の固体撮像素子。
(4)前記画素回路と前記電流源回路の一部とは、所定の受光チップに配置され、
前記電流源回路の残りは、所定の回路チップに配置される
前記(2)記載の固体撮像素子。
(5)前記電流源回路は、
所定のバイアス電圧に応じた電流を前記定電流として供給する電流源と、
前記イネーブル信号に従って前記バイアス電圧を前記電流源に供給するバイアス電圧供給回路と
を備える前記(1)記載の固体撮像素子。
(6)前記画素回路は、所定の受光チップに配置され、
前記電流源回路は、所定の回路チップに配置される
前記(5)記載の固体撮像素子。
(7)前記画素回路と前記電流源回路の一部とは、所定の受光チップに配置され、
前記電流源回路の残りは、所定の回路チップに配置される
前記(5)記載の固体撮像素子。
(8)前記画素回路は、
光電変換により電荷を生成する光電変換素子と、
前記電荷を蓄積して前記電荷の量に応じた電圧の信号を前記アナログ信号として生成する浮遊拡散層と、
転送が指示されると前記電荷を前記光電変換素子から前記浮遊拡散層へ転送する転送トランジスタと
を備える前記(1)から(7)のいずれかに記載の固体撮像素子。
(9)前記画素回路は、排出が指示されると前記光電変換素子から前記電荷を排出する排出トランジスタをさらに備える前記(8)記載の固体撮像素子。
(10)前記画素回路がそれぞれに設けられた複数の画素を二次元格子状に配列した画素領域をさらに具備し、
前記画素領域内の隣接する一対の画素の一方は、前記一対の画素のそれぞれの前記浮遊拡散層を接続する接続トランジスタをさらに備える前記(8)または(9)に記載の固体撮像素子。
(11)前記画素回路がそれぞれに設けられた複数の画素を設けた画素ブロックを配列した画素領域をさらに具備し、
前記複数の画素は、浮遊拡散層を共有し、
前記画素回路は、
光電変換により電荷を生成する光電変換素子と、
転送が指示されると前記電荷を前記光電変換素子から前記浮遊拡散層へ転送する転送トランジスタと
を備える前記(1)に記載の固体撮像素子。
(12)前記画素回路がそれぞれに設けられた複数の画素を二次元格子状に配列した画素領域をさらに具備し、
前記電流源回路は、前記画素の行のうち有効にする行を示す行イネーブル信号と前記画素の列のうち有効にする列を示す列イネーブル信号とから前記イネーブル信号を生成する論理ゲートを含む
前記(1)から(11)のいずれかに記載の固体撮像素子。
(13)前記画素回路がそれぞれに設けられた複数の画素を含む画素ブロックを配列した画素領域をさらに具備し、
前記電流源回路は、前記画素ブロックの行のうち有効にする行を示す行イネーブル信号と前記画素ブロックの列のうち有効にする列を示す列イネーブル信号とから前記イネーブル信号を生成する論理ゲートを含み、
前記画素ブロック内の前記複数の画素は、前記論理ゲートを共有する
前記(1)から(12)のいずれかに記載の固体撮像素子。
(14)前記電流源回路は、前記デジタル信号が生成されたときに前記定電流を遮断する
前記(1)から(13)のいずれかに記載の固体撮像素子。
(15)所定のイネーブル信号に従って所定の定電流を供給する電流源回路と、
画素回路により生成されたアナログ信号と所定の参照信号との差分を増幅した差動増幅信号を前記定電流を用いて生成する一対の差動トランジスタと、
前記差動増幅信号からデジタル信号を生成するデジタル信号生成部と、
前記デジタル信号を処理するロジック回路と
を具備する撮像装置。
100 撮像装置
110 光学部
120 DSP回路
130 表示部
140 操作部
150 バス
160 フレームメモリ
170 記憶部
180 電源部
200 固体撮像素子
201 受光チップ
202 回路チップ
210 画素領域
211 画素ブロック
220 画素
221 画素回路
222 リセットトランジスタ
223 浮遊拡散層
224 転送トランジスタ
225 フォトダイオード
226 排出トランジスタ
227、228 差動トランジスタ
229 接続トランジスタ
231、232 Vドライバ
233 Hドライバ
234 DAC
250 AD変換回路領域
261、262 Vドライバ
263 Hドライバ
264 ロジック回路
300 クラスタ
310 比較結果出力回路
320 差動入力回路
321、322、323、341、342 P型トランジスタ
324、331、343、353、354 N型トランジスタ
325 電流源トランジスタ
326、344 NOR(否定論理積)ゲート
327 電流源回路
330 電圧変換回路
340 正帰還回路
351、352、355 インバータ
360 データ記憶部
370 時刻コード転送部
380 デジタル信号生成部
12031 撮像部

Claims (15)

  1. 所定のイネーブル信号に従って所定の定電流を供給する電流源回路と、
    画素回路により生成されたアナログ信号と所定の参照信号との差分を増幅した差動増幅信号を前記定電流を用いて生成する一対の差動トランジスタと、
    前記差動増幅信号からデジタル信号を生成するデジタル信号生成部と
    を具備する固体撮像素子。
  2. 前記電流源回路は、
    前記定電流を供給する電流源と、
    前記イネーブル信号に従って前記電流源と前記一対の差動トランジスタに共通に接続されたコモンノードとの間の経路を開閉するスイッチング素子と
    を備える請求項1記載の固体撮像素子。
  3. 前記画素回路は、所定の受光チップに配置され、
    前記電流源回路は、所定の回路チップに配置される
    請求項2記載の固体撮像素子。
  4. 前記画素回路と前記電流源回路の一部とは、所定の受光チップに配置され、
    前記電流源回路の残りは、所定の回路チップに配置される
    請求項2記載の固体撮像素子。
  5. 前記電流源回路は、
    所定のバイアス電圧に応じた電流を前記定電流として供給する電流源と、
    前記イネーブル信号に従って前記バイアス電圧を前記電流源に供給するバイアス電圧供給回路と
    を備える請求項1記載の固体撮像素子。
  6. 前記画素回路は、所定の受光チップに配置され、
    前記電流源回路は、所定の回路チップに配置される
    請求項5記載の固体撮像素子。
  7. 前記画素回路と前記電流源回路の一部とは、所定の受光チップに配置され、
    前記電流源回路の残りは、所定の回路チップに配置される
    請求項5記載の固体撮像素子。
  8. 前記画素回路は、
    光電変換により電荷を生成する光電変換素子と、
    前記電荷を蓄積して前記電荷の量に応じた電圧の信号を前記アナログ信号として生成する浮遊拡散層と、
    転送が指示されると前記電荷を前記光電変換素子から前記浮遊拡散層へ転送する転送トランジスタと
    を備える請求項1記載の固体撮像素子。
  9. 前記画素回路は、排出が指示されると前記光電変換素子から前記電荷を排出する排出トランジスタをさらに備える請求項8記載の固体撮像素子。
  10. 前記画素回路がそれぞれに設けられた複数の画素を二次元格子状に配列した画素領域をさらに具備し、
    前記画素領域内の隣接する一対の画素の一方は、前記一対の画素のそれぞれの前記浮遊拡散層を接続する接続トランジスタをさらに備える請求項8記載の固体撮像素子。
  11. 前記画素回路がそれぞれに設けられた複数の画素を設けた画素ブロックを配列した画素領域をさらに具備し、
    前記複数の画素は、浮遊拡散層を共有し、
    前記画素回路は、
    光電変換により電荷を生成する光電変換素子と、
    転送が指示されると前記電荷を前記光電変換素子から前記浮遊拡散層へ転送する転送トランジスタと
    を備える請求項1記載の固体撮像素子。
  12. 前記画素回路がそれぞれに設けられた複数の画素を二次元格子状に配列した画素領域をさらに具備し、
    前記電流源回路は、前記画素の行のうち有効にする行を示す行イネーブル信号と前記画素の列のうち有効にする列を示す列イネーブル信号とから前記イネーブル信号を生成する論理ゲートを含む
    請求項1記載の固体撮像素子。
  13. 前記画素回路がそれぞれに設けられた複数の画素を含む画素ブロックを配列した画素領域をさらに具備し、
    前記電流源回路は、前記画素ブロックの行のうち有効にする行を示す行イネーブル信号と前記画素ブロックの列のうち有効にする列を示す列イネーブル信号とから前記イネーブル信号を生成する論理ゲートを含み、
    前記画素ブロック内の前記複数の画素は、前記論理ゲートを共有する
    請求項1記載の固体撮像素子。
  14. 前記電流源回路は、前記デジタル信号が生成されたときに前記定電流を遮断する
    請求項1記載の固体撮像素子。
  15. 所定のイネーブル信号に従って所定の定電流を供給する電流源回路と、
    画素回路により生成されたアナログ信号と所定の参照信号との差分を増幅した差動増幅信号を前記定電流を用いて生成する一対の差動トランジスタと、
    前記差動増幅信号からデジタル信号を生成するデジタル信号生成部と、
    前記デジタル信号を処理するロジック回路と
    を具備する撮像装置。
JP2018179610A 2018-09-26 2018-09-26 固体撮像素子、および、撮像装置 Pending JP2020053782A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018179610A JP2020053782A (ja) 2018-09-26 2018-09-26 固体撮像素子、および、撮像装置
PCT/JP2019/028751 WO2020066245A1 (ja) 2018-09-26 2019-07-23 固体撮像素子、および、撮像装置
US17/271,004 US11323645B2 (en) 2018-09-26 2019-07-23 Solid-state imaging element and imaging device with light receiving chip and circuit chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018179610A JP2020053782A (ja) 2018-09-26 2018-09-26 固体撮像素子、および、撮像装置

Publications (1)

Publication Number Publication Date
JP2020053782A true JP2020053782A (ja) 2020-04-02

Family

ID=69953159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018179610A Pending JP2020053782A (ja) 2018-09-26 2018-09-26 固体撮像素子、および、撮像装置

Country Status (3)

Country Link
US (1) US11323645B2 (ja)
JP (1) JP2020053782A (ja)
WO (1) WO2020066245A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270109A1 (ja) * 2021-06-21 2022-12-29 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2023027017A1 (ja) * 2021-08-25 2023-03-02 株式会社ニコン 撮像素子および撮像装置
WO2024057995A1 (ja) * 2022-09-13 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 光検出素子及び電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398021B1 (ja) * 2018-01-09 2018-09-26 株式会社フローディア 固体撮像装置及びカメラシステム
CN115136588A (zh) * 2020-03-31 2022-09-30 索尼半导体解决方案公司 摄像装置和电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352826B2 (en) * 2003-12-19 2008-04-01 Intel Corporation Analog delay circuit
US8625010B2 (en) 2008-05-02 2014-01-07 Canon Kabushiki Kaisha Solid-state imaging apparatus with each pixel including a photoelectric converter portion and plural holding portions
JP2012165168A (ja) 2011-02-07 2012-08-30 Sony Corp 半導体装置、物理情報取得装置、及び、信号読出し方法
JP5206861B2 (ja) * 2011-12-27 2013-06-12 ソニー株式会社 Ad変換装置およびその方法、固体撮像素子およびその駆動方法、並びにカメラシステム
CN107078745B (zh) 2014-11-14 2020-11-17 索尼公司 信号处理装置、控制方法、摄像元件及电子设备
CN107409187B (zh) * 2015-02-23 2021-12-14 索尼公司 比较器、ad转换器、固态成像装置、电子装置、比较器控制方法、数据写入电路、数据读取电路以及数据传送电路
US10686460B2 (en) * 2016-09-06 2020-06-16 Sony Semiconductor Solutions Corporation Analog-to-digital converter, electronic device, and method for controlling analog-to-digital converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270109A1 (ja) * 2021-06-21 2022-12-29 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び電子機器
WO2023027017A1 (ja) * 2021-08-25 2023-03-02 株式会社ニコン 撮像素子および撮像装置
WO2024057995A1 (ja) * 2022-09-13 2024-03-21 ソニーセミコンダクタソリューションズ株式会社 光検出素子及び電子機器

Also Published As

Publication number Publication date
WO2020066245A1 (ja) 2020-04-02
US20210329188A1 (en) 2021-10-21
US11323645B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2020066245A1 (ja) 固体撮像素子、および、撮像装置
JP2020072317A (ja) センサ及び制御方法
WO2020116185A1 (ja) 固体撮像装置、信号処理チップ、および、電子機器
EP3657776B1 (en) Analog-digital converter including miller capacitor, solid-state imaging element including said analog-digital converter, and control method for said analog-digital converter
US20230247329A1 (en) Image sensor, method of controlling image sensor, and electronic device
US11677319B2 (en) Voltage conversion circuit, solid-state imaging element, and method of controlling voltage conversion circuit
US20200382735A1 (en) Solid-stage image sensor, imaging device, and method of controlling solid-state image sensor
TW202119805A (zh) 固態攝像元件、攝像裝置及固態攝像元件之控制方法
CN110235432B (zh) 固态成像装置及其驱动方法
US11928848B2 (en) Light receiving device, solid-state imaging apparatus, electronic equipment, and information processing system
US11563913B2 (en) Solid-state imaging element and imaging device
JP2018093392A (ja) 固体撮像装置、駆動方法、および電子機器
US11653122B2 (en) Solid-state image capturing element with floating diffusion layers processing a signal undergoing pixel addition
US20220264045A1 (en) Solid-state imaging element, imaging apparatus, and method of controlling solid-state imaging element
JP2021170691A (ja) 撮像素子、制御方法、および電子機器
US11558571B2 (en) Solid-state imaging element and imaging device
US11330212B2 (en) Imaging device and diagnosis method
US20230341520A1 (en) Light receiving device, drive control method therefor, and distance measuring device
US11523070B2 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
JP7129983B2 (ja) 撮像装置
WO2022209368A1 (ja) 固体撮像素子及び固体撮像装置
US11678079B2 (en) Solid-state imaging element, imaging apparatus, and method of controlling solid-state imaging element
WO2022158246A1 (ja) 撮像装置
WO2022064867A1 (ja) 固体撮像素子、および、撮像装置
US20240163588A1 (en) Solid-state imaging element and imaging device