JP2020041849A - Abnormality diagnosis method, abnormality diagnosis device and abnormality diagnosis program for rolling bearing - Google Patents

Abnormality diagnosis method, abnormality diagnosis device and abnormality diagnosis program for rolling bearing Download PDF

Info

Publication number
JP2020041849A
JP2020041849A JP2018168085A JP2018168085A JP2020041849A JP 2020041849 A JP2020041849 A JP 2020041849A JP 2018168085 A JP2018168085 A JP 2018168085A JP 2018168085 A JP2018168085 A JP 2018168085A JP 2020041849 A JP2020041849 A JP 2020041849A
Authority
JP
Japan
Prior art keywords
frequency
vibration
specific
rotation
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018168085A
Other languages
Japanese (ja)
Other versions
JP6507297B1 (en
Inventor
拓 杉浦
Hiroshi Sugiura
拓 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2018168085A priority Critical patent/JP6507297B1/en
Application granted granted Critical
Publication of JP6507297B1 publication Critical patent/JP6507297B1/en
Publication of JP2020041849A publication Critical patent/JP2020041849A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To enable estimation of the damage type of a bearing even if a bearing specification cannot be grasped.SOLUTION: When measurement start is commanded together with diagnosis rotational frequency, vibration acceleration is measured and recorded and then rotational frequency and the vibration acceleration are recorded in association with each other (S1-S6). If all measurement is completed by determination in S7, a rotation synchronous component emphasized waveform is calculated in S8 and then, on the assumption of a ratio fundamental frequency and a ratio vibration source rotational frequency, it is determined whether a vibration peak is present at a position of (the ratio fundamental frequency)×(a natural number)±(the ratio vibration source rotational frequency) of the rotation synchronous component emphasized waveform to calculate a ratio (matching rate) of the presence of the vibration peak in S9. If retrieval is completed within a predetermined retrieval range by determination in S10, regarding the ratio fundamental frequency and the ratio vibration source rotational frequency for which the matching rate is a predetermined threshold or more, the type of bearing abnormality is determined according to a value of the ratio vibration source rotational frequency in S11, and a diagnostic result is displayed in S12.SELECTED DRAWING: Figure 4

Description

本発明は、工作機械等に用いられて主軸等の回転体を支持する転がり軸受の異常を診断する方法及び装置、プログラムに関するものである。   The present invention relates to a method, a device, and a program for diagnosing an abnormality of a rolling bearing used for a machine tool or the like and supporting a rotating body such as a spindle.

回転体を支持する転がり軸受に内輪の損傷などの異常が生じると振動が発生する。軸受の異常によって発生する力は単純な正弦波状ではないため、高調波の周波数成分の振動が同時に観測される。この際に発生する振動の周波数(特徴周波数)は、回転周波数に比例しており、回転体の回転周波数と軸受諸元から算出することが可能である。
例えば特許文献1では、振動加速度を測定してエンベロープ処理および周波数分析等を行った波形を、所定の関係式に基づいて算出した内輪、外輪、転動体などの特徴周波数とともに表示し、特徴周波数に対応する振動ピークがあるか否かを判断できるようにすることで、転がり軸受の損傷部位(内輪、外輪、転動体など)を特定する手法が示されている。
特許文献2では、振動を測定してエンベロープ処理および周波数分析し、所定の関係式に基づいて算出した内輪、外輪、転動体のそれぞれの特徴周波数の値を抽出して、損傷部位(内輪、外輪、転動体)でそれぞれ異なるしきい値を用いて診断する手法が示されている。
When an abnormality such as damage to the inner ring occurs in the rolling bearing that supports the rotating body, vibration occurs. Since the force generated by the bearing abnormality is not a simple sinusoidal wave, the vibration of the harmonic frequency component is simultaneously observed. The frequency (characteristic frequency) of the vibration generated at this time is proportional to the rotation frequency, and can be calculated from the rotation frequency of the rotating body and the bearing specifications.
For example, in Patent Literature 1, a waveform obtained by measuring vibration acceleration and performing envelope processing and frequency analysis and the like is displayed together with characteristic frequencies of an inner ring, an outer ring, a rolling element, and the like calculated based on a predetermined relational expression. A method is disclosed in which it is possible to determine whether or not there is a corresponding vibration peak, thereby specifying a damaged portion (an inner ring, an outer ring, a rolling element, etc.) of a rolling bearing.
In Patent Document 2, vibration is measured, envelope processing and frequency analysis are performed, and values of characteristic frequencies of the inner ring, the outer ring, and the rolling elements calculated based on a predetermined relational expression are extracted, and the damaged portion (the inner ring, the outer ring) is extracted. , The rolling element) is diagnosed using different threshold values.

特開昭63−297813号公報JP-A-63-29713 特許第5146008号公報Japanese Patent No. 5146008

しかしながら、損傷部位の特定や損傷部位に応じたしきい値を用いるためには、基本周波数や特徴周波数を算出するための軸受諸元が必要となる。このため、軸受メーカの販売する軸受診断装置においては、その軸受メーカが軸受諸元を把握している自社の軸受については型式を入力することで診断ができるが、他社の軸受については軸受諸元の手入力を要求する実装となっていることが一般的である。この場合、軸受の諸元が入手できない場合には軸受を診断することができないといった課題がある。また、機械の製造者を除くと、その機械で使用されている軸受の型式を把握することさえ困難であるという課題がある。   However, in order to specify a damaged part and use a threshold value corresponding to the damaged part, bearing specifications for calculating a fundamental frequency and a characteristic frequency are required. For this reason, a bearing diagnosis device sold by a bearing manufacturer can diagnose the company's bearings whose bearing specifications are known by inputting the model, but for other companies' bearings, the bearing specifications can be diagnosed. In general, the implementation requires manual input. In this case, there is a problem that the bearing cannot be diagnosed unless the specifications of the bearing are available. In addition, there is a problem that it is difficult to grasp even the type of the bearing used in the machine, except for the manufacturer of the machine.

そこで、本発明は、上記問題に鑑みなされたものであって、診断対象の機械で使用されている軸受の軸受諸元が把握できない場合であっても、軸受の損傷の種類を推定することができる転がり軸受の異常診断方法及び異常診断装置、異常診断プログラムを提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problem, and it is possible to estimate the type of damage to a bearing even when the bearing specifications of a bearing used in a machine to be diagnosed cannot be grasped. An object of the present invention is to provide a method and an apparatus for diagnosing abnormalities of a rolling bearing which can be performed.

上記目的を達成するために、請求項1に記載の発明は、回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の振動を測定する振動測定ステップと、
前記振動に対し、前記回転体の回転周波数に比例した周波数の振動成分を強調する回転同期成分強調波形を算出する回転同期成分強調波形算出ステップと、
前記回転同期成分強調波形の振動ピーク位置の規則性に基づいて前記転がり軸受の損傷の種類を判別する軸受損傷種類判別ステップと、を実行することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記軸受損傷種類判別ステップでは、前記回転同期成分強調波形の振動ピーク位置の規則性に基づいて、前記転がり軸受において力の発生する方向が変化する周波数である振動源回転周波数と前記回転周波数との比である比振動源回転周波数を推定し、
前記比振動源回転周波数の値が1の場合には、前記転がり軸受の内輪損傷と判断し、前記比振動源回転周波数の値が前記転がり軸受の転動体の公転周波数を前記回転周波数で除算した値のとり得る範囲である場合には、前記転動体の損傷と判断し、前記比振動源回転周波数の値が0の場合には、前記転がり軸受の外輪損傷と判断することを特徴とする。
請求項3に記載の発明は、請求項2の構成において、前記振動の周波数を前記回転周波数で除算して得られる無次元量を比周波数とし、
前記比振動源回転周波数の推定は、前記回転同期成分強調波形において、比基本周波数と比振動源回転周波数とを仮定して算出される特定の比周波数に振動ピークが存在する割合である一致率を算出し、一致率が所定のしきい値を超過する場合には、仮定した前記比基本周波数と仮定した前記比振動源回転周波数とにより表現される規則性が前記回転同期成分強調波形にあると判断し、仮定した前記比振動源回転周波数を採用することを特徴とする。
請求項4に記載の発明は、請求項2の構成において、前記振動の周波数を前記回転周波数で除算して得られる無次元量を比周波数とし、
前記比振動源回転周波数の推定は、前記回転同期成分強調波形において、ピーク対を構成する2つの振動ピークの間隔をピーク間距離とし、ピーク間距離が等しい2組のピーク対について算出したそれぞれのピーク対を構成する2つの前記振動ピークの比周波数の平均の比が整数比の場合に、前記ピーク間距離の2分の1を前記比振動源回転周波数とすることを特徴とする。
請求項5に記載の発明は、請求項1乃至4の何れかの構成において、前記振動測定ステップでは、異なる複数の回転周波数で振動を測定し、前記回転同期成分強調波形算出ステップでは、前記振動を周波数分析して周波数毎の振動の大きさをそれぞれ算出し、前記回転周波数に対する振動の周波数の倍率が同じ成分について前記振動の大きさの平均をとることを特徴とする。
請求項6に記載の発明は、請求項1又は5の構成において、前記軸受損傷種類判別ステップでは、前記回転同期成分強調波形を入力とし、内輪傷の有無、転動体傷の有無、外輪傷の有無の少なくともひとつを出力とする教師データを用いて学習した機械学習モデルを用い、前記回転同期成分強調波形を入力して前記転がり軸受の損傷の種類を判別することを特徴とする。
上記目的を達成するために、請求項7に記載の発明は、回転体を支持する転がり軸受の異常を診断する装置であって、
前記回転体の振動を測定する振動測定手段と、
前記振動に対し、前記回転体の回転周波数に比例した周波数の振動成分を強調する回転同期成分強調波形を算出する回転同期成分強調波形算出手段と、
前記回転同期成分強調波形の振動ピーク位置の規則性に基づいて前記転がり軸受の損傷の種類を判別する軸受損傷種類判別手段と、を備えることを特徴とする。
請求項8に記載の発明は、請求項7の構成において、前記振動の周波数を前記回転周波数で除算して得られる無次元量を比周波数とし、
前記軸受損傷種類判別手段は、前記転がり軸受の損傷に対応する比基本周波数と、前記転がり軸受の損傷に対応し力の発生する方向が変化する周波数である振動源回転周波数と前記回転周波数との比である比振動源回転周波数と、前記比基本周波数と前記比振動源回転周波数とから算出される特定の比周波数とを用いて前記転がり軸受の損傷の種類を判別するものであり、
前記比基本周波数と前記比振動源回転周波数とを合わせて表示する表示手段を備えることを特徴とする。
請求項9に記載の発明は、請求項7の構成において、前記振動の周波数を前記回転周波数で除算して得られる無次元量を比周波数とし、
前記軸受損傷種類判別手段は、前記転がり軸受の損傷に対応する比基本周波数と、前記転がり軸受の損傷に対応し力の発生する方向が変化する周波数である振動源回転周波数と前記回転周波数との比である比振動源回転周波数と、前記比基本周波数と前記比振動源回転周波数とから算出される特定の比周波数とを用いて前記転がり軸受の損傷の種類を判別するものであり、
前記特定の比周波数の位置と前記回転同期成分強調波形とを合わせて表示する表示手段を備えることを特徴とする。
上記目的を達成するために、請求項10に記載の発明は、転がり軸受の異常診断プログラムであって、所定の回転周波数で測定された回転体の振動が前記回転周波数と共に入力されたコンピュータに、請求項1乃至6の何れかに記載の転がり軸受の異常診断方法における回転同期成分強調波形算出ステップと軸受損傷種類判別ステップとを実行させることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a method for diagnosing an abnormality of a rolling bearing that supports a rotating body,
A vibration measuring step of measuring the vibration of the rotating body,
For the vibration, a rotation synchronization component emphasis waveform calculation step of calculating a rotation synchronization component emphasis waveform that emphasizes a vibration component having a frequency proportional to the rotation frequency of the rotating body,
And a bearing damage type determining step of determining the type of damage to the rolling bearing based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform.
According to a second aspect of the present invention, in the configuration of the first aspect, in the bearing damage type determining step, a direction in which a force is generated in the rolling bearing based on a regularity of a vibration peak position of the rotation synchronization component emphasized waveform. Estimate the specific vibration source rotation frequency is the ratio of the vibration source rotation frequency and the rotation frequency is the frequency at which the change,
When the value of the specific vibration source rotation frequency is 1, it is determined that the inner ring of the rolling bearing is damaged, and the value of the specific vibration source rotation frequency is obtained by dividing the revolution frequency of the rolling element of the rolling bearing by the rotation frequency. When the value is within a possible range, it is determined that the rolling element is damaged, and when the value of the specific vibration source rotation frequency is 0, it is determined that the outer ring of the rolling bearing is damaged.
According to a third aspect of the present invention, in the configuration of the second aspect, a dimensionless amount obtained by dividing the frequency of the vibration by the rotation frequency is defined as a specific frequency,
The estimation of the specific vibration source rotation frequency is performed by calculating a coincidence rate at which a vibration peak exists at a specific specific frequency calculated assuming the specific fundamental frequency and the specific vibration source rotation frequency in the rotation synchronization component emphasized waveform. If the coincidence rate exceeds a predetermined threshold value, the regularity expressed by the assumed specific fundamental frequency and the assumed specific vibration source rotation frequency is in the rotation synchronization component emphasized waveform. And adopting the assumed specific vibration source rotation frequency.
According to a fourth aspect of the present invention, in the configuration of the second aspect, a dimensionless amount obtained by dividing the frequency of the vibration by the rotation frequency is defined as a specific frequency,
The estimation of the specific vibration source rotation frequency is performed by calculating an interval between two vibration peaks forming a peak pair in the rotation synchronous component emphasized waveform as a peak-to-peak distance and calculating two sets of peak pairs having the same peak-to-peak distance. When the ratio of the average of the specific frequencies of the two vibration peaks forming the peak pair is an integer ratio, one half of the distance between the peaks is set as the specific vibration source rotation frequency.
According to a fifth aspect of the present invention, in the configuration according to any one of the first to fourth aspects, in the vibration measuring step, the vibration is measured at a plurality of different rotation frequencies, and in the rotation synchronization component emphasized waveform calculating step, the vibration is measured. Is analyzed to calculate the magnitude of the vibration for each frequency, and the average of the magnitude of the vibration is calculated for components having the same magnification of the frequency of vibration with respect to the rotation frequency.
According to a sixth aspect of the present invention, in the configuration of the first or fifth aspect, in the bearing damage type determining step, the rotation synchronization component emphasized waveform is input, and the presence or absence of an inner wheel wound, the presence or absence of a rolling element wound, and the occurrence of an outer ring wound are determined. The method is characterized in that the type of damage to the rolling bearing is determined by inputting the rotation-synchronous component-emphasized waveform using a machine learning model learned using teacher data that outputs at least one of the presence and absence.
In order to achieve the above object, an invention according to claim 7 is an apparatus for diagnosing an abnormality of a rolling bearing that supports a rotating body,
Vibration measuring means for measuring the vibration of the rotating body,
For the vibration, a rotation synchronization component emphasized waveform calculation unit that calculates a rotation synchronization component emphasized waveform that emphasizes a vibration component having a frequency proportional to the rotation frequency of the rotating body,
And a bearing damage type determining means for determining the type of damage to the rolling bearing based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform.
According to an eighth aspect of the present invention, in the configuration of the seventh aspect, a dimensionless amount obtained by dividing the frequency of the vibration by the rotation frequency is defined as a specific frequency,
The bearing damage type discriminating means includes a basic frequency corresponding to the damage to the rolling bearing, a vibration source rotation frequency corresponding to the damage to the rolling bearing, and a frequency at which a force is generated changes, and the rotation frequency. A specific vibration source rotation frequency, which is a ratio, and a type of damage to the rolling bearing is determined using a specific ratio frequency calculated from the ratio fundamental frequency and the specific vibration source rotation frequency,
There is provided a display means for displaying the specific fundamental frequency and the specific vibration source rotation frequency together.
According to a ninth aspect of the present invention, in the configuration of the seventh aspect, a dimensionless amount obtained by dividing the frequency of the vibration by the rotation frequency is defined as a specific frequency,
The bearing damage type discriminating means includes a basic frequency corresponding to the damage to the rolling bearing, a vibration source rotation frequency corresponding to the damage to the rolling bearing, and a frequency at which a force is generated changes, and the rotation frequency. A specific vibration source rotation frequency, which is a ratio, and a type of damage to the rolling bearing is determined using a specific ratio frequency calculated from the ratio fundamental frequency and the specific vibration source rotation frequency,
A display unit for displaying the position of the specific ratio frequency and the rotation synchronization component emphasized waveform together.
In order to achieve the above object, the invention according to claim 10 is a program for diagnosing an abnormality of a rolling bearing, wherein a computer in which vibration of a rotating body measured at a predetermined rotation frequency is input together with the rotation frequency, A rotation synchronization component emphasizing waveform calculation step and a bearing damage type determination step in the method for diagnosing abnormality of a rolling bearing according to any one of claims 1 to 6 are executed.

本発明によれば、測定した振動に対し、回転体の回転周波数に比例した周波数の振動成分を強調する回転同期成分強調波形を算出し、回転同期成分強調波形の振動ピーク位置の規則性に基づいて転がり軸受における損傷の種類を判別するので、軸受諸元を用いることなく振動ピークの規則性から軸受異常の種類を判断することが可能となる。
特に、請求項5の発明によれば、上記効果に加えて、回転同期成分強調波形算出ステップでは、異なる複数の回転周波数で測定された振動を周波数分析して周波数毎の振動の大きさをそれぞれ算出し、回転周波数に対する振動の周波数の倍率が同じ成分について振動の大きさの平均をとるので、さらに外乱の影響が低減されて、振動ピークの規則性を捉え易くなるため、軸受異常の推定精度が向上する。
特に、請求項6の発明によれば、上記効果に加えて、軸受損傷種類判別ステップでは、回転同期成分強調波形を入力とし、内輪傷の有無、転動体傷の有無、外輪傷の有無の少なくともひとつを出力とする教師データを用いて学習した機械学習モデルを用い、回転同期成分強調波形を入力して転がり軸受の損傷の種類を判別するので、人間が考える処理よりも汎用的に振動ピークの規則性から軸受異常の種類を判断することが可能となる。
特に、請求項8の発明によれば、上記効果に加えて、比基本周波数と比振動源回転周波数とを合わせて表示する表示手段を備えることで、数字として表示される周波数の値を用いて他の軸受診断処理を行うことが可能となる。
特に、請求項9の発明によれば、上記効果に加えて、特定の比周波数の位置と回転同期成分強調波形とを合わせて表示する表示手段を備えることで、振動ピークの規則性を正しく抽出できているか否かを視覚的に把握できるため、診断結果の妥当性を容易に検証できる。また、各損傷の種類において着目すべき比周波数がわかりやすくなる。
According to the present invention, for the measured vibration, a rotation synchronization component emphasized waveform that emphasizes a vibration component having a frequency proportional to the rotation frequency of the rotating body is calculated, and based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform. Since the type of damage in the rolling bearing is determined, it is possible to determine the type of bearing abnormality from the regularity of the vibration peak without using the bearing specifications.
In particular, according to the fifth aspect of the present invention, in addition to the above effects, in the rotation synchronization component emphasized waveform calculation step, vibrations measured at a plurality of different rotation frequencies are subjected to frequency analysis to determine the magnitude of the vibration for each frequency. Calculate and take the average of the magnitude of vibration for the component with the same frequency of vibration frequency to rotation frequency, further reduce the influence of disturbance and make it easier to catch the regularity of vibration peaks. Is improved.
In particular, according to the invention of claim 6, in addition to the above effects, in the bearing damage type determination step, a rotation synchronization component emphasized waveform is input, and at least the presence or absence of an inner wheel wound, the presence or absence of a rolling body wound, and the presence or absence of an outer wheel wound are determined. Using a machine learning model that has been trained using teacher data with one output, a rotation synchronous component emphasized waveform is input to determine the type of damage to the rolling bearing. The type of the bearing abnormality can be determined from the regularity.
In particular, according to the invention of claim 8, in addition to the above-mentioned effects, by providing a display means for displaying the specific fundamental frequency and the specific vibration source rotation frequency together, it is possible to use the value of the frequency displayed as a number. Other bearing diagnosis processing can be performed.
In particular, according to the ninth aspect of the invention, in addition to the above-described effects, by providing a display unit that displays the position of the specific ratio frequency and the rotation synchronization component emphasized waveform together, the regularity of the vibration peak is correctly extracted. Since it can be visually grasped whether or not the diagnosis has been made, the validity of the diagnosis result can be easily verified. Further, the specific frequency to be focused on for each type of damage can be easily understood.

転がり軸受の異常診断装置の機能ブロック図である。FIG. 2 is a functional block diagram of a rolling bearing abnormality diagnosis device. 外輪および内輪が損傷している場合の回転同期成分強調波形である。It is a rotation synchronous component emphasized waveform when the outer ring and the inner ring are damaged. 転動体が損傷している場合の回転同期成分強調波形である。It is a rotation synchronous component emphasis waveform when a rolling element is damaged. 異常診断方法のフローチャートである。It is a flowchart of an abnormality diagnosis method. 異常診断方法の他の例のフローチャートである。9 is a flowchart of another example of the abnormality diagnosis method. 異常診断方法の他の例のフローチャートである。9 is a flowchart of another example of the abnormality diagnosis method. 診断回転周波数の表示と測定開始の指令を行う画面である。It is a screen for displaying a diagnostic rotation frequency and giving a command to start measurement. 図4の方法による異常診断結果を表示する画面である。5 is a screen displaying an abnormality diagnosis result by the method of FIG. 図5の方法による異常診断結果を表示する画面である。6 is a screen displaying an abnormality diagnosis result by the method of FIG. 図6の方法による異常診断結果を表示する画面である。7 is a screen displaying a result of abnormality diagnosis by the method of FIG. 6.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は転がり軸受の異常診断装置を工作機械の主軸に対して取り付けて使用する場合の構成を示した機能ブロック図で、この図に基づいて具体的に説明する。
工作機械100において、主軸1が転がり軸受である軸受7を介して主軸ハウジング2に対して回転可能に取り付けられており、主軸1には加工を行うための工具3が固定されている。モータ4は主軸1を駆動する。モータ4には速度検出器5が設けられて、測定されたモータ4の回転周波数が制御装置6に入力されるようになっている。制御装置6は、速度検出器5で測定されたモータ4の回転周波数を測定者によって制御装置6に入力された指令回転周波数に保つようにモータ4へ供給する電流の制御を行っている。表示部8には、速度検出器5で測定されたモータ4の現在の回転周波数が表示される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram showing a configuration in a case where an abnormality diagnosis device for a rolling bearing is used by being attached to a main shaft of a machine tool, and will be specifically described based on this diagram.
In a machine tool 100, a spindle 1 is rotatably mounted on a spindle housing 2 via a bearing 7 which is a rolling bearing, and a tool 3 for performing processing is fixed to the spindle 1. The motor 4 drives the main shaft 1. The motor 4 is provided with a speed detector 5, and the measured rotation frequency of the motor 4 is input to the control device 6. The control device 6 controls the current supplied to the motor 4 so that the rotation frequency of the motor 4 measured by the speed detector 5 is maintained at the command rotation frequency input to the control device 6 by the measurer. The display unit 8 displays the current rotation frequency of the motor 4 measured by the speed detector 5.

コンピュータを含む異常診断装置200において、振動測定手段としての振動センサ9は、工作機械100の軸受7の損傷によって生じる振動を測定可能な位置に磁力により取り付けられている。
表示手段としての表示・操作部13は、測定者が制御装置6へ入力すべき指令回転周波数や診断結果を表示するとともに、表示部8に表示されたモータ4の現在の回転周波数が表示・操作部13に表示された値と一致したか否かを測定者が判断した結果を入力する操作が可能となっている。振動センサ9で測定される振動加速度は、A/D変換部10でデジタル値に変換される。記憶部11は、表示部8に表示されたモータ4の現在の回転周波数が表示・操作部13に表示された値と一致したと測定者が判断したときから既定のデータ長となるときまでの振動加速度のデジタル値を振動測定時の回転周波数とともに記憶する。
In the abnormality diagnosis device 200 including a computer, the vibration sensor 9 as a vibration measuring means is attached by magnetic force to a position where vibration caused by damage to the bearing 7 of the machine tool 100 can be measured.
The display / operation unit 13 as a display unit displays a command rotation frequency and a diagnosis result to be input to the control device 6 by the measurer, and displays / operates the current rotation frequency of the motor 4 displayed on the display unit 8. An operation of inputting a result determined by the measurer as to whether or not the value matches the value displayed on the unit 13 is possible. The vibration acceleration measured by the vibration sensor 9 is converted into a digital value by the A / D converter 10. The storage unit 11 stores the time from when the measurer determines that the current rotation frequency of the motor 4 displayed on the display unit 8 matches the value displayed on the display / operation unit 13 to when the data length becomes a predetermined data length. The digital value of the vibration acceleration is stored together with the rotation frequency during vibration measurement.

演算部12は、記憶部11に記憶された振動測定時の回転周波数と振動加速度より、予め記憶された異常診断プログラムに基づき、乗算、フーリエ変換、絶対値の算出、内挿処理を行って、比周波数(周波数を回転周波数で割って算出される無次元量)に対する修正振動値を算出し、複数の振動測定時の回転周波数の修正振動値について比周波数毎の平均を算出することで回転同期成分強調波形を算出する。さらに、回転同期成分強調波形のピーク位置の規則性より、後述する比基本周波数と比振動源回転周波数を推定し、比振動源回転周波数の値に応じて、損傷が内輪・転動体・外輪の何れに生じているかを判断する。すなわち、演算部12は、回転同期成分強調波形算出手段と軸受損傷種類判別手段として機能する。   The arithmetic unit 12 performs multiplication, Fourier transformation, calculation of an absolute value, and interpolation based on the rotational frequency and vibration acceleration at the time of vibration measurement stored in the storage unit 11 based on the abnormality diagnosis program stored in advance. Calculate the corrected vibration value for the specific frequency (a dimensionless quantity calculated by dividing the frequency by the rotation frequency), and calculate the average of the corrected vibration values of the rotation frequency at the time of multiple vibration measurements for each specific frequency to achieve rotation synchronization. Calculate the component emphasized waveform. Further, from the regularity of the peak position of the rotation synchronization component emphasized waveform, a specific fundamental frequency and a specific vibration source rotation frequency, which will be described later, are estimated, and according to the value of the specific vibration source rotation frequency, damage is caused to the inner ring, the rolling element, and the outer ring. It is determined which one has occurred. That is, the calculation unit 12 functions as a rotation synchronization component emphasized waveform calculation unit and a bearing damage type determination unit.

軸受7において、内輪傷が存在する場合、転動体が内輪傷を通過する周波数(基本周波数)とその自然数倍の周波数の力が発生する。内輪傷の方向は主軸1の回転とともに回転するため、力の発生する方向は回転周波数で変化する。
軸受7において、転動体傷が存在する場合、転動体傷が内輪または外輪に接する周波数(基本周波数)とその自然数倍の周波数の力が発生する。傷のある転動体の位置は転動体の保持器が自転する(転動体が公転する)周波数で変化するため、力の発生する方向は転動体の保持器が自転する(転動体が公転する)周波数で変化する。保持器の自転(転動体の公転)は、主軸の回転よりも必ず遅くなるので、力の発生する方向が変化する周波数は0Hzより大きく回転周波数より小さい値となる。
軸受7において、外輪傷が存在する場合、転動体が外輪傷を通過する周波数(基本周波数)とその自然数倍の周波数の力が発生する。外輪傷の方向は主軸1の回転に依らず一定であるため、力の発生する方向は変化しない。
ここでは力の発生する方向が変化する周波数を振動源回転周波数と呼称する。力の発生する方向の変化しない場合は、振動源回転周波数が便宜上0Hzであるとみなしてよい。
In the case where the inner ring is damaged in the bearing 7, a force is generated at a frequency (fundamental frequency) at which the rolling element passes through the inner ring and a frequency which is a natural number multiple thereof. Since the direction of the inner ring wound rotates with the rotation of the main shaft 1, the direction in which the force is generated changes with the rotation frequency.
When a rolling element wound is present in the bearing 7, a force is generated at a frequency (fundamental frequency) at which the rolling element wound contacts the inner ring or the outer ring, and a frequency that is a natural number multiple thereof. Since the position of the wound rolling element changes at a frequency at which the cage of the rolling element rotates (the rolling element revolves), the direction in which the force is generated is that the cage of the rolling element rotates (the rolling element revolves). Varies with frequency. Since the rotation of the cage (revolution of the rolling element) is always slower than the rotation of the main shaft, the frequency at which the direction in which the force is generated changes is a value larger than 0 Hz and smaller than the rotation frequency.
When the outer ring is damaged in the bearing 7, a force is generated at a frequency (fundamental frequency) at which the rolling element passes through the outer ring, and a frequency that is a natural number multiple of the frequency. Since the direction of the outer wheel wound is constant regardless of the rotation of the main shaft 1, the direction in which the force is generated does not change.
Here, the frequency at which the direction in which the force is generated changes is referred to as a vibration source rotation frequency. If the direction in which the force is generated does not change, the vibration source rotation frequency may be regarded as 0 Hz for convenience.

ところで、力の発生する方向が振動源回転周波数で変化する場合、固定された座標系でその力を見ると、力の周波数(基本周波数の自然数倍)に対して、振動源回転周波数だけ前後した2つの周波数の力が生じていることになる。線形とみなせるシステムでは、力と同じ周波数の振動加速度が生じるため、固定された座標系で振動加速度を測定し、周波数分析すると、軸受が損傷している場合には、理想的には振動源回転周波数の2倍だけ離れた周波数に振動ピークの対が観測され、その2つの振動ピークの平均の周波数が、基本周波数の自然数倍となるような位置に複数観測される。この規則性を捉え、振動源回転周波数を推定することで異常の種類を判断することが可能となる。ただし、現実的には、振動を測定し周波数分析するだけでは、振動しにくい周波数の振動ピークはノイズに埋もれてしまい、この規則性を確実に捉えることは難しい。   By the way, when the direction in which the force is generated changes at the vibration source rotation frequency, when the force is viewed in a fixed coordinate system, the force frequency (a natural number multiple of the fundamental frequency) is increased or decreased by the vibration source rotation frequency. This means that forces of the two frequencies are generated. In a system that can be regarded as linear, vibration acceleration occurs at the same frequency as the force.Measurement of the vibration acceleration in a fixed coordinate system and analysis of the frequency show that if the bearing is damaged, the vibration source rotation is ideal. A pair of vibration peaks is observed at a frequency separated by twice the frequency, and a plurality of vibration peaks are observed at a position where the average frequency of the two vibration peaks is a natural number times the fundamental frequency. By grasping this regularity and estimating the vibration source rotation frequency, it is possible to determine the type of abnormality. However, in reality, only by measuring the vibration and analyzing the frequency, the vibration peak of a frequency that is difficult to vibrate is buried in noise, and it is difficult to reliably grasp this regularity.

回転に同期する軸受損傷に起因する振動は、繰り返し測定したり異なる回転周波数で測定したりしたとしても、振動の生じる周波数は常に回転周波数の定数倍である。振動の周波数の回転周波数に対する比の無次元量を比周波数と呼称することにすると、回転に同期する軸受損傷に起因する振動は、回転周波数に依らず同じ比周波数に振動ピークが観測されることになる。このため、複数回測定して平均を取ることでホワイトノイズを低減したり、複数の回転周波数で測定して比周波数毎の平均を取ることでホワイトノイズや回転に同期しない外乱成分を低減したりすることで、回転に同期した振動を強調した波形(回転同期成分強調波形)を算出することができ、軸受損傷に起因する振動ピークの規則性を捉えることが容易となる。   Vibration caused by bearing damage synchronized with rotation is always a constant multiple of the rotation frequency, even if it is measured repeatedly or at different rotation frequencies. If the dimensionless amount of the ratio of the vibration frequency to the rotation frequency is referred to as the specific frequency, vibration caused by bearing damage synchronized with rotation will have a vibration peak at the same specific frequency regardless of the rotation frequency. become. For this reason, white noise is reduced by measuring multiple times and taking an average, or white noise and disturbance components that are not synchronized with rotation are reduced by measuring at multiple rotational frequencies and taking the average for each specific frequency. By doing so, it is possible to calculate a waveform in which vibration synchronized with rotation is emphasized (rotation synchronization component emphasized waveform), and it is easy to grasp the regularity of the vibration peak due to bearing damage.

複数の回転周波数で測定する場合、振動の基本周波数と振動源回転周波数とをそれぞれ回転周波数で除算して得られる無次元量の比基本周波数と比振動源回転周波数とを用いた方が議論しやすい。但し、比基本周波数は、軸受の構造によって様々な値をとるため、例えばある軸受の内輪傷の比基本周波数が別の軸受の外輪傷の比基本周波数と同じ大きさとなることもある。このため、比基本周波数の値に着目しても軸受の異常の種類を判別することは不可能である。しかし、前述したように、振動源回転周波数は、軸受損傷の種類によって回転周波数の何倍となるかが異なり、その大小関係に逆転が起こることはない。よって、比振動源回転周波数に換算すると、内輪損傷の場合は1、転動体損傷の場合は、後述する回転周波数に対する転動体公転の比の取りうる範囲の値(工作機械主軸に用いられる軸受の場合には0.45前後の値が多い)、外輪損傷の場合は0となる。   When measuring at multiple rotation frequencies, it is better to use the rational fundamental frequency and the specific vibration source rotation frequency of the dimensionless quantity obtained by dividing the vibration fundamental frequency and the vibration source rotation frequency by the rotation frequency, respectively. Cheap. However, since the specific fundamental frequency takes various values depending on the structure of the bearing, for example, the specific fundamental frequency of the inner ring damage of one bearing may be the same as the specific fundamental frequency of the outer ring damage of another bearing. For this reason, it is impossible to determine the type of the bearing abnormality by focusing on the value of the specific fundamental frequency. However, as described above, how many times the vibration source rotation frequency is higher than the rotation frequency depends on the type of bearing damage, and the magnitude relationship does not reverse. Therefore, when converted to a specific vibration source rotation frequency, the value is 1 in the case of inner ring damage and a value in the range of the ratio of the rolling element revolution to the rotation frequency described later (in the case of a bearing used for a machine tool spindle, In this case, the value is around 0.45), and in the case of outer ring damage, it is 0.

図2に外輪および内輪が損傷している場合の回転同期成分強調波形、図3に転動体が損傷している場合の回転同期成分強調波形を示す。これらの図に基づいて、軸受損傷の種類毎の振動ピーク位置の規則性を説明する。なお、図2において、内輪損傷時の振動ピークに関連する箇所は破線で、外輪損傷時の振動ピークに関連する箇所は実線で、注釈を記した。図3において、転動体損傷時の振動ピークに関連する箇所は実線で注釈を記した。   FIG. 2 shows a rotation synchronization component emphasized waveform when the outer ring and the inner ring are damaged, and FIG. 3 shows a rotation synchronization component emphasized waveform when the rolling elements are damaged. The regularity of the vibration peak position for each type of bearing damage will be described based on these figures. In FIG. 2, a portion related to the vibration peak when the inner ring is damaged is indicated by a dashed line, and a portion related to the vibration peak when the outer ring is damaged is indicated by a solid line. In FIG. 3, portions related to the vibration peak at the time of damage to the rolling elements are noted with solid lines.

内輪損傷があると、図2に示すように、同一の比振動源回転周波数(=1)の2倍だけ離れた2本の振動ピーク(ピーク対)が複数箇所に存在する。さらに、それぞれのピーク対の平均の比周波数は必ず比基本周波数の自然数倍となるため、比基本周波数が未知であっても、ピーク対の平均の比周波数が自然数比となっていることを確認することで内輪損傷による振動ピークであると確信することができる。
外輪損傷があると、図2に示すように、比周波数の比が自然数比となるような振動ピークが複数箇所に存在する。軸受の比基本周波数は自然数とならないように設計されることが一般的であるため、さらにそれらの振動ピークの比周波数のいくつかが自然数でなければ、比基本周波数が自然数でないと推測できるため、外輪損傷による振動ピークであると確信することができる。
転動体損傷があると、図3に示すように、同一の比振動源回転周波数の2倍だけ離れた2本の振動ピーク(ピーク対)が複数箇所に存在する。さらに、それぞれのピーク対の平均の比周波数は必ず比基本周波数の自然数倍となるため、比基本周波数が未知であっても、ピーク対の平均の比周波数が自然数比となっていることを確認することで転動体損傷による振動ピークであると確信することができる。なお、比振動源回転周波数の値は必ず1より小さい値となるため、内輪損傷との識別が可能である。
When the inner ring is damaged, as shown in FIG. 2, two vibration peaks (peak pairs) separated by twice the same specific vibration source rotation frequency (= 1) are present at a plurality of locations. Furthermore, since the average specific frequency of each peak pair is always a natural number multiple of the specific fundamental frequency, even if the specific basic frequency is unknown, the average specific frequency of the peak pair is the natural number ratio. By confirming, it can be convinced that the vibration peak is caused by damage to the inner ring.
When the outer ring is damaged, as shown in FIG. 2, there are vibration peaks at a plurality of locations where the ratio of the specific frequencies becomes a natural number ratio. Since the specific fundamental frequency of the bearing is generally designed not to be a natural number, furthermore, if some of the specific frequencies of the vibration peaks are not natural numbers, it can be estimated that the specific fundamental frequency is not a natural number. It can be convinced that this is the vibration peak due to the outer ring damage.
When the rolling element is damaged, as shown in FIG. 3, two vibration peaks (peak pairs) separated by twice the same specific vibration source rotation frequency are present at a plurality of locations. Furthermore, since the average specific frequency of each peak pair is always a natural number multiple of the specific fundamental frequency, even if the specific basic frequency is unknown, the average specific frequency of the peak pair is the natural number ratio. By confirming, it can be convinced that the vibration peak is due to the rolling element damage. In addition, since the value of the specific vibration source rotation frequency is always smaller than 1, it is possible to identify the inner ring damage.

図4は、転がり軸受の異常診断を行う方法のフローチャートを示したものであり、このフローチャートに基づいて具体的に説明する。
まず、予め登録されている診断回転周波数の全条件のうちの1つが表示・操作部13に図7のように表示される(S1)。
次に、診断装置の使用者は、表示された診断回転周波数を制御装置6へ指令する(S2)。
次に、診断装置の使用者は、表示部8を確認して、診断対象の軸受に支持された回転体が表示・操作部13に表示された回転周波数で回転しているかを判断し、一致している場合には表示・操作部13より測定開始を指令する(S3)。
すると、異常診断装置200では、振動加速度を測定して記録し(S4)、必要なデータ長となったら測定完了と判断してS6へ移行する(S5)。S6では、振動測定時の回転周波数と振動加速度とを対応付けて記録する。
S7で、予め登録されている診断回転周波数の全条件の測定が完了しているかを判断し、全条件の測定が完了していればS8へ移行する。完了してない場合にはS1に戻り、測定が完了していない別の診断回転周波数を表示する。ここでのS4〜S7までが振動測定ステップとなる。
FIG. 4 shows a flowchart of a method for diagnosing an abnormality of a rolling bearing, which will be specifically described based on the flowchart.
First, one of all the conditions of the diagnostic rotation frequency registered in advance is displayed on the display / operation unit 13 as shown in FIG. 7 (S1).
Next, the user of the diagnostic device commands the displayed diagnostic rotational frequency to the control device 6 (S2).
Next, the user of the diagnostic device checks the display unit 8 to determine whether the rotating body supported by the bearing to be diagnosed is rotating at the rotation frequency displayed on the display / operation unit 13. If so, a command to start measurement is issued from the display / operation unit 13 (S3).
Then, the abnormality diagnosis device 200 measures and records the vibration acceleration (S4), and when the required data length is reached, determines that the measurement is completed and shifts to S6 (S5). In S6, the rotation frequency and the vibration acceleration at the time of the vibration measurement are recorded in association with each other.
In S7, it is determined whether the measurement of all the conditions of the diagnostic rotational frequency registered in advance has been completed, and if the measurement of all the conditions has been completed, the process proceeds to S8. If not completed, the process returns to S1 to display another diagnostic rotation frequency for which measurement has not been completed. Here, S4 to S7 are the vibration measurement steps.

S8では、まず振動加速度をフーリエ変換し振幅スペクトル密度を算出する。次に、振幅スペクトル密度の絶対値を測定時の角周波数(測定時の回転周波数に、2と円周率を乗算した値)の2乗で除算して修正振動値を算出する。修正振動値の比周波数が等しい周波数成分を複数の回転周波数でそれぞれ平均を算出することで回転同期成分強調波形を算出する(回転同期成分強調波形算出ステップ)。なお、比周波数分解能が一致しない場合には補間処理を行って比周波数分解能を統一して平均を算出する。
次に、S9では、比基本周波数と比振動源回転周波数とを仮定し、回転同期成分強調波形の比基本周波数×自然数±比振動源回転周波数の位置に振動ピークが存在するかそれぞれ判断する。ある比周波数に振動ピークが存在するか否かの判断は、回転同期成分強調波形と回転同期成分強調波形の移動平均を比較し、回転同期成分強調波形の値の方が大きければ、その比周波数には振動ピークが存在すると判断すればよい。そして、比基本周波数×自然数±比振動源回転周波数の位置に振動ピークが存在した割合(一致率)を算出する。
In S8, first, the vibration acceleration is Fourier transformed to calculate the amplitude spectrum density. Next, a corrected vibration value is calculated by dividing the absolute value of the amplitude spectrum density by the square of the angular frequency at the time of measurement (the value obtained by multiplying the rotation frequency at the time of measurement by 2). A rotation synchronization component emphasized waveform is calculated by calculating an average of frequency components having the same ratio frequency of the corrected vibration value at a plurality of rotation frequencies (rotation synchronization component emphasis waveform calculation step). If the specific frequency resolutions do not match, an interpolation process is performed to unify the specific frequency resolutions and calculate an average.
Next, in S9, assuming the specific fundamental frequency and the specific vibration source rotation frequency, it is determined whether or not there is a vibration peak at the position of (the basic frequency of the rotation synchronization component emphasized waveform × natural number ± the specific vibration source rotation frequency). To determine whether or not a vibration peak exists at a specific frequency, the moving average of the rotation-synchronous component-emphasized waveform is compared with the moving average of the rotation-synchronous component-emphasized waveform. May be determined to have a vibration peak. Then, the ratio (coincidence ratio) of the vibration peak at the position of (specific fundamental frequency × natural number ± specific vibration source rotation frequency) is calculated.

次に、S10では、既定された探索範囲の比基本周波数と比振動源回転周波数との組み合わせについて全て探索完了しているか判断し、完了していればS11へ移行する。
S11では、一致率が既定のしきい値以上である比基本周波数と比振動源回転周波数について、比振動源回転周波数の値に応じて軸受異常の種類(内輪損傷、転動体損傷、外輪損傷)を判断する。ここでのS9〜S11までが軸受損傷種類判別ステップとなる。
そして、S12では、図8に示すような診断結果を表示・操作部13に表示する。ここでは比振動源回転周波数が外輪に対応する0、内輪に対応する1の場合に一致率が高く算出されたため、外輪と内輪とが損傷している可能性ありと表示される。
Next, in S10, it is determined whether or not the search has been completed for all combinations of the specific fundamental frequency and the specific vibration source rotation frequency in the predetermined search range, and if completed, the process proceeds to S11.
In S11, the type of bearing abnormality (inner ring damage, rolling element damage, outer ring damage) according to the value of the specific vibration source rotation frequency with respect to the specific fundamental frequency and the specific vibration source rotation frequency whose coincidence rates are equal to or higher than a predetermined threshold value. Judge. Steps S9 to S11 here are the bearing damage type determination steps.
Then, in S12, a diagnosis result as shown in FIG. 8 is displayed on the display / operation unit 13. Here, when the specific vibration source rotation frequency is 0 corresponding to the outer wheel and 1 corresponding to the inner wheel, the matching rate is calculated to be high, so that it is displayed that the outer wheel and the inner wheel may be damaged.

図5は、転がり軸受の異常診断を行う他の方法のフローチャートを示したものであり、このフローチャートに基づいて具体的に説明する。
S1〜S8までは図4の方法と同じである。まず、予め登録されている診断回転周波数の全条件のうちの1つが表示・操作部13に図7のように表示される(S1)。診断装置の使用者は、表示された診断回転周波数を制御装置6へ指令する(S2)。診断装置の使用者は、表示部8を確認して、診断対象の軸受に支持された回転体が表示・操作部13に表示された回転周波数で回転しているかを判断し、一致している場合には表示・操作部13より測定開始を指令する(S3)。振動加速度を測定して記録し(S4)、必要なデータ長となったら測定完了と判断してS6へ移行する(S5)。振動測定時の回転周波数と振動加速度を対応付けて記録する(S6)。予め登録されている診断回転周波数の全条件の測定が完了しているかを判断し、全条件の測定が完了していればS8へ移行する。完了してない場合にはS1に戻り、測定が完了していない別の診断回転周波数を表示する。
S8では、まず振動加速度をフーリエ変換し振幅スペクトル密度を算出する。振幅スペクトル密度の絶対値を測定時の角周波数(測定時の回転周波数に、2と円周率を乗算した値)の2乗で除算して修正振動値を算出する。修正振動値の比周波数が等しい周波数成分を複数の回転周波数で平均を算出することで回転同期成分強調波形を算出する。なお、比周波数分解能が一致しない場合には補間処理を行って比周波数分解能を統一して平均を算出する。
FIG. 5 shows a flowchart of another method for diagnosing the abnormality of the rolling bearing, and will be specifically described based on this flowchart.
S1 to S8 are the same as in the method of FIG. First, one of all the conditions of the diagnostic rotation frequency registered in advance is displayed on the display / operation unit 13 as shown in FIG. 7 (S1). The user of the diagnostic device commands the displayed diagnostic rotational frequency to the control device 6 (S2). The user of the diagnostic device checks the display unit 8 to determine whether the rotating body supported by the bearing to be diagnosed is rotating at the rotation frequency displayed on the display / operation unit 13 and agrees with each other. In this case, a command to start measurement is issued from the display / operation unit 13 (S3). The vibration acceleration is measured and recorded (S4). When the required data length is reached, it is determined that the measurement is completed, and the process proceeds to S6 (S5). The rotation frequency and vibration acceleration at the time of vibration measurement are recorded in association with each other (S6). It is determined whether the measurement of all the conditions of the diagnostic rotation frequency registered in advance is completed, and if the measurement of all the conditions is completed, the process proceeds to S8. If not completed, the process returns to S1 to display another diagnostic rotation frequency for which measurement has not been completed.
In S8, first, the vibration acceleration is Fourier transformed to calculate the amplitude spectrum density. The corrected vibration value is calculated by dividing the absolute value of the amplitude spectrum density by the square of the angular frequency at the time of measurement (the rotational frequency at the time of measurement multiplied by 2). By calculating an average of frequency components having the same ratio frequency of the corrected vibration value at a plurality of rotation frequencies, a rotation synchronization component emphasized waveform is calculated. If the specific frequency resolutions do not match, an interpolation process is performed to unify the specific frequency resolutions and calculate an average.

そして、S109では、まず振動ピークが存在すると判断された比周波数を4つ選択する。ある比周波数に振動ピークが存在するか否かの判断は、回転同期成分強調波形と回転同期成分強調波形の移動平均とを比較し、回転同期成分強調波形の値の方が大きければ、その比周波数には振動ピークが存在すると判断すればよい。
次に、S110では、選択された4つの振動ピークの比周波数F、F、F、Fと、公約数を持たない異なる自然数N、Nとの組み合わせが以下の数1および数2の関係式を満たすか否かを判断する。なお、F、F、F、Fには同一の比周波数が選ばれても良い(FとF、FとFがそれぞれ同一の比周波数のときに外輪損傷の振動ピークを検出できる)。
Then, in S109, first, four specific frequencies determined to have a vibration peak are selected. To determine whether or not a vibration peak exists at a specific frequency, the rotation synchronization component emphasized waveform is compared with the moving average of the rotation synchronization component enhancement waveform, and if the value of the rotation synchronization component enhancement waveform is larger, the ratio is determined. What is necessary is just to determine that the frequency has a vibration peak.
Next, in S110, the combination of the specific frequencies F 1 , F 2 , F 3 , and F 4 of the four selected vibration peaks and different natural numbers N 1 and N 2 having no common divisor is represented by the following equation 1 and It is determined whether or not the relational expression of Expression 2 is satisfied. Incidentally, the vibration of the F 1, F 2, F 3 , the outer ring damaged when may be chosen the same ratio frequency (F 1 and F 2, F 3 and F 4 are identical ratio frequency Each of the F 4 Peak can be detected).

Figure 2020041849
Figure 2020041849
Figure 2020041849
Figure 2020041849

S110の判別で、4つの振動ピークの比周波数F、F、F、Fと、公約数を持たない異なる自然数N、Nの組み合わせが数1および数2の関係式を満たす場合、S111へ移行し、関係式を満たさない場合、S109に戻って異なる比周波数を4つ選択してS110の判別を再度行う。
S111では、まず数1および数2の関係式を満たす振動ピークの比周波数の組み合わせについて、以下の数3、数4より比基本周波数R、比振動源回転周波数Rを算出する。
In the determination of S110, the four specific frequencies F 1 vibrational peak, F 2, F 3, F 4, the combination of different natural numbers N 1, N 2 no common divisor satisfies Equations 1 and 2 of the equation In this case, the process proceeds to S111, and if the relational expression is not satisfied, the process returns to S109, selects four different specific frequencies, and performs the determination of S110 again.
In S111, first, for the combination of the specific frequencies of the vibration peaks that satisfy the relational expressions of Expressions 1 and 2, the relative fundamental frequency R 0 and the specific vibration source rotation frequency R 1 are calculated from Expressions 3 and 4 below.

Figure 2020041849
Figure 2020041849
Figure 2020041849
Figure 2020041849

そして、算出した比振動源回転周波数Rの値に応じて軸受異常の種類(内輪損傷、転動体損傷、外輪損傷)を判断し、S112で、図9に示すような診断結果を表示・操作部13に表示する。ここでは比振動源回転周波数が転動体に対応する0.45と算出されたため、転動体が損傷している可能性ありと表示される。ここでのS109〜S111が軸受損傷種類判別ステップとなる。 Then, the bearing abnormality type according to the calculated value of the ratio vibration source rotation frequency R 1 (inner ring damage, the rolling element damage, the outer ring injury) determines, in S112, the display and operation of the diagnosis result as shown in FIG. 9 It is displayed on the unit 13. Here, since the specific vibration source rotation frequency is calculated to be 0.45 corresponding to the rolling element, it is displayed that the rolling element may be damaged. Here, S109 to S111 are a bearing damage type determination step.

図6は、機械学習を用いて転がり軸受の異常診断を行う他の方法のフローチャートを示したものであり、このフローチャートに基づいて具体的に説明する。
ここでは軸受異常が既知の軸受について後述する方法で算出される回転同期成分強調波形を入力とし、内輪損傷がある(1)か否か(0)、転動体損傷がある(1)か否か(0)、外輪損傷がある(1)か否か(0)、を出力とする教師データを用いて外部の学習器(図1に図示しない)において、予め機械学習させておき、学習済み数理モデルを図1の演算部12に備えている。数理モデルの形態としては、例えば、多層ニューラルネットワークなどを用いることができる。軸受異常が既知の軸受について評価用データ(回転同期成分強調波形)の値を入力した場合の出力の分布より、内輪、転動体、外輪が異常か否かを判断するしきい値を予め決定しておき、演算部12に備えている。
FIG. 6 shows a flowchart of another method for performing an abnormality diagnosis of a rolling bearing by using machine learning, and a specific description will be given based on this flowchart.
Here, a rotation synchronization component emphasized waveform calculated by a method to be described later for a bearing with a known bearing abnormality is input, and whether the inner ring is damaged (1) or not, the rolling element is damaged (1). Machine learning is performed in advance in an external learning device (not shown in FIG. 1) using teacher data that outputs (0) and whether there is outer ring damage (1) or not (0). The model is provided in the calculation unit 12 of FIG. As a form of the mathematical model, for example, a multilayer neural network or the like can be used. Based on the output distribution when the value of the evaluation data (rotational synchronous component emphasized waveform) is input for a bearing with a known bearing abnormality, a threshold value for determining whether or not the inner ring, the rolling element, and the outer ring are abnormal is determined in advance. It is provided in the calculation unit 12 in advance.

S1〜S8までは図4の方法と同じである。予め登録されている診断回転周波数の全条件のうちの1つが表示・操作部13に図7のように表示される(S1)。診断装置の使用者は、表示された診断回転周波数を制御装置6へ指令する(S2)。診断装置の使用者は、表示部8を確認して、診断対象の軸受に支持された回転体が表示・操作部13に表示された回転周波数で回転しているかを判断し、一致している場合には表示・操作部13より測定開始を指令する(S3)。振動加速度を測定して記録し(S4)、必要なデータ長となったら測定完了と判断してS6へ移行する(S5)。振動測定時の回転周波数と振動加速度を対応付けて記録する(S6)。予め登録されている診断回転周波数の全条件の測定が完了しているかを判断し、全条件の測定が完了していればS8へ移行する。完了してない場合にはS1に戻り、測定が完了していない別の診断回転周波数を表示する。
S8では、まず振動加速度をフーリエ変換し振幅スペクトル密度を算出する。振幅スペクトル密度の絶対値を測定時の角周波数(測定時の回転周波数に、2と円周率を乗算した値)の2乗で除算して修正振動値を算出する。修正振動値の比周波数が等しい周波数成分を複数の回転周波数で平均を算出することで回転同期成分強調波形を算出する。回転同期成分強調波形と回転同期成分強調波形の移動平均を比較し、回転同期成分強調波形の値の方が大きければ、その比周波数には振動ピークが存在すると判断する。なお、比周波数分解能が一致しない場合には補間処理を行って比周波数分解能を統一して平均を算出する。
S1 to S8 are the same as in the method of FIG. One of all the conditions of the diagnostic rotation frequency registered in advance is displayed on the display / operation unit 13 as shown in FIG. 7 (S1). The user of the diagnostic device commands the displayed diagnostic rotational frequency to the control device 6 (S2). The user of the diagnostic device checks the display unit 8 to determine whether the rotating body supported by the bearing to be diagnosed is rotating at the rotation frequency displayed on the display / operation unit 13 and agrees with each other. In this case, a command to start measurement is issued from the display / operation unit 13 (S3). The vibration acceleration is measured and recorded (S4). When the required data length is reached, it is determined that the measurement is completed, and the process proceeds to S6 (S5). The rotation frequency and vibration acceleration at the time of vibration measurement are recorded in association with each other (S6). It is determined whether the measurement of all the conditions of the diagnostic rotation frequency registered in advance is completed, and if the measurement of all the conditions is completed, the process proceeds to S8. If not completed, the process returns to S1 to display another diagnostic rotation frequency for which measurement has not been completed.
In S8, first, the vibration acceleration is Fourier transformed to calculate the amplitude spectrum density. The corrected vibration value is calculated by dividing the absolute value of the amplitude spectrum density by the square of the angular frequency at the time of measurement (the rotational frequency at the time of measurement multiplied by 2). By calculating an average of frequency components having the same ratio frequency of the corrected vibration value at a plurality of rotation frequencies, a rotation synchronization component emphasized waveform is calculated. The moving average of the rotation-synchronous component-emphasized waveform is compared with the moving average of the rotation-synchronous component-emphasized waveform, and if the value of the rotation-synchronous component-emphasized waveform is larger, it is determined that a vibration peak exists at the specific frequency. If the specific frequency resolutions do not match, an interpolation process is performed to unify the specific frequency resolutions and calculate an average.

そして、S209では、回転同期成分強調波形を学習済み数理モデルに入力し、内輪損傷があるか否か、転動体損傷があるか否か、外輪損傷があるか否か、の出力値をそれぞれ算出する(軸受損傷種類判別ステップ)。
S209で、それぞれの出力値の値が予め設定されたしきい値を超過していれば異常と判断し、S210で、図10に示すような診断結果を表示・操作部13に表示する。図10には、学習済み数理モデルに入力する回転同期成分強調波形がグラフとして、学習済み数理モデルからの出力値、異常か否かを判断するしきい値、異常か否かを判断した判定結果が表示されている。
In step S209, the rotation synchronization component emphasized waveform is input to the learned mathematical model, and output values of whether there is an inner ring damage, whether there is a rolling element damage, and whether there is an outer ring damage are calculated. (Bearing damage type determination step).
In S209, if the value of each output value exceeds a preset threshold value, it is determined that there is an abnormality, and in S210, a diagnosis result as shown in FIG. 10 is displayed on the display / operation unit 13. FIG. 10 shows, as a graph, a rotation synchronization component emphasized waveform input to the learned mathematical model, an output value from the learned mathematical model, a threshold value for determining whether an abnormality is present, and a determination result for determining whether the abnormality is abnormal. Is displayed.

このように、上記各形態の異常診断方法及び異常診断装置200、異常診断プログラムによれば、測定した振動に対し、主軸1の回転周波数に比例した周波数の振動成分を強調する回転同期成分強調波形を算出し、回転同期成分強調波形の振動ピーク位置の規則性に基づいて軸受7における損傷の種類を判別するので、軸受諸元を用いることなく振動ピークの規則性から軸受異常の種類を判断することが可能となる。
また、本発明では、比基本周波数と比振動源回転周波数が推定されているので基本周波数や特徴周波数の算出が行える。このため、基本周波数や特徴周波数を算出するために軸受諸元を利用する必要があった従来の診断技術の診断を行うことも可能となる。ある回転周波数における基本周波数が必要な場合は、比基本周波数の値に回転周波数を乗算することで算出することが可能である。ある回転周波数における、転動体の保持器が自転する(転動体が公転する)周波数が必要な場合には、転動体損傷と判断された比基本周波数と比振動源回転周波数の組み合わせの比振動源回転周波数の値に回転周波数を乗算することで算出することが可能である。
As described above, according to the abnormality diagnosis method, the abnormality diagnosis apparatus 200, and the abnormality diagnosis program of each of the above-described embodiments, the rotation synchronization component emphasized waveform that emphasizes a vibration component having a frequency proportional to the rotation frequency of the main shaft 1 with respect to the measured vibration. Is calculated, and the type of damage in the bearing 7 is determined based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform. Therefore, the type of the bearing abnormality is determined from the regularity of the vibration peak without using the bearing specifications. It becomes possible.
In the present invention, since the specific fundamental frequency and the specific vibration source rotation frequency are estimated, the basic frequency and the characteristic frequency can be calculated. For this reason, it is also possible to perform a diagnosis using the conventional diagnosis technology that required the use of the bearing data to calculate the fundamental frequency and the characteristic frequency. When a fundamental frequency at a certain rotational frequency is required, it can be calculated by multiplying the value of the specific fundamental frequency by the rotational frequency. In the case where a frequency at which the cage of the rolling element rotates (revolves the rolling element) at a certain rotation frequency is required, the specific vibration source is a combination of the specific fundamental frequency determined as the rolling element damage and the specific vibration source rotation frequency. It is possible to calculate by multiplying the value of the rotation frequency by the rotation frequency.

特にここでは、振動測定ステップでは、異なる複数の回転周波数で振動を測定し、回転同期成分強調波形算出ステップでは、振動を周波数分析して周波数毎の振動の大きさをそれぞれ算出し、回転周波数に対する振動の周波数の倍率(比周波数)が同じ成分について振動の大きさの平均をとるようにしている(S8)ので、さらに外乱の影響が低減されて、振動ピークの規則性を捉え易くなるため、軸受異常の推定精度が向上する。   In particular, here, in the vibration measurement step, vibration is measured at a plurality of different rotation frequencies, and in the rotation synchronization component emphasized waveform calculation step, the vibration is frequency-analyzed to calculate the magnitude of the vibration for each frequency, and Since the average of the magnitudes of the vibrations is taken for the components having the same frequency magnification (specific frequency) (S8), the influence of disturbance is further reduced, and the regularity of the vibration peaks can be easily grasped. The accuracy of estimating the bearing abnormality is improved.

また、図6に示す異常診断方法では、回転同期成分強調波形を入力とし、内輪傷の有無、転動体傷の有無、外輪傷の有無の少なくともひとつを出力とする教師データを用いて学習した機械学習モデルを用い、回転同期成分強調波形を入力して軸受損傷の種類を判別するので、人間が考える処理よりも汎用的に振動ピークの規則性から軸受異常の種類を判断することが可能となる。
そして、異常診断装置200では、軸受損傷に対応する比基本周波数と比振動源回転周波数とを合わせて表示・操作部13に表示するので、数字として表示される周波数の値を用いて他の軸受診断処理を行うことが可能となる。
さらにここでは、特定の比周波数の位置と回転同期成分強調波形とを合わせて表示・操作部13に表示するので、振動ピークの規則性を正しく抽出できているか否かを視覚的に把握できるため、診断結果の妥当性を容易に検証できる。また、各損傷の種類において着目すべき比周波数がわかりやすくなる。
Further, in the abnormality diagnosis method shown in FIG. 6, a machine learned using teacher data which receives a rotation synchronization component emphasized waveform as input, and outputs at least one of the presence or absence of an inner wheel wound, the presence of a rolling body wound, and the presence or absence of an outer wheel wound. Since the learning model is used to input the rotation synchronization component emphasized waveform to determine the type of bearing damage, it is possible to determine the type of bearing abnormality from the regularity of vibration peaks more generally than processing considered by humans. .
Then, in the abnormality diagnosis device 200, the specific fundamental frequency corresponding to the bearing damage and the specific vibration source rotation frequency are displayed together on the display / operation unit 13, so that the other bearings are displayed by using the frequency values displayed as numerals. Diagnosis processing can be performed.
Further, here, since the position of the specific frequency and the rotation synchronization component emphasized waveform are displayed together on the display / operation unit 13, it is possible to visually grasp whether or not the regularity of the vibration peak has been correctly extracted. The validity of the diagnosis result can be easily verified. Further, the specific frequency to be focused on for each type of damage can be easily understood.

なお、上記各例では、診断対象の軸受に支持された回転体の回転周波数を直接指令可能な例を示したが、ベルトを介して工作機械主軸を回転させるモータの支持軸受を診断する場合は、減速比を考慮して、モータの支持軸受の回転周波数が診断周波数となるように指定してやればよい。
また、表示・操作部13に表示された診断回転周波数に診断対象の軸受の回転周波数を合わせることで、振動加速度と回転周波数を対応付けて記憶する方法を示したが、診断対象の軸受の回転周波数を表示・操作部13より診断装置の使用者が入力する方法や、異常診断装置200が速度検出器5の情報を直接取り込めるようにする方法でもよい。
さらに、回転周波数(単位はHzを用いることが多い)と回転速度(工作機械主軸では、単位min−1が用いられることが多い)は、1Hz=60min−1の関係がある同一の量であり、どちらを用いてもよい。
In each of the above examples, an example has been shown in which the rotation frequency of the rotating body supported by the bearing to be diagnosed can be directly instructed.However, when diagnosing a support bearing of a motor that rotates a machine tool main shaft via a belt, In consideration of the reduction ratio, the rotational frequency of the support bearing of the motor may be designated so as to be the diagnostic frequency.
Also, a method has been described in which the rotational frequency of the bearing to be diagnosed is matched with the diagnostic rotational frequency displayed on the display / operation unit 13 so that the vibration acceleration and the rotational frequency are stored in association with each other. A method in which the user of the diagnostic device inputs the frequency from the display / operation unit 13 or a method in which the abnormality diagnostic device 200 can directly capture the information of the speed detector 5 may be used.
Further, the rotation frequency (unit often uses Hz) and the rotation speed (unit min −1 is often used in the machine tool spindle) are the same quantities having a relation of 1 Hz = 60 min −1 . , May be used.

一方、すべりのない場合の回転周波数に対する転動体公転周波数の比(転動体異常の場合の比振動源回転周波数R)は、転動体直径d、ピッチ円直径D、接触角αを用いて、以下の数5で表現される。 On the other hand, the ratio of the rolling element revolution frequency to the rotation frequency when there is no slip (specific vibration source rotation frequency R 1 when the rolling element is abnormal) is calculated by using the rolling element diameter d, pitch circle diameter D, and contact angle α. It is expressed by the following Equation 5.

Figure 2020041849
Figure 2020041849

数5より、転動体異常の場合の比振動源回転周波数はピッチ円直径に対する転動体直径の比が大きいほど小さくなることがわかる。転がり軸受を構成する上で最低3個の転動体が必要となるので、3個の転動体を密に並べた構造の軸受においてピッチ円直径に対する転動体直径の比が最大となるため、幾何学的な比振動源回転周波数の下限値は、(1−√3÷2)÷2≒0.0669である。数5より、転動体直径を無限小にした場合が、転動体異常の場合の比振動源回転周波数が最大となることがわかる。このため、幾何学的には、比振動源回転周波数の上限値は0.5である。転動体異常の場合の比振動源回転周波数がとり得る範囲は、最も広く見積もっても(1−√3÷2)÷2以上から0.5以下である。
工作機械主軸に用いられる軸受の場合、転動体異常の場合の比振動源回転周波数は0.45前後であるため、仮定する比振動源回転周波数は0、0.4以上0.5以下、1とするなどさらに限定して探索を行ってもよい。
From Equation 5, it can be seen that the specific vibration source rotation frequency in the case of a rolling element abnormality becomes smaller as the ratio of the rolling element diameter to the pitch circle diameter increases. Since a minimum of three rolling elements are required to form a rolling bearing, the ratio of the rolling element diameter to the pitch circle diameter is maximized in a bearing having a structure in which three rolling elements are densely arranged. The lower limit of the typical specific vibration source rotation frequency is (1− {3√2) ÷ 2 ≒ 0.0669. From Equation 5, it can be seen that when the rolling element diameter is infinitely small, the specific vibration source rotation frequency becomes maximum when the rolling element is abnormal. For this reason, geometrically, the upper limit of the specific vibration source rotation frequency is 0.5. The range that the specific vibration source rotation frequency can take in the case of a rolling element abnormality is from (1− {3√2)} 2 or more to 0.5 or less at the widest estimate.
In the case of a bearing used for a machine tool main shaft, the specific vibration source rotation frequency in the case of a rolling element abnormality is about 0.45, so the assumed specific vibration source rotation frequency is 0, 0.4 or more and 0.5 or less, 1 The search may be further limited.

また、複数の回転周波数で測定した振動加速度から回転同期成分強調波形を算出する際に、測定時の角周波数(測定時の回転周波数に、2と円周率を乗算した値)の2乗で除算する処理を入れる例を示しているが、回転体の回転周波数に比例した周波数の振動成分を強調し、振動ピークの抽出を容易に行えるようにする目的が達せられるのであれば省略してもよいし、別の処理を追加しても良い。
さらに、比周波数、比基本周波数、比振動源回転周波数、これらの値と比較される値、の全てに同一の値を乗算しても、全く同じ議論が成立する。つまり、例えば比振動源回転周波数が1と一致するか否かを判断することは、比振動源回転周波数×30Hzが1×30Hzと一致するか否かを判断することと同義である。
Also, when calculating a rotation synchronous component emphasized waveform from vibration accelerations measured at a plurality of rotation frequencies, the square frequency of the angular frequency at the time of measurement (the value obtained by multiplying the rotation frequency at the time of measurement by 2 and the pi) is used. Although an example is shown in which a division process is included, it may be omitted if the purpose of emphasizing the vibration component having a frequency proportional to the rotation frequency of the rotating body and facilitating the extraction of the vibration peak can be achieved. Alternatively, another process may be added.
Furthermore, even if all of the specific frequency, the specific fundamental frequency, the specific vibration source rotation frequency, and the value to be compared with these values are multiplied by the same value, the same argument holds. That is, for example, determining whether the specific vibration source rotation frequency matches 1 is equivalent to determining whether or not the specific vibration source rotation frequency × 30 Hz matches 1 × 30 Hz.

その他、本実施例では、工作機械と異常診断装置とを別体で示しているが、異常診断装置を制御装置に内蔵しても良い。
また、異常診断装置を複数の工作機械と有線或いは無線で通信可能とし、工作機械側で振動を測定してデータを取得しつつ、異常診断プログラムに基づいて異常診断方法を各工作機械毎に実行するようにしてもよい。さらに、振動の測定から異常診断までを連続して行う場合に限らず、振動の測定データを記憶部に保存しておき、所定のタイミングで異常診断プログラムによる異常診断を行うようにしても差し支えない。
In addition, in this embodiment, the machine tool and the abnormality diagnosis device are shown separately, but the abnormality diagnosis device may be built in the control device.
In addition, the abnormality diagnosis device can communicate with a plurality of machine tools by wire or wirelessly, and the machine tool measures vibration and acquires data, and executes an abnormality diagnosis method for each machine tool based on an abnormality diagnosis program. You may make it. Further, the present invention is not limited to the case where the process from the measurement of the vibration to the diagnosis of the abnormality is continuously performed, and the measurement data of the vibration may be stored in the storage unit, and the abnormality diagnosis may be performed by the abnormality diagnosis program at a predetermined timing. .

1・・主軸、2・・主軸ハウジング、3・・工具、4・・モータ、5・・速度検出器、6・・制御装置、7・・軸受、8・・表示部、9・・振動センサ、10・・A/D変換器、11・・記憶部、12・・演算部、13・・表示・操作部、100・・工作機械、200・・異常診断装置。   1. Spindle 2, Spindle housing 3, Tool 4, Motor 5, Speed detector 6, Control device 7, Bearing 8, Display unit 9, Vibration sensor 10 A / D converter, 11 storage unit, 12 calculation unit, 13 display / operation unit, 100 machine tool, 200 abnormality diagnosis device.

上記目的を達成するために、請求項1に記載の発明は、回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の振動を複数回測定する振動測定ステップと、
前記振動を周波数分析して周波数毎の振動の大きさをそれぞれ求め、前記振動の周波数を回転周波数で除算して得られる無次元量を比周波数として、各回の測定で得られた前記振動の大きさの前記比周波数ごとの平均を回転同期成分強調波形として算出する回転同期成分強調波形算出ステップと、
前記回転同期成分強調波形の振動ピーク位置の規則性に基づいて、前記転がり軸受において力の発生する方向が変化する周波数である振動源回転周波数と前記回転周波数との比である比振動源回転周波数を推定し、前記比振動源回転周波数の値が1の場合には、前記転がり軸受の内輪損傷と判断し、前記比振動源回転周波数の値が前記転がり軸受の転動体の公転周波数を前記回転周波数で除算した値のとり得る範囲である場合には、前記転動体の損傷と判断し、前記比振動源回転周波数の値が0の場合には、前記転がり軸受の外輪損傷と判断する軸受損傷種類判別ステップと、を実行することを特徴とする。
請求項に記載の発明は、請求項の構成において、前記比振動源回転周波数の推定は、前記回転同期成分強調波形において、比基本周波数と比振動源回転周波数とを仮定して算出される特定の比周波数に振動ピークが存在する割合である一致率を算出し、一致率が所定のしきい値を超過する場合には、仮定した前記比基本周波数と仮定した前記比振動源回転周波数とにより表現される規則性が前記回転同期成分強調波形にあると判断し、仮定した前記比振動源回転周波数を採用することを特徴とする。
請求項に記載の発明は、請求項1又は2の構成において、前記振動測定ステップでは、異なる複数の回転周波数で振動を測定することを特徴とする。
上記目的を達成するために、請求項に記載の発明は、回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の振動を複数回測定する振動測定ステップと、
前記振動を周波数分析して周波数毎の振動の大きさをそれぞれ求め、前記振動の周波数を回転周波数で除算して得られる無次元量を比周波数として、各回の測定で得られた前記振動の大きさの前記比周波数ごとの平均を回転同期成分強調波形として算出する回転同期成分強調波形算出ステップと、
前記回転同期成分強調波形を入力とし、内輪傷の有無、転動体傷の有無、外輪傷の有無の少なくともひとつを出力とする教師データを用いて学習した機械学習モデルを用い、前記回転同期成分強調波形を入力して前記転がり軸受の損傷の種類を判別する軸受損傷種類判別ステップと、を実行することを特徴とする。
上記目的を達成するために、請求項に記載の発明は、回転体を支持する転がり軸受の異常を診断する装置であって、
前記回転体の振動を複数回測定する振動測定手段と、
前記振動を周波数分析して周波数毎の振動の大きさをそれぞれ求め、前記振動の周波数を回転周波数で除算して得られる無次元量を比周波数として、各回の測定で得られた前記振動の大きさの前記比周波数ごとの平均を回転同期成分強調波形として算出する回転同期成分強調波形算出手段と、
前記回転同期成分強調波形の振動ピーク位置の規則性に基づいて、前記転がり軸受において力の発生する方向が変化する周波数である振動源回転周波数と前記回転周波数との比である比振動源回転周波数を推定し、前記比振動源回転周波数の値が1の場合には、前記転がり軸受の内輪損傷と判断し、前記比振動源回転周波数の値が前記転がり軸受の転動体の公転周波数を前記回転周波数で除算した値のとり得る範囲である場合には、前記転動体の損傷と判断し、前記比振動源回転周波数の値が0の場合には、前記転がり軸受の外輪損傷と判断する軸受損傷種類判別手段と、を備えることを特徴とする。
請求項に記載の発明は、請求項の構成において、前記軸受損傷種類判別手段は、前記転がり軸受の損傷に対応する比基本周波数と前記比振動源回転周波数と、前記比基本周波数と前記比振動源回転周波数とから算出される特定の比周波数とを用いて前記転がり軸受の損傷の種類毎の前記振動ピーク位置の存在を確認すると共に、前記比振動源回転周波数の値に基づいて前記損傷の種類を判別するものであり、
前記比基本周波数と前記比振動源回転周波数とを合わせて表示する表示手段を備えることを特徴とする。
請求項に記載の発明は、請求項の構成において、前記軸受損傷種類判別手段は、前記転がり軸受の損傷に対応する比基本周波数と前記比振動源回転周波数と、前記比基本周波数と前記比振動源回転周波数とから算出される特定の比周波数とを用いて前記転がり軸受の損傷の種類毎の前記振動ピーク値の存在を確認すると共に、前記比振動源回転周波数の値に基づいて前記損傷の種類を判別するものであり、
前記特定の比周波数の位置と前記回転同期成分強調波形とを合わせて表示する表示手段を備えることを特徴とする。
上記目的を達成するために、請求項に記載の発明は、転がり軸受の異常診断プログラムであって、所定の回転周波数で測定された回転体の振動が前記回転周波数と共に入力されたコンピュータに、請求項1乃至の何れかに記載の転がり軸受の異常診断方法における回転同期成分強調波形算出ステップと軸受損傷種類判別ステップとを実行させることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a method for diagnosing an abnormality of a rolling bearing that supports a rotating body,
A vibration measurement step of measuring the vibration of the rotating body a plurality of times ,
The frequency of the vibration is analyzed to determine the magnitude of the vibration for each frequency, and the dimension of the dimension obtained by dividing the frequency of the vibration by the rotation frequency is defined as a specific frequency, and the magnitude of the vibration obtained in each measurement is measured. A rotation synchronization component emphasized waveform calculating step of calculating an average for each specific frequency as a rotation synchronization component emphasized waveform,
Based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform, based on the regularity of the vibration source rotation frequency, which is the frequency at which the direction in which force is generated in the rolling bearing changes, and the specific vibration source rotation frequency, which is the ratio of the rotation frequency When the value of the specific vibration source rotation frequency is 1, it is determined that the inner ring of the rolling bearing is damaged, and the value of the specific vibration source rotation frequency changes the revolution frequency of the rolling element of the rolling bearing to the rotation. If the value is within the range of the value obtained by dividing by the frequency, it is determined that the rolling element is damaged. If the value of the specific vibration source rotation frequency is 0, the bearing is determined to be the outer ring of the rolling bearing. Performing a type determination step.
According to a second aspect of the present invention, in the configuration of the first aspect , the estimation of the specific vibration source rotation frequency is performed by assuming a specific fundamental frequency and a specific vibration source rotation frequency in the rotation synchronization component emphasized waveform. A coincidence rate, which is a ratio at which a vibration peak exists at a particular specific frequency, is calculated. If the coincidence rate exceeds a predetermined threshold, the assumed specific fundamental frequency and the assumed specific vibration source rotation frequency are used. Is determined to be present in the rotation-synchronous component emphasized waveform, and the assumed specific vibration source rotation frequency is adopted.
According to a third aspect of the present invention, in the configuration of the first or second aspect , in the vibration measurement step, vibration is measured at a plurality of different rotation frequencies.
To achieve the above object, the invention according to claim 4 is a method for diagnosing an abnormality of a rolling bearing that supports a rotating body,
A vibration measurement step of measuring the vibration of the rotating body a plurality of times,
The frequency of the vibration is analyzed to determine the magnitude of the vibration for each frequency, and the dimension of the dimension obtained by dividing the frequency of the vibration by the rotation frequency is defined as a specific frequency, and the magnitude of the vibration obtained in each measurement is measured. A rotation synchronization component emphasized waveform calculating step of calculating an average for each specific frequency as a rotation synchronization component emphasized waveform,
The rotation synchronization component emphasis waveform is input, and the rotation synchronization component enhancement is performed using a machine learning model learned using teacher data that outputs at least one of the presence or absence of an inner wheel wound, the presence or absence of a rolling body injury, and the presence or absence of an outer wheel injury. And a bearing damage type determining step of determining a type of damage to the rolling bearing by inputting a waveform.
In order to achieve the above object, an invention according to claim 5 is an apparatus for diagnosing an abnormality of a rolling bearing that supports a rotating body,
Vibration measuring means for measuring the vibration of the rotating body a plurality of times ,
The frequency of the vibration is analyzed to determine the magnitude of the vibration for each frequency, and the dimension of the dimension obtained by dividing the frequency of the vibration by the rotation frequency is defined as a specific frequency, and the magnitude of the vibration obtained in each measurement is measured. A rotation synchronization component emphasized waveform calculating means for calculating an average for each specific frequency as a rotation synchronization component emphasized waveform,
Based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform, based on the regularity of the vibration source rotation frequency, which is the frequency at which the direction in which force is generated in the rolling bearing changes, and the specific vibration source rotation frequency, which is the ratio of the rotation frequency When the value of the specific vibration source rotation frequency is 1, it is determined that the inner ring of the rolling bearing is damaged, and the value of the specific vibration source rotation frequency changes the revolution frequency of the rolling element of the rolling bearing to the rotation. If the value is within the range of the value obtained by dividing by the frequency, it is determined that the rolling element is damaged. If the value of the specific vibration source rotation frequency is 0, the bearing is determined to be the outer ring of the rolling bearing. And a type determining means.
According to a sixth aspect of the present invention, in the configuration of the fifth aspect , the bearing damage type determination means includes a specific fundamental frequency corresponding to the damage to the rolling bearing , the specific vibration source rotation frequency, and the specific basic frequency. Using a specific frequency calculated from the specific vibration source rotation frequency and the specific vibration frequency to confirm the existence of the vibration peak position for each type of damage to the rolling bearing , based on the value of the specific vibration source rotation frequency Determining the type of damage ;
There is provided a display means for displaying the specific fundamental frequency and the specific vibration source rotation frequency together.
According to a seventh aspect of the present invention, in the configuration of the fifth aspect , the bearing damage type determination means includes a specific fundamental frequency corresponding to the damage to the rolling bearing , the specific vibration source rotation frequency, and the specific basic frequency. Confirming the existence of the vibration peak value for each type of damage to the rolling bearing using a specific frequency calculated from the specific vibration source rotation frequency and based on the value of the specific vibration source rotation frequency Determining the type of damage ;
A display unit is provided for displaying the position of the specific ratio frequency and the rotation synchronization component emphasized waveform together.
In order to achieve the above object, the invention according to claim 8 is a program for diagnosing an abnormality of a rolling bearing, wherein the vibration of the rotating body measured at a predetermined rotation frequency is input together with the rotation frequency to a computer. A rotation synchronization component emphasizing waveform calculation step and a bearing damage type determination step in the method for diagnosing abnormality of a rolling bearing according to any one of claims 1 to 4 are executed.

本発明によれば、測定した振動に対し、回転体の回転周波数に比例した周波数の振動成分を強調する回転同期成分強調波形を算出し、回転同期成分強調波形の振動ピーク位置の規則性に基づいて転がり軸受における損傷の種類を判別するので、軸受諸元を用いることなく振動ピークの規則性から軸受異常の種類を判断することが可能となる。
特に、請求項の発明によれば、上記効果に加えて、振動測定ステップでは、異なる複数の回転周波数で振動を測定するので、さらに外乱の影響が低減されて、振動ピークの規則性を捉え易くなるため、軸受異常の推定精度が向上する。
特に、請求項の発明によれば、上記効果に加えて、軸受損傷種類判別ステップでは、回転同期成分強調波形を入力とし、内輪傷の有無、転動体傷の有無、外輪傷の有無の少なくともひとつを出力とする教師データを用いて学習した機械学習モデルを用い、回転同期成分強調波形を入力して転がり軸受の損傷の種類を判別するので、人間が考える処理よりも汎用的に振動ピークの規則性から軸受異常の種類を判断することが可能となる。
特に、請求項の発明によれば、上記効果に加えて、比基本周波数と比振動源回転周波数とを合わせて表示する表示手段を備えることで、数字として表示される周波数の値を用いて他の軸受診断処理を行うことが可能となる。
特に、請求項の発明によれば、上記効果に加えて、特定の比周波数の位置と回転同期成分強調波形とを合わせて表示する表示手段を備えることで、振動ピークの規則性を正しく抽出できているか否かを視覚的に把握できるため、診断結果の妥当性を容易に検証できる。また、各損傷の種類において着目すべき比周波数がわかりやすくなる。
According to the present invention, for the measured vibration, a rotation synchronization component emphasized waveform that emphasizes a vibration component having a frequency proportional to the rotation frequency of the rotating body is calculated, and based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform. Since the type of damage in the rolling bearing is determined, it is possible to determine the type of bearing abnormality from the regularity of the vibration peak without using the bearing specifications.
In particular, according to the third aspect of the present invention, in addition to the above effects, in the vibration measuring step , vibration is measured at a plurality of different rotation frequencies, so that the influence of disturbance is further reduced, and the regularity of the vibration peak is captured. As a result, the accuracy of estimating the bearing abnormality is improved.
In particular, according to the invention of claim 4 , in addition to the above effects, in the bearing damage type discriminating step, a rotation synchronous component emphasized waveform is input, and at least the presence or absence of an inner wheel wound, the presence of a rolling body wound, and the presence or absence of an outer wheel wound are determined. Using a machine learning model that has been trained using teacher data with one output, a rotation synchronous component emphasized waveform is input to determine the type of damage to the rolling bearing. The type of the bearing abnormality can be determined from the regularity.
In particular, according to the invention of claim 6 , in addition to the above effects, by providing a display means for displaying the specific fundamental frequency and the specific vibration source rotation frequency together, the value of the frequency displayed as a number can be used. Other bearing diagnosis processing can be performed.
In particular, according to the seventh aspect of the invention, in addition to the above-mentioned effects, by providing a display unit for displaying the position of the specific frequency and the rotation synchronization component emphasized waveform together, the regularity of the vibration peak is correctly extracted. Since it can be visually grasped whether or not the diagnosis has been made, the validity of the diagnosis result can be easily verified. Further, the specific frequency to be focused on for each type of damage can be easily understood.

Claims (10)

回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の振動を測定する振動測定ステップと、
前記振動に対し、前記回転体の回転周波数に比例した周波数の振動成分を強調する回転同期成分強調波形を算出する回転同期成分強調波形算出ステップと、
前記回転同期成分強調波形の振動ピーク位置の規則性に基づいて前記転がり軸受の損傷の種類を判別する軸受損傷種類判別ステップと、
を実行することを特徴とする転がり軸受の異常診断方法。
A method for diagnosing an abnormality of a rolling bearing that supports a rotating body,
A vibration measuring step of measuring the vibration of the rotating body,
For the vibration, a rotation synchronization component emphasis waveform calculation step of calculating a rotation synchronization component emphasis waveform that emphasizes a vibration component having a frequency proportional to the rotation frequency of the rotating body,
Bearing damage type determination step of determining the type of damage to the rolling bearing based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform,
A method for diagnosing an abnormality of a rolling bearing.
前記軸受損傷種類判別ステップでは、前記回転同期成分強調波形の振動ピーク位置の規則性に基づいて、前記転がり軸受において力の発生する方向が変化する周波数である振動源回転周波数と前記回転周波数との比である比振動源回転周波数を推定し、
前記比振動源回転周波数の値が1の場合には、前記転がり軸受の内輪損傷と判断し、前記比振動源回転周波数の値が前記転がり軸受の転動体の公転周波数を前記回転周波数で除算した値のとり得る範囲である場合には、前記転動体の損傷と判断し、前記比振動源回転周波数の値が0の場合には、前記転がり軸受の外輪損傷と判断することを特徴とする請求項1に記載の転がり軸受の異常診断方法。
In the bearing damage type determination step, based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform, the vibration source rotation frequency is a frequency at which the direction in which a force is generated in the rolling bearing changes, and the rotation frequency Estimate the specific vibration source rotation frequency, which is the ratio,
When the value of the specific vibration source rotation frequency is 1, it is determined that the inner ring of the rolling bearing is damaged, and the value of the specific vibration source rotation frequency is obtained by dividing the revolution frequency of the rolling element of the rolling bearing by the rotation frequency. When the value is within a possible range, it is determined that the rolling element is damaged, and when the value of the specific vibration source rotation frequency is 0, it is determined that the outer ring of the rolling bearing is damaged. Item 3. The abnormality diagnosis method for a rolling bearing according to Item 1.
前記振動の周波数を前記回転周波数で除算して得られる無次元量を比周波数とし、
前記比振動源回転周波数の推定は、前記回転同期成分強調波形において、比基本周波数と比振動源回転周波数とを仮定して算出される特定の比周波数に振動ピークが存在する割合である一致率を算出し、一致率が所定のしきい値を超過する場合には、仮定した前記比基本周波数と仮定した前記比振動源回転周波数とにより表現される規則性が前記回転同期成分強調波形にあると判断し、仮定した前記比振動源回転周波数を採用することを特徴とする請求項2に記載の転がり軸受の異常診断方法。
The dimensionless amount obtained by dividing the frequency of the vibration by the rotation frequency is a specific frequency,
The estimation of the specific vibration source rotation frequency is performed by calculating a coincidence rate at which a vibration peak exists at a specific specific frequency calculated assuming the specific fundamental frequency and the specific vibration source rotation frequency in the rotation synchronization component emphasized waveform. If the coincidence rate exceeds a predetermined threshold value, the regularity expressed by the assumed specific fundamental frequency and the assumed specific vibration source rotation frequency is in the rotation synchronization component emphasized waveform. 3. The abnormality diagnosis method for a rolling bearing according to claim 2, wherein the determined specific vibration source rotation frequency is adopted.
前記振動の周波数を前記回転周波数で除算して得られる無次元量を比周波数とし、
前記比振動源回転周波数の推定は、前記回転同期成分強調波形において、ピーク対を構成する2つの振動ピークの間隔をピーク間距離とし、ピーク間距離が等しい2組のピーク対について算出したそれぞれのピーク対を構成する2つの前記振動ピークの比周波数の平均の比が整数比の場合に、前記ピーク間距離の2分の1を前記比振動源回転周波数とすることを特徴とする請求項2に記載の転がり軸受の異常診断方法。
The dimensionless amount obtained by dividing the frequency of the vibration by the rotation frequency is a specific frequency,
The estimation of the specific vibration source rotation frequency is performed by calculating an interval between two vibration peaks forming a peak pair in the rotation synchronous component emphasized waveform as a peak-to-peak distance and calculating two sets of peak pairs having the same peak-to-peak distance. 3. The method according to claim 2, wherein when the average ratio of the specific frequencies of the two vibration peaks forming the peak pair is an integer ratio, one half of the distance between the peaks is set as the specific vibration source rotation frequency. The method for diagnosing abnormalities of a rolling bearing described in 1.
前記振動測定ステップでは、異なる複数の回転周波数で振動を測定し、前記回転同期成分強調波形算出ステップでは、前記振動を周波数分析して周波数毎の振動の大きさをそれぞれ算出し、前記回転周波数に対する振動の周波数の倍率が同じ成分について前記振動の大きさの平均をとることを特徴とする請求項1乃至4のいずれかに記載の転がり軸受の異常診断方法。   In the vibration measurement step, vibration is measured at a plurality of different rotation frequencies, and in the rotation synchronization component emphasized waveform calculation step, the vibration is frequency-analyzed to calculate the magnitude of vibration for each frequency, and 5. The method for diagnosing abnormalities in a rolling bearing according to claim 1, wherein an average of the magnitudes of the vibrations is obtained for components having the same frequency magnification of the vibrations. 前記軸受損傷種類判別ステップでは、前記回転同期成分強調波形を入力とし、内輪傷の有無、転動体傷の有無、外輪傷の有無の少なくともひとつを出力とする教師データを用いて学習した機械学習モデルを用い、前記回転同期成分強調波形を入力して前記転がり軸受の損傷の種類を判別することを特徴とする請求項1又は5に記載の転がり軸受の異常診断方法。   In the bearing damage type determination step, a machine learning model learned using teacher data that receives the rotation synchronization component emphasized waveform as input and outputs at least one of the presence or absence of an inner wheel wound, the presence or absence of a rolling body wound, and the presence or absence of an outer wheel wound. The method for diagnosing abnormality of a rolling bearing according to claim 1 or 5, wherein the type of damage to the rolling bearing is determined by inputting the rotation synchronization component emphasized waveform using the following. 回転体を支持する転がり軸受の異常を診断する装置であって、
前記回転体の振動を測定する振動測定手段と、
前記振動に対し、前記回転体の回転周波数に比例した周波数の振動成分を強調する回転同期成分強調波形を算出する回転同期成分強調波形算出手段と、
前記回転同期成分強調波形の振動ピーク位置の規則性に基づいて前記転がり軸受の損傷の種類を判別する軸受損傷種類判別手段と、
を備えることを特徴とする転がり軸受の異常診断装置。
An apparatus for diagnosing an abnormality of a rolling bearing that supports a rotating body,
Vibration measuring means for measuring the vibration of the rotating body,
For the vibration, a rotation synchronization component emphasized waveform calculation unit that calculates a rotation synchronization component emphasized waveform that emphasizes a vibration component having a frequency proportional to the rotation frequency of the rotating body,
Bearing damage type determining means for determining the type of damage to the rolling bearing based on the regularity of the vibration peak position of the rotation synchronization component emphasized waveform,
An abnormality diagnosis device for a rolling bearing, comprising:
前記振動の周波数を前記回転周波数で除算して得られる無次元量を比周波数とし、
前記軸受損傷種類判別手段は、前記転がり軸受の損傷に対応する比基本周波数と、前記転がり軸受の損傷に対応し力の発生する方向が変化する周波数である振動源回転周波数と前記回転周波数との比である比振動源回転周波数と、前記比基本周波数と前記比振動源回転周波数とから算出される特定の比周波数とを用いて前記転がり軸受の損傷の種類を判別するものであり、
前記比基本周波数と前記比振動源回転周波数とを合わせて表示する表示手段を備えることを特徴とする請求項7に記載の転がり軸受の異常診断装置。
The dimensionless amount obtained by dividing the frequency of the vibration by the rotation frequency is a specific frequency,
The bearing damage type discriminating means includes a specific fundamental frequency corresponding to the damage to the rolling bearing, and a vibration source rotation frequency and a rotation frequency corresponding to the damage to the rolling bearing, in which a direction in which a force is generated changes. A specific vibration source rotation frequency, which is a ratio, and a type of damage to the rolling bearing is determined using a specific ratio frequency calculated from the ratio fundamental frequency and the specific vibration source rotation frequency,
The abnormality diagnosis device for a rolling bearing according to claim 7, further comprising a display unit that displays the specific fundamental frequency and the specific vibration source rotation frequency together.
前記振動の周波数を前記回転周波数で除算して得られる無次元量を比周波数とし、
前記軸受損傷種類判別手段は、前記転がり軸受の損傷に対応する比基本周波数と、前記転がり軸受の損傷に対応し力の発生する方向が変化する周波数である振動源回転周波数と前記回転周波数との比である比振動源回転周波数と、前記比基本周波数と前記比振動源回転周波数とから算出される特定の比周波数とを用いて前記転がり軸受の損傷の種類を判別するものであり、
前記特定の比周波数の位置と前記回転同期成分強調波形とを合わせて表示する表示手段を備えることを特徴とする請求項7に記載の転がり軸受の異常診断装置。
The dimensionless amount obtained by dividing the frequency of the vibration by the rotation frequency is a specific frequency,
The bearing damage type discriminating means includes a specific fundamental frequency corresponding to the damage to the rolling bearing, and a vibration source rotation frequency and a rotation frequency corresponding to the damage to the rolling bearing, in which a direction in which a force is generated changes. A specific vibration source rotation frequency, which is a ratio, and a type of damage to the rolling bearing is determined using a specific ratio frequency calculated from the ratio fundamental frequency and the specific vibration source rotation frequency,
The abnormality diagnosis device for a rolling bearing according to claim 7, further comprising a display unit configured to display the position of the specific frequency and the rotation synchronization component emphasized waveform together.
所定の回転周波数で測定された回転体の振動が前記回転周波数と共に入力されたコンピュータに、請求項1乃至6の何れかに記載の転がり軸受の異常診断方法における回転同期成分強調波形算出ステップと軸受損傷種類判別ステップとを実行させることを特徴とする転がり軸受の異常診断プログラム。   7. A step of calculating a rotation-synchronous component-emphasized waveform in the method for diagnosing abnormality of a rolling bearing according to claim 1, wherein the vibration of the rotating body measured at a predetermined rotation frequency is input together with the rotation frequency to a computer. And a damage type discriminating step.
JP2018168085A 2018-09-07 2018-09-07 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program Active JP6507297B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018168085A JP6507297B1 (en) 2018-09-07 2018-09-07 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018168085A JP6507297B1 (en) 2018-09-07 2018-09-07 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Publications (2)

Publication Number Publication Date
JP6507297B1 JP6507297B1 (en) 2019-04-24
JP2020041849A true JP2020041849A (en) 2020-03-19

Family

ID=66324251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018168085A Active JP6507297B1 (en) 2018-09-07 2018-09-07 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Country Status (1)

Country Link
JP (1) JP6507297B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220055160A (en) * 2020-10-26 2022-05-03 건국대학교 산학협력단 Apparatus and method for simultaneous monitoring of bearing and tool condition
WO2022118507A1 (en) * 2020-12-04 2022-06-09 株式会社日立産機システム Abnormality diagnosis system and abnormality diagnosis method
JP7104858B1 (en) * 2021-03-31 2022-07-21 ヤマザキマザック株式会社 Machine tools, machine tool diagnostic systems, and machine tool diagnostic methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112504678B (en) * 2020-11-12 2022-12-23 重庆科技学院 Motor bearing fault diagnosis method based on knowledge distillation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212225A (en) * 2002-12-27 2004-07-29 Nsk Ltd Abnormality diagnostic apparatus
JP2006118869A (en) * 2004-10-19 2006-05-11 Nsk Ltd Defect detector for rolling bearing, and defect detection method for the rolling bearing
JP2006153855A (en) * 2004-10-26 2006-06-15 Nsk Ltd Anomaly diagnostic apparatus
US20080223135A1 (en) * 2007-03-12 2008-09-18 Snecma Method of detecting damage to an engine bearing
CN104568444A (en) * 2015-01-28 2015-04-29 北京邮电大学 Method for extracting fault characteristic frequencies of train rolling bearings with variable rotational speeds
JP2015111113A (en) * 2013-11-05 2015-06-18 日本精工株式会社 Bearing condition detecting device and bearing condition detecting method
JP2017101954A (en) * 2015-11-30 2017-06-08 日本精工株式会社 Mechanical facility evaluation method
JP2018025450A (en) * 2016-08-09 2018-02-15 オークマ株式会社 Bearing diagnostic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212225A (en) * 2002-12-27 2004-07-29 Nsk Ltd Abnormality diagnostic apparatus
JP2006118869A (en) * 2004-10-19 2006-05-11 Nsk Ltd Defect detector for rolling bearing, and defect detection method for the rolling bearing
JP2006153855A (en) * 2004-10-26 2006-06-15 Nsk Ltd Anomaly diagnostic apparatus
US20080223135A1 (en) * 2007-03-12 2008-09-18 Snecma Method of detecting damage to an engine bearing
JP2015111113A (en) * 2013-11-05 2015-06-18 日本精工株式会社 Bearing condition detecting device and bearing condition detecting method
CN104568444A (en) * 2015-01-28 2015-04-29 北京邮电大学 Method for extracting fault characteristic frequencies of train rolling bearings with variable rotational speeds
JP2017101954A (en) * 2015-11-30 2017-06-08 日本精工株式会社 Mechanical facility evaluation method
JP2018025450A (en) * 2016-08-09 2018-02-15 オークマ株式会社 Bearing diagnostic device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220055160A (en) * 2020-10-26 2022-05-03 건국대학교 산학협력단 Apparatus and method for simultaneous monitoring of bearing and tool condition
KR102471830B1 (en) * 2020-10-26 2022-11-29 건국대학교 산학협력단 Apparatus and method for simultaneous monitoring of bearing and tool condition
WO2022118507A1 (en) * 2020-12-04 2022-06-09 株式会社日立産機システム Abnormality diagnosis system and abnormality diagnosis method
JP7390275B2 (en) 2020-12-04 2023-12-01 株式会社日立産機システム Abnormality diagnosis system
JP7104858B1 (en) * 2021-03-31 2022-07-21 ヤマザキマザック株式会社 Machine tools, machine tool diagnostic systems, and machine tool diagnostic methods
WO2022208803A1 (en) * 2021-03-31 2022-10-06 ヤマザキマザック株式会社 Machine tool, diagnostic system for machine tool, and diagnostic method for machine tool

Also Published As

Publication number Publication date
JP6507297B1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6507297B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
JP7146683B2 (en) Rolling Bearing Abnormality Diagnosis Method, Abnormality Diagnosis Device, Abnormality Diagnosis Program
CN113748326B (en) Method for estimating bearing fault severity for induction motor
CN110346591A (en) Machine rotational speed is determined based on rumble spectrum figure
JP6420885B1 (en) Method for removing electromagnetic vibration component, diagnostic method for rotating machine, and diagnostic device for rotating machine
EP3192166B1 (en) System for monitoring operation status of electric machine and mobile phone therefor and server-based system using the same
JP2019178973A (en) Abnormality diagnosis method and abnormality diagnosis device of rolling bearing
JP6511573B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
US9869720B2 (en) Method of determining stationary signals for the diagnostics of an electromechanical system
US20200217753A1 (en) Method and apparatus for identifying gear tooth numbers in a gearbox
JP2002268728A (en) Synchronization diagnosing and monitoring system and its device and its program
CN112345827A (en) Graphical differentiation of spectral frequency families
CN110346592B (en) Determination of RPM from vibration spectrogram
TWI683112B (en) State analyser, displaying method thereof, and computer program product thereof
JPH06258176A (en) Automatic measuring system for functional inspection
WO2021054165A1 (en) Facility diagnostic device, facility diagnostic method, and facility diagnostic program
JPH04279826A (en) Abnormality diagnostic method and device for adjustable speed rotating system
JP6995969B1 (en) Diagnostic device for rotating equipment
JP6283591B2 (en) Automatic vibration diagnostic equipment for rotating machinery
JP6742563B1 (en) Driving sound diagnosis system, driving sound diagnosis method, and machine learning device for driving sound diagnosis system
US7069154B2 (en) Method and apparatus for detecting and automatically identifying defects in technical equipment
JP2018040594A (en) Rotary shaft device and method of determining presence/absence of bearing anomaly in the same
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
JP6922065B1 (en) Rotation speed detection system and rotation speed detection device for rotating equipment
EP4235197A1 (en) Method and system for diagnosing a machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181024

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R150 Certificate of patent or registration of utility model

Ref document number: 6507297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150