WO2021054165A1 - Facility diagnostic device, facility diagnostic method, and facility diagnostic program - Google Patents

Facility diagnostic device, facility diagnostic method, and facility diagnostic program Download PDF

Info

Publication number
WO2021054165A1
WO2021054165A1 PCT/JP2020/033736 JP2020033736W WO2021054165A1 WO 2021054165 A1 WO2021054165 A1 WO 2021054165A1 JP 2020033736 W JP2020033736 W JP 2020033736W WO 2021054165 A1 WO2021054165 A1 WO 2021054165A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
correlation value
rotation
equipment
calculation unit
Prior art date
Application number
PCT/JP2020/033736
Other languages
French (fr)
Japanese (ja)
Inventor
白井 呂尚
青木 修
猛 有吉
Original Assignee
横河電機株式会社
横河ソリューションサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社, 横河ソリューションサービス株式会社 filed Critical 横河電機株式会社
Publication of WO2021054165A1 publication Critical patent/WO2021054165A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/08Controlling based on slip frequency, e.g. adding slip frequency and speed proportional frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • Some aspects of the invention relate to equipment diagnostic equipment, equipment diagnostic methods, and equipment diagnostic programs.
  • the present application claims priority based on Japanese Patent Application No. 2019-172007 filed in Japan on September 20, 2019, the contents of which are incorporated herein by reference.
  • equipment In plants and factories, a large number of equipment, devices, and equipment (hereinafter, collectively referred to as "equipment") that are driven by rotating a rotating shaft using an electric motor as a power source are used.
  • equipment include motors, pumps, transport rollers, fans, blowers, reactors, stirrers and the like.
  • Diagnosis of such equipment is often performed by providing a plurality of sensors for measuring vibration and temperature and capturing changes in the state of bearings that support the rotating shaft. This is because deterioration or abnormality of equipment in which the rotating shaft is rotationally driven (for example, shaft system imbalance, shaft misalignment, bearing deterioration, etc.) causes changes in the bearings that support the rotating shaft.
  • deterioration or abnormality of equipment in which the rotating shaft is rotationally driven for example, shaft system imbalance, shaft misalignment, bearing deterioration, etc.
  • Non-Patent Document 1 discloses various diagnostic techniques in steelmaking equipment.
  • Non-Patent Document 1 discloses, for example, a diagnostic technique using a self-powered wireless vibration sensor. Further, Non-Patent Document 1 discloses a diagnostic technique that not only manages the absolute value of the current flowing through the drive motor but also improves the ability to detect equipment deterioration by frequency analysis.
  • Non-Patent Document 1 that is, a technique for analyzing the current flowing through the drive motor
  • accurate diagnosis is performed unless the load fluctuation becomes large to some extent. Cannot be done.
  • Some aspects of the present invention have been made in view of the above circumstances, and include equipment diagnostic devices, equipment diagnostic methods, which can accurately diagnose equipment even if load fluctuations are small, without requiring a large number of sensors. And to provide equipment diagnostic programs.
  • the equipment diagnostic device includes a current detection unit (10) that detects a drive current supplied to the induction motor that rotationally drives the rotating shaft of the equipment.
  • the rotation detection unit (20, 20A) that detects the rotation of the rotation shaft, the detection result of the current detection unit, and the detection result of the rotation detection unit are used to correlate with the load resistance acting on the rotation shaft.
  • a calculation unit (30, 30A) for obtaining a load correlation value, which is a value to be possessed, and an output unit (40) for outputting the load correlation value are provided.
  • the calculation unit uses the detection result of the current detection unit and the detection result of the rotation detection unit to determine the slip ratio of the rotation shaft.
  • the output unit outputs the slip ratio of the rotating shaft in addition to the load correlation value.
  • the calculation unit includes a frequency calculation unit (31) for obtaining the frequency of the drive current from the detection result of the current detection unit, and the output unit. Outputs the frequency of the drive current and the rotation speed of the rotation shaft obtained from the detection result of the rotation detection unit, in addition to the load correlation value and the slip ratio of the rotation shaft.
  • the load correlation value is ST
  • the frequency of the drive current is ⁇ [rad / s] or [Hz]
  • the rotation speed of the rotation shaft is ⁇ m.
  • the load correlation value calculation unit is shown by the following equation (1).
  • the load correlation value ST is obtained by performing the above calculation.
  • the equipment diagnostic apparatus compares at least the load correlation value output from the output unit with the threshold value (TH) set in the load correlation value.
  • a determination unit (50) for determining whether or not the equipment is abnormal is provided.
  • the equipment diagnostic apparatus is based on at least the load correlation value output from the output unit and the learning result of the load correlation value output from the output unit in the past. Therefore, a diagnostic unit (60) for diagnosing the presence or absence of abnormality in the equipment is provided.
  • the diagnostic unit acquires the load correlation value data output from the output unit (61) and the acquisition unit.
  • a cutout unit (62) that cuts out data from the data based on predetermined conditions
  • a feature extraction unit (63) that extracts a feature vector from the data cut out by the cutout part
  • the feature extraction unit acquires the load correlation value data output from the output unit (61) and the acquisition unit.
  • a cutout unit (62) that cuts out data from the data based on predetermined conditions
  • a feature extraction unit (63) that extracts a feature vector from the data cut out by the cutout part
  • the feature extraction unit The learning unit (64a) that analyzes the feature vector extracted in the above and generates a model of the feature vector based on the analysis result, and the feature vector and the model of the data newly acquired by the acquisition unit. It is provided with a deviation degree calculation unit (64c) for calculating the deviation degree.
  • the rotation detection unit (20, 20A) of the equipment diagnostic apparatus includes an encoder.
  • the rotation detection unit (20, 20A) of the equipment diagnostic apparatus includes a tachometer.
  • the frequency calculation unit (31) of the equipment diagnostic apparatus obtains the frequency each time the rotation axis rotates by a predetermined number of rotations.
  • the equipment diagnostic apparatus further includes a rotation speed calculation unit (32) for obtaining the rotation speed of the rotation shaft from the detection result of the rotation detection unit.
  • the rotation speed calculation unit (32) of the equipment diagnosis device obtains the rotation speed every time a predetermined time elapses.
  • the output unit (40) of the equipment diagnostic apparatus numerically displays the load correlation value, the slip ratio, the frequency, and the rotation speed.
  • the output unit (40) of the equipment diagnostic apparatus displays the load correlation value, the slip ratio, the frequency, and the rotation speed in a graph showing changes over time.
  • the equipment diagnostic apparatus compares the load correlation value output from the output unit (40) with the threshold value set in the load correlation value, and calculates the slip ratio.
  • a determination unit (50) for determining whether or not the equipment is abnormal by comparing the slip rate obtained by the unit (33) with a threshold value set for the slip rate is provided.
  • the output unit (40) of the equipment diagnostic apparatus displays the change with time of the load correlation value in a graph and displays the threshold value.
  • the cutout portion (62) of the equipment diagnostic apparatus relates to the time from the time when the start end of the cutout control signal, which is a pulse signal, is detected until a predetermined time elapses. Cut out each continuous data in chronological order.
  • the equipment diagnosis method includes a current detection step (S11) for detecting a drive current supplied to an induction motor (1M) that rotationally drives the rotating shaft of the equipment, and rotation of the rotating shaft.
  • the load correlation value which is a value having a correlation with the load resistance acting on the rotation axis, is obtained by using the rotation detection step (S14) for detecting the above, the detection result of the current detection step, and the detection result of the rotation detection step. It has a calculation step (S17) to be obtained and an output step (S18) for outputting the load correlation value.
  • the equipment diagnosis program includes the detection result of the current detection unit (10) that detects the drive current supplied to the induction motor (1M) that rotationally drives the rotating shaft of the equipment. , A calculation means (30, 30A) for obtaining a load correlation value which is a value having a correlation with the load resistance acting on the rotation axis by using the detection result of the rotation detection unit (20, 20A) for detecting the rotation of the rotation axis. ) And the output means (40) for outputting the load correlation value.
  • FIG. 1 is a block diagram showing a main configuration of an equipment diagnostic device according to the first embodiment of the present invention.
  • the equipment diagnostic apparatus 1 of the first embodiment includes a current transformer 10 (also referred to as a current detection unit), an encoder 20 (also referred to as a rotation detection unit), a calculation unit 30 (also referred to as a calculation means), and a calculation unit 30.
  • An output unit 40 (also referred to as an output means) is provided.
  • the equipment diagnosis device 1 having such a configuration diagnoses equipment having a rotating shaft AX that is rotationally driven by an induction motor IM.
  • the induction motor IM includes a stator having a coil and, for example, a rotor having a cage-shaped structure, and the rotor is rotated by a rotating magnetic field formed by the coil of the stator.
  • the induction motor IM may be driven by a single-phase alternating current or may be driven by a three-phase alternating current. In the first embodiment, the induction motor IM is driven by a three-phase alternating current.
  • the rotating shaft AX is, for example, a columnar (also referred to as a rod-shaped) member, and is rotationally driven by the rotation of the rotor of the induction motor IM.
  • the rotary shaft AX may be connected to the rotor of the induction motor IM via a speed reducer having a predetermined reduction ratio.
  • a speed reducer having a predetermined reduction ratio.
  • a drive current of a predetermined frequency for example, 10 [Hz]
  • the rotating shaft AX may be directly attached to the rotor of the induction motor IM so as to be coaxial with the rotor.
  • the current transformer 10 detects the drive current supplied to the induction motor IM.
  • the current transformer 10 may detect all phases (three phases) of the drive current supplied to the induction motor IM, or may detect only a specific one phase. In the first embodiment, the current transformer 10 detects only a specific one of the three phases.
  • the detection result of the current transformer 10 is output to the calculation unit 30.
  • the encoder 20 detects the rotation of the rotation axis AX. Specifically, the encoder 20 detects the amount of rotation (or the rotation position) of the rotation axis AX, and outputs a number of pulses according to the detection result.
  • the encoder 20 may be a mechanical rotary encoder or an optical rotary encoder. The detection result of the encoder 20 is output to the calculation unit 30.
  • the calculation unit 30 includes a frequency calculation unit 31, a rotation speed calculation unit 32, a slip rate calculation unit 33, an effective value calculation unit 34, and an ST calculation unit 35 (also referred to as a load correlation value calculation unit).
  • the calculation unit 30 having such a configuration uses the detection result of the current transformer 10 and the detection result of the encoder 20 to correlate with the slip coefficient of the rotation axis AX and the load resistance acting on the rotation axis AX.
  • the value ST also referred to as the slip torque coefficient
  • the frequency calculation unit 31 obtains the frequency ⁇ [rad / s] or [Hz] of the drive current supplied to the induction motor IM from the detection result of the current transformer 10. For example, the frequency calculation unit 31 obtains the frequency ⁇ of the drive current supplied to the induction motor IM each time the rotation axis AX rotates by a predetermined number of rotations N (N is an integer of 1 or more). You may.
  • the timing and period for obtaining the frequency ⁇ of the drive current supplied to the induction motor IM by the frequency calculation unit 31 can be arbitrarily set.
  • the rotation speed calculation unit 32 obtains the rotation speed ⁇ m [rad / s] or [Hz] of the rotation axis AX from the detection result of the encoder 20. For example, the rotation speed calculation unit 32 may obtain the rotation speed ⁇ m of the rotation axis AX every time a predetermined time (for example, 1 [s]) elapses. The timing and period for the rotation speed calculation unit 32 to obtain the rotation speed ⁇ m of the rotation axis AX can be arbitrarily set.
  • the slip rate calculation unit 33 obtains the slip rate of the rotary shaft AX by using the detection result of the current transformer 10 and the detection result of the encoder 20.
  • the slip ratio calculation unit 33 is a rotation speed calculation unit 32 using the frequency ⁇ of the drive current obtained by the frequency calculation unit 31 using the detection result of the current transformer 10 and the detection result of the encoder 20.
  • the slip ratio of the rotation axis AX is obtained by using the obtained rotation speed ⁇ m of the rotation axis AX. More specifically, the slip rate calculation unit 33 performs the calculation shown in the following equation (2) to obtain the slip rate s [%] of the rotation axis AX.
  • the effective value calculation unit 34 obtains the effective value I a [A] of the drive current supplied to the induction motor IM from the detection result of the current transformer 10. For example, the effective value calculating unit 34, similarly to the frequency calculation unit 31, each time the rotation by the rotation speed N of the rotational axis AX is defined in advance, it may be obtained the effective value I a of the driving current. Incidentally, the effective value calculating section 34 timing and period for obtaining the effective value I a of the driving current can be arbitrarily set.
  • the ST calculation unit 35 obtains the load correlation value ST by using the calculation result of the slip rate calculation unit 33 and the calculation result of the effective value calculation unit 34. Specifically, the ST calculation unit 35 is obtained by the frequency ⁇ of the drive current obtained by the frequency calculation unit 31, the rotation speed ⁇ m of the rotation axis AX obtained by the rotation speed calculation unit 32, and the effective value calculation unit 34. Using the effective value I a of the drive current and the slip rate s of the rotation axis AX obtained by the slip rate calculation unit 33, the load correlation value ST is obtained by performing the calculation shown in the following equation (3).
  • the Coulomb friction be T l .
  • the torque ⁇ e generated in the steady state of the induction motor IM is expressed by the following equation (5).
  • the braking coefficient R m indicating the load is a value obtained by dividing the frequency ⁇ of the drive current by the rotation speed ⁇ m of the rotation axis AX, the square of the effective value I a of the drive current, and It can be seen that it is proportional to the product of the slip ratio s of the rotation axis AX. Therefore, the load correlation value ST, which is a value having a correlation with the load resistance acting on the rotation axis AX, can be expressed as in the above equation (3).
  • the output unit 40 outputs various values obtained by the calculation unit 30 to the outside.
  • the output unit 40 outputs at least the load correlation value ST obtained by the ST calculation unit 35 to the outside.
  • the output unit 40 may output the slip rate s of the rotation axis AX obtained by the slip rate calculation unit 33.
  • the speed ⁇ m may be output.
  • the output unit 40 may output the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX as data.
  • the output unit 40 may perform wired communication or wireless communication with an external device (for example, a data collecting device) to output the above data to the external device. Further, the output unit 40 may output by writing the above data to the attached external memory.
  • the output unit 40 displays the values of the load correlation value ST, the slip ratio s of the rotating shaft AX, the frequency ⁇ of the drive current, and the rotating speed ⁇ m of the rotating shaft AX on a display device such as a liquid crystal display device. It may be output by.
  • the output unit 40 may display the values of the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX as numerical values, and display the changes over time. It may be displayed in the graph shown.
  • the output unit 40 may be a display unit.
  • the functions of the equipment diagnostic device 1 may be realized by software, for example, by a computer reading and installing a program recorded on a recording medium. ..
  • the computer may be realized by software by installing a program downloaded via a network (not shown).
  • it may be realized by using hardware such as FPGA (Field-Programmable Gate Array), LSI (Large Scale Integration), and ASIC (Application Specific Integrated Circuit).
  • FIG. 2 is a flowchart showing an equipment diagnosis method according to the first embodiment of the present invention.
  • the flowchart shown in FIG. 2 is repeated, for example, at a preset constant cycle.
  • a drive current is supplied to the induction motor IM from a drive device (not shown), and the rotary shaft AX is rotationally driven by the induction motor IM.
  • the current transformer 10 detects the drive current supplied to the induction motor IM (step S11: current detection step).
  • the drive current detected by the current transformer 10 is output to the calculation unit 30.
  • the frequency calculation unit 31 performs a process of obtaining the frequency ⁇ of the drive current supplied to the induction motor IM from the detection result of the current transformer 10 (step S12).
  • the process for obtaining the effective value I a of the driving current supplied to the induction motor IM is effected by the effective value calculating section 34 (step S13).
  • step S14 rotation detection step
  • the detection result of the encoder 20 is output to the calculation unit 30.
  • the rotation speed calculation unit 32 performs a process of obtaining the rotation speed ⁇ m of the rotation axis AX from the detection result of the encoder 20 (step S15).
  • the process of obtaining the slip ratio of the rotating shaft AX by using the frequency ⁇ of the drive current obtained by the frequency calculation unit 31 and the rotation speed ⁇ m of the rotating shaft AX obtained by the rotating speed calculation unit 32 is performed.
  • This is performed by the rate calculation unit 33 (step S16).
  • the slip rate calculation unit 33 performs a process of obtaining the slip rate s [%] of the rotation axis AX by performing the calculation shown in the above-mentioned equation (2).
  • the ST calculation unit 35 uses a and the slip rate s of the rotation axis AX obtained by the slip rate calculation unit 33 to calculate the load correlation value ST. Specifically, the ST calculation unit 35 performs a process of obtaining the load correlation value ST by performing the calculation shown in the above-mentioned equation (3).
  • the output unit 40 performs a process of outputting the load correlation value ST or the like obtained by the ST calculation unit 35 (step S18: output step). Specifically, the load correlation value ST obtained by the ST calculation unit 35, the slip ratio s of the rotation axis AX obtained by the slip ratio calculation unit 33, the frequency ⁇ of the drive current obtained by the frequency calculation unit 31, and the frequency ⁇ of the drive current obtained by the frequency calculation unit 31.
  • the output unit 40 performs a process of outputting the rotation speed ⁇ m of the rotation axis AX obtained by the rotation speed calculation unit 32.
  • steps S14 and S15 are performed after the processes of steps S11 to S13 are completed is shown.
  • the processes of steps S14 and S15 may be performed before the processes of steps S11 to S13, or may be performed in parallel with the processes of steps S11 to S13.
  • FIGS. 3A to 3D are diagrams showing display examples of load correlation values and the like according to the first embodiment of the present invention.
  • a graph showing the time-dependent change of the load correlation value ST a graph showing the time-dependent change of the slip ratio s of the rotation axis AX
  • a graph showing the time-dependent change of the drive current frequency ⁇ a graph showing the time-dependent change of the drive current frequency ⁇ .
  • a total of four types of graphs are shown, which show the change over time in the rotation speed ⁇ m of the AX.
  • FIG. 3A shows a case where the load resistance acting on the rotating shaft AX is almost zero.
  • 3B to 3D show a state in which a load resistance acts on the rotating shaft AX by applying a load to the rotating shaft AX.
  • FIG. 3B shows a case where a tool (for example, a spanner) is strongly pressed against the rotating shaft AX.
  • FIG. 3C shows the case where the rotating shaft AX is grasped by hand.
  • FIG. 3D shows a case where the tool is lightly brought into contact with the rotating shaft AX.
  • the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX are almost constant, although there are some fluctuations due to noise. You can see that.
  • the load correlation value ST, the slip ratio s of the rotation axis AX, and the rotation speed ⁇ m of the rotation axis AX significantly change during the period T1 in which the tool is strongly pressed against the rotation axis AX. You can see that there is.
  • the frequency ⁇ of the drive current changes significantly over the entire period T2 in which the rotation axis AX is grasped by hand. Further, in FIG. 3C, at the end of the period T2 (that is, when the hand is released from the rotation axis AX), the load correlation value ST, the slip ratio s of the rotation axis AX, and the rotation speed ⁇ m of the rotation axis AX You can also see the changes appear. Subsequently, referring to FIG.
  • the load correlation value ST, the slip ratio s of the rotating shaft AX, the frequency ⁇ of the drive current, And the rotation speed ⁇ m of the rotation axis AX changes according to the load applied to the rotation axis AX.
  • the load correlation value ST, the slip ratio s of the rotary shaft AX, the frequency ⁇ of the drive current, and the rotational speed ⁇ m of the rotary shaft AX change.
  • the user for example, the plant manager
  • the user can output (display).
  • Deterioration or abnormality of equipment in which the rotating shaft AX is rotationally driven for example, shaft system imbalance, shaft misalignment, bearing deterioration, etc.
  • a large amount of sensors such as a vibration sensor and a temperature sensor are not required, and the equipment can be diagnosed with high accuracy even if the load fluctuation is small.
  • FIG. 4 is a block diagram showing a main configuration of a modified example of the equipment diagnostic apparatus according to the first embodiment of the present invention.
  • the encoder 20 of the equipment diagnosis device 1 shown in FIG. 1 is replaced with a tachometer 20A (also referred to as a rotation detection unit), and the calculation unit 30 is replaced with a calculation unit 30A.
  • the tachometer 20A detects the rotation speed ⁇ m [rad / s] or [Hz] of the rotation axis AX.
  • the tachometer 20A may be a mechanical type or an electric type.
  • the calculation unit 30A has a configuration in which the rotation speed calculation unit 32 of the calculation unit 30 shown in FIG. 1 is omitted, and the detection result of the tachometer 20A is directly input to the slip rate calculation unit 33 and the output unit 40 of the calculation unit 30A. That is, the tachometer 20A can directly detect the rotation speed ⁇ m of the rotation axis AX. Therefore, the rotation speed calculation unit 32 for obtaining the rotation speed ⁇ m of the rotation axis AX from the detection result of the encoder 20 is omitted.
  • step S14 in FIG. 2 is read as "detection of rotation speed of the rotating shaft", and step S15 is omitted. It will be the one that was done.
  • FIG. 5 is a block diagram showing a main configuration of the equipment diagnostic apparatus according to the second embodiment of the present invention.
  • the equipment diagnosis device 2 of the second embodiment has a configuration in which a determination unit 50 is added to the equipment diagnosis device 1 shown in FIG.
  • the user diagnoses the equipment by referring to the output (display) of the output unit 40.
  • the determination unit 50 determines whether or not the equipment is abnormal by referring to the output of the calculation unit 30.
  • the determination unit 50 is provided between the calculation unit 30 and the output unit 40.
  • the determination unit 50 determines whether or not the equipment is abnormal by using various values obtained by the calculation unit 30.
  • the determination unit 50 at least compares the load correlation value ST obtained by the ST calculation unit 35 with the threshold value TH set in the load correlation value ST, and determines whether or not the equipment is abnormal.
  • the determination unit 50 sets the slip rate s of the rotation axis AX and the threshold value TH set in the slip rate s of the rotation axis AX. A comparison may be made to determine if the equipment is abnormal. Further, in addition to the above comparison, the determination unit 50 compares the frequency ⁇ of the drive current with the threshold value TH set to the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX and the rotation speed of the rotation axis AX. It may be determined whether or not the equipment is abnormal by comparing with the threshold value TH set to ⁇ m.
  • the determination unit 50 outputs the load correlation value ST obtained by the calculation unit 30, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX to the output unit 40.
  • the determination unit 50 outputs the above determination result (determination result of whether or not the equipment is abnormal) to the output unit 40.
  • the determination unit 50 outputs the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, the rotation speed ⁇ m of the rotation axis AX, and the threshold value TH set for each of the output units 40 to the output unit 40. You may.
  • the function of the determination unit 50 may be realized by software, for example, by a computer reading and installing a program recorded on a recording medium.
  • the computer may be realized by software by installing a program downloaded via a network (not shown).
  • it may be realized by using hardware such as FPGA, LSI, and ASIC.
  • the output unit 40 may output the above-mentioned determination result or threshold value TH output from the determination unit 50.
  • the threshold value TH May also be displayed.
  • the user can see that the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX exceed the threshold value TH. It can be easily confirmed whether or not it is. The user can also confirm whether the determination result of the determination unit 50 is correct or not.
  • the flowchart showing the equipment diagnosis method according to the second embodiment is basically the same as the flowchart shown in FIG. Specifically, in the flowchart showing the equipment diagnosis method according to the second embodiment, the determination unit 50 compares the ST calculation unit 35 and the like with the threshold value TH between steps S17 and S18 in FIG. A step has been added to determine if the equipment is abnormal.
  • the frequency ⁇ of the current and the rotation speed ⁇ m of the rotation axis AX are compared with the threshold values individually set to determine whether or not the equipment is abnormal. Therefore, in the second embodiment, it is possible to automatically determine whether or not the equipment in which the rotary shaft AX is rotationally driven is abnormal.
  • the equipment diagnosis device 2 of the second embodiment is the same as the equipment diagnosis device 1 of the first embodiment in the basic configuration because the determination unit 50 is added to the equipment diagnosis device 1 of the first embodiment. .. Therefore, also in the second embodiment, a large amount of sensors such as a vibration sensor and a temperature sensor are not required, and the equipment can be diagnosed with high accuracy even if the load fluctuation is small.
  • FIG. 6 is a block diagram showing a main configuration of the equipment diagnostic apparatus according to the third embodiment of the present invention.
  • the equipment diagnostic apparatus 3 of the third embodiment has a configuration in which a diagnostic unit 60 is added to the equipment diagnostic apparatus 1 shown in FIG.
  • the user diagnoses the equipment by referring to the output (display) of the output unit 40.
  • the diagnostic unit 60 is based on various data output from the output unit 40 and learning results of various data output from the output unit 40 in the past. Diagnose the presence or absence of equipment abnormalities.
  • the output unit 40 may be omitted, and various values obtained by the calculation unit 30 may be output to the diagnosis unit 60.
  • FIG. 7 is a block diagram showing the internal configuration of the diagnostic unit according to the third embodiment of the present invention.
  • the diagnosis unit 60 includes an acquisition unit 61, a cutting unit 62, a feature extraction unit 63, a model processing unit 64, and an output unit 65.
  • the cutout control signal C11 and the learning control signal C12 are input to the diagnosis unit 60.
  • the cutout control signal C11 is a signal that controls the cutout cutout process of the data input to the diagnostic unit 60.
  • the learning control signal C12 is a signal that controls whether or not learning is performed in the diagnosis unit 60.
  • the cutting control signal C11 and the learning control signal C12 are turned on or off by, for example, a user or an external system.
  • the acquisition unit 61 acquires various data output from the output unit 40.
  • the acquisition unit 61 acquires at least the load correlation value ST output from the output unit 40.
  • the acquisition unit 61 may acquire the slip ratio s of the rotation axis AX in addition to the load correlation value ST.
  • the acquisition unit 61 may acquire the frequency ⁇ of the drive current and the rotation speed ⁇ m of the rotation axis AX in addition to the load correlation value ST and the slip ratio s of the rotation axis AX.
  • the acquisition unit 61 may acquire various data by performing wired communication or wireless communication with the output unit 40.
  • the acquisition unit 61 associates the acquired data with time information (also referred to as a time stamp).
  • the acquisition unit 61 may acquire a data file associated with the time information from an external device.
  • the format of the data file is, for example, CSV (Comma-Separated Values) format.
  • the data X (t) acquired by the acquisition unit 61 is represented by the following equation (8).
  • t is a variable representing the discrete time (sampling time).
  • d is the number of data acquired by the acquisition unit 61.
  • the cutout unit 62 cuts out the data acquired by the acquisition unit 61 (for example, continuous data in time series) in response to the cutout control signal C11. Specifically, the cutting unit 62 cuts out each continuous data (also referred to as a segment) in time series for a period in which the cutting control signal C11 is on, for example. For example, when the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX are acquired by the acquisition unit 61, the cutting unit 62 Each of these data is cut out for the period during which the cutout control signal C11 is on.
  • Each data S (k) cut out by the cutout portion 62 is represented by the following equation (9).
  • k is a serial number of the cut out data.
  • nk is the number of samples (hereinafter, referred to as “segment length”) included in the k-th cut-out data. The segment length does not have to be constant.
  • the cutting unit 62 may cut out each continuous data in chronological order from the time when the start end of the cutting control signal C11, which is a pulse signal, is detected to the time when a predetermined time elapses.
  • the cutting unit 62 may cut out each continuous data in time series with respect to the time from the time when the end of the cutting control signal C11, which is a pulse signal, is detected to the time when a predetermined time elapses.
  • the cutout unit 62 cuts out each continuous data in chronological order from the time when the cutout control signal C11 which is a pulse signal is detected to the time when the next cutout control signal C11 is detected. Good.
  • the cutting unit 62 may cut out each continuous data in time series for a period from the time when the predetermined data becomes equal to or more than the threshold value to the time when the data becomes less than the threshold value. Further, the cutting unit 62 may cut out each data at a fixed cycle without depending on an external signal.
  • the feature extraction unit 63 extracts a feature vector from the cut out data S (k) by analyzing the data cut out by the cutout unit 62. That is, the feature extraction unit 63 generates the feature vector z (k) of the cut out data as shown in the following equation (10).
  • z is a feature vector and is a vertical vector having an m-dimensional real value as a domain.
  • the method by which the feature extraction unit 63 extracts the feature vector is not limited to a specific method.
  • the feature extraction unit 63 calculates statistics such as an average, a standard deviation, a minimum value, and a maximum value with respect to the device data cut out with the serial number k.
  • the feature extraction unit 63 may extract the power of each periodic signal whose device data is decomposed by the Fourier transform as a feature vector.
  • the feature extraction unit 63 may extract the order statistic of the device data as a feature vector.
  • the model processing unit 64 analyzes the feature vector extracted by the feature extraction unit 63.
  • the model processing unit 64 generates a model of the feature vector (also referred to as a reference pattern model) based on the analysis result of the feature vector.
  • the model processing unit 64 includes a learning unit 64a, a storage unit 64b, and a deviation degree calculation unit 64c.
  • the learning unit 64a acquires the extracted feature vector from the feature extraction unit 63.
  • the learning unit 64a analyzes (also referred to as learning) the feature vector for each extracted feature vector.
  • the learning unit 64a generates a model of the feature vector based on the analysis result of the feature vector. In this way, the learning unit 64a sequentially generates a model of the feature vector.
  • the model of the feature vector is not limited to the model of a specific form, but for example, a constraint condition (relationship) such as the following equation (11) that a continuous variable should satisfy between each element of the feature vector z is given. It is a model represented by the simultaneous equations.
  • the learning unit 64a obtains the constraint condition as shown in the following equation (11) by executing the principal component analysis.
  • the learning unit 64a may obtain a constraint condition by using a neural network.
  • the model of the feature vector may be, for example, a model represented by the probability density distribution p (z) of the feature vector z.
  • the learning unit 64a generates a model represented by a multivariate normal distribution of the feature vector z.
  • the multivariate normal distribution of the feature vector z is represented by the mean vector ⁇ ⁇ R m of the feature vector z and the covariance matrix ⁇ ⁇ R m ⁇ m.
  • the learning unit 64a calculates the multivariate normal distribution of the feature vector z using the following equations (12) and (13).
  • z sum represents the cumulative sum of the feature vectors.
  • Z sum represents the cumulative sum of the matrix product of the matrix of feature vectors and the vector to which the feature vectors are transposed.
  • Each of these elements constitutes a sufficient statistic in a multivariate normal distribution. That is, the mean vector and covariance matrix of the multivariate normal distribution can be calculated based on z sum and Z sum.
  • the cumulative sum z sum (k-1) of the feature vectors based on the first to (k-1) th cut out data and the kth feature vector z (k) of the cut out data is calculated using the following equation (14).
  • the learning unit 64a has the cumulative sum Z sum (k-1) of the matrix product of the feature vector based on the extracted data from the first to the (k-1) th and the vector to which the feature vector is transposed, and k. Cumulative matrix product of the feature vector based on the first to kth cut data and the vector to which the feature vector is transposed based on the matrix Z (k) of the feature vector of the third cut data.
  • the sum Z sum (k) is calculated using the following equation (15).
  • the learning unit 64a does not accumulate the data acquired by the acquisition unit 61 in a database having a large storage capacity, and the cumulative sum of the mean value vector ⁇ (k), the covariance matrix ⁇ (k), and the feature vector z sum (k). ) And the cumulative sum of the matrix products of the feature vectors Z sum (k), the multivariate normal distribution is calculated as a model of the feature vector z.
  • the learning unit 64a may calculate a probability distribution other than the multivariate normal distribution as long as it is a probability distribution that approximates the acquired data.
  • a probability distribution other than the multivariate normal distribution is a mixed multivariate normal distribution, an empirical density function based on multiple samples of data.
  • the learning unit 64a records the generated model of the feature vector in the storage unit 64b.
  • the storage unit 64b is a non-volatile storage device (also referred to as a non-temporary recording medium) such as a flash memory.
  • the storage unit 64b stores a model of the feature vector.
  • the model of the feature vector is represented by, for example, mathematical data.
  • the feature vector model is updated with the feature vector model generated by the learning unit 64a.
  • the storage unit 64b may store the program.
  • the storage unit 64b may further include a volatile recording medium such as a RAM (Random Access Memory).
  • the divergence degree calculation unit 64c acquires the feature vector z test of the data newly acquired after the model of the feature vector is generated from the feature extraction unit 63.
  • the deviation degree calculation unit 64c calculates the deviation degree (abnormality) between the feature vector z test and the model of the feature vector stored in the storage unit 64b.
  • the divergence degree calculation unit 64c calculates the negative log-likelihood of z test as the divergence degree when the model of the feature vector is represented by the probability distribution p (z) of the feature vector z.
  • the divergence degree calculation unit 64c may calculate the divergence degree by executing a predetermined arithmetic process on the parameters of the mathematical formula representing the model of the feature vector. For example, in a model based on a constraint condition as in Eq. (4) between each element of the feature vector z, the deviation degree calculation unit 64c determines the degree of inconsistency of the constraint condition (for example, the L2 norm of f (z)). , May be calculated as the degree of divergence.
  • the output unit 65 outputs the calculated degree of deviation.
  • the output unit 65 may output the calculated degree of deviation as data.
  • the output unit 65 may perform wired communication or wireless communication with an external device (for example, a data collecting device) to output the above data to the external device.
  • the output unit 65 may output by writing the above data to the attached external memory.
  • the output unit 65 may output by displaying the calculated degree of deviation on a display device such as a liquid crystal display device.
  • the output unit 65 may display the calculated degree of deviation as a numerical value or may display it as a graph showing a change with time.
  • the function of the diagnosis unit 60 may be realized by software, for example, by a computer reading and installing a program recorded on a recording medium.
  • the computer may be realized by software by installing a program downloaded via a network (not shown).
  • it may be realized by using hardware such as FPGA, LSI, and ASIC.
  • FIG. 8 is a flowchart showing an operation example of the diagnostic unit according to the third embodiment of the present invention.
  • the processing of the flowchart shown in FIG. 8 is repeated, for example, at a preset constant cycle.
  • the process of acquiring data is performed by the acquisition unit 61 (step S21).
  • a process of acquiring each data of the load correlation value ST output from the output unit 40 shown in FIG. 6, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX is performed. Will be.
  • step S22 whether or not the condition for executing the cutting process is satisfied is determined by the cutting section 62 (step S22). For example, when the cutout control signal C11 is on, the cutout unit 62 determines that the condition for executing the cutout process is satisfied. When it is determined that the condition for executing the cutting process is not satisfied (when the determination result in step S22 is "NO"), the processing in step S22 is performed again by the cutting section 62.
  • step S23 when it is determined that the condition for executing the cutting process is satisfied (when the determination result in step S22 is "YES"), a predetermined condition is determined from the data acquired in step S21.
  • the process of cutting out data based on the above is performed by the cutout unit 62 (step S23). For example, for the period during which the cutout control signal C11 is on, each data continuous in time series of the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX. Is cut out by the cutting unit 62. Subsequently, the feature extraction unit 63 performs a process of extracting the feature vector z from each of the cut out data (step S24).
  • the learning unit 64a determines whether or not the condition for executing the learning process is satisfied (step S25). For example, when the learning control signal C12 is on, the learning unit 64a determines that the condition for executing the learning process is satisfied. When it is determined that the condition for executing the learning process is not satisfied (when the determination result in step S25 is "NO"), the process in step S28 is performed by the deviation degree calculation unit 64c.
  • the extracted feature vector z is analyzed and based on the analysis result.
  • the learning unit 64a performs a process of generating a model of the feature vector (step S26). Then, the learning unit 64a performs a process of updating the model of the feature vector stored in the storage unit 64b to the newly generated model of the feature vector (step S27).
  • the process of acquiring the feature vector of the newly acquired data from the feature extraction unit 63 is performed by the deviation degree calculation unit 64c.
  • the process of calculating the degree of divergence between the feature vector of the newly acquired data and the model of the feature vector stored in the storage unit 64b is performed by the divergence degree calculation unit 64c (step S28).
  • the output unit 65 performs a process of outputting the deviation degree calculated by the deviation degree calculation unit 64c (step S29).
  • the diagnostic unit 60 is provided, and based on the learning results of various data output from the output unit 40 and various data output from the output unit 40 in the past, the abnormality of the equipment is abnormal. Diagnosing the presence or absence. Specifically, various data output from the output unit 40 are cut out based on the cutout control signal C11, a feature vector is extracted from the cutout data, the feature vector is analyzed, and a model of the feature vector is created. There is. Then, the degree of deviation between the feature vector of the newly acquired data and the model of the feature vector is calculated. By referring to this degree of deviation, it is possible to diagnose the presence or absence of an abnormality in the equipment.
  • the present invention is not limited to the first to third embodiments, and is within the scope of the present invention. It can be changed freely.
  • the above-mentioned second and third embodiments may be applied to the above-mentioned modifications of the first embodiment.
  • the output unit 40 outputs the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX.
  • the output unit 40 includes, in addition to these, may be output the effective value I a of the driving current determined by the effective value calculating unit 34.
  • the diagnostic unit 60 when the output unit 40 outputs the effective value I a of the drive current, the diagnostic unit 60 also uses the effective value I a of the drive current to determine the presence or absence of an abnormality in the equipment. You may diagnose.
  • the determination unit 50 is set to the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ⁇ of the drive current, and the rotation speed ⁇ m of the rotation axis AX.
  • the comparison with the threshold value TH was performed.
  • the effective value I a of the driving current may also be determined whether the equipment is abnormal using. Specifically, the effective value I a of the drive current, also performed compared with a threshold value TH which is set to the effective value I a of the driving current, it may be determined whether the equipment is abnormal.
  • the load value may be calculated using the load correlation value ST obtained by the ST calculation unit 35.
  • the variable A in the above equation defines the scaling (enlargement / reduction ratio) of the load correlation value ST.
  • the variable B in the above equation defines the offset of the load correlation value ST.

Abstract

This facility diagnostic device (1, 1A, 2, 3) is provided with: a current detection unit (10) which detects a driving current supplied to an induction motor (IM) that rotationally drives the rotating shaft of a facility; rotation detection units (20, 20A) which detect the rotation of the rotating shaft; calculation units (30, 30A) which obtain a load correlation value, which is a value correlated with a load resistance operating on the rotation shaft, by using the detection result from the current detection unit and the detection results from the rotation detection units; and an output unit (40) which outputs the load correlation value.

Description

設備診断装置、設備診断方法、及び設備診断プログラムEquipment diagnostic equipment, equipment diagnostic method, and equipment diagnostic program
 本発明のいくつかの態様は、設備診断装置、設備診断方法、及び設備診断プログラムに関する。
 本願は、2019年9月20日に、日本に出願された特願2019-172007号に基づき優先権を主張し、その内容をここに援用する。
Some aspects of the invention relate to equipment diagnostic equipment, equipment diagnostic methods, and equipment diagnostic programs.
The present application claims priority based on Japanese Patent Application No. 2019-172007 filed in Japan on September 20, 2019, the contents of which are incorporated herein by reference.
 プラントや工場では、電動機を動力源として回転軸を回転させることにより駆動する機器、装置、設備(以下、これらを総称する場合には「設備」という)が多数用いられている。このような設備としては、例えば、モータ、ポンプ、搬送用ローラ、ファン、ブロア、反応器、攪拌器等が挙げられる。 In plants and factories, a large number of equipment, devices, and equipment (hereinafter, collectively referred to as "equipment") that are driven by rotating a rotating shaft using an electric motor as a power source are used. Examples of such equipment include motors, pumps, transport rollers, fans, blowers, reactors, stirrers and the like.
 このような設備の診断は、振動や温度を測定するセンサを複数設け、回転軸を支持する軸受の状態変化を捉えることによって行われることが多い。これは、回転軸が回転駆動される設備の劣化や異常(例えば、軸系のアンバランス、軸のミスアライメント、軸受の劣化等)は、回転軸を支持する軸受に変化が現れるからである。 Diagnosis of such equipment is often performed by providing a plurality of sensors for measuring vibration and temperature and capturing changes in the state of bearings that support the rotating shaft. This is because deterioration or abnormality of equipment in which the rotating shaft is rotationally driven (for example, shaft system imbalance, shaft misalignment, bearing deterioration, etc.) causes changes in the bearings that support the rotating shaft.
 以下の非特許文献1には、製鉄設備における各種の診断技術が開示されている。非特許文献1では、例えば、自己発電無線式振動センサを用いた診断技術が開示されている。また、非特許文献1では、駆動モータに流れる電流の絶対値を管理するだけでなく、周波数分析することにより設備劣化の検出能力を向上させる診断技術が開示されている。 The following Non-Patent Document 1 discloses various diagnostic techniques in steelmaking equipment. Non-Patent Document 1 discloses, for example, a diagnostic technique using a self-powered wireless vibration sensor. Further, Non-Patent Document 1 discloses a diagnostic technique that not only manages the absolute value of the current flowing through the drive motor but also improves the ability to detect equipment deterioration by frequency analysis.
 ところで、上述した回転軸を支持する軸受の状態変化を捉える診断技術では、振動や温度を測定するセンサが大量に必要になる。また、設備によっては、センサの設置が困難な場合もある。上述した非特許文献1に開示された診断技術(つまり、駆動モータに流れる電流を解析する技術)を用いれば大量のセンサが不要になると考えられるが、負荷変動がある程度大きくならないと精度の良い診断を行うことができない。 By the way, in the above-mentioned diagnostic technology that captures the state change of the bearing that supports the rotating shaft, a large number of sensors that measure vibration and temperature are required. In addition, depending on the equipment, it may be difficult to install the sensor. It is considered that a large number of sensors will be unnecessary if the diagnostic technique disclosed in Non-Patent Document 1 described above (that is, a technique for analyzing the current flowing through the drive motor) is used, but accurate diagnosis is performed unless the load fluctuation becomes large to some extent. Cannot be done.
 本発明のいくつかの態様は上記事情に鑑みてなされたものであり、大量のセンサを必要とせず、負荷変動が小さくとも精度良く設備の診断を行うことができる設備診断装置、設備診断方法、及び設備診断プログラムを提供することを目的とする。 Some aspects of the present invention have been made in view of the above circumstances, and include equipment diagnostic devices, equipment diagnostic methods, which can accurately diagnose equipment even if load fluctuations are small, without requiring a large number of sensors. And to provide equipment diagnostic programs.
(1) 上記課題を解決するために、本発明の一態様による設備診断装置は、設備が有する回転軸を回転駆動する前記誘導電動機に供給される駆動電流を検出する電流検出部(10)と、前記回転軸の回転を検出する回転検出部(20、20A)と、前記電流検出部の検出結果と前記回転検出部の検出結果とを用いて、前記回転軸に作用する負荷抵抗と相関を有する値である負荷相関値を求める演算部(30、30A)と、前記負荷相関値を出力する出力部(40)と、を備える。 (1) In order to solve the above problems, the equipment diagnostic device according to one aspect of the present invention includes a current detection unit (10) that detects a drive current supplied to the induction motor that rotationally drives the rotating shaft of the equipment. , The rotation detection unit (20, 20A) that detects the rotation of the rotation shaft, the detection result of the current detection unit, and the detection result of the rotation detection unit are used to correlate with the load resistance acting on the rotation shaft. A calculation unit (30, 30A) for obtaining a load correlation value, which is a value to be possessed, and an output unit (40) for outputting the load correlation value are provided.
(2) また、本発明の一態様による設備診断装置は、前記演算部が、前記電流検出部の検出結果と前記回転検出部の検出結果とを用いて、前記回転軸のすべり率を求めるすべり率演算部(33)と、前記電流検出部の検出結果から前記駆動電流の実効値を求める実効値演算部(34)と、前記すべり率演算部の演算結果と前記実効値演算部の演算結果とを用いて前記負荷相関値を求める負荷相関値演算部(35)と、を備える。 (2) Further, in the equipment diagnostic apparatus according to one aspect of the present invention, the calculation unit uses the detection result of the current detection unit and the detection result of the rotation detection unit to determine the slip ratio of the rotation shaft. The rate calculation unit (33), the effective value calculation unit (34) for obtaining the effective value of the drive current from the detection result of the current detection unit, the calculation result of the slip rate calculation unit, and the calculation result of the effective value calculation unit. A load correlation value calculation unit (35) for obtaining the load correlation value using and is provided.
(3) ここで、本発明の一態様による設備診断装置は、前記出力部が、前記負荷相関値に加えて前記回転軸のすべり率を出力する。 (3) Here, in the equipment diagnostic apparatus according to one aspect of the present invention, the output unit outputs the slip ratio of the rotating shaft in addition to the load correlation value.
(4) また、本発明の一態様による設備診断装置は、前記演算部が、前記電流検出部の検出結果から前記駆動電流の周波数を求める周波数演算部(31)を備えており、前記出力部が、前記負荷相関値及び前記回転軸のすべり率に加えて、前記駆動電流の周波数と、前記回転検出部の検出結果から得られる前記回転軸の回転速度とを出力する。 (4) Further, in the equipment diagnosis device according to one aspect of the present invention, the calculation unit includes a frequency calculation unit (31) for obtaining the frequency of the drive current from the detection result of the current detection unit, and the output unit. Outputs the frequency of the drive current and the rotation speed of the rotation shaft obtained from the detection result of the rotation detection unit, in addition to the load correlation value and the slip ratio of the rotation shaft.
(5) また、本発明の一態様による設備診断装置は、前記負荷相関値をSTとし、前記駆動電流の周波数をω[rad/s]又は[Hz]、前記回転軸の回転速度をω[rad/s]又は[Hz]、前記駆動電流の実効値をI、前記回転軸のすべり率をs[%]とすると、前記負荷相関値演算部が、以下の(1)式で示される演算を行って前記負荷相関値STを求める。
Figure JPOXMLDOC01-appb-M000002
(5) Further, in the equipment diagnostic apparatus according to one aspect of the present invention, the load correlation value is ST, the frequency of the drive current is ω [rad / s] or [Hz], and the rotation speed of the rotation shaft is ω m. Assuming that [rad / s] or [Hz], the effective value of the drive current is Ia , and the slip ratio of the rotation axis is s [%], the load correlation value calculation unit is shown by the following equation (1). The load correlation value ST is obtained by performing the above calculation.
Figure JPOXMLDOC01-appb-M000002
(6) また、本発明の一態様による設備診断装置は、少なくとも、前記出力部から出力される前記負荷相関値と、前記負荷相関値に設定された閾値(TH)との比較を行って、前記設備が異常であるか否かを判断する判断部(50)を備える。 (6) Further, the equipment diagnostic apparatus according to one aspect of the present invention compares at least the load correlation value output from the output unit with the threshold value (TH) set in the load correlation value. A determination unit (50) for determining whether or not the equipment is abnormal is provided.
(7) また、本発明の一態様による設備診断装置は、少なくとも、前記出力部から出力される前記負荷相関値と、過去に前記出力部から出力された前記負荷相関値の学習結果とに基づいて、前記設備の異常の有無を診断する診断部(60)を備える。 (7) Further, the equipment diagnostic apparatus according to one aspect of the present invention is based on at least the load correlation value output from the output unit and the learning result of the load correlation value output from the output unit in the past. Therefore, a diagnostic unit (60) for diagnosing the presence or absence of abnormality in the equipment is provided.
(8) また、本発明の一態様による設備診断装置は、前記診断部が、前記出力部から出力される前記負荷相関値のデータを取得する取得部(61)と、前記取得部で取得されたデータから、予め定められた条件に基づいてデータを切り出す切出部(62)と、前記切出部で切り出されたデータから特徴ベクトルを抽出する特徴抽出部(63)と、前記特徴抽出部で抽出された前記特徴ベクトルを分析し、分析結果に基づいて前記特徴ベクトルのモデルを生成する学習部(64a)と、前記取得部で新たに取得されたデータの前記特徴ベクトルと前記モデルとの乖離度を算出する乖離度算出部(64c)と、を備える。 (8) Further, in the equipment diagnostic apparatus according to one aspect of the present invention, the diagnostic unit acquires the load correlation value data output from the output unit (61) and the acquisition unit. A cutout unit (62) that cuts out data from the data based on predetermined conditions, a feature extraction unit (63) that extracts a feature vector from the data cut out by the cutout part, and the feature extraction unit. A learning unit (64a) that analyzes the feature vector extracted in the above and generates a model of the feature vector based on the analysis result, and the feature vector and the model of the data newly acquired by the acquisition unit. It is provided with a deviation degree calculation unit (64c) for calculating the deviation degree.
(9) また、本発明の一態様による設備診断装置の前記回転検出部(20、20A)は、エンコーダを備える。 (9) Further, the rotation detection unit (20, 20A) of the equipment diagnostic apparatus according to one aspect of the present invention includes an encoder.
(10) また、本発明の一態様による設備診断装置の前記回転検出部(20、20A)は、タコメータを備える。 (10) Further, the rotation detection unit (20, 20A) of the equipment diagnostic apparatus according to one aspect of the present invention includes a tachometer.
(11) また、本発明の一態様による設備診断装置の前記周波数演算部(31)は、前記回転軸が予め規定された回転数だけ回転する度に、前記周波数を求める。 (11) Further, the frequency calculation unit (31) of the equipment diagnostic apparatus according to one aspect of the present invention obtains the frequency each time the rotation axis rotates by a predetermined number of rotations.
(12) また、本発明の一態様による設備診断装置は、前記回転検出部の検出結果から、前記回転軸の前記回転速度を求める回転速度算出部(32)を更に備える。 (12) Further, the equipment diagnostic apparatus according to one aspect of the present invention further includes a rotation speed calculation unit (32) for obtaining the rotation speed of the rotation shaft from the detection result of the rotation detection unit.
(13) また、本発明の一態様による設備診断装置の前記回転速度算出部(32)は、予め規定された時間が経過する度に、前記回転速度を求める。 (13) Further, the rotation speed calculation unit (32) of the equipment diagnosis device according to one aspect of the present invention obtains the rotation speed every time a predetermined time elapses.
(14) また、本発明の一態様による設備診断装置の前記出力部(40)は、前記負荷相関値、前記すべり率、前記周波数及び前記回転速度を、数値で表示する。 (14) Further, the output unit (40) of the equipment diagnostic apparatus according to one aspect of the present invention numerically displays the load correlation value, the slip ratio, the frequency, and the rotation speed.
(15) また、本発明の一態様による設備診断装置の前記出力部(40)は、前記負荷相関値、前記すべり率、前記周波数及び前記回転速度を、経時変化を示すグラフで表示する。 (15) Further, the output unit (40) of the equipment diagnostic apparatus according to one aspect of the present invention displays the load correlation value, the slip ratio, the frequency, and the rotation speed in a graph showing changes over time.
(16) また、本発明の一態様による設備診断装置は、前記出力部(40)から出力される前記負荷相関値と、前記負荷相関値に設定された閾値との比較と、前記すべり率演算部(33)が求めた前記すべり率と、前記すべり率に設定された閾値との比較を行って、前記設備が異常であるか否かを判断する判断部(50)を備える。 (16) Further, the equipment diagnostic apparatus according to one aspect of the present invention compares the load correlation value output from the output unit (40) with the threshold value set in the load correlation value, and calculates the slip ratio. A determination unit (50) for determining whether or not the equipment is abnormal by comparing the slip rate obtained by the unit (33) with a threshold value set for the slip rate is provided.
(17) また、本発明の一態様による設備診断装置の前記出力部(40)は、前記負荷相関値の経時変化をグラフで表示するとともに、前記閾値を表示する。 (17) Further, the output unit (40) of the equipment diagnostic apparatus according to one aspect of the present invention displays the change with time of the load correlation value in a graph and displays the threshold value.
(18) また、本発明の一態様による設備診断装置の前記切出部(62)は、パルス信号である切出制御信号の始端が検出された時刻から所定時間が経過するまでの時刻について、時系列で連続する各データを切り出す。 (18) Further, the cutout portion (62) of the equipment diagnostic apparatus according to one aspect of the present invention relates to the time from the time when the start end of the cutout control signal, which is a pulse signal, is detected until a predetermined time elapses. Cut out each continuous data in chronological order.
(19) 本発明の一態様による設備診断方法は、設備が有する回転軸を回転駆動する誘導電動機(1M)に供給される駆動電流を検出する電流検出ステップ(S11)と、前記回転軸の回転を検出する回転検出ステップ(S14)と、前記電流検出ステップの検出結果と前記回転検出ステップの検出結果とを用いて、前記回転軸に作用する負荷抵抗と相関を有する値である負荷相関値を求める演算ステップ(S17)と、前記負荷相関値を出力する出力ステップ(S18)と、を有する。 (19) The equipment diagnosis method according to one aspect of the present invention includes a current detection step (S11) for detecting a drive current supplied to an induction motor (1M) that rotationally drives the rotating shaft of the equipment, and rotation of the rotating shaft. The load correlation value, which is a value having a correlation with the load resistance acting on the rotation axis, is obtained by using the rotation detection step (S14) for detecting the above, the detection result of the current detection step, and the detection result of the rotation detection step. It has a calculation step (S17) to be obtained and an output step (S18) for outputting the load correlation value.
(20) 本発明の一態様による設備診断プログラムは、コンピュータを、設備が有する回転軸を回転駆動する誘導電動機(1M)に供給される駆動電流を検出する電流検出部(10)の検出結果と、回転軸の回転を検出する回転検出部(20、20A)の検出結果とを用いて、前記回転軸に作用する負荷抵抗と相関を有する値である負荷相関値を求める演算手段(30、30A)と、前記負荷相関値を出力する出力手段(40)と、して機能させる。 (20) The equipment diagnosis program according to one aspect of the present invention includes the detection result of the current detection unit (10) that detects the drive current supplied to the induction motor (1M) that rotationally drives the rotating shaft of the equipment. , A calculation means (30, 30A) for obtaining a load correlation value which is a value having a correlation with the load resistance acting on the rotation axis by using the detection result of the rotation detection unit (20, 20A) for detecting the rotation of the rotation axis. ) And the output means (40) for outputting the load correlation value.
 本発明のいくつかの態様によれば、大量のセンサを必要とせず、負荷変動が小さくとも精度良く設備の診断を行うことができるという効果がある。 According to some aspects of the present invention, there is an effect that a large amount of sensors are not required and equipment can be diagnosed with high accuracy even if the load fluctuation is small.
本発明の第1実施形態による設備診断装置の要部構成を示すブロック図である。It is a block diagram which shows the main part structure of the equipment diagnostic apparatus according to 1st Embodiment of this invention. 本発明の第1実施形態による設備診断方法を示すフローチャートである。It is a flowchart which shows the equipment diagnosis method by 1st Embodiment of this invention. 本発明の第1実施形態における負荷相関値等の第1表示例を示す図である。It is a figure which shows the 1st display example such as the load correlation value in 1st Embodiment of this invention. 本発明の第1実施形態における負荷相関値等の第2表示例を示す図である。It is a figure which shows the 2nd display example such as the load correlation value in 1st Embodiment of this invention. 本発明の第1実施形態における負荷相関値等の第3表示例を示す図である。It is a figure which shows the 3rd display example such as a load correlation value in 1st Embodiment of this invention. 本発明の第1実施形態における負荷相関値等の第4表示例を示す図である。It is a figure which shows the 4th display example such as the load correlation value in 1st Embodiment of this invention. 本発明の第1実施形態による設備診断装置の変形例の要部構成を示すブロック図である。It is a block diagram which shows the main part structure of the modification of the equipment diagnostic apparatus according to 1st Embodiment of this invention. 本発明の第2実施形態による設備診断装置の要部構成を示すブロック図である。It is a block diagram which shows the main part structure of the equipment diagnostic apparatus according to 2nd Embodiment of this invention. 本発明の第3実施形態による設備診断装置の要部構成を示すブロック図である。It is a block diagram which shows the main part structure of the equipment diagnostic apparatus according to 3rd Embodiment of this invention. 本発明の第3実施形態における診断部の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the diagnostic part in 3rd Embodiment of this invention. 本発明の第3実施形態における診断部の動作例を示すフローチャートである。It is a flowchart which shows the operation example of the diagnosis part in 3rd Embodiment of this invention.
 以下、図面を参照して本発明の第1~第3実施形態による設備診断装置、設備診断方法、及び設備診断プログラムについて詳細に説明する。 Hereinafter, the equipment diagnosis device, the equipment diagnosis method, and the equipment diagnosis program according to the first to third embodiments of the present invention will be described in detail with reference to the drawings.
〔第1実施形態〕
 〈設備診断装置〉
 図1は、本発明の第1実施形態による設備診断装置の要部構成を示すブロック図である。図1に示す通り、第1実施形態の設備診断装置1は、変流器10(電流検出部とも称する)、エンコーダ20(回転検出部とも称する)、演算部30(演算手段とも称する)、及び出力部40(出力手段とも称する)を備える。かかる構成の設備診断装置1は、誘導電動機IMによって回転駆動される回転軸AXを有する設備の診断を行う。
[First Embodiment]
<Equipment diagnostic equipment>
FIG. 1 is a block diagram showing a main configuration of an equipment diagnostic device according to the first embodiment of the present invention. As shown in FIG. 1, the equipment diagnostic apparatus 1 of the first embodiment includes a current transformer 10 (also referred to as a current detection unit), an encoder 20 (also referred to as a rotation detection unit), a calculation unit 30 (also referred to as a calculation means), and a calculation unit 30. An output unit 40 (also referred to as an output means) is provided. The equipment diagnosis device 1 having such a configuration diagnoses equipment having a rotating shaft AX that is rotationally driven by an induction motor IM.
 ここで、誘導電動機IMは、コイルを有する固定子と、例えば、かご型構造の回転子とを備えており、固定子のコイルによって形成される回転磁界によって回転子が回転する。誘導電動機IMは、単相の交流電流によって駆動されても良く、三相の交流電流によって駆動されても良い。第1実施形態において、誘導電動機IMは、三相の交流電流によって駆動される。 Here, the induction motor IM includes a stator having a coil and, for example, a rotor having a cage-shaped structure, and the rotor is rotated by a rotating magnetic field formed by the coil of the stator. The induction motor IM may be driven by a single-phase alternating current or may be driven by a three-phase alternating current. In the first embodiment, the induction motor IM is driven by a three-phase alternating current.
 回転軸AXは、例えば、円柱状(棒状とも称する)の部材であり、誘導電動機IMの回転子が回転することによって回転駆動される。回転軸AXは、予め規定された減速比を有する減速機を介して誘導電動機IMの回転子に接続されていても良い。このような減速機が設けられる場合には、例えば、所定の周波数(例えば、10[Hz])の駆動電流が誘導電動機IMに供給された場合に、回転軸AXが、無負荷の状態で、所定の回転数(例えば、100[rpm])で回転する。回転軸AXは、誘導電動機IMの回転子に同軸となるように直接取り付けられていても良い。 The rotating shaft AX is, for example, a columnar (also referred to as a rod-shaped) member, and is rotationally driven by the rotation of the rotor of the induction motor IM. The rotary shaft AX may be connected to the rotor of the induction motor IM via a speed reducer having a predetermined reduction ratio. When such a speed reducer is provided, for example, when a drive current of a predetermined frequency (for example, 10 [Hz]) is supplied to the induction motor IM, the rotating shaft AX is in a state of no load. It rotates at a predetermined rotation speed (for example, 100 [rpm]). The rotating shaft AX may be directly attached to the rotor of the induction motor IM so as to be coaxial with the rotor.
 変流器10は、誘導電動機IMに供給される駆動電流を検出する。尚、変流器10は、誘導電動機IMに供給される駆動電流の全ての相(三相)を検出してもよく、特定の一相のみを検出しても良い。第1実施形態では、変流器10は、三相のうちの特定の一相のみを検出する。変流器10の検出結果は、演算部30に出力される。 The current transformer 10 detects the drive current supplied to the induction motor IM. The current transformer 10 may detect all phases (three phases) of the drive current supplied to the induction motor IM, or may detect only a specific one phase. In the first embodiment, the current transformer 10 detects only a specific one of the three phases. The detection result of the current transformer 10 is output to the calculation unit 30.
 エンコーダ20は、回転軸AXの回転を検出する。具体的に、エンコーダ20は、回転軸AXの回転量(又は回転位置)を検出し、その検出結果に応じた数のパルスを出力する。このエンコーダ20は、機械式のロータリーエンコーダであっても良く、光学式のロータリーエンコーダであっても良い。エンコーダ20の検出結果は、演算部30に出力される。 The encoder 20 detects the rotation of the rotation axis AX. Specifically, the encoder 20 detects the amount of rotation (or the rotation position) of the rotation axis AX, and outputs a number of pulses according to the detection result. The encoder 20 may be a mechanical rotary encoder or an optical rotary encoder. The detection result of the encoder 20 is output to the calculation unit 30.
 演算部30は、周波数演算部31、回転速度算出部32、すべり率演算部33、実効値演算部34、及びST演算部35(負荷相関値演算部とも称する)を備える。かかる構成の演算部30は、変流器10の検出結果とエンコーダ20の検出結果とを用いて、回転軸AXのすべり率、回転軸AXに作用する負荷抵抗と相関を有する値である負荷相関値ST(すべりトルク係数とも称する)等を求める。 The calculation unit 30 includes a frequency calculation unit 31, a rotation speed calculation unit 32, a slip rate calculation unit 33, an effective value calculation unit 34, and an ST calculation unit 35 (also referred to as a load correlation value calculation unit). The calculation unit 30 having such a configuration uses the detection result of the current transformer 10 and the detection result of the encoder 20 to correlate with the slip coefficient of the rotation axis AX and the load resistance acting on the rotation axis AX. The value ST (also referred to as the slip torque coefficient) and the like are obtained.
 周波数演算部31は、変流器10の検出結果から、誘導電動機IMに供給される駆動電流の周波数ω[rad/s]又は[Hz]を求める。例えば、周波数演算部31は、回転軸AXが予め規定された回転数N(Nは、1以上の整数)だけ回転する度に、誘導電動機IMに供給される駆動電流の周波数ωを求めるようにしても良い。尚、周波数演算部31が誘導電動機IMに供給される駆動電流の周波数ωを求めるタイミングや周期は任意に設定することができる。 The frequency calculation unit 31 obtains the frequency ω [rad / s] or [Hz] of the drive current supplied to the induction motor IM from the detection result of the current transformer 10. For example, the frequency calculation unit 31 obtains the frequency ω of the drive current supplied to the induction motor IM each time the rotation axis AX rotates by a predetermined number of rotations N (N is an integer of 1 or more). You may. The timing and period for obtaining the frequency ω of the drive current supplied to the induction motor IM by the frequency calculation unit 31 can be arbitrarily set.
 回転速度算出部32は、エンコーダ20の検出結果から、回転軸AXの回転速度ω[rad/s]又は[Hz]を求める。例えば、回転速度算出部32は、予め規定された時間(例えば、1[s])が経過する度に、回転軸AXの回転速度ωを求めるようにしても良い。尚、回転速度算出部32が回転軸AXの回転速度ωを求めるタイミングや周期は任意に設定することができる。 The rotation speed calculation unit 32 obtains the rotation speed ω m [rad / s] or [Hz] of the rotation axis AX from the detection result of the encoder 20. For example, the rotation speed calculation unit 32 may obtain the rotation speed ω m of the rotation axis AX every time a predetermined time (for example, 1 [s]) elapses. The timing and period for the rotation speed calculation unit 32 to obtain the rotation speed ω m of the rotation axis AX can be arbitrarily set.
 すべり率演算部33は、変流器10の検出結果とエンコーダ20の検出結果とを用いて、回転軸AXのすべり率を求める。具体的に、すべり率演算部33は、変流器10の検出結果を用いて周波数演算部31で求められた駆動電流の周波数ωと、エンコーダ20の検出結果を用いて回転速度算出部32で求められた回転軸AXの回転速度ωとを用いて回転軸AXのすべり率を求める。より具体的に、すべり率演算部33は、以下の(2)式に示される演算を行って、回転軸AXのすべり率s[%]を求める。 The slip rate calculation unit 33 obtains the slip rate of the rotary shaft AX by using the detection result of the current transformer 10 and the detection result of the encoder 20. Specifically, the slip ratio calculation unit 33 is a rotation speed calculation unit 32 using the frequency ω of the drive current obtained by the frequency calculation unit 31 using the detection result of the current transformer 10 and the detection result of the encoder 20. The slip ratio of the rotation axis AX is obtained by using the obtained rotation speed ω m of the rotation axis AX. More specifically, the slip rate calculation unit 33 performs the calculation shown in the following equation (2) to obtain the slip rate s [%] of the rotation axis AX.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 実効値演算部34は、変流器10の検出結果から、誘導電動機IMに供給される駆動電流の実効値I[A]を求める。例えば、実効値演算部34は、周波数演算部31と同様に、回転軸AXが予め規定された回転数Nだけ回転する度に、駆動電流の実効値Iを求めるようにしても良い。尚、実効値演算部34が駆動電流の実効値Iを求めるタイミングや周期は任意に設定することができる。 The effective value calculation unit 34 obtains the effective value I a [A] of the drive current supplied to the induction motor IM from the detection result of the current transformer 10. For example, the effective value calculating unit 34, similarly to the frequency calculation unit 31, each time the rotation by the rotation speed N of the rotational axis AX is defined in advance, it may be obtained the effective value I a of the driving current. Incidentally, the effective value calculating section 34 timing and period for obtaining the effective value I a of the driving current can be arbitrarily set.
 ST演算部35は、すべり率演算部33の演算結果と実効値演算部34の演算結果とを用いて、負荷相関値STを求める。具体的に、ST演算部35は、周波数演算部31で求められた駆動電流の周波数ω、回転速度算出部32で求められた回転軸AXの回転速度ω、実効値演算部34で求められた駆動電流の実効値I、及びすべり率演算部33で求められた回転軸AXのすべり率sを用い、以下の(3)式に示される演算を行って負荷相関値STを求める。 The ST calculation unit 35 obtains the load correlation value ST by using the calculation result of the slip rate calculation unit 33 and the calculation result of the effective value calculation unit 34. Specifically, the ST calculation unit 35 is obtained by the frequency ω of the drive current obtained by the frequency calculation unit 31, the rotation speed ω m of the rotation axis AX obtained by the rotation speed calculation unit 32, and the effective value calculation unit 34. Using the effective value I a of the drive current and the slip rate s of the rotation axis AX obtained by the slip rate calculation unit 33, the load correlation value ST is obtained by performing the calculation shown in the following equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、静止座標系(αβ座標系)における誘導電動機IMのモデルを、dq座標系に変換した場合を考える。誘導電動機IMの極数をPとする。固定子と回転子との相互インダクタンスをMとする。d軸の電流の最大値をIとする。回転子の直流抵抗値をRとする。誘導電動機IMの定常時における発生トルクτは、以下の(4)式で表される。 Here, consider the case where the model of the induction motor IM in the stationary coordinate system (αβ coordinate system) is converted into the dq coordinate system. Let P be the number of poles of the induction motor IM. Let M be the mutual inductance of the stator and rotor. Let I d be the maximum value of the current on the d-axis. Let R r be the DC resistance value of the rotor. The torque τ e generated in the steady state of the induction motor IM is expressed by the following equation (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、制動係数(=負荷)をRとする。クーロン摩擦をTとする。誘導電動機IMの定常時における発生トルクτは、以下の(5)式で表される。 Further, the braking coefficient (= load) is R m . Let the Coulomb friction be T l . The torque τ e generated in the steady state of the induction motor IM is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記(4)式及び(5)式から以下の(6)式が得られる。 The following equation (6) can be obtained from the above equations (4) and (5).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 いま、固定子と回転子との相互インダクタンスM、回転子の直流抵抗値R、及びクーロン摩擦Tが一定とし、以下の2つの条件を仮定する。
  ・d軸の電流の変化率はほぼ同じで、駆動電流の実効値Iに比例する。
  ・回転軸AXの回転速度ωは大きく変化しない。
 すると、上記(6)式は、以下の(7)式で表される。
Now, assuming that the mutual inductance M between the stator and the rotor, the DC resistance value R r of the rotor, and the Coulomb friction T l are constant, the following two conditions are assumed.
- the rate of change of current in the d-axis is substantially the same, is proportional to the effective value I a of the driving current.
-The rotation speed ω m of the rotation axis AX does not change significantly.
Then, the above equation (6) is represented by the following equation (7).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 上記(7)式から、負荷を示す制動係数Rは、駆動電流の周波数ωを回転軸AXの回転速度ωで除算して得られる値、駆動電流の実効値Iの2乗、及び回転軸AXのすべり率sの積に比例することが分かる。このため、回転軸AXに作用する負荷抵抗と相関を有する値である負荷相関値STを、上記(3)式の通りに表すことができる。 From the above equation (7), the braking coefficient R m indicating the load is a value obtained by dividing the frequency ω of the drive current by the rotation speed ω m of the rotation axis AX, the square of the effective value I a of the drive current, and It can be seen that it is proportional to the product of the slip ratio s of the rotation axis AX. Therefore, the load correlation value ST, which is a value having a correlation with the load resistance acting on the rotation axis AX, can be expressed as in the above equation (3).
 出力部40は、演算部30で求められた各種の値を外部に出力する。出力部40は、少なくとも、ST演算部35で求められた負荷相関値STを外部に出力する。出力部40は、負荷相関値STに加えて、すべり率演算部33で求められた回転軸AXのすべり率sを出力しても良い。出力部40は、負荷相関値ST及び回転軸AXのすべり率sに加えて、周波数演算部31で求められた駆動電流の周波数ωと、回転速度算出部32で求められた回転軸AXの回転速度ωとを出力しても良い。 The output unit 40 outputs various values obtained by the calculation unit 30 to the outside. The output unit 40 outputs at least the load correlation value ST obtained by the ST calculation unit 35 to the outside. In addition to the load correlation value ST, the output unit 40 may output the slip rate s of the rotation axis AX obtained by the slip rate calculation unit 33. In the output unit 40, in addition to the load correlation value ST and the slip ratio s of the rotation axis AX, the frequency ω of the drive current obtained by the frequency calculation unit 31 and the rotation of the rotation axis AX obtained by the rotation speed calculation unit 32. The speed ω m may be output.
 出力部40は、上記の負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωを、データとして出力しても良い。例えば、出力部40は、外部の機器(例えば、データ収集装置)と有線通信又は無線通信を行って上記のデータを外部の機器に出力しても良い。また、出力部40は、装着された外部メモリに上記のデータを書き込むことによって出力しても良い。 The output unit 40 may output the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX as data. For example, the output unit 40 may perform wired communication or wireless communication with an external device (for example, a data collecting device) to output the above data to the external device. Further, the output unit 40 may output by writing the above data to the attached external memory.
 或いは、出力部40は、上記の負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωの値を液晶表示装置等の表示装置に表示することによって出力しても良い。出力部40は、上記の負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωの値を、数値で表示しても良く、経時変化を示すグラフで表示しても良い。出力部40は、表示部であっても良い。 Alternatively, the output unit 40 displays the values of the load correlation value ST, the slip ratio s of the rotating shaft AX, the frequency ω of the drive current, and the rotating speed ω m of the rotating shaft AX on a display device such as a liquid crystal display device. It may be output by. The output unit 40 may display the values of the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX as numerical values, and display the changes over time. It may be displayed in the graph shown. The output unit 40 may be a display unit.
 尚、設備診断装置1の機能(例えば、演算部30及び出力部40の機能)は、例えば、コンピュータが、記録媒体に記録されたプログラムを読み出してインストールすることによりソフトウェア的に実現されても良い。或いは、コンピュータが、不図示のネットワークを介してダウンロードしたプログラムをインストールすることによりソフトウェア的に実現されても良い。或いは、FPGA(Field-Programmable Gate Array)、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)等のハードウェアを用いて実現されてもよい。 The functions of the equipment diagnostic device 1 (for example, the functions of the calculation unit 30 and the output unit 40) may be realized by software, for example, by a computer reading and installing a program recorded on a recording medium. .. Alternatively, the computer may be realized by software by installing a program downloaded via a network (not shown). Alternatively, it may be realized by using hardware such as FPGA (Field-Programmable Gate Array), LSI (Large Scale Integration), and ASIC (Application Specific Integrated Circuit).
 〈設備診断方法〉
 図2は、本発明の第1実施形態による設備診断方法を示すフローチャートである。図2に示すフローチャートは、例えば、予め設定された一定の周期で繰り返し行われる。尚、ここでは、不図示の駆動装置から誘導電動機IMに対して駆動電流が供給されており、誘導電動機IMによって回転軸AXが回転駆動されている状態であるとする。
<Equipment diagnosis method>
FIG. 2 is a flowchart showing an equipment diagnosis method according to the first embodiment of the present invention. The flowchart shown in FIG. 2 is repeated, for example, at a preset constant cycle. Here, it is assumed that a drive current is supplied to the induction motor IM from a drive device (not shown), and the rotary shaft AX is rotationally driven by the induction motor IM.
 図2に示すフローチャートの処理が開始されると、まず、変流器10によって、誘導電動機IMに供給されている駆動電流が検出される(ステップS11:電流検出ステップ)。変流器10によって検出された駆動電流は、演算部30に出力される。すると、変流器10の検出結果から、誘導電動機IMに供給される駆動電流の周波数ωを求める処理が周波数演算部31によって行われる(ステップS12)。また、変流器10の検出結果から、誘導電動機IMに供給される駆動電流の実効値Iを求める処理が実効値演算部34によって行われる(ステップS13)。 When the processing of the flowchart shown in FIG. 2 is started, first, the current transformer 10 detects the drive current supplied to the induction motor IM (step S11: current detection step). The drive current detected by the current transformer 10 is output to the calculation unit 30. Then, the frequency calculation unit 31 performs a process of obtaining the frequency ω of the drive current supplied to the induction motor IM from the detection result of the current transformer 10 (step S12). Further, from the detection result of the current transformer 10, the process for obtaining the effective value I a of the driving current supplied to the induction motor IM is effected by the effective value calculating section 34 (step S13).
 次に、エンコーダ20によって、回転軸AXの回転が検出される(ステップS14:回転検出ステップ)。エンコーダ20の検出結果は、演算部30に出力される。すると、エンコーダ20の検出結果から、回転軸AXの回転速度ωを求める処理が回転速度算出部32によって行われる(ステップS15)。 Next, the encoder 20 detects the rotation of the rotation axis AX (step S14: rotation detection step). The detection result of the encoder 20 is output to the calculation unit 30. Then, the rotation speed calculation unit 32 performs a process of obtaining the rotation speed ω m of the rotation axis AX from the detection result of the encoder 20 (step S15).
 次いで、周波数演算部31で求められた駆動電流の周波数ωと、回転速度算出部32で求められた回転軸AXの回転速度ωとを用いて回転軸AXのすべり率を求める処理が、すべり率演算部33によって行われる(ステップS16)。具体的には、前述した(2)式に示される演算を行って、回転軸AXのすべり率s[%]を求める処理が、すべり率演算部33によって行われる。 Next, the process of obtaining the slip ratio of the rotating shaft AX by using the frequency ω of the drive current obtained by the frequency calculation unit 31 and the rotation speed ω m of the rotating shaft AX obtained by the rotating speed calculation unit 32 is performed. This is performed by the rate calculation unit 33 (step S16). Specifically, the slip rate calculation unit 33 performs a process of obtaining the slip rate s [%] of the rotation axis AX by performing the calculation shown in the above-mentioned equation (2).
 続いて、周波数演算部31で求められた駆動電流の周波数ω、回転速度算出部32で求められた回転軸AXの回転速度ω、実効値演算部34で求められた駆動電流の実効値I、及びすべり率演算部33で求められた回転軸AXのすべり率sを用いて、負荷相関値STを求める処理がST演算部35によって行われる(ステップS17:演算ステップ)。具体的には、前述した(3)式に示される演算を行って負荷相関値STを求める処理がST演算部35によって行われる。 Subsequently, the frequency ω of the drive current obtained by the frequency calculation unit 31, the rotation speed ω m of the rotation axis AX obtained by the rotation speed calculation unit 32, and the effective value I of the drive current obtained by the effective value calculation unit 34. Using a and the slip rate s of the rotation axis AX obtained by the slip rate calculation unit 33, the ST calculation unit 35 performs a process of obtaining the load correlation value ST (step S17: calculation step). Specifically, the ST calculation unit 35 performs a process of obtaining the load correlation value ST by performing the calculation shown in the above-mentioned equation (3).
 以上の処理が終了すると、ST演算部35で得られた負荷相関値ST等を出力する処理が出力部40によって行われる(ステップS18:出力ステップ)。具体的には、ST演算部35で得られた負荷相関値ST、すべり率演算部33で求められた回転軸AXのすべり率s、周波数演算部31で求められた駆動電流の周波数ω、及び回転速度算出部32で求められた回転軸AXの回転速度ωを出力する処理が出力部40によって行われる。 When the above processing is completed, the output unit 40 performs a process of outputting the load correlation value ST or the like obtained by the ST calculation unit 35 (step S18: output step). Specifically, the load correlation value ST obtained by the ST calculation unit 35, the slip ratio s of the rotation axis AX obtained by the slip ratio calculation unit 33, the frequency ω of the drive current obtained by the frequency calculation unit 31, and the frequency ω of the drive current obtained by the frequency calculation unit 31. The output unit 40 performs a process of outputting the rotation speed ω m of the rotation axis AX obtained by the rotation speed calculation unit 32.
 図2に示すフローチャートにおいては、説明の便宜のために、ステップS11~S13の処理が終了した後に、ステップS14,S15の処理が行われる例を図示している。しかしながら、ステップS14,S15の処理は、ステップS11~S13の処理の前に行われても良く、ステップS11~S13の処理と並行して行われても良い。 In the flowchart shown in FIG. 2, for convenience of explanation, an example in which the processes of steps S14 and S15 are performed after the processes of steps S11 to S13 are completed is shown. However, the processes of steps S14 and S15 may be performed before the processes of steps S11 to S13, or may be performed in parallel with the processes of steps S11 to S13.
 図3A~図3Dは、本発明の第1実施形態における負荷相関値等の表示例を示す図である。図3A~図3Dに示す例では、負荷相関値STの経時変化を示すグラフ、回転軸AXのすべり率sの経時変化を示すグラフ、駆動電流の周波数ωの経時変化を示すグラフ、及び回転軸AXの回転速度ωの経時変化を示すグラフの計4種類のグラフが示されている。 3A to 3D are diagrams showing display examples of load correlation values and the like according to the first embodiment of the present invention. In the examples shown in FIGS. 3A to 3D, a graph showing the time-dependent change of the load correlation value ST, a graph showing the time-dependent change of the slip ratio s of the rotation axis AX, a graph showing the time-dependent change of the drive current frequency ω, and the rotation axis. A total of four types of graphs are shown, which show the change over time in the rotation speed ω m of the AX.
 図3Aは、回転軸AXに作用する負荷抵抗がほぼ零である場合のものである。
 図3B~図3Dは、回転軸AXに負荷を与えることによって回転軸AXに負荷抵抗が作用した状態とした場合のものである。具体的に、図3Bは、回転軸AXに工具(例えば、スパナ)を強く押し当てた場合のものである。図3Cは、回転軸AXを手で握りしめた場合のものである。図3Dは、回転軸AXに工具を軽く接触させた場合のものである。
FIG. 3A shows a case where the load resistance acting on the rotating shaft AX is almost zero.
3B to 3D show a state in which a load resistance acts on the rotating shaft AX by applying a load to the rotating shaft AX. Specifically, FIG. 3B shows a case where a tool (for example, a spanner) is strongly pressed against the rotating shaft AX. FIG. 3C shows the case where the rotating shaft AX is grasped by hand. FIG. 3D shows a case where the tool is lightly brought into contact with the rotating shaft AX.
 まず、図3Aを参照すると、ノイズによる変動が多少あるものの、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωは、ほぼ一定であることが分かる。次に、図3Bを参照すると、回転軸AXに工具を強く押し当てた期間T1において、負荷相関値ST、回転軸AXのすべり率s、及び回転軸AXの回転速度ωが大きく変化していることが分かる。 First, referring to FIG. 3A, the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX are almost constant, although there are some fluctuations due to noise. You can see that. Next, referring to FIG. 3B, the load correlation value ST, the slip ratio s of the rotation axis AX, and the rotation speed ω m of the rotation axis AX significantly change during the period T1 in which the tool is strongly pressed against the rotation axis AX. You can see that there is.
 次いで、図3Cを参照すると、回転軸AXを手で握りしめた期間T2の全体に亘って、駆動電流の周波数ωが大きく変化していることが分かる。また、図3Cでは、期間T2の終わりの時点(つまり、回転軸AXから手を離した時点)において、負荷相関値ST、回転軸AXのすべり率s、及び回転軸AXの回転速度ωの変化が現れるのも分かる。続いて、図3Dを参照すると、回転軸AXに工具を軽く接触させた期間T3において、負荷相関値ST、回転軸AXのすべり率s、及び回転軸AXの回転速度ωに変化が現れるのが分かる。 Next, referring to FIG. 3C, it can be seen that the frequency ω of the drive current changes significantly over the entire period T2 in which the rotation axis AX is grasped by hand. Further, in FIG. 3C, at the end of the period T2 (that is, when the hand is released from the rotation axis AX), the load correlation value ST, the slip ratio s of the rotation axis AX, and the rotation speed ω m of the rotation axis AX You can also see the changes appear. Subsequently, referring to FIG. 3D, changes appear in the load correlation value ST, the slip ratio s of the rotation axis AX, and the rotation speed ω m of the rotation axis AX during the period T3 in which the tool is lightly contacted with the rotation axis AX. I understand.
 このように、回転軸AXに与えられる負荷(回転軸AXに作用する負荷抵抗とも称する)の性質によって違いはあるものの、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωは、回転軸AXに与えられる負荷に応じて変化する。
 特に、回転軸AXに工具を軽く接触させた場合であっても、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωは変化する。
As described above, although there are differences depending on the nature of the load applied to the rotating shaft AX (also referred to as the load resistance acting on the rotating shaft AX), the load correlation value ST, the slip ratio s of the rotating shaft AX, the frequency ω of the drive current, And the rotation speed ω m of the rotation axis AX changes according to the load applied to the rotation axis AX.
In particular, even when the tool is lightly brought into contact with the rotary shaft AX, the load correlation value ST, the slip ratio s of the rotary shaft AX, the frequency ω of the drive current, and the rotational speed ω m of the rotary shaft AX change.
 このため、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωを出力(表示)することで、ユーザ(例えば、プラントの管理者)は、回転軸AXが回転駆動される設備の劣化や異常(例えば、軸系のアンバランス、軸のミスアライメント、軸受の劣化等)を診断することが可能である。このように、第1実施形態では、振動センサや温度センサ等の大量のセンサを必要とせず、負荷変動が小さくとも精度良く設備の診断を行うことができる。 Therefore, by outputting (displaying) the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX, the user (for example, the plant manager) can output (display). , Deterioration or abnormality of equipment in which the rotating shaft AX is rotationally driven (for example, shaft system imbalance, shaft misalignment, bearing deterioration, etc.) can be diagnosed. As described above, in the first embodiment, a large amount of sensors such as a vibration sensor and a temperature sensor are not required, and the equipment can be diagnosed with high accuracy even if the load fluctuation is small.
 尚、設備の診断には、上記の負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωを全て考慮する必要は必ずしも無い。上記の負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωのうちの、少なくとも1つ(例えば、負荷相関値STのみ)を考慮して設備の診断を行っても良い。 It is not always necessary to consider all of the above load correlation value ST, the slip ratio s of the rotating shaft AX, the frequency ω of the drive current, and the rotating speed ω m of the rotating shaft AX in the diagnosis of the equipment. Considering at least one of the above load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX (for example, only the load correlation value ST). Equipment may be diagnosed.
 〈変形例〉
 図4は、本発明の第1実施形態による設備診断装置の変形例の要部構成を示すブロック図である。図4に示す通り、本変形例に係る設備診断装置1Aは、図1に示す設備診断装置1のエンコーダ20をタコメータ20A(回転検出部とも称する)に代え、演算部30を演算部30Aに代えた構成である。タコメータ20Aは、回転軸AXの回転速度ω[rad/s]又は[Hz]を検出する。このタコメータ20Aは、機械式のものであっても良く、電気式のものであっても良い。
<Modification example>
FIG. 4 is a block diagram showing a main configuration of a modified example of the equipment diagnostic apparatus according to the first embodiment of the present invention. As shown in FIG. 4, in the equipment diagnosis device 1A according to the modified example, the encoder 20 of the equipment diagnosis device 1 shown in FIG. 1 is replaced with a tachometer 20A (also referred to as a rotation detection unit), and the calculation unit 30 is replaced with a calculation unit 30A. It is a configuration. The tachometer 20A detects the rotation speed ω m [rad / s] or [Hz] of the rotation axis AX. The tachometer 20A may be a mechanical type or an electric type.
 演算部30Aは、図1に示す演算部30の回転速度算出部32を省略した構成であり、タコメータ20Aの検出結果が演算部30Aのすべり率演算部33及び出力部40に直接入力される。つまり、タコメータ20Aは、回転軸AXの回転速度ωを直接検出することができる。そのため、エンコーダ20の検出結果から回転軸AXの回転速度ωを求める回転速度算出部32は省略されている。 The calculation unit 30A has a configuration in which the rotation speed calculation unit 32 of the calculation unit 30 shown in FIG. 1 is omitted, and the detection result of the tachometer 20A is directly input to the slip rate calculation unit 33 and the output unit 40 of the calculation unit 30A. That is, the tachometer 20A can directly detect the rotation speed ω m of the rotation axis AX. Therefore, the rotation speed calculation unit 32 for obtaining the rotation speed ω m of the rotation axis AX from the detection result of the encoder 20 is omitted.
 本変形例に係る設備診断方法を示すフローチャートは、図2に示すフローチャートとほぼ同様である。具体的に、本変形例に係る設備診断方法を示すフローチャートは、図2中のステップS14における「回転軸の回転を検出」を、「回転軸の回転速度を検出」と読み替え、ステップS15を省略したものになる。 The flowchart showing the equipment diagnosis method according to this modification is almost the same as the flowchart shown in FIG. Specifically, in the flowchart showing the equipment diagnosis method according to this modification, "detection of rotation of the rotating shaft" in step S14 in FIG. 2 is read as "detection of rotation speed of the rotating shaft", and step S15 is omitted. It will be the one that was done.
〔第2実施形態〕
 図5は、本発明の第2実施形態による設備診断装置の要部構成を示すブロック図である。図5に示す通り、第2実施形態の設備診断装置2は、図1に示す設備診断装置1に判断部50を追加した構成である。図1に示す設備診断装置1は、ユーザが出力部40の出力(表示)を参照して設備の診断を行うものであった。これに対し、第2実施形態の設備診断装置2は、判断部50が演算部30の出力を参照して、設備が異常であるか否かを判断する。
[Second Embodiment]
FIG. 5 is a block diagram showing a main configuration of the equipment diagnostic apparatus according to the second embodiment of the present invention. As shown in FIG. 5, the equipment diagnosis device 2 of the second embodiment has a configuration in which a determination unit 50 is added to the equipment diagnosis device 1 shown in FIG. In the equipment diagnosis device 1 shown in FIG. 1, the user diagnoses the equipment by referring to the output (display) of the output unit 40. On the other hand, in the equipment diagnosis device 2 of the second embodiment, the determination unit 50 determines whether or not the equipment is abnormal by referring to the output of the calculation unit 30.
 判断部50は、演算部30と出力部40との間に設けられる。判断部50は、演算部30で求められた各種の値を用いて設備が異常であるか否かを判断する。判断部50は、少なくとも、ST演算部35で求められた負荷相関値STと、負荷相関値STに設定された閾値THとの比較を行って、設備が異常であるか否かを判断する。 The determination unit 50 is provided between the calculation unit 30 and the output unit 40. The determination unit 50 determines whether or not the equipment is abnormal by using various values obtained by the calculation unit 30. The determination unit 50 at least compares the load correlation value ST obtained by the ST calculation unit 35 with the threshold value TH set in the load correlation value ST, and determines whether or not the equipment is abnormal.
 判断部50は、負荷相関値STと負荷相関値STに設定された閾値THとの比較に加えて、回転軸AXのすべり率sと回転軸AXのすべり率sに設定された閾値THとの比較を行って、設備が異常であるか否かを判断しても良い。更に、判断部50は、上記の比較に加えて、駆動電流の周波数ωと駆動電流の周波数ωに設定された閾値THとの比較、回転軸AXの回転速度ωと回転軸AXの回転速度ωに設定された閾値THとの比較を行って、設備が異常であるか否かを判断しても良い。 In addition to the comparison between the load correlation value ST and the threshold value TH set in the load correlation value ST, the determination unit 50 sets the slip rate s of the rotation axis AX and the threshold value TH set in the slip rate s of the rotation axis AX. A comparison may be made to determine if the equipment is abnormal. Further, in addition to the above comparison, the determination unit 50 compares the frequency ω of the drive current with the threshold value TH set to the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX and the rotation speed of the rotation axis AX. It may be determined whether or not the equipment is abnormal by comparing with the threshold value TH set to ω m.
 判断部50は、演算部30で求められた負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωを出力部40に出力する。判断部50は、上記の判断結果(設備が異常であるか否かの判断結果)を出力部40に出力する。判断部50は、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、回転軸AXの回転速度ω、出力部40の各々に設定された閾値THを出力部40に出力しても良い。 The determination unit 50 outputs the load correlation value ST obtained by the calculation unit 30, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX to the output unit 40. The determination unit 50 outputs the above determination result (determination result of whether or not the equipment is abnormal) to the output unit 40. The determination unit 50 outputs the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, the rotation speed ω m of the rotation axis AX, and the threshold value TH set for each of the output units 40 to the output unit 40. You may.
 判断部50の機能も、演算部30及び出力部40の機能と同様に、例えば、コンピュータが、記録媒体に記録されたプログラムを読み出してインストールすることによりソフトウェア的に実現されても良い。或いは、コンピュータが、不図示のネットワークを介してダウンロードしたプログラムをインストールすることによりソフトウェア的に実現されても良い。或いは、FPGA、LSI、ASIC等のハードウェアを用いて実現されてもよい。 Similar to the functions of the calculation unit 30 and the output unit 40, the function of the determination unit 50 may be realized by software, for example, by a computer reading and installing a program recorded on a recording medium. Alternatively, the computer may be realized by software by installing a program downloaded via a network (not shown). Alternatively, it may be realized by using hardware such as FPGA, LSI, and ASIC.
 出力部40は、判断部50から出力される上記の判断結果や閾値THを出力しても良い。例えば、出力部40は、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωの経時変化を示すグラフを表示する場合には、閾値THも併せて表示するようにしても良い。このような表示を行うことで、ユーザは、出力部40は、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωが閾値THを超えたか否かを容易に確認することができる。また、ユーザは、判断部50の判断結果の正否を確認することもできる。 The output unit 40 may output the above-mentioned determination result or threshold value TH output from the determination unit 50. For example, when the output unit 40 displays a graph showing the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX over time, the threshold value TH May also be displayed. By performing such a display, the user can see that the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX exceed the threshold value TH. It can be easily confirmed whether or not it is. The user can also confirm whether the determination result of the determination unit 50 is correct or not.
 第2実施形態による設備診断方法を示すフローチャートは、基本的には図2に示すフローチャートとほぼ同様である。具体的に、第2実施形態による設備診断方法を示すフローチャートは、図2中のステップS17とステップS18との間に、判断部50がST演算部35等と閾値THとの比較を行って、設備が異常であるか否かを判断するステップが追加されたものになる。 The flowchart showing the equipment diagnosis method according to the second embodiment is basically the same as the flowchart shown in FIG. Specifically, in the flowchart showing the equipment diagnosis method according to the second embodiment, the determination unit 50 compares the ST calculation unit 35 and the like with the threshold value TH between steps S17 and S18 in FIG. A step has been added to determine if the equipment is abnormal.
 第2実施形態では、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωと、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωに個別に設定された閾値THとの比較をそれぞれ行って設備が異常であるか否かを判断するようにしている。このため、第2実施形態では、回転軸AXが回転駆動される設備が異常であるか否かを自動的に判断することができる。 In the second embodiment, the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX, the load correlation value ST, the slip ratio s of the rotation axis AX, and the drive. The frequency ω of the current and the rotation speed ω m of the rotation axis AX are compared with the threshold values individually set to determine whether or not the equipment is abnormal. Therefore, in the second embodiment, it is possible to automatically determine whether or not the equipment in which the rotary shaft AX is rotationally driven is abnormal.
 また、第2実施形態の設備診断装置2は、第1実施形態の設備診断装置1に判断部50を追加したものであるから、基本構成において第1実施形態の設備診断装置1と同様である。このため、第2実施形態においても、振動センサや温度センサ等の大量のセンサを必要とせず、負荷変動が小さくとも精度良く設備の診断を行うことができる。 Further, the equipment diagnosis device 2 of the second embodiment is the same as the equipment diagnosis device 1 of the first embodiment in the basic configuration because the determination unit 50 is added to the equipment diagnosis device 1 of the first embodiment. .. Therefore, also in the second embodiment, a large amount of sensors such as a vibration sensor and a temperature sensor are not required, and the equipment can be diagnosed with high accuracy even if the load fluctuation is small.
〔第3実施形態〕
 図6は、本発明の第3実施形態による設備診断装置の要部構成を示すブロック図である。図6に示す通り、第3実施形態の設備診断装置3は、図1に示す設備診断装置1に診断部60を追加した構成である。図1に示す設備診断装置1は、ユーザが出力部40の出力(表示)を参照して設備の診断を行うものであった。これに対し、第3実施形態の設備診断装置3は、診断部60が、出力部40から出力される各種データと、過去に出力部40から出力された各種データの学習結果とに基づいて、設備の異常の有無を診断する。尚、出力部40を省略し、演算部30で求められた各種の値を診断部60に出力する構成であっても良い。
[Third Embodiment]
FIG. 6 is a block diagram showing a main configuration of the equipment diagnostic apparatus according to the third embodiment of the present invention. As shown in FIG. 6, the equipment diagnostic apparatus 3 of the third embodiment has a configuration in which a diagnostic unit 60 is added to the equipment diagnostic apparatus 1 shown in FIG. In the equipment diagnosis device 1 shown in FIG. 1, the user diagnoses the equipment by referring to the output (display) of the output unit 40. On the other hand, in the equipment diagnostic apparatus 3 of the third embodiment, the diagnostic unit 60 is based on various data output from the output unit 40 and learning results of various data output from the output unit 40 in the past. Diagnose the presence or absence of equipment abnormalities. The output unit 40 may be omitted, and various values obtained by the calculation unit 30 may be output to the diagnosis unit 60.
 図7は、本発明の第3実施形態における診断部の内部構成を示すブロック図である。図7に示す通り、診断部60は、取得部61、切出部62、特徴抽出部63、モデル処理部64、及び出力部65を備える。この診断部60には、切出制御信号C11と学習制御信号C12とが入力される。切出制御信号C11は、診断部60に入力されたデータの切り出し切出処理を制御する信号である。学習制御信号C12は、診断部60において学習を行うか否かを制御する信号である。切出制御信号C11及び学習制御信号C12のオン又はオフは、例えば、ユーザ又は外部システムによって操作される。 FIG. 7 is a block diagram showing the internal configuration of the diagnostic unit according to the third embodiment of the present invention. As shown in FIG. 7, the diagnosis unit 60 includes an acquisition unit 61, a cutting unit 62, a feature extraction unit 63, a model processing unit 64, and an output unit 65. The cutout control signal C11 and the learning control signal C12 are input to the diagnosis unit 60. The cutout control signal C11 is a signal that controls the cutout cutout process of the data input to the diagnostic unit 60. The learning control signal C12 is a signal that controls whether or not learning is performed in the diagnosis unit 60. The cutting control signal C11 and the learning control signal C12 are turned on or off by, for example, a user or an external system.
 取得部61は、出力部40から出力される各種データを取得する。取得部61は、少なくとも出力部40から出力される負荷相関値STを取得する。取得部61は、負荷相関値STに加えて回転軸AXのすべり率sを取得しても良い。取得部61は、負荷相関値ST及び回転軸AXのすべり率sに加えて、駆動電流の周波数ωと回転軸AXの回転速度ωとを取得しても良い。 The acquisition unit 61 acquires various data output from the output unit 40. The acquisition unit 61 acquires at least the load correlation value ST output from the output unit 40. The acquisition unit 61 may acquire the slip ratio s of the rotation axis AX in addition to the load correlation value ST. The acquisition unit 61 may acquire the frequency ω of the drive current and the rotation speed ω m of the rotation axis AX in addition to the load correlation value ST and the slip ratio s of the rotation axis AX.
 取得部61は、出力部40との間で有線通信又は無線通信を行って各種データを取得しても良い。取得部61は、取得したデータと時刻情報(タイムスタンプとも称する)とを対応づける。取得部61は、時刻情報に対応付けられたデータのファイルを、外部装置から取得してもよい。データのファイルの形式は、例えば、CSV(Comma-Separated Values)形式である。 The acquisition unit 61 may acquire various data by performing wired communication or wireless communication with the output unit 40. The acquisition unit 61 associates the acquired data with time information (also referred to as a time stamp). The acquisition unit 61 may acquire a data file associated with the time information from an external device. The format of the data file is, for example, CSV (Comma-Separated Values) format.
 取得部61が取得したデータX(t)は、以下の(8)式で表される。ここで、tは、離散時間(サンプリング時刻)を表す変数である。dは、取得部61によって取得されたデータの個数である。 The data X (t) acquired by the acquisition unit 61 is represented by the following equation (8). Here, t is a variable representing the discrete time (sampling time). d is the number of data acquired by the acquisition unit 61.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 切出部62は、取得部61が取得したデータ(例えば、時系列で連続するデータ)を、切出制御信号C11に応じて切り出す。具体的に、切出部62は、例えば、切出制御信号C11がオンである期間について、時系列で連続する各データ(セグメントとも称する)を切り出す。例えば、前述した負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωが取得部61で取得された場合には、切出部62は、切出制御信号C11がオンである期間について、これら各データを切り出す。 The cutout unit 62 cuts out the data acquired by the acquisition unit 61 (for example, continuous data in time series) in response to the cutout control signal C11. Specifically, the cutting unit 62 cuts out each continuous data (also referred to as a segment) in time series for a period in which the cutting control signal C11 is on, for example. For example, when the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX are acquired by the acquisition unit 61, the cutting unit 62 Each of these data is cut out for the period during which the cutout control signal C11 is on.
 切出部62によって切り出された各データS(k)は、以下の(9)式で表される。kは、切り出されたデータの通し番号である。nは、k番目の切り出されたデータに含まれるサンプルの個数(以下、「セグメント長」という)である。セグメント長は一定でなくてもよい。 Each data S (k) cut out by the cutout portion 62 is represented by the following equation (9). k is a serial number of the cut out data. nk is the number of samples (hereinafter, referred to as “segment length”) included in the k-th cut-out data. The segment length does not have to be constant.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 切出部62は、パルス信号である切出制御信号C11の始端が検出された時刻から所定時間が経過するまでの時刻について、時系列で連続する各データを切り出してもよい。切出部62は、パルス信号である切出制御信号C11の終端が検出された時刻から所定時間が経過するまでの時刻について、時系列で連続する各データを切り出してもよい。 The cutting unit 62 may cut out each continuous data in chronological order from the time when the start end of the cutting control signal C11, which is a pulse signal, is detected to the time when a predetermined time elapses. The cutting unit 62 may cut out each continuous data in time series with respect to the time from the time when the end of the cutting control signal C11, which is a pulse signal, is detected to the time when a predetermined time elapses.
 切出部62は、パルス信号である切出制御信号C11が検出された時刻から、次の切出制御信号C11が検出される時刻までの期間について、時系列で連続する各データを切り出してもよい。切出部62は、予め定められたデータが閾値以上となった時刻から、そのデータが閾値未満となった時刻までの期間について、時系列で連続する各データを切り出してもよい。また、切出部62は、外部信号によらずに定周期で各データを切り出してもよい。 Even if the cutout unit 62 cuts out each continuous data in chronological order from the time when the cutout control signal C11 which is a pulse signal is detected to the time when the next cutout control signal C11 is detected. Good. The cutting unit 62 may cut out each continuous data in time series for a period from the time when the predetermined data becomes equal to or more than the threshold value to the time when the data becomes less than the threshold value. Further, the cutting unit 62 may cut out each data at a fixed cycle without depending on an external signal.
 特徴抽出部63は、切出部62によって切り出されたデータを分析することによって、切り出されたデータS(k)から特徴ベクトルを抽出する。つまり、特徴抽出部63は、切り出されたデータの特徴ベクトルz(k)を、以下の(10)式のように生成する。 The feature extraction unit 63 extracts a feature vector from the cut out data S (k) by analyzing the data cut out by the cutout unit 62. That is, the feature extraction unit 63 generates the feature vector z (k) of the cut out data as shown in the following equation (10).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、zは、特徴ベクトルであり、m次元の実数値を定義域として持つ縦ベクトルである。特徴抽出部63が特徴ベクトルを抽出する方法は、特定の方法に限定されない。例えば、特徴抽出部63は、通し番号kの切り出された装置データに関して、平均、標準偏差、最小値、最大値等の統計量を算出する。これら4個の統計量を特徴抽出部63が算出する場合、特徴抽出部63は、m(=4×d)次元の特徴ベクトルを生成する。特徴抽出部63は、フーリエ変換によって装置データが分解された周期信号ごとのパワーを、特徴ベクトルとして抽出してもよい。特徴抽出部63は、装置データの順序統計量を特徴ベクトルとして抽出してもよい。 Here, z is a feature vector and is a vertical vector having an m-dimensional real value as a domain. The method by which the feature extraction unit 63 extracts the feature vector is not limited to a specific method. For example, the feature extraction unit 63 calculates statistics such as an average, a standard deviation, a minimum value, and a maximum value with respect to the device data cut out with the serial number k. When the feature extraction unit 63 calculates these four statistics, the feature extraction unit 63 generates an m (= 4 × d) -dimensional feature vector. The feature extraction unit 63 may extract the power of each periodic signal whose device data is decomposed by the Fourier transform as a feature vector. The feature extraction unit 63 may extract the order statistic of the device data as a feature vector.
 モデル処理部64は、特徴抽出部63で抽出された特徴ベクトルを分析する。モデル処理部64は、特徴ベクトルの分析結果に基づいて、特徴ベクトルのモデル(基準パターンモデルとも称する)を生成する。モデル処理部64は、学習部64a、記憶部64b、及び乖離度算出部64cを備える。 The model processing unit 64 analyzes the feature vector extracted by the feature extraction unit 63. The model processing unit 64 generates a model of the feature vector (also referred to as a reference pattern model) based on the analysis result of the feature vector. The model processing unit 64 includes a learning unit 64a, a storage unit 64b, and a deviation degree calculation unit 64c.
 学習部64aは、学習制御信号C12がオンである場合には、抽出された特徴ベクトルを、特徴抽出部63から取得する。学習部64aは、抽出された特徴ベクトル毎に、特徴ベクトルを分析(学習とも称する)する。学習部64aは、特徴ベクトルの分析結果に基づいて、特徴ベクトルのモデルを生成する。このように、学習部64aは、特徴ベクトルのモデルを逐次的に生成する。 When the learning control signal C12 is on, the learning unit 64a acquires the extracted feature vector from the feature extraction unit 63. The learning unit 64a analyzes (also referred to as learning) the feature vector for each extracted feature vector. The learning unit 64a generates a model of the feature vector based on the analysis result of the feature vector. In this way, the learning unit 64a sequentially generates a model of the feature vector.
 特徴ベクトルのモデルは、特定の形態のモデルに限定されないが、例えば、特徴ベクトルzの各要素の間で連続する変数が満たすべき以下の(11)式のような拘束条件(関係性)が与えられた連立方程式で表されるモデルである。学習部64aは、主成分分析を実行することによって、以下の(11)式のような拘束条件を得る。学習部64aは、ニューラルネットワークを用いて拘束条件を得てもよい。 The model of the feature vector is not limited to the model of a specific form, but for example, a constraint condition (relationship) such as the following equation (11) that a continuous variable should satisfy between each element of the feature vector z is given. It is a model represented by the simultaneous equations. The learning unit 64a obtains the constraint condition as shown in the following equation (11) by executing the principal component analysis. The learning unit 64a may obtain a constraint condition by using a neural network.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 特徴ベクトルのモデルは、例えば、特徴ベクトルzの確率密度分布p(z)で表されるモデルでもよい。例えば、学習部64aは、特徴ベクトルzの多変量正規分布で表されるモデルを生成する。特徴ベクトルzの多変量正規分布は、特徴ベクトルzの平均値ベクトルμ∈R及び共分散行列Σ∈Rm×mによって表される。学習部64aは、特徴ベクトルzの多変量正規分布を、以下の(12)式及び(13)式を用いて算出する。 The model of the feature vector may be, for example, a model represented by the probability density distribution p (z) of the feature vector z. For example, the learning unit 64a generates a model represented by a multivariate normal distribution of the feature vector z. The multivariate normal distribution of the feature vector z is represented by the mean vector μ ∈ R m of the feature vector z and the covariance matrix Σ ∈ R m × m. The learning unit 64a calculates the multivariate normal distribution of the feature vector z using the following equations (12) and (13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ここで、zsumは、特徴ベクトルの累積和を表す。Zsumは、特徴ベクトルの行列とその特徴ベクトルが転置されたベクトルとの行列積の累積和を表す。それらの各要素は、多変量正規分布における十分統計量を構成する。つまり、多変量正規分布の平均値ベクトル及び共分散行列は、zsum及びZsumに基づいて算出可能である。 Here, z sum represents the cumulative sum of the feature vectors. Z sum represents the cumulative sum of the matrix product of the matrix of feature vectors and the vector to which the feature vectors are transposed. Each of these elements constitutes a sufficient statistic in a multivariate normal distribution. That is, the mean vector and covariance matrix of the multivariate normal distribution can be calculated based on z sum and Z sum.
 学習部64aは、1番目から(k-1)番目までの切り出されたデータに基づく特徴ベクトルの累積和zsum(k-1)と、k番目の切り出されたデータの特徴ベクトルz(k)とに基づいて、1番目からk番目までの切り出されたデータに基づく特徴ベクトルの累積和zsum(k)を、以下の(14)式を用いて算出する。 In the learning unit 64a, the cumulative sum z sum (k-1) of the feature vectors based on the first to (k-1) th cut out data and the kth feature vector z (k) of the cut out data. Based on the above, the cumulative sum z sum (k) of the feature vectors based on the data cut out from the first to the kth is calculated using the following equation (14).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 学習部64aは、1番目から(k-1)番目までの切り出されたデータに基づく特徴ベクトルとその特徴ベクトルが転置されたベクトルとの行列積の累積和Zsum(k-1)と、k番目の切り出されたデータの特徴ベクトルの行列Z(k)とに基づいて、1番目からk番目までの切り出されたデータに基づく特徴ベクトルとその特徴ベクトルが転置されたベクトルとの行列積の累積和Zsum(k)を、以下の(15)式を用いて算出する。 The learning unit 64a has the cumulative sum Z sum (k-1) of the matrix product of the feature vector based on the extracted data from the first to the (k-1) th and the vector to which the feature vector is transposed, and k. Cumulative matrix product of the feature vector based on the first to kth cut data and the vector to which the feature vector is transposed based on the matrix Z (k) of the feature vector of the third cut data. The sum Z sum (k) is calculated using the following equation (15).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 学習部64aは、取得部61によって取得されたデータを大きな記憶容量のデータベースに蓄積することなく、平均値ベクトルμ(k)と共分散行列Σ(k)と特徴ベクトルの累積和zsum(k)と特徴ベクトルの行列積の累積和Zsum(k)とによって定まる多変量正規分布を、特徴ベクトルzのモデルとして算出する。 The learning unit 64a does not accumulate the data acquired by the acquisition unit 61 in a database having a large storage capacity, and the cumulative sum of the mean value vector μ (k), the covariance matrix Σ (k), and the feature vector z sum (k). ) And the cumulative sum of the matrix products of the feature vectors Z sum (k), the multivariate normal distribution is calculated as a model of the feature vector z.
 学習部64aは、取得されたデータを近似する確率分布であれば、多変量正規分布以外の確率分布を算出してもよい。例えば、多変量正規分布以外の確率分布は、混合多変量正規分布、データの複数のサンプルに基づく経験的な密度関数である。学習部64aは、生成された特徴ベクトルのモデルを記憶部64bに記録する。 The learning unit 64a may calculate a probability distribution other than the multivariate normal distribution as long as it is a probability distribution that approximates the acquired data. For example, a probability distribution other than the multivariate normal distribution is a mixed multivariate normal distribution, an empirical density function based on multiple samples of data. The learning unit 64a records the generated model of the feature vector in the storage unit 64b.
 記憶部64bは、フラッシュメモリ等の不揮発性の記憶装置(非一時的な記録媒体とも称する)である。記憶部64bは、特徴ベクトルのモデルを記憶する。特徴ベクトルのモデルは、例えば数式データで表される。特徴ベクトルのモデルは、学習部64aによって生成された特徴ベクトルのモデルで更新される。記憶部64bは、プログラムを記憶してもよい。記憶部64bは、RAM(Random Access Memory)等の揮発性の記録媒体を更に備えてもよい。 The storage unit 64b is a non-volatile storage device (also referred to as a non-temporary recording medium) such as a flash memory. The storage unit 64b stores a model of the feature vector. The model of the feature vector is represented by, for example, mathematical data. The feature vector model is updated with the feature vector model generated by the learning unit 64a. The storage unit 64b may store the program. The storage unit 64b may further include a volatile recording medium such as a RAM (Random Access Memory).
 乖離度算出部64cは、特徴ベクトルのモデルが生成された後に新たに取得されたデータの特徴ベクトルztestを、特徴抽出部63から取得する。乖離度算出部64cは、特徴ベクトルztestと、記憶部64bに記憶されている特徴ベクトルのモデルとの乖離度(非正常度)を算出する。 The divergence degree calculation unit 64c acquires the feature vector z test of the data newly acquired after the model of the feature vector is generated from the feature extraction unit 63. The deviation degree calculation unit 64c calculates the deviation degree (abnormality) between the feature vector z test and the model of the feature vector stored in the storage unit 64b.
 例えば、乖離度算出部64cは、特徴ベクトルのモデルが特徴ベクトルzの確率分布p(z)で表される場合、ztestの負の対数尤度を、乖離度として算出する。例えば、乖離度算出部64cは、特徴ベクトルのモデルを表す数式のパラメータに所定の演算処理を実行することによって、乖離度を算出してもよい。例えば、特徴ベクトルzの各要素の間に式(4)のような拘束条件に基づくモデルでは、乖離度算出部64cは、拘束条件の不整合度(例えば、f(z)のL2ノルム)を、乖離度として算出してもよい。 For example, the divergence degree calculation unit 64c calculates the negative log-likelihood of z test as the divergence degree when the model of the feature vector is represented by the probability distribution p (z) of the feature vector z. For example, the divergence degree calculation unit 64c may calculate the divergence degree by executing a predetermined arithmetic process on the parameters of the mathematical formula representing the model of the feature vector. For example, in a model based on a constraint condition as in Eq. (4) between each element of the feature vector z, the deviation degree calculation unit 64c determines the degree of inconsistency of the constraint condition (for example, the L2 norm of f (z)). , May be calculated as the degree of divergence.
 出力部65は、算出された乖離度を出力する。出力部65は、算出された乖離度をデータとして出力しても良い。例えば、出力部65は、外部の機器(例えば、データ収集装置)と有線通信又は無線通信を行って上記のデータを外部の機器に出力しても良い。出力部65は、装着された外部メモリに上記のデータを書き込むことによって出力しても良い。或いは、出力部65は、算出された乖離度を液晶表示装置等の表示装置に表示することによって出力しても良い。出力部65は、算出された乖離度を、数値で表示しても良く、経時変化を示すグラフで表示しても良い。 The output unit 65 outputs the calculated degree of deviation. The output unit 65 may output the calculated degree of deviation as data. For example, the output unit 65 may perform wired communication or wireless communication with an external device (for example, a data collecting device) to output the above data to the external device. The output unit 65 may output by writing the above data to the attached external memory. Alternatively, the output unit 65 may output by displaying the calculated degree of deviation on a display device such as a liquid crystal display device. The output unit 65 may display the calculated degree of deviation as a numerical value or may display it as a graph showing a change with time.
 診断部60の機能は、演算部30及び出力部40の機能と同様に、例えば、コンピュータが、記録媒体に記録されたプログラムを読み出してインストールすることによりソフトウェア的に実現されても良い。或いは、コンピュータが、不図示のネットワークを介してダウンロードしたプログラムをインストールすることによりソフトウェア的に実現されても良い。或いは、FPGA、LSI、ASIC等のハードウェアを用いて実現されてもよい。 Similar to the functions of the calculation unit 30 and the output unit 40, the function of the diagnosis unit 60 may be realized by software, for example, by a computer reading and installing a program recorded on a recording medium. Alternatively, the computer may be realized by software by installing a program downloaded via a network (not shown). Alternatively, it may be realized by using hardware such as FPGA, LSI, and ASIC.
 図8は、本発明の第3実施形態における診断部の動作例を示すフローチャートである。
 図8に示すフローチャートの処理は、例えば、予め設定された一定の周期で繰り返し行われる。図8に示すフローチャートの処理が開始されると、データを取得する処理が取得部61によって行われる(ステップS21)。例えば、図6に示す出力部40から出力される負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωの各データを取得する処理が行われる。
FIG. 8 is a flowchart showing an operation example of the diagnostic unit according to the third embodiment of the present invention.
The processing of the flowchart shown in FIG. 8 is repeated, for example, at a preset constant cycle. When the process of the flowchart shown in FIG. 8 is started, the process of acquiring data is performed by the acquisition unit 61 (step S21). For example, a process of acquiring each data of the load correlation value ST output from the output unit 40 shown in FIG. 6, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX is performed. Will be.
 次に、切出処理を実行する条件が成立しているか否かが、切出部62によって判断される(ステップS22)。例えば、切出制御信号C11がオンである場合には、切出部62は、切出処理を実行する条件が成立していると判断する。切出処理を実行する条件が成立していないと判断した場合(ステップS22の判断結果が「NO」の場合)には、ステップS22の処理が切出部62によって再度行われる。 Next, whether or not the condition for executing the cutting process is satisfied is determined by the cutting section 62 (step S22). For example, when the cutout control signal C11 is on, the cutout unit 62 determines that the condition for executing the cutout process is satisfied. When it is determined that the condition for executing the cutting process is not satisfied (when the determination result in step S22 is "NO"), the processing in step S22 is performed again by the cutting section 62.
 これに対し、切出処理を実行する条件が成立していると判断した場合(ステップS22の判断結果が「YES」の場合)には、ステップS21で取得されたデータから、予め定められた条件に基づいてデータを切り出す処理が切出部62によって行われる(ステップS23)。例えば、切出制御信号C11がオンである期間について、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωの時系列で連続する各データを切り出す処理が切出部62によって行われる。続いて、切り出された各データから特徴ベクトルzを抽出する処理が特徴抽出部63によって行われる(ステップS24)。 On the other hand, when it is determined that the condition for executing the cutting process is satisfied (when the determination result in step S22 is "YES"), a predetermined condition is determined from the data acquired in step S21. The process of cutting out data based on the above is performed by the cutout unit 62 (step S23). For example, for the period during which the cutout control signal C11 is on, each data continuous in time series of the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX. Is cut out by the cutting unit 62. Subsequently, the feature extraction unit 63 performs a process of extracting the feature vector z from each of the cut out data (step S24).
 続いて、学習処理を実行する条件が成立しているか否かが、学習部64aによって判断される(ステップS25)。例えば、学習制御信号C12がオンである場合に、学習部64aは、学習処理を実行する条件が成立していると判断する。学習処理を実行する条件が成立していないと判断した場合(ステップS25の判断結果が「NO」の場合)には、ステップS28の処理が乖離度算出部64cによって行われる。 Subsequently, the learning unit 64a determines whether or not the condition for executing the learning process is satisfied (step S25). For example, when the learning control signal C12 is on, the learning unit 64a determines that the condition for executing the learning process is satisfied. When it is determined that the condition for executing the learning process is not satisfied (when the determination result in step S25 is "NO"), the process in step S28 is performed by the deviation degree calculation unit 64c.
 これに対し、学習処理を実行する条件が成立していると判断した場合(ステップS25の判断結果が「YES」の場合)には、抽出された特徴ベクトルzを分析し、分析結果に基づいて特徴ベクトルのモデルを生成する処理が学習部64aによって行われる(ステップS26)。そして、記憶部64bに記憶されている特徴ベクトルのモデルを、新たに生成した特徴ベクトルのモデルに更新する処理が、学習部64aによって行われる(ステップS27)。 On the other hand, when it is determined that the condition for executing the learning process is satisfied (when the determination result in step S25 is "YES"), the extracted feature vector z is analyzed and based on the analysis result. The learning unit 64a performs a process of generating a model of the feature vector (step S26). Then, the learning unit 64a performs a process of updating the model of the feature vector stored in the storage unit 64b to the newly generated model of the feature vector (step S27).
 続いて、新たに取得されたデータの特徴ベクトルを、特徴抽出部63から取得する処理が乖離度算出部64cによって行われる。そして、新たに取得されたデータの特徴ベクトルと、記憶部64bに記憶されている特徴ベクトルのモデルとの乖離度を算出する処理が乖離度算出部64cによって行われる(ステップS28)。最後に、乖離度算出部64cによって算出された乖離度を出力する処理が出力部65によって行われる(ステップS29)。この乖離度を参照することで、設備の異常の有無を診断することができる。以上にて、図8に示す一連の処理が終了する。ステップS25からステップS27までの処理と、ステップS28の処理とは、実行順を交換することが可能である。 Subsequently, the process of acquiring the feature vector of the newly acquired data from the feature extraction unit 63 is performed by the deviation degree calculation unit 64c. Then, the process of calculating the degree of divergence between the feature vector of the newly acquired data and the model of the feature vector stored in the storage unit 64b is performed by the divergence degree calculation unit 64c (step S28). Finally, the output unit 65 performs a process of outputting the deviation degree calculated by the deviation degree calculation unit 64c (step S29). By referring to this degree of deviation, it is possible to diagnose the presence or absence of an abnormality in the equipment. This completes the series of processes shown in FIG. The execution order can be exchanged between the processes from step S25 to step S27 and the processes in step S28.
 以上の通り、第3実施形態では、診断部60を設け、出力部40から出力される各種データと、過去に出力部40から出力された各種データの学習結果とに基づいて、設備の異常の有無を診断している。具体的には、出力部40から出力された各種データを切出制御信号C11に基づいて切り出し、切り出されたデータから特徴ベクトルを抽出し、特徴ベクトルを分析して特徴ベクトルのモデルを作成している。そして、新たに取得されたデータの特徴ベクトルと、特徴ベクトルのモデルとの乖離度を算出している。この乖離度を参照することで、設備の異常の有無を診断することができる。 As described above, in the third embodiment, the diagnostic unit 60 is provided, and based on the learning results of various data output from the output unit 40 and various data output from the output unit 40 in the past, the abnormality of the equipment is abnormal. Diagnosing the presence or absence. Specifically, various data output from the output unit 40 are cut out based on the cutout control signal C11, a feature vector is extracted from the cutout data, the feature vector is analyzed, and a model of the feature vector is created. There is. Then, the degree of deviation between the feature vector of the newly acquired data and the model of the feature vector is calculated. By referring to this degree of deviation, it is possible to diagnose the presence or absence of an abnormality in the equipment.
 以上、本発明の第1~第3実施形態による設備診断装置及び設備診断方法について説明したが、本発明は上記第1~第3実施形態に制限される訳ではなく、本発明の範囲内で自由に変更が可能である。例えば、上述した第2,第3実施形態を、上述した第1実施形態の変形例に適用しても良い。 Although the equipment diagnostic apparatus and the equipment diagnosis method according to the first to third embodiments of the present invention have been described above, the present invention is not limited to the first to third embodiments, and is within the scope of the present invention. It can be changed freely. For example, the above-mentioned second and third embodiments may be applied to the above-mentioned modifications of the first embodiment.
 また、上述した第1~第3実施形態では、出力部40が、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωを出力する例について説明した。出力部40は、これらに加えて、実効値演算部34で求められた駆動電流の実効値Iを出力するようにしても良い。第3実施形態の設備診断装置3において、出力部40が駆動電流の実効値Iを出力する場合には、診断部60は、駆動電流の実効値Iも用いて設備の異常の有無を診断しても良い。 Further, in the first to third embodiments described above, the output unit 40 outputs the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX. Was explained. The output unit 40 includes, in addition to these, may be output the effective value I a of the driving current determined by the effective value calculating unit 34. In the equipment diagnostic apparatus 3 of the third embodiment, when the output unit 40 outputs the effective value I a of the drive current, the diagnostic unit 60 also uses the effective value I a of the drive current to determine the presence or absence of an abnormality in the equipment. You may diagnose.
 第2実施形態の設備診断装置2において、判断部50は、負荷相関値ST、回転軸AXのすべり率s、駆動電流の周波数ω、及び回転軸AXの回転速度ωと、これらに設定された閾値THとの比較を行っていた。判断部50は、駆動電流の実効値Iも用いて設備が異常であるか否かを判断しても良い。具体的には、駆動電流の実効値Iと、駆動電流の実効値Iに設定された閾値THとの比較も行って、設備が異常であるか否かを判断しても良い。 In the equipment diagnostic apparatus 2 of the second embodiment, the determination unit 50 is set to the load correlation value ST, the slip ratio s of the rotation axis AX, the frequency ω of the drive current, and the rotation speed ω m of the rotation axis AX. The comparison with the threshold value TH was performed. Determining section 50, the effective value I a of the driving current may also be determined whether the equipment is abnormal using. Specifically, the effective value I a of the drive current, also performed compared with a threshold value TH which is set to the effective value I a of the driving current, it may be determined whether the equipment is abnormal.
 また、上述した第1~第3実施形態において、ST演算部35で求められた負荷相関値STを用いて負荷値を算出するようにしても良い。具体的には、D=A・ST+Bなる演算を行って、負荷相関値STを負荷値Dに変換しても良い。ここで、上記式中の変数Aは、負荷相関値STのスケーリング(拡大縮小率)を規定するものである。上記式中の変数Bは、負荷相関値STのオフセットを規定するものである。このような変換を行うことで、例えば、回転軸AXが攪拌器の回転軸である場合に、攪拌器で撹拌されている物質の負荷を求めることができる。求められた負荷値Dに対し、例えば一次遅れフィルタ(ローパスフィルタ)等のフィルタを用いてスムージング処理を行ってもよい。 Further, in the first to third embodiments described above, the load value may be calculated using the load correlation value ST obtained by the ST calculation unit 35. Specifically, the load correlation value ST may be converted to the load value D by performing the calculation D = A · ST + B. Here, the variable A in the above equation defines the scaling (enlargement / reduction ratio) of the load correlation value ST. The variable B in the above equation defines the offset of the load correlation value ST. By performing such conversion, for example, when the rotating shaft AX is the rotating shaft of the stirrer, the load of the substance being agitated by the stirrer can be obtained. The obtained load value D may be smoothed by using a filter such as a first-order lag filter (low-pass filter).
 1,1A    設備診断装置
 2       設備診断装置
 3       設備診断装置
 10      変流器
 20      エンコーダ
 20A     タコメータ
 30,30A  演算部
 31      周波数演算部
 33      すべり率演算部
 34      実効値演算部
 35      ST演算部
 40      出力部
 50      判断部
 60      診断部
 61      取得部
 62      切出部
 63      特徴抽出部
 64a     学習部
 64c     乖離度算出部
 AX      回転軸
 IM      誘導電動機
 TH      閾値
1,1A Equipment diagnostic equipment 2 Equipment diagnostic equipment 3 Equipment diagnostic equipment 10 Current transformer 20 Encoder 20A Tachometer 30, 30A Calculation unit 31 Frequency calculation unit 33 Slip rate calculation unit 34 Effective value calculation unit 35 ST calculation unit 40 Output unit 50 Judgment Part 60 Diagnosis part 61 Acquisition part 62 Cutting part 63 Feature extraction part 64a Learning part 64c Deviation degree calculation part AX Rotation axis IM Induction motor TH threshold

Claims (20)

  1.  設備が有する回転軸を回転駆動する誘導電動機に供給される駆動電流を検出する電流検出部と、
     前記回転軸の回転を検出する回転検出部と、
     前記電流検出部の検出結果と前記回転検出部の検出結果とを用いて、前記回転軸に作用する負荷抵抗と相関を有する値である負荷相関値を求める演算部と、
     前記負荷相関値を出力する出力部と、
     を備える設備診断装置。
    A current detector that detects the drive current supplied to the induction motor that rotationally drives the rotating shaft of the equipment,
    A rotation detection unit that detects the rotation of the rotation shaft,
    Using the detection result of the current detection unit and the detection result of the rotation detection unit, a calculation unit for obtaining a load correlation value which is a value having a correlation with the load resistance acting on the rotation axis, and a calculation unit.
    An output unit that outputs the load correlation value and
    Equipment diagnostic device equipped with.
  2.  前記演算部は、前記電流検出部の検出結果と前記回転検出部の検出結果とを用いて、前記回転軸のすべり率を求めるすべり率演算部と、
     前記電流検出部の検出結果から前記駆動電流の実効値を求める実効値演算部と、
     前記すべり率演算部の演算結果と前記実効値演算部の演算結果とを用いて前記負荷相関値を求める負荷相関値演算部と、
     を備える請求項1記載の設備診断装置。
    The calculation unit uses the detection result of the current detection unit and the detection result of the rotation detection unit to obtain a slip ratio calculation unit for calculating the slip ratio of the rotation shaft.
    An effective value calculation unit that obtains the effective value of the drive current from the detection result of the current detection unit, and
    A load correlation value calculation unit for obtaining the load correlation value using the calculation result of the slip rate calculation unit and the calculation result of the effective value calculation unit, and a load correlation value calculation unit.
    The equipment diagnostic apparatus according to claim 1.
  3.  前記出力部は、前記負荷相関値に加えて前記回転軸のすべり率を出力する、請求項2記載の設備診断装置。 The equipment diagnostic device according to claim 2, wherein the output unit outputs the slip ratio of the rotating shaft in addition to the load correlation value.
  4.  前記演算部は、前記電流検出部の検出結果から前記駆動電流の周波数を求める周波数演算部を備えており、
     前記出力部は、前記負荷相関値及び前記回転軸のすべり率に加えて、前記駆動電流の周波数と、前記回転検出部の検出結果から得られる前記回転軸の回転速度とを出力する、
     請求項3記載の設備診断装置。
    The calculation unit includes a frequency calculation unit that obtains the frequency of the drive current from the detection result of the current detection unit.
    The output unit outputs the frequency of the drive current and the rotation speed of the rotation shaft obtained from the detection result of the rotation detection unit, in addition to the load correlation value and the slip ratio of the rotation shaft.
    The equipment diagnostic apparatus according to claim 3.
  5.  前記負荷相関値をSTとし、前記駆動電流の周波数をω[rad/s]又は[Hz]、前記回転軸の回転速度をω[rad/s]又は[Hz]、前記駆動電流の実効値をI、前記回転軸のすべり率をs[%]とすると、前記負荷相関値演算部は、以下の(1)式で示される演算を行って前記負荷相関値STを求める、請求項4記載の設備診断装置。
    Figure JPOXMLDOC01-appb-M000001
    The load correlation value is ST, the frequency of the drive current is ω [rad / s] or [Hz], the rotation speed of the rotation axis is ω m [rad / s] or [Hz], and the effective value of the drive current. Is I a , and the slip rate of the rotation axis is s [%], the load correlation value calculation unit obtains the load correlation value ST by performing the calculation represented by the following equation (1). The equipment diagnostic device described.
    Figure JPOXMLDOC01-appb-M000001
  6.  少なくとも、前記出力部から出力される前記負荷相関値と、前記負荷相関値に設定された閾値との比較を行って、前記設備が異常であるか否かを判断する判断部を備える、請求項1から請求項5の何れか一項に記載の設備診断装置。 The claim includes at least a determination unit that compares the load correlation value output from the output unit with the threshold value set in the load correlation value to determine whether or not the equipment is abnormal. The equipment diagnostic apparatus according to any one of claims 1 to 5.
  7.  少なくとも、前記出力部から出力される前記負荷相関値と、過去に前記出力部から出力された前記負荷相関値の学習結果とに基づいて、前記設備の異常の有無を診断する診断部を備える請求項1から請求項5の何れか一項に記載の設備診断装置。 A claim including at least a diagnostic unit that diagnoses the presence or absence of an abnormality in the equipment based on the load correlation value output from the output unit and the learning result of the load correlation value output from the output unit in the past. The equipment diagnostic apparatus according to any one of items 1 to 5.
  8.  前記診断部は、前記出力部から出力される前記負荷相関値のデータを取得する取得部と、
     前記取得部で取得されたデータから、予め定められた条件に基づいてデータを切り出す切出部と、
     前記切出部で切り出されたデータから特徴ベクトルを抽出する特徴抽出部と、
     前記特徴抽出部で抽出された前記特徴ベクトルを分析し、分析結果に基づいて前記特徴ベクトルのモデルを生成する学習部と、
     前記取得部で新たに取得されたデータの前記特徴ベクトルと前記モデルとの乖離度を算出する乖離度算出部と、
     を備える請求項7記載の設備診断装置。
    The diagnostic unit includes an acquisition unit that acquires data of the load correlation value output from the output unit, and an acquisition unit.
    A cutout part that cuts out data from the data acquired by the acquisition part based on predetermined conditions, and a cutout part.
    A feature extraction unit that extracts a feature vector from the data cut out by the cutout unit, and a feature extraction unit.
    A learning unit that analyzes the feature vector extracted by the feature extraction unit and generates a model of the feature vector based on the analysis result.
    A deviation degree calculation unit that calculates the deviation degree between the feature vector and the model of the data newly acquired by the acquisition unit, and
    7. The equipment diagnostic apparatus according to claim 7.
  9.  前記回転検出部は、エンコーダを備える
     請求項1から請求項8の何れか一項に記載の設備診断装置。
    The equipment diagnostic device according to any one of claims 1 to 8, wherein the rotation detection unit includes an encoder.
  10.  前記回転検出部は、タコメータを備える
     請求項1から請求項8の何れか一項に記載の設備診断装置。
    The equipment diagnostic device according to any one of claims 1 to 8, wherein the rotation detection unit includes a tachometer.
  11.  前記周波数演算部は、前記回転軸が予め規定された回転数だけ回転する度に、前記周波数を求める
     請求項4に記載の設備診断装置。
    The equipment diagnostic device according to claim 4, wherein the frequency calculation unit obtains the frequency each time the rotation axis rotates by a predetermined number of rotations.
  12.  前記回転検出部の検出結果から、前記回転軸の前記回転速度を求める回転速度算出部を更に備える
     請求項4に記載の設備診断装置。
    The equipment diagnostic apparatus according to claim 4, further comprising a rotation speed calculation unit for obtaining the rotation speed of the rotation shaft from the detection result of the rotation detection unit.
  13.  前記回転速度算出部は、予め規定された時間が経過する度に、前記回転速度を求める
     請求項12に記載の設備診断装置。
    The equipment diagnostic device according to claim 12, wherein the rotation speed calculation unit obtains the rotation speed each time a predetermined time elapses.
  14.  前記出力部は、前記負荷相関値、前記すべり率、前記周波数及び前記回転速度を、数値で表示する
     請求項4に記載の設備診断装置。
    The equipment diagnostic device according to claim 4, wherein the output unit numerically displays the load correlation value, the slip rate, the frequency, and the rotation speed.
  15.  前記出力部は、前記負荷相関値、前記すべり率、前記周波数及び前記回転速度を、経時変化を示すグラフで表示する
     請求項4に記載の設備診断装置。
    The equipment diagnostic apparatus according to claim 4, wherein the output unit displays the load correlation value, the slip rate, the frequency, and the rotation speed in a graph showing changes over time.
  16.  前記出力部から出力される前記負荷相関値と、前記負荷相関値に設定された閾値との比較と、
     前記すべり率演算部が求めた前記すべり率と、前記すべり率に設定された閾値との比較を行って、
     前記設備が異常であるか否かを判断する判断部を備える、請求項2に記載の設備診断装置。
    Comparison of the load correlation value output from the output unit and the threshold value set in the load correlation value,
    The slip rate obtained by the slip rate calculation unit is compared with the threshold value set for the slip rate.
    The equipment diagnostic apparatus according to claim 2, further comprising a determination unit for determining whether or not the equipment is abnormal.
  17.  前記出力部は、前記負荷相関値の経時変化をグラフで表示するとともに、前記閾値を表示する請求項6に記載の設備診断装置。 The equipment diagnostic device according to claim 6, wherein the output unit displays the change over time of the load correlation value in a graph and displays the threshold value.
  18.  前記切出部は、パルス信号である切出制御信号の始端が検出された時刻から所定時間が経過するまでの時刻について、時系列で連続する各データを切り出す
     請求項9に記載の設備診断装置。
    The equipment diagnostic apparatus according to claim 9, wherein the cutting unit cuts out continuous data in time series from the time when the start end of the cutting control signal, which is a pulse signal, is detected to the time when a predetermined time elapses. ..
  19.  設備が有する回転軸を回転駆動する誘導電動機に供給される駆動電流を検出する電流検出ステップと、
     前記回転軸の回転を検出する回転検出ステップと、
     前記電流検出ステップの検出結果と前記回転検出ステップの検出結果とを用いて、前記回転軸に作用する負荷抵抗と相関を有する値である負荷相関値を求める演算ステップと、
     前記負荷相関値を出力する出力ステップと、
     を有する設備診断方法。
    A current detection step that detects the drive current supplied to the induction motor that rotationally drives the rotating shaft of the equipment,
    A rotation detection step for detecting the rotation of the rotation axis and
    Using the detection result of the current detection step and the detection result of the rotation detection step, a calculation step for obtaining a load correlation value which is a value having a correlation with the load resistance acting on the rotation axis, and a calculation step.
    An output step that outputs the load correlation value and
    Equipment diagnostic method with.
  20.  コンピュータを、
     設備が有する回転軸を回転駆動する誘導電動機に供給される駆動電流を検出する電流検出部の検出結果と、回転軸の回転を検出する回転検出部の検出結果とを用いて、前記回転軸に作用する負荷抵抗と相関を有する値である負荷相関値を求める演算手段と、
     前記負荷相関値を出力する出力手段と、
     して機能させる設備診断プログラム。
    Computer,
    Using the detection result of the current detection unit that detects the drive current supplied to the induction motor that rotationally drives the rotation shaft of the equipment and the detection result of the rotation detection unit that detects the rotation of the rotation shaft, the rotation shaft An arithmetic means for obtaining a load correlation value, which is a value having a correlation with the acting load resistance,
    An output means for outputting the load correlation value and
    Equipment diagnostic program to function.
PCT/JP2020/033736 2019-09-20 2020-09-07 Facility diagnostic device, facility diagnostic method, and facility diagnostic program WO2021054165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019172007A JP7097338B2 (en) 2019-09-20 2019-09-20 Equipment diagnostic equipment, equipment diagnostic methods, and equipment diagnostic programs
JP2019-172007 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054165A1 true WO2021054165A1 (en) 2021-03-25

Family

ID=74883823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033736 WO2021054165A1 (en) 2019-09-20 2020-09-07 Facility diagnostic device, facility diagnostic method, and facility diagnostic program

Country Status (2)

Country Link
JP (1) JP7097338B2 (en)
WO (1) WO2021054165A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230136160A (en) * 2021-06-25 2023-09-26 가부시키가이샤 히다치 산키시스템 Deterioration diagnosis device and deterioration diagnosis method, and electric motor control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220089A (en) * 1983-05-26 1984-12-11 Akira Yamamura Control system of induction motor
JPS63274389A (en) * 1987-05-02 1988-11-11 Toyota Autom Loom Works Ltd Speed controller for induction motor
WO2012165011A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Load characteristic estimation device of drive machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220089A (en) * 1983-05-26 1984-12-11 Akira Yamamura Control system of induction motor
JPS63274389A (en) * 1987-05-02 1988-11-11 Toyota Autom Loom Works Ltd Speed controller for induction motor
WO2012165011A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Load characteristic estimation device of drive machine

Also Published As

Publication number Publication date
JP2021052441A (en) 2021-04-01
JP7097338B2 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
US6774601B2 (en) System and method for predicting mechanical failures in machinery driven by an induction motor
CA2875071C (en) Method and system for testing operational integrity of a drilling rig
Matić et al. Support vector machine classifier for diagnosis in electrical machines: Application to broken bar
US20150233792A1 (en) Methods and Apparatuses for Defect Diagnosis in a Mechanical System
US11099101B2 (en) Method for estimating bearing fault severity for induction motors
US7289919B2 (en) Cyclic time averaging for machine monitoring
US10310016B2 (en) Method for the diagnostics of electromechanical system based on impedance analysis
JP7146683B2 (en) Rolling Bearing Abnormality Diagnosis Method, Abnormality Diagnosis Device, Abnormality Diagnosis Program
EP2761315B1 (en) A method of determining stationary signals for the diagnostics of an electromechanical system
JP6511573B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
JP6507297B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
WO2021054165A1 (en) Facility diagnostic device, facility diagnostic method, and facility diagnostic program
CN115136487A (en) Diagnostic device for motor
Ferreira et al. An application of machine learning approach to fault detection of a synchronous machine
CN111855195A (en) Abnormality detection method for gearbox and information processing apparatus
EP4235197A1 (en) Method and system for diagnosing a machine
US20240133954A1 (en) System and Method for Eccentricity Severity Estimation of Induction Machines using a Sparsity-Driven Regression Model
JP7000374B2 (en) Viscosity estimation device and viscosity estimation method
WO2022029873A1 (en) Synchronizer, synchronization method and program therefor
WO2024075345A1 (en) System and method for eccentricity severity estimation of induction machines using a sparsity-driven regression model
JP2021050921A (en) Rotary machine abnormality sign diagnosis system and rotary machine abnormality sign diagnosis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866288

Country of ref document: EP

Kind code of ref document: A1