JP2020037763A - Production method of polyamide fiber - Google Patents

Production method of polyamide fiber Download PDF

Info

Publication number
JP2020037763A
JP2020037763A JP2019200710A JP2019200710A JP2020037763A JP 2020037763 A JP2020037763 A JP 2020037763A JP 2019200710 A JP2019200710 A JP 2019200710A JP 2019200710 A JP2019200710 A JP 2019200710A JP 2020037763 A JP2020037763 A JP 2020037763A
Authority
JP
Japan
Prior art keywords
fiber
polyamide
component
water
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019200710A
Other languages
Japanese (ja)
Other versions
JP6793238B2 (en
Inventor
中塚 均
Hitoshi Nakatsuka
均 中塚
慎也 河角
Shinya Kawasumi
慎也 河角
貴志 池田
Takashi Ikeda
貴志 池田
大介 大賀
Daisuke Oga
大介 大賀
村手 靖典
Yasunori Murate
靖典 村手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JP2020037763A publication Critical patent/JP2020037763A/en
Application granted granted Critical
Publication of JP6793238B2 publication Critical patent/JP6793238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41BSHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
    • A41B17/00Selection of special materials for underwear
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • D06M11/05Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/36Matrix structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/24Polymers or copolymers of alkenylalcohols or esters thereof; Polymers or copolymers of alkenylethers, acetals or ketones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides

Abstract

To provide a method of producing polyamide fibers capable of obtaining a fiber structure that has superior hygroscopicity, reversibly expands and contracts by moisture absorbing and discharging, and is excellent in comfort.SOLUTION: Disclosed is a method of producing polyamide fibers having a degree of orientation of 0.7 or larger and 0.85 or smaller, the method including at least a step of preparing composite fibers composed of water-soluble thermoplastic polyvinyl alcohol polymers or readily alkali weight-reducing polymers, whch are soluble components, and polyamide, the composite fibers having a fiber cross-section coated 50% or more by the soluble components, and a step of dissolving and removing the soluble components.SELECTED DRAWING: None

Description

本発明は、例えば、スポーツ用途やインナー用途に使用される衣類を構成するポリアミド繊維の製造方法に関する。   The present invention relates to, for example, a method for producing polyamide fibers constituting clothing used for sports or inner use.

従来、合成繊維、例えば、ポリエステル繊維やナイロン−6、ナイロン−6,6などのポリアミド繊維は、優れた物理的特性および化学的特性を有しているため、衣料用途のみならず、広く産業用途にも使用されており、工業的に貴重な価値を有している。   Conventionally, synthetic fibers such as polyester fibers and polyamide fibers such as nylon-6 and nylon-6,6 have excellent physical and chemical properties, and thus are widely used not only for clothing but also for industrial applications. It has valuable industrial value.

しかし、これら合成繊維は、吸湿性および吸水性が低いため、肌着、中衣、シーツ、タオルなどの吸湿性、吸水性が要求される衣類への適用は限定されているのが実情である。そこで、例えば、ポリエステル繊維について、最大の欠陥とも言える吸湿性・吸水性を改善する方法が提案されている。   However, since these synthetic fibers have low hygroscopicity and water absorbency, their application to clothing that requires hygroscopicity and water absorbency, such as underwear, inner garments, sheets, and towels, is limited. Therefore, for example, a method has been proposed for improving the hygroscopicity and water absorbency, which can be said to be the greatest defects, for polyester fibers.

より具体的には、ポリエステル繊維を親水性の後加工剤で後処理する方法や、ポリエステル繊維表面または繊維内部を多孔質化して、吸湿性・吸水性を付与する方法などが提案されている。しかし、これらの手法では、吸湿性・吸水性の改善が不十分であり、かつ洗濯により付与された性能が低下するという問題があった。   More specifically, a method of post-treating a polyester fiber with a hydrophilic post-processing agent, a method of imparting moisture absorbency and water absorbency by making the surface of the polyester fiber or the inside of the fiber porous, and the like have been proposed. However, these methods have a problem that the improvement of the hygroscopicity and water absorption is insufficient, and the performance imparted by washing is reduced.

そこで、上記の問題点を改善するために、エチレン−酢酸ビニル系共重合体のケン化物であるエチレン−ビニルアルコール系共重合体を他の熱可塑性重合体、例えば、ポリエステル、ポリアミド、ポリオレフィンなどと複合化し繊維化することにより、寸法安定性を改良する方法が提案されている(例えば、特許文献1〜3参照)。   Therefore, in order to improve the above-described problems, ethylene-vinyl alcohol-based copolymer, which is a saponified ethylene-vinyl acetate-based copolymer, is used in combination with another thermoplastic polymer, such as polyester, polyamide, and polyolefin. A method of improving dimensional stability by making a composite and forming a fiber has been proposed (for example, see Patent Documents 1 to 3).

特公昭56−005846号公報Japanese Patent Publication No. 56-005846 特公昭55−001372号公報JP-B-55-001372 特公平07−084681号公報Japanese Patent Publication No. 07-084681

しかし、上記従来技術においては、エチレン−ビニルアルコール系共重合体の耐湿熱性が不十分であるため、用途が限定されるという問題があった。   However, in the above-mentioned conventional technology, there is a problem that the use thereof is limited because the moisture-heat resistance of the ethylene-vinyl alcohol copolymer is insufficient.

また、インナーや靴下などにナイロン繊維が利用されるが、ナイロン繊維自体に吸湿性を付与するだけでは、ナイロン繊維からなる繊維構造物や衣服において、快適性を十分に向上させることが困難であるため、湿度の調整が可能な吸湿性・吸水伸長繊維が求められている。   In addition, nylon fibers are used for inners and socks, but it is difficult to sufficiently improve comfort in a fiber structure or clothing made of nylon fibers only by imparting hygroscopicity to the nylon fibers themselves. Therefore, there is a need for a moisture-absorbing and water-absorbing stretchable fiber whose humidity can be adjusted.

そこで、本発明は、上述の問題に鑑みてなされたものであり、吸湿性が良好であり、吸放水により可逆的に大きく伸縮して、快適性に優れた繊維構造物が得られるポリアミド繊維の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems, and has a good hygroscopic property. The polyamide fiber, which has a fiber structure excellent in comfort, which is greatly expanded and contracted reversibly by water absorption and release, is obtained. It is intended to provide a manufacturing method.

上記目的を達成するために、本発明のポリアミド繊維の製造方法は、配向度が0.7以上0.85以下であるポリアミド繊維の製造方法であって、溶解可能な成分である水溶性熱可塑性ポリビニルアルコール系重合体または易アルカリ減量ポリエステル系重合体と、ポリアミドとの複合繊維であって、繊維断面が、溶解可能な成分により50%以上被覆されている複合繊維を用意する工程と、溶解可能な成分を溶解除去する工程とを少なくとも備える。   In order to achieve the above object, a method for producing a polyamide fiber of the present invention is a method for producing a polyamide fiber having a degree of orientation of 0.7 or more and 0.85 or less, wherein a water-soluble thermoplastic resin which is a soluble component is used. A step of preparing a conjugate fiber of a polyvinyl alcohol-based polymer or an alkali easily reduced polyester-based polymer and a polyamide, wherein the fiber cross-section is covered by 50% or more with a soluble component; And dissolving and removing various components.

本発明によれば、優れた調湿効果を発揮し、従来にない快適性を発現する繊維構造物を提供することができる。   Advantageous Effects of Invention According to the present invention, it is possible to provide a fiber structure that exhibits an excellent humidity control effect and exhibits unprecedented comfort.

本発明の繊維を得るための複合繊維の横断面の一例を示す繊維断面写真である。It is a fiber cross section photograph which shows an example of the cross section of the conjugate fiber for obtaining the fiber of the present invention. 本発明の繊維を得るための複合繊維の横断面の一例を示す繊維断面写真である。It is a fiber cross section photograph which shows an example of the cross section of the conjugate fiber for obtaining the fiber of the present invention. 本発明の繊維を得るための複合繊維の横断面の一例を示す繊維断面写真である。It is a fiber cross section photograph which shows an example of the cross section of the conjugate fiber for obtaining the fiber of the present invention. 本発明の繊維を得るための複合繊維の横断面の一例を示す繊維断面写真である。It is a fiber cross section photograph which shows an example of the cross section of the conjugate fiber for obtaining the fiber of the present invention.

本発明のポリアミド繊維は、配向度が0.7以上0.85以下である。配向度が0.7未満では、十分な染色堅牢度を得ることができず、また、0.85より大きい場合は、吸放水による可逆的な伸長収縮特性が不十分となり、織編物の目が十分に開いたり閉じたりせず、快適性に優れた繊維構造物が得られない。   The degree of orientation of the polyamide fiber of the present invention is 0.7 or more and 0.85 or less. When the degree of orientation is less than 0.7, sufficient dyeing fastness cannot be obtained. When the degree of orientation is more than 0.85, reversible elongation and shrinkage characteristics due to water absorption / release become insufficient, and the texture of the woven or knitted fabric is reduced. The fiber structure does not open and close sufficiently, and a fiber structure excellent in comfort cannot be obtained.

即ち、0.7以上0.85以下の配向度を有するポリアミド繊維を用いて繊維構造物、例えば、織編物を製造することにより、汗などを吸水した場合には、ポリアミド繊維が伸長することにより、織編物の目が開いて衣料内部の湿気を逃がすことができ、乾燥した場合には、ポリアミド繊維が収縮して、元の長さに戻ることにより、織編物の目が詰まり、衣料内部の温度を逃がさない、いわゆる自己調節機能を有する、快適性に優れた織編物を提供することが可能になる。   That is, by producing a fiber structure using a polyamide fiber having a degree of orientation of 0.7 or more and 0.85 or less, for example, a woven or knitted fabric, when sweat or the like is absorbed, the polyamide fiber is elongated. When the woven or knitted fabric opens, the moisture inside the garment can be released, and when it is dried, the polyamide fiber shrinks and returns to its original length. It becomes possible to provide a woven or knitted fabric having a so-called self-regulating function that does not allow temperature to escape, and that is excellent in comfort.

なお、ポリアミド繊維の配向度は、0.72以上が好ましく、0.75以上がより好ましい。また、0.83以下が好ましく、0.8以下がより好ましく、0.80未満がさらに好ましい。また、ポリアミド繊維の配向度は、後述する実施例に記載の測定方法により算出される。   The degree of orientation of the polyamide fiber is preferably at least 0.72, more preferably at least 0.75. Further, it is preferably 0.83 or less, more preferably 0.8 or less, and further preferably less than 0.80. Further, the degree of orientation of the polyamide fiber is calculated by a measuring method described in Examples described later.

また、本発明のポリアミド繊維は、温度が35℃、湿度が95%RHにおける吸湿率が5%以上であり、温度が20℃、湿度が65%RHにおける吸水伸長率が5%以上であることが好ましい。吸湿率が5%未満では、ベタツキ感、ムレ感が生じ、吸水伸長率が5%未満では、吸放水による可逆的な伸長収縮特性が不十分となり、織編物の目が十分に開いたり閉じたりせず、快適性に優れた繊維構造物が得られない。   The polyamide fiber of the present invention has a moisture absorption rate of 5% or more at a temperature of 35 ° C. and a humidity of 95% RH, and a water absorption elongation rate of 5% or more at a temperature of 20 ° C. and a humidity of 65% RH. Is preferred. If the moisture absorption is less than 5%, stickiness and stuffiness may occur, and if the water absorption elongation is less than 5%, the reversible elongation / shrinkage characteristics due to water absorption / desorption become insufficient, and the eyes of the woven or knitted fabric may open or close sufficiently. Therefore, a fiber structure having excellent comfort cannot be obtained.

即ち、上述の吸湿率及び吸水伸長率を有するポリアミド繊維を用いて繊維構造物、例えば、織編物を製造することにより、上述の自己調節機能を有する、より一層快適性に優れた織編物を提供することが可能になる。   That is, by producing a fiber structure, for example, a woven or knitted fabric using the polyamide fiber having the above-described moisture absorption and water absorption elongation, a woven or knitted fabric having the above-mentioned self-regulating function and being more excellent in comfort is provided. It becomes possible to do.

なお、上述の吸湿率及び吸水伸長率が大きくなり過ぎると、洗濯堅牢度、耐候性、耐光性、耐薬品性などが悪化する傾向がある。従って、上述の吸湿率は、5%以上30%以下が好ましく、8%以上25%以下がより好ましい。また、上述の吸水伸長率は、5%以上が好ましく、7%以上がより好ましく、8%以上がさらに好ましく、10%以上が特に好ましい。また、上述の吸水伸長率は、30%以下が好ましく、25%以下がより好ましく、20%以下がさらに好ましい。また、ポリアミド繊維の吸湿率及び吸水伸長率は、後述する実施例に記載の測定方法により算出される。   In addition, when the above-mentioned moisture absorption rate and water absorption elongation rate become too large, washing fastness, weather resistance, light resistance, chemical resistance, and the like tend to be deteriorated. Therefore, the above-mentioned moisture absorption rate is preferably 5% or more and 30% or less, more preferably 8% or more and 25% or less. Further, the above-mentioned water absorption elongation is preferably at least 5%, more preferably at least 7%, further preferably at least 8%, particularly preferably at least 10%. In addition, the above-mentioned water absorption elongation is preferably 30% or less, more preferably 25% or less, and still more preferably 20% or less. Further, the moisture absorption rate and the water absorption elongation rate of the polyamide fiber are calculated by the measuring methods described in Examples described later.

また、ポリアミド繊維の捲縮伸長率は、1.5%以上10%以下が好ましく、2%以上8%以下がより好ましく、2.5%以上5.8%以下がさらに好ましい。捲縮伸長率が1.5%以上10%以下を満たすと、生糸様(シルクライク)風合いとなるため、ソフトタッチとなり、肌触りがよい。   Further, the crimp elongation of the polyamide fiber is preferably 1.5% or more and 10% or less, more preferably 2% or more and 8% or less, and even more preferably 2.5% or more and 5.8% or less. When the crimp elongation ratio satisfies 1.5% or more and 10% or less, it becomes a silk-like (silk-like) texture, so that a soft touch is obtained and the feel is good.

本発明に用いられるポリアミドとしては、例えば、ポリカプロラミド(ナイロン−6)、ポリ−ω−アミノヘプタン酸(ナイロン−7)、ポリウンデカンアミド(ナイロン−11)、ポリエチレンジアミンアジパミド(ナイロン−2,6)、ポリテトラメチレンアジパミド(ナイロン−4,6)、ポリヘキサメチレンアジパミド(ナイロン−6,6)、ポリヘキサメチレンセバカミド(ナイロン−2,10)、ポリヘキサメチレンドデカミド(ナイロン−6,12)、ポリオクタメチレンアジパミド(ナイロン−8,6)、ポリデカノメチレンアジパミド(ナイロン−10,6)、ポリドデカメチレンセバカミド(ナイロン−10,8)などが挙げられる。また、カプロラクタム/ラウリンラクタム共重合体(ナイロン−6/12)、カプロラクタム/ω−アミノノナン酸共重合体(ナイロン−6/9)、カプロラクタム/ヘキサメチレンアジペート共重合体(ナイロン−6/6,6)、ラウリンラクタム/ヘキサメチレンジアミンアジペート共重合体(ナイロン−12/6,6)、ヘキサメチレンジアミンアジペート/ヘキサメチレンジアミンセバケート共重合体(ナイロン−6,6/6,10)、エチレンジアミンアジペート/ヘキサメチレンジアミンアジペート共重合体(ナイロン−2,6/6,6)、カプロラクタム/ヘキサメチレンジアミンアジペート/ヘキサメチレンジアミンセバケート共重合体(ナイロン−6,6/6,10)などが挙げられる。   Examples of the polyamide used in the present invention include polycaprolamide (nylon-6), poly-ω-aminoheptanoic acid (nylon-7), polyundecaneamide (nylon-11), and polyethylenediamine adipamide (nylon- 2,6), polytetramethylene adipamide (nylon-4,6), polyhexamethylene adipamide (nylon-6,6), polyhexamethylene sebacamide (nylon-2,10), polyhexamethylene Dodecamide (nylon-6,12), polyoctamethylene adipamide (nylon-8,6), polydecanomethylene adipamide (nylon-10,6), polydodecamethylenesebacamide (nylon-10, 8) and the like. Also, a caprolactam / laurin lactam copolymer (nylon-6 / 12), a caprolactam / ω-aminononanoic acid copolymer (nylon-6 / 9), a caprolactam / hexamethylene adipate copolymer (nylon-6 / 6,6) ), Laurin lactam / hexamethylenediamine adipate copolymer (nylon-12 / 6,6), hexamethylenediamine adipate / hexamethylenediamine sebacate copolymer (nylon-6,6 / 6,10), ethylenediamine adipate / Hexamethylene diamine adipate copolymer (nylon-2,6 / 6,6), caprolactam / hexamethylene diamine adipate / hexamethylene diamine sebacate copolymer (nylon-6,6 / 6,10) and the like.

このうち、本発明に最も好適なポリアミドとしては、ナイロン−6およびナイロン−6,6が挙げられ、安価で汎用性が高く、かつ吸湿性に優れるとの観点から、ナイロン−6がより好ましい。また、共重合体としては、ナイロン−6/6,6およびナイロン−6/12が挙げられる。ナイロン−6/12における6成分と12成分の組成は特に制限はないが、例えば、12成分が50モル%以下であるものが好ましく、40モル%以下であるものがより好ましい。   Of these, nylon-6 and nylon-6,6 are the most preferred polyamides in the present invention. Nylon-6 is more preferred from the viewpoint that it is inexpensive, highly versatile, and excellent in hygroscopicity. In addition, examples of the copolymer include nylon-6 / 6,6 and nylon-6 / 12. The composition of the six components and the twelve components in nylon-6 / 12 is not particularly limited, but, for example, those having 12 components are preferably 50 mol% or less, and more preferably 40 mol% or less.

また、上記ポリアミドの共重合体に、帯電防止剤、滑剤、耐ブロッキング剤、安定剤、染料、顔料などを含有させてもよい。   The copolymer of polyamide may contain an antistatic agent, a lubricant, an antiblocking agent, a stabilizer, a dye, a pigment, and the like.

本発明のポリアミド繊維は、前述した配向度、吸水率、及び吸水伸長率を有する限りその製造方法は限定されない。例えば、ポリアミド成分(A成分)と他の溶解可能な成分(B成分)とからなる複合繊維を用い、B成分を溶解除去することにより好適に得ることができる。そして、このような複合繊維を用いることにより、ポリアミド成分の構造を制御することが可能になるため、特定の配向度を有し、吸湿性・吸水伸長性に優れ、吸放水により可逆的に伸縮することが可能なポリアミドの単独繊維を得ることができる。   The production method of the polyamide fiber of the present invention is not limited as long as it has the above-described degree of orientation, water absorption, and water absorption elongation. For example, it can be suitably obtained by dissolving and removing the B component using a composite fiber composed of a polyamide component (A component) and another soluble component (B component). The use of such a composite fiber makes it possible to control the structure of the polyamide component, so that it has a specific degree of orientation, is excellent in moisture absorption and water absorption elongation, and reversibly expands and contracts by absorbing and releasing water. To obtain a single fiber of polyamide that can be used.

また、上述のごとく、本発明のポリアミド繊維を複合繊維より得る場合、もう一方の溶解可能な成分(B成分)が、構造制御に重要な役割を担う。このB成分に用いるポリマーとしては、水溶性の熱可塑性ポリビニルアルコール系重合体を用いることができる。このポリビニルアルコール系重合体は、粘度平均重合度が200〜500、ケン化度が90〜99.99モル%、融点が160〜230℃であることが好ましい。また、ポリビニルアルコール系重合体は、ホモポリマーであっても共重合体であってもよいが、溶融紡糸性、水溶性、及び繊維物性の観点から、エチレン、プロピレンなど炭素数が4以下のα−オレフィンなどにより、0.1〜20モル%変性された共重合ポリビニルアルコールを用いることが好ましい。そして、このB成分を用いた複合繊維において、熱水により水溶性の熱可塑性ポリビニルアルコール系重合体を除去することにより、本発明のポリアミド繊維を好適に得ることができる。   Further, as described above, when the polyamide fiber of the present invention is obtained from a conjugate fiber, the other soluble component (component B) plays an important role in controlling the structure. As the polymer used for the component B, a water-soluble thermoplastic polyvinyl alcohol-based polymer can be used. This polyvinyl alcohol-based polymer preferably has a viscosity average degree of polymerization of 200 to 500, a saponification degree of 90 to 99.99 mol%, and a melting point of 160 to 230 ° C. Further, the polyvinyl alcohol-based polymer may be a homopolymer or a copolymer, but from the viewpoint of melt spinnability, water solubility, and fiber properties, α, such as ethylene or propylene, having 4 or less carbon atoms. -It is preferable to use a copolymerized polyvinyl alcohol modified by 0.1 to 20 mol% with an olefin or the like. The polyamide fiber of the present invention can be suitably obtained by removing the water-soluble thermoplastic polyvinyl alcohol-based polymer from the composite fiber using the component B with hot water.

また、B成分の他の例として、アルカリ溶解速度が速いポリエステル系重合体(易アルカリ減量ポリエステル系重合体)を用いることができる。そのような易アルカリ減量ポリエステル系重合体として、例えば、5−ナトリウムスルホイソフタル酸を1〜5モル%と、ポリアルキレングリコールを5〜30重量%と、従来、用いられているジオール成分およびジカルボン酸成分とを共重合してなる共重合ポリエステル、またはポリ乳酸を採用することができる。このB成分を用いた複合繊維において、アルカリ処理により、易アルカリ減量ポリエステル系重合体を除去することによって、本発明のポリアミド繊維を好適に得ることができる。   Further, as another example of the component B, a polyester polymer having a high alkali dissolution rate (alkali-reduced polyester polymer) can be used. As such an alkali-reduced polyester polymer, for example, 1 to 5 mol% of 5-sodium sulfoisophthalic acid, 5 to 30 wt% of polyalkylene glycol, and a conventionally used diol component and dicarboxylic acid A copolymerized polyester obtained by copolymerizing the component and polylactic acid can be employed. The polyamide fiber of the present invention can be suitably obtained by removing the alkali-friendly polyester-based polymer from the composite fiber using the component B by alkali treatment.

本発明のポリアミド繊維を形成するための複合繊維の繊維断面は、溶解可能な成分(B成分)により、50%以上被覆されている断面であることが好ましく、B成分により全面が被覆されている断面であることがより好ましい。すなわち、ポリアミド成分が芯成分でB成分が鞘成分である芯鞘断面、または、ポリアミド成分が島成分でB成分が海成分である海島断面であることが好ましい。   The fiber cross section of the conjugate fiber for forming the polyamide fiber of the present invention is preferably a cross section that is covered by at least 50% with a soluble component (component B), and the entire surface is coated with component B. More preferably, it is a cross section. That is, it is preferable that the polyamide component has a core-sheath cross section in which the core component is the core component and the B component is the sheath component, or a sea-island cross section in which the polyamide component is the island component and the B component is the sea component.

本発明の複合繊維において、ポリアミド成分(A成分)と溶解可能な成分(B成分)の複合比率(A:B)が、90:10〜40:60(重量比)であることが好ましく、80:20〜60:40(重量比)であることがより好ましく、繊維形状に応じて、両者の割合を調節することができる。なお、B成分が少ない場合、ポリアミドの構造制御が困難となり、所望の吸湿性・吸水伸長性能が得られず、調湿制御が困難になる場合がある。   In the composite fiber of the present invention, the composite ratio (A: B) of the polyamide component (A component) and the soluble component (B component) is preferably 90:10 to 40:60 (weight ratio), : 20 to 60:40 (weight ratio), and the ratio of both can be adjusted according to the fiber shape. When the amount of the B component is small, it is difficult to control the structure of the polyamide, and the desired hygroscopicity and water-absorbing elongation performance cannot be obtained.

本発明の複合繊維の断面形状は、熱水処理、またはアルカリ処理によってB成分が溶解除去され、A成分にひび割れが生じないものであれば特に限定されず、例えば、同芯型、偏芯型、多芯型であってもよい。さらに、図1および図2に示すような円形型のほか、図3に示すような多葉型、または三角、偏平などの異形断面形状であってもよい。さらに、図4に示すようにA成分の内部に中空部を設けることも可能であり、断面形状を、一孔中空、二孔中空以上の多孔中空などの中空形状としても何ら差し支えない。   The cross-sectional shape of the conjugate fiber of the present invention is not particularly limited as long as the component B is dissolved and removed by hot water treatment or alkali treatment and the component A does not cause cracking. It may be a multi-core type. Further, in addition to the circular type as shown in FIGS. 1 and 2, a multi-lobe type as shown in FIG. 3, or an irregular cross-sectional shape such as triangular or flat may be used. Further, as shown in FIG. 4, it is possible to provide a hollow portion inside the component A, and the cross-sectional shape may be a hollow shape such as a single-hole hollow, a two-hole hollow or a multi-hole hollow.

また、本発明のポリアミド繊維の単繊維繊度は特に制限されないが、0.03〜10dtexのものが好ましい。さらに、長繊維のみならず短繊維、またはショートカット繊維としても用いることができる。   The single fiber fineness of the polyamide fiber of the present invention is not particularly limited, but is preferably 0.03 to 10 dtex. Further, it can be used not only as a long fiber but also as a short fiber or a shortcut fiber.

また、ポリアミド成分(A成分)と、他の溶解可能な成分(B成分)の組み合わせを決定することにより、本発明の複合繊維は、公知の複合紡糸装置を用いて形成することが可能である。   By determining the combination of the polyamide component (A component) and another soluble component (B component), the conjugate fiber of the present invention can be formed using a known conjugate spinning apparatus. .

本発明の繊維を得るためには、製糸化の条件設定が重要であり、高速による直接紡糸延伸法が最適である。また、低速、中速で溶融紡糸した後に延伸する場合は、延伸時の熱処理温度を100℃未満、好ましくは80℃以下に設定し、延伸倍率を2倍未満に設定する。また、紡糸後に延伸と仮撚を同時に、または連続して行う場合も、同様に温度設定を100℃未満、好ましくは80℃以下に設定し、延伸倍率を2倍未満に抑制する。なお、温度を100℃以上に設定した場合、または延伸倍率を2倍以上に設定した場合、ポリアミドの構造を制御することが困難となり、所望の配向度や吸湿性・吸水伸長性が得られない場合がある。   In order to obtain the fiber of the present invention, it is important to set conditions for spinning, and a direct spinning and drawing method at high speed is optimal. In the case of stretching after melt spinning at low speed and medium speed, the heat treatment temperature during stretching is set to less than 100 ° C., preferably 80 ° C. or less, and the stretching ratio is set to less than 2 times. Also, when stretching and false twisting are performed simultaneously or continuously after spinning, the temperature is similarly set to less than 100 ° C., preferably 80 ° C. or less, and the draw ratio is suppressed to less than 2 times. When the temperature is set to 100 ° C. or higher, or when the stretching ratio is set to 2 or more, it becomes difficult to control the structure of the polyamide, and the desired degree of orientation, moisture absorption, and water absorption elongation cannot be obtained. There are cases.

本発明のポリアミド繊維は、各種の繊維構造物(繊維集合体)として用いることができる。ここで、「繊維構造物」とは、本発明のポリアミド繊維のみからなるマルチフィラメント糸、紡績糸、織編物、不織布、紙、人工皮革、及び詰物材や、本発明のポリアミド繊維を一部に使用してなる織編物や不織布、例えば、天然繊維、化学繊維、合成繊維、半合成繊維など他の繊維との交編織布、混紡糸、混繊糸、合撚糸、交絡糸や捲縮糸などの加工糸として用いた織編物、混綿不織布、繊維積層体などであってもよい。   The polyamide fiber of the present invention can be used as various fiber structures (fiber aggregates). Here, the term "fibrous structure" refers to a multifilament yarn, a spun yarn, a woven or knitted fabric, a nonwoven fabric, a paper, an artificial leather, and a filling material composed of only the polyamide fiber of the present invention, and a polyamide fiber of the present invention as a part. Woven and knitted fabrics or non-woven fabrics used, for example, interwoven and woven fabrics with other fibers such as natural fibers, chemical fibers, synthetic fibers, and semi-synthetic fibers, blended yarns, blended yarns, plied yarns, entangled yarns, crimped yarns, and the like Woven and knitted fabrics, mixed cotton nonwoven fabrics, fiber laminates, and the like used as processed yarns of the present invention.

また、織編物や不織布の全体に対する本発明のポリアミド繊維の重量割合は、15重量%以上が好ましく、18重量%以上がより好ましく、23重量%以上が特に好ましい。また、編成、織成または不織布とした後に、必要に応じて、針布起毛などによる起毛処理や、その他の仕上げ加工を施してもよい。   The weight ratio of the polyamide fiber of the present invention to the whole woven or knitted fabric or nonwoven fabric is preferably 15% by weight or more, more preferably 18% by weight or more, and particularly preferably 23% by weight or more. After knitting, weaving, or non-woven fabric, if necessary, a raising process such as a needle raising may be performed, or other finishing process may be performed.

また、本発明のポリアミド繊維を、上述の複合繊維を介して製造する場合、B成分を除去した後、得られたポリアミド単独繊維を用いて繊維構造物を製造してもよく、複合繊維を用いて繊維構造物を製造した後、B成分を除去してもよい。   When the polyamide fiber of the present invention is produced via the above-mentioned conjugate fiber, after removing the B component, a fiber structure may be produced using the obtained polyamide single fiber, and the conjugate fiber may be used. After producing the fibrous structure by heating, the B component may be removed.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically with reference to examples.

(実施例1)
(ポリアミド繊維の作製)
ポリアミド成分(A成分)として還元粘度1.80dL/g(オルソクロロフェノール中濃度1g/dL、30℃)のナイロン−6、溶解可能な成分(B成分)として熱可塑性の変性ポリビニルアルコール(変性PVA)(クラレ社製、ケン化度:98.5、エチレン含有量:8.0モル%、重合度:390)を用いた。そして、A成分とB成分とを別々の押出機で溶融させ、ナイロン−6:変性PVA=60:40(重量比)に設定し、図1に示す横断面の複合繊維を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、3500m/分の引取り速度で巻き取り、111dtex/24フィラメントの複合繊維を製造した。なお、繊維化工程性は良好であった。次いで、得られた複合繊維を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去し、本実施例のポリアミド繊維を得た。
(Example 1)
(Preparation of polyamide fiber)
Nylon-6 having a reduced viscosity of 1.80 dL / g (concentration in orthochlorophenol: 1 g / dL, 30 ° C.) as a polyamide component (A component), and thermoplastic modified polyvinyl alcohol (modified PVA) as a soluble component (B component) ) (Manufactured by Kuraray Co., Ltd., saponification degree: 98.5, ethylene content: 8.0 mol%, polymerization degree: 390). Then, the component A and the component B are melted by separate extruders, nylon-6: modified PVA = 60: 40 (weight ratio) is set, and the composite fiber having a cross section shown in FIG. 1 is discharged from the composite spinning nozzle. I let it. Next, the yarn discharged from the spinneret is cooled by a 1.0 m-long horizontal spray-type cooling air device, and then a spinning oil containing a water-free antistatic agent component and a smoothing agent component is used. Granted. Then, it was wound through a roller at a take-up speed of 3500 m / min to produce a composite fiber of 111 dtex / 24 filaments. In addition, the fiberization processability was good. Next, a circular knitted fabric was produced from the obtained conjugate fiber using a circular knitting machine (28 gauge). Then, the knitted fabric was subjected to a scouring step using hot water (90 ° C. × 20 minutes) to dissolve and remove the modified PVA to obtain a polyamide fiber of this example.

(配向度測定)
次いで、作製したポリアミド繊維の配向度を測定した。なお、ポリアミド繊維の配向度は、以下の測定装置、測定条件により測定した。
(Orientation degree measurement)
Next, the degree of orientation of the produced polyamide fiber was measured. In addition, the orientation degree of the polyamide fiber was measured by the following measuring device and measuring conditions.

測定装置:ブルカーエイエックスエス社製、二次元検出器搭載X線回折装置「D8 Discover with GADDS」
検出器:2次元PSPC・Hi−STAR
測定条件:電流=110mA、電圧=45kV、カメラ距離=15cm、コリメーター径=0.5mm、露光時間=1200sec、2θ軸=22°、ω軸=0°、χ軸=90°(赤道線)・0°(子午線)
Measuring device: X-ray diffractometer "D8 Discover with GADDS" with two-dimensional detector manufactured by Bruker AXS
Detector: 2D PSPC / Hi-STAR
Measurement conditions: current = 110 mA, voltage = 45 kV, camera distance = 15 cm, collimator diameter = 0.5 mm, exposure time = 1200 sec, 2θ axis = 22 °, ω axis = 0 °, χ axis = 90 ° (equatorial line)・ 0 ° (meridian)

サンプルはヤーン1本とした。赤道線はサンプルが垂直方向に、子午線はサンプルが水平方向になるようχ軸の角度を変更した。   The sample was one yarn. The angle of the χ axis was changed so that the sample was vertical in the equator and the sample was horizontal in the meridian.

次いで、上記方法で得られた子午線方向の2次元データを以下の条件で、方位角方向のX線回折強度曲線に変換した。
2θ=9.7〜11.7°、χ=−150〜−30°、ステップ幅=0.1°
Next, the two-dimensional data in the meridian direction obtained by the above method was converted into an azimuthal X-ray diffraction intensity curve under the following conditions.
2θ = 9.7 to 11.7 °, χ = −150 to −30 °, step width = 0.1 °

最後に、上記方法で得られた強度図のピークの半価幅(Wi(°))を求め、簡易法により以下の式を用いて繊維の配向度を算出した。
配向度:A=(360−ΣWi)/360
Finally, the half-value width (Wi (°)) of the peak in the intensity diagram obtained by the above method was determined, and the degree of orientation of the fiber was calculated by a simple method using the following equation.
Degree of orientation: A = (360−ΣWi) / 360

(吸湿率測定)
次いで、作製したポリアミド繊維を温度が35℃、湿度が90%RHの条件に調節した恒温恒湿室中において、24時間、調湿し、絶乾試料の重量と調湿試料の重量から次式により吸湿率を求めた。以上の結果を表2に示す。
吸湿率(%)=(調湿試料の重量−絶乾試料の重量)×100/絶乾試料の重量
(Moisture absorption measurement)
Next, the prepared polyamide fiber was conditioned for 24 hours in a constant temperature and humidity chamber in which the temperature was controlled at 35 ° C. and the humidity was 90% RH, and the following formula was obtained from the weight of the absolutely dry sample and the weight of the humidity control sample. To determine the moisture absorption. Table 2 shows the above results.
Moisture absorption (%) = (weight of moisture-conditioned sample−weight of absolutely dry sample) × 100 / weight of absolutely dry sample

(吸水伸長率測定)
作製したポリアミド繊維をかせ取りし、無緊張下にて、30分間、沸水で処理した後、温度20℃、湿度65%RHで風乾・調湿した。その後、非接触の160℃環境下において、無緊張下で2分間、乾熱処理した糸を、温度20℃、湿度65%RHの環境下に24時間放置した。次いで、24時間放置後の糸に、0.88×10−3cN/dtexの荷重を掛けて測定した糸の長さを「乾燥時の糸の長さ」とした。その後、この糸を20℃に調節された軟化水中に1分間、浸漬後、水中から引き上げ、繊維表面に残存している水分を温度が20℃、湿度が65%RHの環境下において風乾させた濾紙で挟み、水平台の上に載置させ、1.5g/cmの重しを乗せて、2秒間、放置して繊維表面の余分な水分を拭き取った後、10秒後に0.88×10−3cN/dtexの荷重を掛けて測定した長さを「吸水時の糸の長さ」とした。そして、下記の式により、ポリアミド繊維の吸水伸長率を計算した。なお、全ての測定は、温度が20℃、湿度が65%RHの環境下で行った。
吸水伸長率(%)=(吸水時の糸の長さ−乾燥時の糸の長さ)/乾燥時の糸の長さ×100
(Measurement of water absorption elongation)
The produced polyamide fiber was scooped, treated with boiling water for 30 minutes under no tension, and then air-dried and conditioned at a temperature of 20 ° C. and a humidity of 65% RH. Thereafter, in a non-contact environment at 160 ° C., the yarn subjected to the dry heat treatment under no tension for 2 minutes was left for 24 hours in an environment of a temperature of 20 ° C. and a humidity of 65% RH. Next, the yarn that had been left for 24 hours was subjected to a load of 0.88 × 10 −3 cN / dtex, and the length of the yarn measured was taken as “the length of the dried yarn”. Thereafter, the yarn was immersed in softened water adjusted to 20 ° C. for 1 minute, pulled up from the water, and the moisture remaining on the fiber surface was air-dried in an environment at a temperature of 20 ° C. and a humidity of 65% RH. After being sandwiched between filter papers, placed on a horizontal table, placed on a weight of 1.5 g / cm 2 , allowed to stand for 2 seconds to wipe off excess water on the fiber surface, and after 10 seconds 0.88 × The length measured by applying a load of 10 −3 cN / dtex was defined as “the length of the yarn at the time of water absorption”. Then, the water absorption elongation rate of the polyamide fiber was calculated by the following equation. All measurements were performed in an environment at a temperature of 20 ° C. and a humidity of 65% RH.
Water absorption elongation (%) = (length of yarn at the time of water absorption−length of yarn at the time of drying) / length of yarn at the time of drying × 100

(着用評価)
作製したポリアミド繊維を、筒編み機を用いて丸編地とし、これを任意に選んだパネラー10人のひじとひざにつけ、1日過ごしてもらい、ベタツキ感、ムレ感の官能評価を実施した。なお、「ベタツキ感、ムレ感が少なく、非常に優れている」を2点、「優れている」を1点、「劣る」を0点とし、その合計点から、以下の4段階で評価した。以上の結果を表1に示す。
A:合計点が15点以上
B:合計点が8〜14点
C:合計点が5点〜7点
D:合計点が4点以下
(Wearing evaluation)
The produced polyamide fiber was made into a circular knitted fabric by using a tubular knitting machine, and was arbitrarily attached to elbows and knees of 10 panelists, and allowed to spend one day, and the sensory evaluation of stickiness and stuffiness was performed. In addition, 2 points, "excellent", 2 points, "excellent", 1 point, and "poor" were 0 points, and the following 4 grades were evaluated from the total score. . Table 1 shows the above results.
A: 15 or more total points B: 8 to 14 total points C: 5 to 7 total points D: 4 or less total points

(捲縮伸長率測定)
ポリアミド繊維をワク周1.125mの検尺機を用い、巻数20回の小かせを作製した。次に、得られた小かせを無荷重下で98℃、5分間沸騰水中で熱処理後、一昼夜恒温恒湿(温度20±2℃、相対湿度65±2%)の室内に放置した。調湿された繊維に2mg/dの荷重をかけ1分後にかせ長Lを測定した。次に、小かせに0.1g/dの荷重をかけ1分後にかせ長Lを測定した。捲縮伸長率は以下の式で表される。
捲縮伸長率(%)=(L−L)/L×100
ここで、g/dは、1デニールあたりのグラム数を表す。
以上の結果を、表1に示す。
(Measurement of crimp elongation)
The polyamide fiber was formed into a small skein having 20 turns using a measuring machine with a circumference of 1.125 m. Next, the obtained small skein was heat-treated in boiling water at 98 ° C. for 5 minutes under no load, and then left in a room at a constant temperature and constant humidity (temperature 20 ± 2 ° C., relative humidity 65 ± 2%) for 24 hours. It was measured skein length L 1 to 1 minute after applying a load of 2 mg / d in humidity controlled fiber. Was then measured skein length L 2 after 1 minute under a load of 0.1 g / d in the small hank. The crimp elongation is represented by the following equation.
Crimp elongation (%) = (L 2 −L 1 ) / L 2 × 100
Here, g / d represents the number of grams per denier.
Table 1 shows the above results.

(実施例2)
B成分として、分子量2000のポリエチレングリコール8重量%と5−ナトリウムスルホイソフタル酸5モル%とを共重合した極限粘度数〔η〕0.52dL/gのポリエチレンテレフタレート(共重合PET)を用いたこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表1に示す。
(Example 2)
As the B component, polyethylene terephthalate (copolymerized PET) having a limiting viscosity number [η] of 0.52 dL / g obtained by copolymerizing 8% by weight of polyethylene glycol having a molecular weight of 2,000 and 5% by mole of 5-sodium sulfoisophthalic acid was used. Except for the above, a polyamide fiber was prepared in the same manner as in Example 1, and the orientation degree, the moisture absorption rate, the water absorption elongation rate, the crimp elongation rate were measured, and the wearing of the woven fabric was evaluated. Table 1 shows the above results.

(実施例3〜4)
表1に示すように、A成分をナイロン−6,6(実施例3)、またはナイロン−6/12(実施例4)に変更したこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表1に示す。
(Examples 3 and 4)
As shown in Table 1, a polyamide fiber was produced in the same manner as in Example 1 except that the component A was changed to nylon-6,6 (Example 3) or nylon-6 / 12 (Example 4). The degree of orientation, moisture absorption, water absorption elongation, and crimp elongation were measured, and wearing of the fabric was evaluated. Table 1 shows the above results.

(実施例5〜6)
表1に示すように、複合繊維の横断面を図2(実施例5)、または図4(実施例6)に変更したこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表1に示す。
(Examples 5 to 6)
As shown in Table 1, except that the cross section of the conjugate fiber was changed to FIG. 2 (Example 5) or FIG. The degree, moisture absorption, water absorption elongation, and crimp elongation were measured, and wearing of the fabric was evaluated. Table 1 shows the above results.

(比較例1)
溶解可能な成分(B成分)を使用しなかったこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表1に示す。
(Comparative Example 1)
Except that no soluble component (component B) was used, a polyamide fiber was prepared in the same manner as in Example 1, and the degree of orientation, moisture absorption, water absorption elongation, crimp elongation was measured, and the woven fabric was measured. Wear evaluation was performed. Table 1 shows the above results.

(比較例2)
実施例1と同様の方法により、図1に示す横断面の複合繊維(繊度:275dtex)を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、1000m/分の速度で引き取り、捲取ることなく連続して延伸し、150℃で熱セットしながら、2.5倍に延伸して、2500m/分で110dtex/24フィラメントの複合繊維を製造した。次いで、得られた複合繊維を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去し、本比較例のポリアミド繊維を得た。
(Comparative Example 2)
In the same manner as in Example 1, composite fibers (fineness: 275 dtex) having a cross section shown in FIG. 1 were discharged from a composite spinning nozzle. Next, the yarn discharged from the spinneret is cooled by a 1.0 m-long horizontal spray-type cooling air device, and then a spinning oil containing a water-free antistatic agent component and a smoothing agent component is used. Granted. Then, it is drawn through a roller at a speed of 1000 m / min, stretched continuously without winding, stretched 2.5 times while being heat-set at 150 ° C., and stretched 110 dtex / 24 filament at 2500 m / min. Was produced. Next, a circular knitted fabric was produced from the obtained conjugate fiber using a circular knitting machine (28 gauge). Then, the knitted fabric was subjected to a scouring step using hot water (90 ° C. × 20 minutes) to dissolve and remove the modified PVA to obtain a polyamide fiber of this comparative example.

次いで、実施例1と同様にして、ポリアミド繊維の配向度、吸水伸長率の測定、及び織物の着用評価を行った。なお、吸湿率及び捲縮伸長率の測定は行わなかった。以上の結果を表1に示す。   Next, in the same manner as in Example 1, the degree of orientation of the polyamide fiber, the elongation of water absorption, and the evaluation of wearing of the woven fabric were evaluated. In addition, the measurement of the moisture absorption rate and the crimp elongation rate was not performed. Table 1 shows the above results.

(比較例3)
A成分をナイロン−12に変更したこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸水伸長率の測定、及び織物の着用評価を行った。なお、吸湿率及び捲縮伸長率の測定は行わなかった。以上の結果を表1に示す。
(Comparative Example 3)
A polyamide fiber was prepared in the same manner as in Example 1 except that the component A was changed to nylon-12, and the degree of orientation, the water absorption elongation rate, and the evaluation of wearing of the fabric were evaluated. In addition, the measurement of the moisture absorption rate and the crimp elongation rate was not performed. Table 1 shows the above results.

(比較例4)
実施例1と同様の方法により、図1に示す横断面の複合繊維(繊度:275dtex)を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、2000m/分の速度で引き取り、未延伸糸を得た。次いで、得られた未延伸糸を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去し、本比較例のポリアミド繊維を得た。
(Comparative Example 4)
In the same manner as in Example 1, composite fibers (fineness: 275 dtex) having a cross section shown in FIG. 1 were discharged from a composite spinning nozzle. Next, the yarn discharged from the spinneret is cooled by a 1.0 m-long horizontal spray-type cooling air device, and then a spinning oil containing a water-free antistatic agent component and a smoothing agent component is used. Granted. Next, it was pulled through a roller at a speed of 2000 m / min to obtain an undrawn yarn. Next, a circular knitted fabric was produced from the obtained undrawn yarn using a circular knitting machine (28 gauge). Then, the knitted fabric was subjected to a scouring step using hot water (90 ° C. × 20 minutes) to dissolve and remove the modified PVA to obtain a polyamide fiber of this comparative example.

次いで、実施例1と同様にして、ポリアミド繊維の配向度、吸水伸長率の測定、及び織物の着用評価を行った。なお、吸湿率及び捲縮伸長率の測定は行わなかった。以上の結果を表1に示す。   Next, in the same manner as in Example 1, the degree of orientation of the polyamide fiber, the elongation of water absorption, and the evaluation of wearing of the woven fabric were evaluated. In addition, the measurement of the moisture absorption rate and the crimp elongation rate was not performed. Table 1 shows the above results.

表1に示すように、実施例1〜6のポリアミド繊維は、配向度が0.7以上0.85以下であるため、温度が20℃、湿度が65%RHにおける吸水伸長率が5%以上となり、優れた調湿効果が発揮され、得られた編物が優れた着用感を有していることが判る。   As shown in Table 1, since the polyamide fibers of Examples 1 to 6 have an orientation degree of 0.7 or more and 0.85 or less, the water absorption elongation at a temperature of 20 ° C and a humidity of 65% RH is 5% or more. It can be seen that an excellent humidity control effect is exhibited and the obtained knitted fabric has an excellent wearing feeling.

一方、比較例1〜3のポリアミド繊維は、配向度が0.85以上であるため、温度が20℃、湿度が65%RHにおける吸水伸長率が5%未満となり、実施例1〜6に比し、優れた調湿効果が発揮されず、得られた編物の着用感が著しく劣ることが判る。特に、比較例3においては、使用したナイロン−12は、ポリアミド樹脂の中でも疎水性が高く、結晶配向性が高いため、表1に示すように高配向度となり、結果として、得られた編物の吸水伸長性が発現せず、着用感が著しく劣ることが判る。   On the other hand, since the polyamide fibers of Comparative Examples 1 to 3 have an orientation degree of 0.85 or more, the water absorption elongation at a temperature of 20 ° C. and a humidity of 65% RH is less than 5%. However, it was found that the excellent humidity control effect was not exhibited, and the wearing feeling of the obtained knitted fabric was extremely poor. In particular, in Comparative Example 3, the nylon-12 used had a high degree of hydrophobicity and a high crystal orientation among polyamide resins, and thus had a high degree of orientation as shown in Table 1, and as a result, It can be seen that the water-absorbing extensibility was not exhibited, and the wearing feeling was extremely poor.

また、比較例4のポリアミド繊維は、配向度が0.7未満であるため、吸水伸長性が大きくなり過ぎ、結果として、着用感が著しく劣ることが判る。   In addition, since the polyamide fiber of Comparative Example 4 has a degree of orientation of less than 0.7, the water-absorbing extensibility is too large, and as a result, it can be seen that the wearing feeling is extremely poor.

(実施例7)
ポリアミド成分(A成分)として還元粘度1.80dL/g(オルソクロロフェノール中濃度1g/dL、30℃)のナイロン−6、もう一方の溶解可能な成分(B成分)には熱可塑性の変性ポリビニルアルコール(変性PVA)(クラレ社製、ケン化度:98.5、エチレン含有量:8.0モル%、重合度:380)を用いた。そして、A成分とB成分とを別々の押出機で溶融させ、ナイロン−6:変性PVA=70:30(重量比)に設定し、図1に示す横断面の複合繊維を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、3500m/分の引取り速度で巻き取り、111dtex/24フィラメントの複合繊維を製造した。なお、繊維化工程性は良好であった。次いで、得られた複合繊維を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去した。
(Example 7)
Nylon-6 having a reduced viscosity of 1.80 dL / g (concentration in orthochlorophenol: 1 g / dL, 30 ° C.) as a polyamide component (A component), and a thermoplastic modified polyvinyl as another soluble component (B component) Alcohol (modified PVA) (manufactured by Kuraray Co., Ltd., saponification degree: 98.5, ethylene content: 8.0 mol%, polymerization degree: 380) was used. Then, the component A and the component B are melted by separate extruders, nylon-6: modified PVA = 70: 30 (weight ratio) is set, and the composite fiber having a cross section shown in FIG. 1 is discharged from the composite spinning nozzle. I let it. Next, the yarn discharged from the spinneret is cooled by a 1.0 m-long horizontal spray-type cooling air device, and then a spinning oil containing a water-free antistatic agent component and a smoothing agent component is used. Granted. Then, it was wound through a roller at a take-up speed of 3500 m / min to produce a composite fiber of 111 dtex / 24 filaments. In addition, the fiberization processability was good. Next, a circular knitted fabric was produced from the obtained conjugate fiber using a circular knitting machine (28 gauge). Then, the knitted fabric was subjected to a scouring step using hot water (90 ° C. × 20 minutes) to dissolve and remove the modified PVA.

また、実施例1と同様にして、ポリアミド繊維の配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表2に示す。   Further, in the same manner as in Example 1, the orientation degree, the moisture absorption rate, the water absorption extension rate and the crimp extension rate of the polyamide fiber were measured, and the wearing of the woven fabric was evaluated. Table 2 shows the above results.

(実施例8〜9)
B成分として、実施例8では、分子量2000のポリエチレングリコール8重量%と5−ナトリウムスルホイソフタル酸5モル%とを共重合した極限粘度数〔η〕0.52dL/gのポリエチレンテレフタレート(共重合PET)を用い、実施例9では、溶解可能な成分(B成分)としてポリ乳酸を用いるとともに、ナイロン−6とB成分との比率を67:33に変更したこと以外は、実施例7と同様にしてポリアミド繊維を作製し、ポリアミド繊維の配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表2に示す。
(Examples 8 to 9)
In Example 8, as the B component, polyethylene terephthalate having an intrinsic viscosity [η] of 0.52 dL / g (copolymerized PET) obtained by copolymerizing 8% by weight of polyethylene glycol having a molecular weight of 2,000 and 5 mol% of 5-sodium sulfoisophthalic acid was used. Example 9 is the same as Example 7 except that polylactic acid is used as a soluble component (component B) and the ratio of nylon-6 to component B is changed to 67:33. A polyamide fiber was prepared by the above method, and the degree of orientation, moisture absorption, water absorption elongation, and crimp elongation of the polyamide fiber were measured, and wearing of the woven fabric was evaluated. Table 2 shows the above results.

(実施例10〜11)
表2に示すように、A成分をナイロン−6,6(実施例10)、またはナイロン−6/12(実施例11)に変更したこと以外は、実施例7と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表2に示す。
(Examples 10 to 11)
As shown in Table 2, a polyamide fiber was produced in the same manner as in Example 7, except that the component A was changed to nylon-6,6 (Example 10) or nylon-6 / 12 (Example 11). The degree of orientation, moisture absorption, water absorption elongation, and crimp elongation were measured, and wearing of the fabric was evaluated. Table 2 shows the above results.

(実施例12〜13)
表2に示すように、複合繊維の横断面を図2(実施例12)、または図3(実施例13)に変更したこと以外は、実施例7と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表2に示す。
(Examples 12 and 13)
As shown in Table 2, except that the cross section of the composite fiber was changed to FIG. 2 (Example 12) or FIG. The degree, moisture absorption, water absorption elongation, and crimp elongation were measured, and wearing of the fabric was evaluated. Table 2 shows the above results.

(比較例5)
実施例7と同様の方法により、図1に示す横断面の複合繊維(繊度:220dtex)を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、1000m/分の速度で引き取り、捲取ることなく連続して延伸し、150℃で熱セットしながら、2.5倍に延伸して、2500m/分で110dtex/24フィラメントの複合繊維を製造した。次いで、得られた複合繊維を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去し、本比較例のポリアミド繊維を得た。
(Comparative Example 5)
In the same manner as in Example 7, composite fibers (fineness: 220 dtex) having a cross section shown in FIG. 1 were discharged from a composite spinning nozzle. Next, the yarn discharged from the spinneret is cooled by a 1.0 m-long horizontal spray-type cooling air device, and then a spinning oil containing a water-free antistatic agent component and a smoothing agent component is used. Granted. Then, it is drawn through a roller at a speed of 1000 m / min, stretched continuously without winding, stretched 2.5 times while being heat-set at 150 ° C., and stretched 110 dtex / 24 filament at 2500 m / min. Was produced. Next, a circular knitted fabric was produced from the obtained conjugate fiber using a circular knitting machine (28 gauge). Then, the knitted fabric was subjected to a scouring step using hot water (90 ° C. × 20 minutes) to dissolve and remove the modified PVA to obtain a polyamide fiber of this comparative example.

次いで、実施例1と同様にして、ポリアミド繊維の吸湿率、吸水伸長率の測定、及び織物の着用評価を行った。なお、吸湿率及び捲縮伸長率の測定は行わなかった。以上の結果を表2に示す。   Next, in the same manner as in Example 1, the moisture absorption rate and the water absorption elongation rate of the polyamide fiber were measured, and the wearing of the woven fabric was evaluated. In addition, the measurement of the moisture absorption rate and the crimp elongation rate was not performed. Table 2 shows the above results.

(比較例6)
A成分をナイロン−12に変更したこと以外は、実施例7と同様にしてポリアミド繊維を作製し、吸湿率、吸水伸長率の測定、及び織物の着用評価を行った。なお、吸湿率及び捲縮伸長率の測定は行わなかった。以上の結果を表2に示す。
(Comparative Example 6)
A polyamide fiber was produced in the same manner as in Example 7, except that the component A was changed to nylon-12, and the moisture absorption rate, the water absorption elongation rate, and the evaluation of wearing of the fabric were evaluated. In addition, the measurement of the moisture absorption rate and the crimp elongation rate was not performed. Table 2 shows the above results.

表2に示すように、実施例7〜13のポリアミド繊維は、温度が35℃、湿度が95%RHにおける吸湿率が5%以上であるとともに、温度が20℃、湿度が65%RHにおける吸水伸長率が5%以上であるため、優れた調湿効果が発揮され、得られた編物が優れた着用感を有していることが判る。   As shown in Table 2, the polyamide fibers of Examples 7 to 13 had a moisture absorption of 5% or more at a temperature of 35 ° C and a humidity of 95% RH, and water absorption at a temperature of 20 ° C and a humidity of 65% RH. Since the elongation rate is 5% or more, an excellent humidity control effect is exhibited, and it can be seen that the obtained knitted fabric has an excellent wearing feeling.

一方、比較例5〜6のポリアミド繊維は、温度が35℃、湿度が95%RHにおける吸湿率が5%未満であるとともに、温度が20℃、湿度が65%RHにおける吸水伸長率が5%未満であるため、実施例7〜13に比し、優れた調湿効果が発揮されず、得られた編物の着用感が著しく劣ることが判る。特に、比較例6においては、使用したナイロン−12は、ポリアミド樹脂の中でも疎水性が高く、結晶配向性が高いため、表2に示すように吸湿率が極端に低下し、結果として、得られた編物の吸水伸長性が発現せず、着用感が著しく劣ることが判る。   On the other hand, the polyamide fibers of Comparative Examples 5 and 6 have a moisture absorption rate of less than 5% at a temperature of 35 ° C. and a humidity of 95% RH, and a water absorption elongation rate of 5% at a temperature of 20 ° C. and a humidity of 65% RH. Since it is less than that, it can be seen that excellent humidity control effect is not exhibited as compared with Examples 7 to 13, and the wearing feeling of the obtained knitted fabric is remarkably inferior. In particular, in Comparative Example 6, the nylon-12 used had a high hydrophobicity and a high crystal orientation among the polyamide resins, so that the moisture absorption was extremely reduced as shown in Table 2, and as a result, the obtained nylon-12 was obtained. It can be seen that the water-absorbing extensibility of the knitted fabric did not develop, and the wearing feeling was significantly poor.

本発明のポリアミド繊維は、吸放湿性が良好となり、吸放水により可逆的に伸縮するため、吸放水により繊維構造物の目開きが変化する自己調節機能を発現し、快適性に優れた繊維構造物を得ることができる。このため、衣料分野に最適であり、特にスポーツウェアー、下着、裏地、ストッキング、靴下など用途で優れた性能を発揮する。   The polyamide fiber of the present invention has good moisture absorption and desorption properties, and has a self-regulating function in which the aperture of the fiber structure changes due to water absorption and desorption due to reversible expansion and contraction due to water absorption and desorption. You can get things. Therefore, it is most suitable for the garment field, and exhibits excellent performance especially in applications such as sportswear, underwear, lining, stockings, and socks.

1 複合繊維のポリアミド成分(A成分)
2 複合繊維の溶解可能な成分(B成分)
3 複合繊維の中空部
1 Polyamide component of composite fiber (A component)
2 Soluble component of composite fiber (component B)
3 Hollow part of composite fiber

Claims (4)

溶解可能な成分である水溶性熱可塑性ポリビニルアルコール系重合体または易アルカリ減量ポリエステル系重合体と、ポリアミドとの複合繊維であって、繊維断面が、前記溶解可能な成分により50%以上被覆されている複合繊維を用意する工程と、
前記溶解可能な成分を溶解除去する工程と
を少なくとも備える、配向度が0.7以上0.85以下であるポリアミド繊維の製造方法。
A composite fiber of a polyamide and a water-soluble thermoplastic polyvinyl alcohol-based polymer or an alkali easily reduced polyester-based polymer which is a soluble component, and a fiber cross section of which is coated with the soluble component by 50% or more. Preparing a composite fiber,
A method for producing a polyamide fiber having an orientation degree of 0.7 or more and 0.85 or less, comprising at least a step of dissolving and removing the soluble component.
前記複合繊維が、前記水溶性熱可塑性ポリビニルアルコール系重合体と前記ポリアミドとの複合繊維であり、前記水溶性熱可塑性ポリビニルアルコール系重合体を熱水で除去する、請求項1に記載のポリアミド繊維の製造方法。   The polyamide fiber according to claim 1, wherein the conjugate fiber is a conjugate fiber of the water-soluble thermoplastic polyvinyl alcohol-based polymer and the polyamide, and the water-soluble thermoplastic polyvinyl alcohol-based polymer is removed with hot water. Manufacturing method. 前記複合繊維が、前記易アルカリ減量ポリエステル系重合体と前記ポリアミドとの複合繊維であり、前記易アルカリ減量ポリエステル系重合体をアルカリ処理で除去する、請求項1に記載のポリアミド繊維の製造方法。   The method for producing a polyamide fiber according to claim 1, wherein the conjugate fiber is a conjugate fiber of the alkali-reduced polyester polymer and the polyamide, and the alkali-reduced polyester polymer is removed by an alkali treatment. 前記ポリアミド成分と前記溶解可能な成分の複合比率が、ポリアミド成分:溶解可能な成分=90:10〜40:60(重量比)である、請求項1〜請求項3のいずれか1項に記載のポリアミド繊維の製造方法。
The composite ratio of the polyamide component and the soluble component is polyamide component: soluble component = 90: 10 to 40:60 (weight ratio), according to any one of claims 1 to 3. A method for producing a polyamide fiber.
JP2019200710A 2014-05-26 2019-11-05 Polyamide fiber manufacturing method Active JP6793238B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014108167 2014-05-26
JP2014108167 2014-05-26
JP2014175654 2014-08-29
JP2014175654 2014-08-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016523131A Division JPWO2015182088A1 (en) 2014-05-26 2015-05-21 Polyamide fiber, fiber structure using the same, and clothing

Publications (2)

Publication Number Publication Date
JP2020037763A true JP2020037763A (en) 2020-03-12
JP6793238B2 JP6793238B2 (en) 2020-12-02

Family

ID=54698443

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016523131A Pending JPWO2015182088A1 (en) 2014-05-26 2015-05-21 Polyamide fiber, fiber structure using the same, and clothing
JP2019200710A Active JP6793238B2 (en) 2014-05-26 2019-11-05 Polyamide fiber manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016523131A Pending JPWO2015182088A1 (en) 2014-05-26 2015-05-21 Polyamide fiber, fiber structure using the same, and clothing

Country Status (6)

Country Link
US (1) US20170191190A1 (en)
EP (1) EP3150751B1 (en)
JP (2) JPWO2015182088A1 (en)
CN (1) CN106574404B (en)
TW (1) TWI695098B (en)
WO (1) WO2015182088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514269B1 (en) * 2016-09-14 2022-04-13 Kureha Corporation Vinylidene fluoride resin fibers and sheet-like structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7050424B2 (en) * 2017-04-24 2022-04-08 Kbセーレン株式会社 Method for manufacturing composite fiber, fabric and fiber structure
TWI687562B (en) * 2018-03-23 2020-03-11 新光合成纖維股份有限公司 Conjugate fiber with moisture-absorbed elongation effect
CN113226102B (en) * 2019-03-05 2022-04-26 株式会社爱世克私 Anti-slip member for equipment or sporting goods, equipment, and sporting goods

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214132B2 (en) * 1972-11-22 1977-04-19
JPS5766116A (en) * 1980-10-08 1982-04-22 Asahi Chem Ind Co Ltd High-flexibility, high-elongation polyamide fiber
JP3379142B2 (en) * 1993-05-19 2003-02-17 東レ株式会社 Nylon 66 rubber reinforcement cord
JP3510731B2 (en) * 1996-04-12 2004-03-29 ユニチカ株式会社 Microporous hollow polyamide fiber and method for producing the same
ES2216425T3 (en) * 1998-12-16 2004-10-16 Kuraray Co., Ltd. THERMOPLASTIC FIBERS OF POLYVINYL ALCOHOL AND ITS PREPARATION PROCEDURE.
JP3784742B2 (en) * 2002-03-29 2006-06-14 株式会社クラレ Highly hygroscopic and water absorbent polyvinyl alcohol copolymer composite fiber
CN101003681A (en) * 2002-08-05 2007-07-25 东丽株式会社 Porous fiber
JP4325616B2 (en) * 2002-08-05 2009-09-02 東レ株式会社 Nanoporous fiber
CN100363541C (en) * 2002-10-23 2008-01-23 东丽株式会社 Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
KR101061028B1 (en) * 2002-10-23 2011-08-31 도레이 카부시키가이샤 Polymer Hybrid Fibers, Fiber Structures, Polymer Hybrid Pellets and Their Manufacturing Methods
EP1788127B1 (en) * 2004-09-03 2011-04-27 Teijin Fibers Limited Composite fiber
CN101313091A (en) * 2005-10-19 2008-11-26 东丽株式会社 Crimped yarn, method for manufacture thereof, and fiber structure
JP2007303019A (en) * 2006-05-10 2007-11-22 Toray Ind Inc Nano-fiber woven or knitted fabric and method for producing the same
CN101074503A (en) * 2006-05-16 2007-11-21 东丽纤维研究所(中国)有限公司 Polymer-alloy fibre and its production
JP2007332479A (en) * 2006-06-13 2007-12-27 Unitica Fibers Ltd Mixture-spun fiber
JP2010229582A (en) * 2009-03-26 2010-10-14 Teijin Techno Products Ltd Method for producing para-type wholly aromatic copolyamide fiber
KR101398699B1 (en) * 2010-10-12 2014-05-27 아사히 가세이 셍이 가부시키가이샤 Multilayered knitted fabric
CN102877188A (en) * 2011-07-15 2013-01-16 东丽纤维研究所(中国)有限公司 Hygroscopic polyamide fiber textile and production method thereof
CN103422190B (en) * 2012-05-15 2016-05-25 东丽纤维研究所(中国)有限公司 A kind of Splittable conjugate fiber and the Superfine Fibre Fabric making thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3514269B1 (en) * 2016-09-14 2022-04-13 Kureha Corporation Vinylidene fluoride resin fibers and sheet-like structure

Also Published As

Publication number Publication date
JPWO2015182088A1 (en) 2017-06-08
TW201608070A (en) 2016-03-01
TWI695098B (en) 2020-06-01
EP3150751A4 (en) 2017-05-24
WO2015182088A1 (en) 2015-12-03
JP6793238B2 (en) 2020-12-02
CN106574404B (en) 2021-01-15
EP3150751A1 (en) 2017-04-05
US20170191190A1 (en) 2017-07-06
CN106574404A (en) 2017-04-19
EP3150751B1 (en) 2021-09-08

Similar Documents

Publication Publication Date Title
JP6793238B2 (en) Polyamide fiber manufacturing method
JP6577589B2 (en) Fabrics and textile products
JP4571566B2 (en) Method for producing fabric capable of adsorbing odor
JP6545368B2 (en) Yarns and fabrics and textiles
JP2006118062A (en) Woven/knitted fabric reducing its porosity when wetted, and method for producing the same, and related textile product
JP5584297B2 (en) Multilayered fabrics and textile products
JP2009024272A (en) Knitted fabric and fibrous product excellent in cool feeling
JP2011012367A (en) Fabric having excellent lightness and textile product
JP2006214056A (en) Woven fabric
JP2006207052A (en) Raised fabric and textile product
JP2010100964A (en) Fabric for gloves, and fibrous product
JP2009167565A (en) Stretchable knitted fabric, method for producing the same, and textile product
JP2012087427A (en) Spun yarn and fabric and textile product
JP5216970B2 (en) Polyester knitted fabric, production method thereof and textile product
JP2011157646A (en) Polyester microfiber
JP4567500B2 (en) Fabrics and textiles whose structure is three-dimensionally changed by water absorption
JP5495286B2 (en) Method for producing hair knitted fabric, hair knitted fabric and textile product
JP2004036035A (en) Conjugate fiber and textile structure
JP4414854B2 (en) Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
JP2010053502A (en) Napped fabric and napped fabric product
JP2010059570A (en) Woven fabric and textile product
JP2012207361A (en) Ultra fine fiber and wiping cloth containing ultra fine fiber
JP2019065435A (en) Yarn, fabric and textile product
JP7201395B2 (en) Glove fabrics and textiles
JP2009074188A (en) Circular knitted fabric and textile product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6793238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150