JP2020031009A - 二次電池の負極集電体用箔 - Google Patents

二次電池の負極集電体用箔 Download PDF

Info

Publication number
JP2020031009A
JP2020031009A JP2018157060A JP2018157060A JP2020031009A JP 2020031009 A JP2020031009 A JP 2020031009A JP 2018157060 A JP2018157060 A JP 2018157060A JP 2018157060 A JP2018157060 A JP 2018157060A JP 2020031009 A JP2020031009 A JP 2020031009A
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
electrode current
foil
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018157060A
Other languages
English (en)
Other versions
JP6806116B2 (ja
Inventor
喜光 織田
Yoshimitsu Oda
喜光 織田
井上 良二
Ryoji Inoue
良二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2018157060A priority Critical patent/JP6806116B2/ja
Publication of JP2020031009A publication Critical patent/JP2020031009A/ja
Application granted granted Critical
Publication of JP6806116B2 publication Critical patent/JP6806116B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】Niの含有量を少なくしながらしわ状の変形の発生を抑制することにより、高容量電池の負極集電体に用いることが可能な二次電池の負極集電体用箔を提供する。【解決手段】この二次電池の負極集電体用箔(負極集電箔5b)は、CuまたはCu基合金により構成される第1Cu層51と、0.6質量%よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層52と、CuまたはCu基合金により構成される第2Cu層53とが、この順に配置され、全体厚みが、200μm以下であり、0.01%耐力が、500MPa以上である。【選択図】図2

Description

この発明は、二次電池の負極集電体用箔に関する。特に、高容量電池に用いる負極集電体用箔に関する。
従来、ステンレス鋼の両面に銅被覆層を有する負極集電体用箔が知られている(たとえば、特許文献1および特許文献2を参照)。
上記特許文献1に開示された負極集電体用箔は、Niを6.0〜28.0%含むステンレス鋼の芯材の両面にCu被覆層が形成されている。負極活物質としては、炭素系材料が用いられている。
また、上記特許文献2に開示された負極集電体用箔は、Niを0〜0.6%含むステンレス鋼の芯材の両面にCu被覆層が形成されている。負極活物質としては、炭素系材料が用いられている。
特許第5726216号 特許第5726217号
ここで、特許文献1および特許文献2には記載されていないが、電池がより高容量になると、負極活物質としては、炭素系材料ではなくSiやSnなどを含む合金系材料が用いられるようになる。こうした高容量電池の場合、負極活物質の充放電に伴う体積変化が大きくなることが知られている。負極活物質の体積変化が大きくなると、これに伴って負極集電体にかかる応力が大きくなる。そのため、高容量電池に用いられる負極集電体用箔は、特許文献1に記載されているようなNiの含有量が多い十分な耐力(降伏点)を有するステンレス鋼により構成されていた。
しかしながら、Niの含有量が多いステンレス鋼は高価であるため、Niの含有量が少ないステンレス鋼を芯材として用いて十分な耐力(降伏点)を得ることができれば、市場が望む負極集電体用箔の提供が可能になる。
そこで、本願発明者は、Niの含有量の少ないステンレス鋼を芯材として用いることを検討した。ところが、特許文献2に記載されているようなNiの含有量が少ないステンレス鋼(Ni:0〜0.6%)もしくはNiを含有しないステンレス鋼を芯材として用いた場合には、耐力(降伏点)が小さくなり、負極集電体の体積変化によって生じる応力が限界値を超えて塑性変形を起こし、負極集電体用箔にしわ状の変形が発生するという問題点が生じた。
本発明は、二次電池の負極集電体用箔における上記のような課題を解決するためになされたものであり、本発明の1つの目的は、負極集電体用箔の芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、負極集電体のしわ状の変形の発生を抑制することにより、高容量電池の負極集電体に用いることが可能な二次電池の負極集電体用箔を提供することである。
本願発明者が、種々の実験を行い鋭意検討したところ、CuまたはCu基合金により構成される第1Cu層と、0.6質量%よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層と、CuまたはCu基合金により構成される第2Cu層とが、この順に配置された負極集電箔を作製することにより、マルテンサイト相を有することによって十分な耐力を有する負極集電体用箔にすることが可能であることを見出した。そして、本発明を完成させた。
すなわち、この発明の一の局面における二次電池の負極集電体用箔は、CuまたはCu基合金により構成される第1Cu層と、0.6質量%よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層と、CuまたはCu基合金により構成される第2Cu層とが、この順に配置され、全体厚みが、200μm以下(より一層好ましくは20μm以下)であり、0.01%耐力が、500MPa以上である。
上記のように、この発明の一の局面における二次電池の負極集電体用箔は、0.6質量%よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層を有している。また、負極集電体用箔は、フェライト相およびマルテンサイト相が存在するステンレス鋼層が芯材として用いられ、その両側に第1Cu層および第2Cu層が配置され、0.01%耐力が500MPa以上である。このように構成することによって、負極集電体用箔に加わる応力が大きくなった場合であっても、負極集電体用箔の芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、芯材が十分な耐力を備えていることにより、負極集電体が塑性変形するのを抑制することができる。そのため、充電および放電に伴う負極活物質の膨張および収縮に起因して繰り返し応力が加わった場合であっても、負極集電体用箔の芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、負極集電体のしわ状の変形の発生を抑制することができる。その結果、本発明の負極集電体用箔は、負極活物質としてSiやSnなどの合金材料が用いられる高容量電池の負極集電体への適用が可能になる。
この発明の一の局面における二次電池の負極集電体用箔において、好ましくは、引張強さが、800MPa以上である。このように構成すれば、負極活物質の充放電に伴う体積変化によって加わる応力が大きい場合であっても、負極集電体用箔が破断することを抑制することができる。また、上記のように0.01%耐力が大きいこととの相乗効果により、負極活物質に充放電容量の大きい合金系材料を用いた場合の充放電による負極活物質の体積変化による応力に確実に耐えることができる。その結果、負極集電体用箔の芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、芯材が十分な耐力および引張強さを備えているので、負極集電体のしわ状の変形の発生が確実に抑制される。
この発明の一の局面における二次電池の負極集電体用箔において、好ましくは、電気抵抗率が7.5μΩ・cm以下であり、より好ましくは、6μΩ・cmである。このように構成すれば、電気抵抗率が小さいため導電率の大きい負極集電体用箔を提供することができる。
この発明の一の局面における二次電池の負極集電体用箔において、好ましくは、ステンレス鋼層は、10.5質量%以上20質量%以下のCrと、0.3質量%以下のCを含み、より好ましくは、ステンレス鋼層は、15質量%以上18質量%以下のCrと、0.01質量%以上0.2質量%以下のCを含み、さらに好ましくは、ステンレス鋼層は、Niを1.5質量%以上2.5質量%以下含む。このように構成すれば、負極集電体用箔の芯材を構成するステンレス鋼層に含まれるCr量が大きいため、負極集電体用箔の芯材の耐食性を向上させることができる。また、このような組成にすることにより、負極集電体用箔の芯材を構成するステンレス鋼がマルテンサイト系ステンレス鋼となるため、熱処理をすることによりフェライト相とマルテンサイト相との2相組織とすることが可能となる。その結果、ステンレス鋼の結晶粒径を細かく制御することが可能となる。
この発明の一の局面における二次電池の負極集電体用箔において、好ましくは、0.01%耐力が、550MPa以上である。このように構成すれば、充電および放電に伴う負極活物質の膨張および収縮に起因して繰り返し応力が加わった場合であっても、負極集電体のしわ状の変形の発生を確実に抑制することができる。
この発明の一の局面における二次電池の負極集電体用箔において、好ましくは、第1Cu層と、ステンレス鋼層と、第2Cu層とが、この順に積層されて拡散接合されたクラッド材により構成されている。このように構成すれば、第1Cu層および第2Cu層とステンレス鋼層とが拡散接合により強い密着力で接合された負極集電体用箔であって、厚みが200μm以下(より一層好ましくは20μm以下)であり、かつ、十分な導電性を有する負極集電体用箔を提供することができる。
この発明の一の局面における二次電池の負極集電体用箔において、好ましくは、第1Cu層および第2Cu層は、めっき層である。このように構成すれば、第1Cu層および第2Cu層の厚みを容易に小さくすることができるため、厚みが200μm以下(より一層好ましくは20μm以下)であり、かつ、十分な導電性を有する二次電池の負極集電体用箔を容易に形成することができる。
本発明によれば、負極集電体用箔の芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、負極集電体のしわ状の変形の発生を抑制することができるとともに、高容量電池の負極集電体に用いることが可能な二次電池の負極集電体用箔を提供することができる。
本発明の第1および第2実施形態による負極集電体用箔を用いた電池を示した断面模式図である。 本発明の第1実施形態による負極集電体用箔を用いた負極を示した断面図である。 本発明の第1実施形態による負極集電体用箔の作製方法を説明するための模式図である。 本発明の第2実施形態による負極集電体用箔を用いた負極を示した断面図である。 本発明の第2実施形態による負極集電体用箔の作製方法を説明するための模式図である。
[第1実施形態]
まず、図1および図2を参照して、本発明の第1実施形態による負極集電箔5bを用いた電池100の構造について説明する。
(電池の構造)
本発明の第1実施形態による負極集電箔5bを用いた電池100は、図1に示すように、いわゆる円筒型(缶型とも呼ばれる)のリチウムイオン二次電池である。この電池100は、円筒状の筐体1と、筐体1の開口を封止する蓋材2と、筐体1内に配置される蓄電要素3とを備えている。
筐体1内には、蓄電要素3と電解液(図示せず)とが収容されている。蓋材2は、アルミニウム合金等から構成されており、電池100の正極端子(電池正極)を兼ねている。蓄電要素3は、正極4と、負極5と、正極4と負極5との間に配置された絶縁性のセパレータ6とが巻回されることによって形成されている。正極4は、コバルト酸リチウムなどの正極活物質と、アルミニウム箔からなる正極集電体(正極集電箔)とを含んでいる。正極集電体(正極集電箔)の表面には、バインダーなどにより正極活物質が固定されている。また、正極4には、蓋材2と正極4とを電気的に接続するための正極リード材7が固定されている。
負極5は、図2に示すように、負極活物質5aと、バインダーなどにより負極活物質5aが固定される負極集電体(以下、負極集電箔5bという。)とを含んでいる。負極活物質5aは、たとえば、リチウムの挿入および脱離が可能な材料である、炭素系材料、SiまたはSnなどの合金系材料から構成されている。合金系材料は、炭素系材料よりも充放電容量が大きく、合金系材料を用いることにより高容量電池にすることができる。負極活物質5aは、リチウムの挿入および脱離に応じて、それぞれ、膨張および収縮する。また、図1に示すように、負極5には、筐体1の内底面1aと負極5とを電気的に接続するための負極リード材8が固定されている。なお、負極集電箔5bは、特許請求の範囲の「二次電池の負極集電体用箔」の一例である。
(負極集電体の構成)
ここで、第1実施形態では、負極集電箔5bは、クラッド材から構成された全体厚みが200μm以下のCu被覆箔50である。なお、全体厚みは電池100の小型化を図るために180μm以下、160μm以下のようにより小さいほど好ましく、より好ましくは50μm以下、より一層好ましくは20μm以下である。Cu被覆箔50は、CuまたはCu基合金により構成される第1Cu層51と、Niを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層52と、CuまたはCu基合金により構成される第2Cu層53とが、この順に配置されている。なお、ステンレス鋼層52と第1Cu層51との接合界面52aおよびステンレス鋼層52と第2Cu層53との接合界面52bでは、金属同士の原子レベルでの接合が生じている。また、第1Cu層51のステンレス鋼層52と接合される側とは反対側の表面51a、および、第2Cu層53のステンレス鋼層52と接合される側とは反対側の表面53aには、それぞれ、負極活物質5aがバインダーによって固定されている。
ステンレス鋼層52(芯材層)を構成する芯材として用いるステンレス鋼は、0.6質量よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在する。また、本発明におけるステンレス鋼は、Crが10.5質量%以上、Cが1.2質量%以下のものを意図する。Crは、好ましくは、10.5質量%以上20質量%以下含まれており、さらに好ましくは、15質量%以上18質量%以下含まれる。Crを多く含有することにより、耐食性が向上する。Cは、好ましくは、0.3質量%以下含まれ、さらに好ましくは、0.01質量%以上0.2質量%以下含まれる。
ステンレス鋼は、熱処理を行うことによりフェライト相とマルテンサイト相との2相組織となり、結晶粒径を微細に制御しやすいマルテンサイト系ステンレス鋼である。マルテンサイト系ステンレス鋼は、たとえば、SUS403、SUS410あるいはSUS431である。SUS431は、SUS403よりCrの含有量が多く耐食性が優れているため好ましい。フェライト相とマルテンサイト相との比率は、好ましくは、フェライト相が45%以下およびマルテンサイト相が55%以上であり、さらに好ましくは、フェライト相が40%以下およびマルテンサイト相が60%以上である。なお、本願発明者は、フェライト相とマルテンサイト相とが存在するステンレス鋼を芯材に用いることにより、オーステンナイト系ステンレスを芯材に用いた場合に近い0.01%耐力と引張強さとを有することは、後述する実験(実施例)により確認済みである。
第1Cu層51および第2Cu層53を構成するCu(材料)は、たとえば、Cu(元素)を99.96質量%以上含む無酸素銅、Cuを99.75質量%以上含むりん脱酸銅、または、Cuを99.9質量%以上含むタフピッチ銅である。また、Cu基合金は、たとえば、無酸素銅の導電性に近い導電性を有するCu−Ni合金、Cu−Zr合金などである。
ここで、第1実施形態では、負極集電箔5bの0.01%耐力は、500MPa以上である。また、好ましくは、負極集電箔5bの0.01%耐力は、550MPa以上である。ここで、負極集電箔5bには、負極活物質5aの充放電による体積変化に起因して応力がかかる。特に、リチウム二次電池の高容量化を図るために、負極活物質5aとして充放電容量の大きいSiあるいはSiを含む合金系材料を用いた場合において、体積の膨張および収縮が大きくなるため負極集電箔5bにかかる応力が炭素系材料を用いた場合に比べて大きくなる。その結果、負極集電箔5bに加わる応力が負極集電箔5bの耐力よりも大きくなることにより、負極集電箔5bに塑性変形が起こり、しわ状の変形が発生する。しわ状の変形が起こることにより、負極活物質5aに亀裂が入り、負極活物質5aが脱落し、電池容量の低下を招く可能性がある。そのため、負極集電箔5bの0.01%耐力は、大きい方が好ましい。
負極集電箔5bの引張強さは、好ましくは、800MPa以上であり、より好ましくは850MPa以上であり、さらに好ましくは、900MPa以上である。上記の通り、負極活物質5aとして充放電容量の大きい合金系材料を用いた場合にかかる応力は、負極活物質5aとして炭素系材料を用い場合に比べて負極集電箔5bにかかる応力が大きくなる。負極集電箔5bにかかる応力が大きいと負極集電箔5bが強く引っ張られるため、破断する可能性がある。そのため、負極集電箔5bの引張強さは、大きい方が好ましい。
また、負極集電箔5bの電気抵抗率は、好ましくは7.5μΩ・cm以下であり、より好ましくは6μΩ・cm以下である。これにより、負極集電箔5bの電気抵抗率が7.5μΩ・cm以下である場合の導電率は23.0%IACS以上になり、負極集電箔5bの電気抵抗率が6μΩ・cm以下である場合の導電率は28.7%IACS以上になる。なお、「負極集電箔5bの導電率が23.0%IACS以上である」とは、体積抵抗率が1.7241μΩ・cmの国際標準軟銅の導電率を100%とした場合に、負極集電箔5bの導電率が23.0(=1.7241(μΩ・cm)/7.5(μΩ・cm)×100)%IACS以上であることを意味する。
(負極集電箔の製造工程)
次に、図2および図3を参照して、第1実施形態における負極集電箔5bの製造工程について説明する。
まず、図3に示すように、ステンレス鋼からなるステンレス鋼板材152と、99質量%以上のCuを含む一対のCu板材151およびCu板材153を準備する。なお、Cu板材151およびCu板材153は、同一の組成を有するCu板材から構成されてもよいし、異なる組成を有するCu板材から構成されてもよい。
そして、ステンレス鋼板材152を一対のCu板材151およびCu板材153によって厚み方向に挟み込んだ状態で、圧延ロール101を用いて冷間(室温、たとえば約20℃以上約40℃以下)下で圧延接合を行う。これにより、ステンレス鋼板材152の両面に一対のCu板材151およびCu板材153がそれぞれ層状に接合されたCu被覆材(Cu被覆箔150a)を作製する。なお、以下、圧延接合工程を経たCu被覆材について、Cu被覆材全体の厚みの大きさに関わらず便宜上、Cu被覆箔という。
そして、Cu被覆箔150aに対して、焼鈍を行う。具体的には、Cu被覆箔150aを、窒素雰囲気などの非酸化雰囲気にされた焼鈍炉102内を通過させる。この際、800℃以上1050℃以下の温度に設定された焼鈍炉102内に0.5分以上3分以下保持されるように、Cu被覆箔150aを焼鈍炉102内に配置する。なお、焼鈍炉102内の温度は、850℃以上1000℃以下が好ましく、より好ましくは、950℃以上1000℃以下である。
焼鈍が行われることにより、ステンレス鋼板材152(後のステンレス鋼層52)とCu板材151(後の第1Cu層51)との接合界面(後の接合界面52a)およびステンレス鋼板材152(後のステンレス鋼層52)とCu板材153(後の第2Cu層53)との接合界面(後の接合界面52b)に、金属同士の原子レベルでの接合が形成される。また、焼鈍時の熱によって、ステンレス鋼板材152(後のステンレス鋼層52)を構成する金属元素の一部がCu板材151(後の第1Cu層51)およびCu板材153(後の第2Cu層53)に拡散しており、たとえば、FeおよびCrなどが拡散している。この結果、図2に示すステンレス鋼層52の両面に第1Cu層51および第2Cu層53が接合されたCu被覆箔50を得るためのクラッド材(Cu被覆箔150b)が作製される。
次いで、焼鈍が行われたCu被覆箔150bに対して、圧延ロール103を用いて冷間下(室温)で圧延を行うことによって、Cu被覆箔150cが作製される。その後、Cu被覆箔150cに対して、必要に応じて焼鈍を行った後、圧延ロール104を用いて冷間(室温)下で仕上げ圧延を行うことによって、Cu被覆箔50(負極集電箔5b)を作製する。
第1実施形態において、負極集電箔5b(Cu被覆箔50)の作製は、図3に示すように、ロール・ツー・ロール方式で連続的に行われる。つまり、ロール状のステンレス鋼板材152、ロール状のCu板材151およびロール状のCu板材153を用いて、ロール状の負極集電箔5bが作製される。
なお、ロール状の負極集電箔5bは、電池100の負極集電体箔として用いられる際に、所望の長さに切断される。
第1実施形態において、CuまたはCu基合金により構成される第1Cu層51と、0.6質量%よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層52と、CuまたはCu基合金により構成される第2Cu層53とが、この順に配置され、全体の厚みが200μm以下であり、0.01%耐力が500MPa以上である限り、負極集電箔5b(Cu被覆箔50)の作製過程で作製されたCu被覆箔150bおよびCu被覆箔150cは、特許請求の範囲の「負極集電体用箔」の一例である。
<第1実施形態の効果>
本実施形態では、以下のような効果を得ることができる。
第1実施形態では、負極集電箔5bは、上記のように、CuまたはCu基合金により構成される第1Cu層51と、0.6質量%よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層52と、CuまたはCu基合金により構成される第2Cu層53とが、この順に配置され、全体厚みが、200μm以下(より一層好ましくは20μm以下)であり、0.01%耐力が、500MPa以上である。このように構成することによって、Cu被覆箔50(負極集電箔5b)の芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、芯材が十分な耐力を備えていることにより、負極集電箔5bが塑性変形するのを抑制することができる。そのため、充電および放電に伴う負極活物質5aの膨張および収縮に起因して繰り返し応力が加わった場合であっても、Cu被覆箔50(負極集電箔5b)の芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、負極集電箔5bのしわ状の変形の発生を抑制することができるため、第1実施形態の負極集電箔5bは負極活物質5aとしてSiやSnなどの合金材料を用いる高容量電池の負極集電体に用いることができる。
また、第1実施形態では、負極集電箔5bは、引張強さが、800MPa以上である。このように構成することによって、負極活物質5aの充放電に伴う体積変化によって加わる応力が大きい場合であっても、負極集電箔5bが破断することを抑制することができる。また、上記のように0.01%耐力が大きいこととの相乗効果により、負極活物質5aに充放電容量の大きい合金系材料を用いた場合の充放電による負極活物質5aの体積変化による応力に確実に耐えることができる。その結果、Cu被覆箔50(負極集電箔5b)の芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも芯材が十分な耐力および引張強さを備えているので、負極集電箔5bのしわ状の変形の発生が確実に抑制される。
また、第1実施形態では、負極集電箔5bは、電気抵抗率が7.5μΩ・cm以下であり、より好ましくは、6μΩ・cmである。このように構成することによって、電気抵抗率が小さいため導電率の大きい負極集電箔5bを提供することができる。
また、第1実施形態では、負極集電箔5bの芯材を構成するステンレス鋼層52は、10.5質量%以上20質量%以下のCrと、0.3質量%以下のCを含み、より好ましくは、ステンレス鋼層52は、15質量%以上18質量%以下のCrと、0.01質量%以上0.2質量%以下のCを含み、さらに好ましくは、ステンレス鋼層52は、Niを1.5質量%以上2.5質量%以下含む。こうすれば、負極集電箔5bの芯材を構成するステンレス鋼層52に含まれるCr量が大きいため、Cu被覆箔50(負極集電箔5b)の芯材の耐食性を向上させることができる。また、このような組成にすることにより、Cu被覆箔50(負極集電箔5b)の芯材を構成するステンレス鋼がマルテンサイト系ステンレス鋼となるため、熱処理をすることによりフェライト層とマルテンサイト相との2相組織とすることが可能となる。その結果、ステンレス鋼の結晶粒径を細かく制御することが可能となる。
また、第1実施形態では、負極集電箔5bは、好ましくは、0.01%耐力が、550MPa以上である。こうすれば、充電および放電に伴う負極活物質5aの膨張および収縮に起因して繰り返し応力が加わった場合であっても、負極集電箔5bのしわ状の変形の発生を確実に抑制することができる。
また、第1実施形態では、負極集電箔5bは、第1Cu層51と、ステンレス鋼層52と、第2Cu層53とが、この順に積層されて拡散接合されたクラッド材により構成されている。このようにすれば、第1Cu層51および第2Cu層53とステンレス鋼層52とが拡散接合により強い密着力で接合されたCu被覆箔50(負極集電箔5b)であって、厚みが200μm以下(より一層好ましくは20μm以下)であり、かつ、十分な導電性を有するCu被覆箔50(負極集電箔5b)を提供することができる。
[第2実施形態]
次に、図1、図4および図5を参照して、本発明の第2実施形態による負極集電箔205bについて説明する。第2実施形態では、上記第1実施形態の負極集電箔5bの第1Cu層51および第2Cu層53の替わりに、第1Cuめっき層251および第2Cuめっき層253を用いた例について説明する。なお、負極集電箔205bは、特許請求の範囲の「二次電池の負極集電体用箔」の一例である。
(電池の構造)
本発明の第2実施形態による負極集電箔205bを用いた電池200は、図1に示すように、負極205を含む蓄電要素203を備えている。負極205は、図4に示すように、負極活物質5aと、負極集電箔205bとを含んでいる。
(負極集電体の構成)
ここで、第2実施形態では、負極集電箔205bは、3層構造である。負極集電箔205bは、ステンレス鋼から構成されるステンレス鋼層252と、ステンレス鋼層252の厚み方向(Z方向)の表面252aおよび表面252bにそれぞれめっきされた第1Cuめっき層251および第2Cuめっき層253とから構成されたCu被覆箔250である。また、第1Cuめっき層251のステンレス鋼層252が配置される側とは反対側の表面251a、および、第2Cuめっき層253のステンレス鋼層252が配置される側とは反対側の表面253aには、それぞれ、負極活物質5aが固定されている。なお、第1Cuめっき層251および第2Cuめっき層253は、それぞれ特許請求の範囲の「第1Cu層」および「第2Cu層」の一例である。
第1Cuめっき層251および第2Cuめっき層253は、主にCu(銅)から構成されている。また、第1Cuめっき層251および第2Cuめっき層253には、ステンレス鋼層252を構成する金属元素の一部が含まれている。この一部の金属元素は、後述する焼鈍において、ステンレス鋼層252から第1Cuめっき層251および第2Cuめっき層253に拡散することによって、第1Cuめっき層251および第2Cuめっき層253の主にステンレス鋼層252側の領域に含まれている。なお、ステンレス鋼層252上に下地層(Niめっき層など)を設け、その下地層上に第1Cuめっき層251および第2Cuめっき層253を設けてもよい。これにより、ステンレス鋼層252と第1Cuめっき層251および第2Cuめっき層253との密着性を高めることが可能である。
ここで、第2実施形態では、負極集電箔205bの0.01%耐力は、500MPa以上である。また、好ましくは、負極集電箔205bの0.01%耐力は、550MPa以上である。第1実施形態と同様に、負極集電箔205bは、負極活物質5aの充放電による体積変化に起因して応力がかかる。特に、リチウム二次電池の高容量化を図るために、負極活物質5aとして充放電容量の大きい合金系材料を用いた場合にかかる応力は、負極活物質5aとして炭素系材料を用い場合に比べて大きくなり、負極集電箔205bにしわ状の変形が発生する可能性が高い。そのため、負極集電箔205bの0.01%耐力は、大きい方が好ましい。
また、負極集電箔205bの引張強さは、好ましくは、800MPa以上であり、より好ましくは850MPa以上であり、さらに好ましくは、900MPa以上である。上記の通り、負極活物質5aとして充放電容量の大きい合金系材料を用いた場合にかかる応力は、負極活物質5aとして炭素系材料を用い場合に比べて大きくなる。そして、負極集電箔205bにかかる応力が大きいと負極集電箔205bが強く引っ張られ破断する可能性があるため、負極集電箔205bの引張強さは、大きい方が好ましい。
また、負極集電箔205bの電気抵抗率は、好ましくは7.5μΩ・cm以下であり、より好ましくは6μΩ・cm以下である。これにより、負極集電箔205bの電気抵抗率が7.5μΩ・cm以下である場合の導電率は、23.0%IACS以上になり、負極集電箔205bの電気抵抗率が6μΩ・cm以下である場合の導電率は28.7%IACS以上になる。なお、「負極集電箔205bの導電率が23.0%IACS以上である」とは、体積抵抗率が1.7241μΩ・cmの国際標準軟銅の導電率を100%とした場合に、負極集電箔205bの導電率が23.0(=1.7241(μΩ・cm)/7.5(μΩ・cm)×100)%IACS以上であることを意味する。なお、第2実施形態のその他の構成は、第1実施形態と同様である。
(負極集電箔の製造工程)
次に、図4および図5を参照して、第2実施形態における負極集電箔205bの製造工程について説明する。
まず、図5に示すように、ステンレス鋼からなるステンレス鋼板材152を準備する。そして、ステンレス鋼板材152に対して、めっき処理を行うことによって、ステンレス鋼板材152(後のステンレス鋼層252)の両面に一対の第1Cuめっき層251および第2Cuめっき層253(図4参照)がそれぞれ層状に形成されたCu被覆箔250aを作製する。
具体的には、ステンレス鋼板材152に対して、電気めっき浴201内を通過させることによって、第1Cuめっき層251および第2Cuめっき層253を作製する。電気めっき浴201には、めっき液(たとえば、硫酸銅水溶液)と、めっき液内に配置されるとともに適所に電極が接続されて陽極となるように構成された、Cu板材201aとが配置されている。そして、ステンレス鋼板材152が陰極となるように構成された状態で、ステンレス鋼板材152とCu板材201aとの間に通電されることにより、めっき液中の銅イオンがステンレス鋼板材152の両面に銅として析出し、Cu被膜を形成する。このCu被膜は、銅イオンがCu板材201aから少しずつめっき液中に溶け込んでステンレス鋼板材152の両面に析出するため、やがて第1Cuめっき層251および第2Cuめっき層253に成長する。こうして、ステンレス鋼板材152の両面に一対の第1Cuめっき層251および第2Cuめっき253がそれぞれ形成され第1Cuめっき層251と、ステンレス鋼板材152(後のステンレス鋼層252)と、第2Cuめっき253とが、この順に配置されたCu被覆箔250aが作製される。図5では図示を省略しているが、めっき前には少なくともステンレス鋼板材152の洗浄が行われ、めっき後には少なくともCu被覆箔250aの洗浄および乾燥が行われる。
その後、Cu被覆箔250aに対して、圧延ロール105を用いて冷間(室温、たとえば約20℃以上約40℃以下)下で圧延を行うことによって、Cu被覆箔250bを作製する。
そして、Cu被覆箔250bに対して、上記第1実施形態の焼鈍と同様に焼鈍炉106を用いて焼鈍を行う。これにより、ステンレス鋼板材152からなるステンレス鋼層252の両面に焼鈍を経た第1Cuめっき層251および第2Cuめっき層253が配置されたCu被覆箔250cが作製される。
一方、上記第1実施形態の焼鈍と同様にして焼鈍が行われたCu被覆箔250cでは、焼鈍時の熱によって、ステンレス鋼層52を構成するステンレス鋼板材152の金属元素の一部が、第1Cuめっき層251および第2Cuめっき層253に拡散している。
そして、焼鈍が行われたCu被覆箔250cに対して、上記第1実施形態と同様に、圧延ロール107を用いて冷間(室温)下で圧延を行うことによって、200μm以下の厚みを有するCu被覆箔250(負極集電箔205b)を作製する。
なお、第2実施形態において、負極集電箔205b(Cu被覆箔250)の作製は、図5に示すように、ロール・ツー・ロール方式で連続的に行われる。つまり、ロール状のステンレス鋼板材152を用いて、ロール状の負極集電箔205bが作製される。また、電気めっき浴201は、いわゆるフープめっき用の電気めっき浴装置であり、焼鈍炉106は、連続炉である。なお、ロール状の負極集電箔205bは、電池200の負極集電箔205bとして用いられる際に、所望の長さに切断される。
第2実施形態において、CuまたはCu基合金により構成される第1Cuめっき層251と、0.6質量%よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層252またはステンレス鋼層252を構成するステンレス鋼板152と、CuまたはCu基合金により構成される第2Cuめっき層253とが、この順に配置され、全体の厚みが200μm以下であり、0.01%耐力が500MPa以上である限り、負極集電箔205b(Cu被覆箔250)の作製過程で作製されたCu被覆箔250a、Cu被覆箔250bおよびCu被覆箔250cは、特許請求の範囲の「負極集電体用箔」の一例である。
<第2実施形態の効果>
第2実施形態では、以下のような効果を得ることができる。
第2実施形態では、負極集電箔205bの芯材を構成するステンレス鋼に含まれるNi量が0.6質量%よりも大きく3.0質量%以下であり、負極集電箔205bは、0.01%耐力が500MPa以上である。このように構成することによって、負極集電箔205bに加わる応力が大きくなった場合であっても、負極集電箔205bの芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、芯材が十分な耐力を備えていることにより、負極集電箔205bが塑性変形するのを抑制することができる。そのため、充電および放電に伴う負極活物質205aの膨張および収縮に起因して繰り返し応力が加わった場合であっても、負極集電箔205bの芯材を構成するステンレス鋼に含まれるNi量を少なくしながらも、負極集電箔205bのしわ状の変形の発生を抑制することができるため、第2実施形態の負極集電箔205bは負極活物質5aとしてSiやSnなどの合金材料を用いる高容量電池の負極集電体に用いることができる。
第2実施形態では、負極集電箔205bは、第1Cuめっき層251および第2Cuめっき層253を備える。このように構成すれば、Cuめっき層の厚みを容易に小さくすることができるため、厚みが200μm以下(より一層好ましくは20μm以下)であり、かつ、十分な導電性を有する二次電池の負極集電体用箔を容易に形成することができる。なお、第2実施形態のその他の効果は、上記第1実施形態の効果と同様である。
[実施例]
次に、上記第1実施形態の効果を確認するために行った実験について説明する。
(実施例1のCu被覆箔の作製)
上記第1実施形態の製造方法に基づいて、実施例1のCu被覆箔150cを作製した。具体的には、Cを0.07質量%、Siを0.50質量%、Mnを0.3質量%、Niを2.0質量%およびCrを16.3質量%含むステンレス鋼(JIS規格のSUS431相当材)からなるステンレス鋼板材152と、C1020(JIS H 0500に準拠)の無酸素銅からなる一対のCu板材151およびCu板材153とを準備した。準備したステンレス鋼板材152の厚みは1mmであり、一対のCu板材151およびCu板材153の厚みは、共に0.33mmである。なお、Cu板材151とステンレス鋼板材152とCu板材153との厚み比(Cu1:SUS:Cu2)は、1:3:1となる。
そして、ステンレス鋼板材152を一対のCu板材151およびCu板材153によって厚み方向に挟み込んだ状態で、圧延ロール103を用いて冷間(室温)下で圧延接合を行うことによって、ステンレス鋼板材152の両面に一対のCu板材151およびCu板材153がそれぞれ接合され、全体の厚みが0.8mmのCu被覆箔150aを作製した。その後、圧延したCu被覆箔150aを800℃で焼鈍し、Cu被覆箔150bを作製した。
そして、焼鈍したCu被覆箔150bに対して、圧延ロール103を用いて冷間(室温)下で圧延を行うことによって、全体の厚みが0.16mmのCu被覆箔150cを作製した。この後、Cu被覆箔150cに対して必要に応じて焼鈍を行った後、図3に示すように、仕上げ圧延によって、全体の厚みが0.16mmのCu被覆箔150cを、全体の厚みが20μm以下のCu被覆箔50(負極集電箔5b)に形成することができる。なお、各種測定およびその結果に基づく評価は、全体の厚みが小さい仕上げ圧延後のCu被覆箔50よりも全体の厚みが大きい仕上げ圧延前のCu被覆箔150cを用いることにより信頼性が向上する。この点は、以下の実施例および比較例についても同様である。なお、Cu被覆箔150cを構成する第1Cu層51とステンレス鋼層52と第2Cu層53の厚み比(Cu1:SUS:Cu2)は、1:3:1であった。Cu被覆箔150cの芯材を構成するステンレス鋼の結晶相の比率は、後述するEPMAを用いた分析による。
(実施例2のCu被覆箔の作製)
上記第1実施形態の製造方法に基づいて、実施例2のCu被覆箔150cを作製した。具体的には、Cを0.07質量%、Siを0.50質量%、Mnを0.3質量%、Niを2.0質量%およびCrを16.3質量%含むステンレス鋼(JIS規格のSUS431相当材)からなるステンレス鋼板材152と、C1020(JIS H0500に準拠)の無酸素銅からなる一対のCu板材151およびCu板材153とを準備した。なお、ステンレス鋼板材152の厚みは1mmであり、一対のCu板材151およびCu板材153の厚みは、共に0.3mmである。
そして、ステンレス鋼板材152を一対のCu板材151およびCu板材153によって厚み方向に挟み込んだ状態で、圧延ロール101を用いて冷間(室温)下で圧延接合を行うことによって、ステンレス鋼板材152の両面に一対のCu板材151およびCu板材153がそれぞれ接合され、全体の厚みが0.8mmのCu被覆箔150aを作製した。その後、圧延したCu被覆箔150aを1000℃で焼鈍し、Cu被覆箔150bを作製した。
そして、作製したCu被覆箔150bに対して、圧延ロール103を用いて冷間(室温)下で圧延を行うことによって、全体の厚みが0.16mmのCu被覆箔150cを作製した。なお、Cu被覆箔150cを構成する第1Cu層51とステンレス鋼層52と第2Cu層53の厚み比(Cu1:SUS:Cu2)は、3:10:3であった。Cu被覆箔150cの芯材を構成するステンレス鋼の結晶相の比率は、後述するEPMAを用いた分析による。
(比較例1のCu被覆箔の作製)
上記第1実施形態の製造方法に基づいて、比較例1のCu被覆箔150cを作製した。具体的には、Cを0.07質量%、Siを0.50質量%、Mnを0.3質量%、Crを18質量%含み、かつNiを含まないステンレス鋼(JIS規格のSUS430相当材)からなるステンレス鋼板材152を用いた点を除き、実施例1のCu被覆箔150cと同じ方法で、比較例1の全体の厚みが0.16mmのCu被覆箔150cを作製した。なお、Cu被覆箔150cを構成する第1Cu層51とステンレス鋼層52と第2Cu層53の厚み比(Cu1:SUS:Cu2)は、1:3:1であった。Cu被覆箔150cの芯材を構成するステンレス鋼の結晶相の比率は、後述するEPMAを用いた分析による。
(比較例2のCu被覆箔の作製)
上記第1実施形態の製造方法に基づいて、比較例2のCu被覆箔150cを作製した。具体的には、Cを0.07質量%、Siを0.50質量%、Mnを0.3質量%、Niを7質量%、およびCrを17質量%含むステンレス鋼(JIS規格のSUS304相当材)からなるステンレス鋼板材152を用いた点と、焼鈍温度を1050℃にした点とを除き、実施例1のCu被覆箔150cと同じ方法で、比較例2の全体の厚みが0.16mmのCu被覆箔150cを作製した。なお、Cu被覆箔150cを構成する第1Cu層51とステンレス鋼層52と第2Cu層53の厚み比(Cu1:SUS:Cu2)は、1:3:1であった。Cu被覆箔150cの芯材を構成するステンレス鋼の結晶相は、後述するEPMAを用いた分析による。
上記のように作製した実施例1、実施例2、比較例1および比較例2の引張強さ、0.01%耐力および電気抵抗率を測定した。また、電気抵抗率の値を基に導電率IACSを算出した。引張強さは、JIS Z 2241に基づく引張試験によって測定した。0.01%耐力は、引張試験によって得られた応力―歪曲線(グラフ)において、歪が0.01%の位置に対応する応力値である。電気抵抗率は、JIS C 2525に基づいて測定した。結晶相の比率(表1参照)は、ステンレス鋼の組織をEPMA(Electron Probe Micro Analyzer)を用いてCrおよびNiを対象とするマッピング分析を行い、Crの高濃度領域をフェライト相と見做し、Niの高濃度領域をマルテンサイト相と見做すことにより求めた、Crの高濃度領域とNiの高濃度領域との面積比率である。
(測定結果)
作製した実施例1、実施例2、比較例1および比較例2の測定結果を、それぞれ、表1に示す。
Figure 2020031009
実施例1では、SUS431相当材を、ステンレス鋼板材152を構成するステンレス鋼として用い、焼鈍温度800℃で焼鈍を行い、引張強さが902MPa、0.01%耐力が591MPa、電気抵抗率が4.8μΩ・cmおよび導電率が36%IACSとなった。また、実施例1では、ステンレス鋼により構成された芯材の結晶相は、フェライト相の面積比率が43%を占め、マルテンサイト相の面積比率が57%を占めた。
また、実施例2では、SUS431相当材を実施例1と同様に用い、焼鈍温度1000℃で焼鈍を行い、引張強さが1109MPa、0.01%耐力が700MPa、電気抵抗率が5.4μΩ・cmおよび導電率が32%IACSとなった。また、実施例2では、ステンレス鋼により構成された芯材の結晶相は、フェライト相の面積比率が36%を占め、マルテンサイト相の面積比率が64%を占めた。
実施例1と実施例2とを比較すると、同じSUS431相当材を用いてはいても、実施例2では、引張強さが約1.23倍になり、0.01%耐力が約1.18倍になり、電気抵抗率が約1.13倍になり、導電率が約0.89倍になり、マルテンサイト相の面積比率が約1.12倍になった。この結果から、ステンレス鋼板材152を構成するステンレス鋼として同等のSUS431相当材を用いた場合であっても、機械的強度および電気的特性の増減制御が可能であること、マルテンサイト相の面積比率が大きいことによって、機械的強度が高くなり、電気的特性がやや低下する傾向があることを見出すことができた。
また、比較例1では、汎用的に使用されるフェライト系のSUS430相当材を、ステンレス鋼板材152を構成するステンレス鋼として用い、焼鈍温度800℃で焼鈍を行い、引張強さが627MPa、0.01%耐力が396MPa、電気抵抗率が4.7μΩ・cmおよび導電率が37%IACSとなった。また、比較例1では、ステンレス鋼により構成された芯材の結晶相は、フェライト層の面積比率が100%を占め、マルテンサイト相は確認されなかった。
機械的強度に関し、比較例1と実施例1とを比較すると、比較例1では、引張強さが約0.70倍になり、0.01%耐力が約0.67倍になり、比較例1の引張強さおよび0.01%耐力のいずれもが実施例1よりも劣る結果になった。また、比較例1と実施例2を比較すると、比較例1では、引張強さが約0.57倍になり、0.01%耐力が約0.53倍になり、比較例1の引張強さおよび0.01%耐力のいずれもが実施例2よりも劣る結果になった。
電気的特性に関し、比較例1と実施例1とを比較すると、比較例1では、電気抵抗率が約0.98倍になり、導電率が約1.03倍になり、比較例1の電気抵抗率および導電率のいずれもが実施例1と同等程度になる結果になった。また、比較例1と実施例2とを比べると、電気抵抗率が約0.87倍になり、導電率が約1.16倍になり、比較例1の電気抵抗率および導電率のいずれもが実施例2よりも勝る結果になった。
また、比較例2では、汎用的に使用されるオーステナイト系のSUS304相当材を、ステンレス鋼板材152を構成するステンレス鋼として用い、焼鈍温度1050℃で焼鈍を行い、引張強さが1132MPa、0.01%耐力が653MPa、電気抵抗率が5.6μΩ・cmおよび導電率が31%IACSとなった。また、比較例2では、ステンレス鋼により構成された芯材の結晶相は、オーステナイト相の面積比率が59%を占め、マルテンサイト相の面積比率が41%を占めたが、フェライト相は確認されなかった。
機械的強度に関し、比較例2と実施例1とを比較すると、比較例2では、引張強さが約1.25倍になり、0.01%耐力が約1.10倍になり、比較例2の引張強さおよび0.01%耐力のいずれもが実施例1よりも勝る結果になった。また、比較例2と実施例2とを比較すると、比較例2では、引張強さが約1.02倍になり、0.01%耐力が約0.93倍になり、比較例2の引張強さは実施例2と同等程度になったが、比較例2の0.01%耐力は実施例2よりも劣る結果になった。
電気的特性に関し、比較例2と実施例1とを比較すると、比較例2では、電気抵抗率が約1.17倍になり、導電率が約0.86倍になり、比較例2の電気抵抗率および導電率のいずれもが実施例1よりも劣る結果になった。また、比較例2と実施例2とを比べると、電気抵抗率が約1.04倍になり、導電率が約0.97倍になり、比較例2の電気抵抗率および導電率のいずれもが実施例2と同等もしくは実施例2よりも劣る結果になった。
上記の結果から、本発明の実施形態として例示した実施例1および実施例2のいずれもが、7.5μΩ・cm以下の好ましい電気抵抗率を有し、かつ、高容量電池の負極集電体(負極集電箔)として用いるために十分な500MPa以上の0.01%耐力を有していることが判明した。したがって、500MPa以上の0.01%耐力を有していることによって負極集電体(負極集電箔)のしわ状の変形を抑制することが可能な点で、本発明の実施形態として例示した実施例1および実施例2を含む、全体の厚みが200μm以下のCu被覆箔(負極集電体用箔)は高容量電池の負極集電体用箔として好適であることを見出すことができた。
また、高容量電池の負極集電体の電気的特性(電気抵抗率、導電率)がより重要になる場合は、実施例1のような構成を有するCu被覆箔(負極集電体用箔)が好適であることを見出すことができた。また、高容量電池の負極集電体の機械的強度(引張強さ、0.01%耐力)がより重要になる場合は実施例2のような構成を有するCu被覆箔(負極集電体用箔)が好適であることを見出すことができた。
また、実施例1および実施例2の上記の結果から、焼鈍温度を変更することにより、ステンレス鋼により構成された芯材の結晶相の比率、すなわちフェライト相およびマルテンサイト相の面積比率を変更すること、およびマルテンサイト相の面積比率を増大させることが可能であることを見出すことができた。また、焼鈍温度を適度に高くすることにより、マルテンサイト相の面積比率を増大させることが可能であることを見出すことができた。また、Niが2質量%である実施例1および実施例2とNiが7質量%である比較例2との結果から、Cu被覆箔(負極集電体用箔)の芯材を構成するステンレス鋼に含まれるNi量が増えると、マルテンサイト相の面積比率が減少している。比較例2では、オーステナイト相の割合(59%)よりもマルテンサイト相の割合(41%)が少ないが、このマルテンサイト相は加工誘起によりオーステナイト相の一部が変化することにより形成されたものである。
上記の観点から、焼鈍温度を上げてマルテンサイト相を増やすことにより0.01%耐力および引張強さを大きくすることができることを見出した。また、マルテンサイト相の面積比率が増加の限界に達した場合は所定範囲内でNi含有量を増やすことにより十分な引張強さと0.01%耐力とを得ることができることを見出すことができた。なお、焼鈍を行う観点から、ステンレス鋼の組織中に存在するCを固溶させてマルテンサイト相のC濃度を高めることにより、ステンレス鋼の組織(マルテンサイト相)を強化することが可能であると考えられる。一方、焼鈍温度を過度に低くすると、ステンレス鋼の組織中のマルテンサイト相の面積比率が減少するだけでなく、スレンレス鋼の組織中のCが炭化物として存在するようになり、相対的にマルテンサイト相のC濃度が低下し、ステンレス鋼組織(マルテンサイト相)が弱化する可能性があると考えられる。
[変形例]
今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1実施形態では、Cu被覆箔50(二次電池の負極集電体用箔)から構成された負極集電箔5bをリチウムイオン二次電池(電池100)に適用した例を示し、上記第2実施形態では、Cu被覆箔250(二次電池の負極集電体用箔)から構成された負極集電箔205bをリチウムイオン二次電池(電池200)に適用した例を示したが、本発明はこれらに限られない。本発明では、二次電池の負極集電箔から構成された負極集電箔をリチウムイオン二次電池以外の二次電池に適用してもよい。たとえば、負極集電箔をナトリウムイオン二次電池またはマグネシウム二次電池などに適用してもよい。
たとえば、上記第1実施形態および第2実施形態では、Cu被覆箔50(二次電池の負極集電体用箔)から構成された負極集電箔5bをリチウムイオン二次電池(電池100)に適用した例を示し、上記第2実施形態では、Cu被覆箔250(二次電池の負極集電体用箔)から構成された負極集電箔205bをリチウムイオン二次電池(電池200)に適用した例を示したが、本発明はこれらに限られない。本発明では、いわゆるラミネート型のリチウムイオン二次電池であってもよい。
また、上記第1実施形態ではCu層/ステンレス鋼層/Cu層の3層構造のクラッド材からなるCu被覆箔50を負極集電箔5bとして用いた例を示し、また、上記第2実施形態ではCuめっき層/ステンレス鋼層/Cuめっき層の3層構造のCu被覆箔250を負極集電箔205bとして用いた例を示したが、本発明はこれらに限られない。本発明では、負極集電箔(Cu被覆箔)は、3層構造に限られない。たとえば、クラッド材のCu層またはCuめっき層のステンレス鋼層とは反対側の表面に、Cu層(またはCuめっき層)の酸化を抑制する金属層を形成してもよい。また、上記第2実施形態で記載したように、Cuめっき層とステンレス鋼層との間に微小の厚みを有する下地層を配置してもよい。また、この下地層は、圧延によるクラッド材からなるCu被覆箔にも適用できる。この場合、4層構造以上の層構造を有する負極集電体用箔の厚みは、20μm以下であるのがよい。
また、上記第2実施形態では、電解めっき処理として電気めっき浴201により、ステンレス鋼板材152(後のステンレス鋼層52)の両面に一対のCuめっき層251および253をそれぞれ形成した例を示したが、本発明はこれに限られない。本発明では、無電解めっき処理により、ステンレス鋼層の両面に一対のCuめっき層をそれぞれ形成してもよい。
また、上記第1および第2実施形態では、第1Cu層51および第2Cu層53(Cuめっき層251および253)を、主にCu(銅)から構成した例を示したが、本発明はこれに限られない。本発明では、第1Cu層51および第2Cu層53を作製するための一対のCu板材151および153をCu基合金から構成してもよいし、Cuめっき層251およびCuめっき層253を形成するためのCu板材201aをCu基合金から構成してもよい。
5a 負極活物質
5b、205b 負極集電箔(二次電池の負極集電体用箔)
52 ステンレス鋼層
51 第1Cu層
52 第2Cu層
251 第1Cuめっき層(第1Cu層)
253 第2Cuめっき層(第2Cu層)

Claims (9)

  1. CuまたはCu基合金により構成される第1Cu層と、0.6質量%よりも大きく3.0質量%以下のNiを含むステンレス鋼により構成され、フェライト相およびマルテンサイト相が存在するステンレス鋼層と、CuまたはCu基合金により構成される第2Cu層とが、この順に配置され、
    全体の厚みが200μm以下であり、0.01%耐力が500MPa以上である、二次電池の負極集電体用箔。
  2. 引張強さが、800MPa以上である、請求項1に記載の二次電池の負極集電体用箔。
  3. 電気抵抗率が7.5μΩ・cm以下である、請求項1または2に記載の二次電池の負極集電体用箔。
  4. 前記ステンレス鋼層は、10.5質量%以上20質量%以下のCrと、0.3質量%以下のCを含む、請求項1〜3のいずれか1項に記載の二次電池の負極集電体用箔。
  5. 前記ステンレス鋼層は、15質量%以上18質量%以下のCrと、0.01質量%以上0.2質量%以下のCを含む、請求項1〜4のいずれか1項に記載の二次電池の負極集電体用箔。
  6. 前記ステンレス鋼層は、Niを1.5質量%以上2.5質量%以下含む、請求項1〜5のいずれか1項に記載の二次電池の負極集電体用箔。
  7. 0.01%耐力が、550MPa以上である、請求項1〜6のいずれか1項に記載の二次電池の負極集電体用箔。
  8. 前記第1Cu層と、前記ステンレス鋼層と、前記第2Cu層とが、この順に積層されて拡散接合されたクラッド材により構成されている、請求項1〜7のいずれか1項に記載の二次電池の負極集電体用箔。
  9. 前記第1Cu層および前記第2Cu層は、めっき層である、請求項1〜7のいずれか1項に記載の二次電池の負極集電体用箔。
JP2018157060A 2018-08-24 2018-08-24 二次電池の負極集電体用箔 Active JP6806116B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018157060A JP6806116B2 (ja) 2018-08-24 2018-08-24 二次電池の負極集電体用箔

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018157060A JP6806116B2 (ja) 2018-08-24 2018-08-24 二次電池の負極集電体用箔

Publications (2)

Publication Number Publication Date
JP2020031009A true JP2020031009A (ja) 2020-02-27
JP6806116B2 JP6806116B2 (ja) 2021-01-06

Family

ID=69622747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018157060A Active JP6806116B2 (ja) 2018-08-24 2018-08-24 二次電池の負極集電体用箔

Country Status (1)

Country Link
JP (1) JP6806116B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165380A1 (en) * 2021-01-29 2022-08-04 Hunt Energy Enterprises, L.L.C. Anode for zn-based batteries

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217184A (ja) * 1989-02-16 1990-08-29 Hitachi Cable Ltd 制振効果を有する導電用クラッドばね材の製造方法
JPH07118805A (ja) * 1993-08-31 1995-05-09 Nkk Corp 加工性に優れた2相系ステンレス鋼およびその加工方法
JPH07316740A (ja) * 1994-05-26 1995-12-05 Nisshin Steel Co Ltd 高強度複相組織ステンレス鋼およびその製造方法
JP2005332716A (ja) * 2004-05-20 2005-12-02 Hitachi Maxell Ltd アルカリ電池およびその製造方法
JP2012033470A (ja) * 2010-07-09 2012-02-16 Nisshin Steel Co Ltd 銅被覆鋼箔、負極集電体及びその製法並びに電池
JP2015164739A (ja) * 2014-03-03 2015-09-17 株式会社特殊金属エクセル 三層クラッド構造を有するリチウムイオン二次電池用端子素材を製造する方法
JP2017160491A (ja) * 2016-03-09 2017-09-14 日新製鋼株式会社 加工性に優れた高強度ステンレス鋼材とその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217184A (ja) * 1989-02-16 1990-08-29 Hitachi Cable Ltd 制振効果を有する導電用クラッドばね材の製造方法
JPH07118805A (ja) * 1993-08-31 1995-05-09 Nkk Corp 加工性に優れた2相系ステンレス鋼およびその加工方法
JPH07316740A (ja) * 1994-05-26 1995-12-05 Nisshin Steel Co Ltd 高強度複相組織ステンレス鋼およびその製造方法
JP2005332716A (ja) * 2004-05-20 2005-12-02 Hitachi Maxell Ltd アルカリ電池およびその製造方法
JP2012033470A (ja) * 2010-07-09 2012-02-16 Nisshin Steel Co Ltd 銅被覆鋼箔、負極集電体及びその製法並びに電池
JP2015164739A (ja) * 2014-03-03 2015-09-17 株式会社特殊金属エクセル 三層クラッド構造を有するリチウムイオン二次電池用端子素材を製造する方法
JP2017160491A (ja) * 2016-03-09 2017-09-14 日新製鋼株式会社 加工性に優れた高強度ステンレス鋼材とその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022165380A1 (en) * 2021-01-29 2022-08-04 Hunt Energy Enterprises, L.L.C. Anode for zn-based batteries

Also Published As

Publication number Publication date
JP6806116B2 (ja) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6592946B2 (ja) 電池負極リード材用クラッド材および電池負極リード材用クラッド材の製造方法
JP5329290B2 (ja) リチウムイオン電池の負極集電体用クラッド材及びその製造方法
JP5753830B2 (ja) 燃料電池セパレータおよびその製造方法
JP6124801B2 (ja) 非水系電解液二次電池の負極集電体用鋼箔及びその製造方法
JP2010182593A (ja) 燃料電池セパレータ用耐食皮膜および燃料電池セパレータ
JP6610098B2 (ja) Niめっき鋼箔及び電池導電部材、Niめっき鋼箔の製造方法
JP6806116B2 (ja) 二次電池の負極集電体用箔
WO2021095203A1 (ja) 二次電池の負極集電体用箔
JP6394842B1 (ja) 二次電池の負極集電体用箔およびその製造方法
JP7052246B2 (ja) 二次電池負極集電体用材
JP4930222B2 (ja) 固体高分子形燃料電池セパレータ用オーステナイト系ステンレス鋼およびそれを用いた固体高分子形燃料電池
CN109216591B (zh) 电池用Ni材、负极和电池壳材
JP7172311B2 (ja) 二次電池の負極集電体用箔およびその製造方法、二次電池の負極およびその製造方法
CN109565054B (zh) 二次电池的负极集电体用包层材料及其制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6806116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350