JP2020028132A - Terminal structure of superconducting apparatus - Google Patents

Terminal structure of superconducting apparatus Download PDF

Info

Publication number
JP2020028132A
JP2020028132A JP2018149959A JP2018149959A JP2020028132A JP 2020028132 A JP2020028132 A JP 2020028132A JP 2018149959 A JP2018149959 A JP 2018149959A JP 2018149959 A JP2018149959 A JP 2018149959A JP 2020028132 A JP2020028132 A JP 2020028132A
Authority
JP
Japan
Prior art keywords
superconducting
insulating
normal
terminal structure
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018149959A
Other languages
Japanese (ja)
Inventor
祐一 芦辺
Yuichi Ashibe
祐一 芦辺
智男 三村
Tomoo Mimura
智男 三村
昌幸 棚澤
Masayuki Tanazawa
昌幸 棚澤
山口 博史
Hiroshi Yamaguchi
博史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Sumitomo Electric Industries Ltd
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Tokyo Electric Power Co Holdings Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018149959A priority Critical patent/JP2020028132A/en
Publication of JP2020028132A publication Critical patent/JP2020028132A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Cable Accessories (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

To provide a terminal structure of a superconducting apparatus which is small-sized and also improves workability.SOLUTION: A terminal structure of a superconducting apparatus comprises a normally-conductive conductor extraction part electrically connected with the end of a superconductor of the superconducting apparatus. The conductor extraction part comprises a cylindrical part, a superconducting side connection part having a housing part housing the end of the superconductor while encapsulating one end side in the axial direction of the cylindrical part, and a normally-conductive side connection part being a metal fitting connected with a normally-conductive apparatus while encapsulating the other end side in the axial direction of the cylindrical part, and furthermore, comprises a non-vacuum heat-insulating material which covers an outer peripheral surface in the radial direction of the cylindrical part.SELECTED DRAWING: Figure 1

Description

本開示は、超電導機器の端末構造に関する。   The present disclosure relates to a terminal structure of a superconducting device.

超電導機器の一つとして超電導ケーブルがある。超電導ケーブルは、小型でありながら、大容量の電力を低損失で送電可能なことから、省エネルギー技術として期待されている。超電導ケーブルは、フォーマの外周に超電導線材をスパイラル巻きして形成された超電導導体層を有するケーブルコアと、このケーブルコアを収納し、上記超電導導体層を超電導状態に維持する冷媒(例えば液体窒素)が充填される断熱管とを備える構成が代表的である。   There is a superconducting cable as one of the superconducting devices. The superconducting cable is expected as an energy-saving technology because it can transmit a large amount of power with low loss while being small. The superconducting cable has a cable core having a superconducting conductor layer formed by spirally winding a superconducting wire around the outer periphery of a former, and a refrigerant (for example, liquid nitrogen) that houses the cable core and maintains the superconducting conductor layer in a superconducting state. And a heat-insulating tube filled with water.

特許文献1には、超電導機器の一つである超電導ケーブルの超電導導体と、常温で利用される常電導ケーブルの導体と、の間に常電導材料からなる引出部を介在させた超電導機器(超電導ケーブル)の端末構造が開示されている。この端末構造では、超電導ケーブルのケーブルコアに接続される棒状の常電導引出部と、先端が常温環境に配置される棒状の導体引出部と、両引出部の外周を覆う常温側真空層及び端末真空層と、を備える。   Patent Literature 1 discloses a superconducting device (superconducting device) in which a lead portion made of a normal conducting material is interposed between a superconducting conductor of a superconducting cable, which is one of superconducting devices, and a conductor of a normal conducting cable used at normal temperature. Cable) is disclosed. In this terminal structure, a rod-shaped normal conducting lead portion connected to the cable core of the superconducting cable, a rod-shaped conductor lead portion whose tip is arranged in a normal temperature environment, a room temperature side vacuum layer covering the outer periphery of both the lead portions, and a terminal. A vacuum layer.

特開2015−192552号公報JP 2015-192552 A

従来の超電導機器の端末構造では、引出部の位置に断熱のための複数の真空層が形成されているため、当該端末構造が複雑で、大型化し易い。施工スペースによってはこのような大型の端末構造を構築し難い場合があり、端末構造の小型化が望まれる。   In the conventional terminal structure of a superconducting device, since a plurality of vacuum layers for heat insulation are formed at the position of the lead-out portion, the terminal structure is complicated and easily enlarged. Depending on the construction space, it may be difficult to construct such a large terminal structure, and miniaturization of the terminal structure is desired.

また、複数の真空層を形成する工程が煩雑であるため、従来の超電導機器の端末構造の施工性が芳しくないという問題もある。   Further, since the process of forming a plurality of vacuum layers is complicated, there is a problem that the workability of the conventional terminal structure of the superconducting device is not good.

そこで本開示は、小型で施工性にも優れる超電導機器の端末構造を提供することを目的の一つとする。   Therefore, an object of the present disclosure is to provide a terminal structure of a superconducting device which is small and has excellent workability.

本開示の超電導機器の端末構造は、
超電導機器の超電導導体の端部に電気的に接続される常電導の導体引出部を備える超電導機器の端末構造であって、
前記導体引出部は、
筒状部と、
前記筒状部の軸方向の一端側を封止すると共に、前記超電導導体の端部を収納する収納部を有する超電導側接続部と、
前記筒状部の軸方向の他端側を封止すると共に、常電導機器に接続される金具となる常電導側接続部と、を備え、
更に、前記筒状部の径方向の外周面を覆う非真空断熱体を備える。
The terminal structure of the superconducting device of the present disclosure is:
A terminal structure of a superconducting device including a normal-conduction conductor lead-out portion electrically connected to an end of a superconducting conductor of the superconducting device,
The conductor lead-out portion,
A tubular portion,
A superconducting-side connecting portion that seals one end side of the cylindrical portion in the axial direction and has a storage portion that stores an end of the superconducting conductor,
Along with sealing the other end of the cylindrical portion in the axial direction, a normal-conducting-side connection portion serving as a bracket connected to a normal-conduction device,
Further, a non-vacuum heat insulator is provided to cover a radially outer peripheral surface of the cylindrical portion.

上記の超電導機器の端末構造は、小型で、施工性にも優れる。   The terminal structure of the above-described superconducting device is small and has excellent workability.

実施形態1の超電導機器の端末構造の概略縦断面図である。FIG. 2 is a schematic vertical sectional view of a terminal structure of the superconducting device according to the first embodiment. 図1の導体引出部近傍の部分拡大図である。FIG. 2 is a partially enlarged view in the vicinity of a conductor lead-out portion of FIG. 導体引出部の概略縦断面図である。It is a schematic longitudinal cross-sectional view of a conductor lead-out part. 実施形態1の超電導機器の端末構造に備える超電導ケーブルの断面斜視図である。It is a sectional perspective view of the superconducting cable with which the terminal structure of the superconducting device of Embodiment 1 is provided. 実施形態2の超電導機器の端末構造における導体引出部近傍の部分拡大図である。It is the elements on larger scale near the conductor lead-out part in the terminal structure of the superconducting device of Embodiment 2.

・本開示の実施形態の説明
最初に本開示の実施態様を列記して説明する。
-Description of embodiments of the present disclosure First, embodiments of the present disclosure will be listed and described.

<1>実施形態に係る超電導機器の端末構造は、
超電導機器の超電導導体の端部に電気的に接続される常電導の導体引出部を備える超電導機器の端末構造であって、
前記導体引出部は、
筒状部と、
前記筒状部の軸方向の一端側を封止すると共に、前記超電導導体の端部を収納する収納部を有する超電導側接続部と、
前記筒状部の軸方向の他端側を封止すると共に、常電導機器に接続される金具となる常電導側接続部と、を備え、
更に、前記筒状部の径方向の外周面を覆う非真空断熱体を備える。
<1> The terminal structure of the superconducting device according to the embodiment is as follows.
A terminal structure of a superconducting device including a normal-conduction conductor lead-out portion electrically connected to an end of a superconducting conductor of the superconducting device,
The conductor lead-out portion,
A tubular portion,
A superconducting-side connecting portion that seals one end side of the cylindrical portion in the axial direction and has a storage portion that stores an end of the superconducting conductor,
Along with sealing the other end of the cylindrical portion in the axial direction, a normal-conducting-side connection portion serving as a bracket connected to a normal-conduction device,
Further, a non-vacuum heat insulator is provided to cover a radially outer peripheral surface of the cylindrical portion.

上記構成では、常温に配置される常電導側接続部と極低温に配置される超電導側接続部との間に、内部が中空で熱を伝え難い筒状部を形成することで、外部から超電導機器への熱侵入を抑制できる。筒状部が熱を伝え難いため、その筒状部を外部環境から断熱する断熱構造として、真空断熱構造に比べて構造が単純な非真空断熱構造(非真空断熱体)を採用することができる。構造が単純な非真空断熱体は小型で容易に施工可能であるため、非真空断熱体を備える超電導機器の端末構造は、小型で施工性に優れる。   In the above configuration, by forming a cylindrical portion having a hollow inside and hardly conducting heat, a superconducting portion is formed between the normal conducting side connecting portion arranged at room temperature and the superconducting side connecting portion arranged at cryogenic temperature. Heat intrusion into equipment can be suppressed. Since the cylindrical portion is difficult to conduct heat, a non-vacuum heat insulating structure (non-vacuum heat insulator) having a simpler structure than the vacuum heat insulating structure can be adopted as the heat insulating structure for insulating the cylindrical portion from the external environment. . Since a non-vacuum heat insulator having a simple structure is small and can be easily installed, the terminal structure of a superconducting device including the non-vacuum heat insulator is small and has excellent workability.

<2>実施形態に係る超電導機器の端末構造の一形態として、
前記非真空断熱体は、前記筒状部の径方向外方を囲うケースと、前記ケースの内部に充填される樹脂と、を備える形態を挙げることができる。
<2> As one mode of the terminal structure of the superconducting device according to the embodiment,
The non-vacuum heat insulator may include a case including a case surrounding a radially outer side of the cylindrical portion, and a resin filled in the case.

上記構成によれば、筒状部の外周やその近傍に真空ポートなどの複雑形状の構成が配置されていても、筒状部の外周に隙間なく非真空断熱体を配置することができる。その結果、外部環境から筒状部への熱の伝達を効果的に抑制でき、超電導機器への熱侵入を抑制できる。   According to the above configuration, even when a complicated-shaped configuration such as a vacuum port is arranged on the outer periphery of the cylindrical portion or in the vicinity thereof, the non-vacuum heat insulator can be arranged on the outer periphery of the cylindrical portion without gaps. As a result, the transfer of heat from the external environment to the tubular portion can be effectively suppressed, and heat intrusion into the superconducting device can be suppressed.

<3>ケース内に樹脂を充填した非真空断熱体を備える実施形態に係る超電導機器の端末構造の一形態として、
前記筒状部は、その内外を貫通する貫通孔を備え、
前記樹脂が、前記貫通孔を介して前記筒状部の内部にも充填されている形態を挙げることができる。
<3> As one mode of a terminal structure of a superconducting device according to an embodiment including a non-vacuum heat insulator filled with a resin in a case,
The cylindrical portion includes a through hole penetrating the inside and outside thereof,
A mode in which the resin is also filled in the inside of the cylindrical portion through the through hole can be given.

筒状部に貫通孔を形成し、筒状部の内部を樹脂で埋めることで、筒状部の内部に大気が残存することを抑制できる。残存大気があると、筒状部内の気体が気化と液化を繰り返す可能性があり、その場合、筒状部内の圧力変動で筒状部の周辺部材に応力が作用して、それらの部材が劣化する恐れがある。筒状部を樹脂で埋めると、そのような問題点が生じることを抑制できる。   By forming a through-hole in the tubular portion and filling the inside of the tubular portion with a resin, it is possible to suppress the air from remaining inside the tubular portion. If there is residual air, the gas in the cylindrical part may repeatedly evaporate and liquefy, in which case the pressure fluctuations in the cylindrical part will apply stress to the surrounding members of the cylindrical part, and these members will degrade Might be. Filling the cylindrical portion with resin can suppress such a problem from occurring.

<4>実施形態に係る超電導機器の端末構造の一形態として、
前記筒状部の内部に冷媒を流通させる冷媒流通機構を備える形態を挙げることができる。
<4> As one mode of the terminal structure of the superconducting device according to the embodiment,
A mode in which a refrigerant distribution mechanism that distributes a refrigerant inside the cylindrical portion may be included.

筒状部を冷媒流通機構で冷却することで、負荷時に常電導側接続部や筒状部で発生した熱を除去することができ、超電導機器の温度が上昇することを抑制し易い。ここで、実施形態に係る超電導機器の端末構造では、筒状部の外周を覆う断熱構造が非真空断熱体であるため、冷媒流通機構を構成する冷媒導入管や冷媒排出管などを配置し易い。   By cooling the tubular portion by the coolant circulation mechanism, heat generated in the normal-conducting-side connection portion and the tubular portion during load can be removed, and it is easy to suppress an increase in the temperature of the superconducting device. Here, in the terminal structure of the superconducting device according to the embodiment, since the heat insulating structure covering the outer periphery of the cylindrical portion is a non-vacuum heat insulator, it is easy to arrange the refrigerant introduction pipe, the refrigerant discharge pipe, and the like that constitute the refrigerant distribution mechanism. .

<5>実施形態に係る超電導機器の端末構造の一形態として、
前記超電導機器は、前記超電導導体を備えるケーブルコアと、前記ケーブルコアを収納する断熱管と、を備える超電導ケーブルである形態を挙げることができる。
<5> As one mode of the terminal structure of the superconducting device according to the embodiment,
The superconducting device may be in the form of a superconducting cable including a cable core having the superconducting conductor and a heat-insulating tube for accommodating the cable core.

超電導機器が超電導ケーブルである超電導機器の端末構造によれば、超電導ケーブルで構築した送電網の施工性を向上させることができる。送電網の規模が大きくなると超電導機器の端末構造の数が非常に多くなるため、各端末構造の施工性を向上させることで、送電網全体の施工性を大幅に向上させることができる。   According to the terminal structure of the superconducting device in which the superconducting device is a superconducting cable, it is possible to improve the workability of the power transmission network constructed with the superconducting cable. When the scale of the power transmission network is increased, the number of terminal structures of the superconducting equipment becomes very large. Therefore, by improving the workability of each terminal structure, the workability of the entire power transmission network can be significantly improved.

<6>超電導機器が超電導ケーブルである実施形態に係る超電導機器の端末構造の一形態として、
前記ケーブルコアの一部が挿通される絶縁筒と、
前記絶縁筒における前記導体引出部の側に配置され、前記ケーブルコアの端部と共に前記常電導側接続部をその内部に収納する常電導側断熱容器と、
前記絶縁筒における前記超電導ケーブルの側に配置され、前記超電導ケーブルの前記断熱管に繋がる超電導側断熱容器と、を備える形態を挙げることができる。
<6> As one mode of the terminal structure of the superconducting device according to the embodiment in which the superconducting device is a superconducting cable,
An insulating tube through which a part of the cable core is inserted,
A normal-conduction-side heat-insulating container that is arranged on the side of the conductor lead-out portion of the insulating cylinder and houses the normal-conduction-side connection portion together with an end of the cable core,
A superconducting-side heat-insulating container arranged on the side of the superconducting cable in the insulating cylinder and connected to the heat-insulating pipe of the superconducting cable.

上記構成によれば、導体引出部の常電導側接続部が、常電導側断熱容器と非真空断熱体とで二重に断熱される。そのため、外部環境からケーブルコアへの熱侵入を抑制し易い。   According to the above configuration, the normal-conduction-side connection portion of the conductor lead-out portion is double-insulated by the normal-conduction-side heat-insulating container and the non-vacuum heat insulator. Therefore, it is easy to suppress heat intrusion from the external environment into the cable core.

・本開示の実施形態の詳細
以下に図面を参照して、本開示の実施形態の具体例を説明する。図において同一符号は同一名称物を意味する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。例えば、多心一括型のケーブルにも適用できる。
-Details of embodiment of the present disclosure Specific examples of the embodiment of the present disclosure will be described below with reference to the drawings. In the drawings, the same reference sign means the same name. It should be noted that the present invention is not limited to these exemplifications, but is indicated by the appended claims, and is intended to include all modifications within the scope and meaning equivalent to the appended claims. For example, the present invention can be applied to a multi-core collective cable.

<実施形態1>
本例では、超電導機器の端末構造として、図1に示す超電導ケーブル100を常電導機器に接続する超電導機器の端末構造1を説明する。この端末構造1は、超電導ケーブル100のケーブルコア110に備わる超電導導体層112と、常電導機器の常電導導体(例えば、ブスバー200)と、を電気的に接続する導体引出部2を備える。常電導機器としては、例えば架空送電線などの常電導ケーブルなどを挙げることができる。この超電導機器の端末構造1の特徴の一つとして、導体引出部2と、その導体引出部2の超電導機器側の部分を外部環境から断熱する断熱構造(後述する非真空断熱体3)の構成を挙げることができる。本例では、導体引出部2のうち、非真空断熱体3から常温環境に露出する部分と、ブスバー200とをボルト200bで締結することで、超電導ケーブル100と常電導機器とを電気的に接続している。以下、最初に図4を参照して超電導ケーブル100の基本構成を説明し、次にその超電導ケーブル100を常電導機器に接続する超電導機器の端末構造1の詳細な構成とその施工手順を説明する。
<First embodiment>
In this example, a terminal structure 1 of a superconducting device that connects the superconducting cable 100 shown in FIG. 1 to a normal conducting device will be described as a terminal structure of the superconducting device. The terminal structure 1 includes a conductor lead-out portion 2 that electrically connects a superconducting conductor layer 112 provided in a cable core 110 of the superconducting cable 100 and a normal conductor (for example, a bus bar 200) of a normal device. Examples of the normal conducting device include a normal conducting cable such as an overhead power transmission line. One of the features of the terminal structure 1 of the superconducting device is the configuration of a conductor lead-out portion 2 and a heat insulating structure (a non-vacuum heat insulator 3 described later) that insulates a portion of the conductor lead-out portion 2 on the superconducting device side from the external environment. Can be mentioned. In this example, the portion of the conductor lead-out portion 2 that is exposed to the normal temperature environment from the non-vacuum heat insulator 3 and the bus bar 200 are fastened with bolts 200b to electrically connect the superconducting cable 100 and the normal conducting device. are doing. Hereinafter, first, the basic configuration of the superconducting cable 100 will be described with reference to FIG. 4, and then the detailed configuration of the terminal structure 1 of the superconducting device for connecting the superconducting cable 100 to the normal conducting device and the construction procedure will be described. .

≪超電導ケーブル≫
超電導ケーブル100は、フォーマ111の外周に設けられた超電導導体層(超電導導体)112を有するケーブルコア110と、ケーブルコア110を収納する断熱管120と、を備える。本例に示すケーブルコア110は、中心から順にフォーマ111、超電導導体層112、電気絶縁層113、遮蔽層114、保護層115を同軸状に備える。この超電導ケーブル100は、1本のケーブルコア110が一つの断熱管120に収納された単心ケーブルであって、超電導導体層112と共に電気絶縁層113が断熱管120に収納されて、双方が冷媒によって冷却される低温絶縁型のケーブルである。例えば、このような単心ケーブルを3本布設して、各ケーブルを各相の送電に利用する三相交流送電路や、このような単心ケーブルを2本布設して、一方のケーブルを往路、他方のケーブルを復路に利用する直流送電路などを構築することができる。
≪Superconducting cable≫
The superconducting cable 100 includes a cable core 110 having a superconducting conductor layer (superconducting conductor) 112 provided on the outer periphery of the former 111, and a heat insulating tube 120 for housing the cable core 110. The cable core 110 shown in this example includes a former 111, a superconducting conductor layer 112, an electric insulating layer 113, a shielding layer 114, and a protective layer 115 coaxially from the center. This superconducting cable 100 is a single-core cable in which one cable core 110 is housed in one heat insulating tube 120, and an electric insulating layer 113 is housed in a heat insulating tube 120 together with a superconducting conductor layer 112, and both are made of refrigerant. It is a low-temperature insulated cable cooled by. For example, three such single-core cables are laid, and a three-phase AC power transmission line using each cable for power transmission in each phase, or two such single-core cables are laid, and one cable is forwarded. In addition, it is possible to construct a DC power transmission path using the other cable for the return path.

[フォーマ]
フォーマ111は、超電導導体層112を支持する機能を有する。本例では、液体窒素などの冷媒130の流路にも利用するため、フォーマ111を中空体としている。このようなフォーマ111の構成材料として、冷媒温度でも利用可能で、薄くても強度に優れるステンレス鋼などの金属が挙げられる。コルゲート管やベローズ管をフォーマ111に利用すると、高強度材料から構成されていても可撓性に優れる。本例とは異なり、フォーマ111は、複数の素線(銅線や、銅線の外周にエナメルなどの絶縁被覆を有する被覆銅線など)を撚り合わせた撚り線などの中実体とすることもできる。
[Former]
The former 111 has a function of supporting the superconducting conductor layer 112. In this example, the former 111 is a hollow body so as to be used also for the flow path of the refrigerant 130 such as liquid nitrogen. As a constituent material of such a former 111, a metal such as stainless steel which can be used even at a refrigerant temperature and has excellent strength even when it is thin. When a corrugated pipe or a bellows pipe is used for the former 111, flexibility is excellent even if it is made of a high-strength material. Unlike the present example, the former 111 may be a solid body such as a stranded wire obtained by twisting a plurality of element wires (a copper wire, a coated copper wire having an insulating coating such as an enamel around the copper wire). it can.

[超電導導体層]
超電導導体層112は、フォーマ111の外周に複数の超電導線材をスパイラル巻きすることで形成されている。超電導線材には、例えばBi系銀シース線材やRE123系薄膜線材などのテープ状線材が利用できる。線材の数や線材層の数は、所望の電流容量を有するように適宜選択するとよい。図1では、超電導導体層112が4層の線材層を積層した場合を示す。線材層間には、絶縁紙などを巻回した層間絶縁層(図示せず)を設けても良い。また、フォーマ111と超電導導体層112との間に、超電導導体層112の機械的保護などを目的とする介在層(図示せず)を設けてもかまわない。
[Superconducting conductor layer]
The superconducting conductor layer 112 is formed by spirally winding a plurality of superconducting wires around the outer periphery of the former 111. As the superconducting wire, for example, a tape-shaped wire such as a Bi-based silver sheath wire or a RE123-based thin film wire can be used. The number of wires and the number of wire layers may be appropriately selected so as to have a desired current capacity. FIG. 1 shows a case where the superconducting conductor layer 112 is formed by laminating four wire layers. An interlayer insulating layer (not shown) wound with insulating paper or the like may be provided between the wire rod layers. An intervening layer (not shown) may be provided between the former 111 and the superconducting conductor layer 112 for the purpose of mechanically protecting the superconducting conductor layer 112 and the like.

[電気絶縁層]
電気絶縁層113は、超電導導体層112とその外部との電気的絶縁を確保する。電気絶縁層113は、絶縁材からなるテープを超電導導体層112の外周にスパイラル巻きすることで形成されている。絶縁材には、例えば、クラフト紙やPPLP(登録商標;Polypropylene Laminated Paper)といった半合成紙などの絶縁紙が挙げられる。
[Electrical insulation layer]
The electrical insulating layer 113 ensures electrical insulation between the superconducting conductor layer 112 and the outside. The electric insulating layer 113 is formed by spirally winding a tape made of an insulating material around the outer periphery of the superconducting conductor layer 112. Examples of the insulating material include kraft paper and insulating paper such as semi-synthetic paper such as PPLP (registered trademark; Polypropylene Laminated Paper).

[遮蔽層]
遮蔽層114は、超電導導体層112の外周(この例では電気絶縁層113の直上)に設けられて、超電導導体層112に起因する電界を遮蔽する。遮蔽層114は、銅テープといった上述の常電導材料からなるテープや線材などを巻回することで形成される。
[Shielding layer]
The shielding layer 114 is provided on the outer periphery of the superconducting conductor layer 112 (in this example, immediately above the electric insulating layer 113), and shields an electric field caused by the superconducting conductor layer 112. The shielding layer 114 is formed by winding a tape or a wire made of the above-described normal conductive material such as a copper tape.

[保護層]
保護層115は、ケーブルコア110の最外周に配置され、その内側に配置された部材(特に超電導導体層112)の機械的保護、遮蔽層114と断熱管120との間の電気的絶縁の確保を目的として設けられる。このような保護層115は、上述の絶縁紙を遮蔽層114の外周にスパイラル巻きすることで形成される。
[Protective layer]
The protective layer 115 is disposed on the outermost periphery of the cable core 110, and mechanically protects a member (particularly, the superconducting conductor layer 112) disposed inside the cable core 110, and secures electrical insulation between the shielding layer 114 and the heat insulating tube 120. It is provided for the purpose. Such a protective layer 115 is formed by spirally winding the above-described insulating paper around the outer periphery of the shielding layer 114.

その他、ケーブルコア110は、電気絶縁層113の外周に外側超電導層(図示せず)や、常電導材料からなる磁気遮蔽層を備えることができる。外側超電導層は、上述の超電導線材をスパイラル巻きして形成される。外側超電導層は、例えば、交流送電用途では磁気遮蔽層に利用でき、直流送電用途では、モノポール送電の場合、超電導導体層112を往路導体としたときに帰路導体に利用でき、バイポール送電の場合、超電導導体層112とは逆極性の電流を流す導体に利用できる。   In addition, the cable core 110 may include an outer superconducting layer (not shown) on the outer periphery of the electric insulating layer 113 and a magnetic shielding layer made of a normal conducting material. The outer superconducting layer is formed by spirally winding the above-described superconducting wire. The outer superconducting layer, for example, can be used as a magnetic shielding layer in AC power transmission applications, and in a DC power transmission application, in the case of monopole power transmission, can be used as the return conductor when the superconducting conductor layer 112 is used as the outward conductor, and in the case of bipole power transmission. It can be used as a conductor for flowing a current having a polarity opposite to that of the superconducting conductor layer 112.

[断熱管]
断熱管120は、内管121と外管122とを有する二重構造管であり、内管121と外管122との間の空間が真空引きされ、この空間に真空断熱層が形成された真空断熱管である。内管121の内部空間は、ケーブルコア110の収納空間であると共に、超電導導体層112の超電導状態を維持するための冷媒(例えば、液体窒素など)が流通される流路に利用される。内管121及び外管122は、可撓性に優れるコルゲート管やベローズ管、あるいは冷媒の圧力損失を小さくできるストレート管で構成することができる。内管121及び外管122の構成材料は、ステンレス鋼などの金属が挙げられる。この例に示す断熱管120は、内管121と外管122との間にスーパーインシュレーション(商品名)などの断熱材123を備えている。断熱管120の外管122の外側には、ビニルやポリエチレンなどの防食材から構成される防食層124を備える。
[Insulated tube]
The heat insulating tube 120 is a double-structured tube having an inner tube 121 and an outer tube 122, and the space between the inner tube 121 and the outer tube 122 is evacuated, and a vacuum heat insulating layer is formed in this space. Insulated pipe. The internal space of the inner tube 121 is a storage space for the cable core 110 and is used for a flow path through which a refrigerant (for example, liquid nitrogen or the like) for maintaining the superconducting state of the superconducting conductor layer 112 flows. The inner pipe 121 and the outer pipe 122 can be formed of a corrugated pipe or a bellows pipe having excellent flexibility, or a straight pipe capable of reducing the pressure loss of the refrigerant. The constituent material of the inner tube 121 and the outer tube 122 includes a metal such as stainless steel. The heat insulating pipe 120 shown in this example is provided with a heat insulating material 123 such as super insulation (trade name) between the inner pipe 121 and the outer pipe 122. An anticorrosion layer 124 made of an anticorrosion material such as vinyl or polyethylene is provided outside the outer tube 122 of the heat insulating tube 120.

≪超電導機器の端末構造≫
上述の超電導ケーブル100と常電導機器とを接続する場合、例えば、図1に示す超電導機器の端末構造1を構築する。図1の端末構造1は、両端矢印で示す水平方向に導体引出部2を引き出した横置きタイプであるが、鉛直上方に導体引出部2を引き出した縦置きタイプとすることもできる。矢印の左側が常電導側(常温側)、右側が超電導ケーブル100側(極低温側)である。
端末 Terminal structure of superconducting equipment≫
When connecting the above-described superconducting cable 100 and a normal conducting device, for example, the terminal structure 1 of the superconducting device shown in FIG. The terminal structure 1 in FIG. 1 is a horizontal type in which the conductor extraction portions 2 are drawn out in the horizontal direction indicated by arrows at both ends, but may be a vertical type in which the conductor extraction portions 2 are drawn vertically upward. The left side of the arrow is the normal conduction side (normal temperature side), and the right side is the superconducting cable 100 side (cryogenic side).

端末構造1では、断熱管120から露出させたケーブルコア110の端部を導体引出部2に電気的に接続し、その導体引出部2を更に常電導機器の常電導導体(本例ではブスバー200)に電気的に接続する。更に、端末構造1では、ケーブルコア110の外周に碍管7を配置すると共に、ケーブルコア110の露出部分から端部にわたって、真空冷媒槽(後述する常電導側断熱容器5、超電導側断熱容器6)を設ける。ケーブルコア110を冷却する冷媒130は、後述する超電導側断熱容器6に設けられる冷媒導入管11を介して超電導側断熱容器6の冷媒槽61内に導入される。冷媒槽61に導入された冷媒130は、図2の白抜き矢印で示すように、常電導側断熱容器5の冷媒槽51を通って、導体引出部2側の超電導ケーブル100の端部の位置でフォーマ111の中空孔に導入される。フォーマ111内に導入された冷媒130は、適宜な位置でケーブルコア110の内管121内に吐出され、ケーブルコア110の外側を通って、超電導側断熱容器6に設けられる冷媒排出管19を介して外部に排出される。外部には冷凍機が配置されおり、その冷凍機で冷却された冷媒130は再び冷媒導入管11を介して端末構造1に送り込まれる。なお、冷媒130の流通方向は、上述した例と逆になっていても良い。つまり、冷媒排出管19から冷媒130を導入し、冷媒導入管11から冷媒130を排出する構成としても良い。   In the terminal structure 1, the end of the cable core 110 exposed from the heat insulating pipe 120 is electrically connected to the conductor lead-out portion 2, and the conductor lead-out portion 2 is further connected to a normal conductor (normally a bus bar 200 in this example) of a normal conduction device. ). Further, in the terminal structure 1, the insulator tube 7 is arranged on the outer periphery of the cable core 110, and a vacuum refrigerant tank (a normal-conduction-side heat-insulated container 5 and a superconducting-side heat-insulated container 6, which will be described later) extends from the exposed portion to the end of the cable core 110. Is provided. The refrigerant 130 that cools the cable core 110 is introduced into the refrigerant tank 61 of the superconducting heat-insulated container 6 via a refrigerant introduction pipe 11 provided in the superconducting heat-insulated container 6 described below. The refrigerant 130 introduced into the refrigerant tank 61 passes through the refrigerant tank 51 of the normal-conduction-side heat-insulating container 5 and is positioned at the end of the superconducting cable 100 on the conductor lead-out part 2 side, as indicated by the outline arrow in FIG. Is introduced into the hollow hole of the former 111. The refrigerant 130 introduced into the former 111 is discharged into the inner pipe 121 of the cable core 110 at an appropriate position, passes through the outside of the cable core 110, and passes through the refrigerant discharge pipe 19 provided in the superconducting heat insulating container 6. Is discharged outside. A refrigerator is disposed outside, and the refrigerant 130 cooled by the refrigerator is sent into the terminal structure 1 again through the refrigerant introduction pipe 11. Note that the flow direction of the refrigerant 130 may be opposite to the above-described example. That is, the refrigerant 130 may be introduced from the refrigerant discharge pipe 19 and the refrigerant 130 may be discharged from the refrigerant introduction pipe 11.

[ケーブルコア]
断熱管120の端部(真空ポート100p近傍を参照)から突出されたケーブルコア110では、断熱管120の近くで遮蔽層114及び保護層115(図4)が切断されている。ケーブルコア110における断熱管120の開口部よりも先の領域では、概ね電気絶縁層113が露出されている。更にケーブルコア110の先端部(絶縁筒4の常温側端部から突出された部分)は段剥ぎされており、先端側から順にフォーマ111と超電導導体層112が露出されている。
[Cable core]
In the cable core 110 protruding from the end of the heat insulating tube 120 (see the vicinity of the vacuum port 100p), the shielding layer 114 and the protective layer 115 (FIG. 4) are cut near the heat insulating tube 120. In a region of the cable core 110 that is ahead of the opening of the heat insulating tube 120, the electric insulating layer 113 is generally exposed. Further, the tip of the cable core 110 (the portion protruding from the room temperature side end of the insulating cylinder 4) is stripped off, and the former 111 and the superconducting conductor layer 112 are exposed in order from the tip.

露出された超電導導体層112と導体引出部2とは、ハンダやロー材などの適宜な接合材によって接合されて、両者が電気的に接続されている。本例の導体引出部2は、その一端部にケーブルコア110の端部が挿入される収納部21s(図2,3参照)を有しており、この収納部21sにケーブルコア110の端部が挿入されて、上記接合材によって超電導導体層112が収納部21s内に固定される。この例では更に、フォーマ111が、締結孔21pに貫通されるボルトなどの締結部材によって導体引出部2と結合されている。その結果、ケーブルコア110と導体引出部2との接続強度が高められている。導体引出部2の収納部21sには、接合材の注入孔21h(図3)が形成されている。   The exposed superconducting conductor layer 112 and the conductor lead-out portion 2 are joined by an appropriate joining material such as solder or brazing material, and both are electrically connected. The conductor lead-out section 2 of this example has a storage section 21s (see FIGS. 2 and 3) into which one end of the cable core 110 is inserted, and the storage section 21s has an end section of the cable core 110. Is inserted, and the superconducting conductor layer 112 is fixed in the storage section 21s by the bonding material. In this example, the former 111 is further connected to the conductor lead-out portion 2 by a fastening member such as a bolt penetrating through the fastening hole 21p. As a result, the connection strength between the cable core 110 and the conductor lead portion 2 is increased. An injection hole 21h (FIG. 3) for a bonding material is formed in the storage portion 21s of the conductor lead-out portion 2.

一方、断熱管120から出されたケーブルコア110において、上述の先端部とは逆の領域、即ち、断熱管120の端部近くであって遮蔽層114及び保護層115が除去されて露出された領域(ケーブル側領域)には、その外周に設けられた補強絶縁層8を備える。補強絶縁層8は、絶縁紙をケーブルコア110(ここでは電気絶縁層113)の外周にスパイラル巻きすることで形成されている。補強絶縁層8は、その長手方向(図1では左右方向)の中央部分から各端部に向かって先細りした形状、即ち、常温側及びケーブル側に向かって先細りした形状である。各傾斜部分は、ストレスコーンとして機能する。ケーブルコア110の遮蔽層114(図4)から補強絶縁層8におけるケーブル側のストレスコーン部分に亘って遮蔽接続部80が形成されている。遮蔽接続部80は、銅などの常電導材料からなる線材を巻回して形成される。   On the other hand, in the cable core 110 drawn out of the heat insulating pipe 120, the area opposite to the above-mentioned tip end, that is, near the end of the heat insulating pipe 120, the shielding layer 114 and the protective layer 115 were removed and exposed. The region (cable-side region) includes a reinforcing insulating layer 8 provided on the outer periphery thereof. The reinforcing insulating layer 8 is formed by spirally winding insulating paper around the outer periphery of the cable core 110 (here, the electric insulating layer 113). The reinforcing insulating layer 8 has a shape that tapers from a central portion in the longitudinal direction (the left-right direction in FIG. 1) toward each end, that is, a shape that tapers toward the room temperature side and the cable side. Each inclined portion functions as a stress cone. The shield connection portion 80 is formed from the shield layer 114 (FIG. 4) of the cable core 110 to the stress cone portion on the cable side in the reinforcing insulating layer 8. The shield connection part 80 is formed by winding a wire made of a normal conductive material such as copper.

[絶縁筒]
ケーブルコア110の延伸方向における先端部と補強絶縁層8が設けられた部分との間の中間部分の外周には絶縁筒4が設けられている。絶縁筒4は、ケーブルコア110と外部との間の電気的絶縁を行うと共に、電界緩和を行う部材である。この絶縁筒4の外周には、後述する碍管7に固定される固定部40が設けられている。
[Insulating tube]
The insulating cylinder 4 is provided on the outer periphery of an intermediate portion between the distal end portion in the extending direction of the cable core 110 and the portion where the reinforcing insulating layer 8 is provided. The insulating cylinder 4 is a member that performs electric insulation between the cable core 110 and the outside and also alleviates an electric field. On the outer periphery of the insulating tube 4, a fixing portion 40 fixed to the insulator tube 7 described later is provided.

本例に示す絶縁筒4の一部は冷媒130に接触する。そのため、絶縁筒4の構成材料は、冷媒温度でも問題なく使用可能な絶縁材料が好ましく、特にエポキシ樹脂などの樹脂成分とガラス繊維などの強化成分とを含む繊維強化樹脂などとすると、強度にも優れる。碍管7内に配置される絶縁筒4の常温側領域は常温側に向かって先細りした形状であり、この先細り形状の傾斜部分がストレスコーンとして機能する。絶縁筒4中に金属箔(図示せず)を同心状に多層に設けることで、電界を調整できる。一方、絶縁筒4のケーブル側領域の外周面は一様な筒状面であるが、その内周面は常温側に向うに従って径方向内方側に傾斜している。この内側傾斜面によって、補強絶縁層8と絶縁筒4との間隔を確保できる。   A part of the insulating cylinder 4 shown in this example comes into contact with the refrigerant 130. Therefore, the constituent material of the insulating cylinder 4 is preferably an insulating material that can be used without any problem even at the refrigerant temperature. Excellent. The normal temperature side region of the insulating cylinder 4 arranged in the insulator tube 7 has a tapered shape toward the normal temperature side, and the tapered inclined portion functions as a stress cone. By providing a metal foil (not shown) concentrically in multiple layers in the insulating cylinder 4, the electric field can be adjusted. On the other hand, the outer peripheral surface of the cable side region of the insulating cylinder 4 is a uniform cylindrical surface, but its inner peripheral surface is inclined radially inward toward the room temperature side. With this inner inclined surface, a space between the reinforcing insulating layer 8 and the insulating cylinder 4 can be secured.

固定部40は、絶縁筒4の外周(この例では長手方向の中央部分であって、ストレスコーン部分ではない領域)に接合されている。固定部40は、絶縁筒4の外方に延びるフランジ部を備える。ボルトなどによって、このフランジ部を碍管7に締結することで、絶縁筒4を碍管7に固定できる。固定部40の構成材料は、適宜な金属や樹脂などが挙げられる。   The fixing portion 40 is joined to the outer periphery of the insulating cylinder 4 (in this example, a central portion in the longitudinal direction, not a stress cone portion). The fixing portion 40 includes a flange portion extending outward from the insulating cylinder 4. The insulating tube 4 can be fixed to the insulator tube 7 by fastening the flange portion to the insulator tube 7 with a bolt or the like. As a constituent material of the fixing portion 40, an appropriate metal, resin, or the like is used.

[超電導側断熱容器]
超電導側断熱容器6は、絶縁筒4における超電導ケーブル100側に配置され、超電導ケーブル100の断熱管120に繋がる断熱槽である。超電導側断熱容器6は、冷媒槽61と、その外周を覆う真空槽62とで構成されており、両槽61,62の間は真空引きされている。両槽61,62間にはスーパーインシュレーション(商品名)などの断熱材を配置しても良い。超電導側断熱容器6に形成される真空空間によって冷媒130を極低温に維持できる。
[Superconducting side heat insulation container]
The superconducting-side heat-insulating container 6 is a heat-insulating tank arranged on the side of the superconducting cable 100 in the insulating tube 4 and connected to the heat-insulating pipe 120 of the superconducting cable 100. The superconducting-side heat-insulating container 6 is composed of a refrigerant tank 61 and a vacuum tank 62 covering the outer periphery thereof, and the space between both tanks 61 and 62 is evacuated. A heat insulating material such as super insulation (trade name) may be arranged between the two tanks 61 and 62. The refrigerant 130 can be maintained at an extremely low temperature by the vacuum space formed in the superconducting-side heat insulating container 6.

超電導側断熱容器6は、断熱管120の端部から碍管7の底板部71に亘って設けられ、この間に存在するケーブルコア110の外周の一部と絶縁筒4のケーブル側領域の外周とを覆う。冷媒槽61は断熱管120の内管121に、真空槽62は断熱管120の外管122に接続されており、上記外管122は接地電位となっているので、真空槽62も接地電位となっている。冷媒槽61の内部は、超電導ケーブル100の長手方向における冷媒導入管11と冷媒排出管19との間で仕切られており、冷媒導入管11から導入された冷媒130が直ちに冷媒排出管19から排出されないようになっている。   The superconducting-side heat-insulating container 6 is provided from the end of the heat-insulating tube 120 to the bottom plate portion 71 of the insulating tube 7. A part of the outer periphery of the cable core 110 and the outer periphery of the cable-side region of the insulating tube 4 are provided therebetween. cover. The refrigerant tank 61 is connected to the inner pipe 121 of the heat insulating pipe 120, and the vacuum tank 62 is connected to the outer pipe 122 of the heat insulating pipe 120. Since the outer pipe 122 is at the ground potential, the vacuum tank 62 is also connected to the ground potential. Has become. The inside of the refrigerant tank 61 is partitioned between the refrigerant introduction pipe 11 and the refrigerant discharge pipe 19 in the longitudinal direction of the superconducting cable 100, and the refrigerant 130 introduced from the refrigerant introduction pipe 11 is immediately discharged from the refrigerant discharge pipe 19. Not to be.

超電導側断熱容器6には図示しない応力緩和構造を設けることが好ましい。応力緩和構造としては、例えば冷媒槽61の軸方向の一部をベローズ構造とすることが挙げられる。   It is preferable to provide a stress relaxation structure (not shown) in the superconducting heat insulating container 6. As the stress relieving structure, for example, a part of the refrigerant tank 61 in the axial direction may have a bellows structure.

[常電導側断熱容器]
常電導側断熱容器5は、絶縁筒4における常電導側に配置され、超電導ケーブル100の先端を内部に収納する断熱槽である。常電導側断熱容器5は、冷媒槽51とその外周を覆う真空槽52とを備え、両槽51,52の間は真空引きされている。両槽51,52の間には、スーパーインシュレーション(商品名)などの断熱材が配置されていても良い。本例では、常電導側断熱容器5の真空空間と、超電導側断熱容器6の真空空間と、が絶縁筒4を介してケーブルコア110の長手方向に重複して設けられている。
[Normal conduction side heat insulation container]
The normal-conduction-side heat-insulating container 5 is a heat-insulation tank that is arranged on the normal-conduction side of the insulating tube 4 and stores the tip of the superconducting cable 100 therein. The normal-conduction-side heat-insulating container 5 includes a refrigerant tank 51 and a vacuum tank 52 covering the outer periphery thereof, and the space between the tanks 51 and 52 is evacuated. A heat insulating material such as super insulation (trade name) may be arranged between the two tanks 51 and 52. In this example, the vacuum space of the normal-conduction-side heat-insulating container 5 and the vacuum space of the superconducting-side heat-insulating container 6 are provided so as to overlap in the longitudinal direction of the cable core 110 via the insulating tube 4.

常電導側断熱容器5は、絶縁筒4内から碍管7内を経て常温側に延びるように設けられている。この例では、常電導側断熱容器5の冷媒槽51が、導体引出部2に接続され、真空槽52が、碍管7の上板部72に接続されている。常電導側断熱容器5の導体引出部2側の端部は碍管7から突出している。   The normal-conduction-side heat-insulating container 5 is provided so as to extend from the inside of the insulating tube 4 to the room-temperature side via the inside of the insulator tube 7. In this example, the refrigerant tank 51 of the normal-conduction-side heat-insulating container 5 is connected to the conductor lead-out unit 2, and the vacuum tank 52 is connected to the upper plate 72 of the insulator tube 7. An end of the normal-conduction-side heat-insulating container 5 on the conductor lead-out portion 2 side protrudes from the insulator tube 7.

冷媒槽51は、その内周に挿通配置されるケーブルコア110(特に超電導導体層112)を冷却する冷媒130が充填されて流路に利用されると共に、真空槽52と共に真空空間を形成する。冷媒槽51の外周を覆う真空槽52の外周面には、上述した絶縁筒4が一体に設けられている。この冷媒槽51と真空槽52を備える常電導側断熱容器5は、導体引出部2に接触しており、高電位となっている。高電位の常電導側断熱容器5と接地電位の超電導側断熱容器6との間は、常電導側断熱容器5の真空槽52に一体化された絶縁筒4によって絶縁されている。   The coolant tank 51 is filled with a coolant 130 for cooling the cable core 110 (particularly, the superconducting conductor layer 112) inserted through the inner periphery thereof, and is used for a flow path, and forms a vacuum space with the vacuum tank 52. The above-described insulating cylinder 4 is integrally provided on the outer peripheral surface of the vacuum tank 52 that covers the outer periphery of the refrigerant tank 51. The normal-conduction-side heat-insulating container 5 including the refrigerant tank 51 and the vacuum tank 52 is in contact with the conductor lead-out portion 2 and has a high potential. The insulating vessel 4 integrated with the vacuum tank 52 of the normal-conduction-side heat-insulating container 5 is insulated from the normal-conduction-side heat-insulating container 5 having a high potential and the superconducting-side heat-insulating container 6 having a ground potential.

[碍管]
碍管7は、絶縁筒4の常温側領域を収納して、この絶縁筒4内に挿通される超電導導体層112と外部との電気的絶縁に利用される。本例の碍管7は、碍子連を有する筒状の本体部70と、本体部70の一端(超電導側の端部)に設けられる環状の底板部71と、本体部70の他端(常電導側)に設けられる環状の上板部72と、を備える。底板部71には絶縁筒4の固定部40が取り付けられる。上板部72には常電導側断熱容器5の外周が固定されており、そのため常電導側断熱容器5の一部は碍管7から突出している。本体部70、底板部71、及び上板部72で囲まれる密閉空間(碍管7の内部空間)には、絶縁油やSF6などの絶縁流体(図示せず)が充填される。本体部70などに絶縁流体の導入・排出管(図示せず)を備える。絶縁筒4の常温側の傾斜面から伸びる電気力線は、碍子連の領域から外部に引き出される。この碍管7の常電導側の端部で、かつ後述するケース30の外周には上部シールド75が設けられている。
[Insulator tube]
The insulator tube 7 accommodates the room temperature side region of the insulating cylinder 4 and is used for electrical insulation between the superconducting conductor layer 112 inserted into the insulating cylinder 4 and the outside. The insulator tube 7 of this example includes a cylindrical main body 70 having an insulator series, an annular bottom plate 71 provided at one end (an end on the superconducting side) of the main body 70, and the other end (normal electric conduction) of the main body 70. And an annular upper plate 72 provided on the (side) side. The fixing part 40 of the insulating cylinder 4 is attached to the bottom plate part 71. The outer periphery of the normal-conduction-side heat-insulating container 5 is fixed to the upper plate portion 72, so that a part of the normal-conduction-side heat-insulation container 5 protrudes from the insulator tube 7. The enclosed space (the internal space of the insulator tube 7) surrounded by the main body 70, the bottom plate 71, and the upper plate 72 is filled with an insulating oil (not shown) such as insulating oil or SF6. The main body 70 is provided with an inlet / outlet pipe (not shown) for an insulating fluid. Lines of electric force extending from the inclined surface on the normal temperature side of the insulating cylinder 4 are drawn out from the region of the insulator series. An upper shield 75 is provided at an end on the normal conduction side of the porcelain tube 7 and on an outer periphery of a case 30 described later.

[導体引出部]
導体引出部2は、上述のケーブルコア110の先端部において露出された超電導導体層112の端部に電気的に接続される部材であって、銅やその合金、アルミニウムやその合金などの常電導材料から構成されている。導体引出部2の説明にあたっては主として図3を参照する。図3は、図1,2の導体引出部2を鉛直上方から見た縦断面図である。
[Conductor lead-out part]
The conductor lead-out portion 2 is a member that is electrically connected to the end of the superconducting conductor layer 112 exposed at the end of the above-described cable core 110, and includes a normal conducting material such as copper, an alloy thereof, aluminum or an alloy thereof. It is composed of materials. FIG. 3 is mainly referred to in describing the conductor lead-out portion 2. FIG. 3 is a longitudinal sectional view of the conductor lead-out portion 2 of FIGS.

本例の導体引出部2は、図3に示すように、筒状部20と、超電導側接続部21と、常電導側接続部22と、を接合することで形成されている。超電導側接続部21は筒状部20の軸方向の一端側(矢印の右側であって超電導ケーブル100側)の開口部を封止し、常電導側接続部22は筒状部20の軸方向の他端側の開口部を封止する。これら三つの部材は、ハンダやボルトなどで連結されている。   As shown in FIG. 3, the conductor lead portion 2 of this example is formed by joining a tubular portion 20, a superconducting-side connecting portion 21, and a normal-conducting-side connecting portion 22. The superconducting-side connecting portion 21 seals an opening at one axial end of the cylindrical portion 20 (on the right side of the arrow and on the superconducting cable 100 side), and the normal-conducting-side connecting portion 22 extends in the axial direction of the cylindrical portion 20. Is sealed at the other end. These three members are connected by solder, bolts, or the like.

[[筒状部]]
筒状部20は、常電導側接続部22から超電導側接続部21への熱侵入量を小さくするための部材である。交流送電においては表皮効果の影響によって筒状部20の導体としての実効断面積が減じられることはない。筒状部20は、筒状に形成されていればその形状は問わない。本例の筒状部20はその内径及び外径が一様な円筒状の部材である。筒状部20の内径及び外径は、超電導ケーブル100と常電導機器との間で遣り取りされる電流量に応じて決定すると良い。つまり、当該電流量の遣り取りに十分な導体断面積が確保できるように、筒状部20の内径及び外径を決定する。
[[Cylindrical part]]
The tubular portion 20 is a member for reducing the amount of heat that enters the superconducting side connecting portion 21 from the normal conducting side connecting portion 22. In the AC power transmission, the effective cross-sectional area of the tubular portion 20 as a conductor is not reduced by the influence of the skin effect. The shape of the tubular portion 20 is not limited as long as it is formed in a tubular shape. The cylindrical portion 20 of the present example is a cylindrical member whose inner and outer diameters are uniform. The inner and outer diameters of the tubular portion 20 may be determined according to the amount of current exchanged between the superconducting cable 100 and the normal conducting device. That is, the inner diameter and the outer diameter of the cylindrical portion 20 are determined so that a sufficient conductor cross-sectional area for the exchange of the current amount can be secured.

筒状部20の外周面には筒状部20の内外を貫通する貫通孔20hが設けられている。この貫通孔20hは、後述する樹脂32(図1,2)の通り道となる。貫通孔20hは、樹脂32の充填性を向上させるために複数設けることが好ましい。特に、筒状部20の周方向に均等に複数の貫通孔20hを設けることが好ましい。また、この貫通孔20hは、導体引出部2に超電導ケーブル100の端部をハンダで接合する際、ハンダの熱で膨張した筒状部20の内部の空気を外部に逃がす呼吸孔としての機能も持つ。   The outer peripheral surface of the cylindrical portion 20 is provided with a through hole 20h penetrating the inside and outside of the cylindrical portion 20. The through hole 20h is a passage for a resin 32 (FIGS. 1 and 2) described later. It is preferable to provide a plurality of through holes 20h in order to improve the filling property of the resin 32. In particular, it is preferable to provide a plurality of through holes 20h evenly in the circumferential direction of the cylindrical portion 20. The through-hole 20h also functions as a breathing hole for releasing the air inside the cylindrical portion 20 expanded by the heat of the solder to the outside when joining the end of the superconducting cable 100 to the conductor lead-out portion 2 with solder. Have.

[[超電導側接続部]]
超電導側接続部21は、有底筒状の封止筒部21Aと封止筒部21Aの外底から延びる本体部21Bとが一体になった部材であって、超電導ケーブル100に直接接続される。封止筒部21Aの内径は、筒状部20の外径よりも若干(0.5mm〜2mm程度)大きくなっている。そのため、封止筒部21Aを筒状部20の軸方向の一端に嵌め込むことで、筒状部20の軸方向の一端を封止できる。筒状部20と封止筒部21Aとの接合はハンダなどで行うことができる。
[[Superconducting side connection]]
The superconducting-side connecting portion 21 is a member in which a bottomed cylindrical sealing tubular portion 21A and a main body portion 21B extending from the outer bottom of the sealing tubular portion 21A are integrated, and is directly connected to the superconducting cable 100. . The inner diameter of the sealing tubular portion 21A is slightly larger (about 0.5 mm to 2 mm) than the outer diameter of the tubular portion 20. Therefore, by fitting the sealing tubular portion 21A to one end of the tubular portion 20 in the axial direction, one end of the tubular portion 20 in the axial direction can be sealed. The joining between the tubular portion 20 and the sealing tubular portion 21A can be performed with solder or the like.

本体部21Bは、その一端部にケーブルコア110の先端部(この例ではフォーマ111及び超電導導体層112)を収納する収納部21sを備える。収納部21sの内底側の側面には、収納部21sの内部空間から収納部21sの径方向外方に延びる冷媒流路21cが形成されている。図2に示すように、収納部21sに挿入されたフォーマ111の中空孔は、冷媒流路21cに連通しており、中空孔から吐出された冷媒130は、冷媒流路21cを通って常電導側断熱容器5の冷媒槽51内に排出される。   The main body portion 21B includes a housing portion 21s at one end portion for housing the distal end portion of the cable core 110 (in this example, the former 111 and the superconducting conductor layer 112). On the inner bottom side surface of the storage section 21s, a refrigerant flow path 21c extending from the internal space of the storage section 21s to the outside in the radial direction of the storage section 21s is formed. As shown in FIG. 2, the hollow hole of the former 111 inserted into the storage section 21s communicates with the refrigerant flow path 21c, and the refrigerant 130 discharged from the hollow hole passes through the refrigerant flow path 21c and is connected to the normal conduction path. It is discharged into the refrigerant tank 51 of the side heat insulating container 5.

収納部21sの内径は、超電導ケーブル100(図1)側から順に、階段状に小さくなっている。収納部21sにおける最も内径が小さい異径内周面にはフォーマ111が配置され、その最小内径の異径内周面を除く各異径内周面には図4の超電導導体層112の各層が配置される。これらの異径内周面にはそれぞれ、本体部21Bの外周面から延びる注入孔21hが連通している。異径内周面に超電導導体層112を配置し、注入孔21hからハンダなどの接合材を注入することで、本体部21Bと、フォーマ111及び超電導導体層112と、を接合することができる。   The inner diameter of the storage portion 21s is reduced stepwise in order from the superconducting cable 100 (FIG. 1) side. The former 111 is disposed on the inner peripheral surface with the smallest inner diameter in the storage portion 21s, and each layer of the superconducting conductor layer 112 of FIG. Be placed. An injection hole 21h extending from the outer peripheral surface of the main body 21B communicates with each of the inner peripheral surfaces of these different diameters. By arranging superconducting conductor layer 112 on the inner peripheral surface of different diameter and injecting a joining material such as solder from injection hole 21h, main body 21B can be joined to former 111 and superconducting conductor layer 112.

本体部21Bの外周には、本体部21Bの径方向外方に突出するフランジ部21fが形成されている。本体部21Bにおけるフランジ部21f以外の部分の外径は、封止筒部21Aの大径部の外径と同じであり、後述する常電導側接続部22の封止筒部22Aの外径とも一致している。そのため、後述する端末構造1の製造方法に示すように、ケーブルコア110に導体引出部2を取付けた後に、導体引出部2の常温端側から常電導側断熱容器5を挿入し易い。   A flange 21f is formed on the outer periphery of the main body 21B so as to protrude radially outward of the main body 21B. The outer diameter of the portion other than the flange portion 21f in the main body portion 21B is the same as the outer diameter of the large-diameter portion of the sealing tubular portion 21A, and is the same as the outer diameter of the sealing tubular portion 22A of the normal-conducting-side connecting portion 22 described later. Match. Therefore, as shown in the manufacturing method of the terminal structure 1 described later, after the conductor lead-out portion 2 is attached to the cable core 110, the normal-conduction-side heat-insulating container 5 can be easily inserted from the normal temperature end side of the conductor lead-out portion 2.

[[常電導側接続部]]
常電導側接続部22は、有底筒状の封止筒部22Aと封止筒部22Aの外底から延びる板状の金具部22Bとが一体になった部材であって、常電導機器に接続される金具として機能する。封止筒部22Aの内径は、筒状部20の外径よりも若干(0.5mm〜2mm程度)大きくなっている。そのため、封止筒部22Aを筒状部20の軸方向の他端に嵌め込むことで、筒状部20の軸方向の他端を封止できる。筒状部20と封止筒部22Aとの接合はハンダなどで行うことができる。
[[Normal conduction side connection]]
The normal conducting side connecting portion 22 is a member in which a bottomed cylindrical sealing tubular portion 22A and a plate-like metal fitting portion 22B extending from the outer bottom of the sealing tubular portion 22A are integrated with each other. Functions as a fitting to be connected. The inner diameter of the sealing tubular portion 22A is slightly larger (about 0.5 mm to 2 mm) than the outer diameter of the tubular portion 20. Therefore, the other end of the tubular portion 20 in the axial direction can be sealed by fitting the sealing tubular portion 22A to the other end of the tubular portion 20 in the axial direction. The joining between the tubular portion 20 and the sealing tubular portion 22A can be performed with solder or the like.

金具部22Bは、導体引出部2を軸方向から見たときに封止筒部22Aの外周輪郭線から食み出さない大きさに形成された矩形板状の部材である。金具部22Bには、ブスバー200(図1参照)との接続に用いられる複数の取付孔22hが設けられている。ブスバー200の取付孔と金具部22Bの取付孔22hとを同軸に重ねてボルト200b(図1参照)止めすることで、導体引出部2と常電導機器とを電気的に接続することができる。   The metal fitting part 22B is a rectangular plate-shaped member formed so as not to protrude from the outer peripheral contour of the sealing tubular part 22A when the conductor lead-out part 2 is viewed from the axial direction. The fitting part 22B is provided with a plurality of mounting holes 22h used for connection with the bus bar 200 (see FIG. 1). By mounting the mounting hole of the bus bar 200 and the mounting hole 22h of the metal part 22B coaxially and fixing the bolt 200b (see FIG. 1), the conductor lead-out part 2 and the normal conducting device can be electrically connected.

[非真空断熱体]
本例の端末構造1は、図1,2に示すように、導体引出部2の筒状部20の径方向外方を覆う非真空断熱体3を備える。上述したように、導体引出部2の筒状部20の外周に形成する断熱構造には、真空断熱構造に比べて構造が単純な非真空断熱構造(非真空断熱体3)を採用することができる。構造が単純な非真空断熱体3は小型で容易に施工可能であるため、超電導機器の端末構造1を小型化でき、その施工性を向上させることができる。
[Non-vacuum insulation]
As shown in FIGS. 1 and 2, the terminal structure 1 of the present embodiment includes a non-vacuum heat insulator 3 that covers a radially outer portion of the cylindrical portion 20 of the conductor lead-out portion 2. As described above, a non-vacuum heat-insulating structure (non-vacuum heat-insulating body 3) having a simpler structure than the vacuum heat-insulating structure may be used for the heat-insulating structure formed on the outer periphery of the cylindrical portion 20 of the conductor lead-out portion 2. it can. Since the non-vacuum heat insulator 3 having a simple structure is small and can be easily constructed, the terminal structure 1 of the superconducting device can be miniaturized, and its workability can be improved.

本例の非真空断熱体3は、筒状部20の径方向外方を囲うケース30と、ケース30の内部に充填される樹脂32と、を備える。本例の構成では更に、ケース30の常電導側の開口端を封止する蓋31を備えており、ケース30内に樹脂32を充填し易くなっている。本例とは異なり、ウレタンシートなどの断熱材を筒状部20の外周に巻き付けることで非真空断熱体3を形成することもできる。   The non-vacuum heat insulator 3 of the present example includes a case 30 surrounding the outside of the cylindrical portion 20 in the radial direction, and a resin 32 filled inside the case 30. The configuration of this example further includes a lid 31 that seals the open end of the case 30 on the normal conduction side, so that the case 30 can be easily filled with the resin 32. Unlike the present example, the non-vacuum heat insulator 3 can be formed by winding a heat insulating material such as a urethane sheet around the outer periphery of the tubular portion 20.

ケース30には、ケース30の内外に連通する樹脂充填口30hが備わっている。また、蓋31には、導体引出部2の常電導側接続部22の封止筒部22Aが挿通される貫通孔31hが備わっている。これらケース30と蓋31は適宜な金属や強度に優れる樹脂で構成することができる。   The case 30 is provided with a resin filling port 30h communicating with the inside and outside of the case 30. Further, the lid 31 has a through hole 31h through which the sealing cylindrical portion 22A of the normal conducting side connection portion 22 of the conductor lead-out portion 2 is inserted. The case 30 and the lid 31 can be made of an appropriate metal or a resin having excellent strength.

ケース30内に充填される樹脂32は、ケース30内に充填するときは流動性を有し、ケース30に充填後に硬化させることができる性質を持った樹脂であれば特に限定されない。このような性質の樹脂32であれば、筒状部20の外周を隙間無く覆うことができるので、外部環境から筒状部20への熱の伝達を効果的に抑制でき、超電導ケーブル100への熱侵入を抑制できる。ケース30内に充填する樹脂32としては、例えば、発泡ウレタンやエポキシなどの熱硬化性樹脂を利用することができる。また、本例では筒状部20の貫通孔20hを介して筒状部20の内部が樹脂32で埋められていることで、筒状部20の内部に大気が残存することを抑制できる。残存大気があると、筒状部20内の気体が気化と液化を繰り返し、断熱性能が低下すると共に、筒状部20内の圧力変動で筒状部20の周辺部材に応力が作用する可能性があるが、筒状部20を樹脂32で埋めると、そのような問題点が生じることを抑制できる。   The resin 32 to be filled in the case 30 is not particularly limited as long as it has fluidity when filling the case 30 and has a property of being cured after filling the case 30. With the resin 32 having such a property, the outer periphery of the cylindrical portion 20 can be covered without a gap, so that the transfer of heat from the external environment to the cylindrical portion 20 can be effectively suppressed. Heat penetration can be suppressed. As the resin 32 filled in the case 30, for example, a thermosetting resin such as urethane foam or epoxy can be used. Further, in this example, since the inside of the tubular portion 20 is filled with the resin 32 via the through hole 20h of the tubular portion 20, it is possible to suppress the atmosphere from remaining inside the tubular portion 20. If there is residual air, the gas in the cylindrical portion 20 repeatedly evaporates and liquefies, thereby deteriorating the heat insulation performance and possibly causing stress to act on the peripheral members of the cylindrical portion 20 due to pressure fluctuations in the cylindrical portion 20. However, when the tubular portion 20 is filled with the resin 32, such a problem can be suppressed.

≪超電導機器の端末構造の製造方法≫
上述の実施形態1の超電導機器の端末構造1は、例えば、以下の工程を備える製造方法によって構築することができる。
・コア処理工程
・超電導側断熱容器の形成工程
・導体引出部の接続工程
・常電導側断熱容器の形成工程
・碍管の配置工程
・真空引き工程
・非真空断熱体の形成工程
製造 Method for manufacturing terminal structure of superconducting device≫
The terminal structure 1 of the superconducting device according to the first embodiment can be constructed by, for example, a manufacturing method including the following steps.
・ Core processing process ・ Formation process of superconducting side heat insulation container ・ Connection process of conductor lead-out part ・ Process of forming normal conduction side heat insulation container ・ Placement process of insulator tube ・ Vacuum drawing process ・ Formation process of non-vacuum heat insulator

[コア処理工程]
超電導ケーブル100の端部において断熱管120から所定の長さのケーブルコア110を出して段剥ぎなどして、フォーマ111、超電導導体層112、電気絶縁層113などを順に露出する。この例では、ケーブルコア110における断熱管120の近傍に補強絶縁層8を形成した後、遮蔽層114から補強絶縁層8の外周の一部に至るように遮蔽接続部80を設ける。
[Core processing step]
At the end of the superconducting cable 100, the cable core 110 having a predetermined length is taken out of the heat insulating tube 120, and the former is peeled off, and the former 111, the superconducting conductor layer 112, the electric insulating layer 113 and the like are exposed in order. In this example, after the reinforcing insulating layer 8 is formed in the vicinity of the heat insulating pipe 120 in the cable core 110, the shielding connection portion 80 is provided so as to extend from the shielding layer 114 to a part of the outer periphery of the reinforcing insulating layer 8.

[超電導側断熱容器の形成工程]
ケーブルコア110の補強絶縁層8を覆うように超電導側断熱容器6を設ける。ここでは、断熱管120の内管121と冷媒槽61とを溶接などで接合すると共に、断熱管120の外管122と真空槽62とを溶接などで接合する。そして、超電導側断熱容器6の常電導側の開口端を塞ぐように碍管7の底板部71を取り付ける。なお、超電導側断熱容器6を複数の分割構造とし、後述する常電導側断熱容器5の形成の後に、超電導側断熱容器6の形成を行うこともできる。
[Process of forming superconducting-side heat insulating container]
The superconducting heat insulating container 6 is provided so as to cover the reinforcing insulating layer 8 of the cable core 110. Here, the inner tube 121 of the heat insulating tube 120 and the refrigerant tank 61 are joined by welding or the like, and the outer tube 122 of the heat insulating tube 120 and the vacuum tank 62 are joined by welding or the like. Then, the bottom plate portion 71 of the porcelain tube 7 is attached so as to close the opening end of the superconducting-side heat insulating container 6 on the normal conduction side. Note that the superconducting-side heat-insulating container 6 may be formed into a plurality of divided structures, and the superconducting-side heat-insulating container 6 may be formed after the normal-conducting-side heat-insulating container 5 described later is formed.

[導体引出部の接続工程]
超電導側断熱容器6の端部から突出するケーブルコア110の端部に導体引出部2を接続する。接続にあたっては、導体引出部2に備わる超電導側接続部21の収納部21sにケーブルコア110の端部を挿入し、各注入孔21h(図3)からハンダを流し込む。フォーマ111の外周には弾性の接続金具などを取り付けておくことで、収納部21sにフォーマ111が圧入され、収納部21sにフォーマ111が強固に固定される。
[Connecting process of conductor lead-out part]
The conductor lead-out section 2 is connected to the end of the cable core 110 projecting from the end of the superconducting-side heat insulating container 6. In connection, the end of the cable core 110 is inserted into the storage section 21s of the superconducting side connection section 21 provided in the conductor lead-out section 2, and solder is poured from each injection hole 21h (FIG. 3). By attaching an elastic fitting or the like to the outer periphery of the former 111, the former 111 is press-fitted into the storage part 21s, and the former 111 is firmly fixed to the storage part 21s.

[常電導側断熱容器の形成工程]
本例では、冷媒槽51と真空槽52とを備える常電導側断熱容器5の外周に絶縁筒4を一体化した一体化部材を工場などで作製しておく。この一体化部材を、導体引出部2側からケーブルコア110の外側に嵌め込み、絶縁筒4の外周に設けられる固定部40を底板部71に固定する。図2に示すように、冷媒槽51の常温側端部の内周面に形成される段差は、導体引出部2の常電導側接続部22の外周面に形成されるフランジ部21f(図3参照)に当て止めされる。
[Process of Forming Normal-Conduction-Side Insulated Container]
In this example, an integrated member in which the insulating cylinder 4 is integrated with the outer periphery of the normal-conduction-side heat-insulating container 5 including the refrigerant tank 51 and the vacuum tank 52 is manufactured in a factory or the like. The integrated member is fitted to the outside of the cable core 110 from the conductor lead-out portion 2 side, and the fixing portion 40 provided on the outer periphery of the insulating cylinder 4 is fixed to the bottom plate portion 71. As shown in FIG. 2, a step formed on the inner peripheral surface of the normal temperature side end of the refrigerant tank 51 is formed by a flange portion 21 f formed on the outer peripheral surface of the normal conducting side connection portion 22 of the conductor lead-out portion 2 (FIG. 3). See).

[碍管の配置工程]
絶縁筒4の常温側領域を覆うように碍管7を被せる。本例では、本体部70及び上板部72を、導体引出部2側から常電導側断熱容器5の外側に嵌め込み、三者70,71,72を接続する。このとき、常電導側断熱容器5は上板部72から突出している。碍管7内への絶縁流体の導入は適宜な時期に行える。
[Positioning process of insulator tube]
The insulator tube 7 is covered so as to cover the room temperature side region of the insulating cylinder 4. In this example, the main body 70 and the upper plate 72 are fitted into the outside of the normal-conduction-side heat-insulating container 5 from the conductor lead-out portion 2 side, and the three members 70, 71, 72 are connected. At this time, the normal-conduction-side heat-insulating container 5 protrudes from the upper plate 72. The introduction of the insulating fluid into the insulator tube 7 can be performed at an appropriate time.

[真空引き工程]
真空ポート50p,60pを利用して常電導側断熱容器5と超電導側断熱容器6の真空引きを行う。断熱管120は、予め工場などで真空引きを行える。断熱管120に備える真空ポート100pを利用して、施工現場や布設後でも真空状態を調整できる。両断熱容器5,6についても、真空ポート50p,60pを利用して、布設後でも真空状態を調整できる。
[Evacuation process]
Using the vacuum ports 50p and 60p, the normal-conduction-side heat-insulating container 5 and the superconducting-side heat-insulating container 6 are evacuated. The heat insulating tube 120 can be evacuated in advance at a factory or the like. Using the vacuum port 100p provided in the heat insulating pipe 120, the vacuum state can be adjusted even at the construction site or after the installation. With respect to both the heat insulating containers 5 and 6, the vacuum state can be adjusted even after the installation using the vacuum ports 50p and 60p.

[非真空断熱体の形成工程]
図2に示すように、両端が開口した筒状のケース30を、導体引出部2の先端側から筒状部20の外部に嵌め込み、ケース30を上板部72に固定する。次いで、中央に貫通孔31hの空いた蓋31を導体引出部2の先端側から嵌め込んで、ケース30の常温側の開口端を封止する。そして、ケース30の樹脂充填口30hから樹脂32を充填する。ケース30内に充填された樹脂32は、導体引出部2の筒状部20に設けられる貫通孔20hを通って筒状部20の内部にも充填される。樹脂32の充填が終了したら樹脂32を硬化させ、非真空断熱体3を完成させる。非真空断熱体3の形成後、上部シールド75をケース30の外周に設ける。
[Process of forming non-vacuum heat insulator]
As shown in FIG. 2, a cylindrical case 30 having both open ends is fitted to the outside of the cylindrical portion 20 from the distal end side of the conductor lead portion 2, and the case 30 is fixed to the upper plate portion 72. Next, the lid 31 having a through hole 31h in the center is fitted from the front end side of the conductor lead-out portion 2 to seal the open end of the case 30 on the room temperature side. Then, the resin 32 is filled through the resin filling port 30h of the case 30. The resin 32 filled in the case 30 also fills the inside of the tubular portion 20 through a through hole 20 h provided in the tubular portion 20 of the conductor lead-out portion 2. When the filling of the resin 32 is completed, the resin 32 is cured to complete the non-vacuum heat insulator 3. After the formation of the non-vacuum heat insulator 3, the upper shield 75 is provided on the outer periphery of the case 30.

以上の工程を終えたら、冷媒130を導入して超電導導体層112を超電導状態に維持することで、超電導ケーブル線路を運転でき、常電導電力機器との間で電力の授受を行える。   When the above steps are completed, the superconducting cable line can be operated by introducing the refrigerant 130 and maintaining the superconducting conductor layer 112 in the superconducting state, so that power can be exchanged with the normal conducting power equipment.

≪効果≫
実施形態1の超電導機器の端末構造1は、導体引出部2に筒状部20を設けることで、導体引出部2を介した超電導ケーブル100への熱の伝導を抑制できる。また、筒状部20を有する導体引出部2を備えることで、筒状部20を外部環境から断熱する断熱構造を、構造が単純な非真空断熱体3とすることができる。構造が単純な非真空断熱体3により端末構造1を小型化できるし、その施工性を向上させることができる。特に、超電導ケーブル100を用いた送電網では多数の端末構造1が形成されることになるので、各端末構造1の施工性の向上は、送電網全体の施工性の向上に大きく寄与する。
≪Effect≫
The terminal structure 1 of the superconducting device according to the first embodiment can suppress the conduction of heat to the superconducting cable 100 via the conductor lead-out portion 2 by providing the tubular portion 20 in the conductor lead-out portion 2. In addition, by providing the conductor lead-out portion 2 having the cylindrical portion 20, the heat insulating structure that insulates the cylindrical portion 20 from the external environment can be a non-vacuum heat insulator 3 having a simple structure. The terminal structure 1 can be miniaturized by the non-vacuum heat insulator 3 having a simple structure, and its workability can be improved. In particular, since a large number of terminal structures 1 are formed in the power transmission network using the superconducting cable 100, the improvement of the workability of each terminal structure 1 greatly contributes to the improvement of the workability of the entire power transmission network.

また、構造が単純な非真空断熱体3は分解も容易である。例えば、端末構造1のメンテナンス時に非真空断熱体3を分解することになっても、その分解の手間やメンテナンス後の再構築の手間が、真空断熱構造よりも格段に容易である。   Also, the non-vacuum heat insulator 3 having a simple structure can be easily disassembled. For example, even if the non-vacuum heat insulator 3 is disassembled during the maintenance of the terminal structure 1, the trouble of disassembly and the trouble of rebuilding after the maintenance are much easier than the vacuum heat insulation structure.

<実施形態2>
実施形態1では、導体引出部2の筒状部20の内部にも樹脂32を充填した。これに対して、実施形態2では、冷媒流通機構9を用いて筒状部20の内部に冷媒131を流通させる構成を図5に基づいて説明する。図5は、端末構造1における非真空断熱体3近傍の部分縦断面図であって、実施形態1の図2に示す構成と同様の構成については同一の符号を付している。
<Embodiment 2>
In the first embodiment, the inside of the cylindrical portion 20 of the conductor lead-out portion 2 is also filled with the resin 32. On the other hand, in a second embodiment, a configuration in which the refrigerant 131 is circulated inside the tubular portion 20 using the refrigerant circulating mechanism 9 will be described with reference to FIG. FIG. 5 is a partial longitudinal sectional view of the vicinity of the non-vacuum heat insulator 3 in the terminal structure 1, and the same components as those of the first embodiment shown in FIG. 2 are denoted by the same reference numerals.

本例の導体引出部2は、筒状部20に二つの冷媒ポート20pを備える。一方の冷媒ポート20pに、冷媒流通機構9の冷媒導入管91を接続し、他方の冷媒ポート20pに、冷媒流通機構9の冷媒排出管99を接続する。冷媒流通機構9で筒状部20に流通させる冷媒131は、超電導ケーブル100を冷却する冷媒130と同系統の冷媒でも良いし、異系統の冷媒でも良い。冷媒流通機構9の冷媒131を超電導ケーブル100の冷媒130とは異なる冷媒とする場合、冷媒131は冷媒130よりも温度が高い冷媒でも良い。例えば、冷媒131は気液混合冷媒でも良い。ここで、管91,99は、高電位の導体引出部2に繋がっているので、管91,99の途中を絶縁継手などで絶縁処理する必要がある。   The conductor lead-out portion 2 of the present example includes two refrigerant ports 20p in the tubular portion 20. The refrigerant introduction pipe 91 of the refrigerant distribution mechanism 9 is connected to one refrigerant port 20p, and the refrigerant discharge pipe 99 of the refrigerant distribution mechanism 9 is connected to the other refrigerant port 20p. The refrigerant 131 circulated through the tubular portion 20 by the refrigerant circulating mechanism 9 may be a refrigerant of the same system as the refrigerant 130 that cools the superconducting cable 100 or a refrigerant of a different system. When the refrigerant 131 of the refrigerant distribution mechanism 9 is different from the refrigerant 130 of the superconducting cable 100, the refrigerant 131 may be a refrigerant having a higher temperature than the refrigerant 130. For example, the refrigerant 131 may be a gas-liquid mixed refrigerant. Here, since the pipes 91 and 99 are connected to the high-potential conductor lead-out portion 2, it is necessary to insulate the pipes 91 and 99 in the middle with an insulating joint or the like.

実施形態2の構成によれば、負荷時に発生した常電導側接続部22や筒状部20で発生した熱を除去することができ、超電導ケーブル100の温度が上昇することを抑制し易い。ここで、実施形態に係る超電導機器の端末構造1では、筒状部20の外周を覆う断熱構造が非真空断熱体3であるため、冷媒流通機構9を構成する冷媒導入管91や冷媒排出管99を配置し易い。   According to the configuration of the second embodiment, it is possible to remove the heat generated in the normal-conducting-side connecting portion 22 and the cylindrical portion 20 generated during the load, and it is easy to suppress the temperature of the superconducting cable 100 from increasing. Here, in the terminal structure 1 of the superconducting device according to the embodiment, since the heat insulating structure covering the outer periphery of the tubular portion 20 is the non-vacuum heat insulator 3, the refrigerant introduction pipe 91 and the refrigerant discharge pipe constituting the refrigerant distribution mechanism 9 are provided. 99 is easy to arrange.

<その他の実施形態>
実施形態1,2とは異なり、導体引出部2の筒状部20の内部に大気などの気体を封入しても構わない。例えば、実施形態1の筒状部20における貫通孔20hの径を小さくすれば、筒状部20の内部に樹脂が侵入することを抑制できる。筒状部20内が大気であれば、実施形態1のように樹脂32(図2)を充填したり、実施形態2のように冷媒131(図5)の流通を行う必要がなく、端末構造1の施工がより簡単になる。
<Other embodiments>
Different from the first and second embodiments, a gas such as the atmosphere may be sealed inside the tubular portion 20 of the conductor lead-out portion 2. For example, if the diameter of the through-hole 20h in the tubular portion 20 of the first embodiment is reduced, it is possible to suppress the resin from entering the inside of the tubular portion 20. If the inside of the tubular portion 20 is air, there is no need to fill the resin 32 (FIG. 2) as in the first embodiment or to circulate the refrigerant 131 (FIG. 5) as in the second embodiment. 1 is easier to construct.

1 超電導機器の端末構造
11 冷媒導入管 19 冷媒排出管
2 導体引出部
20 筒状部
20h 貫通孔 20p 冷媒ポート
21 超電導側接続部
21A 封止筒部 21B 本体部
21c 冷媒流路 21f フランジ部 21h 注入孔
21p 締結孔 21s 収納部
22 常電導側接続部
22A 封止筒部 22B 金具部 22h 取付孔
3 非真空断熱体
30 ケース 31 蓋 32 樹脂 30h 樹脂充填口 31h 貫通孔
4 絶縁筒
40 固定部
5 常電導側断熱容器
51 冷媒槽 52 真空槽
6 超電導側断熱容器
61 冷媒槽 62 真空槽
7 碍管
70 本体部 71 底板部 72 上板部 75 上部シールド
8 補強絶縁層 80 遮蔽接続部
9 冷媒流通機構
91 冷媒導入管 99 冷媒排出管
50p,60p,100p 真空ポート
100 超電導ケーブル
110 ケーブルコア
111 フォーマ 112 超電導導体層 113 電気絶縁層
114 遮蔽層 115 保護層
120 断熱管
121 内管 122 外管 123 断熱材 124 防食層
130,131 冷媒
200 ブスバー
200b ボルト
DESCRIPTION OF SYMBOLS 1 Terminal structure of superconducting device 11 Refrigerant introduction pipe 19 Refrigerant discharge pipe 2 Conductor lead-out part 20 Cylindrical part 20h Through hole 20p Refrigerant port 21 Superconducting side connection part 21A Sealing cylinder part 21B Main part 21c Refrigerant flow path 21f Flange part 21h Injection Hole 21p Fastening hole 21s Storage part 22 Normal conduction side connection part 22A Sealing cylinder part 22B Metal fitting part 22h Mounting hole 3 Non-vacuum heat insulator 30 Case 31 Cover 32 Resin 30h Resin filling port 31h Through hole 4 Insulation cylinder 40 Fixed part 5 Normal Conducting-side heat-insulating container 51 Refrigerant tank 52 Vacuum tank 6 Superconducting-side heat-insulating container 61 Refrigerant tank 62 Vacuum tank 7 Insulator tube 70 Main body 71 Bottom plate 72 Upper plate 75 Upper shield 8 Reinforcement insulating layer 80 Shield connection 9 Refrigerant circulation mechanism 91 Refrigerant 91 Inlet pipe 99 Refrigerant discharge pipe 50p, 60p, 100p Vacuum port 100 Superconducting cable 110 cable Lucor 111 Former 112 Superconducting conductor layer 113 Electrical insulating layer 114 Shielding layer 115 Protective layer 120 Heat insulating tube 121 Inner tube 122 Outer tube 123 Heat insulating material 124 Anticorrosion layer 130, 131 Refrigerant 200 Busbar 200b Volt

Claims (6)

超電導機器の超電導導体の端部に電気的に接続される常電導の導体引出部を備える超電導機器の端末構造であって、
前記導体引出部は、
筒状部と、
前記筒状部の軸方向の一端側を封止すると共に、前記超電導導体の端部を収納する収納部を有する超電導側接続部と、
前記筒状部の軸方向の他端側を封止すると共に、常電導機器に接続される金具となる常電導側接続部と、を備え、
更に、前記筒状部の径方向の外周面を覆う非真空断熱体を備える超電導機器の端末構造。
A terminal structure of a superconducting device including a normal-conduction conductor lead-out portion electrically connected to an end of a superconducting conductor of the superconducting device,
The conductor lead-out portion,
A tubular portion,
A superconducting-side connecting portion that seals one end side of the cylindrical portion in the axial direction and has a storage portion that stores an end of the superconducting conductor,
Along with sealing the other end of the cylindrical portion in the axial direction, a normal-conducting-side connection portion serving as a bracket connected to a normal-conduction device,
Furthermore, a terminal structure of a superconducting device including a non-vacuum heat insulator covering a radially outer peripheral surface of the cylindrical portion.
前記非真空断熱体は、前記筒状部の径方向外方を囲うケースと、前記ケースの内部に充填される樹脂と、を備える請求項1に記載の超電導機器の端末構造。   2. The terminal structure for a superconducting device according to claim 1, wherein the non-vacuum heat insulator includes a case surrounding a radially outer side of the cylindrical portion, and a resin filled inside the case. 3. 前記筒状部は、その内外を貫通する貫通孔を備え、
前記樹脂が、前記貫通孔を介して前記筒状部の内部にも充填されている請求項2に記載の超電導機器の端末構造。
The cylindrical portion includes a through hole penetrating the inside and outside thereof,
The terminal structure for a superconducting device according to claim 2, wherein the resin is also filled inside the cylindrical portion through the through hole.
前記筒状部の内部に冷媒を流通させる冷媒流通機構を備える請求項1または請求項2に記載の超電導機器の端末構造。   The terminal structure of a superconducting device according to claim 1, further comprising a refrigerant distribution mechanism that distributes a refrigerant inside the cylindrical portion. 前記超電導機器は、前記超電導導体を備えるケーブルコアと、前記ケーブルコアを収納する断熱管と、を備える超電導ケーブルである請求項1から請求項4のいずれか1項に記載の超電導機器の端末構造。   The terminal structure of a superconducting device according to any one of claims 1 to 4, wherein the superconducting device is a superconducting cable including a cable core including the superconducting conductor and a heat insulating tube that stores the cable core. . 前記ケーブルコアの一部が挿通される絶縁筒と、
前記絶縁筒における前記導体引出部の側に配置され、前記ケーブルコアの端部と共に前記常電導側接続部をその内部に収納する常電導側断熱容器と、
前記絶縁筒における前記超電導ケーブルの側に配置され、前記超電導ケーブルの前記断熱管に繋がる超電導側断熱容器と、を備える請求項5に記載の超電導機器の端末構造。
An insulating tube through which a part of the cable core is inserted,
A normal-conduction-side heat-insulating container that is arranged on the side of the conductor lead-out portion of the insulating cylinder and houses the normal-conduction-side connection portion together with an end of the cable core,
The terminal structure of a superconducting device according to claim 5, further comprising: a superconducting-side heat-insulating container disposed on the side of the superconducting cable in the insulating tube and connected to the heat-insulating pipe of the superconducting cable.
JP2018149959A 2018-08-09 2018-08-09 Terminal structure of superconducting apparatus Pending JP2020028132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149959A JP2020028132A (en) 2018-08-09 2018-08-09 Terminal structure of superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149959A JP2020028132A (en) 2018-08-09 2018-08-09 Terminal structure of superconducting apparatus

Publications (1)

Publication Number Publication Date
JP2020028132A true JP2020028132A (en) 2020-02-20

Family

ID=69620468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149959A Pending JP2020028132A (en) 2018-08-09 2018-08-09 Terminal structure of superconducting apparatus

Country Status (1)

Country Link
JP (1) JP2020028132A (en)

Similar Documents

Publication Publication Date Title
EP1732190B1 (en) Terminal structure of multiphase superconducting cable
US7849704B2 (en) Cryogenic apparatus of superconducting equipment
JP6791782B2 (en) Terminal structure of superconducting equipment
JP5351249B2 (en) Superconducting cable terminal connection structure
EP1818944A1 (en) Power cable line
JP2005210834A (en) Connection structure of polyphase superconductive cable
JP6169030B2 (en) Superconducting cable terminal structure
JP2019129583A (en) Terminal structure of superconductor cable
JP2016195484A (en) Terminal structure of superconducting cable
KR101823814B1 (en) Joint part for superconducting cable and joint structure for superconducting cable
JP2013059211A (en) Terminal structure of superconductive cable
JP6482358B2 (en) Superconducting cable terminal structure
JP2020028132A (en) Terminal structure of superconducting apparatus
JP2017063578A (en) Terminal structure of superconducting cable
JP2020028134A (en) Terminal structure of superconducting cable
JP2020028133A (en) Conductor pull-out member, terminal structure of superconducting apparatus, and manufacturing method of terminal structure of superconducting apparatus
JP2005341767A (en) Terminal structure of superconducting cable
JP6491518B2 (en) Superconducting cable terminal structure
JP2005341737A (en) Terminal structure of superconducting apparatus
JP4330008B2 (en) Superconducting cable pooling eye and laying method of superconducting cable using pooling eye
JP5742006B2 (en) End structure of room temperature insulated superconducting cable
JP2019030210A (en) Terminal structure of superconducting cable
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable
JP2017073387A (en) Connection structure of superconducting cable