JP5742006B2 - End structure of room temperature insulated superconducting cable - Google Patents

End structure of room temperature insulated superconducting cable Download PDF

Info

Publication number
JP5742006B2
JP5742006B2 JP2011046836A JP2011046836A JP5742006B2 JP 5742006 B2 JP5742006 B2 JP 5742006B2 JP 2011046836 A JP2011046836 A JP 2011046836A JP 2011046836 A JP2011046836 A JP 2011046836A JP 5742006 B2 JP5742006 B2 JP 5742006B2
Authority
JP
Japan
Prior art keywords
refrigerant
conductor
superconducting
terminal
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011046836A
Other languages
Japanese (ja)
Other versions
JP2012186890A (en
Inventor
祐一 芦辺
祐一 芦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011046836A priority Critical patent/JP5742006B2/en
Publication of JP2012186890A publication Critical patent/JP2012186890A/en
Application granted granted Critical
Publication of JP5742006B2 publication Critical patent/JP5742006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Description

本発明は、常温絶縁型超電導ケーブルの端末構造に関する。   The present invention relates to a terminal structure of a room temperature insulated superconducting cable.

超電導ケーブルは、既存の電力ケーブル(例、CVケーブルやOFケーブルなどの常電導ケーブル)に比較して、大容量の電力を低損失で送電できることから、省エネルギー技術として期待されている。最近では、実線路を模擬した線路に超電導ケーブルを布設し、実用化に向けて実証試験が進められている。   A superconducting cable is expected as an energy-saving technology because it can transmit large-capacity power with low loss compared to existing power cables (eg, normal conducting cables such as CV cables and OF cables). Recently, a superconducting cable is laid on a line simulating a real line, and a demonstration test is being promoted for practical use.

超電導ケーブルには、超電導導体層の外周に電気絶縁層を有する導体部(所謂ケーブルコア)が冷媒配管に収納され、当該電気絶縁層も冷媒(例、液体窒素(LN2))の温度に冷却される低温絶縁型のもの(例えば、特許文献1の段落0004参照)と、超電導導体層の外周に電気絶縁層を有しない導体部が冷媒配管に収納され、この冷媒配管の外周に電気絶縁層が形成され、当該電気絶縁層が常温に保持される常温絶縁型のもの(例えば、特許文献1の段落0003参照)とがある。冷媒配管には、例えば、内管と外管とを有する二重管構造の断熱管が利用されており、断熱性を高めるために、内管と外管との間の空間を真空引きして真空断熱層を形成したり、さらに、この真空断熱層にスーパーインシュレーションといった断熱材を配置したりすることが行われている。 In a superconducting cable, a conductor portion (so-called cable core) having an electric insulation layer on the outer periphery of the superconducting conductor layer is housed in a refrigerant pipe, and the electric insulation layer is also cooled to the temperature of the refrigerant (eg, liquid nitrogen (LN 2 )). A low-temperature insulation type (see, for example, paragraph 0004 of Patent Document 1) and a conductor portion that does not have an electric insulation layer on the outer periphery of the superconducting conductor layer are accommodated in the refrigerant pipe, and an electric insulation layer is provided on the outer circumference of the refrigerant pipe Is formed, and the electrical insulating layer is maintained at room temperature, and is of a room temperature insulation type (see, for example, paragraph 0003 of Patent Document 1). For example, a double-pipe heat insulation pipe having an inner pipe and an outer pipe is used as the refrigerant pipe. In order to improve heat insulation, the space between the inner pipe and the outer pipe is evacuated. A vacuum heat insulating layer is formed, and furthermore, a heat insulating material such as super insulation is disposed on the vacuum heat insulating layer.

ところで、超電導ケーブルを用いて線路を構築する場合、超電導ケーブルの端末において、超電導ケーブルと常電導電力機器(例、常電導ケーブル)とを接続する端末構造(終端接続部)が必要である。上記した低温絶縁型超電導ケーブルの端末構造が、例えば特許文献2に開示されている。この端末構造では、超電導ケーブルの端末を処理して露出させた導体部(超電導導体層)にブッシングの導体(引出導体)を接続し、このブッシングを介して、極低温側から常温側に電流を引き出す構成である。ブッシングは、内部に常電導材料からなる導体を有し、導体の一端が超電導ケーブルの導体部と接続され、他端が常温側に引き出される。そして、上記端末構造は、このブッシングの導体の一端側(超電導ケーブルの導体部と接続される側)を収納する冷媒槽と、冷媒槽の外周を覆う真空容器と、真空容器の常温側に突設される碍管とを備え、ブッシングの他端側が碍管に収納され、導体の他端が碍管を貫通して常温側へ引き出される。   By the way, when constructing | assembling a track | line using a superconducting cable, the terminal structure (terminal connection part) which connects a superconducting cable and a normal-conductivity power apparatus (for example, a normal-conducting cable) is required in the terminal of a superconducting cable. The terminal structure of the above-described low-temperature insulated superconducting cable is disclosed in Patent Document 2, for example. In this terminal structure, the conductor of the bushing (leading conductor) is connected to the conductor (superconducting conductor layer) exposed by processing the end of the superconducting cable, and current is passed from the cryogenic temperature side to the room temperature side through this bushing. It is a structure to pull out. The bushing has a conductor made of a normal conducting material inside, one end of the conductor is connected to the conductor portion of the superconducting cable, and the other end is drawn to the room temperature side. The terminal structure projects into one end side of the bushing conductor (side connected to the conductor portion of the superconducting cable), a vacuum container covering the outer periphery of the refrigerant tank, and a room temperature side of the vacuum container. The other end side of the bushing is housed in the soot tube, and the other end of the conductor passes through the soot tube and is drawn out to the room temperature side.

特開平8‐64041号公報JP-A-8-64041 特開2005‐117724号公報JP 2005-117724 A

超電導ケーブルを実用化するにあたり、布設されている既存の電力ケーブルを超電導ケーブルに置き換えることが考えられる。しかし、常温絶縁型超電導ケーブルの場合、具体的な端末構造は従来提案されていない。   In putting the superconducting cable into practical use, it is conceivable to replace the existing installed power cable with a superconducting cable. However, in the case of a room temperature insulated superconducting cable, no specific terminal structure has been proposed in the past.

また、常温絶縁型超電導ケーブルの端末構造として、上記した低温絶縁型超電導ケーブルの端末構造と同様の構成を採用した場合、電力ケーブルの端末構造に使用されている碍管などの既存の端末設備をそのまま利用することができない虞がある。具体的には、超電導ケーブルの能力に応じた電力を送電する場合、引出導体には大電流が流れることになり、引出導体におけるジュール損が非常に大きくなる。これを回避するため、引出導体の断面積(外径)を大きくして、引出導体の電気抵抗を小さくすることが考えられるが、その場合、引出導体を収納する碍管も大径化する。したがって、従来の端末構造の技術を適用した場合、小型化が難しく、碍管なども含めて新規に端末構造を設計・施工する必要がある。   In addition, when the same structure as the terminal structure of the above-mentioned low-temperature insulated superconducting cable is adopted as the terminal structure of the room temperature insulated superconducting cable, the existing terminal equipment such as a pipe used for the terminal structure of the power cable is used as it is. There is a possibility that it cannot be used. Specifically, when power corresponding to the capability of the superconducting cable is transmitted, a large current flows through the lead conductor, and the Joule loss in the lead conductor becomes very large. In order to avoid this, it is conceivable to increase the cross-sectional area (outer diameter) of the lead conductor to reduce the electrical resistance of the lead conductor, but in that case, the diameter of the soot tube that accommodates the lead conductor is also increased. Therefore, when the conventional terminal structure technology is applied, it is difficult to reduce the size, and it is necessary to design and construct a new terminal structure including a pipe.

そこで、本発明の目的の一つは、小型化が可能であり、常温絶縁型超電導ケーブルに適した端末構造を提供することにある。   Accordingly, one of the objects of the present invention is to provide a terminal structure that can be miniaturized and is suitable for a room temperature insulated superconducting cable.

本発明の常温絶縁型超電導ケーブルの端末構造は、常温絶縁型超電導ケーブルの端末と常温側に引き出される引出導体とを接続する端末構造である。常温絶縁型超電導ケーブル(以下、単に「超電導ケーブル」と呼ぶ場合がある)は、超電導導体層を有する導体部と、導体部を収納し、超電導導体層を冷却する冷媒が流通する冷媒配管と、冷媒配管の外周に形成される電気絶縁層と、を備える。そして、この端末構造は、超電導ケーブルの端末の外周を覆うと共に、当該端末の先端部における導体部が外部に露出した状態で配置される碍管と、碍管から外部に露出した導体部と引出導体とを電気的に接続する接続部と、接続部の外周を覆うように冷媒配管に接合され、接続部を収納する冷媒槽と、を備えることを特徴とする。   The terminal structure of the room-temperature insulated superconducting cable of the present invention is a terminal structure that connects the terminal of the room-temperature insulated superconducting cable and the lead conductor drawn to the room temperature side. A room-temperature insulated superconducting cable (hereinafter sometimes simply referred to as a “superconducting cable”) includes a conductor part having a superconducting conductor layer, a refrigerant pipe that houses the conductor part and through which a refrigerant that cools the superconducting conductor layer flows, An electrical insulating layer formed on the outer periphery of the refrigerant pipe. And this terminal structure covers the outer periphery of the terminal of the superconducting cable and is arranged in a state where the conductor part at the tip of the terminal is exposed to the outside, the conductor part exposed to the outside from the pipe, and the lead conductor And a refrigerant tank which is joined to the refrigerant pipe so as to cover the outer periphery of the connection part and accommodates the connection part.

この構成によれば、超電導ケーブルの端末の外周を覆う碍管から当該ケーブルの端末の先端部における導体部が外部に露出し、この導体部と引出導体との接続部が碍管の外部に設けられる。そのため、引出導体の外径を大きくしても、碍管の外径を大きくする必要がなく、碍管の外径が小さくて済む。よって、端末構造の小型が可能であり、また、端末構造を施工する際、既存の電力ケーブルの端末設備の一部(例えば、碍管)をそのまま利用することができるため、超電導ケーブルの布設コストを低減することができる。   According to this structure, the conductor part in the front-end | tip part of the terminal of the said cable is exposed outside from the soot pipe which covers the outer periphery of the terminal of a superconducting cable, and the connection part of this conductor part and an extraction conductor is provided in the exterior of a soot pipe. Therefore, even if the outer diameter of the lead conductor is increased, it is not necessary to increase the outer diameter of the soot tube, and the outer diameter of the soot tube can be reduced. Therefore, it is possible to reduce the size of the terminal structure, and when constructing the terminal structure, it is possible to use a part of the existing power cable terminal equipment (for example, a pipe) as it is, so that the installation cost of the superconducting cable can be reduced. Can be reduced.

本発明の常温絶縁型超電導ケーブルの端末構造の一形態としては、冷媒槽の側面に、当該冷媒槽内に連通し、引出導体の引出方向とは異なる方向に分岐する分岐冷媒配管に接合される冷媒導通口を備えることが挙げられる。   As one form of the terminal structure of the room-temperature insulated superconducting cable of the present invention, the refrigerant tank is joined to a branch refrigerant pipe that communicates with the side surface of the refrigerant tank and branches in a direction different from the drawing direction of the drawing conductor. It may be provided with a refrigerant conduction port.

この構成によれば、超電導ケーブルの冷媒配管に流通する冷媒を引出導体の引出方向とは異なる方向に冷媒導通口を通して端末から引き出すことができる。超電導ケーブルを布設し送電を行う場合、例えば、一端側の端末から引き出された冷媒を、分岐冷媒配管を介して外部に設けられる冷却システムに送り、冷媒配管を流通することによって温度上昇した冷媒を所定の温度まで冷却した後、冷却した冷媒を他端側の端末から冷媒配管に戻すことができ、冷媒を循環させることができる。   According to this structure, the refrigerant | coolant which distribute | circulates through the refrigerant | coolant piping of a superconducting cable can be pulled out from a terminal through a refrigerant | coolant conduction | electrical_connection opening in the direction different from the drawing-out direction of an extraction | drawer conductor. When power is transmitted by installing a superconducting cable, for example, the refrigerant drawn from the terminal on one end side is sent to the cooling system provided outside via the branch refrigerant pipe, and the refrigerant whose temperature has increased by circulating through the refrigerant pipe is used. After cooling to a predetermined temperature, the cooled refrigerant can be returned to the refrigerant pipe from the terminal on the other end side, and the refrigerant can be circulated.

本発明の常温絶縁型超電導ケーブルの端末構造の一形態としては、さらに、冷媒槽の外周を覆う真空槽を備え、この真空槽の側面に、当該真空槽内に連通し、当該真空槽内を真空引きするための真空引ポートを備えることが挙げられる。   As one form of the terminal structure of the room-temperature insulated superconducting cable of the present invention, a vacuum tank covering the outer periphery of the refrigerant tank is further provided, and the side of the vacuum tank communicates with the vacuum tank, It is possible to provide a vacuum drawing port for vacuuming.

この構成によれば、冷媒槽の外周に真空槽を備えることで、真空槽内(冷媒槽と真空槽との間の空間)を真空引きして、冷媒槽の断熱性をより高めることができる。   According to this configuration, by providing the vacuum tank on the outer periphery of the refrigerant tank, the inside of the vacuum tank (the space between the refrigerant tank and the vacuum tank) can be evacuated to further enhance the heat insulation of the refrigerant tank. .

本発明の常温絶縁型超電導ケーブルの端末構造の一形態としては、冷媒槽が接続部よりも引出導体側に延長して形成され、引出導体と冷媒槽との間隔が0.1mm以上2.5mm以下であることが挙げられる。   As one form of the terminal structure of the room-temperature insulated superconducting cable of the present invention, the refrigerant tank is formed extending from the connecting portion to the lead conductor side, and the distance between the lead conductor and the refrigerant tank is 0.1 mm or more and 2.5 mm or less. There are some.

冷媒槽内の冷媒を液体状態に維持した場合、極低温側から常温側への温度勾配が十分にとれず、冷媒槽を封止するシール部材が過度に冷却されて劣化する可能性がある。そこで、冷媒槽内を液体冷媒(例、液体窒素(LN2))と気体冷媒(例、窒素ガス(GN2))とに分け、冷媒による冷却が必ずしも必要ではない接続部よりも引出導体側に気体冷媒を充填することが考えられる。ここで、引出導体の外周面と冷媒槽の内周面との間隔を大きくした場合、気体冷媒の領域を確保するため、加圧機により気体冷媒を加圧する必要がある。これに対し、上記構成によれば、引出導体と冷媒槽との間隔を0.1mm以上2.5mm以下に小さくしたことで、加圧機により加圧することなく気体冷媒の領域が確保されると共に、気体冷媒の圧力と液体冷媒の圧力とが平衡し、冷媒槽内における液体冷媒の液面が安定し易い。また、間隔を小さくしたことで、引出導体と冷媒槽との間の空隙の容積が小さくなり、熱侵入も抑制し易い。 When the refrigerant in the refrigerant tank is maintained in a liquid state, the temperature gradient from the cryogenic temperature side to the normal temperature side cannot be sufficiently obtained, and the sealing member that seals the refrigerant tank may be excessively cooled and deteriorated. Therefore, the inside of the refrigerant tank is divided into a liquid refrigerant (eg, liquid nitrogen (LN 2 )) and a gas refrigerant (eg, nitrogen gas (GN 2 )). It is conceivable to fill the gas refrigerant with the gas refrigerant. Here, when the interval between the outer peripheral surface of the lead conductor and the inner peripheral surface of the refrigerant tank is increased, it is necessary to pressurize the gas refrigerant with a pressurizer in order to secure a region for the gas refrigerant. On the other hand, according to the above configuration, the space between the lead conductor and the refrigerant tank is reduced to 0.1 mm or more and 2.5 mm or less, so that the area of the gas refrigerant is secured without being pressurized by the pressurizer, and the gas refrigerant And the pressure of the liquid refrigerant are balanced, and the liquid level of the liquid refrigerant in the refrigerant tank is easily stabilized. Further, by reducing the interval, the volume of the gap between the lead conductor and the refrigerant tank is reduced, and heat intrusion is easily suppressed.

本発明の常温絶縁型超電導ケーブルの端末構造の一形態としては、超電導ケーブルが2条布設され、両超電導ケーブルの同じ一端側の端末に設けられた各々の端末構造における冷媒槽の側面に、当該冷媒槽内に連通し、前記引出導体の引出方向とは異なる方向に分岐する分岐冷媒配管に接合される冷媒導通口を備える。そして、各々の端末構造における冷媒導通口同士が、前記分岐冷媒配管を介して接続されていることが挙げられる。   As one form of the terminal structure of the room temperature insulation type superconducting cable of the present invention, two superconducting cables are laid, and on the side surface of the refrigerant tank in each terminal structure provided at the terminal on the same one end side of both superconducting cables, A refrigerant conduction port is provided that communicates with the refrigerant tank and is joined to a branch refrigerant pipe that branches in a direction different from the drawing direction of the drawing conductor. And it is mentioned that the refrigerant | coolant conduction | electrical_connection openings in each terminal structure are connected via the said branch refrigerant | coolant piping.

この構成によれば、まず、超電導ケーブルが2条布設されているので、各超電導ケーブルに電流を分担させることができ、1条あたりの電流容量を小さくして、各超電導ケーブルを小型化することが可能である。次に、各々の端末構造における冷媒導通口同士が分岐冷媒配管を介して接続されていることで、一方の超電導ケーブルの冷媒配管に流通する冷媒と他方の超電導ケーブルの冷媒配管に流通する冷媒とを共通化することができる。具体的には、一方の超電導ケーブルの冷媒配管に流通する冷媒が他端側から一端側に流れるとき、この冷媒を、分岐冷媒配管を介して、他方の超電導ケーブルの冷媒配管に送り、他端側から一端側に流すことで、両超電導ケーブルの冷媒を共通化することができる。これにより、冷却システムも共通化することができ、冷却システムの設置スペースを削減できる。上記の場合、冷却システムを両超電導ケーブルの他端側に設置し、他方の超電導ケーブルの冷媒配管を通って戻った冷媒を、冷却システムに送り、冷却システムで冷却した後、再び一方の超電導ケーブルの冷媒配管に供給して循環させることができる。   According to this configuration, first, since two superconducting cables are laid, each superconducting cable can share current, and each superconducting cable can be downsized by reducing the current capacity per one piece. Is possible. Next, the refrigerant conduction ports in each terminal structure are connected via the branch refrigerant pipe, so that the refrigerant flowing through the refrigerant pipe of one superconducting cable and the refrigerant flowing through the refrigerant pipe of the other superconducting cable Can be shared. Specifically, when the refrigerant flowing through the refrigerant pipe of one superconducting cable flows from the other end side to the one end side, this refrigerant is sent to the refrigerant pipe of the other superconducting cable via the branch refrigerant pipe, and the other end By flowing from the side to the one end side, the refrigerant of both superconducting cables can be shared. Thereby, a cooling system can also be made common and the installation space of a cooling system can be reduced. In the above case, the cooling system is installed on the other end of both superconducting cables, the refrigerant returned through the refrigerant piping of the other superconducting cable is sent to the cooling system, cooled by the cooling system, and then again one superconducting cable The refrigerant piping can be supplied and circulated.

本発明の常温絶縁型超電導ケーブルの端末構造は、碍管から外部に露出した導体部に引出導体が取り付けられ、導体部と引出導体との接続部が碍管の外部に設けられることで、碍管の外径が小さく、小型化が可能である。よって、既存の電力ケーブルの端末構造に使用されている碍管などの端末設備をそのまま利用することができ、超電導ケーブルの布設コストを低減することができる。   The terminal structure of the room temperature insulation type superconducting cable of the present invention is such that the lead conductor is attached to the conductor portion exposed to the outside from the soot tube, and the connecting portion between the conductor portion and the lead conductor is provided outside the soot tube, Small in diameter and can be miniaturized. Accordingly, terminal equipment such as a soot pipe used in the existing power cable terminal structure can be used as it is, and the installation cost of the superconducting cable can be reduced.

常温絶縁型超電導ケーブルの一例を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically an example of a normal temperature insulated superconducting cable. 実施の形態1に係る常温絶縁型超電導ケーブルの端末構造の全体概略構成を示す一部切欠断面図である。1 is a partially cutaway cross-sectional view showing an overall schematic configuration of a terminal structure of a room temperature insulated superconducting cable according to Embodiment 1. FIG. 実施の形態1に係る常温絶縁型超電導ケーブルの端末構造の要部概略構成を示す半断面図である。4 is a half cross-sectional view showing a schematic configuration of a main part of a terminal structure of a room temperature insulated superconducting cable according to Embodiment 1. FIG. 実施の形態2に係る常温絶縁型超電導ケーブルの端末構造の全体概略構成を示す一部切欠断面図である。6 is a partially cutaway cross-sectional view showing an overall schematic configuration of a terminal structure of a room temperature insulated superconducting cable according to Embodiment 2. FIG.

以下、図面を参照して、本発明の実施の形態を説明する。なお、各図において、同一又は相当の部材には同一の符号を用いる。   Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same reference numerals are used for the same or corresponding members.

(実施の形態1)
まず、図1を参照して、常温絶縁型超電導ケーブルを説明する。図1に示す超電導ケーブル200は、冷媒配管213内に超電導導体層212を有する導体部210を収納したケーブルであり、超電導導体層212が冷媒214により冷却され、電気絶縁層215が冷媒214により冷却されない構成である。ここでは、冷媒配管213内に1条の導体部210が収納された単心ケーブルを示す。
(Embodiment 1)
First, a room temperature insulated superconducting cable will be described with reference to FIG. A superconducting cable 200 shown in FIG. 1 is a cable in which a conductor 210 having a superconducting conductor layer 212 is accommodated in a refrigerant pipe 213. The superconducting conductor layer 212 is cooled by the refrigerant 214, and the electric insulating layer 215 is cooled by the refrigerant 214. It is a configuration that is not. Here, a single-core cable in which one conductor portion 210 is accommodated in the refrigerant pipe 213 is shown.

導体部210は、代表的には、中心から順にフォーマ211、超電導導体層212、保護層(図示せず)を有する。フォーマ211は、超電導導体層212の支持体や異常時電流(短絡電流など)の流路に利用される部材であり、銅やアルミニウムなどの常電導体で形成されている。より具体的には、例えば、エナメルなどの絶縁被覆を有する複数の金属線を撚り合わせた撚り線などの中実体、金属パイプや金属帯を螺旋状に成形したスパイラルパイプなどの中空体が挙げられる。金属パイプなどの中空体とした場合、その内部空間を冷媒の流路に利用することが可能である。   The conductor part 210 typically includes a former 211, a superconducting conductor layer 212, and a protective layer (not shown) in order from the center. The former 211 is a member used for a support for the superconducting conductor layer 212 and a flow path for an abnormal current (such as a short circuit current), and is formed of a normal conductor such as copper or aluminum. More specifically, for example, solid bodies such as a stranded wire obtained by twisting a plurality of metal wires having an insulating coating such as enamel, and a hollow body such as a spiral pipe formed by spirally forming a metal pipe or a metal strip. . When a hollow body such as a metal pipe is used, the internal space can be used as a refrigerant flow path.

超電導導体層212は、例えば、酸化物超電導体を有するテープ状線材が好適に利用できる。テープ状線材は、例えば、Bi2223系超電導テープ線(Ag-MnやAgなどの安定化金属中に酸化物超電導体からなるフィラメントが配されたシース線)、RE123系薄膜線材(RE:希土類元素(例えばY、Ho、Nd、Sm、Gdなど)。金属基板に酸化物超電導相が成膜された積層線材)が挙げられる。超電導導体層212は、上記テープ状線材を螺旋状に巻回して形成した単層構造又は多層構造が挙げられる。この例では、超電導導体層212は、多層構造である(図2、3参照)。保護層は、この超電導導体層212を保護するためのものであり、クラフト紙などを巻回した構成が挙げられる。   For the superconducting conductor layer 212, for example, a tape-shaped wire having an oxide superconductor can be suitably used. Tape-like wires include, for example, Bi2223 series superconducting tape wires (sheath wires in which filaments made of oxide superconductors are arranged in a stabilizing metal such as Ag-Mn or Ag), RE123 thin film wires (RE: rare earth elements ( For example, Y, Ho, Nd, Sm, Gd, etc.) (Laminated wire in which an oxide superconducting phase is formed on a metal substrate). The superconducting conductor layer 212 includes a single layer structure or a multilayer structure formed by spirally winding the tape-shaped wire. In this example, the superconducting conductor layer 212 has a multilayer structure (see FIGS. 2 and 3). The protective layer is for protecting the superconducting conductor layer 212, and includes a configuration in which kraft paper or the like is wound.

上記導体部210を収納する冷媒配管213は、超電導導体層212を冷却して超電導状態に維持するための冷媒214(代表的には液体窒素や液体ヘリウム)が流通し、冷媒214の流路として機能する。この冷媒配管213は、ステンレス鋼、アルミニウムやその合金などの金属製の内管213i及び外管213oを有し、両管213i,213oの間に真空断熱層が形成された二重管構造の真空断熱管である。この例では、内管213i及び外管213oのそれぞれにコルゲート加工が施されている。また、真空断熱層にスーパーインシュレーションといった断熱材を配置すると、断熱性を高めることができる。内管213iと外管213oとの間にスペーサを配置すると、両管213i,213oの接触を防ぎ、接触箇所からの熱侵入を防止でき、断熱性を高めることができる。   In the refrigerant pipe 213 that houses the conductor portion 210, a refrigerant 214 (typically liquid nitrogen or liquid helium) for cooling the superconducting conductor layer 212 and maintaining it in a superconducting state circulates. Function. This refrigerant pipe 213 has a double pipe structure vacuum having an inner pipe 213i and an outer pipe 213o made of metal such as stainless steel, aluminum or an alloy thereof, and a vacuum heat insulating layer is formed between the pipes 213i and 213o. It is an insulated pipe. In this example, each of the inner tube 213i and the outer tube 213o is corrugated. Moreover, if a heat insulating material such as super insulation is disposed in the vacuum heat insulating layer, the heat insulating property can be enhanced. If a spacer is disposed between the inner tube 213i and the outer tube 213o, contact between the two tubes 213i and 213o can be prevented, heat intrusion from the contact portion can be prevented, and heat insulation can be improved.

超電導ケーブル200では、上記冷媒配管(真空断熱管)213の外周に電気絶縁層215が形成されている。電気絶縁層215は常温環境で使用されるため、その構成材料には、常電導ケーブルで実績がある電気絶縁強度に優れる材料、代表的にはCVケーブルに利用される架橋ポリエチレン(XLPE)などを利用できる。架橋ポリエチレンなどの絶縁性樹脂は、冷媒配管213の上に押出しにより電気絶縁層215を容易に形成できるため、超電導ケーブルの製造性に優れる。電気絶縁層215の上には、図示しないが、銅やアルミニウムなどの遮蔽や、ビニルやポリエチレンなどのシースを施す。この遮蔽は主として電界遮蔽層として機能し、一方、シースは機械的な保護層として機能する。   In the superconducting cable 200, an electric insulating layer 215 is formed on the outer periphery of the refrigerant pipe (vacuum heat insulating pipe) 213. Since the electrical insulation layer 215 is used in a normal temperature environment, its constituent materials are materials with excellent electrical insulation strength that have been proven in ordinary conductive cables, typically cross-linked polyethylene (XLPE) used for CV cables. Available. An insulating resin such as cross-linked polyethylene is excellent in manufacturability of a superconducting cable because the electric insulating layer 215 can be easily formed on the refrigerant pipe 213 by extrusion. Although not shown, a shield such as copper or aluminum or a sheath such as vinyl or polyethylene is applied on the electrical insulating layer 215. This shielding mainly functions as an electric field shielding layer, while the sheath functions as a mechanical protective layer.

次に、図2、3を参照して、常温絶縁型超電導ケーブルの端末構造を説明する。図2、3に示す端末構造100は、超電導ケーブル200の端末と常温側に引き出される引出導体110とを接続する端末構造であり、超電導ケーブル200の端末の外周を覆う碍管120から当該ケーブル200の端末の先端部における導体部210が外部に露出し、この導体部210と引出導体110との接続部130が碍管120の外部に設けられる構成である。   Next, with reference to FIGS. 2 and 3, the terminal structure of the room temperature insulated superconducting cable will be described. The terminal structure 100 shown in FIGS. 2 and 3 is a terminal structure for connecting the terminal of the superconducting cable 200 and the lead conductor 110 drawn to the room temperature side. The conductor part 210 at the tip of the terminal is exposed to the outside, and the connection part 130 between the conductor part 210 and the lead conductor 110 is provided outside the soot tube 120.

引出導体110は、超電導ケーブル200の端末の先端部における導体部210(超電導導体層212)に電気的に接続され、極低温側から常温側への電流の引き出しに利用される部材である。引出導体110には、例えば、銅やアルミニウムなどの常電導体で形成された棒状体や管状体が利用できる。この例では、引出導体110は、銅製の棒状体であり、一端側に導体部210が挿入される挿入穴が形成されている。   The lead conductor 110 is a member that is electrically connected to the conductor portion 210 (superconducting conductor layer 212) at the end of the end of the superconducting cable 200 and is used for drawing current from the cryogenic temperature side to the room temperature side. As the lead conductor 110, for example, a rod-like body or a tubular body formed of a normal conductor such as copper or aluminum can be used. In this example, the lead conductor 110 is a copper rod-like body, and an insertion hole into which the conductor portion 210 is inserted is formed on one end side.

碍管120は、超電導ケーブル200の端末が挿入され、超電導ケーブル200の端末の外周を覆うと共に、当該端末の先端部における導体部210が外部に露出した状態で配置される部材である。碍管120には、例えば、磁器製又はポリマー製や樹脂(例えばエポキシ樹脂)製のものが利用できる。この例では、碍管120は、磁器製であり、超電導ケーブル200の電気絶縁層215を有する箇所に取り付けられた底板121に支持碍子122を介して支持されている(図2参照)。また、碍管120の先端には、電界シールドリング125が設けられている。   The soot tube 120 is a member that is disposed in a state in which the terminal of the superconducting cable 200 is inserted, covers the outer periphery of the terminal of the superconducting cable 200, and the conductor part 210 at the tip of the terminal is exposed to the outside. The soot tube 120 may be made of, for example, porcelain, polymer, or resin (for example, epoxy resin). In this example, the insulator tube 120 is made of porcelain, and is supported via a support insulator 122 on a bottom plate 121 attached to a portion having the electric insulation layer 215 of the superconducting cable 200 (see FIG. 2). In addition, an electric field shield ring 125 is provided at the tip of the soot tube 120.

超電導ケーブル200の端末は、電気絶縁層215が除去され、冷媒配管213が露出しており、先端部において、冷媒配管213の端部から引き出された導体部210が段剥ぎ処理され、導体部210の超電導導体層212及びフォーマ211が露出している。そして、引出導体110の一端側に形成された挿入穴に露出した導体部210(フォーマ211及び超電導導体層212)が挿入され、引出導体110の一端側がかしめられてフォーマ211が接合されると共に、引出導体110の挿入穴に超電導導体層212が半田接続されることで、導体部210(超電導導体層212)と引出導体110とを電気的に接続する接続部130が形成されている。   At the end of the superconducting cable 200, the electric insulation layer 215 is removed and the refrigerant pipe 213 is exposed, and the conductor portion 210 drawn out from the end of the refrigerant pipe 213 is stripped at the tip, and the conductor portion 210 is removed. The superconducting conductor layer 212 and the former 211 are exposed. Then, a conductor 210 (former 211 and superconducting conductor layer 212) exposed in an insertion hole formed on one end side of the lead conductor 110 is inserted, and one end side of the lead conductor 110 is caulked to join the former 211, By connecting the superconducting conductor layer 212 to the insertion hole of the lead conductor 110 by soldering, a connection portion 130 that electrically connects the conductor portion 210 (superconducting conductor layer 212) and the lead conductor 110 is formed.

冷媒槽140は、接続部130の外周を覆うように冷媒配管213(内管213i(図3参照))に接合され、接続部130を収納する部材であり、内部(接続部130と冷媒槽140との間の空間)に冷媒配管213に流通する冷媒が充填される。冷媒槽140には、例えば、ステンレス鋼、アルミニウムやその合金などの金属で形成された筒状体が利用できる。この例では、冷媒槽140の側面に、当該冷媒槽140内に連通し、引出導体110の引出方向とは異なる方向に分岐する分岐冷媒配管145に接合される冷媒導通口141が設けられている。   The refrigerant tank 140 is a member that is joined to the refrigerant pipe 213 (inner pipe 213i (see FIG. 3)) so as to cover the outer periphery of the connection part 130, and stores the connection part 130. The refrigerant tank 140 is internally (the connection part 130 and the refrigerant tank 140). ) Is filled with the refrigerant flowing through the refrigerant pipe 213. For the refrigerant tank 140, for example, a cylindrical body formed of a metal such as stainless steel, aluminum, or an alloy thereof can be used. In this example, on the side surface of the refrigerant tank 140, there is provided a refrigerant conduction port 141 that communicates with the refrigerant tank 140 and is joined to a branch refrigerant pipe 145 that branches in a direction different from the drawing direction of the lead conductor 110. .

さらに、冷媒槽140の外周には、冷媒槽140を覆う真空槽150を備える。この真空槽150は、冷媒配管213(外管213o(図3参照))に接合され、冷媒槽140を断熱する部材である。真空槽150には、冷媒槽140と同様、例えば、ステンレス鋼、アルミニウムやその合金などの金属で形成された筒状体が利用できる。この例では、真空槽150の側面に、当該真空槽150内(冷媒槽140と真空槽150との間の空間)に連通し、当該真空槽150内を真空引きするための真空引ポート151が設けられている。真空槽150内を真空引きして真空断熱層を形成することで、冷媒槽140の断熱性が高められる。また、真空槽150の側面には、冷媒槽140の冷媒導通口141に対応する位置に開口が設けられており、この開口を通って分岐冷媒配管145が冷媒槽140に接合される。真空槽150内には、冷媒配管213と同様、スーパーインシュレーションといった断熱材(図示せず)を配置したり、冷媒槽140と真空槽150との接触を防止するためのスペーサ(図示せず)を配置してもよい。   Furthermore, a vacuum tank 150 that covers the refrigerant tank 140 is provided on the outer periphery of the refrigerant tank 140. The vacuum tank 150 is a member that is joined to the refrigerant pipe 213 (outer pipe 213o (see FIG. 3)) and insulates the refrigerant tank 140. Similar to the refrigerant tank 140, for example, a cylindrical body formed of a metal such as stainless steel, aluminum, or an alloy thereof can be used for the vacuum tank 150. In this example, a vacuum suction port 151 for communicating with the inside of the vacuum tank 150 (the space between the refrigerant tank 140 and the vacuum tank 150) on the side surface of the vacuum tank 150 and evacuating the vacuum tank 150 is provided. Is provided. By evacuating the vacuum tank 150 to form a vacuum heat insulating layer, the heat insulating property of the refrigerant tank 140 is enhanced. Further, an opening is provided on the side surface of the vacuum tank 150 at a position corresponding to the refrigerant conduction port 141 of the refrigerant tank 140, and the branch refrigerant pipe 145 is joined to the refrigerant tank 140 through this opening. In the vacuum chamber 150, similarly to the refrigerant pipe 213, a heat insulating material (not shown) such as super insulation is arranged, or a spacer (not shown) for preventing the refrigerant vessel 140 and the vacuum vessel 150 from contacting each other. May be arranged.

この例では、冷媒槽140及び真空槽150は、冷媒配管213の内管213i及び外管213oにそれぞれ溶接により接合されている。また、分岐冷媒配管145は、冷媒配管213と同様、二重管構造の真空断熱管である。   In this example, the refrigerant tank 140 and the vacuum tank 150 are joined to the inner pipe 213i and the outer pipe 213o of the refrigerant pipe 213 by welding, respectively. Similarly to the refrigerant pipe 213, the branch refrigerant pipe 145 is a vacuum heat insulating pipe having a double pipe structure.

その他、この例では、常温側の引出導体110には、接続部130を挟んで碍管120の電界シールドリング125の反対側の位置に電界シールド160が取り付けられている。電界シールド160は、例えば、ステンレス鋼、アルミニウムやその合金などの金属で形成され、引出導体110が挿通される貫通孔を有する筒状体であり、図3に示すように、椀状の頭部161と頭部161から接続部130側に延びる筒状の脚部162とを有する。この貫通孔(頭部161の内周面及び脚部162の内周面)は、1つのストレート管163で形成されている。電界シールド160の内部は空洞であり、空気が充填されている。   In addition, in this example, an electric field shield 160 is attached to the lead-out conductor 110 on the room temperature side at a position on the opposite side of the electric field shield ring 125 of the soot tube 120 with the connecting portion 130 interposed therebetween. The electric field shield 160 is a cylindrical body made of a metal such as stainless steel, aluminum, or an alloy thereof, and has a through hole through which the lead conductor 110 is inserted. As shown in FIG. 161 and a cylindrical leg portion 162 extending from the head portion 161 to the connection portion 130 side. The through holes (the inner peripheral surface of the head 161 and the inner peripheral surface of the leg 162) are formed by one straight tube 163. The inside of the electric field shield 160 is a cavity and is filled with air.

この電界シールド160は、引出導体110の外周に固定した台座165に頭部161が接合され、脚部162の先端に冷媒槽140が接合されると共に、頭部161の底部に真空槽150が接合されることで、引出導体160の外周を覆うように取り付けられている。そして、引出導体110とストレート管163とは密着しておらず、引出導体110とストレート管163との間の空間は、冷媒槽140内の冷媒が充填される空間に連通している。つまり、ストレート管163は、冷媒槽140の延長部として機能し、冷媒槽140が接続部130よりも引出導体110側に延長して形成された状態となる。   The electric field shield 160 has a head 161 joined to a base 165 fixed to the outer periphery of the lead conductor 110, a refrigerant tank 140 joined to the tip of the leg 162, and a vacuum tank 150 joined to the bottom of the head 161. As a result, the lead conductor 160 is attached so as to cover the outer periphery. The lead conductor 110 and the straight pipe 163 are not in close contact with each other, and the space between the lead conductor 110 and the straight pipe 163 communicates with the space filled with the refrigerant in the refrigerant tank 140. That is, the straight pipe 163 functions as an extension of the refrigerant tank 140, and the refrigerant tank 140 is formed to extend from the connection part 130 to the lead conductor 110 side.

さらに、脚部162の一部(ここでは、脚部162の外周面)にベローズを設け、これにより、熱伸縮を吸収できるように構成されている。また、ベローズを設けることにより、伝熱距離を長くとることができ、熱侵入も抑制し易い。   Further, a bellows is provided on a part of the leg portion 162 (here, the outer peripheral surface of the leg portion 162), so that heat expansion and contraction can be absorbed. Further, by providing the bellows, it is possible to increase the heat transfer distance and to easily suppress heat penetration.

この冷媒槽140の延長部において、引出導体110の外周面と延長部(ストレート管163)の内周面との間隔は、0.1mm以上2.5mm以下に設定されている。また、冷媒槽140内は、液体冷媒と気体冷媒とに分け、冷媒槽140の延長部において、気体冷媒の領域が確保されるようにしている。これにより、冷媒槽140の延長部において、極低温側から常温側への温度勾配を持たせることができ、例えば、引出導体110と台座165との接触面をシールするためのシール部材166が過度に冷却されることを防止して、シール部材166の劣化を防ぐことができる。また、上記間隔を0.1mm以上2.5mm以下にしたことで、加圧機により加圧することなく気体冷媒の領域が確保されると共に、気体冷媒の圧力と液体冷媒の圧力とが平衡し、冷媒槽内における液体冷媒の液面が安定し易い。   In the extended portion of the refrigerant tank 140, the distance between the outer peripheral surface of the lead conductor 110 and the inner peripheral surface of the extended portion (straight tube 163) is set to 0.1 mm or more and 2.5 mm or less. In addition, the inside of the refrigerant tank 140 is divided into a liquid refrigerant and a gas refrigerant, and an area of the gas refrigerant is secured in the extended portion of the refrigerant tank 140. Thereby, in the extended portion of the refrigerant tank 140, a temperature gradient from the cryogenic temperature side to the normal temperature side can be provided. For example, the seal member 166 for sealing the contact surface between the lead conductor 110 and the base 165 is excessive. Therefore, it is possible to prevent the seal member 166 from being deteriorated. In addition, by setting the interval to be 0.1 mm or more and 2.5 mm or less, the area of the gas refrigerant is secured without being pressurized by the pressurizer, and the pressure of the gas refrigerant and the pressure of the liquid refrigerant are balanced, The liquid level of the liquid refrigerant at is easily stabilized.

また、真空槽150は、電界シールド160の脚部162の外周も覆うように延長して形成されている。   Further, the vacuum chamber 150 is formed to extend so as to cover the outer periphery of the leg portion 162 of the electric field shield 160.

次いで、この常温絶縁型超電導ケーブルの端末構造100では、図2に示すように、冷媒槽140内の冷媒が、冷媒導通口141に接合された分岐冷媒配管145を介して、引出導体110の引出方向とは異なる方向に引き出される。そして、引き出された冷媒は、分岐冷媒配管145からさらに流体配管310,320を介して、外部に設けられる冷却システム400に送られる。ここで、常温絶縁型超電導ケーブルの場合、高電圧部である超電導導体層212の外周に電気絶縁層215を有していないため、冷媒配管213が高電位である。よって、分岐冷媒配管145に接続され、冷媒配管213と間接的に接続される流体配管310も高電位である。これに対し、冷却システム400などの外部装置は通常、接地部(低電圧部)に設けられるので、冷却システム400に接続される流体配管320は低電位である。そのため、高電位の流体配管310と低電位の流体配管320を直接接続した場合、電位差により冷却システム400が故障する可能性がある。そこで、流体配管310と流体配管320とを電気的に絶縁した状態で接続するための流体配管の接続構造300を備える。この接続構造300は、絶縁継手(図示せず)を備え、この絶縁継手を介して流体配管310と流体配管320とを接続する構成である。   Next, in this room temperature insulation type superconducting cable terminal structure 100, as shown in FIG. It is pulled out in a direction different from the direction. The drawn refrigerant is sent from the branch refrigerant pipe 145 to the cooling system 400 provided outside via the fluid pipes 310 and 320. Here, in the case of a room temperature insulation type superconducting cable, the refrigerant pipe 213 is at a high potential because the electric insulation layer 215 is not provided on the outer periphery of the superconducting conductor layer 212 which is a high voltage portion. Therefore, the fluid pipe 310 connected to the branch refrigerant pipe 145 and indirectly connected to the refrigerant pipe 213 is also at a high potential. On the other hand, since an external device such as the cooling system 400 is usually provided in the grounding portion (low voltage portion), the fluid piping 320 connected to the cooling system 400 has a low potential. Therefore, when the high-potential fluid pipe 310 and the low-potential fluid pipe 320 are directly connected, the cooling system 400 may fail due to a potential difference. Therefore, a fluid pipe connection structure 300 for connecting the fluid pipe 310 and the fluid pipe 320 in an electrically insulated state is provided. The connection structure 300 includes an insulating joint (not shown) and connects the fluid pipe 310 and the fluid pipe 320 via the insulating joint.

(実施の形態2)
以上説明した実施の形態1では、1条の常温絶縁型超電導ケーブルを用いて線路を構築する場合の端末構造の一例を説明した。実施の形態2では、図4を参照して、2条の常温絶縁型超電導ケーブルを用いて線路を構築する場合の端末構造の一例を説明する。なお、ここでは、図3、4を用いて説明した実施の形態1に係る端末構造との相違点を中心に説明する。
(Embodiment 2)
In the first embodiment described above, an example of a terminal structure in the case where a line is constructed using a single room-temperature insulated superconducting cable has been described. In the second embodiment, an example of a terminal structure in the case of constructing a line using two room-temperature insulated superconducting cables will be described with reference to FIG. Here, the description will focus on differences from the terminal structure according to Embodiment 1 described with reference to FIGS.

図4に示す2条の超電導ケーブル201,202は、実施の形態1で説明した超電導ケーブル200と同じ構成である。両超電導ケーブル201,202は、並列に布設され、図4に示すように、両超電導ケーブル201,202の同じ一端側の端末には、実施の形態1で説明した端末構造100と同様の端末構造101,102がそれぞれ設けられている。そして、各々の端末構造101,102における引出導体110同士が接続導体170によって電気的に接続されている。つまり、両超電導ケーブル201,202は、互いに並列接続されており、導体部210(超電導導体層212)に流れる電流の方向が同じである。この例では、両超電導ケーブル201,202の他端側から一端側(図4中、超電導ケーブル200側から引出導体110側)に向かって電流が流れ、接続導体170に電気的に接続される取出導体175によって各引出導体110から一括して電流が取り出され、常電導電力機器に送られる。これら接続導体170及び取出導体175はそれぞれ、常電導体の編組線で形成されている。このように、複数の超電導ケーブルを用いて線路を構築し、複数の超電導ケーブルに電流を分担させることで、1条あたりの電流容量を小さくして、各超電導ケーブルを小型化することが可能である。   The two superconducting cables 201 and 202 shown in FIG. 4 have the same configuration as the superconducting cable 200 described in the first embodiment. Both superconducting cables 201 and 202 are laid in parallel, and as shown in FIG. 4, terminal structures 101 and 102 similar to the terminal structure 100 described in the first embodiment are provided at the terminals on the same end side of both superconducting cables 201 and 202, respectively. It has been. The lead conductors 110 in the terminal structures 101 and 102 are electrically connected by the connection conductor 170. That is, both the superconducting cables 201 and 202 are connected in parallel to each other, and the direction of the current flowing through the conductor portion 210 (superconducting conductor layer 212) is the same. In this example, a current flows from the other end side of both the superconducting cables 201 and 202 toward one end side (in FIG. 4, from the superconducting cable 200 side to the lead conductor 110 side), and the lead conductor 175 electrically connected to the connecting conductor 170. As a result, current is taken out from each lead conductor 110 in a lump and is sent to the normal electric power equipment. The connection conductor 170 and the extraction conductor 175 are each formed by a braided wire of a normal conductor. In this way, by constructing a line using a plurality of superconducting cables and sharing the current with the plurality of superconducting cables, it is possible to reduce the current capacity per one line and downsize each superconducting cable. is there.

また、図4に示す両超電導ケーブル201,202の同じ一端側(電流の取り出し側)の端末に設けられた端末構造101,102において、各々の端末構造101,102における冷媒導通口141同士が分岐冷媒配管145を介して接続されている。つまり、一方の端末構造101における冷媒槽140と他方の端末構造102における冷媒槽140との間で分岐冷媒配管145を介して冷媒が流通可能である。この例では、一方の超電導ケーブル201における冷媒配管213に流れる冷媒が電流の方向と同じ方向に流れ、分岐冷媒配管145を介して、他方の超電導ケーブル202における冷媒配管213に流れる冷媒が電流の方向とは逆方向に流れる。これにより、一方の超電導ケーブル201の冷媒配管213に流通する冷媒が他方の超電導ケーブル202の冷媒配管213を通って戻るように構成されている。   Further, in the terminal structures 101 and 102 provided at the terminals on the same one end side (current extraction side) of both the superconducting cables 201 and 202 shown in FIG. 4, the refrigerant conduction ports 141 in the respective terminal structures 101 and 102 are connected to each other via the branched refrigerant pipe 145. It is connected. That is, the refrigerant can flow between the refrigerant tank 140 in one terminal structure 101 and the refrigerant tank 140 in the other terminal structure 102 via the branched refrigerant pipe 145. In this example, the refrigerant flowing in the refrigerant pipe 213 in one superconducting cable 201 flows in the same direction as the current direction, and the refrigerant flowing in the refrigerant pipe 213 in the other superconducting cable 202 via the branch refrigerant pipe 145 Flows in the opposite direction. Thus, the refrigerant flowing through the refrigerant pipe 213 of one superconducting cable 201 is configured to return through the refrigerant pipe 213 of the other superconducting cable 202.

さらに、両超電導ケーブル201,202の同じ他端側(電流の供給側。図示せず)の端末においても、それぞれ同様の端末構造が設けられており、他方の端末構造における冷媒導通口から分岐冷媒配管を介して引き出された冷媒が、一方の端末構造における冷媒導通口から分岐冷媒配管を介して供給され循環する。ここで、電流供給側には、冷却システム(図示せず)が設置されており、他方の超電導ケーブル202の冷媒配管213を通って戻った冷媒が、冷却システムに一旦送られ、冷却システムで冷却された後、一方の超電導ケーブル201の冷媒配管213に供給され循環する。   Furthermore, the same terminal structure is also provided at the same other end side (current supply side, not shown) of both superconducting cables 201 and 202, and the branch refrigerant pipe is connected from the refrigerant conduction port in the other terminal structure. The refrigerant drawn through the refrigerant is supplied from the refrigerant conduction port in one terminal structure through the branch refrigerant pipe and circulates. Here, a cooling system (not shown) is installed on the current supply side, and the refrigerant returned through the refrigerant pipe 213 of the other superconducting cable 202 is once sent to the cooling system and cooled by the cooling system. Then, the refrigerant is supplied to the refrigerant pipe 213 of one superconducting cable 201 and circulates.

上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、本発明の範囲は上述した構成に限定されるものではない。   The above-described embodiments can be appropriately changed without departing from the gist of the present invention, and the scope of the present invention is not limited to the above-described configuration.

本発明の常温絶縁型超電導ケーブルの端末構造は、常温絶縁型超電導ケーブルを用いた線路に好適に利用することができる。例えば、既存の電力ケーブルの端末構造に使用されている碍管などの端末設備をそのまま利用することができるので、超電導ケーブルの布設コストを低減することができる。   The terminal structure of the room temperature insulation type superconducting cable of the present invention can be suitably used for a line using the room temperature insulation type superconducting cable. For example, since the terminal equipment such as a soot pipe used in the existing power cable terminal structure can be used as it is, the laying cost of the superconducting cable can be reduced.

100,101,102 常温絶縁型超電導ケーブルの端末構造
110 引出導体
120 碍管
121 底板 122 支持碍子 125 電界シールドリング
130 接続部
140 冷媒槽 141 冷媒導通口 145 分岐冷媒配管
150 真空槽 151 真空ポート
160 電界シールド
161 頭部 162 脚部 163 ストレート管(貫通孔)
165 台座 166 シール部材
170 接続導体 175 取出導体
200,201,202 常温絶縁型超電導ケーブル
210 導体部 211 フォーマ 212 超電導導体層
213 冷媒配管(真空断熱管) 213i 内管 213o 外管
214 冷媒 215 電気絶縁層
300 流体配管の接続構造
310,320 流体配管
400 冷却システム
100,101,102 Room-temperature insulated superconducting cable terminal structure
110 Lead conductor
120 steel pipe
121 Bottom plate 122 Support insulator 125 Electric field shield ring
130 connections
140 Refrigerant tank 141 Refrigerant conduction port 145 Branch refrigerant piping
150 Vacuum chamber 151 Vacuum port
160 Electric field shield
161 Head 162 Leg 163 Straight tube (through hole)
165 Base 166 Seal member
170 Connection conductor 175 Lead conductor
200,201,202 Room temperature insulated superconducting cable
210 Conductor 211 Former 212 Superconducting conductor layer
213 Refrigerant piping (vacuum insulation pipe) 213i Inner pipe 213o Outer pipe
214 Refrigerant 215 Electrical insulation layer
300 Fluid piping connection structure
310,320 Fluid piping
400 cooling system

Claims (5)

超電導導体層を有する導体部と、前記導体部を収納し、前記超電導導体層を冷却する冷媒が流通する冷媒配管と、前記冷媒配管の外周に形成される電気絶縁層と、を備える常温絶縁型超電導ケーブルの端末と常温側に引き出される引出導体とを接続する端末構造であって、
前記超電導ケーブルの端末の外周を覆うと共に、当該端末の先端部における導体部が外部に露出した状態で配置される碍管と、
前記碍管から外部に露出した導体部と前記引出導体とを電気的に接続する接続部と、
前記接続部の外周を覆うように前記冷媒配管に接合され、前記接続部を収納する冷媒槽と、
前記冷媒槽の外周を覆う真空槽と、を備え、
前記真空槽の側面に、当該真空槽内に連通し、当該真空槽内を真空引きするための真空引ポートを備える常温絶縁型超電導ケーブルの端末構造。
Room temperature insulation type comprising: a conductor part having a superconducting conductor layer; a refrigerant pipe that houses the conductor part and through which a refrigerant that cools the superconducting conductor layer flows; and an electric insulating layer formed on an outer periphery of the refrigerant pipe. A terminal structure for connecting the terminal of the superconducting cable and the lead conductor drawn to the room temperature side,
Covering the outer periphery of the terminal of the superconducting cable, and a soot tube arranged in a state where the conductor part at the tip of the terminal is exposed to the outside,
A connection part for electrically connecting the conductor part exposed to the outside from the pipe and the lead conductor;
A refrigerant tank that is joined to the refrigerant pipe so as to cover the outer periphery of the connection part, and stores the connection part;
A vacuum chamber covering the outer periphery of the refrigerant tank,
A terminal structure of a room temperature insulation type superconducting cable provided on a side surface of the vacuum chamber with a vacuum suction port that communicates with the vacuum chamber and evacuates the vacuum chamber .
超電導導体層を有する導体部と、前記導体部を収納し、前記超電導導体層を冷却する冷媒が流通する冷媒配管と、前記冷媒配管の外周に形成される電気絶縁層と、を備える常温絶縁型超電導ケーブルの端末と常温側に引き出される引出導体とを接続する端末構造であって、
前記超電導ケーブルが2条布設され、両超電導ケーブルの同じ一端側の端末に前記端末構造をそれぞれ備え、
各々の前記端末構造は、
前記超電導ケーブルの端末の外周を覆うと共に、当該端末の先端部における導体部が外部に露出した状態で配置される碍管と、
前記碍管から外部に露出した導体部と前記引出導体とを電気的に接続する接続部と、
前記接続部の外周を覆うように前記冷媒配管に接合され、前記接続部を収納する冷媒槽と、を備え、
両超電導ケーブルの同じ一端側の端末に設けられた各々の前記端末構造における前記冷媒槽の側面に、当該冷媒槽内に連通し、前記引出導体の引出方向とは異なる方向に分岐する分岐冷媒配管に接合される冷媒導通口を備え、
各々の前記端末構造における前記冷媒導通口同士が、前記分岐冷媒配管を介して接続されている常温絶縁型超電導ケーブルの端末構造。
Room temperature insulation type comprising: a conductor part having a superconducting conductor layer; a refrigerant pipe that houses the conductor part and through which a refrigerant that cools the superconducting conductor layer flows; and an electric insulating layer formed on an outer periphery of the refrigerant pipe. A terminal structure for connecting the terminal of the superconducting cable and the lead conductor drawn to the room temperature side,
Two superconducting cables are laid, and the terminal structure is provided at each end of the same one end of both superconducting cables,
Each said terminal structure is
Covering the outer periphery of the terminal of the superconducting cable, and a soot tube arranged in a state where the conductor part at the tip of the terminal is exposed to the outside,
A connection part for electrically connecting the conductor part exposed to the outside from the pipe and the lead conductor;
A refrigerant tank that is joined to the refrigerant pipe so as to cover the outer periphery of the connection part, and stores the connection part ,
A branch refrigerant pipe that communicates with the side of the refrigerant tank in each of the terminal structures provided at the terminals on the same one end side of both superconducting cables and branches in a direction different from the drawing direction of the drawing conductor. A refrigerant conduction port joined to the
The terminal structure of a room temperature insulated superconducting cable in which the refrigerant conduction ports in each of the terminal structures are connected via the branch refrigerant pipe .
超電導導体層を有する導体部と、前記導体部を収納し、前記超電導導体層を冷却する冷媒が流通する冷媒配管と、前記冷媒配管の外周に形成される電気絶縁層と、を備える常温絶縁型超電導ケーブルの端末と常温側に引き出される引出導体とを接続する端末構造であって、
前記超電導ケーブルが2条布設され、両超電導ケーブルの同じ一端側の端末に前記端末構造をそれぞれ備え、
各々の前記端末構造は、
前記超電導ケーブルの端末の外周を覆うと共に、当該端末の先端部における導体部が外部に露出した状態で配置される碍管と、
前記碍管から外部に露出した導体部と前記引出導体とを電気的に接続する接続部と、
前記接続部の外周を覆うように前記冷媒配管に接合され、前記接続部を収納する冷媒槽と、
前記冷媒槽の外周を覆う真空槽と、
前記真空槽の側面に、当該真空槽内に連通し、当該真空槽内を真空引きするための真空引ポートと、を備え、
両超電導ケーブルの同じ一端側の端末に設けられた各々の前記端末構造における前記冷媒槽の側面に、当該冷媒槽内に連通し、前記引出導体の引出方向とは異なる方向に分岐する分岐冷媒配管に接合される冷媒導通口を備え、
各々の前記端末構造における前記冷媒導通口同士が、前記分岐冷媒配管を介して接続されている常温絶縁型超電導ケーブルの端末構造。
Room temperature insulation type comprising: a conductor part having a superconducting conductor layer; a refrigerant pipe that houses the conductor part and through which a refrigerant that cools the superconducting conductor layer flows; and an electric insulating layer formed on an outer periphery of the refrigerant pipe. A terminal structure for connecting the terminal of the superconducting cable and the lead conductor drawn to the room temperature side,
Two superconducting cables are laid, and the terminal structure is provided at each end of the same one end of both superconducting cables,
Each said terminal structure is
Covering the outer periphery of the terminal of the superconducting cable, and a soot tube arranged in a state where the conductor part at the tip of the terminal is exposed to the outside,
A connection part for electrically connecting the conductor part exposed to the outside from the pipe and the lead conductor;
A refrigerant tank that is joined to the refrigerant pipe so as to cover the outer periphery of the connection part, and stores the connection part;
A vacuum tank covering the outer periphery of the refrigerant tank;
A vacuum suction port for communicating with the inside of the vacuum chamber on the side surface of the vacuum chamber and evacuating the inside of the vacuum chamber,
A branch refrigerant pipe that communicates with the side of the refrigerant tank in each of the terminal structures provided at the terminals on the same one end side of both superconducting cables and branches in a direction different from the drawing direction of the drawing conductor. A refrigerant conduction port joined to the
The terminal structure of a room temperature insulated superconducting cable in which the refrigerant conduction ports in each of the terminal structures are connected via the branch refrigerant pipe .
前記冷媒槽の側面に、当該冷媒槽内に連通し、前記引出導体の引出方向とは異なる方向に分岐する分岐冷媒配管に接合される冷媒導通口を備える請求項1に記載の常温絶縁型超電導ケーブルの端末構造。 A side surface of the refrigerant tank, communicates with the refrigerant tank, cold insulation according to Motomeko 1 Ru including a refrigerant conducting port to be joined to the branch refrigerant pipe branched in a direction different from the pull-out direction of the lead conductor Type superconducting cable terminal structure. 前記冷媒槽が前記接続部よりも前記引出導体側に延長して形成され、
前記引出導体と前記冷媒槽との間隔が0.1mm以上2.5mm以下である請求項1〜のいずれか一項に記載の常温絶縁型超電導ケーブルの端末構造。
The refrigerant tank is formed to extend to the lead conductor side from the connection portion,
Terminal structure of cold insulated superconducting cable according to any one of the lead conductors and spacing Motomeko 1 Ru der than 2.5mm or less 0.1mm of the refrigerant tank 4.
JP2011046836A 2011-03-03 2011-03-03 End structure of room temperature insulated superconducting cable Expired - Fee Related JP5742006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011046836A JP5742006B2 (en) 2011-03-03 2011-03-03 End structure of room temperature insulated superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011046836A JP5742006B2 (en) 2011-03-03 2011-03-03 End structure of room temperature insulated superconducting cable

Publications (2)

Publication Number Publication Date
JP2012186890A JP2012186890A (en) 2012-09-27
JP5742006B2 true JP5742006B2 (en) 2015-07-01

Family

ID=47016459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011046836A Expired - Fee Related JP5742006B2 (en) 2011-03-03 2011-03-03 End structure of room temperature insulated superconducting cable

Country Status (1)

Country Link
JP (1) JP5742006B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169030B2 (en) * 2014-03-28 2017-07-26 住友電気工業株式会社 Superconducting cable terminal structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984692U (en) * 1972-11-10 1974-07-23
JPS5825722Y2 (en) * 1977-06-21 1983-06-02 三菱電線工業株式会社 Terminal of cryogenic cable
JPH0864041A (en) * 1994-08-23 1996-03-08 Sumitomo Electric Ind Ltd Superconducting cable
JP4045441B2 (en) * 2003-10-03 2008-02-13 住友電気工業株式会社 Superconducting cable terminal structure
JP2006059695A (en) * 2004-08-20 2006-03-02 Sumitomo Electric Ind Ltd Superconductive cable

Also Published As

Publication number Publication date
JP2012186890A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US20070137881A1 (en) Terminal structure of multiphase superconducting cable
CN103456455B (en) A kind of current lead of superconducting magnets
KR100995767B1 (en) Terminal structure of direct electric current superconducting cable and DC superconducting cable line
US8271061B2 (en) Connection arrangement for two superconductor cables
US8748747B2 (en) Arrangement with at least one superconductive cable
JP2011238613A (en) Transmission system having superconducting cable
JP2006180588A (en) Power deriving structure of superconducting apparatus
JP2018137292A (en) Terminal structure of superconducting apparatus
JP6463202B2 (en) Superconducting cable terminal structure
JP6482358B2 (en) Superconducting cable terminal structure
JP5810925B2 (en) Room-temperature insulated superconducting cable connection structure
JP5804320B2 (en) Superconducting cable terminal structure
JP5742021B2 (en) Connection unit and connection structure
JP5742006B2 (en) End structure of room temperature insulated superconducting cable
JP2014146585A (en) Superconductive cable and superconductive cable rail track
JP6947509B2 (en) Terminal structure of normal conductive connection member and superconducting cable
JP5252324B2 (en) Superconducting power transmission system
JP5252323B2 (en) Room-temperature insulated superconducting cable and manufacturing method thereof
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable
KR100777182B1 (en) High temperature superconducting power cable
JP5454892B2 (en) Normal conductor lead-out structure
JP6891054B2 (en) Terminal structure of normal conductive connection member and superconducting cable
JP6896527B2 (en) Terminal structure of normal conductive connection member and superconducting cable
JP2007166893A (en) Electric lead wire for connecting superconducting device with device at room temperature
JP2016195486A (en) Terminal structure of superconducting cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150416

R150 Certificate of patent or registration of utility model

Ref document number: 5742006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees