JP2020028134A - Terminal structure of superconducting cable - Google Patents

Terminal structure of superconducting cable Download PDF

Info

Publication number
JP2020028134A
JP2020028134A JP2018149961A JP2018149961A JP2020028134A JP 2020028134 A JP2020028134 A JP 2020028134A JP 2018149961 A JP2018149961 A JP 2018149961A JP 2018149961 A JP2018149961 A JP 2018149961A JP 2020028134 A JP2020028134 A JP 2020028134A
Authority
JP
Japan
Prior art keywords
heat insulating
bushing
cable
temperature side
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018149961A
Other languages
Japanese (ja)
Inventor
祐一 芦辺
Yuichi Ashibe
祐一 芦辺
智男 三村
Tomoo Mimura
智男 三村
昌幸 棚澤
Masayuki Tanazawa
昌幸 棚澤
山口 博史
Hiroshi Yamaguchi
博史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Sumitomo Electric Industries Ltd
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Tokyo Electric Power Co Holdings Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2018149961A priority Critical patent/JP2020028134A/en
Publication of JP2020028134A publication Critical patent/JP2020028134A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

To provide a terminal structure of a superconducting cable capable of shortening length of a porcelain tube body while capable of effectively relaxing the electric field of an insulation part of a bushing.SOLUTION: A terminal structure of a superconducting cable comprises a cable core, a bushing inserted into the cable core, a porcelain tube accommodating a normal temperature side area of the bushing, a conductor extraction part connected with an end of the cable core, and an inner vacuum insulation pipe provided so as to extend to the normal temperature side through the porcelain tube. The bushing has an insulation part and a stationary part formed at the circumference of the insulation part. The porcelain tube has a body part with an electric field control surface, a lower metal fitting attached to the stationary part of the bushing, and an upper metal fitting inserting-fixing a normal temperature side end of the inner vacuum insulation pipe. The normal temperature side end of the inner vacuum insulation pipe has a step part. While the insulation part of the normal temperature side area of the bushing is arranged so as to be overlapped with the electric field control surface of the body part of the porcelain tube in a radial direction, The step part of the inner vacuum insulation pipe is positioned nearer than the electric field control surface to the normal temperature side.SELECTED DRAWING: Figure 2

Description

本開示は、超電導ケーブルの端末構造に関する。   The present disclosure relates to a terminal structure of a superconducting cable.

超電導ケーブルは、既存の常電導ケーブル(例、OFケーブルやCVケーブル)と比較して、大容量の電力を低損失で送電できることから、送電線路を構成する電力ケーブルとして期待されている。一般に、超電導ケーブルは、フォーマの外周に超電導導体層を有するケーブルコアが断熱管に収納された構造であり、断熱管内(ケーブルコアと断熱管との間)に冷媒(例えば、液体窒素や液体ヘリウムなど)を流通させることで、ケーブルコア(超電導導体層)を冷却して超電導状態を維持する。   A superconducting cable is expected as a power cable constituting a transmission line because it can transmit a large amount of power with low loss as compared with an existing normal conducting cable (eg, an OF cable or a CV cable). Generally, a superconducting cable has a structure in which a cable core having a superconducting conductor layer on the outer periphery of a former is housed in a heat insulating tube, and a refrigerant (for example, liquid nitrogen or liquid helium) is placed in the heat insulating tube (between the cable core and the heat insulating tube). ) To cool the cable core (superconducting conductor layer) to maintain the superconducting state.

超電導ケーブルを用いて送電線路を構築する場合、超電導ケーブルの終端に、常電導電力機器に接続するための端末が設けられる。特許文献1には、超電導ケーブルの断熱管端部から引き出されたケーブルコアと、ケーブルコアが挿通されるブッシングと、ブッシングの常温側領域を収納する碍管と、ケーブルコアの超電導導体層が接続される常電導引出部とを備える超電導ケーブルの端末構造が開示されている。特許文献1に記載の端末構造では、断熱管の端部から碍管内を経て、超電導導体層と常電導引出部との接続箇所までに至るように設けられて、超電導導体層を冷却する冷媒を断熱保持する真空層(ケーブル側真空層、内側真空層、常温側真空層)を備える。   When a power transmission line is constructed using a superconducting cable, a terminal for connecting to a normal conductive power device is provided at the end of the superconducting cable. Patent Literature 1 discloses that a cable core pulled out from a heat-insulating tube end of a superconducting cable, a bushing through which the cable core is inserted, an insulator tube accommodating a room-temperature region of the bushing, and a superconducting conductor layer of the cable core are connected. A terminal structure of a superconducting cable including a normal conducting lead-out portion is disclosed. In the terminal structure described in Patent Literature 1, a coolant that cools the superconducting conductor layer is provided from the end of the heat-insulating tube to the connection point between the superconducting conductor layer and the normal conducting lead portion through the inside of the insulator tube. A vacuum layer (a vacuum layer on the cable side, a vacuum layer on the inside, and a vacuum layer on the normal temperature side) for heat insulation is provided.

特開2015−192552号公報JP 2015-192552 A

超電導ケーブルの端末構造において、設置性や施工性の向上が望まれており、その1つとして端末全体の長手方向の長さを短くすることが求められている。しかしながら、従来では、ブッシングの電界制御を十分に考慮した上で碍管の寸法を短くすることについて、必ずしも十分な検討がなされているとはいえなかった。   In the terminal structure of the superconducting cable, improvement in installation and workability is desired, and as one of them, it is required to reduce the length of the entire terminal in the longitudinal direction. However, heretofore, it has not always been said that sufficient consideration has been given to shortening the dimensions of the insulator tube while sufficiently considering the electric field control of the bushing.

そこで、本開示は、ブッシングにおける絶縁部の電界緩和を効果的に図ることができながら、碍管本体部の長さを短くできる超電導ケーブルの端末構造を提供することを目的の1つとする。   Therefore, an object of the present disclosure is to provide a terminal structure of a superconducting cable that can effectively reduce the electric field of an insulating portion in a bushing and that can shorten the length of an insulator tube main body.

本開示に係る超電導ケーブルの端末構造は、
超電導ケーブルの端部において断熱管の端部から出されたケーブルコアと、
前記ケーブルコアの一部が挿通されるブッシングと、
前記ブッシングにおける常温側領域を収納する碍管と、
前記ブッシングの常温側端部から突出した前記ケーブルコアの端部において、前記ケーブルコアに備える超電導導体層が接続される導体引出部と、
前記ブッシングの内周と前記ケーブルコアの外周との間から前記碍管内を経て常温側に延びるように設けられて、前記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持する内側真空断熱管と、を備え、
前記ブッシングは、常温側領域が端部に向かって先細りした絶縁部と、前記絶縁部の中間部に設けられ、前記絶縁部の外周に形成された固定部とを有し、
前記碍管は、複数の碍子が形成された電界制御面を有する筒状の本体部と、前記本体部のケーブル側端部に設けられて前記ブッシングの前記固定部が取り付けられる下部金具と、前記本体部の常温側端部に設けられて前記内側真空断熱管の常温側端部が挿通固定される上部金具と、を有し、
前記内側真空断熱管の常温側端部には、局所的に外径が大きくなる段差部を有し、
前記ブッシングにおける常温側領域の前記絶縁部が前記碍管における前記本体部の前記電界制御面に対して径方向に重複して配置されると共に、前記内側真空断熱管の前記段差部が前記電界制御面よりも常温側に位置する。
The terminal structure of the superconducting cable according to the present disclosure,
A cable core protruding from the end of the heat insulating tube at the end of the superconducting cable,
A bushing through which a part of the cable core is inserted;
A porcelain tube for accommodating a room temperature side region in the bushing;
At the end of the cable core protruding from the room temperature side end of the bushing, a conductor extraction portion to which a superconducting conductor layer provided in the cable core is connected,
An inner vacuum heat insulating pipe that is provided so as to extend from the inner circumference of the bushing and the outer circumference of the cable core to the room temperature side through the inside of the insulator tube, and insulates and retains a refrigerant that cools the superconducting conductor layer of the cable core. ,
The bushing has an insulating portion having a normal-temperature side region tapered toward an end, and a fixing portion provided at an intermediate portion of the insulating portion and formed on an outer periphery of the insulating portion,
The insulator tube includes a cylindrical main body having an electric field control surface on which a plurality of insulators are formed, a lower fitting provided at a cable side end of the main body, to which the fixing portion of the bushing is attached, An upper fitting provided at a normal temperature side end of the section and through which the normal temperature side end of the inner vacuum heat insulating tube is inserted and fixed,
At the room temperature side end of the inner vacuum heat insulating tube, there is a step portion where the outer diameter is locally increased,
The insulating portion in the room temperature side region of the bushing is radially overlapped with the electric field control surface of the main body in the insulator tube, and the step portion of the inner vacuum heat insulating tube is connected to the electric field control surface. It is located on the normal temperature side.

上記超電導ケーブルの端末構造は、ブッシングにおける絶縁部の電界緩和を効果的に図ることができながら、碍管本体部の長さを短くできる。   The terminal structure of the superconducting cable can reduce the length of the insulator tube main body while effectively reducing the electric field of the insulating portion in the bushing.

実施形態1に係る超電導ケーブルの端末構造を示す概略縦断面図である。FIG. 2 is a schematic longitudinal sectional view illustrating a terminal structure of the superconducting cable according to the first embodiment. 図1に示す超電導ケーブルの端末構造の要部を拡大して示す部分拡大図である。It is the elements on larger scale which expand and show the principal part of the terminal structure of the superconducting cable shown in FIG. 実施形態1でのブッシングの常温側領域における等電位線の分布を模式的に示す図である。FIG. 4 is a diagram schematically illustrating a distribution of equipotential lines in a room temperature side region of the bushing according to the first embodiment. 超電導ケーブルの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a superconducting cable.

[本開示の実施形態の説明]
ブッシングの絶縁性能を十分に発揮させるためには、絶縁部における電界の集中を緩和する必要がある。従来の端末構造では、高電位となる高圧側と、低電位(接地電位)となる接地側との間の電界を局部的に集中させないようにする目的で、ブッシングを碍管内に収納して電界を制御することにより、絶縁性能を高めている。
[Description of Embodiment of the Present Disclosure]
In order to sufficiently exhibit the insulating performance of the bushing, it is necessary to reduce the concentration of the electric field in the insulating portion. In a conventional terminal structure, a bushing is housed in a porcelain tube in order to prevent the electric field between the high voltage side, which is a high potential, and the ground side, which is a low potential (ground potential), from being locally concentrated. , The insulation performance is enhanced.

超電導ケーブルの端末構造において、冷却時の熱収縮を緩和するため、例えば、ブッシングとケーブルコアとの間から碍管内を経て常温側に延びるように設けられた内側真空層(内側真空断熱管)の一部にベローズ管を挿入することが考えられる。この場合、内側真空断熱管のベローズ管を挿入される部分は局所的に外径が大きくなり、段差部が形成されることになる。このような段差部が内側真空断熱管に形成されていると、段差部の位置によっては、ブッシング(絶縁部)に発生した電界(等電位線)が段差部に交差する場合があり、絶縁部の電界緩和を十分に行うことができない可能性がある。そこで、段差部がある場合は、ブッシングの電界制御を容易にするため、ブッシングと段差部との間の距離を大きくして、絶縁部に発生する電界が段差部に交差することを回避することが考えられる。しかしながら、ブッシングと段差部との間の距離を単純に大きくすると、碍管が長くなり、端末全長を短くすることが困難になるという問題がある。   In the terminal structure of the superconducting cable, in order to reduce thermal shrinkage during cooling, for example, an inner vacuum layer (inner vacuum heat insulating pipe) provided so as to extend from the space between the bushing and the cable core to the room temperature side through the insulator tube. It is conceivable to insert a bellows tube partially. In this case, the outer diameter of the portion of the inner vacuum heat insulating tube into which the bellows tube is inserted becomes locally large, and a step is formed. If such a step is formed in the inner vacuum heat insulating pipe, an electric field (equipotential line) generated in the bushing (insulating section) may intersect the step depending on the position of the step, and the insulating section Electric field may not be sufficiently reduced. Therefore, if there is a step, to make it easier to control the electric field of the bushing, increase the distance between the bushing and the step to prevent the electric field generated in the insulating part from intersecting the step. Can be considered. However, if the distance between the bushing and the step portion is simply increased, there is a problem that the length of the insulator tube becomes longer and it becomes difficult to shorten the entire length of the terminal.

以下、本開示の実施態様を列記して説明する。   Hereinafter, embodiments of the present disclosure will be listed and described.

(1)本開示の実施形態に係る超電導ケーブルの端末構造は、
超電導ケーブルの端部において断熱管の端部から出されたケーブルコアと、
前記ケーブルコアの一部が挿通されるブッシングと、
前記ブッシングにおける常温側領域を収納する碍管と、
前記ブッシングの常温側端部から突出した前記ケーブルコアの端部において、前記ケーブルコアに備える超電導導体層が接続される導体引出部と、
前記ブッシングの内周と前記ケーブルコアの外周との間から前記碍管内を経て常温側に延びるように設けられて、前記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持する内側真空断熱管と、を備え、
前記ブッシングは、常温側領域が端部に向かって先細りした絶縁部と、前記絶縁部の中間部に設けられ、前記絶縁部の外周に形成された固定部とを有し、
前記碍管は、複数の碍子が形成された電界制御面を有する筒状の本体部と、前記本体部のケーブル側端部に設けられて前記ブッシングの前記固定部が取り付けられる下部金具と、前記本体部の常温側端部に設けられて前記内側真空断熱管の常温側端部が挿通固定される上部金具と、を有し、
前記内側真空断熱管の常温側端部には、局所的に外径が大きくなる段差部を有し、
前記ブッシングにおける常温側領域の前記絶縁部が前記碍管における前記本体部の前記電界制御面に対して径方向に重複して配置されると共に、前記内側真空断熱管の前記段差部が前記電界制御面よりも常温側に位置する。
(1) The terminal structure of the superconducting cable according to the embodiment of the present disclosure is as follows:
A cable core protruding from the end of the heat insulating tube at the end of the superconducting cable,
A bushing through which a part of the cable core is inserted;
A porcelain tube for accommodating a room temperature side region in the bushing;
At the end of the cable core protruding from the room temperature side end of the bushing, a conductor extraction portion to which a superconducting conductor layer provided in the cable core is connected,
An inner vacuum heat insulating pipe that is provided so as to extend from the inner circumference of the bushing and the outer circumference of the cable core to the room temperature side through the inside of the insulator tube, and insulates and retains a refrigerant that cools the superconducting conductor layer of the cable core. ,
The bushing has an insulating portion having a normal-temperature side region tapered toward an end, and a fixing portion provided at an intermediate portion of the insulating portion and formed on an outer periphery of the insulating portion,
The insulator tube includes a cylindrical main body having an electric field control surface on which a plurality of insulators are formed, a lower fitting provided at a cable side end of the main body, to which the fixing portion of the bushing is attached, An upper fitting provided at a normal temperature side end of the section and through which the normal temperature side end of the inner vacuum heat insulating tube is inserted and fixed,
At the room temperature side end of the inner vacuum heat insulating tube, there is a step portion where the outer diameter is locally increased,
The insulating portion in the room temperature side region of the bushing is radially overlapped with the electric field control surface of the main body in the insulator tube, and the step portion of the inner vacuum heat insulating tube is connected to the electric field control surface. It is located on the normal temperature side.

上記超電導ケーブルの端末構造によれば、内側真空断熱管の常温側端部に設けられた段差部が、碍管の電界制御面よりも常温側に位置することで、ブッシング(絶縁部)の常温側領域に発生する等電位線が段差部に交差することを抑制できる。よって、絶縁部に発生する等電位線が主として碍管の電界制御面を通り、電界制御面の全長に亘って等電位線の分布が均一化される。これにより、碍子沿面における電位分布が均等化され、絶縁部の電界緩和を効果的に図ることができ、碍子沿面を有効活用できる。また、碍子沿面を有効活用できることから、碍管本体部の長さを短くできる。したがって、上記超電導ケーブルの端末構造は、ブッシングにおける絶縁部の電界緩和を効果的に図ることができながら、碍管本体部の長さを短くできるので、端末全体の長さを短くすることが可能である。   According to the terminal structure of the superconducting cable, the step portion provided at the room temperature side end of the inner vacuum heat insulating tube is located at the room temperature side of the electric field control surface of the insulator tube, so that the bushing (insulating portion) is at the room temperature side. It is possible to prevent the equipotential lines generated in the region from intersecting the step. Therefore, the equipotential lines generated in the insulating portion mainly pass through the electric field control surface of the insulator tube, and the distribution of the equipotential lines is made uniform over the entire length of the electric field control surface. As a result, the potential distribution on the surface of the insulator is equalized, the electric field in the insulating portion can be effectively reduced, and the surface of the insulator can be used effectively. Further, since the surface of the insulator can be effectively used, the length of the insulator tube main body can be reduced. Therefore, the terminal structure of the superconducting cable can shorten the length of the insulator tube main body while effectively reducing the electric field of the insulating portion in the bushing, thereby making it possible to shorten the entire length of the terminal. is there.

(2)上記超電導ケーブルの端末構造の一形態として、前記内側真空断熱管の前記段差部にベローズ管が設けられていることが挙げられる。   (2) As one mode of the terminal structure of the superconducting cable, a bellows pipe may be provided at the step portion of the inner vacuum heat insulating pipe.

内側真空断熱管の段差部にベローズ管が設けられていることで、ベローズ管により冷却時の熱収縮を吸収できる。   Since the bellows pipe is provided at the step portion of the inner vacuum heat insulating pipe, the bellows pipe can absorb heat shrinkage during cooling.

(3)上記超電導ケーブルの端末構造の一形態として、前記導体引出部の外周を覆う非真空断熱層を備え、前記非真空断熱層は断熱材で形成されていることが挙げられる。   (3) As one mode of the terminal structure of the superconducting cable, a non-vacuum heat-insulating layer that covers the outer periphery of the conductor lead-out portion is provided, and the non-vacuum heat-insulating layer is formed of a heat insulating material.

導体引出部の外周に非真空断熱層を備えることで、外部からの熱侵入を抑制でき、超電導導体層への導体引出部からの熱侵入を低減できる。また、非真空断熱層は、断熱材で形成された断熱構造であるので、真空層による断熱構造(真空断熱層)に比べて構造が簡単で、施工性に優れると共にコストを低減できる。   By providing the non-vacuum heat insulating layer on the outer periphery of the conductor lead-out portion, heat intrusion from the outside can be suppressed, and heat intrusion into the superconducting conductor layer from the conductor lead-out portion can be reduced. Further, since the non-vacuum heat-insulating layer has a heat-insulating structure formed of a heat-insulating material, it has a simpler structure than a heat-insulating structure using a vacuum layer (vacuum heat-insulating layer), is excellent in workability, and can reduce cost.

[本開示の実施形態の詳細]
本開示の実施形態に係る超電導ケーブルの端末構造の具体例を、以下に図面を参照しつつ説明する。図中の同一符号は、同一名称物を示す。
[Details of Embodiment of the Present Disclosure]
A specific example of a terminal structure of a superconducting cable according to an embodiment of the present disclosure will be described below with reference to the drawings. The same reference numerals in the drawings indicate the same names.

[実施形態1]
〈超電導ケーブルの端末構造の概要〉
図1、図2を参照して、実施形態1に係る超電導ケーブルの端末構造1を説明する。図1に示す端末構造1は、超電導ケーブル100のケーブルコア110に備える超電導導体層112と、常温環境で利用される常電導電力機器(図示せず)の導体とを電気的に接続する導体引出部2を備える。常電導電力機器としては、例えば、常電導ケーブル、アルミニウムや銅などの常電導材料からなるブスバーなどの送電線路を構築する機器などが挙げられる。端末構造1の設置形態としては、超電導ケーブル100の軸方向が水平方向である横置き型、超電導ケーブル100の軸方向が鉛直方向であり、導体引出部2が鉛直方向上側に配置される縦置き型などが挙げられる。ここでは、端末構造1において、導体引出部2が位置する側を常温側(上側)、超電導ケーブル100が位置する側をケーブル側(下側)とし、断熱管120の端部から出されたケーブルコア110の延伸方向を長手方向とする。
[Embodiment 1]
<Overview of terminal structure of superconducting cable>
The terminal structure 1 of the superconducting cable according to the first embodiment will be described with reference to FIGS. The terminal structure 1 shown in FIG. 1 is a conductor drawing for electrically connecting a superconducting conductor layer 112 provided in a cable core 110 of a superconducting cable 100 and a conductor of a normal conducting device (not shown) used in a normal temperature environment. A unit 2 is provided. Examples of the normal electric conduction equipment include an apparatus for constructing a transmission line such as a normal conduction cable and a bus bar made of a normal conduction material such as aluminum and copper. As an installation form of the terminal structure 1, a horizontal type in which the axial direction of the superconducting cable 100 is a horizontal direction, a vertical type in which the axial direction of the superconducting cable 100 is a vertical direction, and the conductor lead-out portion 2 is disposed vertically upward. And the like. Here, in the terminal structure 1, the side where the conductor lead-out portion 2 is located is the normal temperature side (upper side), the side where the superconducting cable 100 is located is the cable side (lower side), and the cable drawn out from the end of the heat insulating pipe 120. The extending direction of the core 110 is defined as a longitudinal direction.

実施形態1の端末構造1は、図2に示すように、ケーブルコア110が挿通されるブッシング4と、ブッシング4における常温側領域を収納する碍管7と、ブッシング4とケーブルコア110との間から碍管7内を経て常温側に延びるように設けられた内側真空断熱管5とを備える。内側真空断熱管5の常温側端部には、局所的に外径が大きい段差部55を有する。端末構造1の特徴の1つは、ブッシング4における常温側領域の絶縁部41が碍管7の電界制御面7Aに対して径方向に重複して配置されると共に、内側真空断熱管5の段差部55が電界制御面7Aよりも常温側に位置する点にある。以下、初めに図4を参照して超電導ケーブル100の基本構成を説明し、次いで端末構造1の詳細な構成を説明する。   As shown in FIG. 2, the terminal structure 1 according to the first embodiment includes a bushing 4 through which the cable core 110 is inserted, an insulator tube 7 that accommodates the room-temperature side area of the bushing 4, and a space between the bushing 4 and the cable core 110. And an inner vacuum heat insulating pipe 5 provided to extend to the room temperature side through the insulator pipe 7. At the room temperature side end of the inner vacuum heat insulating tube 5, there is a stepped portion 55 having a locally large outer diameter. One of the features of the terminal structure 1 is that the insulating portion 41 in the room temperature side region of the bushing 4 is arranged radially overlapped with the electric field control surface 7 </ b> A of the insulator tube 7, and the step portion of the inner vacuum heat insulating tube 5. The point 55 is located at a room temperature side of the electric field control surface 7A. Hereinafter, the basic configuration of the superconducting cable 100 will be described first with reference to FIG. 4, and then the detailed configuration of the terminal structure 1 will be described.

《超電導ケーブル》
超電導ケーブル100は、図4に示すように、フォーマ111の外周に超電導導体層112を有するケーブルコア110と、ケーブルコア110を収納する断熱管120とを備える。図4に示すケーブルコア110は、中心から順にフォーマ111、超電導導体層112、電気絶縁層113、遮蔽層114、保護層115を同軸状に備える。超電導ケーブル100は、1本のケーブルコア110が1つの断熱管120に収納された単心ケーブルであり、超電導導体層112と共に電気絶縁層113が断熱管120内に収納されて、双方が液体窒素などの冷媒130(図1参照)によって冷却される低温絶縁型のケーブルである。例えば、このような単心ケーブルを3本布設して、各ケーブルを各相の送電に利用する三相交流送電線路や、このような単心ケーブルを2本布設して、一方のケーブルを往路、他方のケーブルを復路に利用する直流送電線路などを構築することができる。ケーブルコア110の各構成要素は、公知の構成を利用できる。ケーブルコア110の各構成要素の代表的な構成を以下に説明する。
《Superconducting cable》
As shown in FIG. 4, the superconducting cable 100 includes a cable core 110 having a superconducting conductor layer 112 on the outer periphery of a former 111, and a heat insulating tube 120 for accommodating the cable core 110. The cable core 110 shown in FIG. 4 includes a former 111, a superconducting conductor layer 112, an electrical insulating layer 113, a shielding layer 114, and a protective layer 115 coaxially from the center. The superconducting cable 100 is a single-core cable in which one cable core 110 is housed in one heat insulating tube 120, and an electric insulating layer 113 is housed in the heat insulating tube 120 together with the superconducting conductor layer 112, and both are made of liquid nitrogen. This is a low-temperature insulated cable cooled by a refrigerant 130 (see FIG. 1). For example, three such single-core cables are laid, and a three-phase AC transmission line using each cable for power transmission in each phase, or two such single-core cables are laid, and one cable is forwarded. It is possible to construct a DC transmission line using the other cable for the return path. Each component of the cable core 110 can use a known configuration. A typical configuration of each component of the cable core 110 will be described below.

(フォーマ)
フォーマ111は、超電導導体層112を支持する機能を有する。本例では、フォーマ111を中空体(管状体)としており、フォーマ111の内部空間を、超電導導体層112を冷却する冷媒130(図1参照)の流路(この例では往路)に利用する。フォーマ111の構成材料としては、冷媒温度でも利用可能で、薄くても強度に優れるステンレス鋼などの金属が挙げられる。コルゲート管やベローズ管をフォーマ111に利用すると、高強度材料から構成されていても可撓性に優れる。本例では、フォーマ111はステンレス鋼製のベローズ管である。その他、フォーマ111は、複数の素線(銅線や、銅線の外周にエナメルなどの絶縁被覆を有する被覆銅線など)を撚り合わせた撚り線などの中実体としてもよい。
(Former)
The former 111 has a function of supporting the superconducting conductor layer 112. In this example, the former 111 is a hollow body (tubular body), and the internal space of the former 111 is used as a flow path (outward path in this example) of the refrigerant 130 (see FIG. 1) for cooling the superconducting conductor layer 112. As a constituent material of the former 111, a metal such as stainless steel, which can be used even at a refrigerant temperature and is excellent in strength even when it is thin, may be used. When a corrugated pipe or a bellows pipe is used for the former 111, flexibility is excellent even if it is made of a high-strength material. In this example, the former 111 is a bellows tube made of stainless steel. In addition, the former 111 may be a solid body such as a stranded wire obtained by twisting a plurality of strands (a copper wire, a coated copper wire having an insulating coating such as an enamel around the copper wire).

(超電導導体層)
超電導導体層112は、フォーマ111の外周に複数の超電導線材をスパイラル巻きすることで形成されている。超電導線材には、例えばBi系銀シース線材やRE123系薄膜線材などのテープ状線材が利用できる。超電導導体層112は、単層に形成してもよいし、2層以上の多層に形成してもよい。超電導線材の本数や層数は、超電導導体層112に流れる電流量に応じて適宜選択するとよい。本例では、超電導導体層112の層数が4層である場合を示す。超電導導体層112の層間には、絶縁紙などを巻回した層間絶縁層(図示せず)を設けてもよい。また、フォーマ111と超電導導体層112との間に、超電導導体層112の機械的保護などを目的とする介在層(図示せず)を設けてもよい。
(Superconducting conductor layer)
The superconducting conductor layer 112 is formed by spirally winding a plurality of superconducting wires around the outer periphery of the former 111. As the superconducting wire, for example, a tape-shaped wire such as a Bi-based silver sheath wire or a RE123-based thin film wire can be used. The superconducting conductor layer 112 may be formed as a single layer, or may be formed as two or more layers. The number of superconducting wires and the number of layers may be appropriately selected according to the amount of current flowing through superconducting conductor layer 112. In this example, a case where the number of superconducting conductor layers 112 is four is shown. Between the layers of the superconducting conductor layer 112, an interlayer insulating layer (not shown) in which insulating paper or the like is wound may be provided. Further, an intervening layer (not shown) may be provided between the former 111 and the superconducting conductor layer 112 for the purpose of mechanically protecting the superconducting conductor layer 112 and the like.

(電気絶縁層)
電気絶縁層113は、超電導導体層112とその外部との電気的絶縁を確保する。電気絶縁層113は、超電導導体層112の外周に絶縁紙をスパイラル巻きすることで形成されている。絶縁紙には、例えば、クラフト紙やPPLP(登録商標;Polypropylene Laminated Paper)といった半合成紙などを利用できる。
(Electrical insulation layer)
The electrical insulating layer 113 ensures electrical insulation between the superconducting conductor layer 112 and the outside. The electric insulating layer 113 is formed by spirally winding an insulating paper around the superconducting conductor layer 112. As the insulating paper, for example, semi-synthetic paper such as kraft paper or PPLP (registered trademark; Polypropylene Laminated Paper) can be used.

(遮蔽層)
遮蔽層114は、超電導導体層112の外側(この例では電気絶縁層113の直上)に設けられて、超電導導体層112に起因する電界を遮蔽する機能を有する。遮蔽層114は、銅などの常電導材料からなるテープや線材などを電気絶縁層113の外周にスパイラル巻きすることで形成されている。
(Shielding layer)
The shielding layer 114 is provided outside the superconducting conductor layer 112 (in this example, immediately above the electric insulating layer 113), and has a function of shielding an electric field caused by the superconducting conductor layer 112. The shielding layer 114 is formed by spirally winding a tape or a wire made of a normal conductive material such as copper around the outer periphery of the electric insulating layer 113.

(保護層)
保護層115は、ケーブルコア110の最外周に配置され、その内側に配置される部材(特に超電導導体層112)を機械的に保護すると共に、遮蔽層114と断熱管120との間の電気的絶縁を確保する。保護層115は、上述の絶縁紙を遮蔽層114の外周にスパイラル巻きすることで形成されている。
(Protective layer)
The protective layer 115 is disposed on the outermost periphery of the cable core 110, mechanically protects a member (particularly, the superconducting conductor layer 112) disposed inside the cable core 110, and electrically protects the member between the shielding layer 114 and the heat insulating tube 120. Ensure insulation. The protective layer 115 is formed by spirally winding the above-described insulating paper around the outer periphery of the shielding layer 114.

その他、ケーブルコア110は、電気絶縁層113の外周に外側超電導層(図示せず)や、常電導材料からなる磁気遮蔽層を備えることができる。外側超電導層は、上述の超電導線材をスパイラル巻きすることで形成される。外側超電導層は、例えば、交流送電用途では磁気遮蔽層に利用でき、直流送電用途では、モノポール送電の場合、超電導導体層112を往路導体としたときに帰路導体に利用でき、バイポール送電の場合、超電導導体層112とは逆極性の電流を流す導体に利用できる。   In addition, the cable core 110 may include an outer superconducting layer (not shown) on the outer periphery of the electric insulating layer 113 and a magnetic shielding layer made of a normal conducting material. The outer superconducting layer is formed by spirally winding the above-described superconducting wire. The outer superconducting layer, for example, can be used as a magnetic shielding layer in AC power transmission applications, and in a DC power transmission application, in the case of monopole power transmission, can be used as the return conductor when the superconducting conductor layer 112 is used as the outward conductor, and in the case of bipole power transmission. It can be used as a conductor for flowing a current having a polarity opposite to that of the superconducting conductor layer 112.

(断熱管)
断熱管120は、内管121と外管122とを有する二重構造管であり、内管121と外管122との間の空間が真空引きされ、この空間に真空層が形成された真空断熱管である。内管121の内部空間は、ケーブルコア110の収納空間であると共に、冷媒130(図1参照)の流路(この例では復路)に利用される。内管121及び外管122は、可撓性に優れるコルゲート管やベローズ管、あるいは冷媒の圧力損失を小さくできるストレート管で構成することが挙げられる。内管121及び外管122の構成材料は、ステンレス鋼などの金属が挙げられる。本例では、内管121及び外管122が、ステンレス鋼製のコルゲート管であり、内管121と外管122との間にスーパーインシュレーション(商品名)などの断熱材123が配置されている。断熱管120(外管122)の外周には、ビニルやポリエチレンなどからなる防食層124が形成されている。断熱管120の開口部には、内管121と外管122との間の空間に連通する真空ポート100p(図1参照)が取り付けられる。
(Insulated pipe)
The heat insulating pipe 120 is a double-structured pipe having an inner pipe 121 and an outer pipe 122, and a space between the inner pipe 121 and the outer pipe 122 is evacuated, and a vacuum heat insulating layer in which a vacuum layer is formed is formed. Tube. The internal space of the inner tube 121 is a storage space for the cable core 110 and is used for a flow path (a return path in this example) of the refrigerant 130 (see FIG. 1). The inner pipe 121 and the outer pipe 122 may be formed of a corrugated pipe or a bellows pipe having excellent flexibility, or a straight pipe capable of reducing the pressure loss of the refrigerant. The constituent material of the inner tube 121 and the outer tube 122 includes a metal such as stainless steel. In this example, the inner pipe 121 and the outer pipe 122 are stainless steel corrugated pipes, and a heat insulating material 123 such as super insulation (trade name) is disposed between the inner pipe 121 and the outer pipe 122. . An anticorrosion layer 124 made of vinyl, polyethylene, or the like is formed on the outer periphery of the heat insulating tube 120 (outer tube 122). A vacuum port 100p (see FIG. 1) communicating with the space between the inner pipe 121 and the outer pipe 122 is attached to the opening of the heat insulating pipe 120.

《端末構造》
上述の超電導ケーブル100と常電導電力機器とを接続する場合、例えば、図1に示す端末構造1を構築する。具体的には、超電導ケーブル100の端部において断熱管120の端部からケーブルコア110を引き出してケーブルコア110の端部を露出させ、超電導導体層112と導体引出部2とを電気的に接続する。端末構造1では、露出させたケーブルコア110の端部をブッシング4に挿通し、その外側に碍管7を配置すると共に、ケーブルコア110の露出部分から超電導導体層112と導体引出部2との接続箇所に亘って、冷媒層(冷媒130が充填される領域)及び真空層(内側真空断熱管5、ケーブル側断熱容器6)を設ける。以下、図1を参照して端末構造1の各構成要素を説明し、端末構造1の要部については図2を参照して詳しく説明する。
《Terminal structure》
When connecting the above-described superconducting cable 100 and the normal conductive power device, for example, the terminal structure 1 shown in FIG. 1 is constructed. Specifically, at the end of the superconducting cable 100, the cable core 110 is pulled out from the end of the heat insulating tube 120 to expose the end of the cable core 110, and the superconducting conductor layer 112 and the conductor lead-out section 2 are electrically connected. I do. In the terminal structure 1, the exposed end of the cable core 110 is inserted into the bushing 4, the porcelain tube 7 is arranged outside the bushing 4, and the connection between the superconducting conductor layer 112 and the conductor lead-out portion 2 from the exposed portion of the cable core 110. A refrigerant layer (a region filled with the refrigerant 130) and a vacuum layer (the inner vacuum heat insulating pipe 5, the cable side heat insulating container 6) are provided over the locations. Hereinafter, each component of the terminal structure 1 will be described with reference to FIG. 1, and a main part of the terminal structure 1 will be described in detail with reference to FIG. 2.

(ケーブルコア)
断熱管120の端部から出されたケーブルコア110は、断熱管120の近くで遮蔽層114及び保護層115(図4参照)が切断され除去されている。断熱管120の端部から突出するケーブルコア110の端部において、断熱管120の開口部よりも先の領域では、概ね電気絶縁層113が露出されている。更に、ケーブルコア110の先端部(ブッシング4の常温側端部から突出する部分)は、段剥ぎされており、先端側から順にフォーマ111と超電導導体層112が露出されている。
(Cable core)
The shield layer 114 and the protective layer 115 (see FIG. 4) of the cable core 110 protruding from the end of the heat insulating tube 120 are cut off and removed near the heat insulating tube 120. At the end of the cable core 110 protruding from the end of the heat insulating tube 120, the electric insulating layer 113 is generally exposed in a region ahead of the opening of the heat insulating tube 120. Further, the tip of the cable core 110 (the portion projecting from the room temperature side end of the bushing 4) is stripped off, and the former 111 and the superconducting conductor layer 112 are exposed in order from the tip.

露出された超電導導体層112と導体引出部2とは、ハンダやロー材などの適宜な接合材で接合され、両者が電気的に接続されている。本例の導体引出部2は、ケーブル側端部(後述する超電導側接続部21、図2参照)にケーブルコア110の先端部が挿入される挿入部212を有している。この挿入部212にケーブルコア110の先端部が挿入されて、上述の接合材によって超電導導体層112が挿入部212に接続されている。更に、本例では、フォーマ111と挿入部212とが圧縮接続されており、ケーブルコア110と導体引出部2との接続強度が高められている。   The exposed superconducting conductor layer 112 and conductor lead-out portion 2 are joined by a suitable joining material such as solder or brazing material, and both are electrically connected. The conductor lead-out portion 2 of the present example has an insertion portion 212 into which a distal end portion of the cable core 110 is inserted at a cable-side end portion (a superconducting-side connecting portion 21 described later; see FIG. 2). The distal end of the cable core 110 is inserted into the insertion portion 212, and the superconducting conductor layer 112 is connected to the insertion portion 212 by the above-described bonding material. Furthermore, in this example, the former 111 and the insertion part 212 are compression-connected, and the connection strength between the cable core 110 and the conductor lead-out part 2 is increased.

一方、断熱管120の端部から出されたケーブルコア110において、断熱管120の端部近傍であって遮蔽層及び保護層が除去されて電気絶縁層113が露出した領域には、その外周に補強絶縁層8が設けられている。補強絶縁層8は、上述の絶縁紙をケーブルコア110(電気絶縁層113)の外周にスパイラル巻きすることで形成されている。補強絶縁層8は、その長手方向の中間部から両端部に向かって先細りした形状、即ち、常温側及びケーブル側に向かって先細りした形状である。各傾斜部分は、ストレスコーンとして機能する。ケーブルコア110の遮蔽層から補強絶縁層8におけるケーブル側のストレスコーン部分に亘って遮蔽接続部80が設けられている。遮蔽接続部80は、銅などの常電導材料からなる線材を巻回して形成されている。   On the other hand, in the cable core 110 protruding from the end of the heat insulating tube 120, a region near the end of the heat insulating tube 120 where the shielding layer and the protective layer are removed and the electric insulating layer 113 is exposed is provided on the outer periphery thereof. A reinforcing insulating layer 8 is provided. The reinforcing insulating layer 8 is formed by spirally winding the above-described insulating paper around the outer periphery of the cable core 110 (the electric insulating layer 113). The reinforcing insulating layer 8 has a shape that tapers from an intermediate portion in the longitudinal direction toward both ends, that is, a shape that tapers toward the room temperature side and the cable side. Each inclined portion functions as a stress cone. The shield connection portion 80 is provided from the shield layer of the cable core 110 to the stress cone portion on the cable side in the reinforcing insulating layer 8. The shield connection part 80 is formed by winding a wire made of a normal conductive material such as copper.

(ブッシング)
ブッシング4は、断熱管120の端部から出されたケーブルコア110の一部、具体的には、ケーブルコア110の先端部と補強絶縁層8が設けられた部分との間の中間部分が挿通される。以下、図2を参照してブッシング4を詳細に説明する。ブッシング4は、ケーブルコア110が挿通される筒状の絶縁部41と、絶縁部41の外周に形成された固定部42とを有する。ブッシング4(絶縁部41)の内側には、内側真空断熱管5を構成する内管51及び外管52が設けられている。
(Bushing)
The bushing 4 penetrates a part of the cable core 110 protruding from the end of the heat insulating pipe 120, specifically, an intermediate part between the end of the cable core 110 and the part where the reinforcing insulating layer 8 is provided. Is done. Hereinafter, the bushing 4 will be described in detail with reference to FIG. The bushing 4 has a cylindrical insulating part 41 through which the cable core 110 is inserted, and a fixing part 42 formed on the outer periphery of the insulating part 41. Inside the bushing 4 (insulating portion 41), an inner tube 51 and an outer tube 52 constituting the inner vacuum heat insulating tube 5 are provided.

(絶縁部)
絶縁部41は、ケーブルコア110と外部との間の電気的絶縁を行うと共に、電界緩和を行う部材である。本例の絶縁部41は、冷媒温度でも問題なく使用可能な絶縁材、例えば、エポキシ樹脂などの樹脂成分とガラス繊維などの強化成分とを含む繊維強化樹脂(FRP)などで形成されている。碍管7内に収納される絶縁部41の常温側領域は、その外径が常温側端部に向かって先細りした形状であり、この傾斜部分がストレスコーンとして機能する。絶縁部41内に複数の金属箔(図示せず)を径方向に間隔をあけて同心状に配置することで、電界を調整できる。絶縁部41のケーブル側領域は、その外周面が一様な筒状面であるが、その内周面がケーブル側端部に向かうに従って径方向外方に傾斜しており、この傾斜面によって、補強絶縁層8の常温側のストレスコーン部分との間に適宜な間隔が確保されている。
(Insulation part)
The insulating part 41 is a member that performs electrical insulation between the cable core 110 and the outside and also alleviates an electric field. The insulating portion 41 of this example is formed of an insulating material that can be used without any problem even at the temperature of the refrigerant, for example, a fiber reinforced resin (FRP) containing a resin component such as an epoxy resin and a reinforcing component such as a glass fiber. The normal-temperature-side region of the insulating portion 41 housed in the insulator tube 7 has a shape whose outer diameter tapers toward a normal-temperature-side end, and the inclined portion functions as a stress cone. The electric field can be adjusted by arranging a plurality of metal foils (not shown) concentrically at intervals in the radial direction in the insulating portion 41. The cable-side region of the insulating portion 41 has a uniform cylindrical surface on its outer peripheral surface, but its inner peripheral surface is inclined radially outward toward the cable-side end. An appropriate space is secured between the reinforcing insulating layer 8 and the stress cone portion on the normal temperature side.

(固定部)
固定部42は、絶縁部41の長手方向の中間部(ストレスコーン部分を除く部分)に設けられ、ブッシング4を碍管7に固定する部材である。本例では、絶縁部41の常温側領域のうち、ストレスコーン部分よりケーブル側の部分の外周に固定部42が接合されている。固定部42には、径方向外方に延びるフランジ部を有する。このフランジ部をボルトなどによって碍管7(下部金具71)に取り付けることで、ブッシング4が碍管7に固定される。固定部42は、適宜な金属や樹脂などで形成されている。
(Fixed part)
The fixing portion 42 is a member provided at an intermediate portion (excluding the stress cone portion) of the insulating portion 41 in the longitudinal direction, and is a member for fixing the bushing 4 to the insulator tube 7. In this example, the fixing part 42 is joined to the outer periphery of the part on the cable side from the stress cone part in the normal temperature side region of the insulating part 41. The fixing portion 42 has a flange portion extending radially outward. The bushing 4 is fixed to the insulator tube 7 by attaching the flange portion to the insulator tube 7 (lower metal fitting 71) with a bolt or the like. The fixing portion 42 is formed of an appropriate metal, resin, or the like.

(内側真空断熱管)
内側真空断熱管5は、図2に示すように、碍管7内に挿通され、ケーブルコア110の先端部を収納するようにブッシング4(絶縁部41)の内側に配置されている。本例の内側真空断熱管5は、ブッシング4の内周とケーブルコア110の外周との間から碍管7内を経て常温側に延びるように設けられており、超電導導体層112を冷却する冷媒130を断熱保持する。本例では、内側真空断熱管5は、内管51と外管52とを備え、内管51と外管52との間の空間が真空引きされて、この空間に真空層が形成されている。内管51と外管52との間には、スーパーインシュレーション(商品名)などの断熱材(図示せず)が配置されている。内管51及び外管52の構成材料は、ステンレス鋼などの金属が挙げられる。
(Inner vacuum insulation tube)
As shown in FIG. 2, the inner vacuum heat insulating tube 5 is inserted into the insulator tube 7, and is disposed inside the bushing 4 (insulating portion 41) so as to house the distal end of the cable core 110. The inner vacuum heat insulating tube 5 of this example is provided so as to extend from the inner periphery of the bushing 4 and the outer periphery of the cable core 110 to the room temperature side through the insulator tube 7, and a refrigerant 130 for cooling the superconducting conductor layer 112. Keep insulated. In this example, the inner vacuum heat insulating pipe 5 includes an inner pipe 51 and an outer pipe 52, and a space between the inner pipe 51 and the outer pipe 52 is evacuated, and a vacuum layer is formed in this space. . A heat insulating material (not shown) such as super insulation (trade name) is arranged between the inner pipe 51 and the outer pipe 52. The constituent material of the inner tube 51 and the outer tube 52 includes a metal such as stainless steel.

内管51は、その内側にケーブルコア110の先端部を収納すると共に、超電導導体層112を冷却する冷媒130が充填されて冷媒流路に利用される。外管52は、その外周面にブッシング4の絶縁部41が一体に設けられている。本例の内管51と外管52とは、常温側及びケーブル側の両端で連結されて封止されている。常温側の一端側には、内管51と外管52との間の空間に連通する真空ポート50pが設けられている。本例では、真空ポート50pが後述する非真空断熱層3(断熱材31)の外へ引き出されている。   The inner tube 51 houses the distal end portion of the cable core 110 inside, and is filled with a refrigerant 130 for cooling the superconducting conductor layer 112 and is used for a refrigerant flow path. The outer tube 52 is provided integrally with the insulating portion 41 of the bushing 4 on its outer peripheral surface. The inner pipe 51 and the outer pipe 52 of this example are connected and sealed at both ends on the room temperature side and the cable side. A vacuum port 50p communicating with a space between the inner pipe 51 and the outer pipe 52 is provided at one end on the normal temperature side. In this example, the vacuum port 50p is drawn out of a non-vacuum heat insulating layer 3 (heat insulating material 31) described later.

本例では、内側真空断熱管5の常温側の一端が碍管7(上部金具72)から突出している。また、内側真空断熱管5のケーブル側は、碍管7(下部金具71)から突出し、後述するケーブル側断熱容器6の常温側と互いに一部が重なり合うように設けられている。内側真空断熱管5の内管51の内部空間とケーブル側断熱容器6の冷媒槽61の内部空間とは互いに連通しており、内管51と冷媒槽61との間で冷媒130を流通させることが可能である。   In this example, one end of the inner vacuum heat insulating pipe 5 on the normal temperature side protrudes from the insulator pipe 7 (upper fitting 72). The cable side of the inner vacuum heat insulating pipe 5 protrudes from the insulator pipe 7 (the lower metal fitting 71), and is provided so as to partially overlap the room temperature side of the cable side heat insulating container 6 described later. The inner space of the inner tube 51 of the inner vacuum heat insulating tube 5 and the inner space of the refrigerant tank 61 of the cable side heat insulating container 6 communicate with each other, and the refrigerant 130 is allowed to flow between the inner tube 51 and the refrigerant tank 61. Is possible.

(段差部)
本例の内側真空断熱管5の常温側端部には、局所的に外径が大きくなる段差部55を有する。具体的には、外管52の常温側端部にフランジ部52fが設けられ、フランジ部52fよって段差部55が形成されており、段差部55より常温側の部分が太径になっている。ここでは、段差部55より常温側の太径部分も段差部55に含む。本例では、段差部55の上記太径部分にベローズ管52bが挿入されており、内管51の常温側端部にもベローズ管51bが挿入されている。内側真空断熱管5(内管51及び外管52)に、ベローズ管51b、52bが設けられていることで、ベローズ管51b、52bにより冷却時の熱収縮を吸収できる。段差部55の外周面には、径方向外方に延びるフランジ部55fが取り付けられている。このフランジ部55fをボルトなどによって碍管7(上部金具72)に取り付けることで、内側真空断熱管5の常温側端部が碍管7に固定される。
(Step)
At the room temperature side end of the inner vacuum heat insulating tube 5 of this example, there is a stepped portion 55 whose outer diameter is locally increased. Specifically, a flange portion 52f is provided at the room temperature end of the outer tube 52, and a step portion 55 is formed by the flange portion 52f. A portion on the room temperature side of the step portion 55 has a large diameter. Here, the large-diameter portion on the normal temperature side of the step portion 55 is also included in the step portion 55. In this example, the bellows tube 52b is inserted into the large diameter portion of the step portion 55, and the bellows tube 51b is also inserted into the room temperature side end of the inner tube 51. Since the bellows pipes 51b and 52b are provided in the inner vacuum heat insulating pipe 5 (the inner pipe 51 and the outer pipe 52), the bellows pipes 51b and 52b can absorb heat shrinkage during cooling. A flange portion 55f extending radially outward is attached to the outer peripheral surface of the step portion 55. By attaching the flange portion 55f to the insulator tube 7 (upper fitting 72) with bolts or the like, the room temperature side end of the inner vacuum heat insulating tube 5 is fixed to the insulator tube 7.

内管51及び外管52の常温側端部を除く主部(この例では、ベローズ管51b、52bよりケーブル側の部分)は、ストレート管で構成されている。内管51の上記主部がストレート管であれば、冷媒の圧力損失を小さくできる。一方、外管52の上記主部がストレート管であれば、外管52の外周面に絶縁部41を密着するように形成し易い。   The main part of the inner pipe 51 and the outer pipe 52 except for the normal temperature side end (in this example, the part closer to the cable than the bellows pipes 51b and 52b) is formed of a straight pipe. If the main portion of the inner pipe 51 is a straight pipe, the pressure loss of the refrigerant can be reduced. On the other hand, if the main portion of the outer tube 52 is a straight tube, it is easy to form the insulating portion 41 in close contact with the outer peripheral surface of the outer tube 52.

(ケーブル側断熱容器)
ケーブル側断熱容器6は、図1に示すように、断熱管120の開口部から碍管7の下部金具71に亘って設けられ、断熱管120の端部から出されたケーブルコア110の一部及びブッシング4のケーブル側領域を収納する。本例のケーブル側断熱容器6の常温側は碍管7の下部金具71に接続され、ケーブル側断熱容器6のケーブル側は断熱管120の端部に接続されている。本例では、ケーブル側断熱容器6は、冷媒槽61とその外側を覆う真空槽62とを備え、両槽61、62の間の空間が真空引きされて真空層が形成されており、超電導導体層112を冷却する冷媒130を断熱保持する。両槽61、62の間には、スーパーインシュレーション(商品名)などの断熱材(図示せず)が配置されている。冷媒槽61及び真空槽62の構成材料は、ステンレス鋼などの金属が挙げられる。
(Cable side insulation container)
As shown in FIG. 1, the cable-side heat-insulating container 6 is provided from the opening of the heat-insulating pipe 120 to the lower metal fitting 71 of the heat-insulating pipe 7, and a part of the cable core 110 protruding from the end of the heat-insulating pipe 120. The cable side area of the bushing 4 is stored. The normal temperature side of the cable side heat insulating container 6 of this example is connected to the lower metal fitting 71 of the insulator tube 7, and the cable side of the cable side heat insulating container 6 is connected to the end of the heat insulating tube 120. In this example, the cable-side heat-insulating container 6 includes a refrigerant tank 61 and a vacuum tank 62 covering the outside thereof, and the space between the two tanks 61 and 62 is evacuated to form a vacuum layer. The refrigerant 130 for cooling the layer 112 is kept insulated. A heat insulating material (not shown) such as super insulation (trade name) is disposed between the two tanks 61 and 62. The constituent materials of the refrigerant tank 61 and the vacuum tank 62 include metals such as stainless steel.

冷媒槽61は、その内側にケーブルコア110の一部及びブッシング4のケーブル側領域を収納すると共に、超電導導体層112を冷却する冷媒130が充填されて冷媒流路に利用される。真空槽62には、冷媒槽61と真空槽62との間の空間に連通する真空ポート60pが設けられている。   The refrigerant tank 61 accommodates a part of the cable core 110 and the cable-side region of the bushing 4 inside, and is filled with a refrigerant 130 for cooling the superconducting conductor layer 112 and is used for a refrigerant flow path. The vacuum chamber 62 is provided with a vacuum port 60p communicating with a space between the refrigerant chamber 61 and the vacuum chamber 62.

本例では、ケーブル側断熱容器6の冷媒槽61の内部空間と断熱管120の内管121の内部空間とは互いに連通しており、冷媒槽61と内管121との間で冷媒130を流通させることが可能である。ケーブル側断熱容器6には、冷媒槽61に冷媒130を導入する冷媒導入管63及び冷媒槽61から冷媒を排出する冷媒排出管64が設けられている。冷媒導入管63を介して冷媒槽61内に導入された冷媒130は、冷媒槽61から内側真空断熱管5の内管51内を通ってケーブルコア110の先端側に向かって流れ、後述する導体引出部2(超電導側接続部21、図2参照)に形成された貫通孔21cを通ってフォーマ111内に流入する。フォーマ111内に流入した冷媒130は、超電導ケーブル100の一端側から他端側に向かって流通し、超電導ケーブル100の図示しない他端側でフォーマ111内から断熱管120の内管121内(内管121とケーブルコア110との間の空間)に導入される。断熱管120の内管121内に導入された冷媒130は、超電導ケーブル100の他端側から一端側に向かって流通し、内管121から冷媒槽61内に流出して、冷媒槽61内から冷媒排出管64を介して排出される。本例の冷媒槽61の内部は、冷媒導入管63につながる空間と冷媒排出管64につながる空間とが仕切り部65によって仕切られており、冷媒導入管63から導入された冷媒130が直ちに冷媒排出管64から排出されることを防止している。   In this example, the internal space of the refrigerant tank 61 of the cable-side heat insulating container 6 and the internal space of the inner pipe 121 of the heat insulating pipe 120 communicate with each other, and the refrigerant 130 flows between the refrigerant tank 61 and the inner pipe 121. It is possible to do. The cable side heat insulating container 6 is provided with a refrigerant introduction pipe 63 for introducing the refrigerant 130 into the refrigerant tank 61 and a refrigerant discharge pipe 64 for discharging the refrigerant from the refrigerant tank 61. The refrigerant 130 introduced into the refrigerant tank 61 via the refrigerant introduction pipe 63 flows from the refrigerant tank 61 through the inner pipe 51 of the inner vacuum heat insulating pipe 5 toward the distal end side of the cable core 110, and a conductor described later. It flows into the former 111 through the through-hole 21c formed in the extraction part 2 (superconducting side connection part 21, see FIG. 2). The refrigerant 130 that has flowed into the former 111 flows from one end of the superconducting cable 100 toward the other end thereof, and from the inside of the former 111 to the inner tube 121 of the heat insulating tube 120 at the other end (not shown) of the superconducting cable 100. (A space between the pipe 121 and the cable core 110). The refrigerant 130 introduced into the inner pipe 121 of the heat insulating pipe 120 flows from the other end of the superconducting cable 100 toward one end, flows out of the inner pipe 121 into the refrigerant tank 61, and flows out of the refrigerant tank 61. The refrigerant is discharged through the refrigerant discharge pipe 64. In the inside of the refrigerant tank 61 of this example, a space connected to the refrigerant introduction pipe 63 and a space connected to the refrigerant discharge pipe 64 are partitioned by a partition portion 65, and the refrigerant 130 introduced from the refrigerant introduction pipe 63 immediately discharges the refrigerant. It is prevented from being discharged from the pipe 64.

(碍管)
碍管7は、図2に示すように、ブッシング4(絶縁部41)における常温側領域を収納して、電界制御に利用される部材である。本例の碍管7は、複数の碍子7iが形成された筒状の本体部70と、本体部70のケーブル側端部に設けられる下部金具71と、本体部70の常温側端部に設けられる上部金具72とを備える。
(Insulator tube)
As shown in FIG. 2, the insulator tube 7 is a member that accommodates the normal temperature side region of the bushing 4 (insulating portion 41) and is used for electric field control. The insulator tube 7 of this embodiment is provided at a cylindrical main body portion 70 on which a plurality of insulators 7i are formed, a lower metal fitting 71 provided at an end portion of the main body portion 70 on a cable side, and an ordinary temperature end portion of the main body portion 70. And an upper fitting 72.

(本体部)
本体部70は、複数の碍子7iにより形成される電界制御面7Aを有する。本例では、碍子7iは磁器製碍子である。碍子7iの数は、上部金具72と下部金具71との間の絶縁距離(沿面距離)を確保できるように適宜選択するとよい。本体部70と下部金具71及び上部金具72とは、後述する下筒部71b及び上筒部72uを介して接合されている。具体的には、本例の場合、本体部70のケーブル側及び常温側の各端部の外周面に下筒部71b及び上筒部72uがそれぞれセメント付けされており、下筒部71b及び上筒部72uに下部金具71及び上部金具72がそれぞれボルトで締結されている。
(Main unit)
The main body 70 has an electric field control surface 7A formed by a plurality of insulators 7i. In this example, the insulator 7i is a porcelain insulator. The number of the insulators 7i may be appropriately selected so as to secure an insulation distance (creeping distance) between the upper metal fitting 72 and the lower metal fitting 71. The main body 70 and the lower metal fitting 71 and the upper metal fitting 72 are joined via a lower cylindrical part 71b and an upper cylindrical part 72u, which will be described later. Specifically, in the case of the present example, the lower cylindrical portion 71b and the upper cylindrical portion 72u are cemented to the outer peripheral surfaces of the respective ends of the main body 70 on the cable side and the normal temperature side, respectively. The lower metal fitting 71 and the upper metal fitting 72 are respectively fastened to the cylindrical portion 72u by bolts.

(下部金具)
下部金具71は、ブッシング4が挿通される環状の部材であり、ブッシング4の固定部42が取り付けられる。これにより、ブッシング4が下部金具71に挿通された状態で固定される。この下部金具71には、本体部70のケーブル側の端部を覆うように突出する下筒部71bを有する。下筒部71bは、下部金具71に対してボルトなどによって接合され、一体化されている。
(Lower fitting)
The lower metal fitting 71 is an annular member through which the bushing 4 is inserted, and to which the fixing portion 42 of the bushing 4 is attached. Thereby, the bushing 4 is fixed in a state where the bushing 4 is inserted into the lower metal fitting 71. The lower metal fitting 71 has a lower cylindrical portion 71b that protrudes so as to cover the end of the main body 70 on the cable side. The lower cylindrical portion 71b is joined to the lower metal fitting 71 by a bolt or the like and is integrated.

(上部金具)
上部金具72は、内側真空断熱管5の常温側端部が挿通される環状の部材であり、上述のフランジ部55fが取り付けられることによって、内側真空断熱管5の常温側端部が挿通固定される。この上部金具72には、本体部70の常温側の端部を覆うように突出する上筒部72uを有する。上筒部72uは、上部金具72に対してボルトなどによって接合され、一体化されている。
(Upper bracket)
The upper metal fitting 72 is an annular member through which the normal temperature end of the inner vacuum heat insulating pipe 5 is inserted, and the normal temperature end of the inner vacuum heat insulating pipe 5 is inserted and fixed by attaching the above-mentioned flange portion 55f. You. The upper metal part 72 has an upper cylindrical part 72u that protrudes so as to cover the normal temperature side end of the main body part 70. The upper cylindrical portion 72u is joined to the upper metal fitting 72 by a bolt or the like, and is integrated.

下部金具71(下筒部71bを含む)及び上部金具72(上筒部72uを含む)の構成材料は、ステンレス鋼などの金属が挙げられる。下部金具71は接地され、下筒部71bを含めて接地電位にある。そのため、下部金具71に取り付けられる固定部42が接合された絶縁部41の外周側は低電位になる。一方、内側真空断熱管5は、ケーブルコア110(超電導導体層112)に印加される高電圧によって高電位に帯電し、内側真空断熱管5の常温側端部が固定される上部金具72は上筒部72uを含めて高電位になる。また、絶縁部41の内周側も高電位になる。したがって、絶縁部41の常温側領域(上述のストレスコーンとして傾斜部分)では、先端側から傾斜面に沿って高電位から低電位に順次電位が変化する。   The constituent materials of the lower metal fitting 71 (including the lower cylindrical part 71b) and the upper metal fitting 72 (including the upper cylindrical part 72u) include metals such as stainless steel. The lower metal fitting 71 is grounded and is at the ground potential including the lower cylindrical portion 71b. Therefore, the outer peripheral side of the insulating portion 41 to which the fixing portion 42 attached to the lower metal fitting 71 is joined has a low potential. On the other hand, the inner vacuum insulated pipe 5 is charged to a high potential by a high voltage applied to the cable core 110 (superconducting conductor layer 112), and the upper metal fitting 72 to which the normal temperature end of the inner vacuum insulated pipe 5 is fixed is located on the upper side. The potential becomes high including the cylindrical portion 72u. Further, the inner peripheral side of the insulating portion 41 also has a high potential. Therefore, in the normal temperature side region (the inclined portion as the above-mentioned stress cone) of the insulating portion 41, the potential sequentially changes from the high potential to the low potential along the inclined surface from the tip side.

(電界制御面)
上述の電界制御面7Aとは、本体部70のうち、複数の碍子7iが連なった碍子連を含み、本体部70の両端部を覆う上筒部72uと下筒部72dで覆われていない範囲(上筒部72uの下端と下筒部71dの上端との間の区間)を指す。つまり、本体部70の外周面において、上筒部72uと下筒部72dとで挟まれる高電位側の下端と接地電位側の上端との間に電界制御面7Aが存在する。
(Electric field control surface)
The above-described electric field control surface 7A includes a portion of the main body 70 that includes an insulator series in which a plurality of insulators 7i are connected, and is not covered by the upper cylindrical portion 72u and the lower cylindrical portion 72d that cover both ends of the main body 70. (A section between the lower end of the upper tubular portion 72u and the upper end of the lower tubular portion 71d). That is, on the outer peripheral surface of the main body 70, the electric field control surface 7A exists between the lower end on the high potential side and the upper end on the ground potential side, which are sandwiched between the upper tubular portion 72u and the lower tubular portion 72d.

本実施形態では、電界制御面7Aに対して、ブッシング4(絶縁部41)における常温側領域が径方向に重複して配置される。更に、内側真空断熱管5の段差部55が電界制御面7Aよりも常温側に位置する。図3は、ブッシング4の常温側領域における等電位線の分布を表している。等電位線の分布は、公知のFEM(Finite Element Method)電界解析ソフトを用いて求めた。図3に示すように、段差部55が、電界制御面7Aよりも常温側に位置することで、絶縁部41の常温側領域に発生する等電位線が段差部55に交差することを抑制できる。そして、絶縁部41に発生する等電位線が主として碍管7の電界制御面7Aを通り、電界制御面7Aの全長に亘って等電位線の分布が均一化されている。   In the present embodiment, the room-temperature side region of the bushing 4 (the insulating portion 41) is radially overlapped with the electric field control surface 7A. Further, the step portion 55 of the inner vacuum heat insulating pipe 5 is located on the room temperature side with respect to the electric field control surface 7A. FIG. 3 shows the distribution of equipotential lines in the normal temperature side region of the bushing 4. The distribution of the equipotential lines was determined using known FEM (Finite Element Method) electric field analysis software. As shown in FIG. 3, since the step portion 55 is located on the room temperature side with respect to the electric field control surface 7 </ b> A, it is possible to suppress the equipotential lines generated in the room temperature region of the insulating portion 41 from intersecting with the step portion 55. . The equipotential lines generated in the insulating portion 41 pass mainly through the electric field control surface 7A of the insulator tube 7, and the distribution of the equipotential lines is uniform over the entire length of the electric field control surface 7A.

(導体引出部)
導体引出部2は、図1、図2に示すように、上述のケーブルコア110の先端部において、露出された超電導導体層112が電気的に接続される部材であり、銅やアルミニウムなどの常電導材料から構成されている。本例では、超電導導体層112と導体引出部2との接続箇所が碍管7内に配置され、内側真空断熱管5に収納されている。
(Conductor drawer)
As shown in FIGS. 1 and 2, the conductor lead-out portion 2 is a member to which the exposed superconducting conductor layer 112 is electrically connected at the end of the above-described cable core 110, and is usually made of copper or aluminum. It is made of a conductive material. In this example, the connection between the superconducting conductor layer 112 and the conductor lead-out portion 2 is arranged in the insulator tube 7 and housed in the inner vacuum heat insulating tube 5.

本例の導体引出部2は、図2に示すように、筒状部20と、超電導側接続部21と、常電導側接続部22とを備え、これら部材を接合して連結したものである。超電導側接続部21は筒状部20のケーブル側の端部に接合され、常電導側接続部22は筒状部20の常温側の端部に接合されている。筒状部20と超電導側接続部21及び常電導側接続部22との接合は、ハンダやボルトなどを用いることができる。   As shown in FIG. 2, the conductor lead-out portion 2 of the present embodiment includes a tubular portion 20, a superconducting-side connecting portion 21, and a normal-conducting-side connecting portion 22, and these members are joined and connected. . The superconducting-side connecting portion 21 is joined to an end of the tubular portion 20 on the cable side, and the normal-conducting-side connecting portion 22 is joined to an end of the tubular portion 20 on the normal temperature side. For joining the cylindrical portion 20 to the superconducting-side connecting portion 21 and the normal-conducting-side connecting portion 22, solder, bolts, or the like can be used.

(筒状部)
筒状部20は、超電導側接続部21と常電導側接続部22との間に設けられ、内部が中空になっている。筒状部20が設けられていることで、常電導側接続部22から超電導側接続部21への熱侵入を抑制でき、導体引出部2から超電導導体層112への熱侵入を低減できる。この理由は、交流送電においては表皮効果によって導体の表面に電流が集中するため、電流が流れる導体の有効断面積を確保できつつ、棒状である場合に比べて実際の断面積が小さくなるので、熱が伝わり難くなるからである。筒状部20の断面形状は、特に問わない。本例の筒状部20は、外径及び内径が軸方向に一様な断面円形の円筒状の部材である。筒状部20の外径及び内径は、超電導導体層112に流す電流量に応じて十分な導体断面積を確保できるように適宜設定するとよい。
(Cylindrical part)
The tubular portion 20 is provided between the superconducting-side connecting portion 21 and the normal-conducting-side connecting portion 22 and has a hollow interior. The provision of the tubular portion 20 can suppress heat intrusion from the normal-conducting-side connecting portion 22 to the superconducting-side connecting portion 21, and reduce heat intrusion from the conductor lead-out portion 2 to the superconducting conductor layer 112. The reason for this is that in AC power transmission, the current concentrates on the surface of the conductor due to the skin effect, so the effective cross-sectional area of the conductor through which the current flows can be secured, while the actual cross-sectional area is smaller than in the case of a rod shape. This is because heat becomes difficult to transmit. The cross-sectional shape of the tubular portion 20 is not particularly limited. The cylindrical portion 20 of the present example is a cylindrical member having a circular cross section whose outer diameter and inner diameter are uniform in the axial direction. The outer diameter and the inner diameter of the cylindrical portion 20 may be appropriately set so as to ensure a sufficient conductor cross-sectional area according to the amount of current flowing through the superconducting conductor layer 112.

筒状部20の周面には、筒状部20の内部空間に連通する貫通孔20hが形成されている。この貫通孔20hを通して後述する非真空断熱層3(断熱材31)を構成する樹脂を筒状部20内に充填することが可能である。貫通孔20hは、樹脂の充填性を考慮して複数設けることが好ましく、特に、筒状部20の周方向に間隔をあけて複数設けることが好ましい。また、この貫通孔20hは、導体引出部2(超電導側接続部21)に超電導導体層112をハンダで接続する際、ハンダの熱で膨張した筒状部20内の空気を外部に逃がす呼吸孔としても機能する。   A through hole 20 h communicating with the internal space of the cylindrical portion 20 is formed on the peripheral surface of the cylindrical portion 20. It is possible to fill the cylindrical portion 20 with a resin constituting a non-vacuum heat insulating layer 3 (heat insulating material 31) described later through the through hole 20h. It is preferable to provide a plurality of through-holes 20h in consideration of the filling property of the resin. The through-hole 20h is a breathing hole that allows air in the cylindrical portion 20 expanded by the heat of the solder to escape to the outside when the superconducting conductor layer 112 is connected to the conductor lead-out portion 2 (superconducting-side connecting portion 21) by soldering. Also works as

(超電導側接続部)
超電導側接続部21は、超電導導体層112が接続される部分であり、筒状部20に接合される有底筒状の接合部211と、ケーブルコア110の先端部(露出されたフォーマ111及び超電導導体層112)が挿入される挿入部212とを有する。接合部211の内径は、筒状部20の外径よりも若干(0.5mm〜2mm程度)大きく、接合部211を筒状部20のケーブル側の端部に嵌め込むことで、筒状部20のケーブル側の開口を封止できる。
(Superconducting side connection)
The superconducting-side connecting portion 21 is a portion to which the superconducting conductor layer 112 is connected, and has a bottomed tubular joining portion 211 joined to the tubular portion 20, and a distal end portion of the cable core 110 (the exposed former 111 and the exposed former 111). (A superconducting conductor layer 112). The inner diameter of the joint portion 211 is slightly larger (about 0.5 mm to 2 mm) than the outer diameter of the tubular portion 20, and the joint portion 211 is fitted to the end of the tubular portion 20 on the cable side, so that the tubular portion is formed. 20 can be sealed on the cable side.

本例の挿入部212は、内側真空断熱管5の常温側の一端側から内管51内に挿入され、内側真空断熱管5に収納されている。挿入部212の底側の周面には、挿入部212の内部空間に連通する貫通孔21cが形成されている。挿入部212に挿入されたフォーマ111の内部空間は、貫通孔21cを介して内側真空断熱管5の内管51の内部空間に連通しており、フォーマ111内に冷媒130を流通させることが可能である。つまり、貫通孔21cは冷媒流路の一部として機能する。   The insertion portion 212 of this example is inserted into the inner tube 51 from one end on the room temperature side of the inner vacuum heat insulating tube 5 and is housed in the inner vacuum heat insulating tube 5. A through hole 21 c communicating with the internal space of the insertion section 212 is formed on the peripheral surface on the bottom side of the insertion section 212. The internal space of the former 111 inserted into the insertion portion 212 communicates with the internal space of the inner tube 51 of the inner vacuum heat insulating tube 5 through the through hole 21c, and the refrigerant 130 can flow through the former 111. It is. That is, the through hole 21c functions as a part of the coolant flow path.

また、本例では、挿入部212の周面に、挿入された超電導導体層112に対応する位置に内外に貫通する注入孔が形成されている。この注入孔からハンダやロー材などの接合材を注入することで、挿入部212と超電導導体層112とを接続することが可能である。   In this example, an injection hole penetrating in and out is formed on a peripheral surface of the insertion portion 212 at a position corresponding to the inserted superconducting conductor layer 112. By inserting a bonding material such as solder or brazing material from the injection hole, it is possible to connect the insertion portion 212 and the superconducting conductor layer 112.

(常電導側接続部)
常電導側接続部22は、端末構造1の上端から突出して常電導電力機器に接続される部分であり、筒状部20に接合される有底筒状の接合部221と、端子部222とを有する。接合部221の内径は、筒状部20の外径よりも若干(0.5mm〜2mm程度)大きく、接合部221を筒状部20の常温側の端部に嵌め込むことで、筒状部20の常温側の開口を封止できる。
(Normal conduction connection)
The normal-conducting-side connecting portion 22 is a portion that protrudes from the upper end of the terminal structure 1 and is connected to the normal-conducting power device, and has a bottomed tubular joining portion 221 joined to the tubular portion 20, a terminal portion 222, Having. The inner diameter of the joining portion 221 is slightly larger (about 0.5 mm to 2 mm) than the outer diameter of the tubular portion 20, and by fitting the joining portion 221 to the end of the tubular portion 20 on the normal temperature side, the tubular portion is formed. 20 normal temperature openings can be sealed.

本例の端子部222は、平板状に形成されており、常電導電力機器の導体が接続される。   The terminal portion 222 of the present example is formed in a flat plate shape, and is connected to a conductor of a normal electric power device.

(非真空断熱層)
本例の端末構造1は、図1、図2に示すように、導体引出部2の外周を覆う非真空断熱層3を備える。非真空断熱層3は断熱材31で形成されている。導体引出部2の外周に断熱材31で形成された非真空断熱層3を備えることで、外部からの熱侵入を抑制でき、導体引出部2から超電導導体層112への熱侵入を低減できる。また、非真空断熱層3は、断熱材31で形成された断熱構造であるので、真空層による断熱構造(真空断熱層)に比べて構造が簡単で、施工性に優れると共にコストを低減できる。断熱材31の構成材料としては、樹脂が好ましく、例えば、ポリウレタン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリオレフィン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フェノール樹脂などの樹脂が挙げられ、特にポリウレタン樹脂が好適である。
(Non-vacuum insulation layer)
As shown in FIGS. 1 and 2, the terminal structure 1 of the present example includes a non-vacuum heat-insulating layer 3 that covers the outer periphery of the conductor lead-out portion 2. The non-vacuum heat insulating layer 3 is formed of a heat insulating material 31. By providing the non-vacuum heat-insulating layer 3 formed of the heat insulating material 31 on the outer periphery of the conductor lead-out portion 2, heat penetration from the outside can be suppressed, and heat penetration from the conductor lead-out portion 2 to the superconducting conductor layer 112 can be reduced. Further, since the non-vacuum heat insulating layer 3 is a heat insulating structure formed of the heat insulating material 31, the structure is simpler than that of a heat insulating structure using a vacuum layer (vacuum heat insulating layer). As a constituent material of the heat insulating material 31, a resin is preferable, and examples thereof include a resin such as a polyurethane resin, a polystyrene resin, a polyester resin, a polyolefin resin, a polyethylene resin, a polypropylene resin, and a phenol resin, and a polyurethane resin is particularly preferable.

本例では、導体引出部2の外周を囲うケース30を取り付け、このケース30内に断熱材31として樹脂を充填することで非真空断熱層3が形成されている。本例の場合、ケース30を碍管7(上部金具72)の上側に取り付け、導体引出部2(常電導側接続部22)の端子部222を除く箇所を断熱材31で覆っている。ケース30には、内外に貫通する充填孔30hが形成されており、この充填孔30hからケース30内に断熱材31を構成する樹脂を充填することが可能である。ケース30内に充填される樹脂は、充填時に流動性を有し、充填後に固化する。充填時に流動性を有しているため、ケース30内の隅々まで樹脂を充填することができ、導体引出部2の筒状部20の外周面を断熱材31で隙間なく覆うことができる。筒状部20の外周面に断熱材31が密着することになるため、冷媒130によって冷却された超電導側接続部21からの熱伝導で筒状部20が冷却されることによる筒状部20外周面への結露や着霜を防止できる。また、本例では、筒状部20の貫通孔20hを介して筒状部20の内部にも樹脂が入り込むため、筒状部20内に断熱材31が充填されている。   In this example, a non-vacuum heat insulating layer 3 is formed by attaching a case 30 surrounding the outer periphery of the conductor lead-out portion 2 and filling the case 30 with a resin as a heat insulating material 31. In the case of this example, the case 30 is attached to the upper side of the insulator tube 7 (the upper metal fitting 72), and a portion of the conductor lead-out portion 2 (normal-conduction-side connection portion 22) except for the terminal portion 222 is covered with the heat insulating material 31. The case 30 is formed with a filling hole 30h penetrating inside and outside, and the resin constituting the heat insulating material 31 can be filled into the case 30 from the filling hole 30h. The resin filled in the case 30 has fluidity at the time of filling, and solidifies after filling. Since the resin has fluidity at the time of filling, the resin can be filled to every corner in the case 30, and the outer peripheral surface of the cylindrical portion 20 of the conductor lead-out portion 2 can be covered with the heat insulating material 31 without any gap. Since the heat insulating material 31 comes into close contact with the outer peripheral surface of the cylindrical portion 20, the outer periphery of the cylindrical portion 20 is cooled by the heat conduction from the superconducting-side connecting portion 21 cooled by the refrigerant 130. Dew condensation and frost formation on the surface can be prevented. Further, in this example, since the resin also enters the inside of the tubular portion 20 through the through hole 20h of the tubular portion 20, the heat insulating material 31 is filled in the tubular portion 20.

筒状部20に貫通孔20hを設けずに、筒状部20内を中空状態のままにしてもよいが、本例のように、筒状部20内に断熱材31を充填する構成とした場合、筒状部20内に空気が残存することを抑制できる。そのため、冷媒130によって冷却された超電導側接続部21からの熱伝導で筒状部20が冷却されることによる筒状部20内の空気の液化を抑制できる。筒状部20内を中空状態とする場合、超電導導体層112を超電導状態に冷却する冷媒130の温度でも液化しないガス(例えばヘリウムガス)を筒状部20内に封入してもよい。   The tubular portion 20 may be left hollow without providing the through-hole 20h in the tubular portion 20. However, as in this example, the tubular portion 20 is filled with the heat insulating material 31. In this case, it is possible to suppress the air from remaining in the tubular portion 20. Therefore, liquefaction of air in the cylindrical portion 20 due to cooling of the cylindrical portion 20 by heat conduction from the superconducting side connection portion 21 cooled by the refrigerant 130 can be suppressed. When the inside of the cylindrical portion 20 is made hollow, a gas (for example, helium gas) that does not liquefy even at the temperature of the refrigerant 130 that cools the superconducting conductor layer 112 to the superconducting state may be sealed in the cylindrical portion 20.

また、筒状部20内に断熱材31を充填せずに、筒状部20内に冷媒を流通させる構成としてもよい。例えば、冷媒流通機構として、非真空断熱層3を貫通して筒状部20の内部空間に連通する冷媒導入管及び冷媒排出管を取り付け、冷媒導入管から筒状部20内に冷媒を導入して冷媒排出管から排出するように構成することが挙げられる。これにより、筒状部20を冷媒によって直接冷却することができるので、常電導側接続部22から超電導側接続部21への熱侵入を大幅に抑制でき、導体引出部2の温度を安定化できる。冷媒としては、液体冷媒(例えば液体窒素)、気体冷媒(例えば低温窒素ガス)、液体冷媒と気体冷媒とを含む気液混合冷媒のいずれかを用いることができる。中でも、液体冷媒を含む冷媒は、気体冷媒に比べて熱容量が大きいため、冷却効率が高い。流通させる冷媒の温度は、超電導導体層112を超電導状態に冷却する冷媒130の温度より高くてもよい。   Further, the refrigerant may be circulated in the tubular portion 20 without filling the heat insulating material 31 in the tubular portion 20. For example, as a refrigerant distribution mechanism, a refrigerant introduction pipe and a refrigerant discharge pipe that penetrate through the non-vacuum heat insulating layer 3 and communicate with the internal space of the cylindrical part 20 are attached, and the refrigerant is introduced into the cylindrical part 20 from the refrigerant introduction pipe. To discharge the refrigerant from the refrigerant discharge pipe. Thereby, since the cylindrical portion 20 can be directly cooled by the refrigerant, the heat intrusion from the normal conducting side connecting portion 22 to the superconducting side connecting portion 21 can be largely suppressed, and the temperature of the conductor lead-out portion 2 can be stabilized. . As the refrigerant, any of a liquid refrigerant (for example, liquid nitrogen), a gas refrigerant (for example, low-temperature nitrogen gas), and a gas-liquid mixed refrigerant containing a liquid refrigerant and a gas refrigerant can be used. Above all, a refrigerant containing a liquid refrigerant has a higher heat capacity than a gas refrigerant, and therefore has a higher cooling efficiency. The temperature of the refrigerant to be circulated may be higher than the temperature of the refrigerant 130 that cools the superconducting conductor layer 112 to a superconducting state.

本例では、導体引出部2の外周を非真空断熱層3で覆う構成を例示したが、この非真空断熱層3に代えて、導体引出部2の外周を真空断熱容器で形成された真空断熱層で覆う構成とすることも可能である。   In the present embodiment, the configuration in which the outer periphery of the conductor lead-out portion 2 is covered with the non-vacuum heat insulating layer 3 is exemplified, but instead of the non-vacuum heat-insulating layer 3, the outer periphery of the conductor lead portion 2 is formed by a vacuum heat insulating container formed by a vacuum heat insulating container. It is also possible to adopt a configuration of covering with a layer.

更に、本例の端末構造1は、非真空断熱層3の外周を囲む上部シールド金具9を配置してもよい。   Further, in the terminal structure 1 of the present example, an upper shield fitting 9 surrounding the outer periphery of the non-vacuum heat insulating layer 3 may be arranged.

《端末構造の製造方法》
上述の実施形態1の端末構造1は、例えば、以下の工程を備える製造方法によって構築することができる。
・ケーブルコアの端末処理工程
・導体引出部の接続工程
・ブッシングの取り付け工程
・ケーブル側断熱容器の形成工程
・碍管の形成工程
・真空引き工程
・非真空断熱層の形成工程
<< Terminal structure manufacturing method >>
The terminal structure 1 of the above-described first embodiment can be constructed by, for example, a manufacturing method including the following steps.
・ Terminal treatment process of cable core ・ Connecting process of conductor lead-out part ・ Bushing installation process ・ Cable side heat insulating container forming process ・ Insulator tube forming process ・ Vacuum drawing process ・ Non-vacuum heat insulating layer forming process

(ケーブルコアの端末処理工程)
布設した超電導ケーブル100の一端部において断熱管120の端部からケーブルコア110を引き出して、ケーブルコア110の端部を段剥ぎし、フォーマ111、超電導導体層112、電気絶縁層113などを順に露出させる。この例では、ケーブルコア110における断熱管120の近傍に補強絶縁層8を形成した後、遮蔽接続部80を設ける(図1)。
(Cable core termination process)
At one end of the laid superconducting cable 100, the cable core 110 is pulled out from the end of the heat insulating tube 120, the end of the cable core 110 is stripped, and the former 111, the superconducting conductor layer 112, the electric insulating layer 113, and the like are exposed in order. Let it. In this example, after the reinforcing insulating layer 8 is formed in the vicinity of the heat insulating tube 120 in the cable core 110, the shield connection portion 80 is provided (FIG. 1).

(導体引出部の接続工程)
ケーブルコア110の先端部に導体引出部2を接続する。この例では、超電導側接続部21の挿入部212にケーブルコア110の先端部を挿入し、挿入部212にフォーマ111を圧縮接続すると共に、超電導導体層112をハンダなどの接合材で接続する。
(Connecting process of conductor lead-out part)
The leading conductor 2 is connected to the tip of the cable core 110. In this example, the tip of the cable core 110 is inserted into the insertion portion 212 of the superconducting-side connection portion 21, the former 111 is compression-connected to the insertion portion 212, and the superconducting conductor layer 112 is connected with a bonding material such as solder.

(ブッシングの取り付け工程)
この例では、内側真空断熱管5の外管52の外周面にブッシング4の絶縁部41を予め一体に設け、ブッシング4と内側真空断熱管5とが一体になった部品を工場などで作製しておく。内側真空断熱管5の常温側端部には段差部55を設け、内管51及び外管52にはそれぞれベローズ管51b、52bを挿入しておく。そして、ブッシング4の固定部42に碍管7の下部金具71をボルトなどで取り付けて固定した状態で、ブッシング4が一体化された内側真空断熱管5内にケーブルコア110の先端部を挿通し、ケーブルコア110の所定の位置にブッシング4(絶縁部41)を配置する。また、ケーブルコア110の先端部及び超電導導体層112と導体引出部2(挿入部212)との接続箇所を内側真空断熱管5に収納する。
(Bushing installation process)
In this example, the insulating portion 41 of the bushing 4 is integrally provided on the outer peripheral surface of the outer tube 52 of the inner vacuum heat insulating tube 5 in advance, and a part in which the bushing 4 and the inner vacuum heat insulating tube 5 are integrated is manufactured at a factory or the like. Keep it. A step 55 is provided at the room temperature side end of the inner vacuum heat insulating pipe 5, and bellows pipes 51 b and 52 b are inserted into the inner pipe 51 and the outer pipe 52, respectively. Then, in a state where the lower metal fitting 71 of the porcelain tube 7 is fixed to the fixing portion 42 of the bushing 4 by bolts or the like, the distal end portion of the cable core 110 is inserted into the inner vacuum heat insulating tube 5 integrated with the bushing 4, The bushing 4 (insulating portion 41) is arranged at a predetermined position of the cable core 110. Further, the distal end portion of the cable core 110 and the connection point between the superconducting conductor layer 112 and the conductor lead-out portion 2 (insertion portion 212) are housed in the inner vacuum heat insulating tube 5.

(ケーブル側断熱容器の形成工程)
断熱管120の端部から出されたケーブルコア110の一部及びブッシング4のケーブル側領域を覆うように、冷媒槽61及び真空槽62を形成して、ケーブル側断熱容器6を組み立てる。この例では、断熱管120の内管121と冷媒槽61とを溶接などで接合すると共に、外管122と真空槽62とを溶接などで接合する。そして、ケーブル側断熱容器6の常温側の開口端を塞ぐように、冷媒槽61及び真空槽62の常温側を下部金具71に溶接などで接合する。
(Formation process of the cable side heat insulation container)
The refrigerant tank 61 and the vacuum tank 62 are formed so as to cover a part of the cable core 110 protruding from the end of the heat insulating pipe 120 and the cable side area of the bushing 4, and the cable side heat insulating container 6 is assembled. In this example, the inner tube 121 of the heat insulating tube 120 and the refrigerant tank 61 are joined by welding or the like, and the outer tube 122 and the vacuum tank 62 are joined by welding or the like. Then, the normal temperature side of the refrigerant tank 61 and the vacuum tank 62 is joined to the lower metal fitting 71 by welding or the like so as to close the open end of the cable side heat insulating container 6 on the normal temperature side.

(碍管の形成工程)
ブッシング4の常温側領域を覆うように碍管7を組み立てる。この例では、ブッシング4の常温側領域を収納するように、本体部70を内側真空断熱管5の外側に嵌め込み、本体部70のケーブル側を下部金具71に取り付ける。その後、本体部70の常温側に上部金具72を取り付けると共に、内側真空断熱管5の常温側端部(段差部55のフランジ部55f)を上部金具72にボルトなどで接合して挿通固定する。本例では、本体部70の両端部に下筒部71b及び上筒部72uが予めセメント付けされており、下筒部71b及び上筒部72uにそれぞれ下部金具71及び上部金具72をボルトで締結することによって、本体部70と下部金具71及び上部金具72とを接合する。このとき、ブッシング4(絶縁部41)の常温側領域が本体部70の電界制御面7Aに対して径方向に重複して配置されると共に、内側真空断熱管5の段差部55が電界制御面7Aよりも常温側に位置する。碍管7内への絶縁流体の導入は適宜な時期に行える。
(Process of forming insulator tube)
The porcelain tube 7 is assembled so as to cover the room temperature side region of the bushing 4. In this example, the main body 70 is fitted to the outside of the inner vacuum heat insulating tube 5 so that the room-temperature region of the bushing 4 is housed, and the cable side of the main body 70 is attached to the lower metal fitting 71. After that, the upper metal fitting 72 is attached to the normal temperature side of the main body 70, and the normal temperature side end (the flange 55f of the step portion 55) of the inner vacuum heat insulating tube 5 is joined to the upper metal fitting 72 with a bolt or the like and inserted and fixed. In this example, the lower cylinder 71b and the upper cylinder 72u are cemented to both ends of the main body 70 in advance, and the lower metal 71 and the upper metal 72 are respectively fastened to the lower cylinder 71b and the upper cylinder 72u by bolts. By doing so, the main body 70 is joined to the lower metal fitting 71 and the upper metal fitting 72. At this time, the normal temperature side region of the bushing 4 (insulating portion 41) is radially overlapped with the electric field control surface 7A of the main body portion 70, and the step portion 55 of the inner vacuum heat insulating tube 5 is positioned at the electric field control surface. It is located on the room temperature side of 7A. The introduction of the insulating fluid into the insulator tube 7 can be performed at an appropriate time.

(真空引き工程)
真空ポート50p、60p、100pを利用して、内側真空断熱管5、ケーブル側断熱容器6、断熱管120の真空引きを行う。それぞれの真空引きは適宜な時期に行える。本例では、内側真空断熱管5の真空ポート50pは、後工程で形成される非真空断熱層3(断熱材31)から突出して外方へ引き出されているので、非真空断熱層3の形成前だけでなく、端末構造1の構築後も真空引きすることが可能である。また、真空ポート60p、100pも、端末構造1の構築後でも真空引きすることが可能である。
(Evacuation process)
The inner vacuum heat insulating tube 5, the cable side heat insulating container 6, and the heat insulating tube 120 are evacuated using the vacuum ports 50p, 60p, and 100p. Each evacuation can be performed at an appropriate time. In this example, since the vacuum port 50p of the inner vacuum heat insulating tube 5 protrudes from the non-vacuum heat insulating layer 3 (heat insulating material 31) formed in a later step and is drawn out, the formation of the non-vacuum heat insulating layer 3 is performed. It is possible to evacuate not only before but also after the construction of the terminal structure 1. The vacuum ports 60p and 100p can be evacuated even after the terminal structure 1 is constructed.

(非真空断熱層の形成工程)
この例では、碍管7(上部金具72)の上側に箱状のケース30を取り付けて導体引出部2の外周をケース30で囲み、次いで、ケース30の充填孔30hから断熱材31を構成する樹脂を充填する。このとき、ケース30内に充填された樹脂は、導体引出部2の筒状部20に形成された貫通孔20hを通って筒状部20の内部にも充填される。樹脂の充填が終了したら樹脂を固化させて、断熱材31で形成された非真空断熱層3を形成する。
(Process of forming non-vacuum heat insulating layer)
In this example, a box-shaped case 30 is attached to the upper side of the insulator tube 7 (upper bracket 72), the outer periphery of the conductor lead-out portion 2 is surrounded by the case 30, and then the resin forming the heat insulating material 31 from the filling hole 30h of the case 30. Fill. At this time, the resin filled in the case 30 also fills the inside of the tubular portion 20 through the through hole 20h formed in the tubular portion 20 of the conductor lead-out portion 2. When the filling of the resin is completed, the resin is solidified to form the non-vacuum heat insulating layer 3 formed of the heat insulating material 31.

以上の工程により、端末構造1を構築できる。構築後、冷媒130を導入して流通させることにより、超電導導体層112を超電導状態に冷却することで、超電導ケーブル100を送電線路に利用できる。   Through the above steps, the terminal structure 1 can be constructed. After the construction, the superconducting conductor layer 112 is cooled to a superconducting state by introducing and circulating the refrigerant 130, so that the superconducting cable 100 can be used for a transmission line.

〈効果〉
実施形態1の超電導ケーブルの端末構造1は、次の効果を奏する。
内側真空断熱管5の常温側端部に設けられた段差部55が、碍管7の電界制御面7Aよりも常温側に位置することで、ブッシング4(絶縁部41)の常温側領域に発生する等電位線が段差部55に交差することを抑制できる。そのため、絶縁部41に発生する等電位線が主として碍管7の電界制御面7Aを通り、等電位線の分布が均一化されることから、絶縁部41の電界緩和を効果的に図ることができる。また、碍子沿面を有効活用できることから、碍管7(本体部70)の長さを短くできる。したがって、端末構造1は、ブッシング4における絶縁部41の電界緩和を効果的に図ることができながら、碍管7の長さを短くできるので、端末全体の長さを短くすることが可能である。
<effect>
The terminal structure 1 of the superconducting cable according to the first embodiment has the following effects.
Since the step 55 provided at the room temperature side end of the inner vacuum heat insulating tube 5 is located on the room temperature side of the electric field control surface 7A of the insulator tube 7, it is generated in the room temperature region of the bushing 4 (insulating portion 41). It is possible to prevent the equipotential lines from intersecting with the steps 55. Therefore, the equipotential lines generated in the insulating portion 41 pass mainly through the electric field control surface 7A of the insulator tube 7 and the distribution of the equipotential lines is made uniform, so that the electric field of the insulating portion 41 can be effectively reduced. . Further, since the surface of the insulator can be effectively used, the length of the insulator tube 7 (the main body 70) can be reduced. Therefore, in the terminal structure 1, the length of the insulator tube 7 can be reduced while effectively reducing the electric field of the insulating portion 41 in the bushing 4, so that the overall length of the terminal can be reduced.

〈用途〉
実施形態1に係る超電導ケーブルの端末構造1は、超電導ケーブル100を利用した送電線路(交流送電線路、直流送電線路)に好適に利用できる。
<Applications>
The superconducting cable terminal structure 1 according to the first embodiment can be suitably used for a transmission line (an AC transmission line, a DC transmission line) using the superconducting cable 100.

本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
例えば、超電導ケーブル100は、1本のケーブルコア110が1つの断熱管120に収納された単心ケーブルである他、2本以上のケーブルコア110が1つの断熱管120に収納された多心一括ケーブルであってもよい。また、超電導ケーブル100は、電気絶縁層113が断熱管120内に配置され冷媒によって冷却される低温絶縁型の構造である他、電気絶縁層113が断熱管120外に配置され冷媒によって冷却されない常温絶縁型の構造であってもよい。
The present invention is not limited to these examples, but is indicated by the appended claims, and is intended to include all modifications within the scope and meaning equivalent to the appended claims.
For example, the superconducting cable 100 is a single-core cable in which one cable core 110 is housed in one heat insulating tube 120, and a multi-core package in which two or more cable cores 110 are housed in one heat insulating tube 120. It may be a cable. The superconducting cable 100 has a low-temperature insulation type structure in which the electric insulating layer 113 is disposed in the heat insulating tube 120 and is cooled by the refrigerant. An insulating structure may be used.

1 超電導ケーブルの端末構造
2 導体引出部
20 筒状部 20h 貫通孔
21 超電導側接続部
211 接合部 212 挿入部 21c 貫通孔
22 常電導側接続部
221 接合部 222 端子部
3 非真空断熱層
30 ケース 30h 充填孔
31 断熱材
4 ブッシング
41 絶縁部 42 固定部
5 内側真空断熱管
51 内管 52 外管 52f フランジ部
55 段差部 55f フランジ部
51b,52b ベローズ管
50p 真空ポート
6 ケーブル側断熱容器
61 冷媒槽 62 真空槽
63 冷媒導入管 64 冷媒排出管 65 仕切り部
60p 真空ポート
7 碍管
70 本体部 7i 碍子 7A 電界制御面
71 下部金具 71b 下筒部
72 上部金具 72u 上筒部
8 補強絶縁層 80 遮蔽接続部
9 上部シールド金具
100 超電導ケーブル
110 ケーブルコア
111 フォーマ 112 超電導導体層
113 電気絶縁層 114 遮蔽層 115 保護層
120 断熱管
121 内管 122 外管
123 断熱材 124 防食層
100p 真空ポート
130 冷媒
DESCRIPTION OF SYMBOLS 1 Terminal structure of superconducting cable 2 Conductor lead-out part 20 Cylindrical part 20h Through hole 21 Superconducting side connecting part 211 Joining part 212 Inserting part 21c Through hole 22 Normal conducting side connecting part 221 Joining part 222 Terminal part 3 Non-vacuum heat insulating layer 30 Case 30h Filling hole 31 Heat insulating material 4 Bushing 41 Insulating part 42 Fixed part 5 Inner vacuum heat insulating pipe 51 Inner pipe 52 Outer pipe 52f Flange part 55 Stepped part 55f Flange part 51b, 52b Bellows pipe 50p Vacuum port 6 Cable side heat insulating container 61 Refrigerant tank 62 Vacuum tank 63 Refrigerant introduction pipe 64 Refrigerant discharge pipe 65 Partition part 60p Vacuum port 7 Insulator pipe 70 Main body part 7i Insulator 7A Electric field control surface 71 Lower fitting 71b Lower cylinder 72 Upper fitting 72u Upper cylinder 8 Reinforcement insulating layer 80 Shield connection 9 Upper shield fitting 100 Superconducting cable 110 Cave Lucor 111 Former 112 Superconducting conductor layer 113 Electrical insulating layer 114 Shielding layer 115 Protective layer 120 Insulated tube 121 Inner tube 122 Outer tube 123 Insulating material 124 Anticorrosion layer 100p Vacuum port 130 Refrigerant

Claims (3)

超電導ケーブルの端部において断熱管の端部から出されたケーブルコアと、
前記ケーブルコアの一部が挿通されるブッシングと、
前記ブッシングにおける常温側領域を収納する碍管と、
前記ブッシングの常温側端部から突出した前記ケーブルコアの端部において、前記ケーブルコアに備える超電導導体層が接続される導体引出部と、
前記ブッシングの内周と前記ケーブルコアの外周との間から前記碍管内を経て常温側に延びるように設けられて、前記ケーブルコアの超電導導体層を冷却する冷媒を断熱保持する内側真空断熱管と、を備え、
前記ブッシングは、常温側領域が端部に向かって先細りした絶縁部と、前記絶縁部の中間部に設けられ、前記絶縁部の外周に形成された固定部とを有し、
前記碍管は、複数の碍子が形成された電界制御面を有する筒状の本体部と、前記本体部のケーブル側端部に設けられて前記ブッシングの前記固定部が取り付けられる下部金具と、前記本体部の常温側端部に設けられて前記内側真空断熱管の常温側端部が挿通固定される上部金具と、を有し、
前記内側真空断熱管の常温側端部には、局所的に外径が大きくなる段差部を有し、
前記ブッシングにおける常温側領域の前記絶縁部が前記碍管における前記本体部の前記電界制御面に対して径方向に重複して配置されると共に、前記内側真空断熱管の前記段差部が前記電界制御面よりも常温側に位置する超電導ケーブルの端末構造。
A cable core protruding from the end of the heat insulating tube at the end of the superconducting cable,
A bushing through which a part of the cable core is inserted;
A porcelain tube for accommodating a room temperature side region in the bushing;
At the end of the cable core protruding from the room temperature side end of the bushing, a conductor extraction portion to which a superconducting conductor layer provided in the cable core is connected,
An inner vacuum heat insulating pipe that is provided so as to extend from the inner circumference of the bushing and the outer circumference of the cable core to the room temperature side through the inside of the insulator tube, and insulates and retains a refrigerant that cools the superconducting conductor layer of the cable core. ,
The bushing has an insulating portion having a normal-temperature side region tapered toward an end, and a fixing portion provided at an intermediate portion of the insulating portion and formed on an outer periphery of the insulating portion,
The insulator tube includes a cylindrical main body having an electric field control surface on which a plurality of insulators are formed, a lower fitting provided at a cable side end of the main body, to which the fixing portion of the bushing is attached, An upper fitting provided at a normal temperature side end of the section and through which the normal temperature side end of the inner vacuum heat insulating tube is inserted and fixed,
At the room temperature side end of the inner vacuum heat insulating tube, there is a step portion where the outer diameter is locally increased,
The insulating portion in the room temperature side region of the bushing is radially overlapped with the electric field control surface of the main body in the insulator tube, and the step portion of the inner vacuum heat insulating tube is connected to the electric field control surface. Terminal structure of superconducting cable located on the normal temperature side.
前記内側真空断熱管の前記段差部にベローズ管が設けられている請求項1に記載の超電導ケーブルの端末構造。   The terminal structure for a superconducting cable according to claim 1, wherein a bellows pipe is provided at the step portion of the inner vacuum heat insulating pipe. 前記導体引出部の外周を覆う非真空断熱層を備え、
前記非真空断熱層は断熱材で形成されている請求項1又は請求項2に記載の超電導ケーブルの端末構造。
A non-vacuum heat insulating layer covering the outer periphery of the conductor lead-out portion,
The terminal structure for a superconducting cable according to claim 1 or 2, wherein the non-vacuum heat insulating layer is formed of a heat insulating material.
JP2018149961A 2018-08-09 2018-08-09 Terminal structure of superconducting cable Pending JP2020028134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149961A JP2020028134A (en) 2018-08-09 2018-08-09 Terminal structure of superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149961A JP2020028134A (en) 2018-08-09 2018-08-09 Terminal structure of superconducting cable

Publications (1)

Publication Number Publication Date
JP2020028134A true JP2020028134A (en) 2020-02-20

Family

ID=69620474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149961A Pending JP2020028134A (en) 2018-08-09 2018-08-09 Terminal structure of superconducting cable

Country Status (1)

Country Link
JP (1) JP2020028134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498532A (en) * 2020-11-12 2022-05-13 日立金属株式会社 Power cable connecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114498532A (en) * 2020-11-12 2022-05-13 日立金属株式会社 Power cable connecting device

Similar Documents

Publication Publication Date Title
EP1732190B1 (en) Terminal structure of multiphase superconducting cable
JP5351249B2 (en) Superconducting cable terminal connection structure
EP1818944A1 (en) Power cable line
WO2006075443A1 (en) Low temperature container of superconducting apparatus
JP6169030B2 (en) Superconducting cable terminal structure
JP2005251570A (en) Intermediate connection part of superconducting cable
JP2018137292A (en) Terminal structure of superconducting apparatus
JP5807849B2 (en) Intermediate connection member of superconducting cable and intermediate connection structure of superconducting cable
JP2019129583A (en) Terminal structure of superconductor cable
JP2020028134A (en) Terminal structure of superconducting cable
JP2010021260A (en) Current lead for cryogenic apparatus, and terminal connection structure
JP2017063578A (en) Terminal structure of superconducting cable
JP2020028133A (en) Conductor pull-out member, terminal structure of superconducting apparatus, and manufacturing method of terminal structure of superconducting apparatus
JP2020028132A (en) Terminal structure of superconducting apparatus
JP2005341767A (en) Terminal structure of superconducting cable
JP3914659B2 (en) Superconducting cable connection box
JP7042675B2 (en) Termination container for high-temperature superconducting cables and termination structure for high-temperature superconducting cables
JP2013073831A (en) Superconducting cable line
JP4330008B2 (en) Superconducting cable pooling eye and laying method of superconducting cable using pooling eye
JP5273572B2 (en) Laying the superconducting cable
JP2016178779A (en) Terminal connection part for cryogenic cable
JP2019030210A (en) Terminal structure of superconducting cable
JP5454892B2 (en) Normal conductor lead-out structure
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable
RU2456696C2 (en) Superconductive wire of &#34;cable-conduit&#34; type for magnetic systems winding