JP5351249B2 - Superconducting cable terminal connection structure - Google Patents

Superconducting cable terminal connection structure Download PDF

Info

Publication number
JP5351249B2
JP5351249B2 JP2011285910A JP2011285910A JP5351249B2 JP 5351249 B2 JP5351249 B2 JP 5351249B2 JP 2011285910 A JP2011285910 A JP 2011285910A JP 2011285910 A JP2011285910 A JP 2011285910A JP 5351249 B2 JP5351249 B2 JP 5351249B2
Authority
JP
Japan
Prior art keywords
superconducting
layer
cable
temperature side
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011285910A
Other languages
Japanese (ja)
Other versions
JP2012120435A (en
Inventor
祐一 芦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2011285910A priority Critical patent/JP5351249B2/en
Publication of JP2012120435A publication Critical patent/JP2012120435A/en
Application granted granted Critical
Publication of JP5351249B2 publication Critical patent/JP5351249B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、超電導ケーブルの超電導層と常温側導体とを接続するための超電導ケーブルの端末接続構造に関し、特に、低電圧大容量の直流送電に好適な超電導ケーブルの端末接続構造に関する。   The present invention relates to a terminal connection structure of a superconducting cable for connecting a superconducting layer of a superconducting cable and a normal temperature side conductor, and more particularly to a terminal connection structure of a superconducting cable suitable for low voltage and large capacity direct current power transmission.

超電導線材として、Bi-Sr-Ca-Cu-Oテープ線材に代表されるBi系超電導テープ線材が実用化されつつある。このようなBi系超電導テープ線材を用いた3心一括型の超電導ケーブルは、例えば図2に示すように構成される。即ち、常電導線材からなるフォーマ1を中心として、その外周に、Bi系超電導テープ線材からなる超電導導体層2、絶縁層3、Bi系超電導テープ線材からなる超電導シールド層4が形成され、これらでケーブルコア9が形成される。そして、3本のケーブルコア9が互いに撚り合わされて内管6と外管7とで形成される二重断熱管内に挿入され、内管6内に冷媒流通路5が形成される。また、外管7は防食層8によって覆われ、内管6と外管7の間は真空引きされて真空層とされる。   Bi-based superconducting tape wires represented by Bi-Sr-Ca-Cu-O tape wires are being put into practical use as superconducting wires. A three-core superconducting cable using such a Bi-based superconducting tape wire is configured, for example, as shown in FIG. That is, a superconducting conductor layer 2 made of a Bi-based superconducting tape wire, an insulating layer 3, and a superconducting shield layer 4 made of a Bi-based superconducting tape wire are formed around the former 1 made of a normal conducting wire. A cable core 9 is formed. The three cable cores 9 are twisted together and inserted into a double heat insulating pipe formed by the inner pipe 6 and the outer pipe 7, and the refrigerant flow passage 5 is formed in the inner pipe 6. Further, the outer tube 7 is covered with the anticorrosion layer 8, and the space between the inner tube 6 and the outer tube 7 is evacuated to form a vacuum layer.

このような超電導ケーブル10を常電導側の機器と接続する場合には、従来、例えば図5(a)(b)に示すような終端接続箱(低温容器)13が用いられていた(例えば特許文献1参照)。この終端接続箱13には、補助接続箱23が接続され、それぞれ内部に互いに連通する冷媒槽14,24と、その外側に形成される真空断熱槽15,25と、を備えている。補助接続箱23に導入された超電導ケーブル10は、各ケーブルコア9が分離されて、接続部Jにおいて、それぞれ常温側と電気的に接続される。即ち、超電導導体層2は、銅スリーブ等の接続部材11を介して、アルミ合金等で形成されるエポキシユニット中心導体12と接続され、そのエポキシユニット中心導体12は、終端接続箱13内の冷媒槽14内に延長されて、接続部16を介して、常温側のブッシング17に接続される。   When such a superconducting cable 10 is connected to a device on the normal conducting side, a terminal connection box (cold container) 13 as shown in FIGS. 5A and 5B has been conventionally used (for example, a patent). Reference 1). An auxiliary connection box 23 is connected to the terminal connection box 13 and includes refrigerant tanks 14 and 24 that communicate with each other inside, and vacuum heat insulation tanks 15 and 25 formed outside thereof. In the superconducting cable 10 introduced into the auxiliary connection box 23, the cable cores 9 are separated and electrically connected to the room temperature side at the connection portion J, respectively. That is, the superconducting conductor layer 2 is connected to an epoxy unit center conductor 12 formed of an aluminum alloy or the like via a connection member 11 such as a copper sleeve, and the epoxy unit center conductor 12 is a refrigerant in the terminal connection box 13. It is extended into the tank 14 and is connected to the bushing 17 on the room temperature side via the connecting portion 16.

接続部Jの構成を詳しく説明すると、図5(a)に示すように、段剥ぎされた超電導導体層2が、半田によって接続部材11の一端に接続される一方、接続部材11の他端が、マルチバンドmを介して、エポキシユニット中心導体12に被嵌接続される。これにより、超電導導体層2が、接続部材11及びマルチバンドmを介して、エポキシユニット中心導体12に接続される。そして、そのエポキシユニット19を含めた接続部分の外周に補強絶縁紙20が巻回される。このような状態にて、エポキシユニット19のフランジ19aが、終端接続箱13の縦壁21に固定される。尚、図5(b)では、3心一括型の超電導ケーブルにおける1心の図示を省略している。   The configuration of the connection portion J will be described in detail. As shown in FIG. 5A, the superconducting conductor layer 2 that has been stripped is connected to one end of the connection member 11 by solder, while the other end of the connection member 11 is connected to the other end. The multi-band m is fitted and connected to the epoxy unit center conductor 12. As a result, the superconducting conductor layer 2 is connected to the epoxy unit center conductor 12 via the connection member 11 and the multiband m. Then, the reinforcing insulating paper 20 is wound around the outer periphery of the connection portion including the epoxy unit 19. In such a state, the flange 19 a of the epoxy unit 19 is fixed to the vertical wall 21 of the terminal junction box 13. In FIG. 5 (b), the illustration of one core in the three-core batch type superconducting cable is omitted.

特開2006−196628号公報JP 2006-196628 A

上述のような従来の端末接続構造では、導体抵抗が高いため、大電流の送電には適さないという問題があった。即ち、まず、超電導導体層2と接続部材11とを導通接続している半田接続部分が、超電導導体層2に比して高抵抗であった。次いで、銅からなる接続部材11自体が高抵抗であった。また、アルミ合金等で形成されるエポキシユニット中心導体12も高抵抗であった。さらに、接続部材11とエポキシユニット中心導体12がマルチバンドmを介したマルチコンタクトによって導通接続されているため、その接続部分が高抵抗であった。このようなことから、従来の接続構造では、接続部Jの電気抵抗が高くなるため、極低温状態で、大電流を通電するのは困難であり、その対策が求められていた。また、その端末接続構造が、外付けの補助接続箱23を要して、部品点数が多く、複雑で嵩高いため、マンホール内での施工作業性が低くなる上に、総じてコスト高になるという問題もあった。   The conventional terminal connection structure as described above has a problem that it has a high conductor resistance and is not suitable for transmission of a large current. That is, first, the solder connection portion that conductively connects the superconducting conductor layer 2 and the connecting member 11 has a higher resistance than the superconducting conductor layer 2. Subsequently, the connection member 11 itself made of copper had a high resistance. Moreover, the epoxy unit center conductor 12 formed of an aluminum alloy or the like has a high resistance. Furthermore, since the connection member 11 and the epoxy unit center conductor 12 are conductively connected by multi-contact via the multi-band m, the connection portion has high resistance. For this reason, in the conventional connection structure, since the electrical resistance of the connection portion J is high, it is difficult to energize a large current in an extremely low temperature state, and a countermeasure has been demanded. In addition, the terminal connection structure requires an external auxiliary connection box 23, has a large number of parts, is complicated, and is bulky, so that the workability in the manhole is lowered and the cost is generally increased. There was also a problem.

本発明は、このような事情に鑑みてなされ、構成が簡易で接続部の電気抵抗が低くコンパクト化された超電導ケーブルの端末接続構造を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a terminal connection structure for a superconducting cable that has a simple configuration, a low electrical resistance at a connecting portion, and is compact.

本発明の超電導ケーブルの端末接続構造は、超電導ケーブルの超電導層と常温側導体との接続部を、冷媒槽内に設けた超電導ケーブルの端末接続構造であって、
前記超電導層は、Bi系超電導テープ又はRE系超電導薄膜によって形成されており、
超電導ケーブルのケーブルコアから引き出された超電導層が、冷媒槽内の冷媒中に浸漬される常温側導体の先端に近接する位置まで延長され、該常温側導体と、前記超電導層と、が冷媒中で電気的に接続されることを特徴とする。
The terminal connection structure of the superconducting cable of the present invention is a terminal connection structure of a superconducting cable in which a connecting portion between the superconducting layer of the superconducting cable and the room temperature side conductor is provided in the refrigerant tank,
The superconducting layer is formed of a Bi-based superconducting tape or a RE-based superconducting thin film,
The superconducting layer drawn out from the cable core of the superconducting cable is extended to a position close to the tip of the room temperature side conductor immersed in the refrigerant in the refrigerant tank, and the room temperature side conductor and the superconducting layer are in the refrigerant. It is characterized by being electrically connected by.

このような構成によれば、超電導層を、冷媒槽内の冷媒中に浸漬される常温側導体の先端に近接する位置まで延長して、その常温側導体と冷媒中で電気的に接続するため、その接続部における構成をきわめて簡素なものにすることができる。これにより、接続部の電気抵抗を顕著に低減化できるため、大容量の通電が可能となり、特に、低電圧大容量の直流送電用として好適となるが、交流用としても使用することができる。このように超電導層を、常温側導体の先端に近接する位置まで延長していることによって、従来必要とされていたスリーブやエポキシユニット中心導体、マルチバンド等が不要になり、かつ、超電導層を常温側導体の先端と共に、冷媒槽内で冷却できるため、補助接続箱も不要になる。従って、部品点数が大幅に削減され、構成の簡素化と著しいコンパクト化が可能となり、現地での施工作業の簡素化とコストの低減化が可能となる。   According to such a configuration, the superconducting layer is extended to a position close to the tip of the normal temperature side conductor immersed in the refrigerant in the refrigerant tank, and is electrically connected to the normal temperature side conductor in the refrigerant. The configuration at the connecting portion can be made extremely simple. As a result, the electrical resistance of the connecting portion can be remarkably reduced, so that large-capacity energization is possible. Particularly, it is suitable for low-voltage and large-capacity DC power transmission, but can also be used for AC. By extending the superconducting layer to a position close to the tip of the room temperature side conductor in this way, the sleeve, epoxy unit central conductor, multiband, etc., which have been conventionally required, become unnecessary, and the superconducting layer is Since it can be cooled in the refrigerant tank together with the tip of the normal temperature side conductor, an auxiliary junction box is also unnecessary. Accordingly, the number of parts is greatly reduced, the configuration can be simplified and the size can be significantly reduced, and the construction work on site can be simplified and the cost can be reduced.

前記超電導層と、常温側導体と、が編組線により接続されるようにしてもよい。このようにすれば、超電導層と常温側導体とを、編組線を介した半田接続によって現地で作業性よく接続することができる。また、その接続部分の構成がきわめて簡素になるため、部品点数の大幅な削減化が可能となり、それに伴い、電気抵抗を格段に低減することができる。   The superconducting layer and the normal temperature side conductor may be connected by a braided wire. If it does in this way, a superconducting layer and a normal temperature side conductor can be connected with sufficient workability in the field by solder connection via a braided wire. In addition, since the configuration of the connecting portion becomes extremely simple, the number of parts can be greatly reduced, and accordingly, the electrical resistance can be significantly reduced.

超電導ケーブルのケーブルコアから引き出されたフォーマの先端が、絶縁体を介して冷媒槽内壁に固定されるようにしてもよい。このようにすれば、例えば、まず、超電導層と常温側導体とを接続し、その後で、ケーブルコアの先端から段剥ぎ状態に引き出しているフォーマを冷媒槽内壁に固定する手順で施工を行うことができる。フォーマを冷媒槽内壁に固定していることにより、ケーブルコアの支持状態が安定化し、冷却・昇温時の熱伸縮に伴うケーブルコアの変動を規制して安定な状態に支持することができる。   The front end of the former drawn out from the cable core of the superconducting cable may be fixed to the inner wall of the refrigerant tank via an insulator. In this way, for example, first, the superconducting layer and the room temperature side conductor are connected, and then the construction is performed in the procedure of fixing the former drawn in the stepped state from the tip of the cable core to the inner wall of the refrigerant tank. Can do. By fixing the former to the inner wall of the refrigerant tank, the support state of the cable core can be stabilized, and the cable core can be supported in a stable state by regulating the fluctuation of the cable core due to thermal expansion and contraction during cooling and heating.

前記常温側導体と超電導層との接続部は、電界シールド層によって覆われるようにしてもよい。電界シールドカバーによって、超電導層と常温側導体との接続部を覆うことによって、接続部における電位の安定化を図ることができる。尚、電界シールドカバーは、例えば冷媒槽内の冷媒中に臨む常温側導体の先端部等に吊り下げ状態に取り付けることができる。   The connecting portion between the normal temperature side conductor and the superconducting layer may be covered with an electric field shield layer. By covering the connection portion between the superconducting layer and the room temperature side conductor with the electric field shield cover, the potential at the connection portion can be stabilized. In addition, the electric field shield cover can be attached in a suspended state to, for example, the tip of a normal temperature side conductor facing the refrigerant in the refrigerant tank.

前記絶縁体は、エポキシ樹脂で形成されるようにしてもよい。エポキシ樹脂は、成形性及び加工性がよく絶縁性能が良好で適度の剛性を備えているため、例えばボルト締結等によって壁面等に対して容易に取り付けられるようにすることができる。なお、FRPによっても、略同等の作用効果を得ることができる。   The insulator may be formed of an epoxy resin. Since the epoxy resin has good moldability and workability, good insulation performance, and appropriate rigidity, the epoxy resin can be easily attached to a wall surface or the like by, for example, bolt fastening. Note that substantially the same effect can be obtained by FRP.

前記超電導ケーブルは、直流用超電導ケーブルであり、前記超電導層は、内側超電導層及び外側超電導層であってもよい。このようにすれば、低電圧大容量の直流送電に好適に適用することができる。   The superconducting cable may be a DC superconducting cable, and the superconducting layer may be an inner superconducting layer and an outer superconducting layer. In this way, it can be suitably applied to low voltage, large capacity direct current power transmission.

前記内側超電導層と常温側導体の接続部を冷却するための冷媒槽と、前記外側超電導層と常温側導体の接続部を冷却するための冷媒槽と、が互いに連通状態に配設されるようにしてもよい。このようにすれば、冷媒槽に循環供給する冷媒の循環系統を簡略化することができ、冷媒を効率よく循環させることができる。   A refrigerant tank for cooling the connection part between the inner superconducting layer and the room temperature side conductor and a refrigerant tank for cooling the connection part between the outer superconducting layer and the room temperature side conductor are arranged in communication with each other. It may be. If it does in this way, the circulation system of the refrigerant circulated and supplied to the refrigerant tank can be simplified, and the refrigerant can be circulated efficiently.

前記内側超電導層と常温側導体の接続部と、前記外側超電導層と常温側導体の接続部と、が単一の冷媒槽内に収納されるようにしてもよい。このようにすれば、冷媒槽の構成の簡素化とコンパクト化が可能となり、コスト安を実現することができる。   The connecting portion between the inner superconducting layer and the room temperature side conductor and the connecting portion between the outer superconductor layer and the room temperature side conductor may be housed in a single refrigerant tank. In this way, the configuration of the refrigerant tank can be simplified and made compact, and the cost can be reduced.

前記超電導ケーブルは、交流用超電導ケーブルであり、前記超電導層は、超電導導体層及び超電導シールド層であってもよい。このようにすれば、大容量の交流送電に好適に対処することができる。   The superconducting cable may be an AC superconducting cable, and the superconducting layer may be a superconducting conductor layer and a superconducting shield layer. In this way, it is possible to suitably cope with large-capacity AC power transmission.

前記超電導導体層と常温側導体の接続部を冷却するための冷媒槽と、前記超電導シールド層と常温側導体の接続部を冷却するための冷媒槽と、が互いに連通状態に配設されるようにしてもよい。このようにすれば、冷媒槽に循環供給する冷媒の循環系統を簡略化することができ、冷媒を効率よく循環させることができる。   A refrigerant tank for cooling the connection part between the superconducting conductor layer and the room temperature side conductor and a refrigerant tank for cooling the connection part between the superconducting shield layer and the room temperature side conductor are arranged in communication with each other. It may be. If it does in this way, the circulation system of the refrigerant circulated and supplied to the refrigerant tank can be simplified, and the refrigerant can be circulated efficiently.

前記超電導導体層と常温側導体の接続部と、前記超電導シールド層と常温側導体の接続部と、が単一の冷媒槽内に収納されるようにしてもよい。このようにすれば、冷媒槽の構成の簡素化とコンパクト化が可能となり、コスト安を実現することができる。   The connecting portion between the superconducting conductor layer and the room temperature side conductor and the connecting portion between the superconducting shield layer and the room temperature side conductor may be accommodated in a single refrigerant tank. In this way, the configuration of the refrigerant tank can be simplified and made compact, and the cost can be reduced.

本発明の超電導ケーブルの端末接続構造は、超電導層を、冷媒槽内の冷媒中に浸漬される常温側導体の先端に近接する位置まで延長して、超電導層と常温側導体を冷媒中で電気的に接続するので、その接続部における構成をきわめて簡素なものにすることができ、接続部の電気抵抗を顕著に低減化することができる。また、従来必要とされていたスリーブやエポキシユニット中心導体、マルチバンド等が不要になり、かつ、補助接続箱も不要になるため、部品点数が大幅に削減され、構成の簡素化と著しいコンパクト化が可能となり、現地での施工作業の簡素化とコスト安を実現することができる。   In the superconducting cable terminal connection structure of the present invention, the superconducting layer is extended to a position close to the tip of the normal temperature side conductor immersed in the refrigerant in the refrigerant tank, and the superconductive layer and the normal temperature side conductor are electrically connected in the refrigerant. Therefore, the configuration of the connecting portion can be made very simple, and the electrical resistance of the connecting portion can be significantly reduced. In addition, the sleeve, epoxy unit center conductor, multi-band, etc., which were required in the past, are no longer required, and the auxiliary junction box is also unnecessary, greatly reducing the number of parts, simplifying the configuration, and significantly reducing the size. This makes it possible to simplify construction work on site and reduce costs.

本発明の実施の形態に係る超電導ケーブルの端末接続構造の基本的な構成を示す説明図である。It is explanatory drawing which shows the basic composition of the terminal connection structure of the superconducting cable which concerns on embodiment of this invention. 3心一括型の超電導ケーブルの断面図である。It is sectional drawing of a 3 core lump-sum type superconducting cable. フォーマ先端を冷媒槽内壁に固定する構造の一例を示し、(a)は模式的な拡大部分図、(b)は取付座の平面図である。An example of the structure which fixes a front-end | tip of a former to a refrigerant tank inner wall is shown, (a) is a typical expanded partial view, (b) is a top view of a mounting seat. ケーブルコアの超電導シールド層同士を接続する構造の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the structure which connects the superconducting shield layers of a cable core. (a)は従来の超電導ケーブルの端末接続における超電導導体と常温側導体の接続の拡大断面図、(b)は同端末構造の部分破断説明図である。(A) is an expanded sectional view of the connection of the superconducting conductor and the normal temperature side conductor in the terminal connection of the conventional superconducting cable, (b) is a partially broken explanatory view of the terminal structure.

以下に、本発明の実施の形態に係る超電導ケーブルの端末接続構造について図面を参照しつつ詳細に説明する。   Hereinafter, a terminal connection structure for a superconducting cable according to an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、超電導ケーブルの端末接続構造(端末容器)の基本的な構成を示す説明図で、例えば3心一括型の交流用超電導ケーブル10の1本のケーブルコア9の接続構造を模式的に図示している。図示のように、この端末容器31は、真空槽32内に、冷媒槽33を備えている。そして、冷媒槽33の一端側(図中右側)から導入された超電導ケーブル10のケーブルコア9から段剥ぎ状態に引き出された超電導導体層2が、冷媒槽33の他端側の冷媒35中に浸漬されるように垂下される一方の常温側導体(ブッシング)17の先端に近接する位置まで延長される。そして、該常温側導体17と超電導導体層2と、が編組線36等によって導通接続される。つまり、超電導導体層2と常温側導体17が冷媒35中で電気的に接続される。常温側導体17は、真空槽32と冷媒槽33の上凸状の突出部分33bに貫通して配設され、その下半部分が冷媒35中に浸漬され、上半部分が、外部に突出して碍子によって覆われている。また、冷媒槽33の両側に設けた冷媒35の導入口45と排出口46と、が外部に設けた図示省略の循環装置に接続され、冷媒槽33内に冷媒35が循環供給されるように構成される。   FIG. 1 is an explanatory diagram showing a basic configuration of a terminal connection structure (terminal container) of a superconducting cable. For example, a connection structure of one cable core 9 of a three-core batch type AC superconducting cable 10 is schematically illustrated. It is shown. As illustrated, the terminal container 31 includes a refrigerant tank 33 in a vacuum tank 32. Then, the superconducting conductor layer 2 drawn out from the cable core 9 of the superconducting cable 10 introduced from one end side (right side in the drawing) of the refrigerant tank 33 is in the refrigerant 35 on the other end side of the refrigerant tank 33. It extends to a position close to the tip of one room temperature side conductor (bushing) 17 that is suspended so as to be immersed. The normal temperature side conductor 17 and the superconducting conductor layer 2 are conductively connected by a braided wire 36 or the like. That is, the superconducting conductor layer 2 and the room temperature side conductor 17 are electrically connected in the refrigerant 35. The room-temperature-side conductor 17 is disposed so as to penetrate through the upper protruding portion 33b of the vacuum chamber 32 and the refrigerant vessel 33, the lower half portion is immersed in the refrigerant 35, and the upper half portion protrudes to the outside. Covered by lions. In addition, the inlet 45 and the outlet 46 of the refrigerant 35 provided on both sides of the refrigerant tank 33 are connected to a circulation device (not shown) provided outside so that the refrigerant 35 is circulated and supplied into the refrigerant tank 33. Composed.

このような構成にあって、フォーマ1は、ケーブルコア9からストレイトに引き出されて、絶縁体37を介して、冷媒槽33の他端側の壁面33aに固定される。具体的には、例えばフォーマ1の先端に固定用スリーブ38の一端を圧縮接続する一方、冷媒槽33の壁面33aに、エポキシ樹脂又はFRPで形成された絶縁体37を取り付けるための取付座(図示省略)を設け、固定用スリーブ38の他端を、ボルト締結又は嵌合等によって絶縁体37に固定し、その絶縁体37をボルト締結又は嵌合等によって壁面33aの取付座に固定すればよい。尚、実際の施工では、冷媒槽33の壁面33aにフォーマ1を固定する前に、超電導導体層2と常温側導体17と、を半田により編組線36を介して接続しておくのが好ましい。また、絶縁体37は、予め工場等で固定用スリーブ38を介してフォーマ1の先端に接続しておいて、現地では、絶縁体37を壁面33aに取り付けるようにしてもよい。また、その接続部を覆うように電界シールドカバー(電界シールド層)Cを設けてもよい。その場合、電界シールドカバーCは、例えば樹脂材に金属箔を一体化させた構成として、その金属箔を接地させればよい。   In such a configuration, the former 1 is drawn out straight from the cable core 9 and is fixed to the wall surface 33 a on the other end side of the refrigerant tank 33 via the insulator 37. Specifically, for example, one end of the fixing sleeve 38 is compression-connected to the tip of the former 1, and a mounting seat (not shown) for attaching an insulator 37 formed of epoxy resin or FRP to the wall surface 33a of the refrigerant tank 33. The other end of the fixing sleeve 38 is fixed to the insulator 37 by bolt fastening or fitting, and the insulator 37 is fixed to the mounting seat of the wall surface 33a by bolt fastening or fitting or the like. . In actual construction, before the former 1 is fixed to the wall surface 33a of the refrigerant tank 33, it is preferable to connect the superconducting conductor layer 2 and the room temperature side conductor 17 via a braided wire 36 with solder. The insulator 37 may be connected in advance to the tip of the former 1 via a fixing sleeve 38 at a factory or the like, and the insulator 37 may be attached to the wall surface 33a at the site. Moreover, you may provide the electric field shield cover (electric field shield layer) C so that the connection part may be covered. In this case, the electric field shield cover C may be configured such that, for example, a metal foil is integrated with a resin material, and the metal foil is grounded.

フォーマ先端を冷媒槽内壁に固定する構造の一例を図3に示す。この固定構造は、図3(a)に示すように、冷媒槽33の壁面33aに固定される取付座50と、エポキシ樹脂又はFRPからなる絶縁体37と、銅製の固定用スリーブ38と、絶縁体37と固定用スリーブ38とを中継接続する固定金具51とを備える。取付座50は、一方の端面が平面に形成され、他方の端面が半球状(ドーム状)面に形成されたステンレス製のドーム状の円板であり、図3(b)に示すように、他方の端面には絶縁体37の一端を挿入固定する開口部50mが設けられている。また、取付座50には、ボルト55を挿通する挿通孔52が設けられている。固定金具51は、取付座50と同形状をしたステンレス製のドーム状の円板であり、一方の端面が平面に形成され、他方の端面がドーム状面に形成されると共に、他方の端面には絶縁体37の他端を挿入固定する開口部51mが設けられている。固定用スリーブ38は、固定金具51と類似形状をしており、一方の端面が平面に形成され、他方の端面がドーム状面に形成されると共に、他方の端面にはフォーマ1の先端を挿入嵌合する筒状部53が設けられている。   An example of a structure for fixing the front end of the former to the inner wall of the refrigerant tank is shown in FIG. As shown in FIG. 3 (a), the fixing structure includes an attachment seat 50 fixed to the wall surface 33a of the refrigerant tank 33, an insulator 37 made of epoxy resin or FRP, a copper fixing sleeve 38, and an insulating material. A fixing fitting 51 is provided that relays and connects the body 37 and the fixing sleeve 38. The mounting seat 50 is a stainless steel dome-shaped disk having one end surface formed into a flat surface and the other end surface formed into a hemispherical (dome-shaped) surface, as shown in FIG. The other end face is provided with an opening 50m through which one end of the insulator 37 is inserted and fixed. The mounting seat 50 is provided with an insertion hole 52 through which the bolt 55 is inserted. The fixing bracket 51 is a stainless steel dome-shaped disk having the same shape as the mounting seat 50. One end surface is formed in a flat surface, the other end surface is formed in a dome-shaped surface, and the other end surface is formed on the other end surface. Is provided with an opening 51m for inserting and fixing the other end of the insulator 37. The fixing sleeve 38 has a shape similar to that of the fixing metal fitting 51. One end surface is formed as a flat surface, the other end surface is formed as a dome-shaped surface, and the tip of the former 1 is inserted into the other end surface. A tubular portion 53 to be fitted is provided.

絶縁体37の両端に対する取付座50及び固定金具51の固定は、接着剤54を介して行われている。一方、フォーマ1の先端に固定用スリーブ38を接続するときは、フォーマ先端を筒状部53内に挿入した後、筒状部53をかしめて圧縮することで行われている。また、固定金具51と固定用スリーブ38とは、平面に形成された一方の端面同士を重ね合わせてボルト締結することで接続されている。そして、壁面33aに取付座50をボルト55で固定し取り付けることで、フォーマ1の先端が絶縁体37を介して壁面33aに固定されることになる。さらに、取付座50、固定金具51及び固定用スリーブ38は、いずれもドーム状の部材であり、角部が曲面で形成されているため、電界の集中を緩和することができ、絶縁破壊を起し難い。フォーマ1の先端に対する固定用スリーブ38の接続は、圧縮接続の他、溶接などにより行ってもよい。   The mounting seat 50 and the fixing bracket 51 are fixed to both ends of the insulator 37 through an adhesive 54. On the other hand, when the fixing sleeve 38 is connected to the front end of the former 1, the front end of the former is inserted into the cylindrical portion 53, and then the cylindrical portion 53 is crimped and compressed. Further, the fixing bracket 51 and the fixing sleeve 38 are connected by overlapping one end surfaces formed in a plane and fastening them with bolts. And the front-end | tip of the former 1 is fixed to the wall surface 33a via the insulator 37 by fixing the mounting seat 50 to the wall surface 33a with the volt | bolt 55, and attaching. Further, since the mounting seat 50, the fixing bracket 51, and the fixing sleeve 38 are all dome-shaped members and the corners are formed with curved surfaces, the concentration of the electric field can be alleviated and dielectric breakdown is caused. It is hard to do. The fixing sleeve 38 may be connected to the tip of the former 1 by welding or the like in addition to the compression connection.

このような超電導導体層2と常温側導体17の接続作業に先立って、冷媒槽33内で絶縁層3の中間部を支持するために、絶縁層3の中間部外周に補強絶縁紙40をストレスコーン状に巻回すると共に、その円筒状部分の端部に、電界制御用のベルマウス41を立設しておく。そして、冷媒槽33の底部に立設したケーブルコア支持用の半円弧状の支持座42に、補強絶縁紙40の円筒状部分を載置して締結バンドb等によって固定する。これにより、ケーブルコア9の中間部を冷媒槽33内に安定に支持することができる。   Prior to the connection work between the superconducting conductor layer 2 and the room temperature side conductor 17, in order to support the intermediate portion of the insulating layer 3 in the refrigerant tank 33, the reinforcing insulating paper 40 is stressed on the outer periphery of the intermediate portion of the insulating layer 3. While being wound in a cone, a bell mouth 41 for electric field control is erected at the end of the cylindrical portion. Then, the cylindrical portion of the reinforcing insulating paper 40 is placed on the semicircular support 42 for supporting the cable core standing on the bottom of the refrigerant tank 33 and fixed by the fastening band b or the like. Thereby, the intermediate part of the cable core 9 can be stably supported in the refrigerant tank 33.

そして、冷媒槽33の一端側には、ケーブルコア9から段剥ぎされた超電導シールド層4が、冷媒35中に浸漬されるように垂下される他方の常温側導体(ブッシング)27の先端に近接する位置に臨んでおり、その超電導シールド層4が、編組線36を介して、常温側導体27と導通接続される。その常温側導体27は、真空槽32と冷媒槽33の上凸状の突出部分33cに貫通して配設され、その下半部分が冷媒35中に浸漬され、上半部分が、外部に突出して碍子によって覆われている。また、ケーブルコア9の導入側端末部は冷媒槽33の一端側の壁面33dに形成された導入孔に支持される。従って、端末容器31内に導入されたケーブルコア9は、先端部と中間部及び端末部の3点で安定に支持されることになる。   Then, on one end side of the refrigerant tank 33, the superconducting shield layer 4 stripped from the cable core 9 is close to the tip of the other room temperature side conductor (bushing) 27 that is suspended so as to be immersed in the refrigerant 35. The superconducting shield layer 4 is conductively connected to the room temperature side conductor 27 via the braided wire 36. The normal temperature side conductor 27 is disposed so as to penetrate through the upper convex protruding portion 33c of the vacuum chamber 32 and the refrigerant vessel 33, the lower half portion is immersed in the refrigerant 35, and the upper half portion protrudes to the outside. Covered with lions. Further, the introduction side terminal portion of the cable core 9 is supported by an introduction hole formed in the wall surface 33 d on one end side of the refrigerant tank 33. Therefore, the cable core 9 introduced into the terminal container 31 is stably supported at the three points of the tip portion, the intermediate portion, and the terminal portion.

このような構成によれば、超電導導体層2を、冷媒槽33内の冷媒35中に浸漬される常温側導体17の先端に近接する位置まで延長して、超電導導体層2と常温側導体17とを、編組線36で導通接続しているため、部品点数が大幅に削減され、その接続部における構成がきわめて簡素なものとなる。これにより、接続部の電気抵抗を顕著に低減化できるため、大容量の通電が可能となり、特に、低電圧大容量の直流送電に好適となるが、交流用としても使用することができる。また、このように超電導導体層2を、常温側導体17の先端に近接する位置まで延長していることによって、従来必要とされていたスリーブやエポキシユニット中心導体、マルチバンド等が不要になり、かつ、超電導導体層2を常温側導体17の先端と共に、冷媒槽33内で冷却できるため、補助接続箱も不要になる。従って、部品点数が大幅に削減され、構成の簡素化と著しいコンパクト化が可能となり、コスト安を実現することができる。また、本実施の形態では、単一の冷媒槽33内で、超電導シールド層4をも他方の常温側導体27の先端に導通接続しているため、冷媒35の循環経路を簡素化できると共に、全体として、顕著なコンパクト化を達成することができる。ちなみに、従来の補助接続箱23を含めた終端接続箱13の全長L0は、5〜7mであるのに対して(図5(b)参照)、この終端接続箱13に対応する超電導導体層側の接続部分が占める端末容器31の長さL1は、2〜3m以内に納めることができる。また、超電導シールド層側の接続部分の長さL2は、さらに短くなり、1〜2m以内に納めることができる。以上説明した実施の形態では、真空槽32内に、超電導導体層側接続部と超電導シールド層側接続部を収納する単一の冷媒槽33を設けているが、冷媒槽については、それぞれ独立に設けてもよい。その場合、相互に冷媒の流通が可能な連通状態としてもよい。   According to such a configuration, the superconducting conductor layer 2 is extended to a position close to the tip of the normal temperature side conductor 17 immersed in the refrigerant 35 in the refrigerant tank 33, so that the superconducting conductor layer 2 and the normal temperature side conductor 17 are extended. Are connected by the braided wire 36, the number of parts is greatly reduced, and the configuration at the connecting portion becomes extremely simple. As a result, the electrical resistance of the connecting portion can be remarkably reduced, so that large-capacity energization is possible. In particular, it is suitable for low-voltage and large-capacity DC power transmission, but can also be used for AC. Further, by extending the superconducting conductor layer 2 to a position close to the tip of the room temperature side conductor 17 in this way, a sleeve, an epoxy unit central conductor, a multiband, etc., which have been conventionally required, become unnecessary. In addition, since the superconducting conductor layer 2 can be cooled in the refrigerant tank 33 together with the tip of the room temperature side conductor 17, an auxiliary junction box is not required. Therefore, the number of parts is greatly reduced, the configuration can be simplified and the size can be significantly reduced, and the cost can be reduced. In the present embodiment, since the superconducting shield layer 4 is also conductively connected to the tip of the other normal temperature side conductor 27 in the single refrigerant tank 33, the circulation path of the refrigerant 35 can be simplified, Overall, significant compactness can be achieved. Incidentally, the total length L0 of the termination junction box 13 including the conventional auxiliary junction box 23 is 5 to 7 m (see FIG. 5B), whereas the superconducting conductor layer side corresponding to this termination junction box 13 is included. The length L1 of the terminal container 31 occupied by the connecting portion can be within 2 to 3 m. Further, the length L2 of the connecting portion on the superconducting shield layer side is further shortened and can be set within 1 to 2 m. In the embodiment described above, the single refrigerant tank 33 that accommodates the superconducting conductor layer side connection portion and the superconducting shield layer side connection portion is provided in the vacuum chamber 32. It may be provided. In that case, it is good also as a communication state which can distribute | circulate a refrigerant | coolant mutually.

また、端末容器31(冷媒槽33)内に導入された3心のケーブルコア9の各超電導シールド層4同士を接続し、共通の常温側導体27に導通接続する構成としてもよい。ケーブルコアの超電導シールド層同士を接続する構造の一例を図4に示す。この接続構造は、例えばY型のシールド接続用導体60を利用しており、シールド接続用導体60は、常温側導体27に接続される1つの共通端子61と、共通端子61と各超電導シールド層4とを接続する3つの結線部材62とを備える。共通端子61及び結線部材62は導電性材料からなり、共通端子61は円板状であり、結線部材62は編組線で構成されている。そして、各結線部材62の一端を各超電導シールド層4に半田接続し、各結線部材62の他端をそれぞれ共通端子61に半田接続することで、各超電導シールド層4同士がシールド接続用導体60で接続されることになる。   Moreover, it is good also as a structure which connects each superconducting shield layer 4 of the 3 core cable core 9 introduce | transduced in the terminal container 31 (refrigerant tank 33), and carries out conduction connection to the common normal temperature side conductor 27. FIG. An example of a structure for connecting the superconducting shield layers of the cable core is shown in FIG. This connection structure uses, for example, a Y-type shield connection conductor 60, and the shield connection conductor 60 includes one common terminal 61 connected to the room temperature side conductor 27, the common terminal 61, and each superconducting shield layer. 4 and three connection members 62 that connect the four. The common terminal 61 and the connection member 62 are made of a conductive material, the common terminal 61 has a disk shape, and the connection member 62 is formed of a braided wire. Then, one end of each connection member 62 is solder-connected to each superconducting shield layer 4, and the other end of each connection member 62 is solder-connected to the common terminal 61, so that each superconducting shield layer 4 is shield-connected conductor 60. Will be connected.

このような構成によれば、共通端子61を常温側導体27に導通接続することで、各超電導シールド層4がシールド接続用導体60を介して常温側導体27に導通接続されることになる。そのため、複数の超電導シールド層に対して常温側導体が一つで済むことになり、部品点数が大幅に削減され、構成の簡素化と著しいコンパクト化が可能となる。また、3心一括型の超電導ケーブルを三相交流送電に利用した場合、3つの超電導シールド層4に120°位相の異なる交流が流れ、各超電導シールド層4に流れる電流を合成した電流がシールド接続用導体60を介して常温側導体27に流れることになる。つまり、常温側導体には三相間のアンバランス分の電流が流れることになるため、常温側導体の電流容量を小さくすることができ、常温側導体のコンパクト化が可能となる。その他、結線部材62には、棒状体などを利用することもできる。   According to such a configuration, the common terminal 61 is conductively connected to the room temperature side conductor 27, whereby each superconducting shield layer 4 is conductively connected to the room temperature side conductor 27 via the shield connection conductor 60. Therefore, only one normal temperature side conductor is required for the plurality of superconducting shield layers, the number of components is greatly reduced, and the configuration can be simplified and significantly reduced in size. In addition, when a 3-core superconducting cable is used for three-phase AC power transmission, alternating currents with a 120 ° phase flow through the three superconducting shield layers 4, and the combined current flowing through each superconducting shield layer 4 is shield-connected. It flows to the room temperature side conductor 27 through the conductor 60. That is, since the current corresponding to the unbalance between the three phases flows through the normal temperature side conductor, the current capacity of the normal temperature side conductor can be reduced, and the normal temperature side conductor can be made compact. In addition, a rod-like body or the like can be used for the connecting member 62.

尚、本発明は、実施の形態に限定されることなく、発明の要旨を逸脱しない限りにおいて、適宜、必要に応じて改良、変更等は自由である。また、本発明の超電導ケーブルの接続構造は、超電導ケーブルの構成を特定するものではなく、3心一括型の他に、単心型の超電導ケーブル等にも適用することができる。また、その超電導ケーブルの超電導層を形成する素材は、Bi系超電導テープに限らずRE系超電導薄膜であってもよい。   It should be noted that the present invention is not limited to the embodiment, and can be freely improved, changed, etc. as necessary without departing from the gist of the invention. The superconducting cable connection structure of the present invention does not specify the configuration of the superconducting cable, and can be applied to a single-core superconducting cable or the like in addition to the three-core type. The material for forming the superconducting layer of the superconducting cable is not limited to the Bi-based superconducting tape but may be a RE-based superconducting thin film.

本発明の超電導ケーブルの端末接続構造は、電気抵抗の低減化とコンパクト化が達成されるので、低電圧大容量の直流送電用として好適に採用することができる。   Since the terminal connection structure of the superconducting cable of the present invention achieves reduction in electrical resistance and compactness, it can be suitably employed for low voltage and large capacity DC power transmission.

1 フォーマ 2 超電導層(超電導導体層,内側超電導層)
3 絶縁層 4 超電導層(超電導シールド層,外側超電導層)
5 冷媒流通路 6 内管 7 外管 8 防食層
9 ケーブルコア 10 超電導ケーブル
11 接続部材 12 エポキシユニット中心導体
13 終端接続箱(低温容器) 14 冷媒槽 15 真空断熱層
16 接続部 17,27 常温側導体(ブッシング)
19 エポキシユニット 19a フランジ 20 補強絶縁紙
21 縦壁 23 補助接続箱 24 冷媒槽 25 真空断熱槽
J 接続部 m マルチバンド C 電界シールドカバー
31 端末容器 32 真空槽 33 冷媒槽
33a,33d 壁面 33b,33c 突出部分
35 冷媒 36 編組線 37 絶縁体 38 固定用スリーブ
40 補強絶縁紙 41 ベルマウス 42 支持座 b バンド
45 導入口 46 排出口
50 取付座 51 固定金具 50m,51m 開口部
52 挿通孔 53 筒状部 54 接着剤 55 ボルト
60 シールド接続用導体 61 共通端子 62 結線部材
1 former 2 superconducting layer (superconducting conductor layer, inner superconducting layer)
3 Insulating layer 4 Superconducting layer (superconducting shield layer, outer superconducting layer)
DESCRIPTION OF SYMBOLS 5 Refrigerant flow path 6 Inner pipe 7 Outer pipe 8 Corrosion prevention layer 9 Cable core 10 Superconducting cable 11 Connection member 12 Epoxy unit center conductor 13 Terminal connection box (cold container) 14 Refrigerant tank 15 Vacuum heat insulation layer 16 Connection part 17, 27 Room temperature side Conductor (Bushing)
19 Epoxy unit 19a Flange 20 Reinforced insulating paper 21 Vertical wall 23 Auxiliary connection box 24 Refrigerant tank 25 Vacuum heat insulating tank J Connection part m Multiband C Electric field shield cover 31 Terminal container 32 Vacuum tank 33 Refrigerant tank 33a, 33d Wall surface 33b, 33c Projection Part 35 Refrigerant 36 Braided wire 37 Insulator 38 Fixing sleeve 40 Reinforced insulating paper 41 Bell mouth 42 Support seat b Band 45 Inlet 46 Discharge outlet 50 Mounting seat 51 Fixing bracket 50m, 51m Opening 52 Insertion hole 53 Cylindrical part 54 Adhesive 55 Bolt 60 Conductor for shield connection 61 Common terminal 62 Connection member

Claims (4)

超電導ケーブルの超電導層と常温側導体との接続部を、冷媒槽内に設けた超電導ケーブルの端末接続構造であって、
前記超電導層は、Bi系超電導テープ又はRE系超電導薄膜によって形成されており、
前記超電導層の外周に絶縁層を有し、
前記冷媒槽の一端面の壁面から超電導ケーブルのケーブルコアが導入され、
前記超電導ケーブルのケーブルコアから引き出された前記超電導層が、冷媒槽内の冷媒中に浸漬される前記常温側導体の先端に近接する位置まで延長され、前記常温側導体と、前記超電導層と、が冷媒中で電気的に接続され
前記超電導ケーブルのケーブルコアから引き出されたフォーマの先端が、絶縁体を介して、前記冷媒槽の他端側の壁面に固定され、
前記冷媒槽内で前記接続部に至るまでの前記絶縁層の中間部外周に、補強絶縁紙がストレスコーン状に巻回されている超電導ケーブルの端末接続構造。
The connection part of the superconducting layer of the superconducting cable and the normal temperature side conductor is a terminal connection structure of the superconducting cable provided in the refrigerant tank,
The superconducting layer is formed of a Bi-based superconducting tape or a RE-based superconducting thin film,
Having an insulating layer on the outer periphery of the superconducting layer;
The cable core of the superconducting cable is introduced from the wall surface of the one end surface of the refrigerant tank,
The superconducting layer drawn from the cable core of the superconducting cable is extended to a position close to the distal end of the room-temperature side conductor is immersed in the refrigerant in the refrigerant tank, and the room-temperature side conductor, and said superconducting layer, Are electrically connected in the refrigerant ,
The front end of the former drawn out from the cable core of the superconducting cable is fixed to the wall surface on the other end side of the refrigerant tank via an insulator,
The intermediate portion outer periphery of the insulating layer up to the connecting portion in the refrigerant tank, the terminal connection structure for superconducting cables reinforcing insulating paper is wound into the stress cone shape.
前記超電導層と、前記常温側導体と、が編組線により接続される請求項1に記載の超電導ケーブルの端末接続構造。 The superconducting layer and the normal temperature side conductor and, but the terminal connection structure of a superconducting cable according to Motomeko 1 that will be connected by braided wire. 前記常温側導体と前記超電導層との前記接続部は、電界シールド層によって覆われる請求項1または請求項2に記載の超電導ケーブルの端末接続構造。 The connecting portion between the superconducting layer and the normal temperature side conductor, a superconducting terminal connection structure of a cable according to Motomeko 1 or claim 2 Ru covered by the electric field shield layer. 前記冷媒槽内に導入された複数のケーブルコアの各超電導シールド層同士を接続するシールド接続用導体を備え、
前記各超電導シールド層が、シールド接続用導体を介して共通の常温側導体と電気的に接続される請求項1〜請求項3の何れか1項に記載の超電導ケーブルの端末接続構造。
Includes a shield connection conductor for connecting the respective superconducting shield layer between the plurality of cable cores introduced into the refrigerant tank,
Wherein each superconducting shield layer, a superconducting terminal connection structure of a cable according to any one of Motomeko 1 to claim 3, via the shield connection conductor Ru is common room-temperature side conductor electrically connected.
JP2011285910A 2007-11-14 2011-12-27 Superconducting cable terminal connection structure Expired - Fee Related JP5351249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285910A JP5351249B2 (en) 2007-11-14 2011-12-27 Superconducting cable terminal connection structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007295987 2007-11-14
JP2007295987 2007-11-14
JP2011285910A JP5351249B2 (en) 2007-11-14 2011-12-27 Superconducting cable terminal connection structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008277221A Division JP4927804B2 (en) 2007-11-14 2008-10-28 Superconducting cable terminal connection structure

Publications (2)

Publication Number Publication Date
JP2012120435A JP2012120435A (en) 2012-06-21
JP5351249B2 true JP5351249B2 (en) 2013-11-27

Family

ID=40871305

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008277221A Expired - Fee Related JP4927804B2 (en) 2007-11-14 2008-10-28 Superconducting cable terminal connection structure
JP2011285910A Expired - Fee Related JP5351249B2 (en) 2007-11-14 2011-12-27 Superconducting cable terminal connection structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008277221A Expired - Fee Related JP4927804B2 (en) 2007-11-14 2008-10-28 Superconducting cable terminal connection structure

Country Status (1)

Country Link
JP (2) JP4927804B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067724B2 (en) * 2010-03-12 2012-11-07 住友電気工業株式会社 Superconducting cable transmission line intermediate connection structure and superconducting cable transmission line laying method
CN102468539B (en) * 2010-11-16 2013-07-17 北京云电英纳超导电缆有限公司 Connection structure of cold-insulation superconducting cable shielding layer current lead and assembly method thereof
WO2012102340A1 (en) * 2011-01-27 2012-08-02 古河電気工業株式会社 Termination connection for superconductive cable
US9570214B2 (en) 2011-02-08 2017-02-14 Furukawa Electric Co., Ltd. Superconducting cable line
KR101798659B1 (en) * 2011-04-27 2017-11-16 엘에스전선 주식회사 Super-conducting cable device
JP5742021B2 (en) * 2011-07-21 2015-07-01 住友電気工業株式会社 Connection unit and connection structure
JP5696200B1 (en) * 2013-11-05 2015-04-08 昭和電線ケーブルシステム株式会社 Cryogenic cable termination connection
JP6245442B2 (en) * 2014-03-13 2017-12-13 住友電気工業株式会社 Superconducting cable connection structure and manufacturing method of superconducting cable connection structure
JP6444229B2 (en) * 2015-03-19 2018-12-26 昭和電線ケーブルシステム株式会社 Cryogenic cable termination connection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829387U (en) * 1971-08-11 1973-04-11
JPS4880079A (en) * 1972-01-31 1973-10-26
IT1281651B1 (en) * 1995-12-21 1998-02-20 Pirelli Cavi S P A Ora Pirelli TERMINAL FOR CONNECTING A SUPERCONDUCTIVE POLYPHASE CABLE TO A ROOM TEMPERATURE ELECTRICAL SYSTEM
JPH1173824A (en) * 1997-08-28 1999-03-16 Tokyo Electric Power Co Inc:The Superconducting cable terminating part
JP3914659B2 (en) * 1999-05-28 2007-05-16 住友電気工業株式会社 Superconducting cable connection box
JP4593933B2 (en) * 2004-01-22 2010-12-08 住友電気工業株式会社 Connection structure of multiphase superconducting cable
JP4096360B2 (en) * 2004-02-17 2008-06-04 住友電気工業株式会社 Superconducting cable terminal structure and superconducting cable line
JP2005253204A (en) * 2004-03-04 2005-09-15 Sumitomo Electric Ind Ltd Terminal structure of polyphase superconducting cable
JP4273525B2 (en) * 2004-05-27 2009-06-03 住友電気工業株式会社 Terminal structure of superconducting equipment
JP4784852B2 (en) * 2005-01-12 2011-10-05 住友電気工業株式会社 Cryogenic container for superconducting equipment

Also Published As

Publication number Publication date
JP2009140912A (en) 2009-06-25
JP4927804B2 (en) 2012-05-09
JP2012120435A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5351249B2 (en) Superconducting cable terminal connection structure
JP4033509B2 (en) Terminal for connecting a superconducting multiphase cable to an electrical device at room temperature
JP5711285B2 (en) Termination device
US20090197769A1 (en) Electric power feed structure for superconducting apparatus
EP1732190B1 (en) Terminal structure of multiphase superconducting cable
KR101011234B1 (en) A connection arrangement for superconductor cable shields
JP4298450B2 (en) Superconducting cable terminal structure
JP6791782B2 (en) Terminal structure of superconducting equipment
JP2005251570A (en) Intermediate connection part of superconducting cable
JP2005210834A (en) Connection structure of polyphase superconductive cable
KR101510791B1 (en) A connection arrangement for two superconductor cables
JP2005032698A (en) Superconducting cable, and superconducting cable line using the same
EP3125387A1 (en) Terminal structure for superconducting cable
JP2009171743A (en) Terminal structure of superconducting layer, connecting structure and connecting method thereof
JP4273525B2 (en) Terminal structure of superconducting equipment
JP2013073831A (en) Superconducting cable line
JP2020028134A (en) Terminal structure of superconducting cable
JP4096360B2 (en) Superconducting cable terminal structure and superconducting cable line
JP4471095B2 (en) Branch power drawing structure
JP2020028132A (en) Terminal structure of superconducting apparatus
JP5454892B2 (en) Normal conductor lead-out structure
JP6891054B2 (en) Terminal structure of normal conductive connection member and superconducting cable
JP4544433B2 (en) Intermediate connection of superconducting cable
JPH103825A (en) Super conducting bus line
PL218725B1 (en) Single-phase junction box

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5351249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees