JP4273525B2 - Terminal structure of superconducting equipment - Google Patents

Terminal structure of superconducting equipment Download PDF

Info

Publication number
JP4273525B2
JP4273525B2 JP2004158321A JP2004158321A JP4273525B2 JP 4273525 B2 JP4273525 B2 JP 4273525B2 JP 2004158321 A JP2004158321 A JP 2004158321A JP 2004158321 A JP2004158321 A JP 2004158321A JP 4273525 B2 JP4273525 B2 JP 4273525B2
Authority
JP
Japan
Prior art keywords
refrigerant
conductor
superconducting
partition wall
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004158321A
Other languages
Japanese (ja)
Other versions
JP2005341737A (en
Inventor
正幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004158321A priority Critical patent/JP4273525B2/en
Publication of JP2005341737A publication Critical patent/JP2005341737A/en
Application granted granted Critical
Publication of JP4273525B2 publication Critical patent/JP4273525B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、常温側と極低温側との間に配置され、超電導ケーブルなどの超電導機器による大容量送電を可能とする超電導機器の端末構造に関するものである。   The present invention relates to a terminal structure of a superconducting device that is arranged between a room temperature side and a cryogenic side and enables large-capacity power transmission by a superconducting device such as a superconducting cable.

超電導機器の端末構造として、例えば、図5に示す構造のものが知られている(特許文献1参照)。図5は、従来の超電導機器の端末構造を示す概略構成図である。この端末構造は、超電導ケーブルの端部と常温側の常電導導体の端部とを導体部で接続している。例えば、図5に示すように、超電導ケーブルの端部に接続用導体210を接続し、この接続用導体210の端部とジョイント部270を介して導体部220を接続したものがある。   As a terminal structure of a superconducting device, for example, a structure shown in FIG. 5 is known (see Patent Document 1). FIG. 5 is a schematic configuration diagram showing a terminal structure of a conventional superconducting device. In this terminal structure, the end portion of the superconducting cable and the end portion of the normal conducting conductor on the room temperature side are connected by the conductor portion. For example, as shown in FIG. 5, there is one in which a connecting conductor 210 is connected to an end portion of a superconducting cable, and an end portion of the connecting conductor 210 is connected to a conductor portion 220 via a joint portion 270.

この端末構造は、接続用導体210と導体部220の一端(接続用導体210との接続側)とが配置される冷媒槽230と、冷媒槽230を覆う真空容器240と、真空容器240の常温側に突設される碍管250とを具える。   This terminal structure includes a refrigerant tank 230 in which the connection conductor 210 and one end of the conductor portion 220 (connection side to the connection conductor 210) are disposed, a vacuum container 240 that covers the refrigerant tank 230, and the room temperature of the vacuum container 240. And a soot tube 250 protruding from the side.

接続用導体210と導体部220は、通常、銅やアルミニウムなどの常電導材料にて形成され、導体部220は冷媒槽230から真空容器240を介して碍管250に亘って配置される。なお、真空容器240により、冷媒槽230の周りに断熱層を形成している。導体部220は、FRPなどの絶縁材からなるブッシング260内に配置される。   The connection conductor 210 and the conductor portion 220 are usually formed of a normal conductive material such as copper or aluminum, and the conductor portion 220 is disposed from the refrigerant tank 230 through the vacuum vessel 240 to the soot tube 250. Note that a heat insulating layer is formed around the refrigerant tank 230 by the vacuum container 240. The conductor part 220 is disposed in a bushing 260 made of an insulating material such as FRP.

冷媒槽230には、ジョイント部270が配置されるとともに、このジョイント部270に接続される接続用導体210と導体部220の低温側とを冷却する液体窒素などの液冷媒が満たされる。碍管250は、導体部220の他端側が収納され、絶縁油などの絶縁流体が充填される。   The refrigerant tank 230 is provided with a joint portion 270 and filled with a liquid refrigerant such as liquid nitrogen that cools the connecting conductor 210 connected to the joint portion 270 and the low temperature side of the conductor portion 220. The soot tube 250 accommodates the other end side of the conductor portion 220 and is filled with an insulating fluid such as insulating oil.

特開2002-238144号公報JP 2002-238144 JP

超電導ケーブルは、液体窒素などの液冷媒により極低温(例えば、約77K)に冷却することで超電導導体部分を超電導状態として抵抗を小さくし、大電流送電を可能にしている。一方、超電導ケーブル線路の外部にある電力機器は常温で利用されているため、超電導ケーブルの端部において極低温から常温に電流を引き出して電力機器などに電力の供給が行われたり、常電導側から超電導ケーブル側に電力が供給されたりする。   The superconducting cable is cooled to a very low temperature (for example, about 77 K) with a liquid refrigerant such as liquid nitrogen, thereby reducing the resistance by making the superconducting conductor portion in a superconducting state and enabling large current transmission. On the other hand, since the power equipment outside the superconducting cable line is used at room temperature, power is supplied to the power equipment by drawing current from the cryogenic temperature to the room temperature at the end of the superconducting cable. Electric power is supplied to the superconducting cable side.

ところが、超電導ケーブル線路の外部は常温であるため、超電導の状態で電流を引き出すことはできず、常電導材料からなる冷却された接続用導体210および導体部220を介して常温側に電流を引き出すようにしている。   However, since the outside of the superconducting cable line is at room temperature, current cannot be drawn out in the superconducting state, and current is drawn out to the room temperature side through the cooled connection conductor 210 and conductor part 220 made of normal conducting material. I am doing so.

従って、超電導ケーブルと常温側とを接続する接続用導体210および導体部220は、超電導ケーブルと同等の電力を常温側に供給するべく、大電流が流されることになる。そこで、導体部220(常電導導体)の断面積(外径)を大きくし、かつ、液冷媒で導体部220を冷却することにより、抵抗を小さくして、常電導導体で接続することによる常温側と超電導ケーブル側の温度差から生ずる熱伝達と、常電導導体に電流が流れることによるジュール損との和を小さくするように工夫されている。   Therefore, a large current is passed through the connecting conductor 210 and the conductor portion 220 that connect the superconducting cable and the room temperature side in order to supply electric power equivalent to that of the superconducting cable to the room temperature side. Therefore, by increasing the cross-sectional area (outer diameter) of the conductor portion 220 (normal conductive conductor) and cooling the conductor portion 220 with liquid refrigerant, the resistance is reduced and the normal temperature is obtained by connecting with the normal conductive conductor. It is devised to reduce the sum of the heat transfer resulting from the temperature difference between the cable side and the superconducting cable side and the Joule loss due to the current flowing through the normal conductor.

さらに、従来の超電導機器の端末構造では、導体部220を低温部から常温部に引出すために冷媒槽230および真空容器240にはこの導体部220を貫通させるために貫通部が形成されている。そして、導体部220には、高電圧が印加されることから、冷媒槽230および真空容器240を貫通させる際に、絶縁を確保する必要があり、そのため、ゴムやFRPなどの絶縁部材で構成されるブッシング260の中に導体部が配置される。   Further, in the conventional terminal structure of a superconducting device, a penetration part is formed in the refrigerant tank 230 and the vacuum vessel 240 so as to penetrate the conductor part 220 in order to draw the conductor part 220 from the low temperature part to the normal temperature part. Since a high voltage is applied to the conductor portion 220, it is necessary to ensure insulation when penetrating the refrigerant tank 230 and the vacuum vessel 240. Therefore, the conductor portion 220 is made of an insulating member such as rubber or FRP. A conductor portion is disposed in the bushing 260.

上記端末構造では、冷媒槽内の液冷媒は、通常は冷媒槽の外部に設ける冷却装置との間を循環させながら冷却装置で冷却することで冷媒の温度を所定の温度に維持するように制御している。   In the above terminal structure, the liquid refrigerant in the refrigerant tank is controlled so as to maintain the temperature of the refrigerant at a predetermined temperature by cooling with the cooling apparatus while circulating between the cooling apparatus provided outside the refrigerant tank. is doing.

さらに、冷媒槽内では、導体部の低温側端部や、接続用導体に電圧が印加されるため、冷媒槽の内部において所定の電界以下になるように導体部の端部や接続用導体を冷媒槽の容器から離隔することにより所定の絶縁を確保している。   Furthermore, since a voltage is applied to the low temperature side end of the conductor part and the connection conductor in the refrigerant tank, the end of the conductor part and the connection conductor are arranged so that the electric field is below a predetermined electric field inside the refrigerant tank. Predetermined insulation is ensured by separating from the container of the refrigerant tank.

しかしながら、上記端末構造では、冷媒槽の液冷媒は、冷却装置で循環させているため、冷媒槽内に冷媒が流れる部分が生じる。この冷媒の循環などにより冷媒槽内で冷媒の移動が生じると、電気絶縁強度が低下し、場合によっては放電してしまう虞がある。   However, in the terminal structure, since the liquid refrigerant in the refrigerant tank is circulated by the cooling device, there is a portion where the refrigerant flows in the refrigerant tank. If the refrigerant moves in the refrigerant tank due to the circulation of the refrigerant or the like, the electric insulation strength is lowered, and in some cases, there is a risk of discharging.

特に、直流送電用として超電導ケーブルを使用する場合、端末においては、電荷が冷媒槽内の冷媒に蓄積しやすく、冷媒の循環により冷媒の移動が生じると、直流電界内にある冷媒は電気絶縁強度が低下して放電する虞が大きい。   In particular, when a superconducting cable is used for DC power transmission, at the terminal, electric charge is likely to accumulate in the refrigerant in the refrigerant tank, and if the refrigerant moves due to the circulation of the refrigerant, the refrigerant in the DC electric field has an electric insulation strength. There is a high possibility that the discharge will decrease.

そこで、本発明の目的は、冷媒槽内における冷媒を流通させる部分にかかる電界をできるだけ小さくして、放電を防止することができる超電導機器の端末構造を提供することにある。   Accordingly, an object of the present invention is to provide a terminal structure of a superconducting device capable of preventing electric discharge by minimizing an electric field applied to a portion through which a refrigerant flows in a refrigerant tank.

本発明は、超電導ケーブルと常温側との間の電力の送電を行うために、超電導ケーブルと常温側とを接続するための超電導機器の端末構造であり、直流送電用、または、交流送電用として用いることができる。   The present invention is a terminal structure of a superconducting device for connecting a superconducting cable and a room temperature side in order to transmit power between the superconducting cable and a room temperature side, for direct current power transmission or for AC power transmission. Can be used.

本発明の超電導機器の端末構造は、冷媒が貯留される冷媒槽と、一端が冷媒槽内に配置され、他端が常温側に配置される導体部と、冷媒槽内に配置される導体部の周囲に形成され、冷媒の流通が緩和される流通状態緩和部と、流通状態緩和部の外周に形成され、冷媒を流通させる冷媒流通部とを具える。そして、流通状態緩和部と冷媒流通部との境界を接地している。   The terminal structure of the superconducting device of the present invention includes a refrigerant tank in which a refrigerant is stored, a conductor part having one end arranged in the refrigerant tank and the other end arranged on the normal temperature side, and a conductor part arranged in the refrigerant tank. And a refrigerant distribution part that is formed on the outer periphery of the refrigerant distribution part and that circulates the refrigerant. And the boundary of a distribution state relaxation part and a refrigerant | coolant distribution part is earth | grounded.

導体部は、例えば、常温側の常電導導体と一端が接続され、他端が冷媒槽内に配置される。導体部における冷媒槽側端部は、超電導ケーブルの超電導導体と接続される接続用導体と接続するようにしてもよいし、接続用導体を介さずに超電導ケーブルの超電導導体に接続するようにしてもよい。   For example, one end of the conductor portion is connected to the normal conducting conductor on the room temperature side, and the other end is disposed in the refrigerant tank. The refrigerant tank side end portion of the conductor portion may be connected to a connecting conductor connected to the superconducting conductor of the superconducting cable, or may be connected to the superconducting conductor of the superconducting cable without passing through the connecting conductor. Also good.

なお、導体部と接続用導体との接続は、接続用導体における導体部との接続側を編組導体にして、この編組導体の端部を導体部に接続することが好ましい。また、導体部は、その周りにブッシングを設ける構成とすることが好ましい。   Note that the connection between the conductor portion and the connection conductor is preferably a braided conductor on the connection conductor side of the connection conductor, and the end portion of the braided conductor is connected to the conductor portion. Moreover, it is preferable that a conductor part is set as the structure which provides a bushing around it.

前記接続用導体は、超電導導体でも常電導導体でもよい。常電導導体とする場合は、銅やアルミニウムなどの常電導材料にて形成する。また、超電導導体の場合は、例えば、Bi2223系超電導材料からなる線材を中実フォーマ上に螺旋状に巻回した構成や、中空フォーマ上に同線材を巻き付けた構成などが挙げられる。   The connecting conductor may be a superconducting conductor or a normal conducting conductor. When a normal conductive conductor is used, it is formed of a normal conductive material such as copper or aluminum. In the case of a superconducting conductor, for example, a configuration in which a wire made of a Bi2223 series superconducting material is spirally wound on a solid former, a configuration in which the same wire is wound on a hollow former, and the like can be given.

導体部の周りにはブッシングが配置されており、冷媒槽の内部から、本体ケースから突出する位置に至るまで設けられている。このブッシングは、導体部の外周を直接絶縁材料で覆うようにして構成してもよいし、ステンレスなどの金属筒の外周に絶縁材料を注型する等によって構成してもよい。   A bushing is disposed around the conductor portion, and is provided from the inside of the refrigerant tank to a position protruding from the main body case. This bushing may be configured such that the outer periphery of the conductor portion is directly covered with an insulating material, or may be configured by casting an insulating material on the outer periphery of a metal cylinder such as stainless steel.

絶縁材料としては、例えば、エチレンプロピレンゴムなどの絶縁ゴム材料や、強化繊維プラスチック(FRP)などが挙げられる。FRPは、絶縁性能がより高くて好ましい。   Examples of the insulating material include an insulating rubber material such as ethylene propylene rubber, reinforced fiber plastic (FRP), and the like. FRP is preferable because it has higher insulation performance.

冷媒槽には、導体部の一部が配置される。例えば、導体部と、その導体部の一部の周りに形成されるブッシングと、導体部に接続される接続用導体とが配置される。そして、冷媒槽内に配置される導体部、ブッシング、接続用導体を冷媒で冷却するようになっている。冷媒槽に貯えられる冷媒としては、例えば液体窒素が挙げられる。   A part of the conductor portion is disposed in the refrigerant tank. For example, a conductor part, a bushing formed around a part of the conductor part, and a connecting conductor connected to the conductor part are arranged. And the conductor part, bushing, and connection conductor which are arrange | positioned in a refrigerant tank are cooled with a refrigerant | coolant. An example of the refrigerant stored in the refrigerant tank is liquid nitrogen.

冷媒槽内の冷媒は、冷却装置で循環冷却できるようにすることが好ましい。冷却装置は本体ケース外部に設けられ、冷媒槽の冷媒を、冷媒供給通路を介して本体ケース外部に取り出し、冷却装置で冷却した後に冷媒供給通路を介して冷媒槽内に戻されるように循環させる。   It is preferable that the refrigerant in the refrigerant tank can be circulated and cooled by a cooling device. The cooling device is provided outside the main body case, and the refrigerant in the refrigerant tank is taken out of the main body case through the refrigerant supply passage, cooled by the cooling device, and then circulated so as to be returned to the refrigerant tank through the refrigerant supply passage. .

冷媒槽内には、冷媒槽の壁部と導体部との間において、冷媒槽内に配置される導体部の周囲に形成され、冷媒の流通が緩和される流通状態緩和部と、流通状態緩和部の外周に形成され、冷媒を流通させる冷媒流通部とを有している。そして、流通状態緩和部と冷媒流通部との境界を接地している。接地は、例えば、流通状態緩和部の最外部を導電材料で覆い、この導電材料の部分を接地することにより行うことができる。この接地により、電圧印加時に流通状態緩和部にかかる電界よりも、冷媒流通部にかかる電界を小さくできる。   In the refrigerant tank, between the wall part of the refrigerant tank and the conductor part, a circulation state relaxation part that is formed around the conductor part disposed in the refrigerant tank and that relaxes the circulation of the refrigerant, and the circulation state relaxation And a refrigerant circulation part that circulates the refrigerant. And the boundary of a distribution state relaxation part and a refrigerant | coolant distribution part is earth | grounded. The grounding can be performed, for example, by covering the outermost part of the distribution state relaxation portion with a conductive material and grounding the conductive material portion. By this grounding, the electric field applied to the refrigerant circulation part can be made smaller than the electric field applied to the circulation state relaxation part during voltage application.

流通状態緩和部と冷媒流通部の具体的構成としては、例えば、冷媒槽内に、流通状態緩和部と冷媒流通部とに区画する区画壁を設けて、導体部が配置される区画壁の内側を流通状態緩和部とし、区画壁の外側を冷媒流通部とすることができる。この場合、区画壁を接地する。   As specific configurations of the distribution state relaxation unit and the refrigerant distribution unit, for example, a partition wall that partitions the distribution state relaxation unit and the refrigerant distribution unit in the refrigerant tank is provided, and the inside of the partition wall in which the conductor unit is disposed Can be used as a distribution state relaxation part, and the outer side of a partition wall can be used as a refrigerant distribution part. In this case, the partition wall is grounded.

この区画壁により、区画壁の内側に形成される空間に貯留される冷媒は流れが生じ難くなる。この区画壁によって、内側の空間のみで電界設計を行えばよくなる。なお、この区画壁とともに、後記するように導体部の周りに絶縁体を配置させたり、導体部として絶縁体を有する接続用ケーブルを用いたりして、流通状態緩和部を形成することもできる。   This partition wall makes it difficult for the refrigerant stored in the space formed inside the partition wall to flow. With this partition wall, the electric field design may be performed only in the inner space. In addition, with this partition wall, a distribution | circulation state relaxation part can also be formed by arrange | positioning an insulator around a conductor part so that it may mention later, or using the connection cable which has an insulator as a conductor part.

区画壁は、流通状態緩和部と冷媒流通部とを連通状態に区画するようにしてもよいし、流通状態緩和部と冷媒流通部とを非連通状態に区画するようにしてもよい。連通状態に区画する場合には、冷媒槽内における区画の内側では冷媒の流れがほとんど生じない程度に区画壁の内側と外側を連通する連通部を形成することができる。連通部を形成する場合には、内側空間内の冷媒も流れがほとんど生じない程度で連通部を介して徐々に冷媒の冷却を行うことができる。   The partition wall may partition the circulation state relaxation part and the refrigerant circulation part in a communication state, or may partition the circulation state relaxation part and the refrigerant circulation part in a non-communication state. In the case of partitioning in the communication state, a communication portion that communicates the inside and the outside of the partition wall can be formed to such an extent that a refrigerant flow hardly occurs inside the partition in the coolant tank. In the case where the communication portion is formed, the refrigerant can be gradually cooled through the communication portion so that the refrigerant in the inner space hardly flows.

区画壁はステンレスなどの導体で形成し、区画壁を接地することより、流通状態緩和部の冷媒の流れが緩和されて電界の乱れが無くなるし、電圧印加時に流通状態緩和部にかかる電界よりも、冷媒流通部にかかる電界を小さくできて、放電を防止できる。   The partition wall is formed of a conductor such as stainless steel, and grounding the partition wall relaxes the flow of the refrigerant in the circulation state relaxation part and eliminates the electric field disturbance. The electric field applied to the refrigerant circulation part can be reduced, and discharge can be prevented.

流通状態緩和部と冷媒流通部とを非連通状態に区画する場合には、流通状態緩和部と冷媒流通部のそれぞれの冷媒圧力を圧力制御機構で制御することが好ましい。   When the distribution state relaxation unit and the refrigerant distribution unit are partitioned in a non-communication state, it is preferable to control the respective refrigerant pressures of the distribution state relaxation unit and the refrigerant distribution unit with a pressure control mechanism.

流通状態緩和部と冷媒流通部とを非連通状態に区画して、冷媒圧力を制御する場合には、流通状態緩和部が冷媒流通部よりも高圧となるように制御する。流通状態緩和部の方が高圧となれば、流通状態緩和部の冷媒の沸点を冷媒流通部よりも上げられ(例えば77K→85Kなど)、導体の冷却により冷媒の温度が上昇しても冷媒が気化することを防止できる。流通状態緩和部の冷媒の温度より冷媒流通部の冷媒の温度を低くなるように温度勾配をつけることができるので、流通状態緩和部の冷却効果が向上する。   When the distribution state relaxation unit and the refrigerant distribution unit are partitioned into a non-communication state and the refrigerant pressure is controlled, the distribution state relaxation unit is controlled to have a higher pressure than the refrigerant distribution unit. If the distribution state relaxation unit is at a higher pressure, the boiling point of the refrigerant in the distribution state relaxation unit can be higher than that of the refrigerant distribution unit (for example, 77K → 85K). Vaporization can be prevented. Since the temperature gradient can be set so that the temperature of the refrigerant in the refrigerant circulation portion is lower than the temperature of the refrigerant in the circulation state relaxation portion, the cooling effect of the circulation state relaxation portion is improved.

流通状態緩和部の他の構成としては、例えば、冷媒槽内に配置される導体部の周囲に冷媒が含浸された絶縁体を配置させることにより構成することができる。この場合、冷媒槽内に配置されている導体部は、その外周における前記ブッシングを設けていない部分の周囲に絶縁体を配置させることが好ましい。   As another configuration of the circulation state relaxation portion, for example, it can be configured by arranging an insulator impregnated with a refrigerant around a conductor portion arranged in the refrigerant tank. In this case, it is preferable to arrange an insulator around the portion where the bushing is not provided on the outer periphery of the conductor portion arranged in the refrigerant tank.

導体部をこのように構成する場合、具体的には、前記ブッシングの電圧が印加される部分から、ブッシングが設けられていない導体部の全てを覆うように絶縁体を形成することが好ましい。このとき、導体部は、冷媒槽のケーブル側開口部に至る範囲まで、例えば、導体部と接続される接続用導体まで至るように、ブッシングから導体部、接続用導体まで連続するように絶縁体を配置させることが好ましい。   When the conductor portion is configured in this way, specifically, it is preferable to form an insulator so as to cover all the conductor portions where the bushing is not provided from the portion to which the bushing voltage is applied. At this time, the insulator is continuous from the bushing to the conductor part and the connecting conductor so that the conductor part reaches the cable side opening of the refrigerant tank, for example, the connecting conductor connected to the conductor part. Is preferably arranged.

絶縁体は、冷媒を含浸させられる絶縁紙を用い、導体部の低温側端部の外周に絶縁紙を巻き付ける。導体部に接続用導体を接続する場合には、この接続用導体の外周にも絶縁紙を巻き付けることが好ましい。絶縁紙としては、クラフト紙やPPLP(登録商標)などの半合成絶縁紙が挙げられる。   As the insulator, insulating paper impregnated with a refrigerant is used, and the insulating paper is wound around the outer periphery of the low-temperature side end portion of the conductor portion. When connecting the connection conductor to the conductor portion, it is preferable to wrap the insulating paper around the connection conductor. Examples of the insulating paper include semi-synthetic insulating paper such as kraft paper and PPLP (registered trademark).

さらに絶縁紙には冷媒を含浸させるとともに、この絶縁体の最外部に電極層を形成し、電極層を接地する。この場合、電極層の内側に流通状態緩和部が形成され、電極層の外側に冷媒流通部が形成される。このように絶縁体と電極層とを設け、この電極層を接地させることにより、この絶縁体中の冷媒は流れが起こり難くなり、絶縁体中の冷媒に電界が印加されても電界の乱れが起こらず、放電を確実に防止できる。   Further, the insulating paper is impregnated with a refrigerant, and an electrode layer is formed on the outermost part of the insulator, and the electrode layer is grounded. In this case, a circulation state relaxation part is formed inside the electrode layer, and a refrigerant circulation part is formed outside the electrode layer. By providing the insulator and the electrode layer in this manner and grounding the electrode layer, the refrigerant in the insulator is less likely to flow, and even if an electric field is applied to the refrigerant in the insulator, the electric field is disturbed. It does not occur and discharge can be reliably prevented.

他の流通状態緩和部の構成としては、導体部の少なくとも一部を、超電導導体と第一絶縁体を具える接続用ケーブルで構成するものが挙げられる。   Another example of the configuration of the circulation state mitigating unit is one in which at least a part of the conductor unit is configured by a connection cable including a superconducting conductor and a first insulator.

接続用ケーブルは、超電導ケーブルと同じ構造の超電導導体と第一絶縁体を具えることが好ましい。そして、接続用ケーブルの両端部に第二絶縁体を配置し、第一絶縁体と第二絶縁体に冷媒を含浸させて流通状態緩和部を構成する。   The connecting cable preferably includes a superconducting conductor having the same structure as the superconducting cable and a first insulator. And a 2nd insulator is arrange | positioned at the both ends of the cable for connection, and a 1st insulator and a 2nd insulator are impregnated with a refrigerant | coolant, and a distribution | circulation state relaxation part is comprised.

第二絶縁体は、例えば、ブッシングの電圧が印加される部分から接続用ケーブルの常温側端部に至る範囲と、接続用ケーブルの超電導ケーブル側端部付近とに配置する。   The second insulator is disposed, for example, in a range from a portion to which the bushing voltage is applied to the room temperature side end of the connection cable, and in the vicinity of the superconducting cable side end of the connection cable.

接続用ケーブルの超電導ケーブル側端部付近とは、例えば、接続用ケーブルにおける第一絶縁体のケーブル側端部から、冷媒槽のケーブル側開口部近くまでの範囲をいう。   The vicinity of the superconducting cable side end of the connection cable refers to, for example, a range from the cable side end of the first insulator in the connection cable to the vicinity of the cable side opening of the refrigerant tank.

超電導ケーブルと同じ構造の超電導導体とは、Bi2223系超電導材料からなる線材をフォーマ上に螺旋状に巻回した構成をいい、フォーマは、中空タイプでも中実タイプでもよい。絶縁体とは、超電導導体に前記した絶縁紙を巻き付けて構成される。   The superconducting conductor having the same structure as the superconducting cable means a configuration in which a wire made of Bi2223 series superconducting material is spirally wound on a former, and the former may be a hollow type or a solid type. The insulator is configured by winding the above-described insulating paper around a superconducting conductor.

この場合も、導体部の周りに形成される絶縁体に冷媒が含浸され、この絶縁体の最外部に電極層を形成する。この場合も、電極層の内側に流通状態緩和部が形成され、電極層の外側に冷媒流通部が形成される。この電極層を接地させているので、冷媒に電界が印加されても、流通状態緩和部においては、電界の乱れが生じず、安定した絶縁強度が得られ、放電を確実に防止できる。   Also in this case, the insulator formed around the conductor is impregnated with the refrigerant, and an electrode layer is formed on the outermost part of the insulator. Also in this case, the circulation state relaxation part is formed inside the electrode layer, and the refrigerant circulation part is formed outside the electrode layer. Since the electrode layer is grounded, even if an electric field is applied to the refrigerant, the electric field is not disturbed in the flow state relaxation portion, and a stable insulation strength can be obtained, and discharge can be reliably prevented.

なお、本発明の端末構造に接続される超電導ケーブルは、超電導導体を有するケーブルコアを1本具える単相超電導ケーブルとしてもよいし、同ケーブルコアを複数具える多相超電導ケーブルとしてもよい。後者の場合、例えば、3本のケーブルコアを撚り合わせて断熱管に収納された三心一括型の三相超電導ケーブルが挙げられる。公知の単相超電導ケーブル、多相超電導ケーブルでもよい。   The superconducting cable connected to the terminal structure of the present invention may be a single-phase superconducting cable having one cable core having a superconducting conductor or a multiphase superconducting cable having a plurality of the cable cores. In the latter case, for example, a three-core one-piece three-phase superconducting cable in which three cable cores are twisted and stored in a heat insulating tube can be used. A known single-phase superconducting cable or multiphase superconducting cable may be used.

本発明の超電導機器の端末構造は、前記したように、冷媒槽は、流通状態緩和部と、冷媒流通部とを具え、流通状態緩和部と冷媒流通部との境界を接地させ、冷媒流通部に電界がほとんどかからないように構成している。   As described above, in the terminal structure of the superconducting device of the present invention, the refrigerant tank includes a circulation state relaxation part and a refrigerant circulation part, and a boundary between the circulation state relaxation part and the refrigerant circulation part is grounded, and the refrigerant circulation part It is configured so that almost no electric field is applied.

その結果、流通状態緩和部により導体部から冷媒に電圧が印加されても導体部の周りの冷媒には流れがほとんど生じず、導体部の周りの冷媒による電気絶縁強度の低下を防ぐことができる。   As a result, even if a voltage is applied from the conductor part to the refrigerant by the flow state relaxation part, almost no flow occurs in the refrigerant around the conductor part, and a decrease in electrical insulation strength due to the refrigerant around the conductor part can be prevented. .

特に、直流送電用超電導機器の端末構造の場合、電荷が冷媒槽内の冷媒に蓄積しやすいので、冷媒の移動が生じると、直流電界内にある冷媒は電気絶縁強度が低下する。しかしながら、本発明によれば、流通状態緩和部に電荷を溜め、この流通状態緩和部と冷媒流通部の境界を接地しているので、放電を防止することができる。   In particular, in the case of the terminal structure of a DC power transmission superconducting device, electric charge is likely to accumulate in the refrigerant in the refrigerant tank, so that when the refrigerant moves, the electric insulation strength of the refrigerant in the DC electric field decreases. However, according to the present invention, electric charge is accumulated in the circulation state relaxation part, and the boundary between the circulation state relaxation part and the refrigerant circulation part is grounded, so that discharge can be prevented.

以下、本発明の実施の形態を図面に基づいて説明する。図1に本発明の第一実施形態を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a first embodiment of the present invention.

(第一実施形態)
図1は、第一実施形態に係る本発明超電導機器の端末構造を示す概略全体構成図であって、本実施形態は、直流送電用超電導機器の端末構造である。この端末構造は、接続用導体12と、導体部21と、本体ケース13と、碍管14とを具える。接続用導体12は、超電導ケーブル10に具えるケーブル用超電導導体101の端部と電気的に接続される。導体部21は、接続用導体12と常温側の常電導導体11とを接続する。本体ケース13は、真空容器を形成し、内部に冷媒槽3が配置される。碍管14は、本体ケース13に取り付けられている。
(First embodiment)
FIG. 1 is a schematic overall configuration diagram showing a terminal structure of a superconducting device of the present invention according to a first embodiment, and this embodiment is a terminal structure of a superconducting device for direct current power transmission. This terminal structure includes a connection conductor 12, a conductor portion 21, a main body case 13, and a soot tube 14. The connection conductor 12 is electrically connected to the end portion of the cable superconducting conductor 101 included in the superconducting cable 10. The conductor portion 21 connects the connecting conductor 12 and the normal conducting conductor 11 on the room temperature side. The main body case 13 forms a vacuum container, and the refrigerant tank 3 is disposed inside. The soot tube 14 is attached to the main body case 13.

本体ケース13と冷媒槽3は、ステンレスで形成されており、本体ケース13内を真空状態にすることにより、冷媒槽3の周りに断熱層を形成している。冷媒槽3の周りに形成される断熱層により、冷媒槽3の極低温状態を効率良く維持するようになっている。   The main body case 13 and the refrigerant tank 3 are made of stainless steel, and a heat insulating layer is formed around the refrigerant tank 3 by evacuating the main body case 13. The heat insulation layer formed around the refrigerant tank 3 efficiently maintains the cryogenic state of the refrigerant tank 3.

冷媒槽3内は、液体窒素などの冷媒が充填されており、本体ケース13の外部に設けるリザーバー44、ポンプ42、冷却装置41を冷媒供給通路43を介して冷媒槽3に連通させている。本実施形態では、まず、冷媒槽3の冷媒をポンプ42により本体ケース外部に取り出して一旦リザーバー44に溜め、このリザーバー44から冷媒を冷却装置41に供給する。そして、ポンプ42により冷却装置41で冷却された冷媒を冷媒槽3に戻すようにして、冷媒槽3内の冷媒を循環冷却するようになっている。   The refrigerant tank 3 is filled with a refrigerant such as liquid nitrogen, and a reservoir 44, a pump 42, and a cooling device 41 provided outside the main body case 13 are communicated with the refrigerant tank 3 through the refrigerant supply passage 43. In the present embodiment, first, the refrigerant in the refrigerant tank 3 is taken out of the main body case by the pump 42 and temporarily stored in the reservoir 44, and the refrigerant is supplied from the reservoir 44 to the cooling device 41. The refrigerant cooled by the cooling device 41 by the pump 42 is returned to the refrigerant tank 3, so that the refrigerant in the refrigerant tank 3 is circulated and cooled.

本実施形態では、導体部21の周りにはブッシング15が配設されており、導体部21の一端が冷媒槽3内に配置され、本体ケース13の断熱層を介して他端が碍管14の内部に挿入されるように配置されている。   In the present embodiment, a bushing 15 is disposed around the conductor portion 21, one end of the conductor portion 21 is disposed in the refrigerant tank 3, and the other end of the vertical tube 14 is interposed through the heat insulating layer of the main body case 13. It is arranged to be inserted inside.

ブッシング15は、導電性の金属筒の外周を絶縁性に優れるFRPなどの絶縁部材で覆って構成している。碍管14の内部に形成される空間には、絶縁油などの絶縁流体を充填させている。   The bushing 15 is configured by covering the outer periphery of a conductive metal cylinder with an insulating member such as FRP having excellent insulating properties. The space formed inside the soot tube 14 is filled with an insulating fluid such as insulating oil.

接続用導体12は、本実施形態では、銅やアルミニウムなどの常電導材料からなる常電導導体を用いている。なお、接続用導体12は、Bi2223系超電導材料からなる線材をフォーマ上に螺旋状に巻回した超電導導体を使用してもよい。   In this embodiment, the connecting conductor 12 is a normal conductive conductor made of a normal conductive material such as copper or aluminum. The connecting conductor 12 may be a superconducting conductor in which a wire made of Bi2223 series superconducting material is spirally wound on a former.

導体部21の冷媒槽内側端部には編組導体16を接続しており、編組導体16は、一端が接続用導体12の端部に接続され、他端が導体部21の端部に接続される。この編組導体16の周囲は、銅からなるシールドカバー17で覆われている。シールドカバー17の外面には、図示していないがクラフト紙などの絶縁紙が巻かれている。金属からなるシールドカバー17を直接冷媒に露出させることなく、絶縁材で覆うことにより、絶縁性能を向上させられ、絶縁強度を確保することができる。   The braided conductor 16 is connected to the inner end of the refrigerant tank of the conductor portion 21, and the braided conductor 16 has one end connected to the end of the connection conductor 12 and the other end connected to the end of the conductor portion 21. The The periphery of the braided conductor 16 is covered with a shield cover 17 made of copper. Although not shown, insulating paper such as kraft paper is wound around the outer surface of the shield cover 17. By covering the shield cover 17 made of metal with an insulating material without directly exposing it to the refrigerant, the insulating performance can be improved and the insulating strength can be ensured.

本実施形態で用いる超電導ケーブルは、例えば、1本のケーブルコア100を断熱管102に収納された単相超電導ケーブル10を用いている。このケーブル10の断熱管102は、図示していないが、外管と内管とからなる二重管の間に断熱材を配置して二重管内を真空引きした構成としている。ケーブルコアは、中心から順にフォーマ、超電導導体、電気絶縁層、シールド層、保護層を具える。   As the superconducting cable used in the present embodiment, for example, a single-phase superconducting cable 10 in which one cable core 100 is housed in a heat insulating tube 102 is used. Although not shown, the heat insulating tube 102 of the cable 10 has a structure in which a heat insulating material is disposed between a double tube composed of an outer tube and an inner tube, and the inside of the double tube is evacuated. The cable core includes a former, a superconducting conductor, an electrical insulating layer, a shield layer, and a protective layer in order from the center.

本実施形態では、超電導ケーブル10のケーブル用超電導導体101の端部を接続用導体12に接続し、この接続用導体12を編組導体16を介して導体部21の端部に接続するようになっている。なお、ケーブル用超電導導体101の端部と接続用導体12との接続は、冷媒槽3の外部のケーブル接続側冷媒槽53内で行っている。 In the present embodiment, the end of the superconducting conductor 101 for the cable of the superconducting cable 10 is connected to the connecting conductor 12, and the connecting conductor 12 is connected to the end of the conductor 21 via the braided conductor 16. ing. Note that the connection between the end of the cable superconducting conductor 101 and the connection conductor 12 is performed in the cable connection side refrigerant tank 53 outside the refrigerant tank 3.

接続用導体12の外周における、冷媒槽3のケーブル側開口部31に対向した位置には、絶縁機能と機械的強度とを有するエポキシユニット51を配置している。接続用導体12の外周におけるエポキシユニット51の長手方向の両側と、露出されたケーブルコア100のケーブル用超電導導体101の外周には、クラフト紙などの絶縁材52を配置させている。   An epoxy unit 51 having an insulating function and mechanical strength is disposed on the outer periphery of the connecting conductor 12 at a position facing the cable side opening 31 of the refrigerant tank 3. An insulating material 52 such as kraft paper is disposed on both sides of the epoxy unit 51 in the longitudinal direction on the outer periphery of the connecting conductor 12 and on the outer periphery of the cable superconducting conductor 101 of the exposed cable core 100.

そして、接続用導体12の超電導ケーブルとの接続側を液体窒素などの冷媒を充填させたケーブル接続側冷媒槽53に収納させ、ケーブル接続側冷媒槽53は、本体ケース13に収納させている。   The connection side of the connection conductor 12 to the superconducting cable is stored in a cable connection side refrigerant tank 53 filled with a refrigerant such as liquid nitrogen, and the cable connection side refrigerant tank 53 is stored in the main body case 13.

本実施形態では、冷媒槽3内に、導体部21と接続用導体12が内蔵される内側空間61と、この内側空間61の外側に設ける外側空間62とに区画する区画壁7を設けている。区画壁7は、冷媒槽3と同じステンレスにより形成されており、この区画壁7により内側空間61に流通状態緩和部8を形成し、外側空間62に冷媒流通部32を形成している。   In the present embodiment, a partition wall 7 is provided in the refrigerant tank 3 to be partitioned into an inner space 61 in which the conductor portion 21 and the connecting conductor 12 are incorporated, and an outer space 62 provided outside the inner space 61. . The partition wall 7 is formed of the same stainless steel as that of the refrigerant tank 3, and the partition wall 7 forms the circulation state relaxation portion 8 in the inner space 61 and the refrigerant circulation portion 32 in the outer space 62.

区画壁7は、導体部21の外周に配置されるブッシング15のテーパー部が終わり、直線部分となる外周面近くから、接続用導体12の冷媒槽3のケーブル側開口部31まで、ブッシング15と導体部21と接続用導体12とを覆うようにL型筒状に形成されている。そして、区画壁7は、ブッシング側開口部において、内側空間61と外側空間62を連通させる連通部71を形成している。この連通部71により、外側空間62と内側空間61との間で冷媒の流出入を行うようにしている。さらに、区画壁7の外面を接地している。   The partition wall 7 ends from the tapered portion of the bushing 15 disposed on the outer periphery of the conductor portion 21, and from the vicinity of the outer peripheral surface that becomes a straight portion to the cable side opening 31 of the refrigerant tank 3 of the connecting conductor 12, and the bushing 15 An L-shaped cylinder is formed so as to cover the conductor portion 21 and the connecting conductor 12. The partition wall 7 forms a communication portion 71 that allows the inner space 61 and the outer space 62 to communicate with each other at the bushing side opening. By this communication portion 71, the refrigerant flows in and out between the outer space 62 and the inner space 61. Further, the outer surface of the partition wall 7 is grounded.

区画壁7を設けることにより、区画壁7の内部に形成される内側空間61に貯留される冷媒は、冷媒の流れが生じ難くなり、また、外側空間62では、冷却装置41による循環冷却で冷媒を移動させながら冷却がなされる。   By providing the partition wall 7, the refrigerant stored in the inner space 61 formed inside the partition wall 7 is less likely to generate a refrigerant flow. In the outer space 62, the refrigerant is circulated and cooled by the cooling device 41. Cooling is carried out while moving.

このように、区画壁7を設け、この区画壁7の外面を接地しておくことにより、内側空間61の冷媒の流れが緩和されると、電界の乱れが抑制され、絶縁強度が確保される。この区画壁7で、内側空間61のみで電界設計を行えばよくなる。特に、本実施形態では、直流送電用端末であるので、電荷が冷媒槽内の冷媒に蓄積しやすいが、流通状態緩和部8に電荷を溜め、区画壁7を接地しているので、放電を防止することができる。   As described above, when the partition wall 7 is provided and the outer surface of the partition wall 7 is grounded, the disturbance of the electric field is suppressed and the insulation strength is ensured when the flow of the refrigerant in the inner space 61 is relaxed. . It is only necessary to design an electric field in the partition wall 7 using only the inner space 61. In particular, in this embodiment, since it is a terminal for direct current power transmission, electric charge is likely to accumulate in the refrigerant in the refrigerant tank, but the electric charge is accumulated in the circulation state relaxation unit 8 and the partition wall 7 is grounded. Can be prevented.

上記実施形態では、単相超電導ケーブルを示したが、多相超電導ケーブルでも利用できる。この点は、以下の実施形態についても同様である。   In the above embodiment, a single-phase superconducting cable is shown, but a multiphase superconducting cable can also be used. This also applies to the following embodiments.

(第二実施形態)
第二実施形態では、図2に示すように、内側空間と外側空間とを連通不能となるように区画壁を構成し、内側空間(流通状態緩和部)および外側空間(冷媒流通部)の内部圧力を個別に圧力制御するようにしている。
(Second embodiment)
In the second embodiment, as shown in FIG. 2, the partition wall is configured so that the inner space and the outer space cannot be communicated with each other, and the inside of the inner space (circulation state relaxation portion) and the outer space (refrigerant circulation portion). The pressure is individually controlled.

図2に示す端末構造は、基本的構成は図1に示す第一実施形態の超電導機器の端末構造と同様であり、同じ構成部分については、同一の符号で示し、説明を省略する。   The basic structure of the terminal structure shown in FIG. 2 is the same as the terminal structure of the superconducting device of the first embodiment shown in FIG. 1, and the same components are denoted by the same reference numerals and description thereof is omitted.

本実施形態では、区画壁7のブッシング側開口部は、冷媒槽3の内壁面に当接させ、他方の開口部をケーブル側開口部31の外周囲に当接させて、内側空間61と外側空間62とが連通しないようにしている。そして、内側空間61と外側空間62のそれぞれの空間の冷媒圧力を圧力制御機構9で制御する構成としている。   In the present embodiment, the bushing side opening of the partition wall 7 is brought into contact with the inner wall surface of the refrigerant tank 3, and the other opening is brought into contact with the outer periphery of the cable side opening 31, so that the inner space 61 and the outer side The communication with the space 62 is prevented. The pressure control mechanism 9 controls the refrigerant pressure in each of the inner space 61 and the outer space 62.

圧力制御機構9は、内側空間61の冷媒圧力を制御する第一圧力調整手段91と外側空間62の冷媒圧力を制御する第二圧力調整手段92とを具える。   The pressure control mechanism 9 includes first pressure adjusting means 91 that controls the refrigerant pressure in the inner space 61 and second pressure adjusting means 92 that controls the refrigerant pressure in the outer space 62.

区画壁7には、本体ケース13の外部に引き出される圧力調整用通路93が接続される。この圧力調整用通路93の終端部には第一リザーバー94が配置される。第一圧力調整手段91は、第一リザーバー94の近くに配置される。第一圧力調整手段91は、例えばヘリウムガスを第一リザーバー94内に供給し、第一リザーバー94内から排出するようになっている。この第一圧力調整手段91を図示していない制御手段により内側空間61内の冷媒が所定の圧力となるように駆動させる。   The partition wall 7 is connected to a pressure adjusting passage 93 that is pulled out of the main body case 13. A first reservoir 94 is disposed at the end of the pressure adjusting passage 93. The first pressure adjusting means 91 is disposed near the first reservoir 94. The first pressure adjusting means 91 supplies, for example, helium gas into the first reservoir 94 and discharges it from the first reservoir 94. The first pressure adjusting means 91 is driven by control means (not shown) so that the refrigerant in the inner space 61 has a predetermined pressure.

また、外側空間62内の冷媒の圧力制御は、冷媒供給通路43の途中で、冷媒槽3とポンプ42との間に第二リザーバー95を設け、この第二リザーバー95内の圧力を第二圧力調整手段92で調整するようにしている。第二圧力調整手段92も、例えばヘリウムガスを第二リザーバー95内に供給し、第二リザーバー95内から排出するようになっている。第二リザーバー95内の圧力を調整することにより、冷却装置41で冷却される冷媒の圧力を所定の圧力にして、冷却された所定圧力の冷媒をポンプ42により冷媒槽3に供給するようにしている。   In addition, the pressure control of the refrigerant in the outer space 62 is performed by providing a second reservoir 95 between the refrigerant tank 3 and the pump 42 in the middle of the refrigerant supply passage 43, and adjusting the pressure in the second reservoir 95 to the second pressure. Adjustment is performed by the adjusting means 92. The second pressure adjusting means 92 also supplies, for example, helium gas into the second reservoir 95 and discharges it from the second reservoir 95. By adjusting the pressure in the second reservoir 95, the pressure of the refrigerant cooled by the cooling device 41 is set to a predetermined pressure, and the cooled refrigerant having the predetermined pressure is supplied to the refrigerant tank 3 by the pump 42. Yes.

本実施形態では、内側空間61の圧力を外側空間62の圧力よりも高圧となるように、即ち、外側空間62内の冷媒沸点よりも、内側空間61内の冷媒沸点が、例えば10K高くなるように冷媒圧力制御を行う。このように冷媒圧力を制御することにより、導体の冷却により内側空間61内の冷媒の温度が外側空間62内の冷媒の温度より高くなっても冷媒が気化することを防止できる。   In the present embodiment, the pressure of the inner space 61 is set to be higher than the pressure of the outer space 62, that is, the refrigerant boiling point in the inner space 61 is, for example, 10K higher than the refrigerant boiling point in the outer space 62. The refrigerant pressure is controlled. By controlling the refrigerant pressure in this way, it is possible to prevent the refrigerant from evaporating even when the temperature of the refrigerant in the inner space 61 becomes higher than the temperature of the refrigerant in the outer space 62 due to cooling of the conductor.

(第三実施形態)
図3に示す第三実施形態は、区画壁を用いることなく、冷媒に接する部分となるブッシング15および導体部21の低温側端部そして接続用導体12の端部の外周に冷媒が含浸された絶縁体81を配置することにより流通状態緩和部8を構成している。
(Third embodiment)
In the third embodiment shown in FIG. 3, the coolant is impregnated on the outer periphery of the bushing 15 and the low temperature side end of the conductor part 21 and the end of the connecting conductor 12 that are in contact with the refrigerant without using a partition wall. By disposing the insulator 81, the distribution state relaxation unit 8 is configured.

図3に示す端末構造は、基本的構成は図1に示す第一実施形態の超電導機器の端末構造と同様であり、同じ構成部分については、同一の符号で示し、説明を省略する。なお、ケーブル用超電導導体101の端部と接続用導体12との接続は、冷媒槽3の外部のケーブル接続側冷媒槽53内で行っている。 The basic structure of the terminal structure shown in FIG. 3 is the same as the terminal structure of the superconducting device of the first embodiment shown in FIG. 1, and the same components are denoted by the same reference numerals and description thereof is omitted. Note that the connection between the end of the cable superconducting conductor 101 and the connection conductor 12 is performed in the cable connection side refrigerant tank 53 outside the refrigerant tank 3.

第三実施形態も、導体部21と、この導体部21が内蔵されるブッシング15と、接続用導体12と、導体部21と接続用導体12と接続する編組導体16と、接続用導体12に接続されるケーブル用超電導導体101とを有する構成となっている。   The third embodiment also includes a conductor portion 21, a bushing 15 in which the conductor portion 21 is built, a connecting conductor 12, a braided conductor 16 that connects the conductor portion 21 and the connecting conductor 12, and a connecting conductor 12. The configuration includes a superconducting conductor for cable 101 to be connected.

本実施形態では、前記ブッシング15の電圧が印加される部分から接続用導体12における冷媒槽3のケーブル側開口部31に至る範囲において、ブッシング15、導体部21、編組導体16、接続用導体12の外周に連続するように絶縁体81を配置させている。   In the present embodiment, the bushing 15, the conductor portion 21, the braided conductor 16, and the connecting conductor 12 are within a range from the portion where the voltage of the bushing 15 is applied to the cable side opening 31 of the refrigerant tank 3 in the connecting conductor 12. An insulator 81 is arranged so as to be continuous with the outer periphery of the substrate.

具体的には、導体部21の低温側端部をブッシング15のテーパー部分と共に覆い、さらに、編組導体16と接続用導体12とを導体部との接続端部からエポキシユニット51まで覆うように絶縁体81を設けている。この絶縁体81もクラフト紙などの絶縁紙を導体の外周に巻き付けることにより形成されている。   Specifically, the low temperature side end of the conductor portion 21 is covered with the tapered portion of the bushing 15, and further, the braided conductor 16 and the connection conductor 12 are insulated from the connection end portion of the conductor portion to the epoxy unit 51. A body 81 is provided. This insulator 81 is also formed by winding insulating paper such as kraft paper around the outer periphery of the conductor.

なお、図示していないが、絶縁体81の最外周面を、例えば、冷媒が通過可能な銅などの導電材料からなる編組材で覆って電極層を形成している。そして、この電極層を接地線引出し部18から本体ケース外部に接地させている。   Although not shown, the outermost peripheral surface of the insulator 81 is covered with, for example, a braided material made of a conductive material such as copper through which a coolant can pass to form an electrode layer. The electrode layer is grounded from the ground wire lead portion 18 to the outside of the main body case.

本実施形態では、電極層の内側に流通状態緩和部が形成され、電極層の外側に冷媒流通部が形成される。そして、絶縁体81を設け、この絶縁体81の外周面に形成する電極層を接地させているので、絶縁体81に含浸された冷媒は流れが起こり難くなり、絶縁体中の冷媒に電界が印加されても安定した絶縁強度を有することとなる。   In the present embodiment, the circulation state relaxation part is formed inside the electrode layer, and the refrigerant circulation part is formed outside the electrode layer. Since the insulator 81 is provided and the electrode layer formed on the outer peripheral surface of the insulator 81 is grounded, the refrigerant impregnated in the insulator 81 hardly flows, and an electric field is generated in the refrigerant in the insulator. Even if it is applied, it has a stable insulation strength.

(第四実施形態)
図4に示す第四実施形態では、導体部21と、ブッシング15と、接続用ケーブル22とを有する構成となっている。本実施形態では、接続用ケーブル22を導体部21の一部としている。接続用ケーブル22は、超電導ケーブルと同じ構造の接続用超電導導体23と第一絶縁体24を具える。
(Fourth embodiment)
In the fourth embodiment shown in FIG. 4, the conductor portion 21, the bushing 15, and the connection cable 22 are provided. In the present embodiment, the connection cable 22 is a part of the conductor portion 21. The connection cable 22 includes a connection superconducting conductor 23 and a first insulator 24 having the same structure as the superconducting cable.

図4に示す端末構造は、基本的構成は図1に示す第一実施形態の超電導機器の端末構造と同様であり、同じ構成部分については、同一の符号で示し、説明を省略する。本実施形態は、接続用超電導導体23をケーブル用超電導導体101の端部と接続しており、この接続はエポキシユニット51内の接続部材を介して行っている。   The basic structure of the terminal structure shown in FIG. 4 is the same as the terminal structure of the superconducting device of the first embodiment shown in FIG. 1, and the same components are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, the connection superconducting conductor 23 is connected to the end of the cable superconducting conductor 101, and this connection is made via a connection member in the epoxy unit 51.

第四実施形態では、接続用ケーブル22の一端側周辺と他端周辺に第二絶縁体82,83を配置している。具体的には、ブッシング15の電圧が印加される部分から接続用ケーブル22の導体部側端部に至る範囲において、ブッシング15、導体部21、接続用ケーブル22の端部の外周に第二絶縁体82を配置する。即ち、第二絶縁体82は、導体部21の低温側端部をブッシング15のテーパー部分とともに覆い、さらに、接続用ケーブル22の導体部との接続端部まで覆うように設けられている。   In the fourth embodiment, the second insulators 82 and 83 are arranged around one end side of the connection cable 22 and around the other end. Specifically, in the range from the portion to which the voltage of the bushing 15 is applied to the end of the connecting cable 22 on the conductor side, the second insulation is provided on the outer periphery of the ends of the bushing 15, the conductor 21, and the connecting cable 22. Arrange the body 82. That is, the second insulator 82 is provided so as to cover the low temperature side end portion of the conductor portion 21 together with the tapered portion of the bushing 15 and further cover the connection end portion with the conductor portion of the connection cable 22.

また、接続用ケーブル22は、冷媒槽3のケーブル側開口部31から第一絶縁体24のケーブル側端部に至るまで、即ち、第一実施形態の絶縁材52と同じように、接続用ケーブル22の超電導ケーブル側端部の外周と、エポキシユニット51を覆うように、その外周に第二絶縁体83を配置する。第一絶縁体24、第二絶縁体82,83のそれぞれに冷媒を含浸させて流通状態緩和部8を構成している。   The connection cable 22 extends from the cable side opening 31 of the refrigerant tank 3 to the cable side end of the first insulator 24, that is, in the same manner as the insulation material 52 of the first embodiment. A second insulator 83 is arranged on the outer periphery of the superconducting cable side end of 22 and the outer periphery so as to cover the epoxy unit 51. Each of the first insulator 24 and the second insulators 82 and 83 is impregnated with a refrigerant to constitute the flow state relaxation portion 8.

接続用ケーブル22の接続用超電導導体23は、本実施形態では、Bi2223系超電導材料からなる線材をフォーマ上に螺旋状に巻回したものを用いている。さらに、第一絶縁体24は、接続用超電導導体23にクラフト紙などの絶縁紙を巻き付けて構成している。   In the present embodiment, the connecting superconducting conductor 23 of the connecting cable 22 is formed by spirally winding a wire made of a Bi2223 series superconducting material on a former. Further, the first insulator 24 is configured by winding insulating paper such as kraft paper around the connection superconducting conductor 23.

なお、図示していないが、第二絶縁体82、第一絶縁体24,第二絶縁体83の最外周面を、例えば、冷媒が通過可能な銅などの導電材料からなる編組材で覆って電極層を形成している。そして、この電極層を接地線引出し部18から本体ケース外部に接地させている。 Although not shown, the outermost peripheral surfaces of the second insulator 82, the first insulator 24, and the second insulator 83 are covered with a braided material made of a conductive material such as copper through which a refrigerant can pass, for example. An electrode layer is formed. The electrode layer is grounded from the ground wire lead portion 18 to the outside of the main body case.

本実施形態も、第一絶縁体24、第二絶縁体82,83の外面に設ける電極層を接地している。この場合も、電極層の内側に流通状態緩和部が形成され、電極層の外側に冷媒流通部が形成される。第一絶縁体24、第二絶縁体82,83に冷媒が含浸されているので絶縁体中の冷媒に電界が印加されても電界の乱れが生じず、絶縁強度が確保できる。   Also in this embodiment, the electrode layers provided on the outer surfaces of the first insulator 24 and the second insulators 82 and 83 are grounded. Also in this case, the circulation state relaxation part is formed inside the electrode layer, and the refrigerant circulation part is formed outside the electrode layer. Since the first insulator 24 and the second insulators 82 and 83 are impregnated with the refrigerant, even if an electric field is applied to the refrigerant in the insulator, the electric field is not disturbed, and the insulation strength can be ensured.

流通状態緩和部と冷媒流通部の境界の接地は、冷媒槽の外面を接地させて、冷媒槽の内面と流通状態緩和部と冷媒流通部の境界とを電気的に接続することにより、冷媒槽を介して前記境界を接地するようにしてもよい。また、導体部の外周に設ける絶縁体を超電導ケーブルの超電導導体を覆う絶縁体に連続させるように構成して、この超電導導体を覆う絶縁体と導体部の絶縁体とに連続する電極層を形成して、この電極層を接地するようにしてもよい。   The grounding of the boundary between the circulation state relaxation part and the refrigerant circulation part is achieved by grounding the outer surface of the refrigerant tank and electrically connecting the inner surface of the refrigerant tank and the boundary between the circulation state relaxation part and the refrigerant circulation part. The boundary may be grounded via In addition, an insulator provided on the outer periphery of the conductor portion is configured to be continuous with the insulator covering the superconducting conductor of the superconducting cable, and an electrode layer is formed continuously between the insulator covering the superconducting conductor and the insulator of the conductor portion. Then, this electrode layer may be grounded.

さらに、前記した第2実施形態の区画壁の構成に、第3実施形態、または、第4実施形態の絶縁体の構成を組み合わせて、区画壁と絶縁体とにより流通状態緩和部を構成してもよい。この場合は、絶縁体の最外部に電極層を形成して、この電極層を接地させることが好ましい。   Further, the configuration of the partition wall according to the second embodiment described above is combined with the configuration of the insulator according to the third embodiment or the fourth embodiment, so that the partition wall and the insulator constitute a flow state relaxation portion. Also good. In this case, it is preferable to form an electrode layer on the outermost part of the insulator and ground this electrode layer.

本発明端末構造は、常温にて利用される電気機器や常電導ケーブルなどに接続される超電導ケーブルの終端部の形成に好適であり、単相超電導ケーブル、多相超電導ケーブルのいずれにも利用することができる。また、交流線路、直流線路のいずれにも利用することができるが、直流送電用として用いる場合に好適である。   The terminal structure of the present invention is suitable for forming a terminal portion of a superconducting cable connected to an electric device or a normal conducting cable used at room temperature, and is used for either a single-phase superconducting cable or a multiphase superconducting cable. be able to. Moreover, although it can utilize for any of an alternating current track and a direct current track, it is suitable when using for direct current power transmission.

本発明超電導機器の端末構造を示す第一実施形態に係る概略全体構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic whole block diagram which concerns on 1st embodiment which shows the terminal structure of this invention superconducting equipment. 本発明超電導機器の端末構造を示す第二実施形態に係る概略全体構成図である。It is a general | schematic whole block diagram which concerns on 2nd embodiment which shows the terminal structure of this invention superconducting equipment. 本発明超電導機器の端末構造を示す第三実施形態に係る概略部分構成図である。It is a schematic partial block diagram which concerns on 3rd embodiment which shows the terminal structure of this invention superconducting equipment. 本発明超電導機器の端末構造を示す第四実施形態に係る概略部分構成図である。It is a schematic partial block diagram which concerns on 4th embodiment which shows the terminal structure of this invention superconducting equipment. 従来の超電導機器の端末構造を示す概略構成図である。It is a schematic block diagram which shows the terminal structure of the conventional superconducting apparatus.

符号の説明Explanation of symbols

10 超電導ケーブル
100 ケーブルコア 101 ケーブル用超電導導体 102 断熱管
11 常電導導体 12 接続用導体 13 本体ケース 14 碍管
15 ブッシング 16 編組導体 17 シールドカバー
18 接地線引出し部
21 導体部 22 接続用ケーブル
23 接続用超電導導体 24 第一絶縁体
3 冷媒槽 31 ケーブル側開口部 32 冷媒流通部
41 冷却装置 42 ポンプ 43 冷媒供給通路
44 リザーバー
51 エポキシユニット 52 絶縁材
53 ケーブル接続側冷媒槽
61 内側空間 62 外側空間
7 区画壁 71 連通部
8 流通状態緩和部
81 絶縁体 82,83 第二絶縁体
9 圧力制御機構
91 第1圧力調整手段 92 第2圧力調整手段
93 圧力調整用通路 94 第一リザーバー 95 第二リザーバー
210 接続用導体 220 導体部 230 冷媒槽 240 真空容器
250 碍管 260 ブッシング 270 ジョイント部
10 Superconducting cable
100 Cable core 101 Superconducting conductor for cable 102 Insulated pipe
11 Normal conducting conductor 12 Connecting conductor 13 Body case 14 Steel pipe
15 Bushing 16 Braided conductor 17 Shield cover
18 Ground wire extension
21 Conductor 22 Connection cable
23 Superconducting conductor for connection 24 First insulator
3 Refrigerant tank 31 Cable side opening 32 Refrigerant circulation part
41 Cooling device 42 Pump 43 Refrigerant supply passage
44 Reservoir
51 Epoxy unit 52 Insulation material
53 Cable connection side refrigerant tank
61 inner space 62 outer space
7 Section wall 71 Communication part
8 Distribution Status Mitigation Department
81 Insulator 82,83 Second insulator
9 Pressure control mechanism
91 First pressure adjusting means 92 Second pressure adjusting means
93 Pressure adjusting passage 94 First reservoir 95 Second reservoir
210 Connecting conductor 220 Conductor 230 Refrigerant tank 240 Vacuum container
250 Steel pipe 260 Bushing 270 Joint part

Claims (6)

冷媒が貯留される冷媒槽と、
一端が冷媒槽内に配置され、他端が常温側に配置される導体部と、
冷媒槽内に設けられて、冷媒槽内に配置される導体部が内蔵される内側空間と、内側空間の外側に設けられる外側空間とに区画する区画壁とを具え、
外側空間は、冷媒が流通される冷媒流通部を形成しており、
内側空間は、区画壁により、冷媒の流通が冷媒流通部よりも緩和される流通状態緩和部を形成しており、
区画壁を接地していることを特徴とする超電導機器の端末構造。
A refrigerant tank in which refrigerant is stored;
One end is disposed in the refrigerant tank and the other end is disposed on the room temperature side,
A partition wall that is provided in the refrigerant tank and divides into an inner space in which a conductor portion disposed in the refrigerant tank is built, and an outer space provided outside the inner space;
The outer space forms a refrigerant circulation part through which the refrigerant is circulated ,
The inner space forms a distribution state relaxation part in which the distribution of the refrigerant is relaxed more than the refrigerant distribution part by the partition wall ,
A terminal structure of a superconducting device characterized in that the partition wall is grounded .
冷媒が貯留される冷媒槽と、
一端が冷媒槽内に配置され、他端が常温側に配置される導体部と、
媒槽内に配置される導体部の周囲に形成され、冷媒が含浸された絶縁体と、
の絶縁体の最外部に形成された電極層とを具え、
冷媒槽内において電極層の外側に冷媒が流通される冷媒流通部が形成され、
電極層の内側に、絶縁体に冷媒が含浸されることにより、冷媒の流通が冷媒流通部よりも緩和される流通状態緩和部が形成され、
電極層を接地していることを特徴とする超電導機器の端末構造。
A refrigerant tank in which refrigerant is stored;
One end is disposed in the refrigerant tank and the other end is disposed on the room temperature side,
Is formed around the conductor portion disposed refrigerant tank, an insulator refrigerant is impregnated,
Comprising a this insulating electrode layer formed on the outermost,
In the refrigerant tank, a refrigerant circulation part is formed through which the refrigerant is circulated outside the electrode layer,
On the inner side of the electrode layer, the refrigerant is impregnated with the refrigerant to form a circulation state relaxation part where the circulation of the refrigerant is more relaxed than the refrigerant circulation part,
Terminal structure of a superconducting device you characterized in that grounding the electrode layer.
冷媒が貯留される冷媒槽と、
一端が冷媒槽内に配置され、他端が常温側に配置される導体部と、
一端側が、冷媒槽内に配置された導体部の端部に接続され、他端側が超電導機器の超電導導体の端部に接続される接続用超電導導体と、この接続用超電導導体の外周に設けられた第一絶縁体を具える接続用ケーブルと、
導体部と接続用超電導導体の一端部との接続箇所の外周、及び超電導機器の超電導導体と接続用超電導導体の他端部との接続箇所の外周にそれぞれ設けられる第二絶縁体と、
これら第一絶縁体及び第二絶縁体の最外部に形成された電極層とを具え、
冷媒槽において電極層の外側に冷媒が流通される冷媒流通部が形成され、
電極層の内側に、第一絶縁体及び第二絶縁体に冷媒が含浸されることにより、冷媒の流通が冷媒流通部よりも緩和される流通状態緩和部が形成され、
電極層を接地していることを特徴とする超電導機器の端末構造。
A refrigerant tank in which refrigerant is stored;
One end is disposed in the refrigerant tank and the other end is disposed on the room temperature side,
One end is connected to the end of the conductor disposed in the refrigerant tank, and the other end is connected to the end of the superconducting conductor of the superconducting device, and provided on the outer periphery of the connecting superconducting conductor. a connection cable including a first insulation was,
A second insulator provided on the outer periphery of the connection portion between the conductor portion and one end of the connection superconducting conductor, and on the outer periphery of the connection portion between the superconducting conductor of the superconducting device and the other end of the connection superconducting conductor ;
The electrode layer formed on the outermost part of these first insulator and second insulator ,
In the refrigerant tank, a refrigerant circulation part is formed through which the refrigerant is circulated outside the electrode layer,
On the inner side of the electrode layer, the first insulator and the second insulator are impregnated with the refrigerant, thereby forming a circulation state relaxation portion in which the circulation of the refrigerant is relaxed more than the refrigerant circulation portion,
Terminal structure of a superconducting device you characterized in that grounding the electrode layer.
区画壁は、内側空間と外側空間との間で冷媒が非連通状態となるように構成されており、
内側空間の冷媒圧力を制御する第一圧力調整手段と、
外側空間の冷媒圧力を制御する第二圧力調整手段とを具えることを特徴とする請求項1に記載の超電導機器の端末構造。
The partition wall is configured such that the refrigerant is not in communication between the inner space and the outer space ,
First pressure adjusting means for controlling the refrigerant pressure in the inner space;
The terminal structure of a superconducting device according to claim 1, further comprising second pressure adjusting means for controlling the refrigerant pressure in the outer space .
電極層の外周に区画壁を具え、この区画壁は、区画壁の内側と外側との間で冷媒が非連通状態となるように構成されており、この区画壁の外側に冷媒が流通される冷媒流通部が形成され、
区画壁の内側の空間における冷媒圧力を制御する第一圧力調整手段と、
区画壁の外側の空間における冷媒圧力を制御する第二圧力調整手段とを具えることを特徴とする請求項2又は3に記載の超電導機器の端末構造。
A partition wall is provided on the outer periphery of the electrode layer, and the partition wall is configured so that the refrigerant is in a non-communication state between the inside and the outside of the partition wall, and the coolant is circulated to the outside of the partition wall. A refrigerant distribution part is formed,
First pressure adjusting means for controlling the refrigerant pressure in the space inside the partition wall;
The terminal structure of a superconducting device according to claim 2 or 3, further comprising second pressure adjusting means for controlling a refrigerant pressure in a space outside the partition wall .
直流送電用の超電導ケーブルの接続に用いることを特徴とする請求項1から請求項5の何れか1項に記載の超電導機器の端末構造。 Terminal structure of a superconducting apparatus as claimed in any one of claims 5, characterized in that used for connection of a superconducting cable for DC power transmission.
JP2004158321A 2004-05-27 2004-05-27 Terminal structure of superconducting equipment Expired - Fee Related JP4273525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158321A JP4273525B2 (en) 2004-05-27 2004-05-27 Terminal structure of superconducting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158321A JP4273525B2 (en) 2004-05-27 2004-05-27 Terminal structure of superconducting equipment

Publications (2)

Publication Number Publication Date
JP2005341737A JP2005341737A (en) 2005-12-08
JP4273525B2 true JP4273525B2 (en) 2009-06-03

Family

ID=35494676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158321A Expired - Fee Related JP4273525B2 (en) 2004-05-27 2004-05-27 Terminal structure of superconducting equipment

Country Status (1)

Country Link
JP (1) JP4273525B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8624109B2 (en) 2007-03-21 2014-01-07 Nkt Cables Ultera A/S Termination unit
JP4927804B2 (en) * 2007-11-14 2012-05-09 住友電気工業株式会社 Superconducting cable terminal connection structure
JP5847000B2 (en) * 2011-03-31 2016-01-20 古河電気工業株式会社 Cryogenic cable termination connection
JP5757987B2 (en) * 2013-11-05 2015-08-05 昭和電線ケーブルシステム株式会社 Cryogenic cable termination connection
CN106068587B (en) * 2013-11-05 2018-08-24 昭和电线电缆系统株式会社 The terminal connection part of pole cryocable
KR101677104B1 (en) 2014-11-19 2016-11-29 주식회사 씨맥 Extrusion sag prevent apparatus of ultra high voltage power cable insulator
KR102433210B1 (en) * 2017-10-13 2022-08-18 한국전력공사 Superconductive cable system using multiple pressure regulating apparatus

Also Published As

Publication number Publication date
JP2005341737A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4835821B2 (en) Superconducting cable
JP4609121B2 (en) Superconducting cable line
KR101118374B1 (en) Superconductive cable line
EP1732190B1 (en) Terminal structure of multiphase superconducting cable
WO2002065605A1 (en) Terminal structure of extreme-low temperature equipment
JP4273525B2 (en) Terminal structure of superconducting equipment
JP6791782B2 (en) Terminal structure of superconducting equipment
JP4716248B2 (en) Superconducting cable
JP2006156310A (en) Power cable line
JP5742021B2 (en) Connection unit and connection structure
JP2005341767A (en) Terminal structure of superconducting cable
JP4096360B2 (en) Superconducting cable terminal structure and superconducting cable line
KR100777182B1 (en) High temperature superconducting power cable
KR20170049891A (en) Terminal device for superconducting cable
JP5423692B2 (en) Superconducting cable
JP2019179781A (en) Termination vessel of high-temperature superconducting cable and termination structure of high-temperature superconducting cable
JP5742006B2 (en) End structure of room temperature insulated superconducting cable
JP4471095B2 (en) Branch power drawing structure
WO2019146270A1 (en) Superconductive cable system
JP2016001582A (en) Superconductive cable rail track and coolant transportation rail track
KR102005117B1 (en) Termination Structure of Superconducting Device
JP2020087878A (en) Superconductive cable tram way
Minnich Technical aspects of cryogenic cable design

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090222

R150 Certificate of patent or registration of utility model

Ref document number: 4273525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees