WO2019146270A1 - Superconductive cable system - Google Patents

Superconductive cable system Download PDF

Info

Publication number
WO2019146270A1
WO2019146270A1 PCT/JP2018/045061 JP2018045061W WO2019146270A1 WO 2019146270 A1 WO2019146270 A1 WO 2019146270A1 JP 2018045061 W JP2018045061 W JP 2018045061W WO 2019146270 A1 WO2019146270 A1 WO 2019146270A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
gas
refrigerant
superconducting
superconducting cable
Prior art date
Application number
PCT/JP2018/045061
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 礒嶋
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019146270A1 publication Critical patent/WO2019146270A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present disclosure relates to a superconducting cable system.
  • This application claims priority based on Japanese Patent Application No. 2018-008945 filed on Jan. 23, 2018. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
  • a technique for performing circulating cooling using a subcooled refrigerant As a technique for cooling a superconducting cable, a technique for performing circulating cooling using a subcooled refrigerant is known.
  • the refrigerant is cooled to the subcooling state using a refrigerator, and the cooled refrigerant is sent to the superconducting cable using the pump, whereby the superconducting cable is cooled by the refrigerant cooled to the subcooling state by the refrigerator
  • the refrigerant that has been used to cool the superconducting cable is returned to the refrigerator again.
  • Patent Document 1 discloses a technique for circulating a refrigerant in the order of a refrigerator ⁇ a superconducting cable ⁇ a pump ⁇ a refrigerator, and cooling the superconducting cable in a path of a single stroke.
  • a superconducting cable system is a superconducting cable system that transports electric power between a plurality of power devices mounted on an aircraft, and is housed in a thermal insulation pipe for circulating a liquid refrigerant, and a thermal insulation pipe.
  • a core having a superconducting layer, a tank for storing liquid refrigerant, a tank and a circulation channel of liquid refrigerant including a heat insulation pipe, a pump for circulating the liquid refrigerant, and a circulation channel, the liquid refrigerant being vaporized And a gas-liquid separator for discharging the gaseous refrigerant.
  • FIG. 1 is a schematic view showing an outline of an aircraft equipped with the superconducting cable system according to the present embodiment.
  • FIG. 2 is a schematic view of a superconducting cable system disposed between two power devices mounted on the aircraft shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG.
  • FIG. 4 is a cross-sectional view showing the core shown in FIG.
  • FIG. 5 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG.
  • FIG. 6 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG.
  • FIG. 7 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG.
  • FIG. 8 schematically shows temporal changes in the temperature and amount of liquid nitrogen present in the superconducting cable.
  • An object of one aspect of the present disclosure is to provide a superconducting cable system that transports power between a plurality of power devices mounted on an aircraft, and which has a novel configuration suitable for weight reduction.
  • a novel configuration that is suitable for weight reduction by using a superconducting cable that transports power between a plurality of power devices mounted on an aircraft.
  • the superconducting cable system 110 transports power between a plurality of power devices mounted on the aircraft 1000 (see FIG. 1).
  • the superconducting cable system 110 (see FIG. 2) includes the heat insulation pipe 30, the core 10, the tank 130, the pump 131, and the gas-liquid separator 132.
  • the heat insulation pipe 30 distributes the liquid refrigerant.
  • the core 10 is housed in the heat insulating tube 30 and has a superconducting layer.
  • the tank 130 stores liquid refrigerant.
  • the pump 131 is installed in a circulation channel of the liquid refrigerant including the tank 130 and the heat insulation pipe 30, and circulates the liquid refrigerant.
  • the gas-liquid separator 132 is installed in the circulation flow path, and discharges the gas refrigerant in which the liquid refrigerant is vaporized.
  • the core 10 is cooled using the latent heat of vaporization of the liquid refrigerant flowing in the heat insulating pipe 30. Therefore, a refrigerator for cooling the liquid refrigerant to the supercooled state is not required as compared with the conventional cooling technique of the superconducting cable in which the core is cooled by circulation using the subcooled refrigerant. Therefore, when the superconducting cable system 110 is applied to a power cable for transporting electric power in an aircraft, it is not necessary to connect a refrigerator to the superconducting cable, so the weight of the power cable can be reduced.
  • gas-liquid separator 132 in the circulation flow path of the liquid refrigerant, it is possible to suppress an increase in the refrigerant pressure in the heat insulation pipe 30 due to the gas refrigerant generated by the evaporative cooling of the core 10.
  • the tank 130 is filled with the liquid refrigerant cooled to the temperature of the boiling point.
  • the core 10 is cooled using the latent heat of evaporation of the liquid refrigerant supplied from the tank 130 into the heat insulation pipe 30 via the circulation flow path.
  • the tank 130 is filled with the liquid refrigerant in an amount necessary to cool the core 10 based on the loss and the like generated during the operation of the aircraft 1000 before the takeoff of the aircraft 1000.
  • the core 10 can always be maintained in the superconducting state.
  • the gas-liquid separator 132 (refer FIG. 2) has the pressure control valve 132A arrange
  • the pressure regulating valve 132A can maintain the differential pressure between the refrigerant pressure in the heat insulating pipe 30 and the external pressure. Therefore, even when the attitude of the airframe is inclined during operation of the aircraft and the refrigerant pressure rises, the gaseous refrigerant can be discharged without flowing out the liquid refrigerant from the inside of the heat insulation pipe 30.
  • the core 10 (see FIGS. 3 and 4) includes the former 12, the superconducting layer 13 disposed on the outer periphery of the former 12, and the superconducting layer An insulating layer 14 disposed on the outer periphery of the electrode 13 and a shield layer 15 disposed on the outer periphery of the insulating layer 14 are provided.
  • the liquid refrigerant is liquid nitrogen. In this way, it is possible to realize a reduction in weight and cost of a superconducting cable that transports power between a plurality of power devices mounted on an aircraft.
  • FIG. 1 is a schematic view showing an outline of an aircraft 1000 equipped with a superconducting cable system 110 according to the present embodiment.
  • the aircraft 1000 is a hybrid electric aircraft using an engine and a motor as a power source.
  • the superconducting cable system 110 has a superconducting cable 100.
  • the superconducting cable 100 is applied to a power cable that transports power between a plurality of power devices mounted on the aircraft 1000.
  • the aircraft 1000 is equipped with a plurality of power devices such as a generator 102, a motor 106, power converters 104 and 108, a power distributor 111, and a power storage device 112. Only one of the four engines, motor 106 is shown.
  • the superconducting cable 100 is disposed between these power devices to transport power.
  • the power cables mounted on the aircraft 1000 may have a total length of several tens of meters. If the power cable consists of an existing normal conducting cable (for example, an OF cable or CV cable), the weight of the power cable for transporting, for example, 4 MW three-phase AC power (AC frequency 400 Hz, rated voltage 230 V, rated current 10 kA) Is about 15 tons. Assuming two lines per motor, the total weight of the power cable is about 60 tons when replacing the two engines with the motor, and the ratio of the weight of the power cable to the total weight of the aircraft 1000 can not be ignored Clearly.
  • an existing normal conducting cable for example, an OF cable or CV cable
  • the weight of the power cable for transporting for example, 4 MW three-phase AC power (AC frequency 400 Hz, rated voltage 230 V, rated current 10 kA) Is about 15 tons. Assuming two lines per motor, the total weight of the power cable is about 60 tons when replacing the two engines with the motor, and the ratio of the weight of the power cable to the total
  • a superconducting cable has a smaller power transmission loss than a conventional normal conducting cable and can flow a large current, so that a lightweight and compact power cable can be realized. Therefore, from the viewpoint of reducing the weight of the power cable, application of the superconducting cable to a power cable for aircraft is expected.
  • a superconducting cable typically employs a structure in which a core having a superconducting layer is accommodated in a heat insulating pipe, and the core is cooled by circulating liquid refrigerant (for example, liquid nitrogen) in the heat insulating pipe.
  • liquid refrigerant for example, liquid nitrogen
  • operation is performed by connecting a cooling system to the superconducting cable and supplying and circulating the liquid refrigerant from the cooling system into the heat insulating pipe.
  • the cooling system includes a refrigerator for cooling the liquid refrigerant, a pump for pumping the liquid refrigerant, a reservoir tank for storing the liquid refrigerant, and the like, and constitutes a refrigerant flow path for circulating the liquid refrigerant together with the heat insulation pipe of the superconducting cable.
  • the liquid refrigerant cooled by the refrigerator is fed into the heat insulating pipe, and the core is cooled by circulating the liquid refrigerant by the pump.
  • FIG. 2 is a schematic view of a superconducting cable system 110 disposed between two power devices mounted on the aircraft 1000 shown in FIG.
  • the superconducting cable system 110 mainly includes a superconducting cable 100, a tank 130, a pump 131, a gas-liquid separator 132, and refrigerant pipes 133 to 136.
  • the tank 130, the pump 131, and the refrigerant pipes 133 to 136, together with the heat insulation pipe 30 of the superconducting cable 100, constitute a circulation flow path for circulating the liquid refrigerant.
  • the superconducting cable 100 includes a core 10 having a superconducting layer.
  • the core 10 is housed inside the heat insulation pipe 30.
  • the superconducting cable 100 causes the liquid refrigerant to flow in the heat insulating pipe 30, thereby cooling the core 10 with the liquid refrigerant to bring it into a superconducting state, and is used for transporting power.
  • liquid nitrogen is used as the liquid refrigerant. Nitrogen has a melting point of about 63.1 K and a boiling point of about 77.3 K (atmospheric pressure).
  • the number of cores 10 stored in the heat insulation pipe 30 may be single core or multiple cores.
  • the following description exemplifies a three-core collective type three-phase AC cable in which a three-core core 10 is twisted and housed in a heat insulation pipe.
  • FIG. 3 is a cross-sectional view taken along line III-III of FIG.
  • FIG. 4 is a cross-sectional view showing the core 10 shown in FIG.
  • the superconducting cable 100 mainly includes a three-core core 10, a heat insulation pipe 30, a vacuum layer 31, a corrugated pipe 32, and a reinforcing layer (anticorrosion layer) 33. .
  • the core 10 includes a former 12, an inner superconducting layer 13, an insulating layer 14, an outer superconducting layer 15, and a protective layer 16 in this order from the inside.
  • the former 12 maintains mechanical characteristics such as rigidity and bending characteristics of the core 10 and functions as a shunt for abnormal current. Specifically, when an accident such as a short circuit occurs in a power device to which the superconducting cable 100 is electrically connected, an abnormal current exceeding the current in the steady state occurs in the superconducting cable 100. Then, when a large current exceeding the critical current value Ic flows to the superconducting layer, the superconducting layer is transitioned (quenched) to normal conduction, and Joule loss (heat loss) occurs due to this transition.
  • the core 10 constituting the superconducting layer may be burnt or the critical current value Ic may be reduced due to a rapid temperature rise even if the burn does not occur.
  • heat generation of the superconducting layer can be suppressed by shunting the accident current to the former 12.
  • the former 12 has a hollow structure or a solid structure. Pipes or stranded wires made of a metal having a low electrical resistance (for example, copper or aluminum) can be suitably used.
  • the inner superconducting layer 13 is disposed on the outer periphery of the former 12.
  • the inner superconducting layer 13 constitutes a power transmission path.
  • a tape-shaped wire provided with an oxide superconductor can be suitably used.
  • a Bi2223-based superconducting tape wire or an RE123-based thin film wire can be used.
  • the Bi2223-based superconducting tape wire include a sheath wire in which a filament made of a Bi2223-based oxide superconductor is disposed in a stabilized metal such as Ag—Mn or Ag.
  • the Bi2223 superconductor has a Bi2223 phase represented by a ratio of (Bismuth and Lead): Strontium: Calcium: Copper at an approximate ratio of 2: 2: 2: 3 as the main phase, with the balance being the Bi2212 phase and the Bi2223 phase. It means a material consisting of unavoidable impurities.
  • the RE123-based thin film wire include a laminated wire in which an oxide superconducting phase of a rare earth element RE such as Y (yttrium), Ho (phornium), Sm (samarium), and Gd (gadolinium) is formed on a metal substrate.
  • the RE123-based superconductor means a superconductor represented as REBa 2 Cu 3 O y (y is 6 to 8, more preferably 7).
  • the thing of the single layer structure formed by winding the said tape-shaped wire material helically, or a multilayer structure is mentioned. Although it simplifies and shows in FIG. 4, it is set as the superconducting layer 13 of a multilayer structure.
  • Insulating layer 14 is a layer for securing the insulation required for the working voltage in internal superconducting layer 13.
  • the outer superconducting layer 15 is disposed on the outer periphery of the insulating layer 14.
  • a tape-shaped wire including an oxide superconductor as in the case of the inner superconducting layer 13 can be suitably used.
  • the oxide superconductor used for the outer superconducting layer 15 may be the same as that used for the formation of the inner superconducting layer 13.
  • the outer superconducting layer 15 can be used as a shield layer for flowing a shield current induced by the current flowing in the inner superconducting layer 13.
  • Protective layer 16 is disposed on the outer periphery of outer superconducting layer 15.
  • the protective layer 16 is intended to ensure the electrical insulation of the outer superconducting layer 15 and to mechanically protect the outer superconducting layer 15.
  • the protective layer 16 is formed, for example, by spirally winding an insulating paper such as PPLP or kraft paper around the outer superconducting layer 15.
  • the heat insulating pipe 30 houses the core 10 (excluding the terminal).
  • the core 10 excluding the terminal.
  • copper stainless steel or aluminum (alloy) can be suitably used.
  • Insulating pipe 30 is, for example, a corrugated pipe. Liquid nitrogen 20 flows through the inside of the heat insulation pipe 30.
  • the core 10 is cooled using liquid nitrogen 20.
  • the latent heat of evaporation is used to cool the core 10.
  • the corrugated pipe 32 is disposed on the outer periphery of the heat insulating pipe 30.
  • the corrugated pipe 32 is, for example, a corrugated cylindrical shape made of stainless steel.
  • a space between the heat insulation pipe 30 and the corrugated pipe 32 is a vacuum layer 31 and is used as a heat insulation space. This space may be filled with a heat insulating material.
  • the reinforcing layer 33 (anticorrosion layer) is disposed on the outer periphery of the corrugated pipe 32.
  • the reinforcing layer 33 is formed using, for example, polyvinyl chloride or the like.
  • the superconducting cable 100 has end portions 120A and 120B at both ends in the longitudinal direction.
  • the terminal unit 120 ⁇ / b> A accommodates one of the terminals in the longitudinal direction of the core 10.
  • the terminal unit 120 ⁇ / b> B accommodates the other terminal in the longitudinal direction of the core 10.
  • the terminal of the core 10 is electrically connected to the electrode 122 in each of the terminal units 120A and 120B.
  • the electrode 122 is electrically connected to a power device (not shown).
  • the electrode 122 is formed of, for example, a conductive material such as a metal having a low electric resistance value near the temperature of liquid nitrogen, such as copper or aluminum.
  • the heat insulating pipe 30 is connected to the end portions 120A and 120B, and the space in the end portions 120A and 120B communicates with the inside of the heat insulating pipe 30, and is filled with liquid nitrogen.
  • the tank 130 stores liquid nitrogen.
  • the tank 130 is connected to the terminal unit 120 ⁇ / b> A through the refrigerant pipe 133.
  • the inside of the refrigerant pipe 133 and the space in the terminal portion 120A communicate with each other, and liquid nitrogen flows in the refrigerant pipe 133.
  • liquid nitrogen is supplied from the tank 130 into the end portion 120A via the refrigerant pipe 133
  • the liquid nitrogen is supplied into the heat insulation pipe 30 via the end portion 120A.
  • the black arrows in FIG. 2 indicate the flow direction of liquid nitrogen.
  • the liquid nitrogen flowing in the heat insulating pipe 30 flows into the space in the terminal portion 120B.
  • the terminal unit 120 ⁇ / b> B is connected to the gas-liquid separator 132 via the refrigerant pipe 134.
  • the space in the terminal portion 120 B communicates with the inside of the refrigerant pipe 134, and liquid nitrogen flows in the refrigerant pipe 134.
  • the liquid nitrogen flowing in the refrigerant pipe 134
  • the gas-liquid separator 132 discharges nitrogen gas to the outside while suppressing the outflow of liquid nitrogen.
  • the liquid nitrogen is vaporized to generate nitrogen gas.
  • a gas-liquid two-phase refrigerant mixed with nitrogen gas and liquid nitrogen is introduced into the gas-liquid separator 132, it is separated into liquid nitrogen and nitrogen gas, and the nitrogen gas is discharged to the outside of the gas-liquid separator 132 .
  • the white arrows in FIG. 2 indicate the flow direction of nitrogen gas.
  • a pressure control valve 132A is disposed at the gas outlet of the gas-liquid separator 132.
  • the refrigerant pressure in the heat insulation pipe 30 may increase due to the inclination of the attitude of the airframe. Since the outside of the heat insulation pipe 30 is at atmospheric pressure or lower than atmospheric pressure, in such a case, both liquid nitrogen and nitrogen gas may be discharged from the gas outlet of the gas-liquid separator 132.
  • the pressure control valve 132A is installed at the gas outlet, and can maintain the pressure difference between the refrigerant pressure in the heat insulation pipe 30 and the external pressure. Thus, the nitrogen gas can be efficiently discharged to the outside without flowing out the liquid nitrogen from the heat insulation pipe 30, including the case where the airframe is greatly inclined.
  • FIG. 5 to 7 are cross-sectional views schematically showing the configuration example of the gas-liquid separator 132 shown in FIG.
  • a gas-liquid separator using centrifugal force FOG. 5
  • a gas-liquid separator using surface tension FOG. 6
  • a gas-liquid separation coalescer FOG. 7
  • FIG. 5 is a cross-sectional view schematically showing the structure of a centrifugal gas-liquid separator.
  • a gas-liquid two-phase inlet 140 into which a gas-liquid two-phase refrigerant flows is provided on the side of the separator main body 143.
  • a gas outlet 141 from which gas is output is provided at the top of the separator body 143, and a liquid outlet 142 from which liquid is output is provided at the bottom of the separator body 143.
  • a spiral flow passage is formed inside the separator body 143, and one end of the spiral flow passage communicates with the gas-liquid two-phase inlet 140.
  • a liquid outlet 142 is provided on the other end side of the spiral flow channel and in communication with the outer peripheral side portion of the spiral flow channel viewed from the axial direction of the spiral flow channel, and viewed from the axial direction of the spiral flow channel
  • a gas outlet 141 is provided to communicate with the inner peripheral side portion of the helical flow passage.
  • the gas-liquid two-phase refrigerant flowing from the gas-liquid two-phase inlet 140 is given a swirling component by a spiral flow path, and is separated into liquid nitrogen and nitrogen gas by its centrifugal force. That is, since liquid nitrogen having a large specific gravity is subjected to a larger centrifugal force, it gathers on the outer peripheral side of the spiral channel, while nitrogen gas having a small specific gravity collects on the other part, that is, the inner peripheral side of the spiral channel. It will be.
  • FIG. 6 is a cross-sectional view schematically showing the structure of a surface tension type gas-liquid separator.
  • a gas-liquid two-phase inlet 140 is provided at the upper portion of the separator body 143
  • a gas outlet 141 is provided at the side of the separator body 143
  • the lower portion of the separator body 143 is provided.
  • a liquid outlet 142 is provided.
  • a bellows-like groove 144 is formed on the inner peripheral surface of the separator body 143. Between the upper portion of the groove 144 and the gas-liquid two-phase inlet 140, the gas-liquid two-phase flow is guided to the groove 144, and the gas released from the groove 144 is prevented from backflowing to the gas-liquid two-phase inlet 140
  • the partition 143A for doing is arranged. Between the lower portion of the groove 144 and the gas outlet 141 and the liquid outlet 142, a partition 143B for guiding the gas and liquid having passed through the groove 144 to the respective outlets is disposed.
  • the gas-liquid two-phase refrigerant flows in from the upper portion of the bellows-like groove portion 144, the gas-liquid two-phase refrigerant contacts the groove portion 144.
  • the gas-liquid two-phase refrigerant in contact with the groove 144 is separated into liquid nitrogen and nitrogen gas by the surface tension of the liquid nitrogen.
  • the separated liquid nitrogen is collected after flowing along the groove 144 and flows out from the liquid outlet 142. Nitrogen gas is exhausted from the gas outlet 141.
  • FIG. 7 is a cross-sectional view schematically showing the structure of the gas-liquid separation coalescer.
  • a coalescer cartridge 145 having a microfiber structure is installed inside the separator body 143.
  • the gas-liquid two-phase refrigerant flowing from the gas-liquid two-phase inlet 140 flows into the coalescer cartridge 145.
  • liquid nitrogen contained in the gas-liquid two-phase refrigerant is separated and collected at the lower part of the separator body 143.
  • Liquid nitrogen flows out of a liquid outlet 142 provided at the bottom of the separator body 143.
  • the nitrogen gas is exhausted from a gas outlet 141 provided on the top of the separator body 143.
  • the liquid outlet 142 of the gas-liquid separator 132 is connected to the tank 130 via refrigerant pipes 135 and 136.
  • the pump 131 is connected between the refrigerant pipe 135 and the refrigerant pipe 136.
  • the liquid outlet 142 of the gas-liquid separator 132 and the inside of the refrigerant pipe 135 are in communication, and the liquid nitrogen drawn out from the gas-liquid separator 132 flows in the refrigerant pipe 135.
  • the liquid nitrogen is pumped by the pump 131 and supplied into the tank 130 via the refrigerant pipe 136. That is, liquid nitrogen is supplied from the tank 130 to the terminal portion 120A through the refrigerant pipe 133 and flows in the heat insulating pipe 30.
  • the liquid refrigerant having flowed in the heat insulating pipe 30 is discharged from the terminal portion 120B, returned to the tank 130 via the refrigerant pipe 134, the gas-liquid separator 132, the refrigerant pipe 135, the pump 131 and the refrigerant pipe 136, and heat insulation again. It is fed into the tube 30. That is, the heat insulating pipe 30, the end portions 120A and 120B, the refrigerant pipes 133 to 135, the tank 130, the gas-liquid separator 132, and the pump 131 constitute a circulation channel of liquid nitrogen, and liquid nitrogen circulates in this circulation channel. .
  • liquid nitrogen is heated by AC loss generated in the core 10, heat entering from the outside of the heat insulation pipe 30, and the like.
  • the liquid nitrogen circulates in the above-described circulation path after taking off the aircraft 1000.
  • the temperature of the liquid nitrogen is maintained at a temperature near the boiling point until all the liquid nitrogen in the circulation flow path is vaporized.
  • the tank 130 stores an amount of liquid nitrogen necessary to cool the core 10 to a superconducting state, based on the loss generated during the operation period from the takeoff to the landing of the aircraft 1000.
  • the amount of liquid nitrogen to be initially stored in the tank 130 is about 700 kg It is. According to this, it is possible to prevent all the liquid nitrogen in the circulation channel from being vaporized before the aircraft 1000 lands.
  • the heat insulation pipe 30 is always arranged horizontally with respect to the ground, a discharge hole for discharging nitrogen gas is formed in a part of the heat insulation pipe 30, and nitrogen gas is discharged autonomously through this discharge hole.
  • the aircraft 1000 can take various attitudes while operating. For example, if the aircraft 1000 is inclined at an angle close to perpendicular to the ground, the superconducting cable 100 may also incline at an angle close to perpendicular to the ground. In such a case, there is a possibility that liquid nitrogen inside the heat insulation pipe 30 gathers downward according to gravity, and the liquid nitrogen may leak to the outside from the discharge hole. In order to prevent leakage of liquid nitrogen, the superconducting cable 100 needs to have a sealed structure, which makes it difficult to discharge liquid nitrogen autonomously.
  • the nitrogen gas generated in the heat insulation pipe 30 is discharged to the outside by using the gas-liquid separator 132 by providing the gas-liquid separator 132 in the circulation flow path.
  • the liquid nitrogen 20 inside the heat insulation pipe 30 is moved downward according to gravity. Gather in Since the inside of the heat insulation pipe 30 is a single space, this state can be compared with the state in which the elongated container contains liquid nitrogen. Therefore, in the heat insulating pipe 30 serving as the container, a pressure corresponding to the depth from the liquid surface of liquid nitrogen is applied to the portion located on the lower side in the direction of gravity. Since the pressure increases as the length of the heat insulating tube 30 increases, the heat insulating tube 30 has sufficient robustness to withstand the pressure.
  • the maximum discharge pressure of the pump 131 is set to be equal to or higher than the pressure of the liquid nitrogen by its own weight so that the circulation of the liquid nitrogen can be maintained regardless of the attitude of the aircraft 1000.
  • the inside of the tank 130 is filled with liquid nitrogen.
  • liquid nitrogen saturated at boiling point (77.3 K) at atmospheric pressure is supplied to the inside of the tank 130.
  • an amount of liquid nitrogen necessary to cool the core 10 to a superconducting state is stored in a period from the takeoff to the landing of the aircraft 1000.
  • FIG. 8 schematically shows temporal changes in the temperature and amount of liquid nitrogen present in superconducting cable system 110.
  • the supply of liquid nitrogen to the tank 130 is started at time t0.
  • Liquid nitrogen is cooled to a temperature near the boiling point (77.3 K).
  • the supply of liquid nitrogen to the tank 130 is stopped.
  • the core 10 is cooled using the latent heat of vaporization of liquid nitrogen flowing in the heat insulating pipe 30. Therefore, a refrigerator for cooling liquid nitrogen to a state of supercooling becomes unnecessary, as compared with the conventional cooling technique of a superconducting cable in which a core is cooled by circulation using a subcooled refrigerant. Therefore, when the superconducting cable system 110 is applied to a power cable for transporting electric power in an aircraft, it is not necessary to connect a refrigerator to the superconducting cable, so the weight of the power cable can be reduced. Therefore, superconducting cable 100 according to the present embodiment can contribute to the realization of an electric aircraft capable of reducing fuel consumption and environmental load.
  • gas-liquid separator 132 in the circulation path of liquid nitrogen, it is possible to suppress that the pressure of the refrigerant in the heat insulation pipe 30 is increased by the nitrogen gas generated by the evaporative cooling of the core 10.
  • the tank 130 may be configured to receive liquid nitrogen cooled to a temperature below the boiling point.
  • the core 10 can be cooled using the sensible heat and the latent heat of evaporation of liquid nitrogen, more liquid refrigerant is used than when the core 10 is cooled using the latent heat of evaporation alone. It can absorb heat. Therefore, even when the operation time of the aircraft 1000 is long or the Joule loss (heat loss) generated in the power cable is large, the core 10 can be constantly cooled and maintained in the superconducting state.
  • the superconducting cable system 110 is used for AC power transmission (for example, three-phase AC power transmission)
  • the superconducting cable system according to the present embodiment is DC power transmission (for example, bipole power transmission) , Monopole power transmission).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

A superconductive cable system according to one aspect of the present disclosure is for transmitting electric power among a plurality of electric power devices mounted on an aircraft. This superconductive cable system is provided with: a heat insulation pipe through which a liquid refrigerant is circulated; cores that each have a superconductive layer and that are housed in the heat insulation pipe; a tank that stores the liquid refrigerant; a pump that is provided to a liquid refrigerant circulation path including the tank and the heat insulation pipe and that circulates the liquid refrigerant; and a gas-liquid separator that is provided to the circulation path and that is for discharging a gas refrigerant generated by vaporization of the liquid refrigerant.

Description

超電導ケーブルシステムSuperconducting cable system
 本開示は、超電導ケーブルシステムに関する。本出願は、2018年1月23日に出願した日本特許出願である特願2018-008945号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a superconducting cable system. This application claims priority based on Japanese Patent Application No. 2018-008945 filed on Jan. 23, 2018. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
 超電導ケーブルを冷却する技術としては、過冷却冷媒を用いて循環冷却を行う技術が知られている。これは、冷凍機を用いて冷媒を過冷却状態に冷却し、冷却された冷媒をポンプを用いて超電導ケーブルに送ることで、冷凍機で過冷却状態に冷却された冷媒により超電導ケーブルを冷却するものであり、超電導ケーブルの冷却に使用された後の冷媒は、再度冷凍機に戻される。 As a technique for cooling a superconducting cable, a technique for performing circulating cooling using a subcooled refrigerant is known. In this method, the refrigerant is cooled to the subcooling state using a refrigerator, and the cooled refrigerant is sent to the superconducting cable using the pump, whereby the superconducting cable is cooled by the refrigerant cooled to the subcooling state by the refrigerator The refrigerant that has been used to cool the superconducting cable is returned to the refrigerator again.
 このようにして、冷媒を冷凍機→超電導ケーブル→ポンプ→冷凍機の順に一筆書きの経路で循環して超電導ケーブルを冷却する技術は、例えば特許文献1に開示されている。 As described above, for example, Patent Document 1 discloses a technique for circulating a refrigerant in the order of a refrigerator → a superconducting cable → a pump → a refrigerator, and cooling the superconducting cable in a path of a single stroke.
特開2016-100221号公報Unexamined-Japanese-Patent No. 2016-100221
 本開示の一態様に係る超電導ケーブルシステムは、航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルシステムであって、液体冷媒を流通させる断熱管と、断熱管内に収納され、超電導層を有するコアと、液体冷媒を貯留するタンクと、タンクおよび断熱管を含む液体冷媒の循環流路に設置され、液体冷媒を循環させるポンプと、循環流路に設置され、液体冷媒が気化した気体冷媒を排出するための気液分離器とを備える。 A superconducting cable system according to an aspect of the present disclosure is a superconducting cable system that transports electric power between a plurality of power devices mounted on an aircraft, and is housed in a thermal insulation pipe for circulating a liquid refrigerant, and a thermal insulation pipe. A core having a superconducting layer, a tank for storing liquid refrigerant, a tank and a circulation channel of liquid refrigerant including a heat insulation pipe, a pump for circulating the liquid refrigerant, and a circulation channel, the liquid refrigerant being vaporized And a gas-liquid separator for discharging the gaseous refrigerant.
図1は、本実施の形態に係る超電導ケーブルシステムを搭載する航空機の概要を示す模式図である。FIG. 1 is a schematic view showing an outline of an aircraft equipped with the superconducting cable system according to the present embodiment. 図2は、図1に示した航空機に搭載される2つの電力機器間に配設される超電導ケーブルシステムの模式図である。FIG. 2 is a schematic view of a superconducting cable system disposed between two power devices mounted on the aircraft shown in FIG. 図3は、図2のIII-III線での断面図である。FIG. 3 is a cross-sectional view taken along line III-III of FIG. 図4は、図3に示したコアを示す断面図である。FIG. 4 is a cross-sectional view showing the core shown in FIG. 図5は、図2に示した気液分離器の構成例を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG. 図6は、図2に示した気液分離器の構成例を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG. 図7は、図2に示した気液分離器の構成例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG. 図8は、超電導ケーブル内に存在する液体窒素の温度および量の時間的変化を模式的に示す図である。FIG. 8 schematically shows temporal changes in the temperature and amount of liquid nitrogen present in the superconducting cable.
[本開示が解決しようとする課題]
 本開示の一態様の目的は、航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルシステムであって、軽量化に適した新規な構成を提供することである。
[本開示の効果]
 本開示によれば、航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルでシステムあって、軽量化に適した新規な構成を提供することができる。
[Problems to be solved by the present disclosure]
An object of one aspect of the present disclosure is to provide a superconducting cable system that transports power between a plurality of power devices mounted on an aircraft, and which has a novel configuration suitable for weight reduction.
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a novel configuration that is suitable for weight reduction by using a superconducting cable that transports power between a plurality of power devices mounted on an aircraft.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of the embodiment of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 (1)本開示の一態様に係る超電導ケーブルシステム110は、航空機1000に搭載される複数の電力機器の間で電力を輸送する(図1参照)。超電導ケーブルシステム110(図2参照)は、断熱管30と、コア10と、タンク130と、ポンプ131と、気液分離器132とを備える。断熱管30は液体冷媒を流通させる。コア10は、断熱管30内に収納され、超電導層を有する。タンク130は液体冷媒を貯留する。ポンプ131は、タンク130および断熱管30を含む液体冷媒の循環流路に設置され、液体冷媒を循環させる。気液分離器132は、循環流路に設置され、液体冷媒が気化した気体冷媒を排出する。 (1) The superconducting cable system 110 according to an aspect of the present disclosure transports power between a plurality of power devices mounted on the aircraft 1000 (see FIG. 1). The superconducting cable system 110 (see FIG. 2) includes the heat insulation pipe 30, the core 10, the tank 130, the pump 131, and the gas-liquid separator 132. The heat insulation pipe 30 distributes the liquid refrigerant. The core 10 is housed in the heat insulating tube 30 and has a superconducting layer. The tank 130 stores liquid refrigerant. The pump 131 is installed in a circulation channel of the liquid refrigerant including the tank 130 and the heat insulation pipe 30, and circulates the liquid refrigerant. The gas-liquid separator 132 is installed in the circulation flow path, and discharges the gas refrigerant in which the liquid refrigerant is vaporized.
 上記(1)に係る超電導ケーブルシステム110によれば、断熱管30内を流通する液体冷媒の蒸発潜熱を利用してコア10が冷却される。そのため、過冷却冷媒を用いてコアの循環冷却を行なう従来の超電導ケーブルの冷却技術と比較して、液体冷媒を過冷却状態に冷却するための冷凍機が不要となる。したがって、超電導ケーブルシステム110を航空機内での電力を輸送する電力ケーブルに適用した場合において、超電導ケーブルに対して冷凍機を接続する必要がないため、電力ケーブルを軽量化することができる。 According to the superconducting cable system 110 according to the above (1), the core 10 is cooled using the latent heat of vaporization of the liquid refrigerant flowing in the heat insulating pipe 30. Therefore, a refrigerator for cooling the liquid refrigerant to the supercooled state is not required as compared with the conventional cooling technique of the superconducting cable in which the core is cooled by circulation using the subcooled refrigerant. Therefore, when the superconducting cable system 110 is applied to a power cable for transporting electric power in an aircraft, it is not necessary to connect a refrigerator to the superconducting cable, so the weight of the power cable can be reduced.
 また、液体冷媒の循環流路に気液分離器132を設けたことによって、コア10の蒸発冷却によって発生した気体冷媒によって断熱管30内の冷媒圧力が上昇することを抑制することができる。 Further, by providing the gas-liquid separator 132 in the circulation flow path of the liquid refrigerant, it is possible to suppress an increase in the refrigerant pressure in the heat insulation pipe 30 due to the gas refrigerant generated by the evaporative cooling of the core 10.
 (2)上記(1)に係る超電導ケーブルシステム110において、タンク130内には、沸点の温度に冷却された液体冷媒が充填される。 (2) In the superconducting cable system 110 according to the above (1), the tank 130 is filled with the liquid refrigerant cooled to the temperature of the boiling point.
 これによると、タンク130から循環流路を経由して断熱管30内に供給される液体冷媒の蒸発潜熱を利用してコア10が冷却される。航空機1000の離陸前に、航空機1000の運航中に発生する損失などに基づいて、コア10を冷却するのに必要な量の液体冷媒をタンク130に充填しておくことで、航空機1000の運航中常にコア10を超電導状態に維持することができる。 According to this, the core 10 is cooled using the latent heat of evaporation of the liquid refrigerant supplied from the tank 130 into the heat insulation pipe 30 via the circulation flow path. During the operation of the aircraft 1000, the tank 130 is filled with the liquid refrigerant in an amount necessary to cool the core 10 based on the loss and the like generated during the operation of the aircraft 1000 before the takeoff of the aircraft 1000. The core 10 can always be maintained in the superconducting state.
 (3)上記(1)または(2)に係る超電導ケーブルシステム110において、気液分離器132(図2参照)は、気体冷媒の出口に配置された圧力調整弁132Aを有する。 (3) In the superconducting cable system 110 which concerns on said (1) or (2), the gas-liquid separator 132 (refer FIG. 2) has the pressure control valve 132A arrange | positioned at the exit of a gaseous refrigerant.
 このようにすると、圧力調整弁132Aにより、断熱管30内の冷媒圧力と外部圧力との差圧を維持することができる。したがって、航空機の運航中において機体の姿勢が傾斜し、冷媒圧力が上昇した場合においても、断熱管30の内部から液体冷媒を流出させずに、気体冷媒を排出することができる。 In this way, the pressure regulating valve 132A can maintain the differential pressure between the refrigerant pressure in the heat insulating pipe 30 and the external pressure. Therefore, even when the attitude of the airframe is inclined during operation of the aircraft and the refrigerant pressure rises, the gaseous refrigerant can be discharged without flowing out the liquid refrigerant from the inside of the heat insulation pipe 30.
 (4)上記(1)から(3)に係る超電導ケーブルシステム110において、コア10(図3および図4参照)は、フォーマ12と、フォーマ12の外周に配置される超電導層13と、超電導層13の外周に配置される絶縁層14と、絶縁層14の外周に配置されるシールド層15とを有する。 (4) In the superconducting cable system 110 according to (1) to (3) above, the core 10 (see FIGS. 3 and 4) includes the former 12, the superconducting layer 13 disposed on the outer periphery of the former 12, and the superconducting layer An insulating layer 14 disposed on the outer periphery of the electrode 13 and a shield layer 15 disposed on the outer periphery of the insulating layer 14 are provided.
 これによると、断熱管30内を流通する液体冷媒の蒸発潜熱を利用してコア10の超電導層13およびシールド層15を冷却することができる。 According to this, it is possible to cool the superconducting layer 13 and the shield layer 15 of the core 10 by utilizing the latent heat of evaporation of the liquid refrigerant flowing in the heat insulating pipe 30.
 (5)上記(1)から(4)に係る超電導ケーブルシステム110において、液体冷媒は、液体窒素である。このようにすると、航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルの軽量化かつコスト低減を実現することができる。 (5) In the superconducting cable system 110 according to (1) to (4) above, the liquid refrigerant is liquid nitrogen. In this way, it is possible to realize a reduction in weight and cost of a superconducting cable that transports power between a plurality of power devices mounted on an aircraft.
 [本開示の実施形態の詳細]
 以下、本開示の実施の形態について図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照符号を付し、その説明は繰返さない。
Details of Embodiments of the Present Disclosure
Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following drawings, the same or corresponding parts have the same reference characters allotted, and description thereof will not be repeated.
 (超電導ケーブルシステムの適用例)
 まず、図1を参照して、本実施の形態に係る超電導ケーブルシステム110が適用される場面の一例について説明する。図1は、本実施の形態に係る超電導ケーブルシステム110を搭載する航空機1000の概要を示す模式図である。航空機1000は、エンジンおよび電動機を動力源として用いるハイブリッド型の電動航空機である。
(Example of application of superconducting cable system)
First, with reference to FIG. 1, an example of a scene where the superconducting cable system 110 according to the present embodiment is applied will be described. FIG. 1 is a schematic view showing an outline of an aircraft 1000 equipped with a superconducting cable system 110 according to the present embodiment. The aircraft 1000 is a hybrid electric aircraft using an engine and a motor as a power source.
 本実施の形態に係る超電導ケーブルシステム110は、超電導ケーブル100を有する。超電導ケーブル100は、航空機1000に搭載される複数の電力機器の間で電力を輸送する電力ケーブルに適用される。図1の例では、航空機1000には、発電機102、電動機106、電力変換器104,108、電力分配器111、および蓄電装置112などの複数の電力機器が搭載されている。4基のエンジンのうちの1基のエンジンにのみ、電動機106を図示している。超電導ケーブル100は、これらの電力機器の間に配設され、電力を輸送するためのものである。 The superconducting cable system 110 according to the present embodiment has a superconducting cable 100. The superconducting cable 100 is applied to a power cable that transports power between a plurality of power devices mounted on the aircraft 1000. In the example of FIG. 1, the aircraft 1000 is equipped with a plurality of power devices such as a generator 102, a motor 106, power converters 104 and 108, a power distributor 111, and a power storage device 112. Only one of the four engines, motor 106 is shown. The superconducting cable 100 is disposed between these power devices to transport power.
 航空機1000に搭載される電力ケーブルは、その全長が数十メートルに及ぶものがある。電力ケーブルを既存の常電導ケーブル(たとえばOFケーブルやCVケーブル)で構成した場合、たとえば4MWの三相交流電力(交流周波数400Hz、定格電圧230V、定格電流10kA)を輸送するための電力ケーブルの重量は約15トンになる。1基の電動機あたり2回線とすると、2基のエンジンを電動機に置き換えた場合には電力ケーブルの総重量は約60トンになり、航空機1000全体の重量に対する電力ケーブルの重量の割合が無視できないレベルになってしまう。 The power cables mounted on the aircraft 1000 may have a total length of several tens of meters. If the power cable consists of an existing normal conducting cable (for example, an OF cable or CV cable), the weight of the power cable for transporting, for example, 4 MW three-phase AC power (AC frequency 400 Hz, rated voltage 230 V, rated current 10 kA) Is about 15 tons. Assuming two lines per motor, the total weight of the power cable is about 60 tons when replacing the two engines with the motor, and the ratio of the weight of the power cable to the total weight of the aircraft 1000 can not be ignored Become.
 近年、変電所などの電力設備における電力ケーブルにおいては、超電導ケーブルの実用化に向けた開発が進んでいる。超電導ケーブルは、既存の常電導ケーブルに比べて送電損失が小さく、大電流を流すことができるため、電力ケーブルの軽量かつコンパクト化を実現することができる。したがって、電力ケーブルの軽量化の観点から、超電導ケーブルの航空機用の電力ケーブルへの応用が期待される。 In recent years, in power cables in power facilities such as substations, development for practical use of superconducting cables is in progress. A superconducting cable has a smaller power transmission loss than a conventional normal conducting cable and can flow a large current, so that a lightweight and compact power cable can be realized. Therefore, from the viewpoint of reducing the weight of the power cable, application of the superconducting cable to a power cable for aircraft is expected.
 ここで、超電導ケーブルは、代表的に、超電導層を有するコアが断熱管内に収納され、この断熱管内に液体冷媒(たとえば液体窒素)を流通させることで、コアを冷却する構造を採用している。この冷却構造では、超電導ケーブルに冷却システムを接続し、冷却システムから断熱管内に液体冷媒を供給して流通させることで運用を行なう。冷却システムは、液体冷媒を冷却する冷凍機、液体冷媒を圧送するポンプ、および液体冷媒を貯留するリザーバタンクなどを備え、超電導ケーブルの断熱管とともに液体冷媒を流通する冷媒流路を構成する。冷凍機で冷却された液体冷媒を断熱管内に送り、ポンプにより液体冷媒を循環させることでコアを冷却する。 Here, a superconducting cable typically employs a structure in which a core having a superconducting layer is accommodated in a heat insulating pipe, and the core is cooled by circulating liquid refrigerant (for example, liquid nitrogen) in the heat insulating pipe. . In this cooling structure, operation is performed by connecting a cooling system to the superconducting cable and supplying and circulating the liquid refrigerant from the cooling system into the heat insulating pipe. The cooling system includes a refrigerator for cooling the liquid refrigerant, a pump for pumping the liquid refrigerant, a reservoir tank for storing the liquid refrigerant, and the like, and constitutes a refrigerant flow path for circulating the liquid refrigerant together with the heat insulation pipe of the superconducting cable. The liquid refrigerant cooled by the refrigerator is fed into the heat insulating pipe, and the core is cooled by circulating the liquid refrigerant by the pump.
 そのため、超電導ケーブルを航空機用の電力ケーブルに適用した場合には、上述した冷却システムを航空機1000内に構築することが必要となる。したがって、冷却システムの重量が嵩んでしまい、軽量化の観点において十分な利益を享受できないことが懸念される。 Therefore, when the superconducting cable is applied to a power cable for an aircraft, it is necessary to construct the cooling system described above in the aircraft 1000. Therefore, there is a concern that the weight of the cooling system is increased, and sufficient benefits can not be obtained from the viewpoint of weight reduction.
 本実施の形態では、航空機用の電力ケーブルとして好適な超電導ケーブルシステムの構成について説明する。 In the present embodiment, the configuration of a superconducting cable system suitable as a power cable for an aircraft will be described.
 (超電導ケーブルシステム)
 以下、本実施の形態に係る超電導ケーブルシステム110の構成について説明する。
(Superconducting cable system)
Hereinafter, the configuration of the superconducting cable system 110 according to the present embodiment will be described.
 まず、図2を用いて、超電導ケーブルシステム110の全体構成を説明する。図2は、図1に示した航空機1000に搭載される2つの電力機器間に配設される超電導ケーブルシステム110の模式図である。 First, the overall configuration of the superconducting cable system 110 will be described with reference to FIG. FIG. 2 is a schematic view of a superconducting cable system 110 disposed between two power devices mounted on the aircraft 1000 shown in FIG.
 図2に示すように、超電導ケーブルシステム110は、超電導ケーブル100と、タンク130、ポンプ131、気液分離器132および冷媒配管133~136とを主に備える。後述するように、タンク130、ポンプ131および冷媒配管133~136は、超電導ケーブル100の断熱管30とともに液体冷媒を循環させるための循環流路を構成する。 As shown in FIG. 2, the superconducting cable system 110 mainly includes a superconducting cable 100, a tank 130, a pump 131, a gas-liquid separator 132, and refrigerant pipes 133 to 136. As described later, the tank 130, the pump 131, and the refrigerant pipes 133 to 136, together with the heat insulation pipe 30 of the superconducting cable 100, constitute a circulation flow path for circulating the liquid refrigerant.
 (超電導ケーブル)
 超電導ケーブル100は、超電導層を有するコア10を備える。コア10は、断熱管30の内部に収納される。超電導ケーブル100は、断熱管30内に液体冷媒を流通させることで、液体冷媒によりコア10を冷却して超電導状態とし、電力の輸送に利用される。以下の説明では、液体冷媒として、液体窒素を用いることとする。なお、窒素は、融点が約63.1Kであり、沸点が約77.3K(大気圧)である。
(Superconducting cable)
The superconducting cable 100 includes a core 10 having a superconducting layer. The core 10 is housed inside the heat insulation pipe 30. The superconducting cable 100 causes the liquid refrigerant to flow in the heat insulating pipe 30, thereby cooling the core 10 with the liquid refrigerant to bring it into a superconducting state, and is used for transporting power. In the following description, liquid nitrogen is used as the liquid refrigerant. Nitrogen has a melting point of about 63.1 K and a boiling point of about 77.3 K (atmospheric pressure).
 断熱管30に収納されるコア10の本数は、単芯であっても複数芯であっても構わない。以下の説明では、3芯のコア10を撚り合わせて断熱管に収納された三芯一括型の三相交流ケーブルを例示する。 The number of cores 10 stored in the heat insulation pipe 30 may be single core or multiple cores. The following description exemplifies a three-core collective type three-phase AC cable in which a three-core core 10 is twisted and housed in a heat insulation pipe.
 図3は、図2のIII-III線での断面図である。図4は、図3に示したコア10を示す断面図である。 FIG. 3 is a cross-sectional view taken along line III-III of FIG. FIG. 4 is a cross-sectional view showing the core 10 shown in FIG.
 図3および図4に示されるように、超電導ケーブル100は、3芯のコア10と、断熱管30と、真空層31と、コルゲート管32と、補強層(防食層)33とを主に備える。 As shown in FIGS. 3 and 4, the superconducting cable 100 mainly includes a three-core core 10, a heat insulation pipe 30, a vacuum layer 31, a corrugated pipe 32, and a reinforcing layer (anticorrosion layer) 33. .
 コア10は、図4に示すように、その内側から順にフォーマ12、内部超電導層13、絶縁層14、外部超電導層15、および保護層16を備える。 As shown in FIG. 4, the core 10 includes a former 12, an inner superconducting layer 13, an insulating layer 14, an outer superconducting layer 15, and a protective layer 16 in this order from the inside.
 フォーマ12は、コア10の剛性および曲げ特性などの機械的特性を維持するとともに、異常電流の分流路として機能する。具体的には、超電導ケーブル100が電気的に接続される電力機器で短絡などの事故が発生した場合、超電導ケーブル100には定常時の電流を超える異常電流が生じる。そして、臨界電流値Icを超える大電流が超電導層に流れると、超電導層は常電導に転移(クエンチ)し、この転移によるジュール損(熱損失)が生じる。ジュール損が大きな場合、超電導層を構成するコア10が焼損したり、焼損に至らなくても急激な温度上昇により臨界電流値Icが低下する可能性がある。短絡など事故で大電流が生じた際に、フォーマ12に事故電流を分流させることで、超電導層の発熱を抑制することができる。 The former 12 maintains mechanical characteristics such as rigidity and bending characteristics of the core 10 and functions as a shunt for abnormal current. Specifically, when an accident such as a short circuit occurs in a power device to which the superconducting cable 100 is electrically connected, an abnormal current exceeding the current in the steady state occurs in the superconducting cable 100. Then, when a large current exceeding the critical current value Ic flows to the superconducting layer, the superconducting layer is transitioned (quenched) to normal conduction, and Joule loss (heat loss) occurs due to this transition. If the Joule loss is large, the core 10 constituting the superconducting layer may be burnt or the critical current value Ic may be reduced due to a rapid temperature rise even if the burn does not occur. When a large current is generated due to an accident such as a short circuit, heat generation of the superconducting layer can be suppressed by shunting the accident current to the former 12.
 フォーマ12は、中空構造または中実構造を有している。低電気抵抗値を有する金属(たとえば銅やアルミニウム)からなるパイプ、または撚り線が好適に利用できる。 The former 12 has a hollow structure or a solid structure. Pipes or stranded wires made of a metal having a low electrical resistance (for example, copper or aluminum) can be suitably used.
 内部超電導層13は、フォーマ12の外周に配置される。内部超電導層13は、送電路を構成する。内部超電導層13としては、たとえば、酸化物超電導体を備えるテープ状線材が好適に利用できる。テープ状線材は、たとえば、Bi2223系超電導テープ線、またはRE123系薄膜線材が利用できる。Bi2223系超電導テープ線としては、Ag-MnやAgなどの安定化金属中にBi2223系酸化物超電導体からなるフィラメントが配されたシース線が挙げられる。なお、Bi2223超電導体は、(ビスマスと鉛):ストロンチウム:カルシウム:銅の原子比がほぼ2:2:2:3の比率で近似して表わされるBi2223相を主相とし、残部がBi2212相および不可避的不純物からなる材質を意味する。RE123系薄膜線材としては、金属基板にY(イットリウム),Ho(ホルニウム),Sm(サマリウム),Gd(ガドリニウム)などの希土類元素REの酸化物超電導相が成膜された積層線材が挙げられる。RE123系の超電導体とは、REBaCu(yは6~8、より好ましくは7)として表される超電導体を意味する。上記テープ状線材を螺旋状に巻回して形成した単層構造、または多層構造のものが挙げられる。図4では簡略化して示しているが、多層構造の超電導層13としている。 The inner superconducting layer 13 is disposed on the outer periphery of the former 12. The inner superconducting layer 13 constitutes a power transmission path. As the inner superconducting layer 13, for example, a tape-shaped wire provided with an oxide superconductor can be suitably used. As the tape-shaped wire, for example, a Bi2223-based superconducting tape wire or an RE123-based thin film wire can be used. Examples of the Bi2223-based superconducting tape wire include a sheath wire in which a filament made of a Bi2223-based oxide superconductor is disposed in a stabilized metal such as Ag—Mn or Ag. The Bi2223 superconductor has a Bi2223 phase represented by a ratio of (Bismuth and Lead): Strontium: Calcium: Copper at an approximate ratio of 2: 2: 2: 3 as the main phase, with the balance being the Bi2212 phase and the Bi2223 phase. It means a material consisting of unavoidable impurities. Examples of the RE123-based thin film wire include a laminated wire in which an oxide superconducting phase of a rare earth element RE such as Y (yttrium), Ho (phornium), Sm (samarium), and Gd (gadolinium) is formed on a metal substrate. The RE123-based superconductor means a superconductor represented as REBa 2 Cu 3 O y (y is 6 to 8, more preferably 7). The thing of the single layer structure formed by winding the said tape-shaped wire material helically, or a multilayer structure is mentioned. Although it simplifies and shows in FIG. 4, it is set as the superconducting layer 13 of a multilayer structure.
 絶縁層14は、内部超電導層13での使用電圧に対して要求される絶縁を確保するための層である。 Insulating layer 14 is a layer for securing the insulation required for the working voltage in internal superconducting layer 13.
 外部超電導層15は、絶縁層14の外周に配置される。外部超電導層15としては、内部超電導層13と同様に酸化物超電導体を備えるテープ状線材が好適に利用できる。外部超電導層15に用いる酸化物超電導体は、内部超電導層13の形成に用いたものと同様のものを用いてもよい。超電導ケーブル100が三相交流ケーブルの場合、外部超電導層15は、内部超電導層13に流れる電流による誘導されるシールド電流を流すシールド層として利用できる。 The outer superconducting layer 15 is disposed on the outer periphery of the insulating layer 14. As the outer superconducting layer 15, a tape-shaped wire including an oxide superconductor as in the case of the inner superconducting layer 13 can be suitably used. The oxide superconductor used for the outer superconducting layer 15 may be the same as that used for the formation of the inner superconducting layer 13. When the superconducting cable 100 is a three-phase AC cable, the outer superconducting layer 15 can be used as a shield layer for flowing a shield current induced by the current flowing in the inner superconducting layer 13.
 保護層16は、外部超電導層15の外周に配置される。保護層16は、外部超電導層15の電気的絶縁を確保するとともに、外部超電導層15を機械的に保護するためのものである。保護層16は、たとえばPPLPやクラフト紙などの絶縁紙を外部超電導層15の外周に螺旋状に巻回することで形成されている。 Protective layer 16 is disposed on the outer periphery of outer superconducting layer 15. The protective layer 16 is intended to ensure the electrical insulation of the outer superconducting layer 15 and to mechanically protect the outer superconducting layer 15. The protective layer 16 is formed, for example, by spirally winding an insulating paper such as PPLP or kraft paper around the outer superconducting layer 15.
 図3に戻って、断熱管30は、コア10(端末を除く)を収納する。断熱管30の材質としては、銅、ステンレスまたはアルミニウム(合金)などが好適に利用できる。断熱管30は、たとえばコルゲート管である。断熱管30の内部には液体窒素20が流通される。 Returning to FIG. 3, the heat insulating pipe 30 houses the core 10 (excluding the terminal). As a material of the heat insulation pipe 30, copper, stainless steel or aluminum (alloy) can be suitably used. Insulating pipe 30 is, for example, a corrugated pipe. Liquid nitrogen 20 flows through the inside of the heat insulation pipe 30.
 断熱管30の内部では、液体窒素20を用いてコア10が冷却される。コア10の冷却には蒸発潜熱が利用される。 Inside the heat insulation pipe 30, the core 10 is cooled using liquid nitrogen 20. The latent heat of evaporation is used to cool the core 10.
 断熱管30の外周には、コルゲート管32が配置される。コルゲート管32は、たとえばステンレス製のコルゲート筒形状である。断熱管30とコルゲート管32との間の空間は、真空層31であり、断熱空間として利用される。この空間には、断熱材を充填してもよい。 The corrugated pipe 32 is disposed on the outer periphery of the heat insulating pipe 30. The corrugated pipe 32 is, for example, a corrugated cylindrical shape made of stainless steel. A space between the heat insulation pipe 30 and the corrugated pipe 32 is a vacuum layer 31 and is used as a heat insulation space. This space may be filled with a heat insulating material.
 コルゲート管32の外周には、補強層33(防食層)が配置される。補強層33は、たとえばポリ塩化ビニルなどを用いて形成される。 The reinforcing layer 33 (anticorrosion layer) is disposed on the outer periphery of the corrugated pipe 32. The reinforcing layer 33 is formed using, for example, polyvinyl chloride or the like.
 (液体窒素の循環流路)
 図2に戻って、超電導ケーブル100は、長手方向における両端部に端末部120A,120Bを有する。端末部120Aは、コア10の長手方向における一方の端末を収納する。端末部120Bは、コア10の長手方向における他方の端末を収納する。端末部120A,120Bの各々の内部において、コア10の端末は電極122と電気的に接続される。電極122は、図示しない電力機器と電気的に接続される。電極122は、たとえば、銅またはアルミニウムなどのように、液体窒素の温度近傍においても電気抵抗値の低い金属などの導電性材料で形成される。
(Liquid nitrogen circulation channel)
Returning to FIG. 2, the superconducting cable 100 has end portions 120A and 120B at both ends in the longitudinal direction. The terminal unit 120 </ b> A accommodates one of the terminals in the longitudinal direction of the core 10. The terminal unit 120 </ b> B accommodates the other terminal in the longitudinal direction of the core 10. The terminal of the core 10 is electrically connected to the electrode 122 in each of the terminal units 120A and 120B. The electrode 122 is electrically connected to a power device (not shown). The electrode 122 is formed of, for example, a conductive material such as a metal having a low electric resistance value near the temperature of liquid nitrogen, such as copper or aluminum.
 端末部120A,120Bには断熱管30が接続され、端末部120A,120B内の空間は断熱管30内と連通しており、液体窒素が充填される。 The heat insulating pipe 30 is connected to the end portions 120A and 120B, and the space in the end portions 120A and 120B communicates with the inside of the heat insulating pipe 30, and is filled with liquid nitrogen.
 タンク130は、液体窒素を貯留する。タンク130は、冷媒配管133を介して端末部120Aに接続される。冷媒配管133内と端末部120A内の空間とは連通しており、冷媒配管133内には液体窒素が流通する。タンク130から冷媒配管133を経由して端末部120A内に液体窒素が供給されると、液体窒素は、端末部120Aを経由して断熱管30内に供給される。図2中の黒色矢印は液体窒素の流通方向を示している。断熱管30内を流通した液体窒素は端末部120B内の空間に流入する。端末部120Bは、冷媒配管134を介して気液分離器132に接続される。端末部120B内の空間と冷媒配管134内とは連通しており、冷媒配管134内には液体窒素が流通する。冷媒配管134内を流通した液体窒素は気液分離器132に流入する。 The tank 130 stores liquid nitrogen. The tank 130 is connected to the terminal unit 120 </ b> A through the refrigerant pipe 133. The inside of the refrigerant pipe 133 and the space in the terminal portion 120A communicate with each other, and liquid nitrogen flows in the refrigerant pipe 133. When liquid nitrogen is supplied from the tank 130 into the end portion 120A via the refrigerant pipe 133, the liquid nitrogen is supplied into the heat insulation pipe 30 via the end portion 120A. The black arrows in FIG. 2 indicate the flow direction of liquid nitrogen. The liquid nitrogen flowing in the heat insulating pipe 30 flows into the space in the terminal portion 120B. The terminal unit 120 </ b> B is connected to the gas-liquid separator 132 via the refrigerant pipe 134. The space in the terminal portion 120 B communicates with the inside of the refrigerant pipe 134, and liquid nitrogen flows in the refrigerant pipe 134. The liquid nitrogen flowing in the refrigerant pipe 134 flows into the gas-liquid separator 132.
 気液分離器132は、液体窒素の流出を抑制しつつ、窒素ガスを外部に排出させるものである。上述したように、断熱管30の内部では、液体窒素を用いてコア10を蒸発冷却するため、液体窒素が気化されて窒素ガスが発生する。窒素ガスおよび液体窒素が混合された気液二相冷媒は気液分離器132に導入されると、液体窒素と窒素ガスとに分離され、窒素ガスが気液分離器132の外部に排出される。図2中の白抜き矢印は窒素ガスの流通方向を示す。 The gas-liquid separator 132 discharges nitrogen gas to the outside while suppressing the outflow of liquid nitrogen. As described above, in the inside of the heat insulating pipe 30, since the core 10 is evaporated and cooled using liquid nitrogen, the liquid nitrogen is vaporized to generate nitrogen gas. When a gas-liquid two-phase refrigerant mixed with nitrogen gas and liquid nitrogen is introduced into the gas-liquid separator 132, it is separated into liquid nitrogen and nitrogen gas, and the nitrogen gas is discharged to the outside of the gas-liquid separator 132 . The white arrows in FIG. 2 indicate the flow direction of nitrogen gas.
 気液分離器132の気体出口には圧力調整弁132Aが配置されている。航空機1000の運航中、機体の姿勢が傾斜することで、断熱管30内の冷媒圧力が上昇する場合がある。断熱管30の外部は大気圧もしくは大気圧以下であるため、このような場合に、気液分離器132の気体出口から液体窒素および窒素ガスがともに排出されてしまうおそれがある。圧力調整弁132Aは、気体出口に設置され、断熱管30内の冷媒圧力と外部圧力との圧力差を維持することができる。これにより、機体が大きく傾斜する場合を含めて、断熱管30から液体窒素を流出させずに、窒素ガスを効率良く外部に排出させることができる。 A pressure control valve 132A is disposed at the gas outlet of the gas-liquid separator 132. During operation of the aircraft 1000, the refrigerant pressure in the heat insulation pipe 30 may increase due to the inclination of the attitude of the airframe. Since the outside of the heat insulation pipe 30 is at atmospheric pressure or lower than atmospheric pressure, in such a case, both liquid nitrogen and nitrogen gas may be discharged from the gas outlet of the gas-liquid separator 132. The pressure control valve 132A is installed at the gas outlet, and can maintain the pressure difference between the refrigerant pressure in the heat insulation pipe 30 and the external pressure. Thus, the nitrogen gas can be efficiently discharged to the outside without flowing out the liquid nitrogen from the heat insulation pipe 30, including the case where the airframe is greatly inclined.
 図5から図7は、図2に示した気液分離器132の構成例を模式的に示す断面図である。気液分離器132には、一般的に、遠心力を利用した気液分離器(図5)、表面張力を利用した気液分離器(図6)および、気液分離コアレッサー(図7)など種々の方式のものを利用することができる。 5 to 7 are cross-sectional views schematically showing the configuration example of the gas-liquid separator 132 shown in FIG. In the gas-liquid separator 132, generally, a gas-liquid separator using centrifugal force (FIG. 5), a gas-liquid separator using surface tension (FIG. 6), and a gas-liquid separation coalescer (FIG. 7) And so on can be used.
 図5は、遠心力式気液分離器の構成を模式的に示す断面図である。図5に示すように、分離器本体143の側部には、気液二相冷媒が流入する気液二相流入口140が設けられている。分離器本体143の上部には気体が出力される気体出口141が設けられ、分離器本体143の下部には液体が出力される液体出口142が設けられている。分離器本体143の内部には螺旋状流路が形成されており、この螺旋状流路の一端が気液二相流入口140に連通している。螺旋状流路の他端側で、かつ螺旋状流路の軸線方向から見て螺旋状流路の外周側部分に連通するように液体出口142が設けられ、螺旋状流路の軸線方向から見て螺旋状流路の内周側部分に連通するように気体出口141が設けられる。 FIG. 5 is a cross-sectional view schematically showing the structure of a centrifugal gas-liquid separator. As shown in FIG. 5, a gas-liquid two-phase inlet 140 into which a gas-liquid two-phase refrigerant flows is provided on the side of the separator main body 143. A gas outlet 141 from which gas is output is provided at the top of the separator body 143, and a liquid outlet 142 from which liquid is output is provided at the bottom of the separator body 143. A spiral flow passage is formed inside the separator body 143, and one end of the spiral flow passage communicates with the gas-liquid two-phase inlet 140. A liquid outlet 142 is provided on the other end side of the spiral flow channel and in communication with the outer peripheral side portion of the spiral flow channel viewed from the axial direction of the spiral flow channel, and viewed from the axial direction of the spiral flow channel A gas outlet 141 is provided to communicate with the inner peripheral side portion of the helical flow passage.
 気液二相流入口140から流入した気液二相冷媒は、螺旋状流路によって旋回成分が与えられ、その遠心力によって液体窒素と窒素ガスとに分離される。すなわち、比重の大きい液体窒素は、より大きな遠心力を受けるため、螺旋状流路の外周側に集まる一方、比重の小さい窒素ガスはそれ以外の部分、つまり螺旋状流路の内周側に集まることになる。 The gas-liquid two-phase refrigerant flowing from the gas-liquid two-phase inlet 140 is given a swirling component by a spiral flow path, and is separated into liquid nitrogen and nitrogen gas by its centrifugal force. That is, since liquid nitrogen having a large specific gravity is subjected to a larger centrifugal force, it gathers on the outer peripheral side of the spiral channel, while nitrogen gas having a small specific gravity collects on the other part, that is, the inner peripheral side of the spiral channel. It will be.
 図6は、表面張力式気液分離器の構成を模式的に示す断面図である。図6に示すように、分離器本体143の上部には気液二相流入口140が設けられ、分離器本体143の側部には気体出口141が設けられ、分離器本体143の下部には液体出口142が設けられている。 FIG. 6 is a cross-sectional view schematically showing the structure of a surface tension type gas-liquid separator. As shown in FIG. 6, a gas-liquid two-phase inlet 140 is provided at the upper portion of the separator body 143, a gas outlet 141 is provided at the side of the separator body 143, and the lower portion of the separator body 143. A liquid outlet 142 is provided.
 分離器本体143の内周面には、蛇腹状の溝部144が形成されている。溝部144の上部と気液二相流入口140と間には、気液二相流を溝部144に導くとともに、溝部144から放出された気体が気液二相流入口140に逆流するのを防止するための仕切体143Aが配置されている。溝部144の下部と気体出口141および液体出口142との間には、溝部144を通過した気体および液体をそれぞれの出口に導くための仕切体143Bが配置されている。 A bellows-like groove 144 is formed on the inner peripheral surface of the separator body 143. Between the upper portion of the groove 144 and the gas-liquid two-phase inlet 140, the gas-liquid two-phase flow is guided to the groove 144, and the gas released from the groove 144 is prevented from backflowing to the gas-liquid two-phase inlet 140 The partition 143A for doing is arranged. Between the lower portion of the groove 144 and the gas outlet 141 and the liquid outlet 142, a partition 143B for guiding the gas and liquid having passed through the groove 144 to the respective outlets is disposed.
 蛇腹状の溝部144の上部から気液二相冷媒が流入されると、気液二相冷媒が溝部144に接触する。溝部144に接触した気液二相冷媒は、液体窒素の表面張力により、液体窒素と窒素ガスとに分離される。分離された液体窒素は、溝部144に沿って流れた後に集められて、液体出口142から流出される。窒素ガスは、気体出口141から排出される。 When the gas-liquid two-phase refrigerant flows in from the upper portion of the bellows-like groove portion 144, the gas-liquid two-phase refrigerant contacts the groove portion 144. The gas-liquid two-phase refrigerant in contact with the groove 144 is separated into liquid nitrogen and nitrogen gas by the surface tension of the liquid nitrogen. The separated liquid nitrogen is collected after flowing along the groove 144 and flows out from the liquid outlet 142. Nitrogen gas is exhausted from the gas outlet 141.
 図7は、気液分離コアレッサーの構成を模式的に示す断面図である。図7に示すように、分離器本体143の内部には、超極細繊維構造を有するコアレッサーカートリッジ145が設置されている。気液二相流入口140から流入された気液二相冷媒は、コアレッサーカートリッジ145の中に流入される。コアレッサーカートリッジ145を通過する間に、気液二相冷媒に含まれる液体窒素が分離されて、分離器本体143の下部に集められる。液体窒素は、分離器本体143の下部に設けられた液体出口142から流出される。窒素ガスは、コアレッサーカートリッジ145を通過した後、分離器本体143の上部に設けられた気体出口141から排出される。 FIG. 7 is a cross-sectional view schematically showing the structure of the gas-liquid separation coalescer. As shown in FIG. 7, a coalescer cartridge 145 having a microfiber structure is installed inside the separator body 143. The gas-liquid two-phase refrigerant flowing from the gas-liquid two-phase inlet 140 flows into the coalescer cartridge 145. While passing through the coalescer cartridge 145, liquid nitrogen contained in the gas-liquid two-phase refrigerant is separated and collected at the lower part of the separator body 143. Liquid nitrogen flows out of a liquid outlet 142 provided at the bottom of the separator body 143. After passing through the coalescer cartridge 145, the nitrogen gas is exhausted from a gas outlet 141 provided on the top of the separator body 143.
 図2に戻って、気液分離器132の液体出口142は、冷媒配管135,136を介してタンク130に接続される。冷媒配管135および冷媒配管136の間には、ポンプ131が接続される。気液分離器132の液体出口142と冷媒配管135内とは連通しており、冷媒配管135内には気液分離器132から導出された液体窒素が流通する。液体窒素は、ポンプ131により圧送され、冷媒配管136内を経由してタンク130内に供給される。すなわち、液体窒素は、タンク130から冷媒配管133を介して端末部120Aに供給されて、断熱管30内を流通する。断熱管30内を流通した液体冷媒は、端末部120Bから排出され、冷媒配管134、気液分離器132、冷媒配管135、ポンプ131および冷媒配管136を経由してタンク130に戻され、再び断熱管30内に供給される。つまり、断熱管30、端末部120A,120B、冷媒配管133~135、タンク130、気液分離器132およびポンプ131が液体窒素の循環流路を構成し、液体窒素がこの循環流路を循環する。 Returning to FIG. 2, the liquid outlet 142 of the gas-liquid separator 132 is connected to the tank 130 via refrigerant pipes 135 and 136. The pump 131 is connected between the refrigerant pipe 135 and the refrigerant pipe 136. The liquid outlet 142 of the gas-liquid separator 132 and the inside of the refrigerant pipe 135 are in communication, and the liquid nitrogen drawn out from the gas-liquid separator 132 flows in the refrigerant pipe 135. The liquid nitrogen is pumped by the pump 131 and supplied into the tank 130 via the refrigerant pipe 136. That is, liquid nitrogen is supplied from the tank 130 to the terminal portion 120A through the refrigerant pipe 133 and flows in the heat insulating pipe 30. The liquid refrigerant having flowed in the heat insulating pipe 30 is discharged from the terminal portion 120B, returned to the tank 130 via the refrigerant pipe 134, the gas-liquid separator 132, the refrigerant pipe 135, the pump 131 and the refrigerant pipe 136, and heat insulation again. It is fed into the tube 30. That is, the heat insulating pipe 30, the end portions 120A and 120B, the refrigerant pipes 133 to 135, the tank 130, the gas-liquid separator 132, and the pump 131 constitute a circulation channel of liquid nitrogen, and liquid nitrogen circulates in this circulation channel. .
 航空機1000が離陸してから着陸するまでの期間において、液体窒素は、コア10で発生する交流損失および断熱管30の外部から侵入する熱などによって加熱される。航空機1000の離陸前において、大気圧で沸点(77.3K)程度に冷却した液体窒素をタンク130内に貯留することで、航空機1000の離陸後、液体窒素は上述した循環路を循環する。液体窒素の温度は、循環流路内の液体窒素が全て気化するまで、沸点近傍の温度に維持される。タンク130には、航空機1000が離陸してから着陸するまでの運航期間に発生する損失などに基づいて、コア10を超電導状態に冷却するのに必要な量の液体窒素が貯留される。たとえば、24時間の運航時間において負荷が100%である時間が1時間であり、負荷が33%である時間が23時間である場合、初期にタンク130に貯留すべき液体窒素の量は約700kgである。これによると、航空機1000が着陸するよりも前に、循環流路内の液体窒素が全て気化してしまうことを防ぐことができる。 During the period from the takeoff to the landing of the aircraft 1000, liquid nitrogen is heated by AC loss generated in the core 10, heat entering from the outside of the heat insulation pipe 30, and the like. By storing liquid nitrogen cooled to a boiling point (77.3 K) or so at atmospheric pressure before taking off the aircraft 1000, the liquid nitrogen circulates in the above-described circulation path after taking off the aircraft 1000. The temperature of the liquid nitrogen is maintained at a temperature near the boiling point until all the liquid nitrogen in the circulation flow path is vaporized. The tank 130 stores an amount of liquid nitrogen necessary to cool the core 10 to a superconducting state, based on the loss generated during the operation period from the takeoff to the landing of the aircraft 1000. For example, if the time when the load is 100% for 24 hours operation time is 1 hour and the time when the load is 33% is 23 hours, the amount of liquid nitrogen to be initially stored in the tank 130 is about 700 kg It is. According to this, it is possible to prevent all the liquid nitrogen in the circulation channel from being vaporized before the aircraft 1000 lands.
 なお、断熱管30内には窒素ガスが発生するため、この窒素ガスを排出しなければ断熱管30内の冷媒圧力が高まるとともに、コア10の冷却が不十分になり、コア10の温度が上昇する可能性がある。したがって、コア10の温度を維持するためには、窒素ガスを排出する必要がある。 Since nitrogen gas is generated in the adiabatic pipe 30, the refrigerant pressure in the adiabatic pipe 30 increases if the nitrogen gas is not discharged, and the cooling of the core 10 becomes insufficient, and the temperature of the core 10 rises. there's a possibility that. Therefore, in order to maintain the temperature of the core 10, it is necessary to discharge nitrogen gas.
 ここで、断熱管30が地面に対して常に水平に配置されていれば、断熱管30の一部分に窒素ガスを排出するための排出孔を形成し、この排出孔を通じて窒素ガスを自律的に排出させることもできるが、航空機1000の場合、運航している間、航空機1000は様々な姿勢をとり得る。たとえば、航空機1000の機体が地面に対して垂直に近い角度で傾いている場合、超電導ケーブル100も地面に対して垂直に近い角度で傾くことがある。このような場合、断熱管30の内部の液体窒素が重力に従って下方に集まり、排出孔から液体窒素が外部に漏れてしまう可能性がある。液体窒素の漏れを防ぐためには、超電導ケーブル100を密閉構造とする必要があり、液体窒素を自律的に排出させることが困難となる。 Here, if the heat insulation pipe 30 is always arranged horizontally with respect to the ground, a discharge hole for discharging nitrogen gas is formed in a part of the heat insulation pipe 30, and nitrogen gas is discharged autonomously through this discharge hole. In the case of the aircraft 1000, the aircraft 1000 can take various attitudes while operating. For example, if the aircraft 1000 is inclined at an angle close to perpendicular to the ground, the superconducting cable 100 may also incline at an angle close to perpendicular to the ground. In such a case, there is a possibility that liquid nitrogen inside the heat insulation pipe 30 gathers downward according to gravity, and the liquid nitrogen may leak to the outside from the discharge hole. In order to prevent leakage of liquid nitrogen, the superconducting cable 100 needs to have a sealed structure, which makes it difficult to discharge liquid nitrogen autonomously.
 そこで、本実施の形態では、循環流路に気液分離器132を設けることにより、断熱管30内で発生した窒素ガスを気液分離器132を用いて外部に排出することとする。 Therefore, in the present embodiment, the nitrogen gas generated in the heat insulation pipe 30 is discharged to the outside by using the gas-liquid separator 132 by providing the gas-liquid separator 132 in the circulation flow path.
 なお、航空機1000の機体が地面に対して垂直に近い角度で傾いたことにより、超電導ケーブル100も地面に対して垂直に近い角度で傾くと、断熱管30の内部の液体窒素20が重力に従って下方に集まる。断熱管30内は単一の空間であるため、この状態は、細長い容器に液体窒素が入っている状態と例えることができる。そのため、容器となる断熱管30においては、重力方向下側に位置する部分に、液体窒素の液面からの深さに応じた圧力が加わることになる。この圧力は断熱管30の長さが長くなるほど大きくなるため、断熱管30は圧力に耐え得るだけの堅牢性を備えている。 When the superconducting cable 100 is also inclined at an angle close to perpendicular to the ground because the airframe of the aircraft 1000 is inclined at an angle close to perpendicular to the ground, the liquid nitrogen 20 inside the heat insulation pipe 30 is moved downward according to gravity. Gather in Since the inside of the heat insulation pipe 30 is a single space, this state can be compared with the state in which the elongated container contains liquid nitrogen. Therefore, in the heat insulating pipe 30 serving as the container, a pressure corresponding to the depth from the liquid surface of liquid nitrogen is applied to the portion located on the lower side in the direction of gravity. Since the pressure increases as the length of the heat insulating tube 30 increases, the heat insulating tube 30 has sufficient robustness to withstand the pressure.
 また、航空機1000がどのような姿勢になっても液体窒素の循環が維持できるように、ポンプ131の最大吐出圧は液体窒素の自重による圧力以上としている。 Further, the maximum discharge pressure of the pump 131 is set to be equal to or higher than the pressure of the liquid nitrogen by its own weight so that the circulation of the liquid nitrogen can be maintained regardless of the attitude of the aircraft 1000.
 (超電導ケーブルシステムの運用例)
 次に、本実施の形態に係る超電導ケーブルシステム110の運用例について説明する。
(Example of operation of superconducting cable system)
Next, an operation example of the superconducting cable system 110 according to the present embodiment will be described.
 まず、航空機1000の離陸前においては、タンク130の内部に、液体窒素が充填される。この工程では、たとえば、大気圧で沸点(77.3K)の飽和状態の液体窒素がタンク130の内部に供給される。タンク130内には、航空機1000が離陸してから着陸するまでの期間において、コア10を超電導状態に冷却するのに必要な量の液体窒素が貯留される。 First, before the takeoff of the aircraft 1000, the inside of the tank 130 is filled with liquid nitrogen. In this process, for example, liquid nitrogen saturated at boiling point (77.3 K) at atmospheric pressure is supplied to the inside of the tank 130. In the tank 130, an amount of liquid nitrogen necessary to cool the core 10 to a superconducting state is stored in a period from the takeoff to the landing of the aircraft 1000.
 図8は、超電導ケーブルシステム110内に存在する液体窒素の温度および量の時間的変化を模式的に示す図である。 FIG. 8 schematically shows temporal changes in the temperature and amount of liquid nitrogen present in superconducting cable system 110.
 図8に示すように、時刻t0にてタンク130への液体窒素の供給が開始される。液体窒素は沸点(77.3K)近傍の温度に冷却されている。時刻t1にて断熱管30の内部に規定量の液体窒素が貯留されると、タンク130への液体窒素の供給が停止される。 As shown in FIG. 8, the supply of liquid nitrogen to the tank 130 is started at time t0. Liquid nitrogen is cooled to a temperature near the boiling point (77.3 K). When a prescribed amount of liquid nitrogen is stored inside the heat insulation pipe 30 at time t1, the supply of liquid nitrogen to the tank 130 is stopped.
 時刻t1より後の時刻t2において航空機1000が離陸すると、ポンプ131を稼働させることにより、循環流路における液体窒素の循環が開始され、断熱管30内に液体窒素が流通する。このとき、コア10に発生する交流損失および外部侵入熱などによって液体窒素が加熱される。液体窒素の蒸発潜熱を利用してコア10が冷却されるため、航空機1000の運航中、液体窒素の温度は沸点近傍に維持される。なお、蒸発冷却で発生した窒素ガスは、液体窒素とともに気液分離器132に導入され、気液分離器132の外部に排出される。 When the aircraft 1000 takes off at time t2 after time t1, by operating the pump 131, circulation of liquid nitrogen in the circulation flow path is started, and liquid nitrogen flows in the heat insulation pipe 30. At this time, the liquid nitrogen is heated by the AC loss generated in the core 10 and the heat of external penetration. Because the core 10 is cooled using the latent heat of vaporization of liquid nitrogen, the temperature of the liquid nitrogen is maintained near the boiling point during operation of the aircraft 1000. The nitrogen gas generated by the evaporative cooling is introduced into the gas-liquid separator 132 together with liquid nitrogen, and is discharged to the outside of the gas-liquid separator 132.
 時刻t2以降、液体窒素の量は徐々に減少する。時刻t3において航空機1000が着陸したときには、タンク130内の液体窒素は大部分が消費された状態となっている。 After time t2, the amount of liquid nitrogen gradually decreases. When the aircraft 1000 lands at time t3, most of the liquid nitrogen in the tank 130 is consumed.
 時刻t3より後には、航空機1000の運航に備えて、再びタンク130への液体窒素の供給が行なわれる。 After time t3, the liquid nitrogen is again supplied to the tank 130 in preparation for the operation of the aircraft 1000.
 以上説明したように、本実施の形態に係る超電導ケーブルシステム110によれば、断熱管30内を流通する液体窒素の蒸発潜熱を利用してコア10が冷却される。そのため、過冷却冷媒を用いてコアの循環冷却を行なう従来の超電導ケーブルの冷却技術と比較して、液体窒素を過冷却状態に冷却するための冷凍機が不要となる。したがって、超電導ケーブルシステム110を航空機内での電力を輸送する電力ケーブルに適用した場合において、超電導ケーブルに対して冷凍機を接続する必要がないため、電力ケーブルを軽量化することができる。したがって、本実施の形態による超電導ケーブル100は、燃費および環境負荷を低減できる電動航空機の実現に貢献することができる。 As described above, according to the superconducting cable system 110 according to the present embodiment, the core 10 is cooled using the latent heat of vaporization of liquid nitrogen flowing in the heat insulating pipe 30. Therefore, a refrigerator for cooling liquid nitrogen to a state of supercooling becomes unnecessary, as compared with the conventional cooling technique of a superconducting cable in which a core is cooled by circulation using a subcooled refrigerant. Therefore, when the superconducting cable system 110 is applied to a power cable for transporting electric power in an aircraft, it is not necessary to connect a refrigerator to the superconducting cable, so the weight of the power cable can be reduced. Therefore, superconducting cable 100 according to the present embodiment can contribute to the realization of an electric aircraft capable of reducing fuel consumption and environmental load.
 また、液体窒素の循環流路に気液分離器132を設けたことによって、コア10の蒸発冷却によって発生した窒素ガスによって断熱管30内の冷媒圧力が上昇することを抑制することができる。 Further, by providing the gas-liquid separator 132 in the circulation path of liquid nitrogen, it is possible to suppress that the pressure of the refrigerant in the heat insulation pipe 30 is increased by the nitrogen gas generated by the evaporative cooling of the core 10.
 なお、上述した実施の形態では、タンク130内に沸点近傍の温度の液体窒素を充填する構成について説明したが、沸点未満の温度に冷却された液体窒素を受転する構成としてもよい。このようにすると、液体窒素の顕熱および蒸発潜熱を利用してコア10を冷却することができるため、蒸発潜熱のみを利用してコア10を冷却する場合と比べて、液体冷媒がより多くの熱を吸収することができる。したがって、航空機1000の運航時間が長い場合、または電力ケーブルで発生するジュール損(熱損失)が大きい場合においても、コア10を常時冷却して超電導状態に維持することが可能となる。 In the embodiment described above, although the configuration in which the tank 130 is filled with liquid nitrogen at a temperature near the boiling point has been described, it may be configured to receive liquid nitrogen cooled to a temperature below the boiling point. In this way, since the core 10 can be cooled using the sensible heat and the latent heat of evaporation of liquid nitrogen, more liquid refrigerant is used than when the core 10 is cooled using the latent heat of evaporation alone. It can absorb heat. Therefore, even when the operation time of the aircraft 1000 is long or the Joule loss (heat loss) generated in the power cable is large, the core 10 can be constantly cooled and maintained in the superconducting state.
 また、上述した実施の形態では、超電導ケーブルシステム110を交流送電(例えば、三相交流送電)に利用する構成について説明したが、本実施の形態による超電導ケーブルシステムは、直流送電(例えば、バイポール送電、モノポール送電)にも利用することができる。 Further, although the configuration in which the superconducting cable system 110 is used for AC power transmission (for example, three-phase AC power transmission) has been described in the above embodiment, the superconducting cable system according to the present embodiment is DC power transmission (for example, bipole power transmission) , Monopole power transmission).
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative in all respects and not restrictive. The scope of the present invention is shown not by the embodiments described above but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
10 コア、12 フォーマ、13 内部超電導層、14 絶縁層、15 外部超電導層(シールド層)、16 保護層、20 液体窒素、30 断熱管、31 真空層、32 コルゲート管、33 補強層、100 超電導ケーブル、110 超電導ケーブルシステム、102 発電機、104,108 電力変換器、106 電動機、111 電力分配器、112 蓄電装置、120A,120B 端末部、122 電極、130 タンク、131 ポンプ、132 気液分離器、132A 圧力調整弁、133~136 冷媒配管、140 気液二相流入口、141 気体出口、142 液体出口、143 分離器本体、143A,143B 仕切体、144 溝部、145 コアレッサーカートリッジ、1000 航空機。 10 core, 12 former, 13 inner superconducting layer, 14 insulating layer, 15 outer superconducting layer (shield layer), 16 protective layer, 20 liquid nitrogen, 30 adiabatic tube, 31 vacuum layer, 32 corrugated tube, 33 reinforcing layer, 100 superconducting Cable, 110 superconducting cable system, 102 generator, 104, 108 power converter, 106 motor, 111 power distributor, 112 power storage device, 120A, 120B terminal part, 122 electrode, 130 tank, 131 pump, 132 gas-liquid separator , 132A pressure control valve, 133 to 136 refrigerant piping, 140 gas-liquid two-phase inlet, 141 gas outlet, 142 liquid outlet, 143 separator main body, 143A, 143B partition body, 144 groove portion, 145 coreless cartridge, 1000 aircraft.

Claims (5)

  1.  航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルシステムであって、
     液体冷媒を流通させる断熱管と、
     前記断熱管内に収納され、超電導層を有するコアと、
     前記液体冷媒を貯留するタンクと、
     前記タンクおよび前記断熱管を含む前記液体冷媒の循環流路に設置され、前記液体冷媒を循環させるポンプと、
     前記循環流路に設置され、前記液体冷媒が気化した気体冷媒を排出するための気液分離器とを備える、超電導ケーブルシステム。
    A superconducting cable system for transporting power between a plurality of power devices mounted on an aircraft, comprising:
    An insulating pipe for circulating liquid refrigerant,
    A core having a superconducting layer housed in the heat insulating pipe;
    A tank for storing the liquid refrigerant;
    A pump installed in a circulation flow path of the liquid refrigerant including the tank and the heat insulating pipe, and circulating the liquid refrigerant;
    And a gas-liquid separator, disposed in the circulation flow path, for discharging a gas refrigerant in which the liquid refrigerant is vaporized.
  2.  前記タンク内には、沸点の温度に冷却された前記液体冷媒が充填される、請求項1に記載の超電導ケーブルシステム。 The superconducting cable system according to claim 1, wherein the tank is filled with the liquid refrigerant cooled to a boiling point temperature.
  3.  前記気液分離器は、前記気体冷媒の出口に配置された圧力調整弁を有する、請求項1または請求項2に記載の超電導ケーブルシステム。 The superconducting cable system according to claim 1, wherein the gas-liquid separator has a pressure control valve disposed at an outlet of the gas refrigerant.
  4.  前記コアは、
     フォーマと、
     前記フォーマの外周に配置される前記超電導層と、
     前記超電導層の外周に配置される絶縁層と、
     前記絶縁層の外周に配置されるシールド層とを有する、請求項1から請求項3のいずれか1項に記載の超電導ケーブルシステム。
    The core is
    With the former
    The superconducting layer disposed on the outer periphery of the former;
    An insulating layer disposed on the outer periphery of the superconducting layer;
    The superconducting cable system according to any one of claims 1 to 3, further comprising: a shield layer disposed on an outer periphery of the insulating layer.
  5.  前記液体冷媒は、液体窒素である、請求項1から請求項4のいずれか1項に記載の超電導ケーブルシステム。 The superconducting cable system according to any one of claims 1 to 4, wherein the liquid refrigerant is liquid nitrogen.
PCT/JP2018/045061 2018-01-23 2018-12-07 Superconductive cable system WO2019146270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-008945 2018-01-23
JP2018008945 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019146270A1 true WO2019146270A1 (en) 2019-08-01

Family

ID=67394900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045061 WO2019146270A1 (en) 2018-01-23 2018-12-07 Superconductive cable system

Country Status (1)

Country Link
WO (1) WO2019146270A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315650A (en) * 1995-05-12 1996-11-29 Sumitomo Electric Ind Ltd Superconducting conductor cooling method
JPH09102227A (en) * 1995-10-06 1997-04-15 Sumitomo Electric Ind Ltd Superconducting transmission line
JP2005032861A (en) * 2003-07-09 2005-02-03 Toshiba Corp Superconducting magnet device
JP2010519679A (en) * 2007-02-09 2010-06-03 アメリカン スーパーコンダクター コーポレーション Fault current limiting HTS cable and configuration method thereof
JP2013069585A (en) * 2011-09-22 2013-04-18 Sumitomo Electric Ind Ltd Superconducting cable manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315650A (en) * 1995-05-12 1996-11-29 Sumitomo Electric Ind Ltd Superconducting conductor cooling method
JPH09102227A (en) * 1995-10-06 1997-04-15 Sumitomo Electric Ind Ltd Superconducting transmission line
JP2005032861A (en) * 2003-07-09 2005-02-03 Toshiba Corp Superconducting magnet device
JP2010519679A (en) * 2007-02-09 2010-06-03 アメリカン スーパーコンダクター コーポレーション Fault current limiting HTS cable and configuration method thereof
JP2013069585A (en) * 2011-09-22 2013-04-18 Sumitomo Electric Ind Ltd Superconducting cable manufacturing method

Similar Documents

Publication Publication Date Title
JP4835821B2 (en) Superconducting cable
JP4826996B2 (en) Superconducting cable line
CN100524546C (en) Superconducting cable line
JP4609121B2 (en) Superconducting cable line
CN108475907B (en) Energy transmission device for a vehicle
WO2019146269A1 (en) Superconductive cable
EP2793240B1 (en) Superconducting cable, and device and method for cooling superconducting cable
JP2005100777A (en) Superconducting cable
JPS6350951B2 (en)
CN101019291A (en) Power deriving structure of superconducting apparatus
MX2007005769A (en) Power cable line.
JP4927804B2 (en) Superconducting cable terminal connection structure
CN111029035A (en) High-temperature superconducting cable structure and high-temperature superconducting cable system
US8271061B2 (en) Connection arrangement for two superconductor cables
CN108922658A (en) A kind of high-power charging gun cable with refrigerating function
WO2019146270A1 (en) Superconductive cable system
WO2019146271A1 (en) Superconductive cable
JP4273525B2 (en) Terminal structure of superconducting equipment
JP2013073831A (en) Superconducting cable line
JP2000243619A (en) Hybrid superconducting energy storage system
JP4487361B2 (en) Superconducting cable
JP2005341767A (en) Terminal structure of superconducting cable
KR100777182B1 (en) High temperature superconducting power cable
KR102482956B1 (en) Superconducting dispenser device for electric vehicle charging
KR102482959B1 (en) Fast charger for electric vehicle batteries including superconducting battery tray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP