WO2019146269A1 - Superconductive cable - Google Patents

Superconductive cable Download PDF

Info

Publication number
WO2019146269A1
WO2019146269A1 PCT/JP2018/045060 JP2018045060W WO2019146269A1 WO 2019146269 A1 WO2019146269 A1 WO 2019146269A1 JP 2018045060 W JP2018045060 W JP 2018045060W WO 2019146269 A1 WO2019146269 A1 WO 2019146269A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid
superconducting cable
gas
core
Prior art date
Application number
PCT/JP2018/045060
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 礒嶋
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2019146269A1 publication Critical patent/WO2019146269A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present disclosure relates to a superconducting cable.
  • This application claims priority based on Japanese Patent Application No. 2018-008944 filed on Jan. 23, 2018. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
  • a technique for performing circulating cooling using a subcooled refrigerant As a technique for cooling a superconducting cable, a technique for performing circulating cooling using a subcooled refrigerant is known.
  • the refrigerant is cooled to the subcooling state using a refrigerator, and the cooled refrigerant is sent to the superconducting cable using the pump, whereby the superconducting cable is cooled by the refrigerant cooled to the subcooling state by the refrigerator
  • the refrigerant that has been used to cool the superconducting cable is returned to the refrigerator again.
  • Patent Document 1 discloses a technique for circulating a refrigerant in the order of a refrigerator ⁇ a superconducting cable ⁇ a pump ⁇ a refrigerator, and cooling the superconducting cable in a path of a single stroke.
  • a superconducting cable transports power between a plurality of power devices mounted on an aircraft.
  • the superconducting cable is provided with a heat insulating pipe, a sealing pipe disposed in the heat insulating pipe, in which a liquid refrigerant is sealed, and a core housed in the sealing pipe and having a superconducting layer.
  • FIG. 1 is a schematic view showing an outline of an aircraft equipped with the superconducting cable according to the present embodiment.
  • FIG. 2 is a schematic view of a superconducting cable disposed between two power devices mounted on the aircraft shown in FIG.
  • FIG. 3 is a schematic cross-sectional view of the superconducting cable shown in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a cross-sectional view showing the core shown in FIG.
  • FIG. 6 is a view schematically showing a configuration example of the gas-liquid separation filter.
  • FIG. 7 is a schematic cross-sectional view of the end portion of the superconducting cable shown in FIG. FIG.
  • FIG. 8 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG.
  • FIG. 9 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG.
  • FIG. 10 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG.
  • FIG. 11 is a view schematically showing the process of filling the inside of the sealing tube with liquid nitrogen.
  • FIG. 12 is a view schematically showing a process of filling the inside of the terminal portion with liquid nitrogen.
  • FIG. 13 is a view schematically showing temporal changes in the temperature and amount of liquid nitrogen present in the inside of the sealing tube.
  • An object of an aspect of the present disclosure is to provide a superconducting cable which transports power between a plurality of power devices mounted on an aircraft, and which has a novel configuration suitable for weight reduction.
  • An object of an aspect of the present disclosure is to provide a superconducting cable that transports power between a plurality of power devices mounted on an aircraft, and which has a novel configuration suitable for weight reduction.
  • the superconducting cable 100 (see FIGS. 2 to 4) according to an aspect of the present disclosure transports power between a plurality of power devices mounted on the aircraft 1000.
  • the superconducting cable 100 includes a heat insulating pipe 36, a sealing pipe 30 disposed in the heat insulating pipe 36, in which the liquid refrigerant 20 is sealed, and a core 10 housed in the sealing pipe 30 and having a superconducting layer 13 (see FIG. 1).
  • the core 10 is cooled using the latent heat of vaporization of the liquid refrigerant 20 sealed in the sealing tube 30. Therefore, a refrigerator for cooling the liquid refrigerant to a supercooled state, a pump for circulating the liquid refrigerant, and the liquid refrigerant, as compared with the conventional superconducting cable cooling technology in which the core is cooled by using the subcooled refrigerant.
  • the core 10 (refer FIG. 5) further has the heat conductive layer 16 in outermost periphery.
  • the heat conduction layer 16 is provided on the outermost periphery of the core 10, even though the liquid refrigerant remaining in the adiabatic pipe is reduced by evaporation of the liquid refrigerant 20, the heat conduction layer 16 is passed through.
  • the entire core can be cooled by the liquid refrigerant 20.
  • the core can be constantly cooled and maintained in the superconducting state while the aircraft 1000 is in operation.
  • a plurality of partition members 30A for dividing the inside of the sealing tube 30 into a plurality of sections along the longitudinal direction of the core 10 inside the sealing tube 30 Is placed.
  • Each of the plurality of partition members 30A is formed with a through hole through which the core 10 passes.
  • the liquid refrigerant 20 sealed inside the sealing tube 30 is divided into a plurality of spaces and sealed. Therefore, even if the superconducting cable 100 is inclined at an angle close to perpendicular to the ground with the change in the attitude of the aircraft 1000, the liquid refrigerant 20 is collected on the lower side in the direction of gravity for each space, so The pressure applied to the enclosing tube 30 can be reduced as compared to the case where the inside of the tube 30 is a single space. In addition, since the occurrence of the deviation of the liquid refrigerant 20 inside the sealing tube 30 is suppressed, the state of the liquid refrigerant 20 becomes substantially uniform over the longitudinal direction of the core 10, so the core 10 is cooled substantially evenly. Can.
  • a gas-liquid separation for discharging the gas refrigerant which is disposed on the outer peripheral surface of the sealing pipe 30 and vaporized the liquid refrigerant 20 to the outside of the sealing pipe 30 It further comprises a filter 40 (see FIGS. 3 and 6).
  • the gas-liquid separation filter 40 disposed on the outer peripheral surface of the sealing tube 30 for discharging the gas refrigerant vaporized of the liquid refrigerant 20 to the outside of the sealing tube 30 is further provided.
  • the gas-liquid separation filter 40 is provided corresponding to each of the plurality of sections (see FIGS. 3 and 6).
  • the gas flow path 31 (see FIG. 4) disposed on the outer periphery of the sealing tube 30 for discharging the gaseous refrigerant to the outside of the superconducting cable 100 Further equipped.
  • the gas refrigerant discharged from the gas-liquid separation filter 40 is discharged to the outside of the superconducting cable 100 via the gas flow path 31, so that the internal pressure of the superconducting cable 100 is prevented from rising. it can.
  • the heat insulating pipe is filled with the liquid refrigerant cooled to the boiling point or a temperature equal to or lower than the boiling point.
  • the core 10 can be cooled using the sensible heat and the evaporation latent heat of the liquid refrigerant, more liquid refrigerant is used than when the core 10 is cooled using the evaporation latent heat alone. It can absorb heat. Therefore, even when the operation time of the aircraft 1000 is long or the Joule loss (heat loss) generated in the power cable is large, the core 10 can be constantly cooled and maintained in the superconducting state.
  • the core 10 is disposed on the hollow spiral former 12, the superconducting layer 13 disposed on the outer periphery of the former 12, and the outer periphery of the superconducting layer 13 And the shield layer 15 disposed on the outer periphery of the insulating layer 14.
  • the liquid refrigerant 20 is filled in the hollow portion of the former 12 and the space formed between the outer periphery of the core 10 and the inner side of the sealing tube 30, so that the superconducting layer 13 and the shield layer 15 of the core 10 are filled. Can be cooled efficiently.
  • the superconducting cable 100 according to (8) further includes a connecting member 210 for connecting the tank 200 storing the liquid refrigerant to the former 12 (see FIG. 11).
  • the connection member 210 is opened when the tank 200 is connected, and connects the inside of the tank 200 and the hollow portion of the former 12 while it is closed when the tank 200 is not connected, and the hollow portion of the former 12 is sealed. It is configured to stop.
  • the tank 200 is detachably connected to the former 12 of the core 10 via the connection member 210. Therefore, by connecting the tank 200 to the former 12 before takeoff of the aircraft, it is possible to fill the inside of the sealed tube 30 with the liquid refrigerant through the former 12. Further, when the tank 200 is removed from the former 12 after filling with the liquid refrigerant, the connection member 210 is closed and the former 12 is sealed, so the liquid refrigerant is confined in the sealing pipe 30 during operation of the aircraft. Can.
  • the superconducting cable 100 according to (1) to (9) above further includes a terminal unit 120 for housing the terminal of the core 10 (see FIG. 7).
  • the terminal unit 120 includes a refrigerant container 124 that holds the liquid refrigerant 20 and the terminal of the core 10 therein, and a sealing member 128 that seals the liquid refrigerant inlet 126 formed in the refrigerant container 124.
  • the liquid refrigerant is injected from the inlet 126 into the refrigerant container 124, and after the refrigerant container 124 is filled with the liquid refrigerant, the inlet 126 is sealed using the sealing member 128.
  • the liquid refrigerant can be confined in the refrigerant container 124 during operation of the aircraft.
  • the superconducting cable 100 according to (10) further includes a gas-liquid separator 130 disposed at the end portion 120 and discharging the gas refrigerant having the liquid refrigerant vaporized out of the refrigerant container 124 (FIG. 7) reference).
  • the gas-liquid separator 130 (refer FIG. 7) has the pressure control valve 132 arrange
  • the pressure regulating valve 132 can maintain the differential pressure between the refrigerant pressure in the cooling container 124 and the external pressure. Therefore, even when the attitude of the airframe is inclined during operation of the aircraft and the refrigerant pressure is increased, the gaseous refrigerant can be discharged without flowing out the liquid refrigerant from the inside of the refrigerant container 124.
  • the liquid refrigerant is liquid nitrogen.
  • the liquid refrigerant may be liquid hydrogen, but in that case an explosion proof design is required.
  • FIG. 1 is a schematic view showing an outline of an aircraft 1000 on which the superconducting cable 100 according to the present embodiment is mounted.
  • the aircraft 1000 is a hybrid electric aircraft using an engine and a motor as a power source.
  • Superconducting cable 100 is applied to a power cable for transporting power between a plurality of power devices mounted on aircraft 1000.
  • the aircraft 1000 is equipped with a plurality of power devices such as a generator 102, a motor 106, power converters 104 and 108, a power distributor 110, and a power storage device 112.
  • the motor 106 is shown for only one of the four engines.
  • the superconducting cable 100 is disposed between these power devices to transport power.
  • the power cables mounted on the aircraft 1000 may have a total length of several tens of meters.
  • this power cable is constituted by an existing normal conducting cable (for example, OF cable or CV cable), for example, of the power cable for transporting 4 MW three-phase AC power (AC frequency 400 Hz, rated voltage 230 V, rated current 10 kA)
  • the weight is about 15 tons. Assuming two lines per motor, the total weight of the power cable is about 60 tons when replacing the two engines with the motor, and the ratio of the weight of the power cable to the total weight of the aircraft 1000 can not be ignored It can be a level.
  • a superconducting cable has a smaller power transmission loss than a conventional normal conducting cable and can flow a large current, so that a lightweight and compact power cable can be realized. Therefore, from the viewpoint of reducing the weight of the power cable, application of the superconducting cable to a power cable for aircraft is expected.
  • a superconducting cable typically employs a structure in which a core having a superconducting layer is accommodated in a heat insulating pipe, and the core is cooled by circulating liquid refrigerant (for example, liquid nitrogen) in the heat insulating pipe.
  • a cooling system is connected to the superconducting cable, and the operation is performed by supplying and circulating the liquid refrigerant from the cooling system into the heat insulating pipe.
  • the cooling system includes a refrigerator for cooling the liquid refrigerant, a pump for pumping the liquid refrigerant, a reservoir tank for storing the liquid refrigerant, and the like, and constitutes a refrigerant flow path for circulating the liquid refrigerant together with the heat insulation pipe of the superconducting cable. .
  • the liquid refrigerant cooled by the refrigerator is fed into the heat insulating pipe, and the core is cooled by circulating the liquid refrigerant by the pump.
  • FIG. 2 is a schematic view of a superconducting cable 100 disposed between two power devices mounted on the aircraft 1000 shown in FIG.
  • the superconducting cable 100 includes a core 10 having a superconducting layer.
  • the core 10 is housed inside the heat insulating pipe 36.
  • the core 10 is disposed in the heat insulating pipe 36 and is housed in the sealing pipe 30 in which the liquid refrigerant is sealed.
  • the superconducting cable 100 is used in a state in which the core 10 is cooled to a cryogenic temperature with a liquid refrigerant.
  • liquid nitrogen is used as the liquid refrigerant. Nitrogen has a melting point of about 63.1 K and a boiling point of about 77.3 K (atmospheric pressure).
  • the number of cores 10 stored in the heat insulation pipe 36 may be a single core or a plurality of cores.
  • a three-core batch type three-phase AC cable in which the three-core core 10 is twisted and housed in the heat insulation pipe 36 is exemplified.
  • the superconducting cable 100 has end portions 120 at both ends in the longitudinal direction.
  • the terminal unit 120 accommodates the terminal in the longitudinal direction of the core 10. Inside the terminal unit 120, the terminal of the core 10 is electrically connected to the electrode 122.
  • the electrode 122 is electrically connected to a power device (not shown).
  • the electrode 122 is formed of, for example, a conductive material such as a metal having a low electric resistance value near the temperature of liquid nitrogen, such as copper or aluminum.
  • the terminals and the wire portions other than the terminals are cooled by separate cooling structures.
  • FIG. 3 is a schematic cross-sectional view of the superconducting cable 100 shown in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV of FIG.
  • FIG. 5 is a cross-sectional view showing the core 10 shown in FIG.
  • the superconducting cable 100 has a three-core core 10, a sealing pipe 30, a gas flow path 31, a corrugated inner pipe 32, a vacuum layer 33 and a corrugated outer pipe 34. , Reinforcement layer (anticorrosion layer) 35 mainly.
  • the corrugated inner pipe 32, the vacuum layer 33, the corrugated outer pipe 34 and the reinforcing layer 35 constitute a heat insulating pipe 36.
  • the core 10 mainly includes a former 12, an inner superconducting layer 13, an insulating layer 14, an outer superconducting layer 15, and a heat conducting layer 16 in this order from the inside.
  • the former 12 maintains mechanical properties such as stiffness and bending properties of the core 10.
  • the former 12 has a hollow structure, and a spiral tube formed by spirally winding an elongated plate made of a metal (for example, copper or aluminum) having high thermal conductivity can be suitably used.
  • the former 12 is also used as a flow path of liquid nitrogen 20 as described later.
  • the inner peripheral side and the outer peripheral side of the spiral pipe are in communication, and the liquid nitrogen 20 can be circulated between the inner peripheral side and the outer peripheral side.
  • the inner superconducting layer 13 is disposed on the outer periphery of the former 12.
  • the inner superconducting layer 13 constitutes a power transmission path.
  • a tape-shaped wire provided with an oxide superconductor can be suitably used.
  • a Bi2223-based superconducting tape wire or an RE123-based thin film wire can be used.
  • the Bi2223-based superconducting tape wire include a sheath wire in which a filament made of a Bi2223-based oxide superconductor is disposed in a stabilized metal such as Ag—Mn or Ag.
  • the Bi2223 superconductor has a Bi2223 phase represented by a ratio of (Bismuth and Lead): Strontium: Calcium: Copper at an approximate ratio of 2: 2: 2: 3 as the main phase, with the balance being the Bi2212 phase and the Bi2223 phase. It means a material consisting of unavoidable impurities.
  • the RE123-based thin film wire include a laminated wire in which an oxide superconducting phase of a rare earth element RE such as Y (yttrium), Ho (phornium), Sm (samarium), and Gd (gadolinium) is formed on a metal substrate.
  • the RE123-based superconductor means a superconductor represented as REBa 2 Cu 3 O y (y is 6 to 8, more preferably 7).
  • the thing of the single layer structure formed by winding the said tape-shaped wire material helically, or a multilayer structure is mentioned. Although illustrated in a simplified manner in FIG. 5, the superconducting layer 13 has a multilayer structure.
  • Insulating layer 14 is a layer for securing the insulation required for the working voltage in internal superconducting layer 13.
  • an insulating paper through which liquid nitrogen can pass can be suitably used.
  • an interlayer insulating layer is provided by winding kraft paper or the like between layers in order to reduce AC loss.
  • insulating paper such as polypropylene laminated paper (PPLP (registered trademark)) is impregnated with liquid nitrogen to ensure electrical insulation. Therefore, conductive cooling of the core 10 is performed using liquid nitrogen and insulating paper.
  • PPLP polypropylene laminated paper
  • the insulating layer 14 needs to have a thickness of about 24 ⁇ m.
  • the insulating layer 14 can be formed, for example, by gap winding of insulating paper having a thickness of 135 ⁇ m.
  • the thickness of the insulating layer can be reduced to about 1/50 compared to requiring an insulating layer having a thickness of about 7mm, so nitrogen gas is generated Even conductive cooling can be performed.
  • the insulating layer 14 can be formed of thin insulating paper, so that liquid nitrogen can pass through the insulating layer 14. According to this, in the step of filling the inside of the sealing tube 30 with liquid nitrogen, liquid nitrogen can be supplied from the inside (former portion) of the core 10.
  • the outer superconducting layer 15 is disposed on the outer periphery of the insulating layer 14.
  • a tape-shaped wire including an oxide superconductor as in the case of the inner superconducting layer 13 can be suitably used.
  • the oxide superconductor used for the outer superconducting layer 15 may be the same as that used for the formation of the inner superconducting layer 13.
  • the outer superconducting layer 15 can be used as a shield layer for flowing a shield current induced by the current flowing in the inner superconducting layer 13.
  • the heat conduction layer 16 is disposed on the outer periphery of the outer superconducting layer 15.
  • the heat conduction layer 16 is disposed at the outermost periphery of the core 10.
  • the heat conduction layer 16 is for transferring the heat generated in the core 10 to the liquid refrigerant 20 filled in the sealing tube 30.
  • the heat conductive layer 16 can be formed, for example, by spirally winding a tape-shaped wire having high heat conductivity.
  • the enclosing tube 30 houses the core 10 (excluding the terminal). Copper, stainless steel, aluminum (alloy) or the like can be suitably used as the material of the sealing tube 30. Liquid nitrogen 20 is sealed in the inside of the sealing tube 30.
  • the core 10 is cooled using liquid nitrogen 20.
  • Sensible heat and latent heat of vaporization are used to cool the core 10. Specifically, sensible heat is utilized until the liquid nitrogen 20 reaches the boiling point (77.3 K) from the initial temperature, and the latent heat of vaporization is utilized after the liquid nitrogen 20 reaches the boiling point.
  • the outermost periphery of the core 10 is covered with the heat conduction layer 16. Even in a state where the amount of liquid nitrogen 20 remaining in the sealing tube 30 is reduced, conduction cooling of the core 10 can be efficiently performed by contacting the heat conductive layer 16 with the liquid nitrogen 20.
  • liquid nitrogen 20 is heated by the AC loss generated in the core 10 and the heat entering from the outside of the enclosed tube 30.
  • liquid nitrogen has a sensible heat of 28.8 kJ / kg (at a temperature difference from the melting point to the boiling point) and a latent heat of vaporization of 199.1 kJ / kg.
  • the liquid nitrogen filled in the enclosed tube 30 is cooled to the melting point (63. 1 K) by circulating cooling and conduction cooling with an external refrigerator.
  • the temperature of the liquid nitrogen 20 is raised to the boiling point with the melting point as the initial temperature, and thereafter maintained at a temperature near the boiling point until all the liquid nitrogen 20 in the enclosing tube 30 is vaporized.
  • the enclosed tube 30 is filled with liquid nitrogen 20 in an amount necessary to cool the core 10 to a superconducting state, based on the loss that occurs in the period from the takeoff to the landing of the aircraft 1000. For example, if the time when the load is 100% is 24 hours and the time when the load is 33% is 23 hours, the amount of liquid nitrogen to be initially stored is about 750 kg. According to this, it is possible to prevent all the liquid nitrogen 20 in the enclosed tube 30 from being vaporized before the aircraft 1000 lands.
  • the internal diameter of the sealing tube 30 is determined based on the amount of liquid nitrogen 20 filling the sealing tube 30, the entire length of the core 10, and the like, so that the capacity of the sealing tube 30 can be increased while securing predetermined cooling.
  • the accompanying enlargement of the superconducting cable 100 can be avoided.
  • a plurality of partition members 30A are disposed in the inside of the enclosing tube 30 along the longitudinal direction of the superconducting cable 100.
  • the interior of the enclosing pipe 30 is divided into a plurality of spaces by the plurality of partition members 30A.
  • the partition members 30A are arranged at equal intervals at predetermined pitches of the three-core core 10.
  • the predetermined pitch is, for example, about 1 m.
  • the aircraft 1000 can assume various attitudes. For example, if the aircraft 1000 is inclined at an angle close to perpendicular to the ground, the superconducting cable 100 may also incline at an angle close to perpendicular to the ground. In such a case, the liquid nitrogen 20 in the inside of the enclosing tube 30 gathers downward according to gravity. In the case where there is no partition member 30A inside the enclosing tube 30 and it is a single space, the liquid nitrogen 20 is collected downward in the direction of gravity. This state can be compared with the state in which the elongated container contains liquid nitrogen 20.
  • the sealing tube 30 serving as the container a pressure corresponding to the depth from the liquid surface of the liquid nitrogen 20 is applied to the portion located on the lower side in the direction of gravity. Since the pressure increases as the length of the sealing tube 30 increases, the sealing tube 30 needs to be robust enough to withstand the pressure. As a result, there is a concern that the sealing tube 30 has a large and heavy structure.
  • the liquid nitrogen 20 is divided into a plurality of spaces and sealed. Therefore, when the superconducting cable 100 is inclined at an angle close to perpendicular to the ground, the liquid nitrogen 20 is collected downward in the direction of gravity in each space, and thus added to the enclosing tube 30 as compared with the case without the partition member 30A. The pressure can be reduced.
  • the liquid nitrogen 20 is biased inside the sealing tube 30, so the liquid nitrogen 20 is in the longitudinal direction of the core 10. There may be parts that do not touch. Since this portion is not cooled by the liquid nitrogen 20, uniform cooling over the entire length of the core 10 becomes difficult.
  • the partition member 30A by arranging the partition member 30A, it is possible to suppress the occurrence of the deviation of the liquid nitrogen 20 inside the sealing tube 30. Since the state of the liquid refrigerant 20 becomes substantially uniform over the longitudinal direction of the core 10, the core 10 can be cooled substantially uniformly.
  • a gas-liquid separation filter 40 is disposed on the outer peripheral surface of the sealing tube 30.
  • the gas-liquid separation filter 40 is disposed corresponding to each of the plurality of spaces.
  • the gas-liquid separation filter 40 discharges nitrogen gas to the outside of the sealing tube 30 while suppressing the outflow of the liquid nitrogen 20 from the sealing tube 30 by using the permeability of the membrane.
  • FIG. 6 is a view schematically showing a configuration example of the gas-liquid separation filter 40. As shown in FIG. In the example of FIG. 6, the gas-liquid separation filter 40 includes a sheet-like filter 42 and reinforcing members 41 and 43.
  • the filter 42 has a property of transmitting a gas while collecting a liquid.
  • the type of the filter 42 is not particularly limited, it may be made of, for example, a microporous porous material, a nonwoven fabric, or a laminate of polyester fibers or the like.
  • the filter 42 may be a simple mesh structure.
  • the liquid nitrogen 20 is vaporized to generate nitrogen gas.
  • the nitrogen gas passes through the gas-liquid separation filter 40 and is discharged to the outside of the sealing pipe 30.
  • a corrugated inner pipe 32 is disposed on the outer periphery of the sealing pipe 30.
  • the corrugated inner pipe 32 has, for example, a corrugated cylindrical shape made of stainless steel.
  • a space between the sealing pipe 30 and the corrugated inner pipe 32 is used as a gas flow path 31 for discharging nitrogen gas to the outside of the superconducting cable 100.
  • a corrugated outer pipe 34 is disposed on the outer circumference of the corrugated inner pipe 32.
  • the space between the corrugated inner pipe 32 and the corrugated outer pipe 34 is a vacuum layer 33 and is used as an adiabatic space. This space may be filled with a heat insulating material.
  • a reinforcing layer 35 (anticorrosion layer) is disposed on the outer periphery of the corrugated outer tube 34.
  • the reinforcing layer 35 is formed of, for example, polyvinyl chloride or the like.
  • FIG. 7 is a schematic cross-sectional view of the terminal portion 120 of the superconducting cable 100 shown in FIG.
  • the terminal portion 120 is in the form of a vacuum insulation container, and has a refrigerant container 124 for holding the liquid nitrogen 20 and the terminal of the core 10 inside, and an outer part arranged to surround the refrigerant container 124. And a tank (outer tank).
  • a certain gap exists between the refrigerant container 124 and the outer tank, and by setting the gap in a vacuum, it is possible to suppress the transfer of heat from the outer tank side to the refrigerant container side.
  • an inlet 126 for the liquid refrigerant 20 is formed in the terminal portion 120.
  • the inlet 126 is sealed by the sealing member 128.
  • the liquid refrigerant 20 can be confined inside the refrigerant container 124.
  • the terminals of the core 10 are cooled to the superconducting state by the liquid nitrogen 20 in the refrigerant vessel 124.
  • liquid nitrogen 20 is vaporized and nitrogen gas is generated inside the refrigerant container 124
  • the pressure of the refrigerant in the refrigerant container 124 is increased and the temperature of the refrigerant is increased. Therefore, it is necessary to discharge the nitrogen gas. Therefore, as shown in FIG. 7, the gas-liquid separator 130 is connected to the terminal unit 120.
  • a pressure control valve 132 is disposed at the gas outlet of the gas-liquid separator 130.
  • the refrigerant pressure in the refrigerant container 124 may increase due to the attitude of the airframe being inclined. Since the outside of the refrigerant container 124 is at atmospheric pressure or lower than atmospheric pressure, in such a case, there is a risk that both liquid nitrogen 20 and nitrogen gas may be discharged from the gas outlet of the gas-liquid separator 130.
  • the pressure control valve 132 is installed at the gas outlet, and can maintain the pressure difference between the refrigerant pressure in the refrigerant container 124 and the external pressure.
  • the nitrogen gas can be efficiently discharged to the outside of the refrigerant container 124 without flowing out the liquid nitrogen 20 from the refrigerant container 124, including the case where the airframe is greatly inclined.
  • FIG. 8 to 10 are cross-sectional views schematically showing a configuration example of the gas-liquid separator 130 shown in FIG.
  • a gas-liquid separator using centrifugal force FOG. 8
  • a gas-liquid separator using surface tension FOG. 9
  • a gas-liquid separation coalescer FOG. 10
  • FIG. 8 is a cross-sectional view schematically showing the structure of a centrifugal gas-liquid separator.
  • a gas-liquid two-phase inlet 140 into which a gas-liquid two-phase refrigerant flows is provided on the side of the separator body 143.
  • a gas outlet 141 from which gas is output is provided at the top of the separator body 143, and a liquid outlet 142 from which liquid is output is provided at the bottom of the separator body 143.
  • a spiral flow passage is formed inside the separator body 143, and one end of the spiral flow passage communicates with the gas-liquid two-phase inlet 140.
  • a liquid outlet 142 is provided on the other end side of the spiral flow channel and in communication with the outer peripheral side portion of the spiral flow channel viewed from the axial direction of the spiral flow channel, and viewed from the axial direction of the spiral flow channel
  • a gas outlet 141 is provided to communicate with the inner peripheral side portion of the helical flow passage.
  • the gas-liquid two-phase refrigerant flowing from the gas-liquid two-phase inlet 140 is given a swirling component by a spiral flow path, and is separated into liquid nitrogen and nitrogen gas by its centrifugal force. That is, since liquid nitrogen having a large specific gravity is subjected to a larger centrifugal force, it gathers on the outer peripheral side of the spiral channel, while nitrogen gas having a small specific gravity collects on the other part, that is, the inner peripheral side of the spiral channel. It will be.
  • FIG. 9 is a cross-sectional view schematically showing the structure of a surface tension type gas-liquid separator.
  • a gas-liquid two-phase inlet 140 is provided at the top of the separator body 143
  • a gas outlet 141 is provided at the side of the separator body 143
  • a liquid outlet 142 is provided.
  • a bellows-like groove 144 is formed on the inner peripheral surface of the separator body 143. Between the upper portion of the groove 144 and the gas-liquid two-phase inlet 140, the gas-liquid two-phase flow is guided to the groove 144, and the gas released from the groove 144 is prevented from backflowing to the gas-liquid two-phase inlet 140
  • the partition 143A for doing is arranged. Between the lower portion of the groove 144 and the gas outlet 141 and the liquid outlet 142, a partition 143B for guiding the gas and liquid having passed through the groove 144 to the respective outlets is disposed.
  • the gas-liquid two-phase refrigerant flows in from the upper portion of the bellows-like groove portion 144, the gas-liquid two-phase refrigerant contacts the groove portion 144.
  • the gas-liquid two-phase refrigerant in contact with the groove 144 is separated into liquid nitrogen and nitrogen gas by the surface tension of the liquid nitrogen.
  • the separated liquid nitrogen is collected after flowing along the groove 144 and flows out from the liquid outlet 142. Nitrogen gas is exhausted from the gas outlet 141.
  • FIG. 10 is a cross-sectional view schematically showing the structure of the gas-liquid separation coalescer.
  • a coalescer cartridge 145 having a microfiber structure is installed inside the separator main body 143.
  • the gas-liquid two-phase refrigerant flowing from the gas-liquid two-phase inlet 140 flows into the coalescer cartridge 145.
  • liquid nitrogen contained in the gas-liquid two-phase refrigerant is separated and collected at the lower part of the separator body 143.
  • Liquid nitrogen flows out of a liquid outlet 142 provided at the bottom of the separator body 143.
  • the nitrogen gas is exhausted from a gas outlet 141 provided on the top of the separator body 143.
  • FIG. 11 is a view schematically showing the process of filling the inside of the sealing tube 30 with liquid nitrogen.
  • the superconducting cable 100 includes a connecting member 210 for connecting a tank 200 in which liquid nitrogen is stored to the former 12.
  • the connection member 210 is provided at the terminal of the core 10.
  • the connecting member 210 is opened when the tank 200 is connected to the former 12, and is closed when the former 12 and the tank 200 are disconnected, while connecting the inside of the tank 200 with the hollow portion of the former 12 , And the hollow portion of the former 12 is sealed.
  • a refrigerator 202 is connected to the tank 200.
  • the liquid nitrogen in the tank 200 is cooled to a temperature equal to or lower than the boiling point (77.3 K) or the refrigerator 202.
  • the liquid nitrogen is pressed into the former 12 and filled in the sealing tube 30. Thereafter, liquid nitrogen may be circulated to the external refrigerator to further reduce the temperature, and then it may be cooled to a temperature close to the melting point (63. 1 K) by conductive cooling.
  • a small cryogenic refrigerator represented by a GM refrigerator (Gifford McMahon refrigerator) or the like is used.
  • the compressor 204 is connected to the refrigerator 202 via a circulating refrigerant pipe.
  • connection member 210 In the process of filling liquid nitrogen into the sealing tube 30, the connection member 210 is opened, and the inside of the tank 200 and the hollow portion of the former 12 communicate with each other, so that the tank 200 to the inside of the former 12 of the core 10 are formed. Is injected with liquid nitrogen. When the inside of the sealing tube 30 is fully filled with liquid nitrogen, the injection of liquid nitrogen is stopped.
  • FIG. 12 is a view schematically showing a process of filling the inside of the terminal unit 120 with liquid nitrogen. As shown in FIG. 12, liquid nitrogen 20 is injected from the tank 200 into the inside of the refrigerant container 124 through the injection port 126 of the terminal portion 120.
  • the inlet 126 is sealed by the sealing member 128 (see FIG. 7).
  • FIG. 13 is a view schematically showing temporal changes in the temperature and amount of liquid nitrogen present in the inside of the sealing tube 30. As shown in FIG.
  • the inside of the sealing tube 30 is fully filled with liquid nitrogen at time t1.
  • the liquid nitrogen is cooled to a temperature close to the melting point.
  • the liquid nitrogen is heated by AC loss and heat of external penetration generated in the core 10.
  • the temperature of liquid nitrogen gradually rises from around the melting point (63. 1 K).
  • the core 10 is cooled using the sensible heat of liquid nitrogen.
  • the temperature of liquid nitrogen reaches the boiling point at time t3 after time t2, the transition from conduction cooling to evaporation cooling is made.
  • evaporative cooling since the core 10 is cooled using the latent heat of liquid nitrogen, the temperature of liquid nitrogen is maintained near the boiling point.
  • the nitrogen gas generated by the evaporative cooling is discharged from the gas-liquid separation filter 40 to the outside of the sealing pipe 30.
  • the amount of liquid nitrogen gradually decreases.
  • the aircraft 1000 lands at time t4, most of the liquid nitrogen in the enclosed tube 30 has been vaporized.
  • the supply of liquid nitrogen to the sealing tube 30 is performed again.
  • the superconducting cable 100 since the core 10 is cooled using the latent heat of evaporation of the liquid nitrogen 20 sealed in the sealing tube 30, it is possible to use the supercooled refrigerant. As compared with the conventional superconducting cable cooling technology that performs core cooling, there is no need for a cooling system for cooling the liquid refrigerant to a subcooling state. Therefore, when the superconducting cable is applied to a power cable for transporting electric power in an aircraft, it is not necessary to construct a cooling system for the superconducting cable in the aircraft, so the weight of the power cable can be reduced. Therefore, superconducting cable 100 according to the present embodiment can contribute to the realization of an electric aircraft capable of reducing fuel consumption and environmental load.
  • the heat conduction layer 16 on the outermost periphery of the core 10, even if the liquid nitrogen remaining in the sealing tube 30 is reduced by vaporization of the liquid nitrogen, the liquid via the heat conduction layer 16
  • the entire core 10 can be cooled by nitrogen. This allows the core to be constantly cooled and maintained in the superconducting state during the operation of the aircraft.
  • a gas-liquid separation filter 40 for discharging the gas refrigerant in which the liquid refrigerant 20 is vaporized to the outside of the sealing pipe 30 is disposed on the outer peripheral surface of the sealing pipe 30 for each of the plurality of spaces. In each of the plurality of sections, a rise in the refrigerant pressure due to the generation of the gaseous refrigerant can be suppressed.
  • the superconducting cable 100 is used for AC power transmission (for example, three-phase AC power transmission)
  • the superconducting cable according to this embodiment is DC power transmission (for example, bipole power transmission, mono It can also be used for pole power transmission.

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

This superconductive cable according to one aspect of the present disclosure is for transferring electric power among a plurality of electric power devices mounted on an aircraft. The superconductive cable is provided with: a heat insulation pipe; a sealed pipe which is disposed in the heat insulation pipe and in which a liquid coolant is sealed; and cores that each have a superconductive layer and that are housed in the sealed pipe.

Description

超電導ケーブルSuperconducting cable
 本開示は、超電導ケーブルに関する。本出願は、2018年1月23日に出願した日本特許出願である特願2018-008944号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a superconducting cable. This application claims priority based on Japanese Patent Application No. 2018-008944 filed on Jan. 23, 2018. The entire contents of the description of the Japanese patent application are incorporated herein by reference.
 超電導ケーブルを冷却する技術としては、過冷却冷媒を用いて循環冷却を行う技術が知られている。これは、冷凍機を用いて冷媒を過冷却状態に冷却し、冷却された冷媒をポンプを用いて超電導ケーブルに送ることで、冷凍機で過冷却状態に冷却された冷媒により超電導ケーブルを冷却するものであり、超電導ケーブルの冷却に使用された後の冷媒は、再度冷凍機に戻される。 As a technique for cooling a superconducting cable, a technique for performing circulating cooling using a subcooled refrigerant is known. In this method, the refrigerant is cooled to the subcooling state using a refrigerator, and the cooled refrigerant is sent to the superconducting cable using the pump, whereby the superconducting cable is cooled by the refrigerant cooled to the subcooling state by the refrigerator The refrigerant that has been used to cool the superconducting cable is returned to the refrigerator again.
 このようにして、冷媒を冷凍機→超電導ケーブル→ポンプ→冷凍機の順に一筆書きの経路で循環して超電導ケーブルを冷却する技術は、例えば特許文献1に開示されている。 As described above, for example, Patent Document 1 discloses a technique for circulating a refrigerant in the order of a refrigerator → a superconducting cable → a pump → a refrigerator, and cooling the superconducting cable in a path of a single stroke.
特開2016-100221号公報Unexamined-Japanese-Patent No. 2016-100221
 本開示の一態様に係る超電導ケーブルは、航空機に搭載される複数の電力機器の間で電力を輸送する。超電導ケーブルは、断熱管と、断熱管内に配置され、液体冷媒が封入される封入管と、封入管内に収納され、超電導層を有するコアとを備える。 A superconducting cable according to an aspect of the present disclosure transports power between a plurality of power devices mounted on an aircraft. The superconducting cable is provided with a heat insulating pipe, a sealing pipe disposed in the heat insulating pipe, in which a liquid refrigerant is sealed, and a core housed in the sealing pipe and having a superconducting layer.
図1は、本実施の形態に係る超電導ケーブルを搭載する航空機の概要を示す模式図である。FIG. 1 is a schematic view showing an outline of an aircraft equipped with the superconducting cable according to the present embodiment. 図2は、図1に示した航空機に搭載される2つの電力機器間に配設される超電導ケーブルの模式図である。FIG. 2 is a schematic view of a superconducting cable disposed between two power devices mounted on the aircraft shown in FIG. 図3は、図2に示した超電導ケーブルの概略断面図である。FIG. 3 is a schematic cross-sectional view of the superconducting cable shown in FIG. 図4は、図3のIV-IV線での断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 図5は、図4に示したコアを示す断面図である。FIG. 5 is a cross-sectional view showing the core shown in FIG. 図6は、気液分離フィルタの構成例を模式的に示す図である。FIG. 6 is a view schematically showing a configuration example of the gas-liquid separation filter. 図7は、図2に示した超電導ケーブルの端末部の概略断面図である。FIG. 7 is a schematic cross-sectional view of the end portion of the superconducting cable shown in FIG. 図8は、図7に示した気液分離器の構成例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG. 図9は、図7に示した気液分離器の構成例を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG. 図10は、図7に示した気液分離器の構成例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a configuration example of the gas-liquid separator shown in FIG. 図11は、封入管の内部に液体窒素を充填する工程を模式的に示す図である。FIG. 11 is a view schematically showing the process of filling the inside of the sealing tube with liquid nitrogen. 図12は、端末部の内部に液体窒素を充填する工程を模式的に示す図である。FIG. 12 is a view schematically showing a process of filling the inside of the terminal portion with liquid nitrogen. 図13は、封入管の内部に存在する液体窒素の温度および量の時間的変化を模式的に示す図である。FIG. 13 is a view schematically showing temporal changes in the temperature and amount of liquid nitrogen present in the inside of the sealing tube.
[本開示が解決しようとする課題]
 本開示の一態様の目的は、航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルであって、軽量化に適した新規な構成を提供することである。
[本開示の効果]
 本開示によれば、航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルであって、軽量化に適した新規な構成を提供することができる。
[Problems to be solved by the present disclosure]
An object of an aspect of the present disclosure is to provide a superconducting cable which transports power between a plurality of power devices mounted on an aircraft, and which has a novel configuration suitable for weight reduction.
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a superconducting cable that transports power between a plurality of power devices mounted on an aircraft, and which has a novel configuration suitable for weight reduction.
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of the embodiment of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 (1)本開示の一態様に係る超電導ケーブル100(図2から図4参照)は、航空機1000に搭載される複数の電力機器の間で電力を輸送する。超電導ケーブル100は、断熱管36と、断熱管36内に配置され、液体冷媒20が封入される封入管30と、封入管30内に収納され、超電導層13を有するコア10とを備える(図1参照)。 (1) The superconducting cable 100 (see FIGS. 2 to 4) according to an aspect of the present disclosure transports power between a plurality of power devices mounted on the aircraft 1000. The superconducting cable 100 includes a heat insulating pipe 36, a sealing pipe 30 disposed in the heat insulating pipe 36, in which the liquid refrigerant 20 is sealed, and a core 10 housed in the sealing pipe 30 and having a superconducting layer 13 (see FIG. 1).
 上記(1)に係る超電導ケーブル100によれば、封入管30内に封入された液体冷媒20の蒸発潜熱を利用してコア10が冷却される。そのため、過冷却冷媒を用いてコアの循環冷却を行なう従来の超電導ケーブルの冷却技術と比較して、液体冷媒を過冷却状態に冷却するための冷凍機、液体冷媒を循環させるポンプ、および液体冷媒を貯留するリザーバタンクなどから構成される冷却システムが不要となる。したがって、上記超電導ケーブルを航空機内での電力を輸送する電力ケーブルに適用した場合において、航空機1000内に超電導ケーブルの冷却システムを構築する必要がないため、電力ケーブルを軽量化することができる。よって、航空機用の電力ケーブルに好適な超電導ケーブルを提供することができる。 According to the superconducting cable 100 according to the above (1), the core 10 is cooled using the latent heat of vaporization of the liquid refrigerant 20 sealed in the sealing tube 30. Therefore, a refrigerator for cooling the liquid refrigerant to a supercooled state, a pump for circulating the liquid refrigerant, and the liquid refrigerant, as compared with the conventional superconducting cable cooling technology in which the core is cooled by using the subcooled refrigerant. This eliminates the need for a cooling system consisting of a reservoir tank or the like that stores Therefore, when the superconducting cable is applied to a power cable for transporting electric power in an aircraft, it is not necessary to construct a cooling system for the superconducting cable in the aircraft 1000, so the weight of the power cable can be reduced. Therefore, a superconducting cable suitable for a power cable for aircraft can be provided.
 (2)上記(1)に係る超電導ケーブル100において、コア10(図5参照)は、最外周に熱伝導層16をさらに有する。 (2) In the superconducting cable 100 which concerns on said (1), the core 10 (refer FIG. 5) further has the heat conductive layer 16 in outermost periphery.
 これによると、コア10の最外周に熱伝導層16を設けることによって、液体冷媒20が気化することで断熱管内に残存する液体冷媒が少なくなった状態においても、熱伝導層16を経由して液体冷媒20によってコア全体を冷却することができる。これにより、航空機1000が運航している期間中、コアを常に冷却して超電導状態に維持することができる。 According to this, by providing the heat conduction layer 16 on the outermost periphery of the core 10, even though the liquid refrigerant remaining in the adiabatic pipe is reduced by evaporation of the liquid refrigerant 20, the heat conduction layer 16 is passed through. The entire core can be cooled by the liquid refrigerant 20. Thus, the core can be constantly cooled and maintained in the superconducting state while the aircraft 1000 is in operation.
 (3)上記(1)または(2)に係る超電導ケーブル100において、封入管30の内部には、コア10の長手方向に沿って封入管30の内部を複数の区間に区切る複数の仕切り部材30Aが配置される。複数の仕切り部材30Aの各々には、コア10を貫通させる貫通孔が形成される。 (3) In the superconducting cable 100 according to the above (1) or (2), a plurality of partition members 30A for dividing the inside of the sealing tube 30 into a plurality of sections along the longitudinal direction of the core 10 inside the sealing tube 30 Is placed. Each of the plurality of partition members 30A is formed with a through hole through which the core 10 passes.
 これによると、封入管30の内部に封入された液体冷媒20は、複数の空間に分割されて封入される。そのため、航空機1000の姿勢の変化に伴って、超電導ケーブル100が地面に対して垂直に近い角度で傾いた場合であっても、液体冷媒20は空間ごとに重力方向下側に集められるため、封入管30の内部が単一の空間である場合に比べて、封入管30に加わる圧力を小さくすることができる。また、封入管30の内部で液体冷媒20の偏りが生じることが抑制されるため、コア10の長手方向にわたって、液体冷媒20の状態がほぼ均一になるため、ほぼ均等にコア10を冷却することができる。 According to this, the liquid refrigerant 20 sealed inside the sealing tube 30 is divided into a plurality of spaces and sealed. Therefore, even if the superconducting cable 100 is inclined at an angle close to perpendicular to the ground with the change in the attitude of the aircraft 1000, the liquid refrigerant 20 is collected on the lower side in the direction of gravity for each space, so The pressure applied to the enclosing tube 30 can be reduced as compared to the case where the inside of the tube 30 is a single space. In addition, since the occurrence of the deviation of the liquid refrigerant 20 inside the sealing tube 30 is suppressed, the state of the liquid refrigerant 20 becomes substantially uniform over the longitudinal direction of the core 10, so the core 10 is cooled substantially evenly. Can.
 (4)上記(1)または(2)に係る超電導ケーブル100において、封入管30の外周面に配置され、液体冷媒20が気化した気体冷媒を封入管30の外部に排出するための気液分離フィルタ40(図3および図6参照)をさらに備える。 (4) In the superconducting cable 100 according to the above (1) or (2), a gas-liquid separation for discharging the gas refrigerant, which is disposed on the outer peripheral surface of the sealing pipe 30 and vaporized the liquid refrigerant 20 to the outside of the sealing pipe 30 It further comprises a filter 40 (see FIGS. 3 and 6).
 このようにすると、コア10の蒸発冷却によって発生した気体冷媒によって封入管30内の冷媒圧力が上昇することを抑制することができる。 In this way, it is possible to suppress an increase in the refrigerant pressure in the sealing pipe 30 due to the gas refrigerant generated by the evaporative cooling of the core 10.
 (5)上記(3)に係る超電導ケーブル100において、封入管30の外周面に配置され、液体冷媒20が気化した気体冷媒を封入管30の外部に排出するための気液分離フィルタ40をさらに備える。気液分離フィルタ40は、複数の区間の各々に対応して設けられる(図3および図6参照)。 (5) In the superconducting cable 100 according to (3), the gas-liquid separation filter 40 disposed on the outer peripheral surface of the sealing tube 30 for discharging the gas refrigerant vaporized of the liquid refrigerant 20 to the outside of the sealing tube 30 is further provided. Prepare. The gas-liquid separation filter 40 is provided corresponding to each of the plurality of sections (see FIGS. 3 and 6).
 このようにすると、封入管30の内部に形成された複数の区間の各々において、気体冷媒の発生による冷媒圧力の上昇を抑制することができる。 In this way, in each of the plurality of sections formed in the inside of the sealing pipe 30, it is possible to suppress an increase in the refrigerant pressure due to the generation of the gas refrigerant.
 (6)上記(4)または(5)に係る超電導ケーブル100において、封入管30の外周に配置され、気体冷媒を超電導ケーブル100の外部に排出するためのガス流路31(図4参照)をさらに備える。 (6) In the superconducting cable 100 according to the above (4) or (5), the gas flow path 31 (see FIG. 4) disposed on the outer periphery of the sealing tube 30 for discharging the gaseous refrigerant to the outside of the superconducting cable 100 Further equipped.
 このようにすると、気液分離フィルタ40から排出された気体冷媒がガス流路31を経由して超電導ケーブル100の外部に排出されるため、超電導ケーブル100の内圧が上昇することを抑制することができる。 In this way, the gas refrigerant discharged from the gas-liquid separation filter 40 is discharged to the outside of the superconducting cable 100 via the gas flow path 31, so that the internal pressure of the superconducting cable 100 is prevented from rising. it can.
 (7)上記(1)から(6)に係る超電導ケーブル100において、断熱管内には、沸点もしくは沸点以下の温度に冷却された液体冷媒が充填される。 (7) In the superconducting cable 100 according to (1) to (6) above, the heat insulating pipe is filled with the liquid refrigerant cooled to the boiling point or a temperature equal to or lower than the boiling point.
 このようにすると、液体冷媒の顕熱および蒸発潜熱を利用してコア10を冷却することができるため、蒸発潜熱のみを利用してコア10を冷却する場合と比べて、液体冷媒がより多くの熱を吸収することができる。したがって、航空機1000の運航時間が長い場合、または電力ケーブルで発生するジュール損(熱損失)が大きい場合においても、コア10を常時冷却して超電導状態に維持することが可能となる。 In this way, since the core 10 can be cooled using the sensible heat and the evaporation latent heat of the liquid refrigerant, more liquid refrigerant is used than when the core 10 is cooled using the evaporation latent heat alone. It can absorb heat. Therefore, even when the operation time of the aircraft 1000 is long or the Joule loss (heat loss) generated in the power cable is large, the core 10 can be constantly cooled and maintained in the superconducting state.
 (8)上記(1)から(7)に係る超電導ケーブル100において、コア10は、中空スパイラル状のフォーマ12と、フォーマ12の外周に配置される超電導層13と、超電導層13の外周に配置される絶縁層14と、絶縁層14の外周に配置されるシールド層15とを有する。 (8) In the superconducting cable 100 according to the above (1) to (7), the core 10 is disposed on the hollow spiral former 12, the superconducting layer 13 disposed on the outer periphery of the former 12, and the outer periphery of the superconducting layer 13 And the shield layer 15 disposed on the outer periphery of the insulating layer 14.
 このようにすると、フォーマ12の中空部分および、コア10の外周と封入管30の内側との間に形成される空間に液体冷媒20が充填されるため、コア10の超電導層13およびシールド層15を効率的に冷却することができる。 As a result, the liquid refrigerant 20 is filled in the hollow portion of the former 12 and the space formed between the outer periphery of the core 10 and the inner side of the sealing tube 30, so that the superconducting layer 13 and the shield layer 15 of the core 10 are filled. Can be cooled efficiently.
 (9)上記(8)に係る超電導ケーブル100において、液体冷媒を貯留するタンク200をフォーマ12に接続するための接続部材210をさらに備える(図11参照)。接続部材210は、タンク200の接続時において開状態となり、タンク200の内部とフォーマ12の中空部とを連通させる一方で、タンク200の非接続時において閉状態となり、フォーマ12の中空部を封止するように構成される。 (9) The superconducting cable 100 according to (8) further includes a connecting member 210 for connecting the tank 200 storing the liquid refrigerant to the former 12 (see FIG. 11). The connection member 210 is opened when the tank 200 is connected, and connects the inside of the tank 200 and the hollow portion of the former 12 while it is closed when the tank 200 is not connected, and the hollow portion of the former 12 is sealed. It is configured to stop.
 このようにすると、コア10のフォーマ12には接続部材210を介してタンク200が着脱可能に接続される。したがって、航空機の離陸前において、タンク200をフォーマ12に接続することで、フォーマ12を通じて封入管30の内部に液体冷媒を充填させることができる。また、液体冷媒を充填し終えてタンク200をフォーマ12から取り外すと、接続部材210が閉じてフォーマ12が封止されるため、航空機の運航中において封入管30内に液体冷媒を閉じ込めておくことができる。 As a result, the tank 200 is detachably connected to the former 12 of the core 10 via the connection member 210. Therefore, by connecting the tank 200 to the former 12 before takeoff of the aircraft, it is possible to fill the inside of the sealed tube 30 with the liquid refrigerant through the former 12. Further, when the tank 200 is removed from the former 12 after filling with the liquid refrigerant, the connection member 210 is closed and the former 12 is sealed, so the liquid refrigerant is confined in the sealing pipe 30 during operation of the aircraft. Can.
 (10)上記(1)から(9)に係る超電導ケーブル100において、コア10の端末を収納する端末部120をさらに備える(図7参照)。端末部120は、液体冷媒20とコア10の端末とを内部に保持する冷媒容器124と、冷媒容器124に形成された液体冷媒の注入口126を封止する封止部材128とを含む。 (10) The superconducting cable 100 according to (1) to (9) above further includes a terminal unit 120 for housing the terminal of the core 10 (see FIG. 7). The terminal unit 120 includes a refrigerant container 124 that holds the liquid refrigerant 20 and the terminal of the core 10 therein, and a sealing member 128 that seals the liquid refrigerant inlet 126 formed in the refrigerant container 124.
 このようにすると、航空機の離陸前において、注入口126から冷媒容器124内に液体冷媒を注入し、冷媒容器124に液体冷媒を充填した後に封止部材128を用いて注入口126を封止することで、航空機の運航中において冷媒容器124内に液体冷媒を閉じ込めておくことができる。 Thus, before takeoff of the aircraft, the liquid refrigerant is injected from the inlet 126 into the refrigerant container 124, and after the refrigerant container 124 is filled with the liquid refrigerant, the inlet 126 is sealed using the sealing member 128. Thus, the liquid refrigerant can be confined in the refrigerant container 124 during operation of the aircraft.
 (11)上記(10)に係る超電導ケーブル100において、端末部120に配置され、液体冷媒が気化した気体冷媒を冷媒容器124の外部に排出するための気液分離器130をさらに備える(図7参照)。 (11) The superconducting cable 100 according to (10) further includes a gas-liquid separator 130 disposed at the end portion 120 and discharging the gas refrigerant having the liquid refrigerant vaporized out of the refrigerant container 124 (FIG. 7) reference).
 このようにすると、コア10の端末の冷却によって発生した気体冷媒によって冷媒容器124内の冷媒圧力が上昇することを抑制することができる。 In this way, it is possible to suppress an increase in the refrigerant pressure in the refrigerant container 124 due to the gas refrigerant generated by the cooling of the end of the core 10.
 (12)上記(11)に係る超電導ケーブル100において、気液分離器130(図7参照)は、気体冷媒の出口に配置された圧力調整弁132を有する。 (12) In the superconducting cable 100 which concerns on said (11), the gas-liquid separator 130 (refer FIG. 7) has the pressure control valve 132 arrange | positioned at the exit of gaseous refrigerant.
 このようにすると、圧力調整弁132により、冷却容器124内の冷媒圧力と外部圧力との差圧を維持することができる。したがって、航空機の運航中において機体の姿勢が傾斜し、冷媒圧力が上昇した場合においても、冷媒容器124の内部から液体冷媒を流出させずに、気体冷媒を排出することができる。 Thus, the pressure regulating valve 132 can maintain the differential pressure between the refrigerant pressure in the cooling container 124 and the external pressure. Therefore, even when the attitude of the airframe is inclined during operation of the aircraft and the refrigerant pressure is increased, the gaseous refrigerant can be discharged without flowing out the liquid refrigerant from the inside of the refrigerant container 124.
 (13)上記(1)から(12)に係る超電導ケーブル100において、液体冷媒は、液体窒素である。 (13) In the superconducting cable 100 according to the above (1) to (12), the liquid refrigerant is liquid nitrogen.
 このようにすると、航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルの軽量化かつコスト低減を実現することができる。なお、液体冷媒は、液体水素であってもよいが、その場合は防爆設計が必要となる。 In this way, it is possible to realize a reduction in weight and cost of a superconducting cable that transports power between a plurality of power devices mounted on an aircraft. The liquid refrigerant may be liquid hydrogen, but in that case an explosion proof design is required.
 [本開示の実施形態の詳細]
 以下、本開示の実施の形態について図面に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照符号を付し、その説明は繰返さない。
Details of Embodiments of the Present Disclosure
Hereinafter, embodiments of the present disclosure will be described based on the drawings. In the following drawings, the same or corresponding parts have the same reference characters allotted, and description thereof will not be repeated.
 (超電導ケーブルの適用例)
 まず、図1を参照して、本実施の形態に係る超電導ケーブル100が適用される場面の一例について説明する。図1は、本実施の形態に係る超電導ケーブル100を搭載する航空機1000の概要を示す模式図である。航空機1000は、エンジンおよび電動機を動力源として用いるハイブリッド型の電動航空機である。
(Example of application of superconducting cable)
First, with reference to FIG. 1, an example of a scene where the superconducting cable 100 according to the present embodiment is applied will be described. FIG. 1 is a schematic view showing an outline of an aircraft 1000 on which the superconducting cable 100 according to the present embodiment is mounted. The aircraft 1000 is a hybrid electric aircraft using an engine and a motor as a power source.
 本実施の形態に係る超電導ケーブル100は、航空機1000に搭載される複数の電力機器の間で電力を輸送する電力ケーブルに適用される。図1の例では、航空機1000には、発電機102、電動機106、電力変換器104,108、電力分配器110、および蓄電装置112などの複数の電力機器が搭載されている。図1では、4基のエンジンのうちの1基のエンジンにのみ、電動機106を示している。超電導ケーブル100は、これらの電力機器の間に配設され、電力を輸送するためのものである。 Superconducting cable 100 according to the present embodiment is applied to a power cable for transporting power between a plurality of power devices mounted on aircraft 1000. In the example of FIG. 1, the aircraft 1000 is equipped with a plurality of power devices such as a generator 102, a motor 106, power converters 104 and 108, a power distributor 110, and a power storage device 112. In FIG. 1, the motor 106 is shown for only one of the four engines. The superconducting cable 100 is disposed between these power devices to transport power.
 航空機1000に搭載される電力ケーブルは、その全長が数十メートルに及ぶものがある。この電力ケーブルを既存の常電導ケーブル(たとえばOFケーブルやCVケーブル)で構成した場合、たとえば4MWの三相交流電力(交流周波数400Hz、定格電圧230V、定格電流10kA)を輸送するための電力ケーブルの重量は約15トンになる。1基の電動機あたり2回線とすると、2基のエンジンを電動機に置き換えた場合には電力ケーブルの総重量は約60トンになり、航空機1000全体の重量に占める電力ケーブルの重量の割合が無視できないレベルになり得る。 The power cables mounted on the aircraft 1000 may have a total length of several tens of meters. When this power cable is constituted by an existing normal conducting cable (for example, OF cable or CV cable), for example, of the power cable for transporting 4 MW three-phase AC power (AC frequency 400 Hz, rated voltage 230 V, rated current 10 kA) The weight is about 15 tons. Assuming two lines per motor, the total weight of the power cable is about 60 tons when replacing the two engines with the motor, and the ratio of the weight of the power cable to the total weight of the aircraft 1000 can not be ignored It can be a level.
 近年、変電所などの電力設備に使用される電力ケーブルにおいては、超電導ケーブルの実用化に向けた開発が進んでいる。超電導ケーブルは、既存の常電導ケーブルに比べて送電損失が小さく、大電流を流すことができるため、電力ケーブルの軽量かつコンパクト化を実現することができる。したがって、電力ケーブルの軽量化の観点から、超電導ケーブルの航空機用の電力ケーブルへの応用が期待される。 In recent years, in power cables used for power facilities such as substations, development for practical use of superconducting cables is in progress. A superconducting cable has a smaller power transmission loss than a conventional normal conducting cable and can flow a large current, so that a lightweight and compact power cable can be realized. Therefore, from the viewpoint of reducing the weight of the power cable, application of the superconducting cable to a power cable for aircraft is expected.
 ここで、超電導ケーブルは、代表的に、超電導層を有するコアが断熱管内に収納され、この断熱管内に液体冷媒(たとえば液体窒素)を流通させることで、コアを冷却する構造を採用している。このような冷却構造では、通常、超電導ケーブルに冷却システムを接続し、該冷却システムから断熱管内に液体冷媒を供給して流通させることで運用を行なう。なお、冷却システムは、液体冷媒を冷却する冷凍機、液体冷媒を圧送するポンプ、および液体冷媒を貯留するリザーバタンクなどを備え、超電導ケーブルの断熱管とともに液体冷媒を流通する冷媒流路を構成する。冷凍機で冷却された液体冷媒を断熱管内に送り、ポンプにより液体冷媒を循環させることでコアを冷却する。 Here, a superconducting cable typically employs a structure in which a core having a superconducting layer is accommodated in a heat insulating pipe, and the core is cooled by circulating liquid refrigerant (for example, liquid nitrogen) in the heat insulating pipe. . In such a cooling structure, usually, a cooling system is connected to the superconducting cable, and the operation is performed by supplying and circulating the liquid refrigerant from the cooling system into the heat insulating pipe. The cooling system includes a refrigerator for cooling the liquid refrigerant, a pump for pumping the liquid refrigerant, a reservoir tank for storing the liquid refrigerant, and the like, and constitutes a refrigerant flow path for circulating the liquid refrigerant together with the heat insulation pipe of the superconducting cable. . The liquid refrigerant cooled by the refrigerator is fed into the heat insulating pipe, and the core is cooled by circulating the liquid refrigerant by the pump.
 そのため、超電導ケーブルを航空機用の電力ケーブルに適用した場合には、上述した冷却システムを航空機1000内に構築することが必要となる。これによると、冷却システムの重量が嵩んでしまうため、軽量化の観点において十分な利益を享受できないことが懸念される。 Therefore, when the superconducting cable is applied to a power cable for an aircraft, it is necessary to construct the cooling system described above in the aircraft 1000. According to this, the weight of the cooling system is increased, and there is a concern that sufficient benefits can not be obtained from the viewpoint of weight reduction.
 本実施の形態では、航空機用の電力ケーブルとして好適な超電導ケーブルの構成について説明する。 In the present embodiment, the configuration of a superconducting cable suitable as a power cable for an aircraft will be described.
 (超電導ケーブル)
 次に、本実施の形態に係る超電導ケーブル100の構成について説明する。
(Superconducting cable)
Next, the configuration of the superconducting cable 100 according to the present embodiment will be described.
 まず、図2を用いて、超電導ケーブル100の全体構成を説明する。図2は、図1に示した航空機1000に搭載される2つの電力機器間に配設される超電導ケーブル100の模式図である。 First, the overall configuration of the superconducting cable 100 will be described with reference to FIG. FIG. 2 is a schematic view of a superconducting cable 100 disposed between two power devices mounted on the aircraft 1000 shown in FIG.
 図2に示すように、超電導ケーブル100は、超電導層を有するコア10を備える。コア10は、断熱管36の内部に収納される。詳細には、コア10は、断熱管36内に配置され、液体冷媒が封入された封入管30内に収納される。超電導ケーブル100は、コア10を液体冷媒で極低温状態に冷却した状態で使用される。以下の説明では、液体冷媒として、液体窒素を用いることとする。なお、窒素は、融点が約63.1Kであり、沸点が約77.3K(大気圧)である。 As shown in FIG. 2, the superconducting cable 100 includes a core 10 having a superconducting layer. The core 10 is housed inside the heat insulating pipe 36. Specifically, the core 10 is disposed in the heat insulating pipe 36 and is housed in the sealing pipe 30 in which the liquid refrigerant is sealed. The superconducting cable 100 is used in a state in which the core 10 is cooled to a cryogenic temperature with a liquid refrigerant. In the following description, liquid nitrogen is used as the liquid refrigerant. Nitrogen has a melting point of about 63.1 K and a boiling point of about 77.3 K (atmospheric pressure).
 断熱管36に収納されるコア10の本数は、単芯であっても複数芯であっても構わない。以下の説明では、3芯のコア10を撚り合わせて断熱管36に収納された三芯一括型の三相交流ケーブルを例示する。 The number of cores 10 stored in the heat insulation pipe 36 may be a single core or a plurality of cores. In the following description, a three-core batch type three-phase AC cable in which the three-core core 10 is twisted and housed in the heat insulation pipe 36 is exemplified.
 超電導ケーブル100は、長手方向における両端部に端末部120を有する。端末部120は、コア10の長手方向における端末を収納する。端末部120の内部において、コア10の端末は電極122と電気的に接続される。電極122は、図示しない電力機器と電気的に接続される。電極122は、たとえば、銅またはアルミニウムなどのように、液体窒素の温度近傍においても電気抵抗値の低い金属などの導電性材料で形成される。 The superconducting cable 100 has end portions 120 at both ends in the longitudinal direction. The terminal unit 120 accommodates the terminal in the longitudinal direction of the core 10. Inside the terminal unit 120, the terminal of the core 10 is electrically connected to the electrode 122. The electrode 122 is electrically connected to a power device (not shown). The electrode 122 is formed of, for example, a conductive material such as a metal having a low electric resistance value near the temperature of liquid nitrogen, such as copper or aluminum.
 なお、後述するように、コア10において、端末と端末以外の導線部分とは、別々の冷却構造によって冷却するものとする。 As described later, in the core 10, the terminals and the wire portions other than the terminals are cooled by separate cooling structures.
 図3は、図2に示した超電導ケーブル100の概略断面図である。図4は、図3のIV-IV線での断面図である。図5は、図4に示したコア10を示す断面図である。 FIG. 3 is a schematic cross-sectional view of the superconducting cable 100 shown in FIG. FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. FIG. 5 is a cross-sectional view showing the core 10 shown in FIG.
 図3および図4に示されるように、超電導ケーブル100は、3芯のコア10と、封入管30と、ガス流路31と、コルゲート内管32と、真空層33と、コルゲート外管34と、補強層(防食層)35とを主に備える。コルゲート内管32、真空層33、コルゲート外管34および補強層35は、断熱管36を構成する。 As shown in FIGS. 3 and 4, the superconducting cable 100 has a three-core core 10, a sealing pipe 30, a gas flow path 31, a corrugated inner pipe 32, a vacuum layer 33 and a corrugated outer pipe 34. , Reinforcement layer (anticorrosion layer) 35 mainly. The corrugated inner pipe 32, the vacuum layer 33, the corrugated outer pipe 34 and the reinforcing layer 35 constitute a heat insulating pipe 36.
 コア10は、図5に示すように、その内側から順にフォーマ12、内部超電導層13、絶縁層14、外部超電導層15、および熱伝導層16を主に備える。 As shown in FIG. 5, the core 10 mainly includes a former 12, an inner superconducting layer 13, an insulating layer 14, an outer superconducting layer 15, and a heat conducting layer 16 in this order from the inside.
 フォーマ12は、コア10の剛性および曲げ特性などの機械的特性を維持する。フォーマ12は、中空構造を有しており、高熱伝導性を有する金属(たとえば銅やアルミニウム)からなる細長い板をスパイラル状に巻回して形成されたスパイラル管が好適に利用できる。フォーマ12は、後述するように、液体窒素20の流路としても利用される。フォーマ12は、スパイラル管の内周側と外周側とが連通しており、内周側と外周側との間で液体窒素20を流通させることができる。 The former 12 maintains mechanical properties such as stiffness and bending properties of the core 10. The former 12 has a hollow structure, and a spiral tube formed by spirally winding an elongated plate made of a metal (for example, copper or aluminum) having high thermal conductivity can be suitably used. The former 12 is also used as a flow path of liquid nitrogen 20 as described later. In the former 12, the inner peripheral side and the outer peripheral side of the spiral pipe are in communication, and the liquid nitrogen 20 can be circulated between the inner peripheral side and the outer peripheral side.
 内部超電導層13は、フォーマ12の外周に配置される。内部超電導層13は、送電路を構成する。内部超電導層13としては、たとえば、酸化物超電導体を備えるテープ状線材が好適に利用できる。テープ状線材は、たとえば、Bi2223系超電導テープ線、またはRE123系薄膜線材が利用できる。Bi2223系超電導テープ線としては、Ag-MnやAgなどの安定化金属中にBi2223系酸化物超電導体からなるフィラメントが配されたシース線が挙げられる。なお、Bi2223超電導体は、(ビスマスと鉛):ストロンチウム:カルシウム:銅の原子比がほぼ2:2:2:3の比率で近似して表わされるBi2223相を主相とし、残部がBi2212相および不可避的不純物からなる材質を意味する。RE123系薄膜線材としては、金属基板にY(イットリウム),Ho(ホルニウム),Sm(サマリウム),Gd(ガドリニウム)などの希土類元素REの酸化物超電導相が成膜された積層線材が挙げられる。RE123系の超電導体とは、REBaCu(yは6~8、より好ましくは7)として表される超電導体を意味する。上記テープ状線材を螺旋状に巻回して形成した単層構造、または多層構造のものが挙げられる。図5では簡略化して示しているが、多層構造の超電導層13としている。 The inner superconducting layer 13 is disposed on the outer periphery of the former 12. The inner superconducting layer 13 constitutes a power transmission path. As the inner superconducting layer 13, for example, a tape-shaped wire provided with an oxide superconductor can be suitably used. As the tape-shaped wire, for example, a Bi2223-based superconducting tape wire or an RE123-based thin film wire can be used. Examples of the Bi2223-based superconducting tape wire include a sheath wire in which a filament made of a Bi2223-based oxide superconductor is disposed in a stabilized metal such as Ag—Mn or Ag. The Bi2223 superconductor has a Bi2223 phase represented by a ratio of (Bismuth and Lead): Strontium: Calcium: Copper at an approximate ratio of 2: 2: 2: 3 as the main phase, with the balance being the Bi2212 phase and the Bi2223 phase. It means a material consisting of unavoidable impurities. Examples of the RE123-based thin film wire include a laminated wire in which an oxide superconducting phase of a rare earth element RE such as Y (yttrium), Ho (phornium), Sm (samarium), and Gd (gadolinium) is formed on a metal substrate. The RE123-based superconductor means a superconductor represented as REBa 2 Cu 3 O y (y is 6 to 8, more preferably 7). The thing of the single layer structure formed by winding the said tape-shaped wire material helically, or a multilayer structure is mentioned. Although illustrated in a simplified manner in FIG. 5, the superconducting layer 13 has a multilayer structure.
 絶縁層14は、内部超電導層13での使用電圧に対して要求される絶縁を確保するための層である。この絶縁層14には、液体窒素を通過させる絶縁紙が好適に利用できる。 Insulating layer 14 is a layer for securing the insulation required for the working voltage in internal superconducting layer 13. For the insulating layer 14, an insulating paper through which liquid nitrogen can pass can be suitably used.
 従来の超電導ケーブルにおいては、超電導層を多層構造とする場合、交流損失を低減するために、層間にクラフト紙などを巻回して層間絶縁層が設けられる。また、高い絶縁耐力を実現するために、ポリプロピレンラミネート紙(PPLP(登録商標))などの絶縁紙に液体窒素を含浸させて電気的絶縁を確保している。そのため、液体窒素および絶縁紙を用いてコア10の伝導冷却が行なわれる。しかしながら、液体窒素が気化して窒素ガスが発生すると、分厚い絶縁層に阻まれて伝導冷却性能が約1/20にまで低下してしまう。 In a conventional superconducting cable, when the superconducting layer has a multilayer structure, an interlayer insulating layer is provided by winding kraft paper or the like between layers in order to reduce AC loss. In addition, in order to achieve high dielectric strength, insulating paper such as polypropylene laminated paper (PPLP (registered trademark)) is impregnated with liquid nitrogen to ensure electrical insulation. Therefore, conductive cooling of the core 10 is performed using liquid nitrogen and insulating paper. However, when liquid nitrogen is vaporized and nitrogen gas is generated, a thick insulating layer prevents the conduction cooling performance to about 1/20.
 一方、航空機用の電力ケーブルにおいては、交流周波数400Hz、定格電圧230Vおよび定格電流10kAの三相交流電力を送電する場合、絶縁層14は24μm程度の厚さが必要となる。これには、たとえば135μm厚の絶縁紙のギャップ巻により絶縁層14を形成することができる。定格電圧66kVとする変電所用の電力ケーブルの場合、絶縁層は7mm程度の厚さを必要とするのに比較して、絶縁層の厚さを約1/50に薄くできるため、窒素ガスが発生しても、伝導冷却を行なうことができる。 On the other hand, in the case of transmitting a three-phase AC power having an AC frequency of 400 Hz, a rated voltage of 230 V and a rated current of 10 kA, the insulating layer 14 needs to have a thickness of about 24 μm. For this, the insulating layer 14 can be formed, for example, by gap winding of insulating paper having a thickness of 135 μm. In the case of a power cable for a substation with a rated voltage of 66kV, the thickness of the insulating layer can be reduced to about 1/50 compared to requiring an insulating layer having a thickness of about 7mm, so nitrogen gas is generated Even conductive cooling can be performed.
 また、絶縁層14が24μm程度の厚さで足りることから、薄膜の絶縁紙で絶縁層14を形成することができるため、液体窒素が絶縁層14を通過することができる。これによると、封入管30の内部に液体窒素を充填する工程において、コア10の内部(フォーマ部分)から液体窒素を供給することができる。 In addition, since the insulating layer 14 needs to have a thickness of about 24 μm, the insulating layer 14 can be formed of thin insulating paper, so that liquid nitrogen can pass through the insulating layer 14. According to this, in the step of filling the inside of the sealing tube 30 with liquid nitrogen, liquid nitrogen can be supplied from the inside (former portion) of the core 10.
 外部超電導層15は、絶縁層14の外周に配置される。外部超電導層15としては、内部超電導層13と同様に酸化物超電導体を備えるテープ状線材が好適に利用できる。外部超電導層15に用いる酸化物超電導体は、内部超電導層13の形成に用いたものと同様のものを用いてもよい。超電導ケーブル100が三相交流ケーブルの場合、外部超電導層15は、内部超電導層13に流れる電流による誘導されるシールド電流を流すシールド層として利用できる。 The outer superconducting layer 15 is disposed on the outer periphery of the insulating layer 14. As the outer superconducting layer 15, a tape-shaped wire including an oxide superconductor as in the case of the inner superconducting layer 13 can be suitably used. The oxide superconductor used for the outer superconducting layer 15 may be the same as that used for the formation of the inner superconducting layer 13. When the superconducting cable 100 is a three-phase AC cable, the outer superconducting layer 15 can be used as a shield layer for flowing a shield current induced by the current flowing in the inner superconducting layer 13.
 熱伝導層16は、外部超電導層15の外周に配置される。熱伝導層16は、コア10の最外周に配置される。熱伝導層16は、コア10にて発生する熱を封入管30内に充填された液体冷媒20に伝熱するためのものである。熱伝導層16は、たとえば高熱伝導性を有するテープ状線材を螺旋状に巻回して形成することができる。 The heat conduction layer 16 is disposed on the outer periphery of the outer superconducting layer 15. The heat conduction layer 16 is disposed at the outermost periphery of the core 10. The heat conduction layer 16 is for transferring the heat generated in the core 10 to the liquid refrigerant 20 filled in the sealing tube 30. The heat conductive layer 16 can be formed, for example, by spirally winding a tape-shaped wire having high heat conductivity.
 図3および図4に戻って、封入管30は、コア10(端末を除く)を収納する。封入管30の材質としては、銅、ステンレスまたはアルミニウム(合金)などが好適に利用できる。封入管30の内部には液体窒素20が封入される。 Returning to FIG. 3 and FIG. 4, the enclosing tube 30 houses the core 10 (excluding the terminal). Copper, stainless steel, aluminum (alloy) or the like can be suitably used as the material of the sealing tube 30. Liquid nitrogen 20 is sealed in the inside of the sealing tube 30.
 封入管30の内部では、液体窒素20を用いてコア10が冷却される。コア10の冷却には、顕熱および蒸発潜熱が利用される。具体的には、液体窒素20が初期温度から沸点(77.3K)に達するまでは顕熱が利用され、液体窒素20が沸点に達した後は、蒸発潜熱が利用される。 Inside the encapsulation tube 30, the core 10 is cooled using liquid nitrogen 20. Sensible heat and latent heat of vaporization are used to cool the core 10. Specifically, sensible heat is utilized until the liquid nitrogen 20 reaches the boiling point (77.3 K) from the initial temperature, and the latent heat of vaporization is utilized after the liquid nitrogen 20 reaches the boiling point.
 さらに、図5に示すように、コア10の最外周は熱伝導層16で覆われている。封入管30内に残存する液体窒素20が少なくなった状態においても、熱伝導層16を液体窒素20に接触させることによって、コア10の伝導冷却を効率的に行なうことができる。 Furthermore, as shown in FIG. 5, the outermost periphery of the core 10 is covered with the heat conduction layer 16. Even in a state where the amount of liquid nitrogen 20 remaining in the sealing tube 30 is reduced, conduction cooling of the core 10 can be efficiently performed by contacting the heat conductive layer 16 with the liquid nitrogen 20.
 航空機1000が離陸してから着陸するまでの期間において、液体窒素20は、コア10で発生する交流損失および封入管30の外部から侵入する熱などによって加熱される。ここで、液体窒素は、顕熱が28.8kJ/kg(融点から沸点までの温度差において)であり、蒸発潜熱が199.1kJ/kgである。航空機1000の離陸前において、封入管30に充填した液体窒素を、外部冷凍機で循環冷却および伝導冷却することにより、融点(63.1K)まで冷却する。航空機1000の離陸後、液体窒素20の温度は、融点を初期温度として沸点まで上昇し、その後、封入管30内の液体窒素20が全て気化するまで、沸点近傍の温度に維持される。封入管30には、航空機1000が離陸してから着陸するまでの期間に発生する損失などに基づいて、コア10を超電導状態に冷却するのに必要な量の液体窒素20が充填される。たとえば、24時間の運航時間において負荷が100%となる時間が1時間であり、負荷が33%となる時間が23時間とした場合、初期に貯蔵すべき液体窒素の量は約750kgである。これによると、航空機1000が着陸するよりも前に、封入管30内の液体窒素20が全て気化してしまうことを防ぐことができる。なお、封入管30に充填する液体窒素20の量およびコア10の全長などに基づいて、封入管30の内径を決定することで、所定の冷却を確保しながら、封入管30の大容量化に伴う超電導ケーブル100の大型化を回避することができる。 During the period from the takeoff to the landing of the aircraft 1000, the liquid nitrogen 20 is heated by the AC loss generated in the core 10 and the heat entering from the outside of the enclosed tube 30. Here, liquid nitrogen has a sensible heat of 28.8 kJ / kg (at a temperature difference from the melting point to the boiling point) and a latent heat of vaporization of 199.1 kJ / kg. Before takeoff of the aircraft 1000, the liquid nitrogen filled in the enclosed tube 30 is cooled to the melting point (63. 1 K) by circulating cooling and conduction cooling with an external refrigerator. After takeoff of the aircraft 1000, the temperature of the liquid nitrogen 20 is raised to the boiling point with the melting point as the initial temperature, and thereafter maintained at a temperature near the boiling point until all the liquid nitrogen 20 in the enclosing tube 30 is vaporized. The enclosed tube 30 is filled with liquid nitrogen 20 in an amount necessary to cool the core 10 to a superconducting state, based on the loss that occurs in the period from the takeoff to the landing of the aircraft 1000. For example, if the time when the load is 100% is 24 hours and the time when the load is 33% is 23 hours, the amount of liquid nitrogen to be initially stored is about 750 kg. According to this, it is possible to prevent all the liquid nitrogen 20 in the enclosed tube 30 from being vaporized before the aircraft 1000 lands. Note that the internal diameter of the sealing tube 30 is determined based on the amount of liquid nitrogen 20 filling the sealing tube 30, the entire length of the core 10, and the like, so that the capacity of the sealing tube 30 can be increased while securing predetermined cooling. The accompanying enlargement of the superconducting cable 100 can be avoided.
 封入管30の内部には、超電導ケーブル100の長手方向に沿って複数の仕切り部材30Aが配置されている。この複数の仕切り部材30Aによって、封入管30の内部は複数の空間に区分けされる。たとえば、仕切り部材30Aは、3芯のコア10の所定のピッチごとに等間隔に配置される。所定のピッチは、たとえば1m程度である。 A plurality of partition members 30A are disposed in the inside of the enclosing tube 30 along the longitudinal direction of the superconducting cable 100. The interior of the enclosing pipe 30 is divided into a plurality of spaces by the plurality of partition members 30A. For example, the partition members 30A are arranged at equal intervals at predetermined pitches of the three-core core 10. The predetermined pitch is, for example, about 1 m.
 航空機1000が運航している間、航空機1000は様々な姿勢をとり得る。たとえば、航空機1000の機体が地面に対して垂直に近い角度で傾いている場合、超電導ケーブル100も地面に対して垂直に近い角度で傾くことがある。このような場合、封入管30の内部の液体窒素20が重力に従って下方に集まる。封入管30の内部に仕切り部材30Aがなく、単一の空間である場合、液体窒素20は重力方向下側に集められる。この状態は、細長い容器に液体窒素20が入っている状態と例えることができる。そのため、容器となる封入管30においては、重力方向下側に位置する部分に、液体窒素20の液面からの深さに応じた圧力が加わることになる。この圧力は封入管30の長さが長くなるほど大きくなるため、封入管30には圧力に耐え得るだけの堅牢性が必要となる。その結果、封入管30が大型で重量な構造となることが懸念される。 While the aircraft 1000 is operating, the aircraft 1000 can assume various attitudes. For example, if the aircraft 1000 is inclined at an angle close to perpendicular to the ground, the superconducting cable 100 may also incline at an angle close to perpendicular to the ground. In such a case, the liquid nitrogen 20 in the inside of the enclosing tube 30 gathers downward according to gravity. In the case where there is no partition member 30A inside the enclosing tube 30 and it is a single space, the liquid nitrogen 20 is collected downward in the direction of gravity. This state can be compared with the state in which the elongated container contains liquid nitrogen 20. Therefore, in the sealing tube 30 serving as the container, a pressure corresponding to the depth from the liquid surface of the liquid nitrogen 20 is applied to the portion located on the lower side in the direction of gravity. Since the pressure increases as the length of the sealing tube 30 increases, the sealing tube 30 needs to be robust enough to withstand the pressure. As a result, there is a concern that the sealing tube 30 has a large and heavy structure.
 これに対して、本実施の形態では、仕切り部材30Aによって封入管30の内部が複数の空間に区分けされているため、液体窒素20は複数の空間に分割されて封入されることになる。したがって、超電導ケーブル100が地面に対して垂直に近い角度で傾いた場合、液体窒素20は空間ごとに重力方向下側に集められるため、仕切り部材30Aがない場合に比べて、封入管30に加わる圧力を小さくすることができる。 On the other hand, in the present embodiment, since the inside of the sealing tube 30 is divided into a plurality of spaces by the partition member 30A, the liquid nitrogen 20 is divided into a plurality of spaces and sealed. Therefore, when the superconducting cable 100 is inclined at an angle close to perpendicular to the ground, the liquid nitrogen 20 is collected downward in the direction of gravity in each space, and thus added to the enclosing tube 30 as compared with the case without the partition member 30A. The pressure can be reduced.
 また、仕切り部材30Aがない場合、超電導ケーブル100が地面に対して垂直に近い角度で傾くと、封入管30の内部では液体窒素20の偏りが生じるため、コア10の長手方向において液体窒素20が接触しない部分が生じることがある。この部分は液体窒素20によって冷却されないため、コア10の全長にわたって均一に冷却することが困難となる。本実施の形態では、仕切り部材30Aを配置することによって、封入管30の内部で液体窒素20の偏りが生じることを抑えることができる。コア10の長手方向にわたって、液体冷媒20の状態がほぼ均一になるため、ほぼ均等にコア10を冷却することができる。 In the absence of the partition member 30A, when the superconducting cable 100 is inclined at an angle close to perpendicular to the ground, the liquid nitrogen 20 is biased inside the sealing tube 30, so the liquid nitrogen 20 is in the longitudinal direction of the core 10. There may be parts that do not touch. Since this portion is not cooled by the liquid nitrogen 20, uniform cooling over the entire length of the core 10 becomes difficult. In the present embodiment, by arranging the partition member 30A, it is possible to suppress the occurrence of the deviation of the liquid nitrogen 20 inside the sealing tube 30. Since the state of the liquid refrigerant 20 becomes substantially uniform over the longitudinal direction of the core 10, the core 10 can be cooled substantially uniformly.
 封入管30の外周面には、気液分離フィルタ40が配置される。気液分離フィルタ40は、複数の空間の各々に対応して配置される。気液分離フィルタ40は、膜の透過性を利用して、封入管30からの液体窒素20の流出を抑制しつつ、封入管30の外部に窒素ガスを排出させるものである。図6は、気液分離フィルタ40の構成例を模式的に示す図である。図6の例では、気液分離フィルタ40は、シート状のフィルタ42および補強材41,43を含む。 A gas-liquid separation filter 40 is disposed on the outer peripheral surface of the sealing tube 30. The gas-liquid separation filter 40 is disposed corresponding to each of the plurality of spaces. The gas-liquid separation filter 40 discharges nitrogen gas to the outside of the sealing tube 30 while suppressing the outflow of the liquid nitrogen 20 from the sealing tube 30 by using the permeability of the membrane. FIG. 6 is a view schematically showing a configuration example of the gas-liquid separation filter 40. As shown in FIG. In the example of FIG. 6, the gas-liquid separation filter 40 includes a sheet-like filter 42 and reinforcing members 41 and 43.
 フィルタ42は、気体を透過させる一方で液体を捕集する特性を有している。フィルタ42の種類は特に限定されないが、たとえば微孔性の多孔質材料からなるものや、不織布、あるいはポリエステル繊維などの積層物からなるものであってもよい。フィルタ42は、単純なメッシュ構造であってもよい。 The filter 42 has a property of transmitting a gas while collecting a liquid. Although the type of the filter 42 is not particularly limited, it may be made of, for example, a microporous porous material, a nonwoven fabric, or a laminate of polyester fibers or the like. The filter 42 may be a simple mesh structure.
 上述したように、封入管30の内部では、液体窒素20を用いてコア10を蒸発冷却するため、液体窒素20が気化されて窒素ガスが発生する。この窒素ガスは、気液分離フィルタ40を通過して封入管30の外部に排出される。 As described above, since the core 10 is evaporated and cooled using the liquid nitrogen 20 inside the sealing tube 30, the liquid nitrogen 20 is vaporized to generate nitrogen gas. The nitrogen gas passes through the gas-liquid separation filter 40 and is discharged to the outside of the sealing pipe 30.
 封入管30の外周には、コルゲート内管32が配置される。コルゲート内管32は、たとえばステンレス製のコルゲート筒形状である。封入管30とコルゲート内管32との間の空間は、窒素ガスを超電導ケーブル100の外部に排出するためのガス流路31として利用される。 A corrugated inner pipe 32 is disposed on the outer periphery of the sealing pipe 30. The corrugated inner pipe 32 has, for example, a corrugated cylindrical shape made of stainless steel. A space between the sealing pipe 30 and the corrugated inner pipe 32 is used as a gas flow path 31 for discharging nitrogen gas to the outside of the superconducting cable 100.
 コルゲート内管32の外周には、コルゲート外管34が配置される。コルゲート内管32とコルゲート外管34との間の空間は、真空層33であり、断熱空間として利用される。この空間には、断熱材を充填してもよい。 A corrugated outer pipe 34 is disposed on the outer circumference of the corrugated inner pipe 32. The space between the corrugated inner pipe 32 and the corrugated outer pipe 34 is a vacuum layer 33 and is used as an adiabatic space. This space may be filled with a heat insulating material.
 コルゲート外管34の外周には、補強層35(防食層)が配置される。補強層35は、たとえばポリ塩化ビニルなどを用いて形成される。 A reinforcing layer 35 (anticorrosion layer) is disposed on the outer periphery of the corrugated outer tube 34. The reinforcing layer 35 is formed of, for example, polyvinyl chloride or the like.
 図7は、図2に示した超電導ケーブル100の端末部120の概略断面図である。図7に示すように、端末部120は、真空断熱容器の態様をなし、液体窒素20およびコア10の端末を内部に保持する冷媒容器124と、冷媒容器124を囲むように配置される外側の槽(外槽)とを備える。冷媒容器124と外槽との間には一定の間隙が存在し、この間隙を真空状態とすることで、外槽側から冷媒容器側への熱の伝達を抑制することができる。 FIG. 7 is a schematic cross-sectional view of the terminal portion 120 of the superconducting cable 100 shown in FIG. As shown in FIG. 7, the terminal portion 120 is in the form of a vacuum insulation container, and has a refrigerant container 124 for holding the liquid nitrogen 20 and the terminal of the core 10 inside, and an outer part arranged to surround the refrigerant container 124. And a tank (outer tank). A certain gap exists between the refrigerant container 124 and the outer tank, and by setting the gap in a vacuum, it is possible to suppress the transfer of heat from the outer tank side to the refrigerant container side.
 冷媒容器124の内部に液体冷媒20を供給するために、端末部120には液体冷媒20の注入口126が形成されている。冷媒容器124の内部に液体冷媒20が充填されると、注入口126は封止部材128によって封止される。これにより、冷媒容器124の内部に液体冷媒20を閉じ込めることができる。 In order to supply the liquid refrigerant 20 to the inside of the refrigerant container 124, an inlet 126 for the liquid refrigerant 20 is formed in the terminal portion 120. When the inside of the refrigerant container 124 is filled with the liquid refrigerant 20, the inlet 126 is sealed by the sealing member 128. Thus, the liquid refrigerant 20 can be confined inside the refrigerant container 124.
 航空機1000の運航中、コア10の端末は、冷媒容器124内の液体窒素20によって超電導状態に冷却される。冷媒容器124の内部において、液体窒素20が気化して窒素ガスが発生すると、冷媒容器124内の冷媒圧力が上昇し、冷媒温度が上昇するため、窒素ガスを排出する必要がある。そのため、図7に示すように、端末部120に気液分離器130を接続する。気液分離器130の気体出口には圧力調整弁132が配置されている。 During operation of the aircraft 1000, the terminals of the core 10 are cooled to the superconducting state by the liquid nitrogen 20 in the refrigerant vessel 124. When liquid nitrogen 20 is vaporized and nitrogen gas is generated inside the refrigerant container 124, the pressure of the refrigerant in the refrigerant container 124 is increased and the temperature of the refrigerant is increased. Therefore, it is necessary to discharge the nitrogen gas. Therefore, as shown in FIG. 7, the gas-liquid separator 130 is connected to the terminal unit 120. A pressure control valve 132 is disposed at the gas outlet of the gas-liquid separator 130.
 航空機1000の運航中、機体の姿勢が傾斜することで、冷媒容器124内の冷媒圧力が上昇する場合がある。冷媒容器124の外部は大気圧もしくは大気圧以下であるため、このような場合に、気液分離器130の気体出口から液体窒素20および窒素ガスがともに排出されてしまうおそれがある。圧力調整弁132は、気体出口に設置され、冷媒容器124内の冷媒圧力と外部圧力との圧力差を維持することができる。これにより、機体が大きく傾斜する場合を含めて、冷媒容器124から液体窒素20を流出させずに、窒素ガスを効率良く冷媒容器124の外部に排出させることができる。 During operation of the aircraft 1000, the refrigerant pressure in the refrigerant container 124 may increase due to the attitude of the airframe being inclined. Since the outside of the refrigerant container 124 is at atmospheric pressure or lower than atmospheric pressure, in such a case, there is a risk that both liquid nitrogen 20 and nitrogen gas may be discharged from the gas outlet of the gas-liquid separator 130. The pressure control valve 132 is installed at the gas outlet, and can maintain the pressure difference between the refrigerant pressure in the refrigerant container 124 and the external pressure. Thus, the nitrogen gas can be efficiently discharged to the outside of the refrigerant container 124 without flowing out the liquid nitrogen 20 from the refrigerant container 124, including the case where the airframe is greatly inclined.
 図8から図10は、図7に示した気液分離器130の構成例を模式的に示す断面図である。気液分離器130には、一般的に、遠心力を利用した気液分離器(図8)、表面張力を利用した気液分離器(図9)および、気液分離コアレッサー(図10)など種々の方式のものを利用することができる。 8 to 10 are cross-sectional views schematically showing a configuration example of the gas-liquid separator 130 shown in FIG. In the gas-liquid separator 130, generally, a gas-liquid separator using centrifugal force (FIG. 8), a gas-liquid separator using surface tension (FIG. 9), and a gas-liquid separation coalescer (FIG. 10) And so on can be used.
 図8は、遠心力式気液分離器の構成を模式的に示す断面図である。図8に示すように、分離器本体143の側部には、気液二相冷媒が流入する気液二相流入口140が設けられている。分離器本体143の上部には気体が出力される気体出口141が設けられ、分離器本体143の下部には液体が出力される液体出口142が設けられている。分離器本体143の内部には螺旋状流路が形成されており、この螺旋状流路の一端が気液二相流入口140に連通している。螺旋状流路の他端側で、かつ螺旋状流路の軸線方向から見て螺旋状流路の外周側部分に連通するように液体出口142が設けられ、螺旋状流路の軸線方向から見て螺旋状流路の内周側部分に連通するように気体出口141が設けられる。 FIG. 8 is a cross-sectional view schematically showing the structure of a centrifugal gas-liquid separator. As shown in FIG. 8, a gas-liquid two-phase inlet 140 into which a gas-liquid two-phase refrigerant flows is provided on the side of the separator body 143. A gas outlet 141 from which gas is output is provided at the top of the separator body 143, and a liquid outlet 142 from which liquid is output is provided at the bottom of the separator body 143. A spiral flow passage is formed inside the separator body 143, and one end of the spiral flow passage communicates with the gas-liquid two-phase inlet 140. A liquid outlet 142 is provided on the other end side of the spiral flow channel and in communication with the outer peripheral side portion of the spiral flow channel viewed from the axial direction of the spiral flow channel, and viewed from the axial direction of the spiral flow channel A gas outlet 141 is provided to communicate with the inner peripheral side portion of the helical flow passage.
 気液二相流入口140から流入した気液二相冷媒は、螺旋状流路によって旋回成分が与えられ、その遠心力によって液体窒素と窒素ガスとに分離される。すなわち、比重の大きい液体窒素は、より大きな遠心力を受けるため、螺旋状流路の外周側に集まる一方、比重の小さい窒素ガスはそれ以外の部分、つまり螺旋状流路の内周側に集まることになる。 The gas-liquid two-phase refrigerant flowing from the gas-liquid two-phase inlet 140 is given a swirling component by a spiral flow path, and is separated into liquid nitrogen and nitrogen gas by its centrifugal force. That is, since liquid nitrogen having a large specific gravity is subjected to a larger centrifugal force, it gathers on the outer peripheral side of the spiral channel, while nitrogen gas having a small specific gravity collects on the other part, that is, the inner peripheral side of the spiral channel. It will be.
 図9は、表面張力式気液分離器の構成を模式的に示す断面図である。図9に示すように、分離器本体143の上部には気液二相流入口140が設けられ、分離器本体143の側部には気体出口141が設けられ、分離器本体143の下部には液体出口142が設けられている。 FIG. 9 is a cross-sectional view schematically showing the structure of a surface tension type gas-liquid separator. As shown in FIG. 9, a gas-liquid two-phase inlet 140 is provided at the top of the separator body 143, a gas outlet 141 is provided at the side of the separator body 143, and a lower portion of the separator body 143. A liquid outlet 142 is provided.
 分離器本体143の内周面には、蛇腹状の溝部144が形成されている。溝部144の上部と気液二相流入口140と間には、気液二相流を溝部144に導くとともに、溝部144から放出された気体が気液二相流入口140に逆流するのを防止するための仕切体143Aが配置されている。溝部144の下部と気体出口141および液体出口142との間には、溝部144を通過した気体および液体をそれぞれの出口に導くための仕切体143Bが配置されている。 A bellows-like groove 144 is formed on the inner peripheral surface of the separator body 143. Between the upper portion of the groove 144 and the gas-liquid two-phase inlet 140, the gas-liquid two-phase flow is guided to the groove 144, and the gas released from the groove 144 is prevented from backflowing to the gas-liquid two-phase inlet 140 The partition 143A for doing is arranged. Between the lower portion of the groove 144 and the gas outlet 141 and the liquid outlet 142, a partition 143B for guiding the gas and liquid having passed through the groove 144 to the respective outlets is disposed.
 蛇腹状の溝部144の上部から気液二相冷媒が流入されると、気液二相冷媒が溝部144に接触する。溝部144に接触した気液二相冷媒は、液体窒素の表面張力により、液体窒素と窒素ガスとに分離される。分離された液体窒素は、溝部144に沿って流れた後に集められて、液体出口142から流出される。窒素ガスは、気体出口141から排出される。 When the gas-liquid two-phase refrigerant flows in from the upper portion of the bellows-like groove portion 144, the gas-liquid two-phase refrigerant contacts the groove portion 144. The gas-liquid two-phase refrigerant in contact with the groove 144 is separated into liquid nitrogen and nitrogen gas by the surface tension of the liquid nitrogen. The separated liquid nitrogen is collected after flowing along the groove 144 and flows out from the liquid outlet 142. Nitrogen gas is exhausted from the gas outlet 141.
 図10は、気液分離コアレッサーの構成を模式的に示す断面図である。図10に示すように、分離器本体143の内部には、超極細繊維構造を有するコアレッサーカートリッジ145が設置されている。気液二相流入口140から流入された気液二相冷媒は、コアレッサーカートリッジ145の中に流入される。コアレッサーカートリッジ145を通過する間に、気液二相冷媒に含まれる液体窒素が分離されて、分離器本体143の下部に集められる。液体窒素は、分離器本体143の下部に設けられた液体出口142から流出される。窒素ガスは、コアレッサーカートリッジ145を通過した後、分離器本体143の上部に設けられた気体出口141から排出される。 FIG. 10 is a cross-sectional view schematically showing the structure of the gas-liquid separation coalescer. As shown in FIG. 10, inside the separator main body 143, a coalescer cartridge 145 having a microfiber structure is installed. The gas-liquid two-phase refrigerant flowing from the gas-liquid two-phase inlet 140 flows into the coalescer cartridge 145. While passing through the coalescer cartridge 145, liquid nitrogen contained in the gas-liquid two-phase refrigerant is separated and collected at the lower part of the separator body 143. Liquid nitrogen flows out of a liquid outlet 142 provided at the bottom of the separator body 143. After passing through the coalescer cartridge 145, the nitrogen gas is exhausted from a gas outlet 141 provided on the top of the separator body 143.
 (超電導ケーブルの運用例)
 次に、本実施の形態に係る超電導ケーブル100の運用例について説明する。
(Example of operation of superconducting cable)
Next, an operation example of the superconducting cable 100 according to the present embodiment will be described.
 まず、航空機1000の離陸前においては、封入管30および端末部120の内部に、液体窒素が充填される。図11は、封入管30の内部に液体窒素を充填する工程を模式的に示す図である。 First, before the takeoff of the aircraft 1000, the inside of the enclosed tube 30 and the terminal portion 120 is filled with liquid nitrogen. FIG. 11 is a view schematically showing the process of filling the inside of the sealing tube 30 with liquid nitrogen.
 図11に示すように、超電導ケーブル100は、液体窒素が貯蔵されているタンク200をフォーマ12に接続するための接続部材210を備える。接続部材210は、コア10の端末に設けられている。 As shown in FIG. 11, the superconducting cable 100 includes a connecting member 210 for connecting a tank 200 in which liquid nitrogen is stored to the former 12. The connection member 210 is provided at the terminal of the core 10.
 接続部材210は、フォーマ12へのタンク200の接続時において開状態となり、タンク200の内部とフォーマ12の中空部とを連通させる一方で、フォーマ12とタンク200との非接続時において閉状態となり、フォーマ12の中空部を封止するように構成される。 The connecting member 210 is opened when the tank 200 is connected to the former 12, and is closed when the former 12 and the tank 200 are disconnected, while connecting the inside of the tank 200 with the hollow portion of the former 12 , And the hollow portion of the former 12 is sealed.
 タンク200には、冷凍機202が接続されている。タンク200内の液体窒素は、沸点(77.3K)あるいは、冷凍機202によって沸点以下の温度に冷却されている。この液体窒素をフォーマ12に圧入し、封入管30に充填する。その後、液体窒素を外部の冷凍機に循環させて更に温度を下げ、続いて伝導冷却によって融点(63.1K)に近い温度まで冷却してもよい。冷凍機202としては、GM冷凍機(ギフォード・マクマホン冷凍機)で代表される小型極低温冷凍機などが用いられる。冷凍機202には、循環冷媒管を介して圧縮機204が接続されている。 A refrigerator 202 is connected to the tank 200. The liquid nitrogen in the tank 200 is cooled to a temperature equal to or lower than the boiling point (77.3 K) or the refrigerator 202. The liquid nitrogen is pressed into the former 12 and filled in the sealing tube 30. Thereafter, liquid nitrogen may be circulated to the external refrigerator to further reduce the temperature, and then it may be cooled to a temperature close to the melting point (63. 1 K) by conductive cooling. As the refrigerator 202, a small cryogenic refrigerator represented by a GM refrigerator (Gifford McMahon refrigerator) or the like is used. The compressor 204 is connected to the refrigerator 202 via a circulating refrigerant pipe.
 封入管30内に液体窒素を充填する工程では、接続部材210が開状態とされて、タンク200の内部とフォーマ12の中空部とが連通することにより、タンク200からコア10のフォーマ12の内部に液体窒素が注入される。封入管30の内部に液体窒素が満充填されると、液体窒素の注入が停止される。 In the process of filling liquid nitrogen into the sealing tube 30, the connection member 210 is opened, and the inside of the tank 200 and the hollow portion of the former 12 communicate with each other, so that the tank 200 to the inside of the former 12 of the core 10 are formed. Is injected with liquid nitrogen. When the inside of the sealing tube 30 is fully filled with liquid nitrogen, the injection of liquid nitrogen is stopped.
 図12は、端末部120の内部に液体窒素を充填する工程を模式的に示す図である。図12に示すように、タンク200から端末部120の注入口126を介して冷媒容器124の内部に液体窒素20が注入される。 FIG. 12 is a view schematically showing a process of filling the inside of the terminal unit 120 with liquid nitrogen. As shown in FIG. 12, liquid nitrogen 20 is injected from the tank 200 into the inside of the refrigerant container 124 through the injection port 126 of the terminal portion 120.
 冷媒容器124の内部に液体冷媒20が充填されると、注入口126は封止部材128(図7参照)によって封止される。 When the inside of the refrigerant container 124 is filled with the liquid refrigerant 20, the inlet 126 is sealed by the sealing member 128 (see FIG. 7).
 図13は、封入管30内部に存在する液体窒素の温度および量の時間的変化を模式的に示す図である。 FIG. 13 is a view schematically showing temporal changes in the temperature and amount of liquid nitrogen present in the inside of the sealing tube 30. As shown in FIG.
 図13に示すように、時刻t1にて封入管30の内部には液体窒素が満充填されている。図13の例では、液体窒素は融点に近い温度に冷却されている。 As shown in FIG. 13, the inside of the sealing tube 30 is fully filled with liquid nitrogen at time t1. In the example of FIG. 13, the liquid nitrogen is cooled to a temperature close to the melting point.
 時刻t1より後の時刻t2において航空機1000が離陸した後、コア10に発生する交流損失および外部侵入熱などによって液体窒素が加熱される。液体窒素の温度は融点(63.1K)近傍から次第に上昇する。コア10は、液体窒素の顕熱を利用して冷却される。時刻t2より後の時刻t3において液体窒素の温度が沸点に達すると、伝導冷却から蒸発冷却に移行する。蒸発冷却では、液体窒素の潜熱を利用してコア10が冷却されるため、液体窒素の温度は沸点近傍に維持される。蒸発冷却で発生した窒素ガスは気液分離フィルタ40から封入管30の外部に排出される。時刻t3以降、液体窒素の量は徐々に減少する。時刻t4において航空機1000が着陸したときには、封入管30の内部の液体窒素は大部分が気化された状態となっている。時刻t4より後には、航空機1000の運航に備えて、再び封入管30への液体窒素の供給が行なわれる。 After the aircraft 1000 takes off at time t2 after time t1, the liquid nitrogen is heated by AC loss and heat of external penetration generated in the core 10. The temperature of liquid nitrogen gradually rises from around the melting point (63. 1 K). The core 10 is cooled using the sensible heat of liquid nitrogen. When the temperature of liquid nitrogen reaches the boiling point at time t3 after time t2, the transition from conduction cooling to evaporation cooling is made. In evaporative cooling, since the core 10 is cooled using the latent heat of liquid nitrogen, the temperature of liquid nitrogen is maintained near the boiling point. The nitrogen gas generated by the evaporative cooling is discharged from the gas-liquid separation filter 40 to the outside of the sealing pipe 30. After time t3, the amount of liquid nitrogen gradually decreases. When the aircraft 1000 lands at time t4, most of the liquid nitrogen in the enclosed tube 30 has been vaporized. After time t4, in preparation for the operation of the aircraft 1000, the supply of liquid nitrogen to the sealing tube 30 is performed again.
 以上説明したように、本実施の形態による超電導ケーブル100によれば、封入管30内に封入された液体窒素20の蒸発潜熱を利用してコア10が冷却されるため、過冷却冷媒を用いてコアの循環冷却を行なう従来の超電導ケーブルの冷却技術と比較して、液体冷媒を過冷却状態に冷却するための冷却システムが不要となる。したがって、上記超電導ケーブルを航空機内での電力を輸送する電力ケーブルに適用した場合において、航空機内に超電導ケーブルの冷却システムを構築する必要がないため、電力ケーブルを軽量化することができる。したがって、本実施の形態による超電導ケーブル100は、燃費および環境負荷を低減できる電動航空機の実現に貢献することができる。 As described above, according to the superconducting cable 100 according to the present embodiment, since the core 10 is cooled using the latent heat of evaporation of the liquid nitrogen 20 sealed in the sealing tube 30, it is possible to use the supercooled refrigerant. As compared with the conventional superconducting cable cooling technology that performs core cooling, there is no need for a cooling system for cooling the liquid refrigerant to a subcooling state. Therefore, when the superconducting cable is applied to a power cable for transporting electric power in an aircraft, it is not necessary to construct a cooling system for the superconducting cable in the aircraft, so the weight of the power cable can be reduced. Therefore, superconducting cable 100 according to the present embodiment can contribute to the realization of an electric aircraft capable of reducing fuel consumption and environmental load.
 また、コア10の最外周に熱伝導層16を設けることによって、液体窒素が気化することで封入管30内に残存する液体窒素が少なくなった状態においても、熱伝導層16を経由して液体窒素によってコア10全体を冷却することができる。これにより、航空機が運航している期間中、コアを常に冷却して超電導状態に維持することができる。 Further, by providing the heat conduction layer 16 on the outermost periphery of the core 10, even if the liquid nitrogen remaining in the sealing tube 30 is reduced by vaporization of the liquid nitrogen, the liquid via the heat conduction layer 16 The entire core 10 can be cooled by nitrogen. This allows the core to be constantly cooled and maintained in the superconducting state during the operation of the aircraft.
 また、封入管30の内部をコア10の長手方向に沿って複数の区間に区切り、該複数の空間に液体窒素を分割して封入することにより、航空機1000の姿勢の変化に伴って、超電導ケーブル100が地面に対して垂直に近い角度で傾いた場合であっても、液体窒素20は空間ごとに重力方向下側に集められるため、封入管30の内部が単一の空間である場合に比べて、封入管30に加わる圧力を小さくすることができる。また、封入管30の内部で液体窒素の偏りが生じることが抑制されるため、コア10の長手方向にわたって、液体冷媒20の状態がほぼ均一になるため、ほぼ均等にコア10を冷却することができる。 In addition, by dividing the inside of the sealing tube 30 into a plurality of sections along the longitudinal direction of the core 10 and dividing and sealing liquid nitrogen in the plurality of spaces, a superconducting cable is obtained along with the change in the attitude of the aircraft 1000. Even if 100 is inclined at an angle close to perpendicular to the ground, liquid nitrogen 20 is collected downward in the direction of gravity in each space, so compared to the case where the inside of the enclosed tube 30 is a single space Thus, the pressure applied to the sealing tube 30 can be reduced. In addition, since the occurrence of uneven distribution of liquid nitrogen in the inside of the sealing tube 30 is suppressed, the state of the liquid refrigerant 20 becomes substantially uniform over the longitudinal direction of the core 10, so that the core 10 can be cooled substantially evenly. it can.
 さらに、上記複数の空間の各々に対して、封入管30の外周面に、液体冷媒20が気化した気体冷媒を封入管30の外部に排出するための気液分離フィルタ40を配置することにより、複数の区間の各々において、気体冷媒の発生による冷媒圧力の上昇を抑制することができる。 Furthermore, a gas-liquid separation filter 40 for discharging the gas refrigerant in which the liquid refrigerant 20 is vaporized to the outside of the sealing pipe 30 is disposed on the outer peripheral surface of the sealing pipe 30 for each of the plurality of spaces. In each of the plurality of sections, a rise in the refrigerant pressure due to the generation of the gaseous refrigerant can be suppressed.
 なお、上述した実施の形態では、超電導ケーブル100を交流送電(例えば、三相交流送電)に利用する構成について説明したが、本実施の形態による超電導ケーブルは、直流送電(例えば、バイポール送電、モノポール送電)にも利用することができる。 In the embodiment described above, although the configuration in which the superconducting cable 100 is used for AC power transmission (for example, three-phase AC power transmission) has been described, the superconducting cable according to this embodiment is DC power transmission (for example, bipole power transmission, mono It can also be used for pole power transmission.
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative in all respects and not restrictive. The scope of the present invention is shown not by the embodiments described above but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
10 コア、12 フォーマ、13 内部超電導層もしくは導体層、14 絶縁層、15 外部超電導層もしくはシールド層、16 熱伝導層、20 液体窒素、30 封入管、30A 仕切り部材、31 ガス流路、32 コルゲート内管、33 真空層、34 コルゲート外管、35 補強層、36 断熱管、40 気液分離フィルタ、42 フィルタ、100 超電導ケーブル、102 発電機、104,108 電力変換器、106 電動機、110 電力分配器、112 蓄電装置、120 端末部、122 電極、124 冷媒容器、126,216 注入口、128 封止部材、130 気液分離器、132 圧力調整弁、140 気液二相流入口、141 気体出口、142 液体出口、143 分離器本体、143A,143B 仕切体、144 溝部、145 コアレッサーカートリッジ、200 タンク、202 冷凍機、204 圧縮機、210 接続部材、1000 航空機。 Reference Signs List 10 core, 12 former, 13 inner superconducting layer or conductor layer, 14 insulating layer, 15 outer superconducting layer or shield layer, 16 heat conductive layer, 20 liquid nitrogen, 30 sealed tube, 30 A partition member, 31 gas flow path, 32 corrugated Inner tube, 33 vacuum layers, 34 corrugated outer tube, 35 reinforcing layers, 36 heat insulating tubes, 40 gas-liquid separation filters, 42 filters, 100 superconducting cables, 102 generators, 104, 108 power converters, 106 motors, 110 power distribution , 112 power storage device, 120 terminal part, 122 electrode, 124 refrigerant container, 126, 216 inlet, 128 sealing member, 130 gas-liquid separator, 132 pressure control valve, 140 gas-liquid two-phase inlet, 141 gas outlet , 142 liquid outlet, 143 separator body, 143A, 1 3B partition body, 144 groove, 145 coalescer cartridge, 200 tanks, 202 refrigerator 204 a compressor, 210 connecting member, 1000 an aircraft.

Claims (13)

  1.  航空機に搭載される複数の電力機器の間で電力を輸送する超電導ケーブルであって、
     断熱管と、
     前記断熱管の内部に配置され、液体冷媒が封入される封入管と、
     前記封入管内に収納され、超電導層を有するコアとを備える、超電導ケーブル。
    A superconducting cable for transporting power between a plurality of power devices mounted on an aircraft,
    With an insulation pipe,
    A sealing pipe disposed inside the heat insulating pipe and in which a liquid refrigerant is sealed;
    A superconducting cable housed in the enclosed tube and having a core having a superconducting layer.
  2.  前記コアは、最外周に熱伝導層をさらに有する、請求項1に記載の超電導ケーブル。 The superconducting cable according to claim 1, wherein the core further comprises a heat conductive layer at the outermost periphery.
  3.  前記封入管の内部には、前記コアの長手方向に沿って前記封入管の内部を複数の区間に区切る複数の仕切り部材が配置され、
     前記複数の仕切り部材の各々には、前記コアを貫通させる貫通孔が形成される、請求項1または請求項2に記載の超電導ケーブル。
    A plurality of partition members are disposed in the interior of the encapsulation tube to divide the interior of the encapsulation tube into a plurality of sections along the longitudinal direction of the core,
    The superconducting cable according to claim 1, wherein each of the plurality of partition members is formed with a through hole through which the core passes.
  4.  前記封入管の外周面に配置され、前記液体冷媒が気化した気体冷媒を前記封入管の外部に排出するための気液分離フィルタをさらに備える、請求項1または請求項2に記載の超電導ケーブル。 The superconducting cable according to claim 1 or 2, further comprising: a gas-liquid separation filter disposed on an outer peripheral surface of the sealing pipe and discharging a gas refrigerant having the liquid refrigerant vaporized out of the sealing pipe.
  5.  前記封入管の外周面に配置され、前記液体冷媒が気化した気体冷媒を前記封入管の外部に排出するための気液分離フィルタをさらに備え、
     前記気液分離フィルタは、前記複数の区間の各々に対応して設けられる、請求項3に記載の超電導ケーブル。
    It further comprises a gas-liquid separation filter disposed on the outer peripheral surface of the sealing pipe and discharging the gas refrigerant having the liquid refrigerant vaporized out of the sealing pipe.
    The superconducting cable according to claim 3, wherein the gas-liquid separation filter is provided corresponding to each of the plurality of sections.
  6.  前記封入管の外周に配置され、前記気体冷媒を前記超電導ケーブルの外部に排出するためのガス流路をさらに備える、請求項4または請求項5に記載の超電導ケーブル。 The superconducting cable according to claim 4 or 5 further provided with a gas channel which is arranged on the outer periphery of said enclosed tube and for discharging said gaseous refrigerant to the outside of said superconducting cable.
  7.  前記封入管内には、沸点もしくは沸点以下の温度に冷却された前記液体冷媒が充填される、請求項1から請求項5のいずれか1項に記載の超電導ケーブル。 The superconducting cable according to any one of claims 1 to 5, wherein the sealing tube is filled with the liquid refrigerant cooled to a boiling point or a temperature below the boiling point.
  8.  前記コアは、
     中空スパイラル状のフォーマと、
     前記フォーマの外周に配置される前記超電導層と、
     前記超電導層の外周に配置される絶縁層と、
     前記絶縁層の外周に配置されるシールド層とを有する、請求項1から請求項7のいずれか1項に記載の超電導ケーブル。
    The core is
    A hollow spiral former,
    The superconducting layer disposed on the outer periphery of the former;
    An insulating layer disposed on the outer periphery of the superconducting layer;
    The superconducting cable according to any one of claims 1 to 7, further comprising: a shield layer disposed on an outer periphery of the insulating layer.
  9.  前記液体冷媒を貯留するタンクを前記フォーマに接続するための接続部材をさらに備え、
     前記接続部材は、前記タンクの接続時において開状態となり、前記タンクの内部と前記フォーマの中空部とを連通させる一方で、前記タンクの非接続時において閉状態となり、前記フォーマの前記中空部を封止するように構成される、請求項8に記載の超電導ケーブル。
    It further comprises a connecting member for connecting a tank for storing the liquid refrigerant to the former,
    The connecting member is opened when the tank is connected, and connects the inside of the tank and the hollow portion of the former, and is closed when the tank is disconnected, and the hollow portion of the former is closed. The superconducting cable of claim 8 configured to seal.
  10.  前記コアの端末を収納する端末部をさらに備え、
     前記端末部は、
     前記液体冷媒と前記コアの端末とを内部に保持する冷媒容器と、
     前記冷媒容器に形成された前記液体冷媒の注入口を封止する封止部材とを含む、請求項1から請求項9のいずれか1項に記載の超電導ケーブル。
    And a terminal unit for housing the terminal of the core,
    The terminal unit is
    A refrigerant container that holds the liquid refrigerant and the end of the core therein;
    The superconducting cable according to any one of claims 1 to 9, further comprising: a sealing member for sealing an inlet of the liquid refrigerant formed in the refrigerant container.
  11.  前記端末部に配置され、前記液体冷媒が気化した気体冷媒を前記冷媒容器の外部に排出するための気液分離器をさらに備える、請求項10に記載の超電導ケーブル。 The superconducting cable according to claim 10, further comprising: a gas-liquid separator, disposed at the terminal portion, for discharging a gas refrigerant obtained by vaporization of the liquid refrigerant to the outside of the refrigerant container.
  12.  前記気液分離器は、前記気体冷媒の出口に配置された圧力調整弁を有する、請求項11に記載の超電導ケーブル。 The superconducting cable according to claim 11, wherein the gas-liquid separator has a pressure control valve disposed at the outlet of the gaseous refrigerant.
  13.  前記液体冷媒は、液体窒素である、請求項1から請求項12のいずれか1項に記載の超電導ケーブル。 The superconducting cable according to any one of claims 1 to 12, wherein the liquid refrigerant is liquid nitrogen.
PCT/JP2018/045060 2018-01-23 2018-12-07 Superconductive cable WO2019146269A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-008944 2018-01-23
JP2018008944 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019146269A1 true WO2019146269A1 (en) 2019-08-01

Family

ID=67394640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045060 WO2019146269A1 (en) 2018-01-23 2018-12-07 Superconductive cable

Country Status (1)

Country Link
WO (1) WO2019146269A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284026A (en) * 2021-12-21 2022-04-05 深圳供电局有限公司 Metal closed liquid nitrogen insulation superconducting line
WO2022106131A1 (en) * 2020-11-18 2022-05-27 Messer Group Gmbh Apparatus for transmitting electrical energy with a superconducting current carrier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071290A (en) * 1973-10-26 1975-06-13
JP2005032861A (en) * 2003-07-09 2005-02-03 Toshiba Corp Superconducting magnet device
JP2010519679A (en) * 2007-02-09 2010-06-03 アメリカン スーパーコンダクター コーポレーション Fault current limiting HTS cable and configuration method thereof
JP2011076750A (en) * 2009-09-29 2011-04-14 Fujikura Ltd Oxide superconducting cable and method of manufacturing the same
JP2013027178A (en) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd Connection unit and connection structure
JP2013069585A (en) * 2011-09-22 2013-04-18 Sumitomo Electric Ind Ltd Superconducting cable manufacturing method
JP2014146584A (en) * 2013-01-30 2014-08-14 Sumitomo Electric Ind Ltd Superconductive cable and superconductive cable rail track
JP2016100221A (en) * 2014-11-21 2016-05-30 住友電気工業株式会社 Superconducting cable system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071290A (en) * 1973-10-26 1975-06-13
JP2005032861A (en) * 2003-07-09 2005-02-03 Toshiba Corp Superconducting magnet device
JP2010519679A (en) * 2007-02-09 2010-06-03 アメリカン スーパーコンダクター コーポレーション Fault current limiting HTS cable and configuration method thereof
JP2011076750A (en) * 2009-09-29 2011-04-14 Fujikura Ltd Oxide superconducting cable and method of manufacturing the same
JP2013027178A (en) * 2011-07-21 2013-02-04 Sumitomo Electric Ind Ltd Connection unit and connection structure
JP2013069585A (en) * 2011-09-22 2013-04-18 Sumitomo Electric Ind Ltd Superconducting cable manufacturing method
JP2014146584A (en) * 2013-01-30 2014-08-14 Sumitomo Electric Ind Ltd Superconductive cable and superconductive cable rail track
JP2016100221A (en) * 2014-11-21 2016-05-30 住友電気工業株式会社 Superconducting cable system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022106131A1 (en) * 2020-11-18 2022-05-27 Messer Group Gmbh Apparatus for transmitting electrical energy with a superconducting current carrier
CN114284026A (en) * 2021-12-21 2022-04-05 深圳供电局有限公司 Metal closed liquid nitrogen insulation superconducting line
CN114284026B (en) * 2021-12-21 2024-04-05 深圳供电局有限公司 Metal-enclosed liquid nitrogen insulating superconducting line

Similar Documents

Publication Publication Date Title
JP4835821B2 (en) Superconducting cable
KR101118374B1 (en) Superconductive cable line
JP4609121B2 (en) Superconducting cable line
CN100524546C (en) Superconducting cable line
EP2332151B1 (en) Electricity transmission cooling system
WO2019146269A1 (en) Superconductive cable
CN101019291A (en) Power deriving structure of superconducting apparatus
JP5847000B2 (en) Cryogenic cable termination connection
WO2005086306A1 (en) Terminal structure of polyphase superconducting cable
WO2017067761A1 (en) Energy transmission apparatus for a vehicle
CN111029035A (en) High-temperature superconducting cable structure and high-temperature superconducting cable system
EP2551859B1 (en) Assembly with a superconducting electric direct current cable system
Hassenzahl et al. A high-power superconducting DC cable
WO2019146270A1 (en) Superconductive cable system
JP4273525B2 (en) Terminal structure of superconducting equipment
WO2019146271A1 (en) Superconductive cable
DE202019003381U1 (en) Socket for superconducting cable and superconducting cable with connection for intermediate cooling
JP2013073831A (en) Superconducting cable line
JP2005341767A (en) Terminal structure of superconducting cable
EP2139053B1 (en) Current limiting device
KR102482959B1 (en) Fast charger for electric vehicle batteries including superconducting battery tray
KR102482956B1 (en) Superconducting dispenser device for electric vehicle charging
KR102471818B1 (en) Modular mobile charging unit for easy disassembly and assembly
WO2024009089A1 (en) Hyperconducting arrangement
CN115910474A (en) Superconducting electrified conductor structure containing optical fiber for temperature measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP