JP2005341767A - Terminal structure of superconducting cable - Google Patents

Terminal structure of superconducting cable Download PDF

Info

Publication number
JP2005341767A
JP2005341767A JP2004160239A JP2004160239A JP2005341767A JP 2005341767 A JP2005341767 A JP 2005341767A JP 2004160239 A JP2004160239 A JP 2004160239A JP 2004160239 A JP2004160239 A JP 2004160239A JP 2005341767 A JP2005341767 A JP 2005341767A
Authority
JP
Japan
Prior art keywords
conductor
refrigerant
superconducting
heat insulating
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004160239A
Other languages
Japanese (ja)
Inventor
Masayuki Hirose
正幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004160239A priority Critical patent/JP2005341767A/en
Publication of JP2005341767A publication Critical patent/JP2005341767A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small terminal structure of a superconducting cable in which Joule's loss and invasion heat can be reduced. <P>SOLUTION: The terminal structure of a superconducting cable comprises a conductor section 100 for a terminal, a refrigerant tub 21 for storing refrigerant, a body case 2 for containing the refrigerant tub while insulating thermally, a heat insulation pipe 5 having one end arranged in the refrigerant tub and the other end arranged on the outside of the body case, and an insulating section 4 arranged on the outer circumference at least at a part of the heat insulation pipe arranged in the body case. The conductor section 100 for terminal comprises a normal conductor 6 having one end arranged on the normal temperature side, and a superconductor 1 having one end connected with the other end of the normal conductor and the other end arranged in the refrigerant tub. The heat insulation pipe 5 is filled with refrigerant and the joint of the normal conductor 6 and the superconductor 1 is arranged in the heat insulation pipe 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、常温側と極低温側との間に配置される超電導ケーブルの端末構造に関するものである。特に、超電導ケーブルによる大容量送電を可能とする小型な超電導ケーブルの端末構造に関するものである。   The present invention relates to a terminal structure of a superconducting cable disposed between a room temperature side and a cryogenic side. In particular, the present invention relates to a terminal structure of a small superconducting cable that enables large-capacity power transmission using a superconducting cable.

超電導ケーブルの端末構造として、例えば、図5に示す構造のものが知られている(特許文献1参照)。図5は、従来の超電導ケーブルの端末構造を示す概略構成図である。この端末構造は、超電導ケーブルの端部に導電性の接続導体210を接続し、この接続導体210の端部をジョイント部270を介して常温側と電気的導通をとる引出導体(端末用導体部)220に電気的に接続する構造となっている。図5のものでは、引出導体220に接続導体210を接続しているが接続導体を介さずに、超電導ケーブルの端部を引出導体に接続する構成の場合もある。   As a terminal structure of a superconducting cable, for example, a structure shown in FIG. 5 is known (see Patent Document 1). FIG. 5 is a schematic configuration diagram showing a terminal structure of a conventional superconducting cable. In this terminal structure, a conductive connecting conductor 210 is connected to the end of a superconducting cable, and the end of the connecting conductor 210 is electrically connected to the room temperature side via a joint portion 270 (leading conductor portion). ) 220 is electrically connected. In the case of FIG. 5, the connection conductor 210 is connected to the lead conductor 220, but the end of the superconducting cable may be connected to the lead conductor without passing through the connection conductor.

さらに、端末構造は、接続導体210と引出導体220の一端側(接続導体210との接続側)とを収納する冷媒槽230と、冷媒槽230を覆う真空容器240と、真空容器240の常温側に突設される碍管250とを具える。   Further, the terminal structure includes a refrigerant tank 230 that houses the connection conductor 210 and one end side of the lead conductor 220 (connection side to the connection conductor 210), a vacuum container 240 that covers the refrigerant tank 230, and a room temperature side of the vacuum container 240. And a soot tube 250 projecting from the top.

接続導体210と引出導体220は、通常、銅やアルミニウムなどの常電導材料にて形成され、引出導体220は冷媒槽230から真空容器240を介して碍管250に亘って配置される。なお、真空容器240により、冷媒槽230の周りに断熱層を形成している。引出導体220は、FRPなどの絶縁材からなる絶縁部260に内蔵される。   The connection conductor 210 and the lead conductor 220 are usually formed of a normal conductive material such as copper or aluminum, and the lead conductor 220 is disposed from the refrigerant tank 230 through the vacuum vessel 240 to the soot tube 250. Note that a heat insulating layer is formed around the refrigerant tank 230 by the vacuum container 240. The lead conductor 220 is built in an insulating portion 260 made of an insulating material such as FRP.

冷媒槽230には、ジョイント部270が配置されるとともに、このジョイント部270に接続される接続導体210の一端部と引出導体220の一端部とを冷却する液体窒素などの冷媒が満たされる。碍管250は、引出導体220の他端側が収納され、絶縁油などの絶縁流体が充填される。   The coolant tank 230 is provided with a joint portion 270, and is filled with a coolant such as liquid nitrogen that cools one end portion of the connection conductor 210 and one end portion of the lead conductor 220 connected to the joint portion 270. The soot tube 250 houses the other end of the lead conductor 220 and is filled with an insulating fluid such as insulating oil.

特開2002-238144号公報JP 2002-238144 A

超電導ケーブルは、液体窒素などの冷媒により極低温(例えば、約77K)に冷却することで超電導導体部分を超電導状態として抵抗を小さくし、大電流送電を可能にしている。一方、超電導ケーブル線路の外部にある電力機器は常温で利用されているため、超電導ケーブルの端部において極低温から常温に電流を引き出して電力機器などに電力の供給が行われたり、電力機器から超電導ケーブルに電力が供給されたりする。   The superconducting cable is cooled to an extremely low temperature (for example, about 77K) with a refrigerant such as liquid nitrogen, thereby making the superconducting conductor portion in a superconducting state, reducing the resistance, and enabling large current transmission. On the other hand, since power equipment outside the superconducting cable line is used at room temperature, power is supplied to the power equipment by drawing current from the cryogenic temperature to room temperature at the end of the superconducting cable, or from the power equipment. Power is supplied to the superconducting cable.

ところが、超電導ケーブル線路の外部は常温であるため、超電導の状態で電流を引き出すことはできず、常電導材料からなる冷却された導体(前記した接続導体210および引出導体220)を介して常温側に電流を引き出すようにしている。   However, since the outside of the superconducting cable line is at room temperature, current cannot be drawn out in the superconducting state, and the room temperature side is passed through the cooled conductors (the connecting conductor 210 and the lead conductor 220 described above) made of normal conducting material. To draw current.

従って、常温側に接続される引出導体220は、超電導ケーブルと同等の電力を常温側に供給するべく、大電流が流されることになる。このとき、引出導体220は、極低温状態の超電導導体と比較して抵抗が大きく、大電流を流す場合、ジュール損が非常に大きくなる。   Therefore, a large current flows through the lead conductor 220 connected to the normal temperature side so as to supply electric power equivalent to that of the superconducting cable to the normal temperature side. At this time, the lead conductor 220 has a larger resistance than a superconducting conductor in a cryogenic state, and the Joule loss becomes very large when a large current flows.

引出導体において大電流の通電によるジュール損を低減するには、引出導体の断面積(外径)を大きくして、抵抗を小さくすることが考えられる。しかし、引出導体の断面積の大径化に伴って、常温側から極低温側への熱侵入が大きくなり、極低温側において超電導状態を十分に維持できない恐れがある。そこで、超電導状態を十分に維持するべく、上記熱侵入を低減する必要がある。   In order to reduce Joule loss due to energization of a large current in the lead conductor, it is conceivable to increase the cross-sectional area (outer diameter) of the lead conductor to reduce the resistance. However, as the cross-sectional area of the lead conductor increases, heat penetration from the room temperature side to the cryogenic temperature side increases, and the superconducting state may not be sufficiently maintained on the cryogenic temperature side. Therefore, it is necessary to reduce the heat intrusion in order to sufficiently maintain the superconducting state.

しかし、例えば、冷媒槽に大型の冷凍機などを配置するなどして冷却能力を高めると、端末構造の大型化に加えて、高い冷却能力を維持するためのエネルギーが過大となり、超電導ケーブルを利用する効果が小さくなる。   However, for example, if the cooling capacity is increased by placing a large refrigerator in the refrigerant tank, etc., in addition to increasing the size of the terminal structure, the energy required to maintain high cooling capacity becomes excessive, and superconducting cables are used. The effect to do becomes small.

また、大型冷凍機を設置せず、前記した接続導体210や引出導体220の長さを熱絶縁に十分な長さとすると、接続導体と引出導体の全体の長さが長尺化し、引出導体の断面積の大型化に加えて長さも大きくなる。そのため、上記の場合と同様に端末構造が大型化して、実用的な大きさにすることが困難となる。更に、引出導体の長尺化により熱侵入を低減してもジュール損が増大するため、送電ロスの低減効果は小さくなる。   Also, if the length of the connection conductor 210 and the lead conductor 220 is sufficient for thermal insulation without installing a large refrigerator, the entire length of the connection conductor and the lead conductor becomes long, and the lead conductor In addition to an increase in cross-sectional area, the length also increases. For this reason, as in the case described above, the terminal structure is enlarged and it is difficult to make it practical. Furthermore, since the Joule loss increases even if the heat intrusion is reduced by increasing the length of the lead conductor, the effect of reducing the power transmission loss is reduced.

加えて、引出導体の断面積を大径化した場合、それに伴ってブッシング(絶縁部)の外径も大きくなる。このとき、冷媒槽に配されるブッシングの一端側は、冷媒による冷却時の収縮応力が大きくなり割れ易くなるなどといった機械的強度面の問題もある。   In addition, when the cross-sectional area of the lead conductor is increased, the outer diameter of the bushing (insulating portion) is increased accordingly. At this time, the one end side of the bushing arranged in the refrigerant tank also has a problem of mechanical strength such that the shrinkage stress at the time of cooling by the refrigerant becomes large and is easily broken.

以上のことから、上記従来の端末構造では、ジュール損及び常温側から極低温側への侵入熱の双方の低減を図ろうとすると、小型化することが困難であるという問題が生じる。   From the above, the conventional terminal structure has a problem that it is difficult to reduce the size when trying to reduce both the Joule loss and the intrusion heat from the normal temperature side to the extremely low temperature side.

そこで、本発明の目的は、ジュール損及び熱侵入による送電ロスを低減しながら小型な超電導ケーブルの端末構造を提供することにある。   Therefore, an object of the present invention is to provide a small terminal structure of a superconducting cable while reducing Joule loss and power transmission loss due to heat penetration.

本発明は、超電導ケーブルと常温側との間の電力の送電を行うために超電導ケーブルと接続される超電導ケーブルの端末構造である。   The present invention is a terminal structure of a superconducting cable connected to the superconducting cable in order to transmit electric power between the superconducting cable and the room temperature side.

本発明は、端末用導体部と、冷媒が貯留される冷媒槽と、冷媒槽を断熱して収納する本体ケースと、一端が冷媒槽内に配置され、他端が本体ケース外に配置される断熱管と、断熱管における少なくとも本体ケース内に配置される部分の外周に配設される絶縁部とを具える。   The present invention includes a terminal conductor, a refrigerant tank in which refrigerant is stored, a main body case for insulating and storing the refrigerant tank, one end disposed in the refrigerant tank, and the other end disposed outside the main body case. A heat insulating pipe and an insulating portion disposed on an outer periphery of at least a portion of the heat insulating pipe disposed in the main body case are provided.

端末用導体部は、一端が常温側に配置される常電導導体と、一端が常電導導体の他端と接続され、他端が冷媒槽内に配置される超電導導体とを具える。断熱管内には、冷媒が充填され、常電導導体と超電導導体との接続部が配置される。   The terminal conductor portion includes a normal conductive conductor having one end disposed on the normal temperature side and a superconducting conductor having one end connected to the other end of the normal conductive conductor and the other end disposed in the refrigerant tank. The heat insulating tube is filled with a refrigerant, and a connection portion between the normal conducting conductor and the superconducting conductor is disposed.

端末用導体部の超電導導体は、ジョイント部などを介して接続用導体に接続する構成としてもよい。この場合、接続用導体を超電導ケーブルの端部に接続する。また、接続用導体を介さずに超電導ケーブルの端部にジョイント部を介して端末用導体部の超電導導体を接続するようにしてもよい。   The superconducting conductor of the terminal conductor portion may be connected to the connection conductor via a joint portion or the like. In this case, the connecting conductor is connected to the end of the superconducting cable. Moreover, you may make it connect the superconducting conductor of the terminal conductor part via the joint part to the edge part of a superconducting cable not via a connection conductor.

端末用導体部の超電導導体は、例えば、Bi2223系超電導材料からなる線材を中実フォーマ上に螺旋状に巻回した構成のものや、中空フォーマ上に同線材を巻き付けた構成などにすることができる。線材を螺旋状に巻回する場合、単層でも多層でもよく、多層とする場合、層間絶縁層を設けてもよい。層間絶縁層は、クラフト紙などの絶縁紙やPPLP(登録商標)などの半合成絶縁紙を巻回して設けることが挙げられる。なお、端末用導体部に接続用導体を接続する場合には、接続用導体は、超電導導体でも常電導導体でもよい。   The superconducting conductor of the terminal conductor portion may be, for example, a configuration in which a wire made of a Bi2223 series superconducting material is spirally wound on a solid former or a configuration in which the same wire is wound on a hollow former. it can. When the wire is wound spirally, it may be a single layer or a multilayer, and in the case of a multilayer, an interlayer insulating layer may be provided. The interlayer insulating layer may be provided by winding insulating paper such as kraft paper or semi-synthetic insulating paper such as PPLP (registered trademark). When connecting the connection conductor to the terminal conductor, the connection conductor may be a superconducting conductor or a normal conducting conductor.

本体ケースに設ける冷媒槽には、前記超電導導体の一部が配置され、この冷媒槽内に配置される超電導導体を冷却するようになっている。なお、端末用導体部に接続用導体を接続する場合には、この接続用導体も冷媒槽内に配置され、接続用導体が無い場合には超電導ケーブルの端部が配置される。冷媒槽に貯えられる冷媒としては、端末用導体部の超電導状態を維持するため、例えば液体窒素が挙げられる。   A part of the superconducting conductor is arranged in the refrigerant tank provided in the main body case, and the superconducting conductor arranged in the refrigerant tank is cooled. In addition, when connecting a connecting conductor to the terminal conductor, this connecting conductor is also arranged in the refrigerant tank, and when there is no connecting conductor, the end of the superconducting cable is arranged. An example of the refrigerant stored in the refrigerant tank is liquid nitrogen in order to maintain the superconducting state of the terminal conductor portion.

さらに、本発明の端末構造では、本体ケースで真空容器を構成し、この真空容器内に冷媒槽を配置させるようにすることが好ましい。このように、冷媒槽を真空容器内に配置させることにより、冷媒槽の周りに断熱層を形成できるので、超電導導体の超電導状態を効率良く維持できる。冷媒槽や本体ケースは、強度に優れるステンレスなどの金属で構成することが好ましい。冷媒槽内の冷媒は、加圧状態で循環させてもよい。   Furthermore, in the terminal structure of the present invention, it is preferable that the main body case constitutes a vacuum vessel, and the refrigerant tank is disposed in the vacuum vessel. Thus, since a heat insulation layer can be formed around a refrigerant tank by arranging a refrigerant tank in a vacuum vessel, the superconducting state of a superconducting conductor can be maintained efficiently. The refrigerant tank and the main body case are preferably made of a metal such as stainless steel having excellent strength. The refrigerant in the refrigerant tank may be circulated in a pressurized state.

断熱管は、一端が冷媒槽内に配置され、他端が本体ケース外に配置される。断熱管の本体ケース外に配置させる部分とは、例えば、本体ケースに碍管を取り付ける場合には、碍管内に配置される部分と、この碍管から突出されている部分をいう。断熱管は、ステンレス製の外管と内管とからなる二重のコルゲート管の間に断熱材(例えばスーパーインシュレーション)を介在させ、二重管内を真空状態に保持したものを使用することが好ましい。   One end of the heat insulating tube is disposed in the refrigerant tank, and the other end is disposed outside the main body case. The portion of the heat insulation pipe that is disposed outside the main body case refers to, for example, a portion that is disposed inside the soot pipe and a portion that protrudes from this soot pipe when the soot pipe is attached to the main body case. For the heat insulating tube, it is possible to use a heat insulating material (for example, super insulation) interposed between a double corrugated tube made of a stainless outer tube and an inner tube and keep the double tube in a vacuum state. preferable.

絶縁部は、断熱管における少なくとも本体ケース内に配置される部分の外周に配設される。具体的には、絶縁部は、その長さを断熱管よりも短くし、一端を冷媒槽内に配置させ、他端を本体ケース外に配置させることが好ましい。絶縁部の本体ケース外に配置させる部分は本体ケースに碍管を取り付ける場合には、この碍管内に納め、この碍管から出ないようにすることが好ましい。   The insulating portion is disposed on the outer periphery of at least a portion of the heat insulating pipe disposed in the main body case. Specifically, it is preferable that the length of the insulating portion is shorter than that of the heat insulating tube, one end is disposed in the refrigerant tank, and the other end is disposed outside the main body case. When attaching a soot tube to the main body case, it is preferable that the portion of the insulating portion disposed outside the body case is stored in this soot tube so that it does not come out of this soot tube.

絶縁部は、端末用導体部に印加される電圧と接地電位間の電位差に耐えるものを使用する。絶縁部は、絶縁性合成樹脂などの絶縁材料のみで形成してもよいし、ステンレスなどの金属筒の外周に絶縁材を具えた構成としてもよい。例えば、前者の場合、絶縁部は、断熱管と一体に形成してもよい。後者の場合、金属筒の内側に断熱管を配置させる。絶縁材料としては、例えば、エチレンプロピレンゴムなどの絶縁ゴム材料や、強化繊維プラスチック(FRP)などが挙げられる。FRPは、絶縁性能がより高くて好ましい。   An insulating part that can withstand the potential difference between the voltage applied to the terminal conductor and the ground potential is used. The insulating part may be formed only of an insulating material such as an insulating synthetic resin, or may be configured such that an insulating material is provided on the outer periphery of a metal cylinder such as stainless steel. For example, in the former case, the insulating portion may be formed integrally with the heat insulating tube. In the latter case, a heat insulating tube is arranged inside the metal cylinder. Examples of the insulating material include an insulating rubber material such as ethylene propylene rubber, reinforced fiber plastic (FRP), and the like. FRP is preferable because it has higher insulation performance.

絶縁部をステンレスなどの金属筒の外周に絶縁材を具えた構成とする場合には、金属筒と断熱管との間に気密状の空間部を形成することが好ましい。そして、この空間部に、冷媒槽の冷媒で液化しないヘリウムガスなどの不活性ガスを充填させることが好ましい。このように不活性ガスを充填させることにより、この空間部において、断熱管の外壁または金属筒の内面に霜が付くことを防止できる。   In the case where the insulating portion is configured to include an insulating material on the outer periphery of a metal cylinder such as stainless steel, it is preferable to form an airtight space between the metal cylinder and the heat insulating tube. And it is preferable to fill this space part with inert gas, such as helium gas which is not liquefied with the refrigerant | coolant of a refrigerant tank. By filling the inert gas in this way, it is possible to prevent frost from forming on the outer wall of the heat insulating tube or the inner surface of the metal tube in this space.

また、端末用導体部における超電導導体と常電導導体との接続部は断熱管内に配置させる。この場合、超電導導体と常電導導体とを接続しておいて、断熱管内部に超電導導体と常電導導体とを挿入することにより、断熱管内に超電導導体と常電導導体の接続部を配置させることができる。超電導導体と常電導導体とが接続された状態で、断熱管の常温側開口部を封止し、断熱管内から冷媒が漏れないようにする。   Further, the connection portion between the superconducting conductor and the normal conducting conductor in the terminal conductor portion is disposed in the heat insulating tube. In this case, by connecting the superconducting conductor and the normal conducting conductor, and inserting the superconducting conductor and the normal conducting conductor inside the heat insulating tube, the connecting portion of the superconducting conductor and the normal conducting conductor is disposed in the heat insulating tube. Can do. With the superconducting conductor and the normal conducting conductor connected, the room temperature side opening of the heat insulating tube is sealed so that the refrigerant does not leak from the heat insulating tube.

断熱管の内部に充填される冷媒としては、冷媒槽に充填される冷媒と同じものを使用することが好ましく、例えば、窒素を使用することができる。   As the refrigerant filled in the heat insulating tube, it is preferable to use the same refrigerant as that filled in the refrigerant tank, and for example, nitrogen can be used.

さらに、断熱管における絶縁部が配設されていない部分の外周には断熱部を設けことが好ましい。断熱管における絶縁部が配設されていない部分とは、本体ケース外に配置されて常温の影響を受ける部分である。この断熱部は、碍管が設けられている場合には、この碍管より外側に設けることが好ましい。断熱部は、例えば、ウレタン樹脂、ガラスウールなどの断熱材により形成される。この断熱部により、端末用導体部の常電導導体に常温側から極低温側に温度勾配が付けやすくなり、常電導導体は超電導導体と接続する端部から常温側へと徐々に温度が上がり、超電導導体への侵入熱を軽減できる。   Furthermore, it is preferable to provide a heat insulating portion on the outer periphery of the portion of the heat insulating pipe where the insulating portion is not provided. The portion of the heat insulating tube where the insulating portion is not disposed is a portion that is disposed outside the main body case and is affected by room temperature. In the case where a soot pipe is provided, this heat insulating part is preferably provided outside the soot pipe. The heat insulating part is formed of a heat insulating material such as urethane resin or glass wool, for example. By this heat insulating part, it becomes easy to attach a temperature gradient from the normal temperature side to the cryogenic side of the normal conductor of the terminal conductor part, and the normal conductive conductor gradually rises in temperature from the end connected to the superconductor to the normal temperature side, The heat that enters the superconducting conductor can be reduced.

このように断熱部を設ける構成とする場合には、断熱部によって端末用導体部における常電導導体の低温側端部から常温側への温度勾配を所望の勾配にすることが可能となる。その結果、断熱管内における常電導導体の超電導導体との接続部の位置を、常温側からの熱侵入とジュール損とのバランスのとれる位置に設定しやすくなる。   In the case where the heat insulating portion is provided in this manner, the heat insulating portion can make the temperature gradient from the low temperature side end portion of the normal conducting conductor to the normal temperature side in the terminal conductor portion a desired gradient. As a result, it becomes easy to set the position of the connection portion between the normal conducting conductor and the superconducting conductor in the heat insulating tube at a position where the heat penetration from the room temperature side and the Joule loss can be balanced.

さらに、断熱管は、超電導導体と常電導導体との接続部近くにおいて、管内に仕切壁を設けるようにしてもよいし、連通させるようにしてもよい。   Furthermore, the heat insulating pipe may be provided with a partition wall in the pipe near the connecting portion between the superconducting conductor and the normal conducting conductor, or may be communicated.

断熱管内を連通させたままとする場合には、超電導導体と常電導導体の温度の違いにより温度勾配が生じ、低温側の管内部はほとんど液体冷媒(例えば液体窒素)となり、常温側の管内部はほとんどが気体冷媒(気体窒素)となる。   If the heat insulation pipe is left in communication, a temperature gradient will occur due to the temperature difference between the superconductor and the normal conductor, and the inside of the low-temperature pipe will be mostly liquid refrigerant (for example, liquid nitrogen). Mostly gas refrigerant (gaseous nitrogen).

仕切壁を設ける場合は、常温側の管内に、窒素ガスなどの気体冷媒を充填するようにしてもよい。この場合、低温側に充填させている液体冷媒(液体窒素、例えば、約77K)よりも温度が高く常温よりも温度が低い状態、例えば、気体冷媒を約170Kに維持できるように、常温側に温度調節装置を接続させるようにしてもよい。   When the partition wall is provided, the normal temperature side pipe may be filled with a gaseous refrigerant such as nitrogen gas. In this case, the temperature is higher than the liquid refrigerant (liquid nitrogen, e.g., about 77K) charged on the low temperature side and lower than the normal temperature, e.g., on the normal temperature side so that the gaseous refrigerant can be maintained at about 170K. A temperature control device may be connected.

上記した本発明の端末構造は、常温側から冷媒槽内に至る端末用導体部を、常温側に一端が配置される常電導導体と、この常電導導体の他端に一端が接続され、他端が冷媒槽内に配置される超電導導体とを具える構成としている。さらに、この端末用導体部の常電導導体と超電導導体との接続部を冷媒が充填されている断熱管内に配置させている。本発明の端末構造がこのような構成となっていることから、端末用導体部における常電導導体のジュール損と外部からの熱侵入による送電ロスを小さくすることができる。   In the terminal structure of the present invention described above, the terminal conductor portion extending from the normal temperature side into the refrigerant tank is connected to the normal conductive conductor having one end disposed on the normal temperature side, and one end connected to the other end of the normal conductive conductor. An end is provided with a superconducting conductor disposed in the refrigerant tank. Furthermore, the connection portion between the normal conductor and the superconductor of the terminal conductor portion is disposed in a heat insulating tube filled with a refrigerant. Since the terminal structure of this invention becomes such a structure, the power transmission loss by the Joule loss of the normal conducting conductor in the terminal conductor part and the heat | fever penetration | invasion from the outside can be made small.

また、断熱管は、低温側と常温側とに分離させて形成しておき、超電導導体と常電導導体との接続後に二つの断熱管を接続するようにしてもよいし、低温側と常温側とを連続した一体に形成するようにしてもよい。連続形成された断熱管とする場合には、組み付け工程数が軽減されるとともに構造が簡素化される。   The heat insulation pipe may be formed separately on the low temperature side and the normal temperature side, and the two heat insulation pipes may be connected after the connection between the superconducting conductor and the normal conductive conductor, or the low temperature side and the normal temperature side. May be formed integrally in a continuous manner. In the case of a continuously formed heat insulating tube, the number of assembling steps is reduced and the structure is simplified.

また、断熱管の内部を冷媒槽内に連通させて、断熱管の内側に冷媒槽に充填されている冷媒を供給させるようにしてもよい。このように冷媒槽の冷媒を、断熱管内に充填させる冷媒として共有させることにより、断熱管内の冷媒を冷却させるための冷却装置を別途設ける必要が無くなり、システムの簡素化が図れる。   Further, the inside of the heat insulation pipe may be communicated with the refrigerant tank, and the refrigerant filled in the refrigerant tank may be supplied inside the heat insulation pipe. In this way, by sharing the refrigerant in the refrigerant tank as the refrigerant to be filled in the heat insulation pipe, it is not necessary to separately provide a cooling device for cooling the refrigerant in the heat insulation pipe, and the system can be simplified.

さらに、端末用導体部における超電導導体の内側に、冷媒流路を形成することが好ましい。この冷媒流路は、例えば、超電導導体を中空フォーマ等を用いて構成し、この中空フォーマで冷媒流路を形成することができる。この場合、超電導導体の冷媒流路に冷媒を充填させるようにする。このように、超電導導体を内部からも冷媒で冷却するようにすれば、より効率良く超電導導体の冷却が行えて超電導状態の維持をさらに良好に行える。   Furthermore, it is preferable to form a coolant channel inside the superconducting conductor in the terminal conductor. For example, the refrigerant flow path can be constituted by using a hollow former or the like for the superconducting conductor, and the refrigerant flow path can be formed by the hollow former. In this case, the refrigerant is filled in the refrigerant flow path of the superconducting conductor. As described above, if the superconducting conductor is also cooled from the inside by the refrigerant, the superconducting conductor can be cooled more efficiently and the superconducting state can be maintained more satisfactorily.

端末用導体部における超電導導体に冷媒流路を形成する場合、この超電導導体の冷媒流路と断熱管の内部とを、超電導導体と常電導導体との接続部において連通させ、さらに断熱管の内部を冷媒槽内に連通させるようにしてもよい。このとき、冷媒流路に冷媒槽内の冷媒を供給する供給手段を接続することが好ましい。   When a refrigerant flow path is formed in the superconducting conductor in the terminal conductor, the refrigerant flow path of the superconducting conductor and the inside of the heat insulating pipe are communicated with each other at the connection portion between the superconducting conductor and the normal conductive conductor, and the inside of the heat insulating pipe is further connected. You may make it communicate in a refrigerant tank. At this time, it is preferable to connect the supply means which supplies the refrigerant | coolant in a refrigerant tank to a refrigerant flow path.

前記超電導導体に冷媒流路を形成する場合、超電導導体の端部と常電導導体の端部とを所定の間隔を空けるようにして接続スリーブで接続する。そして、この接続スリーブに超電導導体と常電導導体との間に形成される空間部と接続スリーブの外部とを連通する連通孔を形成する。供給手段は、例えば、本体ケース外部に冷却装置とポンプを設け、この冷却装置とポンプを冷媒供給通路を介して冷媒槽内と超電導導体の冷媒流路内とに接続することによって構成できる。   In the case where the coolant channel is formed in the superconducting conductor, the end of the superconducting conductor and the end of the normal conducting conductor are connected with a connection sleeve so as to be spaced apart from each other. Then, a communication hole is formed in the connection sleeve for communicating the space formed between the superconducting conductor and the normal conducting conductor with the outside of the connection sleeve. The supply means can be configured, for example, by providing a cooling device and a pump outside the main body case, and connecting the cooling device and the pump to the inside of the refrigerant tank and the refrigerant flow path of the superconducting conductor via the refrigerant supply passage.

供給手段により、冷媒槽内の冷媒を本体ケース外部に取り出して冷却装置に供給し、冷却装置で冷却された冷媒を、供給通路を介して冷媒流路内に供給して、接続スリーブに形成する連通孔から断熱管の内側に流出させる。そして、冷媒流路からの冷媒の強制流出により断熱管内の冷媒は、断熱管の低温側開口部から冷媒槽内に流出することになり、冷媒を循環させることができる。冷媒の循環により、超電導導体内には常に冷却された冷媒を供給でき、しかも、断熱管内の冷媒も循環できるので、超電導導体の冷却をより効率良く行える。   With the supply means, the refrigerant in the refrigerant tank is taken out of the main body case and supplied to the cooling device, and the refrigerant cooled by the cooling device is supplied into the refrigerant channel through the supply passage to form the connection sleeve. It flows out from the communication hole to the inside of the heat insulation pipe. Then, due to the forced outflow of the refrigerant from the refrigerant flow path, the refrigerant in the heat insulating pipe flows out from the low temperature side opening of the heat insulating pipe into the refrigerant tank, and the refrigerant can be circulated. Due to the circulation of the refrigerant, it is possible to always supply the cooled refrigerant into the superconducting conductor, and also to circulate the refrigerant in the heat insulating pipe, so that the superconducting conductor can be cooled more efficiently.

なお、本発明では、前記超電導導体は、一端が常電導導体と接続するために断熱管内に配置されるが、端末構造が、冷媒槽、本体ケースで形成される真空容器、碍管を具える構成とする場合、超電導導体は、冷媒槽から真空容器内の断熱層を経て碍管にまで至るように配置することもできる。碍管内には、絶縁油やSF6ガスなどの絶縁流体を充填させる。 In the present invention, the superconducting conductor is arranged in a heat insulating tube so that one end is connected to the normal conducting conductor, but the terminal structure includes a refrigerant tank, a vacuum vessel formed by a main body case, and a soot tube. In this case, the superconducting conductor can be arranged so as to extend from the refrigerant tank to the soot pipe through the heat insulating layer in the vacuum vessel. Fill the pipe with an insulating fluid such as insulating oil or SF 6 gas.

なお、本発明の端末構造に接続される超電導ケーブルは、超電導導体を有するケーブルコアを1本具える単相超電導ケーブルでもよいし、同ケーブルコアを複数具える多相超電導ケーブルでもよい。後者の場合、例えば、3本のケーブルコアを撚り合わせて断熱管に収納された三心一括型の三相超電導ケーブルが挙げられる。公知の単相超電導ケーブル、多相超電導ケーブルでもよい。   The superconducting cable connected to the terminal structure of the present invention may be a single-phase superconducting cable having one cable core having a superconducting conductor or a multiphase superconducting cable having a plurality of the cable cores. In the latter case, for example, a three-core one-piece three-phase superconducting cable in which three cable cores are twisted and stored in a heat insulating tube can be used. A known single-phase superconducting cable or multiphase superconducting cable may be used.

本発明の超電導ケーブルの端末構造は、端末用導体部を常温側に一端が配置される常電導導体と、この常電導導体の他端に一端が接続され、他端が冷媒槽内に配置される超電導導体とを具える構成とし、これら常電導導体と超電導導体の接続部を冷媒が充填された断熱管内に配置させるようにしている。   The terminal structure of the superconducting cable according to the present invention has a normal conductor having one end disposed on the normal temperature side of the terminal conductor portion, one end connected to the other end of the normal conductor, and the other end disposed in the refrigerant tank. The superconducting conductor is provided, and the connection portion between the normal conducting conductor and the superconducting conductor is arranged in a heat insulating tube filled with a refrigerant.

その結果、ケース本体内に配置される端末用導体部を極低温に冷却できるので、端末用導体部の一部を抵抗が小さい超電導導体にできることとなり、ケース本体内に配置される端末用導体部を細くできる。さらに、断熱管内に常電導導体における超電導導体との接続側端部が配置されるので、常電導導体は、常温側から極低温側へと温度勾配を付けられる。   As a result, since the terminal conductor portion disposed in the case body can be cooled to a cryogenic temperature, a part of the terminal conductor portion can be a superconducting conductor having a low resistance, and the terminal conductor portion disposed in the case body. Can be thinned. Furthermore, since the end of the normal conducting conductor connected to the superconducting conductor is disposed in the heat insulating tube, the normal conducting conductor is given a temperature gradient from the normal temperature side to the cryogenic temperature side.

また、断熱管における絶縁部が配設されていない部分の外周に断熱部を設けることにより、常電導導体のジュール損と熱侵入のバランスが取れるように、断熱部によって常電導導体の温度分布を最適な状態にすることができるので、全体的に送電ロスを小さくすることができる。   In addition, by providing a heat insulating portion on the outer periphery of the portion of the heat insulating pipe where the insulating portion is not disposed, the heat insulating portion can regulate the temperature distribution of the normal conductive conductor so that the Joule loss and heat penetration of the normal conductive conductor can be balanced. Since the optimum state can be obtained, the power transmission loss can be reduced as a whole.

しかも、絶縁部で覆われる端末用導体部の導体の断面積(外径)を小さくできることから、従来端末用導体部の導体として全て常電導導体を用いていた場合に比べて絶縁部の外径も小さくできる。従って、超電導ケーブルの供給電力を低減することなく、端末構造自体を小型化することができる。   In addition, since the cross-sectional area (outer diameter) of the conductor of the terminal conductor part covered with the insulating part can be reduced, the outer diameter of the insulating part compared to the case where all the normal conductors are used as the conductors of the conventional terminal conductor part. Can also be reduced. Therefore, the terminal structure itself can be reduced in size without reducing the power supplied to the superconducting cable.

以下、本発明の実施の形態を図面に基づいて説明する。図1及び図2に本発明の第一実施形態を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment of the present invention.

(第一実施形態)
図1は、第一実施形態に係る本発明超電導ケーブルの端末構造を示す概略部分構成図で、図2は、端末用導体部の常温側端部周辺を示す部分断面図である。この端末構造は、超電導ケーブルの超電導導体の端部と接続用導体11を介して電気的に接続される端末用導体部100と、端末用導体部100が収納される本体ケース2とを具える。
端末用導体部100は、接続用導体11と接続される超電導導体1と、超電導導体1の他端と接続され、常温側に一端が配置される常電導導体6とを具える。本体ケース2は、真空容器を形成し、内部に冷媒槽21が配置される。本体ケース2には、碍管3が取り付けられている。
(First embodiment)
FIG. 1 is a schematic partial configuration diagram showing a terminal structure of a superconducting cable of the present invention according to the first embodiment, and FIG. 2 is a partial cross-sectional view showing the vicinity of a normal temperature side end portion of a terminal conductor portion. This terminal structure includes a terminal conductor portion 100 that is electrically connected to the end portion of the superconducting conductor of the superconducting cable via a connecting conductor 11, and a main body case 2 in which the terminal conductor portion 100 is accommodated. .
The terminal conductor portion 100 includes a superconducting conductor 1 connected to the connecting conductor 11, and a normal conducting conductor 6 connected to the other end of the superconducting conductor 1 and having one end disposed on the normal temperature side. The main body case 2 forms a vacuum container, and the refrigerant tank 21 is disposed inside. A soot tube 3 is attached to the main body case 2.

端末用導体部100の超電導導体1は、Bi2223系超電導材料からなる線材をフォーマ上に螺旋状に巻回した構成のものを使用している。超電導導体1は、一端が冷媒槽21内に配置され、他端が断熱管5内に配置されている。   The superconducting conductor 1 of the terminal conductor portion 100 uses a configuration in which a wire made of a Bi2223 series superconducting material is spirally wound on a former. One end of the superconducting conductor 1 is disposed in the refrigerant tank 21 and the other end is disposed in the heat insulating tube 5.

接続用導体11も、本実施形態では、Bi2223系超電導材料からなる線材をフォーマ上に螺旋状に巻回した構成のものを使用している。なお、接続用導体11は、常電導材料で形成してもよい。   In the present embodiment, the connecting conductor 11 is also configured such that a wire made of a Bi2223 superconducting material is spirally wound on a former. The connecting conductor 11 may be formed of a normal conductive material.

本実施形態では、超電導導体1の端部と接続用導体11の端部とを冷媒槽21内においてジョイント部12で接続している。   In the present embodiment, the end portion of the superconducting conductor 1 and the end portion of the connecting conductor 11 are connected in the refrigerant tank 21 by the joint portion 12.

本体ケース2と冷媒槽21は、ステンレスで形成されており、本体ケース2内を真空状態にすることにより、冷媒槽21の周りに断熱層を形成している。冷媒槽21の周りに形成される断熱層により、冷媒槽21の極低温状態を効率良く維持するようになっている。   The main body case 2 and the refrigerant tank 21 are made of stainless steel, and a heat insulating layer is formed around the refrigerant tank 21 by evacuating the main body case 2. The heat insulation layer formed around the refrigerant tank 21 efficiently maintains the cryogenic state of the refrigerant tank 21.

冷媒槽21内は、液体窒素などの冷媒が充填されており、図示していないが、冷媒槽21内の冷媒を循環させる構成としている。   The refrigerant tank 21 is filled with a refrigerant such as liquid nitrogen. Although not shown, the refrigerant in the refrigerant tank 21 is circulated.

断熱管5は、低温側端部が冷媒槽21に配置され、常温側は本体ケース2から突出して、碍管3内に挿入された後、碍管3から突出された状態となっている。   The heat insulation pipe 5 has a low temperature side end arranged in the refrigerant tank 21, and the room temperature side protrudes from the main body case 2 and is inserted into the soot pipe 3 and then protrudes from the soot pipe 3.

断熱管5は、ステンレス製の外管と内管とからなる二重のコルゲート管の間に断熱材(例えばスーパーインシュレーション)を介在させ、二重管内を真空状態に保持したものを使用している。断熱管5内には、超電導導体1と常電導導体6との接続部が配置されるように、超電導導体1と常電導導体6の一部が配置されている。   The heat insulation pipe 5 is made of a double corrugated pipe made of a stainless outer pipe and an inner pipe with a heat insulating material (e.g., super insulation) interposed therebetween, and the inside of the double pipe is kept in a vacuum state. Yes. In the heat insulating pipe 5, a part of the superconducting conductor 1 and the normal conducting conductor 6 is arranged so that a connection portion between the superconducting conductor 1 and the normal conducting conductor 6 is arranged.

本実施形態では、断熱管5の外側には、端末用導体部100に印加される電圧と接地電位間の電位差に耐えるための筒状の絶縁部4が設けられている。絶縁部4は、その一端部が冷媒槽21内に挿入され、本体ケース2の断熱層を介して他端側が碍管3の内部に挿入されるように配置されている。   In the present embodiment, a cylindrical insulating portion 4 is provided outside the heat insulating tube 5 to withstand a potential difference between the voltage applied to the terminal conductor portion 100 and the ground potential. The insulating part 4 is arranged so that one end thereof is inserted into the refrigerant tank 21 and the other end is inserted into the inside of the soot tube 3 through the heat insulating layer of the main body case 2.

絶縁部4は、図2に示す拡大部分断面図のように、ステンレス製の筒状体41の外周に絶縁性に優れるFRPからなる絶縁材42を具える構成としている。絶縁部4の常温側に配置される端部(筒状体41の端部)には、銅製の第1シールド板25を設けている。   As shown in the enlarged partial sectional view of FIG. 2, the insulating portion 4 includes an insulating material 42 made of FRP having excellent insulating properties on the outer periphery of a cylindrical body 41 made of stainless steel. A copper first shield plate 25 is provided at an end portion (end portion of the cylindrical body 41) arranged on the room temperature side of the insulating portion 4.

碍管3の常温側開口部は、銅製の第2シールド板31で封止し、低温側開口部は、本体ケース2の壁面で封止することにより、碍管3の内面と絶縁部4の外面との間に形成される空間に、絶縁油などの絶縁流体を充填させている。   The normal temperature side opening of the soot tube 3 is sealed with the second shield plate 31 made of copper, and the low temperature side opening is sealed with the wall surface of the main body case 2 so that the inner surface of the soot tube 3 and the outer surface of the insulating portion 4 are sealed. An insulating fluid such as insulating oil is filled in a space formed between the two.

絶縁部4の筒状体41と断熱管5との間には、絶縁部4の常温側端部に設ける第1シールド板25と、絶縁部4の低温側開口部を封止する第3シールド板26により気密状の空間部が形成され、この空間部にヘリウムガスなどの不活性ガスが充填されている。   Between the cylindrical body 41 of the insulating part 4 and the heat insulating tube 5, a first shield plate 25 provided at the normal temperature side end of the insulating part 4 and a third shield for sealing the low temperature side opening of the insulating part 4. An airtight space is formed by the plate 26, and this space is filled with an inert gas such as helium gas.

本実施形態では、超電導導体1に常電導導体6を接続しておいて、常電導導体6の常温側端部を断熱管5における低温側開口部から管内部に挿入している。超電導導体1と常電導導体6とを接続した状態で、断熱管5の常温側開口部を常電導導体6とともに第4シールド板27で封止して、断熱管5内から冷媒が漏れないようにしている。   In the present embodiment, the normal conducting conductor 6 is connected to the superconducting conductor 1, and the normal temperature side end of the normal conducting conductor 6 is inserted into the pipe from the low temperature side opening in the heat insulating pipe 5. With the superconducting conductor 1 and the normal conducting conductor 6 connected, the room temperature side opening of the heat insulating tube 5 is sealed together with the normal conducting conductor 6 by the fourth shield plate 27 so that the refrigerant does not leak from the inside of the heat insulating tube 5. I have to.

常電導導体6と超電導導体1とは、図2に示すように、常電導材料、例えば銅からなる接続スリーブ7で接続されている。この接続部分は、本実施形態では、図1及び図2に示すように、絶縁部4を封止している第1シールド板25の配設位置近くとなっているが、接続部分は、断熱管5内において超電導導体1の超電導状態が維持できる位置であれば、この位置に限らない。なお、断熱管5は、第1シールド板25の中央部に形成する孔に気密状に貫通させている。   As shown in FIG. 2, the normal conducting conductor 6 and the superconducting conductor 1 are connected by a connection sleeve 7 made of a normal conducting material, for example, copper. In this embodiment, as shown in FIGS. 1 and 2, this connecting portion is close to the position where the first shield plate 25 sealing the insulating portion 4 is disposed. Any position that can maintain the superconducting state of the superconducting conductor 1 in the pipe 5 is not limited to this position. The heat insulating tube 5 is airtightly penetrated through a hole formed in the central portion of the first shield plate 25.

本実施形態では、断熱管5の低温側開口部を冷媒槽21内に開口させて、冷媒槽21内の冷媒が断熱管5内に流入するようになっている。冷媒槽21の冷媒を、断熱管5内に充填させる冷媒として共有させることにより、断熱管5内の冷媒を冷却させるための冷却装置を別途設ける必要が無くなり、システムの簡素化が図れる。   In the present embodiment, the low temperature side opening of the heat insulating pipe 5 is opened in the refrigerant tank 21 so that the refrigerant in the refrigerant tank 21 flows into the heat insulating pipe 5. By sharing the refrigerant in the refrigerant tank 21 as the refrigerant to be filled in the heat insulation pipe 5, it is not necessary to separately provide a cooling device for cooling the refrigerant in the heat insulation pipe 5, and the system can be simplified.

また、断熱管5の常温側端部(碍管3から外部に突出されている部分)の外周に断熱部8を設けている。断熱部8を設けることにより、常電導導体6は超電導導体1と接続する端部から常温側へと徐々に温度が上がり、超電導導体1への侵入熱をより軽減できる。断熱部8の断熱材料には、ウレタン樹脂やガラスウールなどを用いている。   Further, a heat insulating portion 8 is provided on the outer periphery of the normal temperature side end portion of the heat insulating tube 5 (portion protruding to the outside from the soot tube 3). By providing the heat insulating portion 8, the temperature of the normal conducting conductor 6 gradually increases from the end connected to the superconducting conductor 1 to the normal temperature side, so that the heat entering the superconducting conductor 1 can be further reduced. For the heat insulating material of the heat insulating portion 8, urethane resin, glass wool, or the like is used.

さらに、常電導導体6における断熱部8の配設位置よりも常温側には、放熱フィン81を設けており、この放熱フィン81により断熱部8内で常電導導体6から発熱された熱を放熱することができ、電流容量の確保が可能となる。   Further, a radiation fin 81 is provided on the normal conductive conductor 6 on the normal temperature side of the position where the heat insulating portion 8 is disposed, and the heat generated from the normal conductive conductor 6 in the heat insulating portion 8 is dissipated by the heat radiation fin 81. Thus, the current capacity can be secured.

本実施形態で用いる超電導ケーブルは、図示していないが、例えば、ケーブルコアを3本撚り合わせて断熱管に収納された三心一括型の三相超電導ケーブルを用いている。このケーブルの断熱管は、外管と内管とからなる二重管の間に断熱材を配置して二重管内を真空引きした構成としている。各ケーブルコアは、中心から順にフォーマ、超電導導体、電気絶縁層、シールド層、保護層を具える。   Although the superconducting cable used in this embodiment is not shown, for example, a three-core three-phase superconducting cable in which three cable cores are twisted and housed in a heat insulating tube is used. The heat insulating tube of this cable has a structure in which a heat insulating material is disposed between the double tubes composed of the outer tube and the inner tube, and the inside of the double tube is evacuated. Each cable core includes a former, a superconducting conductor, an electrical insulating layer, a shield layer, and a protective layer in order from the center.

本実施形態では、超電導ケーブルコアの端部を接続用導体11に接続し、この接続用導体11をジョイント部12を介して超電導導体1の端部に接続するようになっている。なお、接続用導体を介さずにジョイント部で超電導ケーブルコアと超電導導体1とを接続するようにしてもよい。   In the present embodiment, the end portion of the superconducting cable core is connected to the connecting conductor 11, and the connecting conductor 11 is connected to the end portion of the superconducting conductor 1 through the joint portion 12. It should be noted that the superconducting cable core and the superconducting conductor 1 may be connected at the joint without using the connecting conductor.

以上のような超電導ケーブルの端末構造によれば、常温側から冷媒槽内に至る端末用導体部100を、常温側に一端が配置される常電導導体6と、この常電導導体6の他端に一端が接続され、他端が冷媒槽21内に配置される超電導導体1とを具える構成としている。さらに、この端末用導体部100の常電導導体6と超電導導体1との接続部を冷媒が充填されている断熱管5内に配置させている。   According to the terminal structure of the superconducting cable as described above, the terminal conductor portion 100 extending from the room temperature side into the refrigerant tank, the normal conductor 6 having one end arranged on the room temperature side, and the other end of the normal conductor 6 One end is connected to the superconducting conductor 1 and the other end is disposed in the refrigerant tank 21. Further, the connection portion between the normal conducting conductor 6 and the superconducting conductor 1 of the terminal conductor portion 100 is disposed in the heat insulating tube 5 filled with the refrigerant.

その結果、断熱管5により、超電導導体1の超電導状態を維持できるので、端末用導体部の一部を抵抗が小さく径の細い超電導導体を用いることができる。   As a result, the superconducting state of the superconducting conductor 1 can be maintained by the heat insulating tube 5, so that a superconducting conductor having a small resistance and a small diameter can be used for a part of the terminal conductor portion.

しかも本実施形態では断熱管5により、常電導導体6にも温度勾配を付けられるので、常電導導体6から超電導導体1への熱の侵入も防ぐことができ、常電導導体6のジュール損と外部からの熱侵入による送電ロスを小さくすることができる。   In addition, in the present embodiment, the temperature gradient is also given to the normal conductor 6 by the heat insulating pipe 5, so that the heat intrusion from the normal conductor 6 to the superconductor 1 can be prevented, and the Joule loss of the normal conductor 6 can be prevented. Power transmission loss due to heat intrusion from outside can be reduced.

また、断熱管5における本体ケースおよび碍管の外側に断熱部8を設けているので、常電導導体6のジュール損と熱侵入のバランスが取れるように、常電導導体6の温度分布を最適な状態にすることができる。   In addition, since the heat insulating part 8 is provided outside the main body case and the insulator pipe in the heat insulating pipe 5, the temperature distribution of the normal conductive conductor 6 is in an optimum state so that the Joule loss and heat penetration of the normal conductive conductor 6 can be balanced. Can be.

しかも、端末用導体部に超電導導体を用いることができるので導体の断面積(外径)を小さくできることから、従来端末用導体部に常電導導体のみを用いていた場合に比べて、導体が内蔵される絶縁部4の外径を小さくできる。従って、超電導ケーブルの供給電力を低減することなく、端末構造自体を小型化することができる。しかも、端末用導体部を細くできる分だけ絶縁部4の外径も小さくできるため、冷却時の絶縁部4の割れなどを低減することもできる。   Moreover, since a superconducting conductor can be used for the terminal conductor, the cross-sectional area (outer diameter) of the conductor can be reduced, so that the conductor is built in compared to the case where only the normal conductor is used for the terminal conductor. The outer diameter of the insulating part 4 can be reduced. Therefore, the terminal structure itself can be reduced in size without reducing the power supplied to the superconducting cable. In addition, since the outer diameter of the insulating portion 4 can be reduced by the amount that the terminal conductor portion can be made thinner, cracking of the insulating portion 4 during cooling can be reduced.

このように本発明は、超電導ケーブルに流れる電流量と同等の電流量を端末用導体部の超電導導体に供給して、ジュール損と熱侵入のバランスがとれた状態で端末用導体部の常電導導体から常温側に電力を供給することができる。その結果、端末構造を小型化しても、熱絶縁性能を低下させることがなく、ジュール損などの送電ロスも小さくすることを実現する。   As described above, the present invention supplies the current amount equivalent to the amount of current flowing through the superconducting cable to the superconducting conductor of the terminal conductor portion, so that the normal conduction of the terminal conductor portion is achieved in a state where Joule loss and heat penetration are balanced. Electric power can be supplied from the conductor to the room temperature side. As a result, even if the terminal structure is downsized, the thermal insulation performance is not deteriorated, and the transmission loss such as Joule loss can be reduced.

上記実施形態では、多相超電導ケーブルを示したが、単相超電導ケーブルでも利用できる。この点は、以下の実施形態についても同様である。   In the above embodiment, a multiphase superconducting cable is shown, but a single-phase superconducting cable can also be used. This also applies to the following embodiments.

(第二実施形態)
上記第一実施形態では、端末用導体部の超電導導体に中実の構成のものを用いたが、図3および図4に示す第二実施形態では、超電導導体は、内側に冷媒流路を有する構成としている。図3は、第二実施形態に係る本発明超電導ケーブルの端末構造を示す概略部分構成図であり、図4は、超電導導体と常電導導体との接続部周辺の断面図である。
(Second embodiment)
In the first embodiment, the superconducting conductor of the terminal conductor portion has a solid configuration. However, in the second embodiment shown in FIGS. 3 and 4, the superconducting conductor has a coolant channel inside. It is configured. FIG. 3 is a schematic partial configuration diagram showing the terminal structure of the superconducting cable of the present invention according to the second embodiment, and FIG. 4 is a cross-sectional view of the periphery of the connecting portion between the superconducting conductor and the normal conducting conductor.

図3に示す端末構造は、基本的構成は図1に示す第一実施形態の超電導ケーブルの端末構造と同様であり、同じ構成部分については、同一の符号で示し、説明を省略する。   The basic structure of the terminal structure shown in FIG. 3 is the same as the terminal structure of the superconducting cable of the first embodiment shown in FIG. 1, and the same components are denoted by the same reference numerals and description thereof is omitted.

第二実施形態では、端末用導体部の超電導導体10は、冷媒流路13を有している。具体的には、Bi2223系超電導材料からなる線材を中空のフォーマ上に螺旋状に巻回した構成のものを使用し、フォーマの中空部を冷媒流路13としている。この場合、超電導導体10の冷媒流路13に冷媒を充填させるようにしている。   In the second embodiment, the superconducting conductor 10 of the terminal conductor portion has a refrigerant flow path 13. Specifically, a wire made of a Bi2223 series superconducting material is spirally wound on a hollow former, and the hollow portion of the former is used as the refrigerant flow path 13. In this case, the refrigerant is filled in the refrigerant flow path 13 of the superconducting conductor 10.

超電導導体10の冷媒流路13は、図4に示すように、超電導導体10の常温側端部において開口されている。超電導導体10の端部と常電導導体6の端部とを所定の間隔を空けるようにして接続スリーブ7で接続している。   As shown in FIG. 4, the refrigerant flow path 13 of the superconducting conductor 10 is opened at the normal temperature side end of the superconducting conductor 10. The end portion of the superconducting conductor 10 and the end portion of the normal conducting conductor 6 are connected by the connection sleeve 7 with a predetermined gap therebetween.

この接続スリーブ7には、超電導導体10と常電導導体6との間に形成される空間部と接続スリーブ7の外部とを連通する連通孔71を形成している。この冷媒流路13を超電導導体10と常電導導体6との間の空間に連通させ、接続スリーブ7の連通孔71を介して断熱管5内に連通させている。   The connection sleeve 7 is formed with a communication hole 71 that communicates the space formed between the superconducting conductor 10 and the normal conducting conductor 6 with the outside of the connection sleeve 7. The refrigerant flow path 13 is communicated with the space between the superconducting conductor 10 and the normal conducting conductor 6 and is communicated with the heat insulating pipe 5 through the communication hole 71 of the connection sleeve 7.

さらに、本実施形態の端末構造は、冷媒流路13内に冷媒槽21の冷媒を供給する供給手段9を設けている。この供給手段9は、本体ケース2の外部に設ける冷却装置91とポンプ92、冷媒槽21の冷媒をポンプ92により本体ケース外部に取り出して冷却装置91に供給される第1冷媒供給通路93、冷却装置91で冷却された冷媒を超電導導体10の冷媒流路13に供給する第2冷媒供給通路94を具える。   Furthermore, the terminal structure of the present embodiment is provided with a supply means 9 for supplying the refrigerant in the refrigerant tank 21 into the refrigerant flow path 13. The supply means 9 includes a cooling device 91 and a pump 92 provided outside the main body case 2, a first refrigerant supply passage 93 that takes out the refrigerant from the refrigerant tank 21 to the outside of the main body case by the pump 92, and is supplied to the cooling device 91. A second refrigerant supply passage 94 is provided for supplying the refrigerant cooled by the device 91 to the refrigerant flow path 13 of the superconducting conductor 10.

超電導導体10は、冷媒槽21内において、接続用導体11とジョイント部12を介して接続されており、このジョイント部12に第2冷媒供給通路94を接続して、ジョイント部12を介して超電導導体10の冷媒流路13に冷媒を供給するようにしている。   The superconducting conductor 10 is connected to the connecting conductor 11 and the joint portion 12 in the refrigerant tank 21, and the superconducting conductor 10 is connected to the joint portion 12 through the joint portion 12. A refrigerant is supplied to the refrigerant flow path 13 of the conductor 10.

冷媒槽21から第1冷媒供給通路93を介して冷却装置91に送られた冷媒は、冷却装置91で冷却された後、第2冷媒供給通路94から冷媒流路13内に供給されて、冷媒流路13の常温側端部から排出され、接続スリーブ7に形成する連通孔71から断熱管5の内側に流出される。   The refrigerant sent from the refrigerant tank 21 to the cooling device 91 via the first refrigerant supply passage 93 is cooled by the cooling device 91 and then supplied from the second refrigerant supply passage 94 into the refrigerant flow channel 13 to be refrigerant. The fluid is discharged from the normal temperature side end of the flow path 13 and flows out from the communication hole 71 formed in the connection sleeve 7 to the inside of the heat insulating pipe 5.

そして、この冷媒の断熱管5内への強制流出により断熱管5内の冷媒は、断熱管5の低温側開口部から冷媒槽21内に流出することになり、冷媒を循環させることができる。冷媒の循環により、超電導導体10内には常に冷却された冷媒を供給でき、しかも、断熱管5内の冷媒も冷媒槽内に流出されて常に循環されるので、超電導導体10の冷却をより効率良く行える。   Then, due to the forced outflow of the refrigerant into the heat insulation pipe 5, the refrigerant in the heat insulation pipe 5 flows out from the low temperature side opening of the heat insulation pipe 5 into the refrigerant tank 21, and the refrigerant can be circulated. By circulating the refrigerant, it is possible to always supply the cooled refrigerant into the superconductor 10, and the refrigerant in the heat insulating pipe 5 is also circulated through the refrigerant tank, so that the superconductor 10 is cooled more efficiently. Can do well.

このように、超電導導体10を内部からも冷媒で冷却するようにすれば、超電導導体10の冷却をより効率良く行えるので、超電導状態の維持をさらに良好に行える。   In this way, if the superconducting conductor 10 is also cooled from the inside by the coolant, the superconducting conductor 10 can be cooled more efficiently, and the superconducting state can be maintained more satisfactorily.

本発明端末構造は、常温にて利用される電気機器や常電導ケーブルなどに接続される超電導ケーブルの終端部の形成に好適であり、単相超電導ケーブル、多相超電導ケーブルのいずれにも利用することができる。また、交流線路、直流線路のいずれにも利用することができる。   The terminal structure of the present invention is suitable for forming a terminal portion of a superconducting cable connected to an electric device or a normal conducting cable used at room temperature, and is used for either a single-phase superconducting cable or a multiphase superconducting cable. be able to. Further, it can be used for either an AC line or a DC line.

本発明超電導ケーブルの端末構造を示す第一実施形態に係る概略部分構成図である。It is a schematic partial block diagram which concerns on 1st embodiment which shows the terminal structure of this invention superconducting cable. 第一実施形態における超電導導体の常温側端部周辺を示す拡大断面図である。It is an expanded sectional view showing the normal temperature side edge part circumference of a superconducting conductor in a first embodiment. 本発明超電導ケーブルの端末構造を示す第二実施形態に係る概略部分構成図である。It is a schematic partial block diagram based on 2nd embodiment which shows the terminal structure of this invention superconducting cable. 第二実施形態における超電導導体の常温側端部周辺を示す拡大断面図である。It is an expanded sectional view which shows the normal temperature side edge part periphery of the superconducting conductor in 2nd embodiment. 従来の超電導ケーブルの端末構造を示す概略構成図である。It is a schematic block diagram which shows the terminal structure of the conventional superconducting cable.

符号の説明Explanation of symbols

100 端末用導体部
1,10 超電導導体
11 接続用導体 12 ジョイント部 13 冷媒流路
2 本体ケース
21 冷媒槽
25 第1シールド板 26 第3シールド板 27 第4シールド板
3 碍管 31 第2シールド板
4 絶縁部 41 筒状体 42絶縁材
5 断熱管 6 常電導導体 7 接続スリーブ 71 連通孔
8 断熱部 81 放熱フィン
9 供給手段
91 冷却装置 92 ポンプ 93 第1冷媒供給通路
94 第2冷媒供給通路
210 接続導体 220 引出導体 230 冷媒槽 240 真空容器
250 碍管 260 絶縁部 270 ジョイント部
100 Terminal conductor
1,10 Superconducting conductor
11 Connecting conductor 12 Joint 13 Refrigerant flow path
2 Body case
21 Refrigerant tank
25 1st shield plate 26 3rd shield plate 27 4th shield plate
3 Steel pipe 31 Second shield plate
4 Insulating part 41 Tubular body 42 Insulating material
5 Insulated pipe 6 Normal conductor 7 Connection sleeve 71 Communication hole
8 Thermal insulation 81 Radiating fin
9 Supply means
91 Cooling device 92 Pump 93 First refrigerant supply passage
94 Second refrigerant supply passage
210 Connection conductor 220 Lead conductor 230 Refrigerant tank 240 Vacuum container
250 Steel pipe 260 Insulation part 270 Joint part

Claims (5)

端末用導体部と、
冷媒が貯留される冷媒槽と、
冷媒槽を断熱して収納する本体ケースと、
一端が冷媒槽内に配置され、他端が本体ケース外に配置される断熱管と、
断熱管における少なくとも本体ケース内に配置される部分の外周に配設される絶縁部とを具え、
端末用導体部は、
一端が常温側に配置される常電導導体と、
一端が常電導導体の他端と接続され、他端が冷媒槽内に配置される超電導導体とを具え、
断熱管内に、冷媒が充填されるとともに、常電導導体と超電導導体との接続部が配置されていることを特徴とする超電導ケーブルの端末構造。
A terminal conductor,
A refrigerant tank in which refrigerant is stored;
A body case for insulating and storing the refrigerant tank;
One end is disposed in the refrigerant tank, and the other end is disposed outside the main body case;
Insulating portion disposed on the outer periphery of at least the portion disposed in the main body case in the heat insulating pipe,
The terminal conductor is
A normal conducting conductor having one end disposed on the room temperature side;
One end is connected to the other end of the normal conducting conductor, and the other end comprises a superconducting conductor disposed in the refrigerant tank
A terminal structure of a superconducting cable, wherein a refrigerant is filled in a heat insulating tube and a connecting portion between a normal conducting conductor and a superconducting conductor is disposed.
断熱管における絶縁部が配設されていない部分の外周に、断熱部を設けていることを特徴とする請求項1に記載の超電導ケーブルの端末構造。   The terminal structure of a superconducting cable according to claim 1, wherein a heat insulating portion is provided on an outer periphery of a portion of the heat insulating pipe where the insulating portion is not provided. 断熱管の内部を冷媒槽内に連通させていることを特徴とする請求項1または請求項2の何れかに記載の超電導ケーブルの端末構造。   The terminal structure of a superconducting cable according to claim 1 or 2, wherein the inside of the heat insulating pipe is communicated with the refrigerant tank. 端末用導体部における超電導導体の内側に冷媒流路を有することを特徴とする請求項1から請求項3の何れかに記載の超電導ケーブルの端末構造。   The terminal structure of a superconducting cable according to any one of claims 1 to 3, further comprising a coolant channel inside the superconducting conductor in the terminal conductor. 端末用導体部における超電導導体の冷媒流路と断熱管の内部とを、超電導導体と常電導導体との接続部において連通させるとともに、断熱管の内部を冷媒槽内に連通させ、冷媒流路に冷媒槽内の冷媒を供給する供給手段を接続していることを特徴とする請求項4に記載の超電導ケーブルの端末構造。   The refrigerant flow path of the superconducting conductor in the terminal conductor and the inside of the heat insulating pipe are communicated at the connecting portion between the superconducting conductor and the normal conductive conductor, and the inside of the heat insulating pipe is communicated with the refrigerant tank, The terminal structure of a superconducting cable according to claim 4, wherein a supply means for supplying the refrigerant in the refrigerant tank is connected.
JP2004160239A 2004-05-28 2004-05-28 Terminal structure of superconducting cable Pending JP2005341767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160239A JP2005341767A (en) 2004-05-28 2004-05-28 Terminal structure of superconducting cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160239A JP2005341767A (en) 2004-05-28 2004-05-28 Terminal structure of superconducting cable

Publications (1)

Publication Number Publication Date
JP2005341767A true JP2005341767A (en) 2005-12-08

Family

ID=35494706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160239A Pending JP2005341767A (en) 2004-05-28 2004-05-28 Terminal structure of superconducting cable

Country Status (1)

Country Link
JP (1) JP2005341767A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266508A (en) * 2006-03-29 2007-10-11 Sumitomo Electric Ind Ltd Conductor lead-out structure of superconducting equipment
JP2010187520A (en) * 2009-02-12 2010-08-26 Ls Cable Ltd Cryostat of superconductive cable
CN102237665A (en) * 2010-04-28 2011-11-09 尼克桑斯公司 Assembly with a superconducting cable
CN104505804A (en) * 2014-12-01 2015-04-08 张家港金海港电线电缆有限公司 Cold-dielectric superconducting cable end
JP2016185043A (en) * 2015-03-26 2016-10-20 株式会社ビスキャス Power cable termination connection structure
WO2017073833A1 (en) * 2015-10-29 2017-05-04 한국전기연구원 Superconducting cable terminal device
JP2018137846A (en) * 2017-02-20 2018-08-30 住友電気工業株式会社 Terminal structure of superconducting apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880079U (en) * 1971-12-29 1973-10-01
JPS548698U (en) * 1977-06-21 1979-01-20
JPH0230232U (en) * 1988-08-11 1990-02-26

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880079U (en) * 1971-12-29 1973-10-01
JPS548698U (en) * 1977-06-21 1979-01-20
JPH0230232U (en) * 1988-08-11 1990-02-26

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266508A (en) * 2006-03-29 2007-10-11 Sumitomo Electric Ind Ltd Conductor lead-out structure of superconducting equipment
JP2010187520A (en) * 2009-02-12 2010-08-26 Ls Cable Ltd Cryostat of superconductive cable
CN102237665A (en) * 2010-04-28 2011-11-09 尼克桑斯公司 Assembly with a superconducting cable
JP2011234610A (en) * 2010-04-28 2011-11-17 Nexans Corp Device with superconducting cable
CN104505804A (en) * 2014-12-01 2015-04-08 张家港金海港电线电缆有限公司 Cold-dielectric superconducting cable end
JP2016185043A (en) * 2015-03-26 2016-10-20 株式会社ビスキャス Power cable termination connection structure
WO2017073833A1 (en) * 2015-10-29 2017-05-04 한국전기연구원 Superconducting cable terminal device
KR20170049891A (en) * 2015-10-29 2017-05-11 한국전기연구원 Terminal device for superconducting cable
EP3370239A4 (en) * 2015-10-29 2019-06-19 Korea Electro Technology Research Institute Superconducting cable terminal device
KR102371185B1 (en) 2015-10-29 2022-03-04 한국전기연구원 Terminal device for superconducting cable
JP2018137846A (en) * 2017-02-20 2018-08-30 住友電気工業株式会社 Terminal structure of superconducting apparatus

Similar Documents

Publication Publication Date Title
US7849704B2 (en) Cryogenic apparatus of superconducting equipment
JP4835821B2 (en) Superconducting cable
KR100642538B1 (en) Terminal structure of extreme-low temperature equipment
JP4609121B2 (en) Superconducting cable line
CN100524546C (en) Superconducting cable line
US20090197769A1 (en) Electric power feed structure for superconducting apparatus
CN101002290A (en) Superconductive cable line
JP2006221877A (en) Intermediate connection structure of superconductive cable
US11430584B2 (en) Device for DC current transmission and cooling method
CN108475907A (en) Energy transform device for transport facility
JP2019129583A (en) Terminal structure of superconductor cable
JP6169030B2 (en) Superconducting cable terminal structure
JP2005341767A (en) Terminal structure of superconducting cable
JP3779168B2 (en) Terminal structure of cryogenic equipment
JP5742021B2 (en) Connection unit and connection structure
JP4273525B2 (en) Terminal structure of superconducting equipment
JP4096360B2 (en) Superconducting cable terminal structure and superconducting cable line
US8391938B2 (en) Transportable rapid deployment superconducting transformer
JP2013073831A (en) Superconducting cable line
JP5742006B2 (en) End structure of room temperature insulated superconducting cable
JP2009048794A (en) Superconducting cable line
KR102005117B1 (en) Termination Structure of Superconducting Device
JPH10283854A (en) Termination connecting part for superconductive cable
JP2020028134A (en) Terminal structure of superconducting cable
KR101034893B1 (en) Superconducting cable terminals with cooling channel for uniform current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100727