JP5847000B2 - Cryogenic cable termination connection - Google Patents

Cryogenic cable termination connection Download PDF

Info

Publication number
JP5847000B2
JP5847000B2 JP2012083444A JP2012083444A JP5847000B2 JP 5847000 B2 JP5847000 B2 JP 5847000B2 JP 2012083444 A JP2012083444 A JP 2012083444A JP 2012083444 A JP2012083444 A JP 2012083444A JP 5847000 B2 JP5847000 B2 JP 5847000B2
Authority
JP
Japan
Prior art keywords
refrigerant
tank
liquid
auxiliary
liquid refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012083444A
Other languages
Japanese (ja)
Other versions
JP2012217334A (en
Inventor
朋哉 野村
朋哉 野村
向山 晋一
晋一 向山
八木 正史
正史 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2012083444A priority Critical patent/JP5847000B2/en
Publication of JP2012217334A publication Critical patent/JP2012217334A/en
Application granted granted Critical
Publication of JP5847000B2 publication Critical patent/JP5847000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Description

本発明は、電力を送電するための極低温ケーブルの終端接続部に関するものである。   The present invention relates to a termination connection part of a cryogenic cable for transmitting electric power.

超電導ケーブルシステムは超電導ケーブル冷却の為、リザーバタンク、ポンプ、冷凍機を備える。また、超電導ケーブルシステムは超電導ケーブル部と超電導終端接続部に分けられる。超電導ケーブル部は超電導ケーブルを冷却し通電する。この構造は超電導ケーブルを収納し液体冷媒を保持する為の冷媒槽と冷媒槽への熱侵入を低減させる為の真空層からなる。液体冷媒は超電導終端接続部に付随するリザーバタンク、ポンプ、冷凍機により供給、調整される。   The superconducting cable system includes a reservoir tank, a pump, and a refrigerator for cooling the superconducting cable. The superconducting cable system is divided into a superconducting cable part and a superconducting terminal connection part. The superconducting cable part cools the superconducting cable and energizes it. This structure includes a superconducting cable and a refrigerant tank for holding liquid refrigerant and a vacuum layer for reducing heat intrusion into the refrigerant tank. The liquid refrigerant is supplied and adjusted by a reservoir tank, a pump, and a refrigerator attached to the superconducting terminal connection.

終端接続部は、極低温(液体窒素を冷媒とする場合、大気圧で−196℃)に維持された超電導ケーブルに電気的に接続されると共に常温環境まで引き出された引き出し導体と、超電導ケーブルの断熱管に連通して冷媒で満たされる冷媒槽と、冷媒槽の外部に引き出された引き出し導体を収容すると共に常温層を形成する碍管と備えている。
冷媒槽内には液体冷媒層と気体冷媒層とが形成されており、引き出し導体は、液体冷媒層から気体冷媒層を通過して碍管内の常温層まで引き出されている。
そして、引き出し導体の周囲には、エチレンプロピレンゴム若しくはエポキシなどからなるストレスコーンやコンデンサコーンからなる絶縁構造体が形成されている。
碍管内には、絶縁油などの絶縁流体が充填され、冷媒槽と碍管の間には気体冷媒が浸入しないようにシールを配置して気密に保持している。
The end connection is electrically connected to a superconducting cable maintained at an extremely low temperature (at a temperature of -196 ° C at atmospheric pressure when liquid nitrogen is used as a refrigerant), and is connected to a lead conductor drawn out to a room temperature environment and a superconducting cable. A refrigerant tank that communicates with the heat insulating pipe and is filled with the refrigerant, and a soot pipe that accommodates the lead conductor drawn out of the refrigerant tank and forms a room temperature layer.
A liquid refrigerant layer and a gas refrigerant layer are formed in the refrigerant tank, and the lead conductor is drawn from the liquid refrigerant layer through the gas refrigerant layer to the room temperature layer in the soot tube.
An insulating structure made of a stress cone made of ethylene propylene rubber or epoxy or a capacitor cone is formed around the lead conductor.
The soot pipe is filled with an insulating fluid such as insulating oil, and a seal is disposed between the refrigerant tank and the soot pipe so as to prevent gas refrigerant from entering the gas so as to be kept airtight.

ところで、引き出し導体に施される絶縁構造体が、例えば、コンデンサコーン方式のブッシングの場合、内部に金属箔を挿入し電圧を分担することで絶縁に耐える設計の為、引き出し導体の通電時には当該金属箔の端部では電界ストレスが集中する。
一方、冷媒槽内では、窒素等の絶縁物質に於いて液体と気体では誘電率が大きく異なる為、その液体と気体の境界では耐電圧ストレスが低下する。
また、一般的に気体(SF6等の絶縁ガスは除く)の耐電圧ストレスは低い為、ブッシング中の金属箔端部の周囲は耐電圧ストレスの高い液体冷媒(例えば液体窒素)や絶縁油である必要がある。このため、冷媒槽内の液面位置はブッシング中の液面側の複数の金属箔の内で最も上位に位置する金属箔の先端部よりも十分に高い位置に維持されることが要求されていた。
By the way, when the insulating structure applied to the lead conductor is, for example, a capacitor cone type bushing, it is designed to withstand insulation by inserting a metal foil inside and sharing the voltage. Electric field stress concentrates at the edge of the foil.
On the other hand, in the refrigerant tank, the dielectric constant is greatly different between liquid and gas in an insulating material such as nitrogen, so that the withstand voltage stress is reduced at the boundary between the liquid and gas.
In addition, since the withstand voltage stress of gas (excluding insulating gas such as SF6) is generally low, the periphery of the metal foil edge during bushing is a liquid refrigerant (for example, liquid nitrogen) or insulating oil with high withstand voltage stress. There is a need. For this reason, the liquid surface position in the refrigerant tank is required to be maintained at a position sufficiently higher than the tip of the metal foil positioned at the highest position among the plurality of metal foils on the liquid surface side during bushing. It was.

しかしながら、冷媒槽内の気体冷媒層は、引き出し導体を通じて常温層と隣接することから、熱侵入を受け易く、液体冷媒層と気体冷媒層の界面間での熱交換もある上、圧力変化に伴う気化と凝集といった状態変化を断続的に繰り返す為、液面位置を一定にすることが困難である。以上より従来の終端接続部は、引き出し導体及びその周囲に形成された絶縁構造物と冷媒槽の内壁との隙間を極力小さくして、気体冷媒層の容積を低減することで熱交換による体積変化量を少なくし、液面位置の変化を低減することが提案されていた(例えば、特許文献1参照)。
また、他の従来技術として、非循環型の冷却システムでは、(例えば限流器等)液面を管理する方法として、内側から、冷媒槽、二次冷媒槽、真空断熱層を有する三重構造を有する冷媒槽が用いられることもあった。
However, since the gas refrigerant layer in the refrigerant tank is adjacent to the normal temperature layer through the lead conductor, it is susceptible to heat intrusion, and there is heat exchange between the interface of the liquid refrigerant layer and the gas refrigerant layer, and accompanying a pressure change Since the state changes such as vaporization and aggregation are repeated intermittently, it is difficult to keep the liquid surface position constant. As described above, the conventional terminal connection portion changes the volume due to heat exchange by reducing the volume of the gas refrigerant layer by minimizing the gap between the lead conductor and the insulating structure formed around the lead conductor and the inner wall of the refrigerant tank. It has been proposed to reduce the amount and reduce the change in the liquid surface position (see, for example, Patent Document 1).
As another conventional technique, in a non-circulating cooling system, as a method of managing the liquid level (for example, a current limiting device), a triple structure including a refrigerant tank, a secondary refrigerant tank, and a vacuum heat insulating layer is provided from the inside. The refrigerant tank which has is sometimes used.

特開2005−117724号公報JP 2005-117724 A

しかしながら、特許文献1に記載の終端装置では、気体冷媒層の容積を低減するために、引き出し導体及びその周囲に形成された絶縁構造物と冷媒槽の内壁との隙間を極力小さくすることから、引き出し導体と冷媒層の内壁面との間の絶縁破壊の発生が生じやすくなるという問題があった。   However, in the termination device described in Patent Document 1, in order to reduce the volume of the gas refrigerant layer, the gap between the lead conductor and the insulating structure formed around it and the inner wall of the refrigerant tank is minimized. There has been a problem that dielectric breakdown is likely to occur between the lead conductor and the inner wall surface of the refrigerant layer.

超電導ケーブルの冷却システムでは充分な絶縁性能が求められる。超電導ケーブルの冷却システムはリザーバタンク、ポンプ、冷凍機を備えたシステムであるが、コンデンサコーン方式のブッシングがあるガス層の圧力と液面高を維持する事が難しい。ガス層の圧力は必要な絶縁能力を得る為に必要な下限がある。冷媒圧力上昇に伴い冷媒温度も上昇し、一方で冷媒圧力が大気圧近辺の場合、ケーブル中で偶発的に発生した気泡が残存することで電気的な弱点になる(即ち、気泡が発生しない圧力以上である必要がある)。両者を満足する条件として冷媒圧力は0.2 MPaG近辺が最適である。また上限は容器の設計圧力である。一方、液面高はブッシングの性能を維持する為の下限(例えば、前述したブッシング中の液面側の金属箔先端部よりも十分に高い位置)と充分な熱勾配を得る為の上限がある。従来のシステムでは日射や通電等に伴うジュール熱の影響が非常に大きい為、システムの管理のみで追随する事が困難であった。   A superconducting cable cooling system requires sufficient insulation performance. The superconducting cable cooling system is a system equipped with a reservoir tank, pump, and refrigerator, but it is difficult to maintain the pressure and liquid level of the gas layer with the condenser cone type bushing. The gas layer pressure has a lower limit necessary to obtain the required insulation capacity. As the refrigerant pressure rises, the refrigerant temperature also rises. On the other hand, if the refrigerant pressure is near atmospheric pressure, accidentally generated bubbles remain in the cable, resulting in an electrical weak point (that is, a pressure at which no bubbles are generated). That needs to be the case) As a condition that satisfies both, the refrigerant pressure is optimally around 0.2 MPaG. The upper limit is the design pressure of the container. On the other hand, the liquid level has a lower limit for maintaining the performance of the bushing (for example, a position sufficiently higher than the tip of the metal foil on the liquid level side during the above-described bushing) and an upper limit for obtaining a sufficient thermal gradient. . In conventional systems, the influence of Joule heat due to solar radiation and energization is so great that it is difficult to follow up only by managing the system.

従来のシステムに於ける圧力及び冷媒液面位置の変化と制御方法を例に挙げる。従来のシステムではガス層の圧力が設定上限値に達するとリザーバタンク内のヒータスイッチを切ることでリザーバタンク内の圧力を低減させて冷媒槽の液体冷媒をリザーバタンク側で回収し冷媒槽側の圧力を低下させる。また、圧力が設定下限値に達するとヒータスイッチを入れることでリザーバタンク内で液体冷媒を気化させ、圧力を上昇させてリザーバタンク内の液体冷媒を冷媒槽側に送り、冷媒槽側の圧力を上昇させる。
或いは、冷媒液面位置が設定上限値に達するとリザーバタンク内のヒータスイッチを切ることでリザーバタンク内の圧力を低減させて冷媒槽の液体冷媒をリザーバタンク側で回収し冷媒槽側の冷媒液面位置を低下させる。また、冷媒液面位置が設定下限値に達するとヒータスイッチを入れることでリザーバタンク内で液体冷媒を気化させ、圧力を上昇させてリザーバタンク内の液体冷媒を冷媒槽側に送り、冷媒槽側の冷媒液面位置を上昇させる。ここで設定上限値と設定下限値はヒータの入切に伴う圧力若しくは冷媒液面位置の変動を見越して設定している。いずれの場合もヒータの入切のみで圧力Pと冷媒液面位置Lの値が管理値内に入るように調整する。但し圧力Pと冷媒液面位置Lの関係は冷却システムの状態により異なる為、一対一対応できない。
An example is a change and control method of pressure and refrigerant liquid level position in a conventional system. In the conventional system, when the gas layer pressure reaches the set upper limit value, the heater switch in the reservoir tank is turned off to reduce the pressure in the reservoir tank, and the liquid refrigerant in the refrigerant tank is collected on the reservoir tank side, and the refrigerant tank side is recovered. Reduce pressure. When the pressure reaches the set lower limit value, the heater switch is turned on to vaporize the liquid refrigerant in the reservoir tank, the pressure is increased, the liquid refrigerant in the reservoir tank is sent to the refrigerant tank side, and the pressure on the refrigerant tank side is increased. Raise.
Alternatively, when the refrigerant liquid level position reaches the set upper limit value, the heater switch in the reservoir tank is turned off to reduce the pressure in the reservoir tank, and the liquid refrigerant in the refrigerant tank is collected on the reservoir tank side and the refrigerant liquid on the refrigerant tank side is recovered. Reduce the surface position. When the coolant level reaches the set lower limit value, the heater switch is turned on to vaporize the liquid refrigerant in the reservoir tank, and the pressure is increased to send the liquid refrigerant in the reservoir tank to the refrigerant tank side. The refrigerant liquid level is raised. Here, the set upper limit value and the set lower limit value are set in anticipation of fluctuations in the pressure or refrigerant liquid level position associated with turning on / off of the heater. In either case, the pressure P and the refrigerant liquid level position L are adjusted so as to fall within the control value only by turning the heater on and off. However, since the relationship between the pressure P and the refrigerant liquid surface position L varies depending on the state of the cooling system, one-to-one correspondence is impossible.

従来のシステムに於いて、日射や通電等による短時間内でジュール熱の影響が大きい時の制御方法を例に挙げる。リザーバタンク内のヒータスイッチの入切のみで圧力や液面位置を制御した時の挙動を図7〜図10に示す。図7の例では、冷媒槽内の圧力について第1設定上限値P1と第1設定下限値P2とを定め、第1設定上限値P1まで圧力の上昇が検出されると、ヒータのスイッチをOFFし、第1設定下限値P2まで圧力の低下が検出されると、ヒータのスイッチをONにする制御が行われる。
また、図9の例では、冷媒槽内の液面高さについて第1設定上限値H1と第1設定下限値H2とを定め、第1設定上限値H1まで液面の上昇が検出されると、ヒータのスイッチをOFFし、第1設定下限値H2まで液面の低下が検出されると、ヒータのスイッチをONにする制御が行われる。
しかし、熱侵入に伴う圧力や液面位置変化が非常に大きくヒータの入切だけでは冷媒液面位置を十分に制御することができない。従って、これに対処するために、図8及び図10に示す制御が行われる。図8に示す例では、第1設定上限値P1よりもさらに高い第2設定上限値P3と、第1設定下限値P2よりもさらに低い第2設定下限値P4とを新たに定め、第1設定上限値P1でヒータのスイッチをOFFした後にさらに第2設定上限値P3まで圧力の上昇が検出されると、冷媒槽内の気体冷媒を外部に放出する制御を行い、また、第1設定下限値P2でヒータのスイッチをONした後にさらに第2設定下限値P4まで圧力の低下が検出されると、冷媒槽内へ液体冷媒を補充する制御が行われる。
また、図10に示す例では、第1設定上限値H1よりもさらに高い第2設定上限値H3と、第1設定下限値H2よりもさらに低い第2設定下限値H4とを新たに定め、第1設定上限値H1でヒータのスイッチをOFFした後にさらに第2設定上限値H3まで液面の上昇が検出されると、冷媒槽内の気体冷媒を外部に放出する制御を行い、また、第1設定下限値H2でヒータのスイッチをONした後にさらに第2設定下限値H4まで液面の低下が検出されると、冷媒槽内へ液体冷媒を補充する制御が行われる。
これにより、日射や通電等による短時間内でジュール熱の影響が大きい場合の液面位置維持を図っている。
しかしながら、かかる方法では、冷媒槽に、ヒータや気体冷媒層のガス放出のための設備、さらには、冷媒を補充するための設備が必須となるという問題があった。
In the conventional system, a control method when the influence of Joule heat is large within a short time due to solar radiation or energization is taken as an example. The behavior when the pressure and the liquid level position are controlled only by turning on / off the heater switch in the reservoir tank is shown in FIGS. In the example of FIG. 7, a first set upper limit value P1 and a first set lower limit value P2 are determined for the pressure in the refrigerant tank, and when a rise in pressure is detected up to the first set upper limit value P1, the heater switch is turned off. When a pressure drop is detected up to the first set lower limit P2, control for turning on the heater switch is performed.
Moreover, in the example of FIG. 9, when the 1st setting upper limit H1 and the 1st setting lower limit H2 are defined about the liquid level height in a refrigerant tank, and the raise of a liquid level is detected to the 1st setting upper limit H1, When the heater switch is turned off and a drop in the liquid level is detected up to the first set lower limit value H2, the heater switch is turned on.
However, the pressure and the liquid level position change due to heat penetration are very large, and the refrigerant liquid level position cannot be sufficiently controlled only by turning the heater on and off. Therefore, in order to cope with this, the control shown in FIGS. 8 and 10 is performed. In the example shown in FIG. 8, a second setting upper limit value P3 that is higher than the first setting upper limit value P1 and a second setting lower limit value P4 that is lower than the first setting lower limit value P2 are newly determined, and the first setting is performed. When an increase in pressure is detected to the second set upper limit value P3 after the heater switch is turned off at the upper limit value P1, control is performed to release the gaseous refrigerant in the refrigerant tank to the outside, and the first set lower limit value is set. When a pressure drop is further detected to the second set lower limit value P4 after the heater switch is turned on at P2, control for replenishing the liquid refrigerant into the refrigerant tank is performed.
Further, in the example shown in FIG. 10, a second setting upper limit value H3 that is higher than the first setting upper limit value H1 and a second setting lower limit value H4 that is lower than the first setting lower limit value H2 are newly determined. When the rise of the liquid level is further detected up to the second set upper limit value H3 after the heater switch is turned off at the first set upper limit value H1, control is performed to release the gaseous refrigerant in the refrigerant tank to the outside. When the lowering of the liquid level is further detected to the second set lower limit value H4 after the heater switch is turned on at the set lower limit value H2, control for replenishing the liquid refrigerant into the refrigerant tank is performed.
Thereby, the liquid surface position is maintained in the case where the influence of Joule heat is large within a short time due to solar radiation or energization.
However, this method has a problem in that a facility for discharging the gas from the heater and the gas refrigerant layer and further a facility for replenishing the refrigerant are essential for the refrigerant tank.

また、必要な場合は、従来の冷却システムでは冷媒槽の上部に、気体冷媒層の圧力を調整する圧力調整機構が設けられていた。この圧力調整機構は、真空層を備えた二重断熱構造が施された排出管と、冷媒槽内が所定の圧力に達すると弁が開いて気体冷媒を大気中に放出する定圧弁とからなり、この圧力調整機構によっても、冷媒槽内の圧力調節が行われていた。
しかし、圧力調整機構は、冷媒槽内の圧力上昇時に冷媒を大気中に放出する構造のため、冷媒槽の冷媒の減少を生じさせる。このため、圧力調整機構によって冷媒槽内の気体冷媒層の圧力の上昇を回避しようとすると、冷媒槽内の冷媒の損失が激しくなるという問題があった。
Further, when necessary, in the conventional cooling system, a pressure adjusting mechanism for adjusting the pressure of the gas refrigerant layer is provided in the upper part of the refrigerant tank. This pressure adjustment mechanism consists of a discharge pipe with a double heat insulation structure with a vacuum layer, and a constant pressure valve that opens the valve to release gaseous refrigerant into the atmosphere when the refrigerant tank reaches a predetermined pressure. The pressure in the refrigerant tank is also adjusted by this pressure adjustment mechanism.
However, since the pressure adjusting mechanism is configured to release the refrigerant into the atmosphere when the pressure in the refrigerant tank rises, the refrigerant in the refrigerant tank is reduced. For this reason, when trying to avoid an increase in the pressure of the gas refrigerant layer in the refrigerant tank by the pressure adjusting mechanism, there is a problem that the loss of the refrigerant in the refrigerant tank becomes severe.

また、三重構造の冷媒槽を用いる先行技術は、その主な目的が冷媒槽から冷媒の蒸発を防止することにあり、そのため、二次冷媒槽の液面位置が可変の構造であり、二次冷媒槽の液面位置の変化に伴い冷媒槽内のガス冷媒の冷却度合いが変化して、冷媒槽側の液面位置の制御には不向きという欠点があった。
本発明は、冷媒の温度変動が大きい場合にもヒータの入切で冷媒液面位置の管理が可能、さらに、冷媒の強制放出や液体冷媒の補充を必須としない終端接続部を提供することを目的とする。
In addition, the prior art using a triple-layer refrigerant tank is to prevent the refrigerant from evaporating from the refrigerant tank, so that the liquid surface position of the secondary refrigerant tank is variable, As the liquid level position of the refrigerant tank changes, the degree of cooling of the gas refrigerant in the refrigerant tank changes, and there is a disadvantage that it is not suitable for controlling the liquid level position on the refrigerant tank side.
It is an object of the present invention to provide a terminal connection portion that can manage the liquid level position by turning on and off the heater even when the temperature fluctuation of the refrigerant is large, and that does not require forced discharge of the refrigerant or replenishment of the liquid refrigerant. Objective.

請求項1記載の発明は、ケーブルコアと当該ケーブルコアを冷却する液体冷媒を収容する断熱管とを備えた極低温ケーブルの終端接続部であって、前記液体冷媒が貯留され、液体冷媒層と気体冷媒層とが形成される冷媒槽と、下端部が前記極低温ケーブルの超電導導体層と接続されると共に前記液体冷媒層に浸漬され、上端部が前記気体冷媒層を経て常温部に引き出される引出し導体と、前記引出し導体の周囲に設けられた絶縁部材と、前記冷媒槽に供給する液体冷媒を貯留するリザーバタンクを有する第一の循環冷却設備と、前記冷媒槽に設けられ、当該冷媒槽内の前記液体冷媒の液面位置における前記液体冷媒及び前記気体冷媒に対して熱交換を行うための熱交換面を有する補助冷却機構と、前記補助冷却機構に接続された第二の循環冷却設備とを備え、前記冷媒槽内の圧力又は液面高さに応じて、前記リザーバタンクを加熱するヒータの加熱と停止とを切り替えて前記冷媒槽内の液面高さが目標の範囲内に制御されることを特徴とする。   The invention according to claim 1 is a terminal connection portion of a cryogenic cable including a cable core and a heat insulating tube that houses a liquid refrigerant that cools the cable core, the liquid refrigerant being stored, and a liquid refrigerant layer A refrigerant tank in which a gas refrigerant layer is formed and a lower end portion thereof are connected to the superconducting conductor layer of the cryogenic cable and are immersed in the liquid refrigerant layer, and an upper end portion is drawn out to the room temperature portion through the gas refrigerant layer. A lead conductor; an insulating member provided around the lead conductor; a first circulation cooling facility having a reservoir tank for storing liquid refrigerant to be supplied to the refrigerant tank; and the refrigerant tank. An auxiliary cooling mechanism having a heat exchange surface for exchanging heat with respect to the liquid refrigerant and the gas refrigerant at the liquid level position of the liquid refrigerant, and a second circulating cooling connected to the auxiliary cooling mechanism The liquid level in the refrigerant tank is within a target range by switching between heating and stopping of the heater that heats the reservoir tank according to the pressure or liquid level in the refrigerant tank. It is controlled.

請求項2記載の発明は、請求項1記載の発明と同様の構成を備えると共に、前記補助冷却機構は、前記熱交換面を有する隔壁を介して前記冷媒槽内を冷却するための補助冷却用の液体冷媒の循環領域として、前記冷媒槽の周囲に形成された補助冷媒槽を備え、当該補助冷媒槽の上端と下端の間に前記冷媒槽の液体冷媒層の液面位置が配置されていることを特徴とする。   The invention according to claim 2 has the same configuration as that of the invention according to claim 1, and the auxiliary cooling mechanism is for auxiliary cooling for cooling the inside of the refrigerant tank through a partition wall having the heat exchange surface. As a circulation region of the liquid refrigerant, an auxiliary refrigerant tank formed around the refrigerant tank is provided, and a liquid surface position of the liquid refrigerant layer of the refrigerant tank is disposed between the upper end and the lower end of the auxiliary refrigerant tank. It is characterized by that.

請求項3記載の発明は、請求項1又は2記載の発明と同様の構成を備えると共に、前記補助冷媒槽は、液体冷媒で満たして気体冷媒層を有さないことを特徴とする。   The invention described in claim 3 has the same configuration as that of the invention described in claim 1 or 2, and the auxiliary refrigerant tank is filled with liquid refrigerant and does not have a gas refrigerant layer.

請求項4記載の発明は、請求項2又は3記載の発明と同様の構成を備えると共に、前記第二の循環冷却設備は、前記補助冷媒槽の上部からの補助冷却用の液体冷媒の供給と前記補助冷媒槽の下部からの補助冷却用の液体冷媒の回収とを輸送管を通じて行うことを特徴とする。   The invention according to claim 4 has the same configuration as that of the invention according to claim 2 or 3, and the second circulating cooling facility is configured to supply liquid refrigerant for auxiliary cooling from an upper part of the auxiliary refrigerant tank. The recovery of the liquid refrigerant for auxiliary cooling from the lower part of the auxiliary refrigerant tank is performed through a transport pipe.

請求項5記載の発明は、請求項2又は3記載の発明と同様の構成を備えると共に、前記第二の循環冷却設備は、前記補助冷媒槽の下部からの補助冷却用の液体冷媒の供給と前記補助冷媒槽の上部からの補助冷却用の液体冷媒の回収とを輸送管を通じて行うことを特徴とする。   The invention according to claim 5 has the same configuration as that of the invention according to claim 2 or 3, and the second circulating cooling facility is configured to supply liquid refrigerant for auxiliary cooling from a lower part of the auxiliary refrigerant tank. The liquid refrigerant for auxiliary cooling from the upper part of the auxiliary refrigerant tank is collected through a transport pipe.

請求項6記載の発明は、請求項2から5のいずれか一項に記載の発明と同様の構成を備えると共に、前記補助冷媒槽を上下に並んだ複数の区画に分割し、それぞれの区画に対して補助冷却用の液体冷媒の供給と補助冷却用の液体冷媒の回収とを行うことを特徴とする。   The invention according to claim 6 has the same configuration as that of the invention according to any one of claims 2 to 5, and further divides the auxiliary refrigerant tank into a plurality of compartments arranged vertically, and each compartment is divided. On the other hand, the liquid refrigerant for auxiliary cooling is supplied and the liquid refrigerant for auxiliary cooling is collected.

請求項7記載の発明は、請求項2から4のいずれか一項に記載の発明と同様の構成を備えると共に、前記補助冷媒槽は、前記冷媒槽の冷媒貯留領域の周囲に形成された補助冷媒槽からなり、当該補助冷媒槽は前記冷媒槽の液体冷媒層の液面位置の下方から上方に渡って形成されていることを特徴とする。   The invention according to claim 7 has the same configuration as that of the invention according to any one of claims 2 to 4, and the auxiliary refrigerant tank is an auxiliary formed around the refrigerant storage area of the refrigerant tank. It consists of a refrigerant tank, and the auxiliary refrigerant tank is formed from the lower side to the upper side of the liquid level of the liquid refrigerant layer of the refrigerant tank.

請求項8記載の発明は、請求項1から7のいずれか一項に記載の発明と同様の構成を備えると共に、前記第二の循環冷却設備は、補助冷却用の液体冷媒を貯留するリザーバタンクと、補助冷却用の液体冷媒を循環させる循環ポンプと補助冷却用の液体冷媒を冷却する冷凍機とを有することを特徴とする。   The invention according to claim 8 has the same configuration as that of the invention according to any one of claims 1 to 7, and the second circulating cooling facility is a reservoir tank that stores liquid refrigerant for auxiliary cooling. And a circulation pump that circulates the liquid refrigerant for auxiliary cooling and a refrigerator that cools the liquid refrigerant for auxiliary cooling.

本発明は、終端接続部が、冷媒槽内の液体冷媒の液面位置における液体冷媒及び気体冷媒に対して熱交換を行うための熱交換面を有する補助冷却機構と、当該補助冷却機構に接続された第二の循環冷却設備とを備えている。
このため、冷媒槽内で液体冷媒と気体冷媒との熱交換を行う液面を直接的に冷却することができ、冷媒槽内の気体冷媒層に熱侵入を受けても一定の温度幅に保つことが可能となる。それによりヒータの電源を切入で気体冷媒層の圧力上昇及び下降を抑止することができ、冷媒槽内の液体冷媒の液面の高さを制御することが可能である。
また、従来技術のように、引き出し導体と冷媒槽の内壁面とを近接させる必要がなく、これらの間の絶縁破壊の発生も効果的に回避することが可能である。
さらに、冷媒槽に、気体冷媒放出設備又は冷媒補充設備を常時運転においては必須とすることなく、冷媒槽内の液体冷媒の液面の高さを制御することが可能である。
また、補助冷却機構を、冷媒槽内の液体冷媒の液面位置における液体冷媒及び気体冷媒に対して熱交換を行うための熱交換面を有する構造とし、また、補助冷却槽に気体層を有さず、液体冷媒のみで満たされる構成とした場合には、従来のような二次冷却槽の液面管理を不要とし、冷却槽の液面管理に有利な構成とすることが可能である。
The present invention relates to an auxiliary cooling mechanism having a heat exchange surface for exchanging heat with respect to the liquid refrigerant and the gas refrigerant at the liquid surface position of the liquid refrigerant in the refrigerant tank, and the terminal connection portion connected to the auxiliary cooling mechanism. And a second circulating cooling facility.
For this reason, the liquid surface that performs heat exchange between the liquid refrigerant and the gas refrigerant in the refrigerant tank can be directly cooled, and a constant temperature range is maintained even if heat intrudes into the gas refrigerant layer in the refrigerant tank. It becomes possible. As a result, the heater can be turned off to suppress the pressure rise and fall of the gas refrigerant layer, and the liquid level of the liquid refrigerant in the refrigerant tank can be controlled.
Further, unlike the prior art, it is not necessary to bring the lead conductor and the inner wall surface of the refrigerant tank close to each other, and it is possible to effectively avoid the occurrence of dielectric breakdown between them.
Furthermore, it is possible to control the liquid level of the liquid refrigerant in the refrigerant tank without requiring the refrigerant tank to be equipped with a gas refrigerant discharge facility or a refrigerant replenishment facility in the constant operation.
Further, the auxiliary cooling mechanism has a structure having a heat exchange surface for exchanging heat with respect to the liquid refrigerant and the gas refrigerant at the liquid surface level of the liquid refrigerant in the refrigerant tank, and has a gas layer in the auxiliary cooling tank. In the case where the configuration is filled with only the liquid refrigerant, the conventional liquid level management of the secondary cooling tank is unnecessary, and the configuration advantageous for the liquid level management of the cooling tank can be achieved.

第一の実施形態に係る超電導ケーブルの終端接続部の概略構成を示す図である。It is a figure which shows schematic structure of the termination | terminus connection part of the superconducting cable which concerns on 1st embodiment. 終端接続部が施工される超電導ケーブルの一例を示す図である。It is a figure which shows an example of the superconducting cable by which a termination | terminus connection part is constructed. コンデンサコーンの断面構造を模式的に示した説明図である。It is explanatory drawing which showed typically the cross-section of a capacitor | condenser cone. 第二の実施形態に係る超電導ケーブルの終端接続部の概略構成を示す図である。It is a figure which shows schematic structure of the termination | terminus connection part of the superconducting cable which concerns on 2nd embodiment. 第三の実施形態である超電導ケーブルの終端接続部の概略構成を示す図である。It is a figure which shows schematic structure of the termination | terminus connection part of the superconducting cable which is 3rd embodiment. 終端接続部の冷媒槽の内側にバッフル板を装備する場合の装備位置を図示した説明図である。It is explanatory drawing which illustrated the installation position in the case of equip | installing a baffle board inside the refrigerant tank of a termination | terminus connection part. 冷媒槽の内部圧力をヒータのみで制御する例を示す線図である。It is a diagram which shows the example which controls the internal pressure of a refrigerant tank only with a heater. 冷媒槽の内部圧力をヒータと気体冷媒の外部放出とにより制御する例を示す線図である。It is a diagram which shows the example which controls the internal pressure of a refrigerant tank by the heater and the external discharge | release of a gaseous refrigerant. 冷媒槽の液面高さをヒータのみで制御する例を示す線図である。It is a diagram which shows the example which controls the liquid level height of a refrigerant tank only with a heater. 冷媒槽の液面高さをヒータと気体冷媒の外部放出とにより制御する例を示す線図である。It is a diagram which shows the example which controls the liquid level height of a refrigerant tank by a heater and the external discharge | release of a gaseous refrigerant.

(第一の実施形態)
以下、本発明の第一の実施形態を図面に基づいて詳細に説明する。
図1は第一の実施形態である極低温ケーブルとしての超電導ケーブル10の終端接続部1の概略構成を示す図、図2は終端接続部1が施工される超電導ケーブルの一例を示す図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a termination connecting portion 1 of a superconducting cable 10 as a cryogenic cable according to the first embodiment, and FIG. 2 is a diagram showing an example of a superconducting cable on which the termination connecting portion 1 is constructed. .

(超電導ケーブル)
図2に示す超電導ケーブル10は、断熱管12内に一心のケーブルコア11が収納された単心型の超電導ケーブルである。ケーブルコア11は、フォーマ111、超電導導体層112、電気絶縁層113、超電導シールド層114、常電導シールド層115、保護層116等により構成される。
(Superconducting cable)
A superconducting cable 10 shown in FIG. 2 is a single-core superconducting cable in which a single cable core 11 is housed in a heat insulating tube 12. The cable core 11 includes a former 111, a superconducting conductor layer 112, an electrical insulating layer 113, a superconducting shield layer 114, a normal conducting shield layer 115, a protective layer 116, and the like.

フォーマ111は、ケーブルコア11を形成するための巻心であり、例えば銅線等の常電導線材を撚り合わせて構成される。フォーマ111には、短絡事故時に超電導導体層112に流れる事故電流が分流される。   The former 111 is a winding core for forming the cable core 11, and is formed by twisting together normal conductive wires such as copper wires. In the former 111, an accident current flowing in the superconducting conductor layer 112 in the event of a short circuit accident is shunted.

超電導導体層112は、フォーマ111の上に複数条の超電導線材を螺旋状に巻回することにより形成される。図2では、超電導導体層112を4層の積層構造としている。超電導導体層112には、定常運転時に送電電流が流れる。
超電導導体層112を構成する超電導線材は、例えば、テープ状の基板上に中間層、超電導層、保護層等が順に形成された積層構造を有している。超電導層を構成する超電導体には、液体窒素温度以上で超電導特性を示すRE系超電導体(RE:希土類元素)、例えば(組成式) YBa2Cu37-δで表されるY系超電導体を適用できる。また、金属マト
リクス中に超電導体が形成されているテープ状の超電導線材でもよい。超電導体には、ビスマス系超電導体、例えば化学式Bi2Sr2CaCu28+δ(Bi2212), Bi2Sr2Ca2Cu310+δ(Bi2223)を適用できる。なお、化学式中のδは酸素不定比量を示す。
The superconducting conductor layer 112 is formed by spirally winding a plurality of superconducting wires on the former 111. In FIG. 2, the superconducting conductor layer 112 has a four-layer structure. A power transmission current flows through superconducting conductor layer 112 during steady operation.
The superconducting wire constituting the superconducting conductor layer 112 has, for example, a laminated structure in which an intermediate layer, a superconducting layer, a protective layer, and the like are sequentially formed on a tape-like substrate. The superconductor constituting the superconducting layer includes an RE-based superconductor (RE: rare earth element) exhibiting superconducting characteristics at a liquid nitrogen temperature or higher, for example, Y-based superconductivity represented by (composition formula) YBa 2 Cu 3 O 7-δ The body can be applied. Further, it may be a tape-shaped superconducting wire in which a superconductor is formed in a metal matrix. As the superconductor, a bismuth-based superconductor, for example, the chemical formula Bi 2 Sr 2 CaCu 2 O 8 + δ (Bi2212), Bi 2 Sr 2 Ca 2 Cu 3 O 10 + δ (Bi2223) can be applied. In the chemical formula, δ represents an oxygen nonstoichiometric amount.

電気絶縁層113は、例えば絶縁紙、絶縁紙とポリプロピレンフィルムを接合した半合成紙、高分子不織布テープなどで構成され、超電導導体層112の上に巻回することにより形成される。   The electrical insulating layer 113 is made of, for example, insulating paper, semi-synthetic paper in which insulating paper and polypropylene film are joined, a polymer nonwoven fabric tape, and the like, and is formed by winding on the superconducting conductor layer 112.

超電導シールド層114は、電気絶縁層113の上に複数条の超電導線材を螺旋状に巻回することにより形成される。図2では、超電導シールド層114を2層の積層構造としている。超電導シールド層114には、定常運転時に電磁誘導によって導体電流とほぼ同じ電流が逆位相で流れる。超電導シールド層114を構成する超電導線材には、超電導導体層112と同様のものを適用できる。   Superconducting shield layer 114 is formed by spirally winding a plurality of superconducting wires on electrical insulating layer 113. In FIG. 2, the superconducting shield layer 114 has a two-layer structure. In the superconducting shield layer 114, substantially the same current as the conductor current flows in reverse phase by electromagnetic induction during steady operation. The superconducting wire constituting the superconducting shield layer 114 can be the same as the superconducting conductor layer 112.

常電導シールド層115は、超電導シールド層114の上に銅線あるいは銅編組線に代表される常電導導体を巻回することにより形成される。常電導シールド層115には、短絡事故時に超電導シールド層114に流れる事故電流が分流される。
保護層116は、例えば絶縁紙、高分子不織布などで構成され、常電導シールド層115の上に巻回することにより形成される。
The normal conductive shield layer 115 is formed by winding a normal conductive conductor represented by a copper wire or a copper braided wire on the superconductive shield layer 114. The normal conducting shield layer 115 is shunted with an accident current flowing in the superconducting shield layer 114 in the event of a short circuit accident.
The protective layer 116 is made of, for example, insulating paper, polymer nonwoven fabric, or the like, and is formed by winding on the normal conductive shield layer 115.

断熱管12は、ケーブルコア11を収容するとともに冷媒(例えば液体窒素)が充填される内管121と、内管121の外周を覆うように配設された外管122からなる二重環構造を有している。
内管121及び外管122は、例えばステンレス製のコルゲート管である。内管121と外管122の間には、例えばアルミを蒸着したポリエチレンフィルムの積層体で構成された多層断熱層123が介在され、真空状態に保持される(いわゆるスーパーインシュレーション)。また、外管122の外周はポリエチレンなどの防食層124で被覆されている。
The heat insulating tube 12 has a double ring structure including an inner tube 121 that houses the cable core 11 and is filled with a refrigerant (for example, liquid nitrogen), and an outer tube 122 that is disposed so as to cover the outer periphery of the inner tube 121. Have.
The inner tube 121 and the outer tube 122 are, for example, stainless corrugated tubes. Between the inner tube 121 and the outer tube 122, for example, a multilayer heat insulating layer 123 made of a laminate of polyethylene films deposited with aluminum is interposed, and kept in a vacuum state (so-called super insulation). Further, the outer periphery of the outer tube 122 is covered with an anticorrosion layer 124 such as polyethylene.

(終端接続部の概要)
図1に示すように、終端接続部1は、低温容器20に超電導ケーブル10の端部が所定の状態で収容され、引き出し導体31を介して電流が実系統側に引き出される構成となっている。
終端接続部1では、超電導ケーブル10の超電導導体層112と引き出し導体31とが、導体用接続端子としての導体用可動接続端子50を介して電気的に接続されている。
(Outline of termination connection)
As shown in FIG. 1, the end connection portion 1 is configured such that the end portion of the superconducting cable 10 is accommodated in the cryogenic container 20 in a predetermined state, and current is drawn to the actual system side via the lead conductor 31. .
In the termination connection portion 1, the superconducting conductor layer 112 of the superconducting cable 10 and the lead conductor 31 are electrically connected via a conductor movable connection terminal 50 as a conductor connection terminal.

(低温容器)
低温容器20は、SUS(ステンレス鋼)製であって、内側の冷媒槽21と、外側の真空槽22からなる二重構造を有しており、超電導ケーブル10の端部が接続されている。上記真空槽22は、超電導ケーブル10の断熱管12の外管122が溶接接続されており、冷媒槽21は内管121が溶接接続されている。そして、中空なる冷媒槽21と真空槽22の間の領域と、断熱管12の内管121と外管122の間の領域とは、それぞれ真空吸引され、断熱構造が形成されている。
(Cryogenic container)
The cryogenic container 20 is made of SUS (stainless steel) and has a double structure including an inner refrigerant tank 21 and an outer vacuum tank 22, and the end of the superconducting cable 10 is connected thereto. The vacuum vessel 22 is connected to the outer tube 122 of the heat insulating tube 12 of the superconducting cable 10 by welding, and the refrigerant vessel 21 is connected to the inner tube 121 by welding. And the area | region between the hollow refrigerant tank 21 and the vacuum tank 22 and the area | region between the inner tube | pipe 121 and the outer tube | pipe 122 of the heat insulation pipe | tube 12 are each vacuum-sucked, and the heat insulation structure is formed.

また、冷媒槽21の内部領域と内管121の内部領域とは連通し、これらの領域には、液体冷媒(例えば液体窒素)が充填されている。この液体冷媒は、後述する第一の循環冷却設備80によって、内管121から冷媒槽21にかけて循環されている。
この第一の循環冷却設備80は、液体冷媒を貯留するためのリザーバタンク85と液体冷媒を循環させる循環ポンプ86と液体冷媒を冷却する冷凍機87からなる冷却装置81と、冷媒槽21及び内管121と冷却装置81との間において液体冷媒の循環経路を形成する輸送管82,83と、輸送管82に設けられ、液体冷媒の流量を自在に制御する流量調整機構としての流量制御弁84とを備えている。
輸送管82、83は、いずれも、真空層を備えた二重管構造により断熱構造が施されている。そして、輸送管82は、断熱構造を備えるバヨネットコネクタ88を介して冷媒槽21に接続され、冷却装置81から冷媒槽21に液体冷媒を供給する。また、輸送管83は、断熱構造を備えるバヨネットコネクタ89を介して超電導ケーブル10の内管121に接続されており、内管121から冷却装置81に向けて液体冷媒を回収する。
これにより、液体冷媒は、終端接続部1の外部に設けられた冷凍機87によって所定の極低温まで冷却が行われており、循環が行われることより、終端接続部1及び超電導ケーブル10内の液体冷媒の排熱が行われている。
The internal region of the refrigerant tank 21 and the internal region of the inner pipe 121 communicate with each other, and these regions are filled with a liquid refrigerant (for example, liquid nitrogen). This liquid refrigerant is circulated from the inner pipe 121 to the refrigerant tank 21 by a first circulation cooling facility 80 described later.
The first circulation cooling facility 80 includes a reservoir tank 85 for storing liquid refrigerant, a circulation pump 86 for circulating the liquid refrigerant, a cooling device 81 including a refrigerator 87 for cooling the liquid refrigerant, the refrigerant tank 21 and the internal Transport pipes 82 and 83 that form a circulation path of the liquid refrigerant between the pipe 121 and the cooling device 81, and a flow rate control valve 84 that is provided in the transport pipe 82 and serves as a flow rate adjusting mechanism that freely controls the flow rate of the liquid refrigerant. And.
The transport pipes 82 and 83 are both insulated by a double pipe structure having a vacuum layer. The transport pipe 82 is connected to the refrigerant tank 21 via a bayonet connector 88 having a heat insulating structure, and supplies the liquid refrigerant from the cooling device 81 to the refrigerant tank 21. The transport pipe 83 is connected to the inner pipe 121 of the superconducting cable 10 via a bayonet connector 89 having a heat insulating structure, and recovers the liquid refrigerant from the inner pipe 121 toward the cooling device 81.
As a result, the liquid refrigerant is cooled to a predetermined cryogenic temperature by the refrigerator 87 provided outside the terminal connection portion 1, and is circulated so that the liquid refrigerant is contained in the terminal connection portion 1 and the superconducting cable 10. Exhaust heat of the liquid refrigerant is performed.

また、低温容器20は、鉛直上方に立ち上げられた円筒状に形成されており、その上部には、低温容器20と同心で円筒状の碍子管33が連設され、さらに、碍子管33の上端部には実系統側に接続される上部金具32が取り付けられている。
そして、低温容器20の冷媒槽21内には、前述したように、液体冷媒が充填されており、液体冷媒の液面Sの下側に液体窒素からなる液体冷媒層が形成され、液面Sの上側に気体窒素からなる気体冷媒層が形成されている。
Moreover, the cryogenic container 20 is formed in a cylindrical shape rising vertically upward, and a cylindrical insulator tube 33 concentric with the cryogenic container 20 is connected to the upper portion thereof. The upper metal fitting 32 connected to the real system side is attached to the upper end.
The refrigerant tank 21 of the cryogenic vessel 20 is filled with the liquid refrigerant as described above, and a liquid refrigerant layer made of liquid nitrogen is formed below the liquid surface S of the liquid refrigerant. A gas refrigerant layer made of gaseous nitrogen is formed on the upper side of the substrate.

冷媒槽21と碍子管33の内部であってこれらの中心位置には、導体用可動接続端子50から上部金具32までを電気的に接続する引き出し導体31が配設されている。この引き出し導体31は、全体が良導体、例えば銅により形成された中実又は中空の丸棒体である。
そして、当該引き出し導体31には、当該引き出し導体31を囲繞するように絶縁部材としてのコンデンサコーン方式のブッシング41が装備されている。ブッシング41は、外周に固定装備された取り付け用のフランジ部411により、低温容器20の上端部に取り付けられている。そして、このブッシング41の取り付け用フランジ部411は、冷媒槽21を密閉するようシール加工が施されており、これにより、冷媒槽21と碍子管33のそれぞれの内部領域を分離し、液体や気体の流通を阻止している。
上記碍子管33の内部領域には、絶縁油やSFガス等からなる流体絶縁体が充填されている。なお、碍子管33内の流体絶縁体は常温であり、当該碍子管33は、常温部に相当する。
Inside the refrigerant tank 21 and the insulator tube 33 and at the center positions thereof, a lead conductor 31 that electrically connects the conductive movable connection terminal 50 to the upper metal fitting 32 is disposed. The lead conductor 31 is a solid or hollow round bar made entirely of a good conductor, for example, copper.
The lead conductor 31 is equipped with a capacitor cone type bushing 41 as an insulating member so as to surround the lead conductor 31. The bushing 41 is attached to the upper end portion of the cryogenic container 20 by an attaching flange portion 411 fixedly provided on the outer periphery. The flange portion 411 for attaching the bushing 41 is sealed so as to seal the refrigerant tank 21, thereby separating the respective internal regions of the refrigerant tank 21 and the insulator tube 33, so that liquid or gas Is blocked.
The inner region of the insulator tube 33 is filled with a fluid insulator made of insulating oil, SF 6 gas, or the like. Note that the fluid insulator in the insulator tube 33 is at room temperature, and the insulator tube 33 corresponds to an ordinary temperature part.

(コンデンサコーン)
図3はブッシング41の断面構造を模式的に示した説明図である。図1及び図3に示すように、ブッシング41は、引き出し導体31を挿入するステンレス製の中空パイプ412と、中空パイプ412の外周面上に形成された絶縁材料からなるブッシング絶縁体414と、引き出し導体31と中空パイプ412との連結部に介挿された絶縁材料からなるカラー413と、ブッシング絶縁体414の外周面上であって上下方向における中間位置設けられた取り付け用フランジ部411とを備えている。
(Condenser cone)
FIG. 3 is an explanatory view schematically showing a cross-sectional structure of the bushing 41. As shown in FIGS. 1 and 3, the bushing 41 includes a stainless steel hollow pipe 412 into which the lead conductor 31 is inserted, a bushing insulator 414 made of an insulating material formed on the outer peripheral surface of the hollow pipe 412, and a drawer. A collar 413 made of an insulating material inserted in a connecting portion between the conductor 31 and the hollow pipe 412, and a mounting flange portion 411 provided on the outer peripheral surface of the bushing insulator 414 and provided at an intermediate position in the vertical direction. ing.

かかるブッシング絶縁体414は、鉛直方向について下端部414aと中間部414bと上端部414cとから構成されており、中間部414bは鉛直方向について均一の外径をなし、下端部414aと上端部414cは下方又は上方に向かうほど縮径しており、ブッシング絶縁体414の全体は略紡錘形状に形成されている。   The bushing insulator 414 includes a lower end portion 414a, an intermediate portion 414b, and an upper end portion 414c in the vertical direction. The intermediate portion 414b has a uniform outer diameter in the vertical direction, and the lower end portion 414a and the upper end portion 414c are The diameter of the bushing insulator 414 is reduced toward the lower side or the upper side, and the entire bushing insulator 414 is formed in a substantially spindle shape.

そして、ブッシング絶縁体414の下端部414aと上端部414cには、鉛直方向について一定の幅のコンデンサ電極を形成する金属箔415が、中空パイプ412を中心とする半径方向について一定の間隔で階段的かつ同心状となるように絶縁体414中に埋め込まれている。また、最外層となる金属箔415は、ブッシング絶縁体414の中間部414bの全域に渡って形成されており、当該最外層の金属箔415については図示しないアース線が取り付けられて、接地されている。   A metal foil 415 that forms a capacitor electrode having a constant width in the vertical direction is formed on the lower end 414a and the upper end 414c of the bushing insulator 414 in a stepwise manner at a constant interval in the radial direction around the hollow pipe 412. And it is embedded in the insulator 414 so as to be concentric. The outermost metal foil 415 is formed over the entire area of the intermediate portion 414b of the bushing insulator 414, and the outermost metal foil 415 is attached to a ground wire (not shown) and grounded. Yes.

また、ブッシング絶縁体414としては、エポキシ樹脂、EPR(エチレンプロピレンゴム)、ゴム、FRP(fiber reinforced plastics)などが用いられている。また、金属箔415は、例えばアルミ箔或いは銅線、銅編素線、金属線、金属編組線等から形成される。
かかる構造により、各金属箔415は、ブッシング絶縁体414中において高圧側(中心部側)から低圧側(外周側)に向かってそれぞれ等しい容量のコンデンサが直列接続された形になるために、ブッシング絶縁体414の界面に沿う電界はほぼ均一に整えられる。さらに、ブッシング絶縁体414の最外層の金属箔415は接地されているので、ブッシング絶縁体414の外径が均一な中間部の表面電界は接地電位とすることができる。
As the bushing insulator 414, epoxy resin, EPR (ethylene propylene rubber), rubber, FRP (fiber reinforced plastics), or the like is used. The metal foil 415 is formed of, for example, an aluminum foil or a copper wire, a copper braided wire, a metal wire, a metal braided wire, or the like.
With this structure, each metal foil 415 has a shape in which capacitors having the same capacity are connected in series from the high voltage side (center side) to the low voltage side (outer peripheral side) in the bushing insulator 414. The electric field along the interface of the insulator 414 is arranged almost uniformly. Further, since the outermost metal foil 415 of the bushing insulator 414 is grounded, the surface electric field at the intermediate portion where the outer diameter of the bushing insulator 414 is uniform can be set to the ground potential.

(補助冷却機構)
ところで、上記ブッシング41は、その下端部から上端部にかけて、冷媒槽21の液体冷媒層から気体冷媒層を介して碍子管33内の常温部にまで延在している。
そして、ブッシング41の下端部414aには金属箔415が同心状に埋め込まれており、金属箔415の下端部はその構造上、電界強度が高くなる。また、冷媒槽21の冷媒の液面Sは、液体と気体の誘電率の違いにより電界が集中する。
このため、液面と金属箔415の下端部との間で絶縁破壊が発生しないように、冷媒槽21内の液体冷媒の液面Sは、金属箔415の下端部が存在する領域(ブッシング41の下端部414aの最上部)からある程度上方に離隔した位置を下限位置として、これより下降しないように管理する必要がある。
冷媒槽21内では、気体冷媒層が熱変化を生じやすく、また、常温部にも近いことから温度上昇が生じやすく、これにより液面での熱交換によって冷媒の気化が進み、気体冷媒層の圧力が上昇することが、冷媒槽21内における液体冷媒の液面の下降を生じる大きな要因となっている。
(Auxiliary cooling mechanism)
By the way, the bushing 41 extends from the lower end portion to the upper end portion thereof from the liquid refrigerant layer of the refrigerant tank 21 to the normal temperature portion in the insulator tube 33 through the gas refrigerant layer.
The metal foil 415 is concentrically embedded in the lower end portion 414a of the bushing 41, and the lower end portion of the metal foil 415 has a high electric field strength due to its structure. Further, the electric field concentrates on the liquid level S of the refrigerant in the refrigerant tank 21 due to the difference in dielectric constant between liquid and gas.
For this reason, the liquid surface S of the liquid refrigerant in the refrigerant tank 21 is a region where the lower end portion of the metal foil 415 exists (bushing 41) so that dielectric breakdown does not occur between the liquid surface and the lower end portion of the metal foil 415. It is necessary to manage the position that is separated from the lower end portion 414a by a certain amount upward as a lower limit position so as not to descend from this position.
In the refrigerant tank 21, the gas refrigerant layer is likely to undergo a heat change and is also close to the normal temperature portion, so that the temperature is likely to rise. As a result, the vaporization of the refrigerant proceeds by heat exchange at the liquid level, and the gas refrigerant layer The increase in pressure is a major factor that causes the liquid level of the liquid refrigerant in the refrigerant tank 21 to drop.

このため、適正な液面管理を行うために、冷媒槽21には補助冷却機構60が設けられている。
補助冷却機構60は、真空槽22の内側であって、冷媒槽21内の液体冷媒及び気体冷媒に対して熱交換面61aを有する隔壁61を介して設けられた補助冷却用の液体冷媒の循環領域である補助冷媒槽62により構成される。
補助冷媒槽62は、冷媒槽21の周囲を囲繞した円筒状であって、冷媒槽21とは冷媒の流通が生じないように物理的に分離されている。そして、冷媒槽21内の液体冷媒とは別系統で補助冷却用の液体冷媒の循環が行われてもよい。補助冷却用の液体冷媒は、冷媒槽21の液体冷媒と同じ液体窒素を使用するが、別系統である場合は、液体窒素よりも低温となる他の液体或いは気体冷媒を使用しても良い。
For this reason, in order to perform appropriate liquid level management, the auxiliary cooling mechanism 60 is provided in the refrigerant tank 21.
The auxiliary cooling mechanism 60 is inside the vacuum chamber 22 and circulates the liquid refrigerant for auxiliary cooling provided via the partition wall 61 having the heat exchange surface 61a for the liquid refrigerant and the gas refrigerant in the refrigerant tank 21. It is comprised by the auxiliary | assistant refrigerant | coolant tank 62 which is an area | region.
The auxiliary refrigerant tank 62 has a cylindrical shape surrounding the refrigerant tank 21 and is physically separated from the refrigerant tank 21 so that refrigerant does not flow. And the circulation of the liquid refrigerant for auxiliary cooling may be performed in a separate system from the liquid refrigerant in the refrigerant tank 21. The liquid refrigerant for auxiliary cooling uses the same liquid nitrogen as the liquid refrigerant in the refrigerant tank 21, but in the case of a separate system, another liquid or gas refrigerant having a temperature lower than that of liquid nitrogen may be used.

外部から、系全体への熱侵入において、定常時の熱侵入をW1、異常時(例えば、過電流発生時等)又は定常時以外の熱侵入(夏季日中等)をW2、補助冷却機構を通して冷媒槽から排出される熱量の単位時間あたりの許容最大値をWmaxとすると、W2<Wmax(但し、W1<W2)を満たす補助冷却機構であれば良い。   External heat intrusion to the entire system is W1, steady-state heat intrusion is W1, abnormal (for example, overcurrent occurrence) or non-steady heat intrusion (summer daytime, etc.) W2, refrigerant through the auxiliary cooling mechanism If the allowable maximum value per unit time of the amount of heat discharged from the tank is Wmax, an auxiliary cooling mechanism that satisfies W2 <Wmax (W1 <W2) may be used.

隔壁61は、SUS(ステンレス鋼)製の冷媒槽21の内壁をそのまま利用しても良いが、補助冷媒槽62の部分だけ、より熱伝導性の高い材料で形成しても良いが、いずれにしても、冷媒槽21内の液体冷媒及び気体冷媒を全周について取り囲むように形成され、補助冷媒槽62内の液体冷媒は一枚の隔壁61を介して冷媒槽21内の液体及び気体の冷媒を冷却するようになっている。
即ち、隔壁61の内面側が、補助冷却機構60内の補助冷却用の液体冷媒と冷媒槽21内の液体冷媒及び気体冷媒との熱交換面61aとなる。そして、補助冷媒槽62及びその隔壁61は、上下方向について、冷媒槽21内の液体冷媒の液面Sを含む範囲で形成される。即ち、ブッシング41の複数の金属箔415の内で下端部が最上位置となる当該金属箔415の下端部に対して絶縁破壊を生じない距離だけ上方となる位置が液体冷媒の液面の下側限界位置であるため、この下側限界位置を含む範囲で形成される。
The partition wall 61 may use the inner wall of the SUS (stainless steel) refrigerant tank 21 as it is, but only the auxiliary refrigerant tank 62 may be formed of a material having higher thermal conductivity. However, the liquid refrigerant and the gas refrigerant in the refrigerant tank 21 are formed so as to surround the entire circumference, and the liquid refrigerant in the auxiliary refrigerant tank 62 is a liquid and gas refrigerant in the refrigerant tank 21 through the single partition wall 61. Is supposed to cool.
That is, the inner surface side of the partition wall 61 is a heat exchange surface 61 a between the auxiliary cooling liquid refrigerant in the auxiliary cooling mechanism 60 and the liquid refrigerant and gas refrigerant in the refrigerant tank 21. And the auxiliary | assistant refrigerant | coolant tank 62 and its partition 61 are formed in the range containing the liquid level S of the liquid refrigerant | coolant in the refrigerant tank 21 about an up-down direction. That is, the position which is above the lower end of the metal foil 415 where the lower end is the uppermost position among the plurality of metal foils 415 of the bushing 41 by a distance that does not cause dielectric breakdown is below the liquid coolant level. Since it is a limit position, it is formed in a range including this lower limit position.

(第二の循環冷却設備)
また、上記補助冷却機構60には、補助冷媒槽62内の液体冷媒を循環冷却する第二の循環冷却設備70が併設されている。
この第二の循環冷却設備70は、補助冷却用の液体冷媒を貯留するリザーバタンク75と、補助冷却用の液体冷媒を循環させる循環ポンプ76と補助冷却用の液体冷媒を冷却する冷凍機77からなる冷却装置71と、補助冷媒槽62と冷却装置71との間において液体冷媒の循環経路を形成する輸送管72,73と、輸送管72に設けられ、液体冷媒の流量を自在に制御する流量調整機構としての流量制御弁74とを備えている。
(Second circulation cooling facility)
The auxiliary cooling mechanism 60 is also provided with a second circulating cooling facility 70 that circulates and cools the liquid refrigerant in the auxiliary refrigerant tank 62.
The second circulation cooling facility 70 includes a reservoir tank 75 that stores liquid refrigerant for auxiliary cooling, a circulation pump 76 that circulates liquid refrigerant for auxiliary cooling, and a refrigerator 77 that cools the liquid refrigerant for auxiliary cooling. A cooling device 71, transport pipes 72 and 73 forming a circulation path of the liquid refrigerant between the auxiliary refrigerant tank 62 and the cooling device 71, and a flow rate which is provided in the transport pipe 72 and freely controls the flow rate of the liquid refrigerant. And a flow control valve 74 as an adjustment mechanism.

輸送管72、73は、いずれも、真空層を備えた二重管構造により断熱構造が施されており、低温容器20の真空槽22を貫通して、その内側に設けられた補助冷媒槽62に接続されている。また、輸送管72、73は断熱構造を備えるバヨネットコネクタ78,79を介して真空槽22の外壁と接続され、真空槽22との接続部における熱進入が防止されている。
輸送管72は冷却装置71から補助冷媒槽62に液体冷媒を供給するための供給管であり、補助冷媒槽62の上端部近傍に設けられた開口に連通している。また、輸送管73は補助冷媒槽62から冷却装置71に液体冷媒を回収するための回収管であり、補助冷媒槽62の下端部近傍に設けられた開口に連通している。
これにより、冷却装置71で冷却された液体冷媒は補助冷媒槽62の上部に供給され、補助冷媒槽62内の液体冷媒は補助冷媒槽62の下部から回収される。補助冷媒槽62内では、昇温した液体冷媒は上部に、低温の液体冷媒は下部に滞留するので、昇温した液体冷媒がすぐに冷却され、補助冷媒槽62内の液体冷媒の温度を上下に渡って均一化することが可能となる。これにより、補助冷媒槽62は、冷媒槽21内の液面位置における液体冷媒及び気体冷媒を効果的に冷却することが可能である。
なお、液体冷媒は補助冷媒槽62の上部から供給して下部から回収することがより望ましいが、液体冷媒は補助冷媒槽62の下部から供給して上部から回収しても良い。この場合、補助冷媒槽62の上部の温度の上がった液体冷媒を効果的に回収することが可能である(第二、第三の実施形態も同様である)。
Each of the transport pipes 72 and 73 is heat-insulated by a double pipe structure having a vacuum layer, penetrates the vacuum tank 22 of the cryogenic container 20 and is provided inside the auxiliary refrigerant tank 62. It is connected to the. Further, the transport pipes 72 and 73 are connected to the outer wall of the vacuum chamber 22 via bayonet connectors 78 and 79 having a heat insulating structure, so that heat intrusion at the connection portion with the vacuum chamber 22 is prevented.
The transport pipe 72 is a supply pipe for supplying liquid refrigerant from the cooling device 71 to the auxiliary refrigerant tank 62, and communicates with an opening provided in the vicinity of the upper end portion of the auxiliary refrigerant tank 62. The transport pipe 73 is a recovery pipe for recovering the liquid refrigerant from the auxiliary refrigerant tank 62 to the cooling device 71 and communicates with an opening provided in the vicinity of the lower end portion of the auxiliary refrigerant tank 62.
Thereby, the liquid refrigerant cooled by the cooling device 71 is supplied to the upper part of the auxiliary refrigerant tank 62, and the liquid refrigerant in the auxiliary refrigerant tank 62 is recovered from the lower part of the auxiliary refrigerant tank 62. In the auxiliary refrigerant tank 62, the heated liquid refrigerant stays in the upper part and the low-temperature liquid refrigerant stays in the lower part, so the heated liquid refrigerant is immediately cooled, and the temperature of the liquid refrigerant in the auxiliary refrigerant tank 62 is increased and decreased. It is possible to make uniform over the range. Thereby, the auxiliary refrigerant tank 62 can effectively cool the liquid refrigerant and the gas refrigerant at the liquid surface position in the refrigerant tank 21.
The liquid refrigerant is more preferably supplied from the upper part of the auxiliary refrigerant tank 62 and recovered from the lower part, but the liquid refrigerant may be supplied from the lower part of the auxiliary refrigerant tank 62 and recovered from the upper part. In this case, it is possible to effectively recover the liquid refrigerant whose temperature has risen in the upper part of the auxiliary refrigerant tank 62 (the same applies to the second and third embodiments).

また、この第二の循環冷却設備70では、リザーバタンク75内で液体冷媒が気化した場合でも循環ポンプ76側には冷媒ガスが移動せずに液体冷媒のみが循環ポンプ76を介して補助冷媒槽62に供給されるようになっている。また、これにより、補助冷媒槽62の内部は、液体冷媒で満たされた状態となり、内部に気体冷媒層が発生せず、その上下全幅に渡って冷媒槽21を冷却することが可能となっている。   Further, in the second circulating cooling facility 70, even when the liquid refrigerant is vaporized in the reservoir tank 75, the refrigerant gas does not move to the circulation pump 76 side, and only the liquid refrigerant passes through the circulation pump 76. 62 is supplied. As a result, the inside of the auxiliary refrigerant tank 62 is filled with the liquid refrigerant, and no gas refrigerant layer is generated therein, so that the refrigerant tank 21 can be cooled over its entire width. Yes.

流量制御弁74は手動操作により開度が調節可能な弁であり、開度調節によって冷却装置71から補助冷媒槽62への液体冷媒の流量を制御することが可能である。   The flow control valve 74 is a valve whose opening can be adjusted by manual operation, and the flow rate of the liquid refrigerant from the cooling device 71 to the auxiliary refrigerant tank 62 can be controlled by adjusting the opening.

(終端接続部の作用)
以上の構成からなる終端接続部1について、特に、補助冷却機構60及び循環冷却設備70による作用を説明する。
超電導ケーブル10及び終端接続部1の冷媒槽21内では、図示しない循環冷却装置により液体冷媒が循環され、超電導ケーブル10のケーブルコア11の冷却が行われる。
そして、冷媒槽21内では、上方からの熱侵入などにより、気体冷媒が吸熱し、液体冷媒の液面では蒸発と凝縮を行い、気体冷媒層の圧力に応じて液面高さが変動を生じ得る状態となる。
(Operation of terminal connection)
With regard to the terminal connection portion 1 having the above-described configuration, the operation of the auxiliary cooling mechanism 60 and the circulation cooling facility 70 will be described in particular.
In the superconducting cable 10 and the refrigerant tank 21 of the terminal connection portion 1, the liquid refrigerant is circulated by a circulation cooling device (not shown), and the cable core 11 of the superconducting cable 10 is cooled.
In the refrigerant tank 21, the gas refrigerant absorbs heat due to heat intrusion from above, etc., the liquid surface of the liquid refrigerant is evaporated and condensed, and the liquid surface height varies depending on the pressure of the gas refrigerant layer. It will be in a state to get.

(圧力制御及び液面高さ制御)
また、冷媒槽21には、図1に示すように、内部の液体冷媒の液面高さを検出する液面検出手段としての液面センサ131(例えば、測距センサ)と、冷媒槽21の内部の気体層の圧力を検出する圧力検出手段としての圧力センサ132とが設けられ、第一の循環冷却設備80のリザーバタンク85には内部の冷媒を加熱するヒータ133が設けられている。
そして、図示しない制御装置により、冷媒槽21内の圧力を一定の範囲に維持する圧力制御と冷媒槽21内の液体冷媒の液面高さを一定の範囲に維持する液面高さ制御とが実行される。
(Pressure control and liquid level control)
Further, as shown in FIG. 1, the refrigerant tank 21 includes a liquid level sensor 131 (for example, a distance measuring sensor) serving as a liquid level detecting unit that detects the liquid level of the liquid refrigerant inside, and a refrigerant tank 21. A pressure sensor 132 as pressure detecting means for detecting the pressure of the internal gas layer is provided, and a heater 133 for heating the internal refrigerant is provided in the reservoir tank 85 of the first circulating cooling facility 80.
Then, by a control device (not shown), pressure control for maintaining the pressure in the refrigerant tank 21 in a certain range and liquid level control for maintaining the liquid level of the liquid refrigerant in the refrigerant tank 21 in a certain range. Executed.

即ち、図7に示すように、冷媒槽21内の圧力について予め第1設定上限値P1と第1設定下限値P2とが定められ、圧力センサ132により第1設定上限値P1まで圧力の上昇が検出されると、ヒータ133のスイッチをOFFし、リザーバタンク85内の圧力を低減させて冷媒槽21の液体冷媒をリザーバタンク85側で回収し冷媒槽21側の圧力を低下させる。
また、圧力センサ132により第1設定下限値P2まで圧力の低下が検出されると、ヒータ133のスイッチをONにして、リザーバタンク85内で液体冷媒に気泡を発生させ、圧力を上昇させてリザーバタンク85内の液体冷媒を冷媒槽21側に送り、冷媒槽21側の圧力を上昇させる制御が行われる。
That is, as shown in FIG. 7, the first set upper limit value P1 and the first set lower limit value P2 are determined in advance for the pressure in the refrigerant tank 21, and the pressure sensor 132 increases the pressure to the first set upper limit value P1. When detected, the switch of the heater 133 is turned off, the pressure in the reservoir tank 85 is reduced, the liquid refrigerant in the refrigerant tank 21 is collected on the reservoir tank 85 side, and the pressure on the refrigerant tank 21 side is reduced.
When the pressure sensor 132 detects a decrease in pressure up to the first set lower limit value P2, the heater 133 is turned on, bubbles are generated in the liquid refrigerant in the reservoir tank 85, the pressure is increased, and the reservoir Control is performed to send the liquid refrigerant in the tank 85 to the refrigerant tank 21 side and increase the pressure on the refrigerant tank 21 side.

また、図9に示すように、冷媒槽21内の液面高さについて予め第1設定上限値H1と第1設定下限値H2とが定められ、液面センサ131により第1設定上限値H1まで液面の上昇が検出されると、ヒータ133のスイッチをOFFし、リザーバタンク85内の圧力を低減させて冷媒槽21の液体冷媒をリザーバタンク85側で回収し冷媒槽21側の冷媒液面位置を低下させる。
また、液面センサ131により第1設定下限値H2まで液面の低下が検出されると、ヒータ133のスイッチをONにする制御が行われ、リザーバタンク85内で液体冷媒に気泡を発生させ、圧力を上昇させてリザーバタンク85内の液体冷媒を冷媒槽21側に送り、冷媒槽側の冷媒液面位置を上昇させる制御が行われる。
Further, as shown in FIG. 9, the first set upper limit value H1 and the first set lower limit value H2 are determined in advance for the liquid level in the refrigerant tank 21, and the liquid level sensor 131 reaches the first set upper limit value H1. When the rise in the liquid level is detected, the heater 133 is turned off, the pressure in the reservoir tank 85 is reduced, and the liquid refrigerant in the refrigerant tank 21 is collected on the reservoir tank 85 side, and the refrigerant liquid level on the refrigerant tank 21 side. Reduce position.
Further, when the liquid level sensor 131 detects a decrease in the liquid level to the first set lower limit value H2, a control for turning on the switch of the heater 133 is performed, and bubbles are generated in the liquid refrigerant in the reservoir tank 85, Control is performed to raise the pressure and send the liquid refrigerant in the reservoir tank 85 to the refrigerant tank 21 side to raise the refrigerant liquid surface position on the refrigerant tank side.

なお、圧力制御及び液面高さ制御は、同時に実施され、例えば、圧力制御と液面高さ制御のいずれか一方がヒータ133をONにすべき状態が検出された場合にはヒータ133をONにし、圧力制御と液面高さ制御のいずれか一方がヒータ133をOFFにすべき状態が検出された場合にはヒータ133をOFFする制御を行い、相互の制御を並立させている。   The pressure control and the liquid level control are performed simultaneously. For example, when it is detected that either the pressure control or the liquid level control should turn on the heater 133, the heater 133 is turned on. If either of the pressure control and the liquid level control detects that the heater 133 should be turned off, the heater 133 is turned off, and the mutual control is performed in parallel.

(第一の実施形態による技術的効果)
上記第一の実施形態における終端接続部1では、冷媒槽21内の液体冷媒の液面位置Sにおける液体冷媒及び気体冷媒に対して熱交換を行うための熱交換面61aを有する隔壁61を介して冷媒槽21を囲繞する円筒形の補助冷媒槽62を有する補助冷却機構60と、当該補助冷媒槽62内の液体冷媒を循環冷却させるための第二の循環冷却設備70とを備えている。さらに、循環冷却設備70の冷却装置71はリザーバタンク75と循環ポンプ76と冷凍機77とを備えている。
このため、冷媒槽21内で液体冷媒と気体冷媒との熱交換を行う液面を直接的に冷却することができ、冷媒槽21内の気体冷媒層に熱侵入を受けても一定の温度幅に保つことが可能となる。それにより、より効果的に気体冷媒層の圧力上昇及び下降を抑止することができ、冷媒槽21内の液体冷媒の液面Sの高さを制御することが可能である。
また、補助冷媒槽62及び第二の循環冷却設備70による冷媒槽21内の液体冷媒の液面Sの高さ維持により、ヒータ133の電源を切入で気体冷媒層の圧力上昇及び下降を抑止することができ、例えば、前述した図8や図10に示す段階的な上下限値を設定する圧力制御及び液面高さ制御を不要とし、冷媒槽21内の液体冷媒の液面の高さを適正に制御することが可能である。
(Technical effects according to the first embodiment)
In the terminal end connection portion 1 in the first embodiment, the partition 61 having a heat exchange surface 61a for exchanging heat with respect to the liquid refrigerant and the gas refrigerant at the liquid surface position S of the liquid refrigerant in the refrigerant tank 21 is provided. And an auxiliary cooling mechanism 60 having a cylindrical auxiliary refrigerant tank 62 surrounding the refrigerant tank 21 and a second circulation cooling facility 70 for circulatingly cooling the liquid refrigerant in the auxiliary refrigerant tank 62. Further, the cooling device 71 of the circulation cooling facility 70 includes a reservoir tank 75, a circulation pump 76, and a refrigerator 77.
For this reason, the liquid surface that performs heat exchange between the liquid refrigerant and the gas refrigerant in the refrigerant tank 21 can be directly cooled, and a certain temperature range even if the gas refrigerant layer in the refrigerant tank 21 receives heat intrusion. It becomes possible to keep it. Thereby, the pressure rise and fall of the gas refrigerant layer can be suppressed more effectively, and the height of the liquid level S of the liquid refrigerant in the refrigerant tank 21 can be controlled.
Further, by maintaining the height of the liquid refrigerant liquid level S in the refrigerant tank 21 by the auxiliary refrigerant tank 62 and the second circulating cooling equipment 70, the heater 133 is turned on to suppress the pressure rise and fall of the gas refrigerant layer. For example, pressure control and liquid level control for setting the stepwise upper and lower limit values shown in FIG. 8 and FIG. 10 described above are unnecessary, and the liquid level of the liquid refrigerant in the refrigerant tank 21 is reduced. It is possible to control appropriately.

また、補助冷却機構60の循環冷却設備70は、輸送管72により補助冷媒槽62の上部から液体冷媒が供給され、輸送管73により補助冷媒槽62の下部から液体冷媒が回収されるので、補助冷媒槽62内の上部と下部との間の温度勾配を解消し、冷媒槽21に対する効果的な冷却を行うことが可能となる。   Further, the circulation cooling facility 70 of the auxiliary cooling mechanism 60 is supplied with liquid refrigerant from the upper part of the auxiliary refrigerant tank 62 by the transport pipe 72 and recovered from the lower part of the auxiliary refrigerant tank 62 by the transport pipe 73. The temperature gradient between the upper part and the lower part in the refrigerant tank 62 is eliminated, and the refrigerant tank 21 can be effectively cooled.

また、断熱構造が施された排出管341と、排出管341の圧力が一定値を超えると気体冷媒を排出する定圧弁342とを備え、気体冷媒層の圧力を非定常的に調整する緊急用圧力調整機構34を冷媒槽21に設け、補助冷媒槽62の輸送管72には液体冷媒の流量を調整する流量制御弁74を設けたので、冷媒槽21内の気体冷媒層の圧力を一定の範囲内に維持すると共に、補助冷媒槽62に対する液体冷媒の流量調整により、気体冷媒層を一定の平衡温度に安定させることができ、ヒータ133の電源の切入を行うことにより冷媒槽21内の液面位置の調節を任意に行うことが可能となる。   In addition, an emergency pipe that includes a discharge pipe 341 provided with a heat insulating structure and a constant pressure valve 342 that discharges a gaseous refrigerant when the pressure of the discharge pipe 341 exceeds a certain value, and adjusts the pressure of the gaseous refrigerant layer unsteadyly. Since the pressure adjusting mechanism 34 is provided in the refrigerant tank 21 and the transport pipe 72 of the auxiliary refrigerant tank 62 is provided with the flow rate control valve 74 for adjusting the flow rate of the liquid refrigerant, the pressure of the gas refrigerant layer in the refrigerant tank 21 is kept constant. The gas refrigerant layer can be stabilized at a constant equilibrium temperature by adjusting the flow rate of the liquid refrigerant with respect to the auxiliary refrigerant tank 62 while being maintained within the range, and the liquid in the refrigerant tank 21 can be turned on by turning the heater 133 on and off. It is possible to arbitrarily adjust the surface position.

(第二の実施形態)
次に、本発明の第二の実施形態について図4に基づいて説明する。図4は第二の実施形態である終端接続部1Aの概略構成を示す。
なお、以下の実施形態である終端接続部1Aにおいて、前述した終端接続部1と同一の構成については同一の符号を付して重複する説明は省略し、終端接続部1Aについて終端接続部1と異なる点について専ら説明するものとする。
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a schematic configuration of a terminal connection portion 1A according to the second embodiment.
In the termination connection unit 1A according to the following embodiment, the same components as those of the termination connection unit 1 described above are denoted by the same reference numerals and redundant description is omitted, and the termination connection unit 1A is the same as that of the termination connection unit 1A. Only the differences will be explained.

上記終端接続部1Aの補助冷却機構60Aは、補助冷却用の液体冷媒の循環領域として、冷媒槽21内に螺旋状に形成された補助冷却管62Aを備える点が終端接続部1と異なっている。
即ち、この補助冷却管62Aは、上下に隙間なく巻回されることで略円筒状をなしており、冷媒槽21内の液体冷媒及び気体冷媒を囲繞するように配置されている。
補助冷却管62Aの上下方向における形成範囲は、前述した補助冷媒槽62と同一である。即ち、冷媒槽21内の液体冷媒の液面Sを含む範囲であり、ブッシング41の複数の金属箔415の液面側の端部の中で最上位置となる当該金属箔415の下端部に対して絶縁破壊を生じない距離だけ上方となる位置を含む範囲で形成される。
The auxiliary cooling mechanism 60A of the terminal connection portion 1A is different from the terminal connection portion 1 in that an auxiliary cooling pipe 62A formed in a spiral shape in the refrigerant tank 21 is provided as a circulation region of liquid refrigerant for auxiliary cooling. .
That is, the auxiliary cooling pipe 62A is substantially cylindrical by being wound up and down without any gap, and is arranged so as to surround the liquid refrigerant and the gaseous refrigerant in the refrigerant tank 21.
The formation range of the auxiliary cooling pipe 62 </ b> A in the vertical direction is the same as that of the auxiliary refrigerant tank 62 described above. That is, it is a range including the liquid level S of the liquid refrigerant in the refrigerant tank 21, with respect to the lower end portion of the metal foil 415 that is the uppermost position among the liquid surface side ends of the plurality of metal foils 415 of the bushing 41. Thus, it is formed in a range including a position that is above a distance that does not cause dielectric breakdown.

また、この補助冷却管62Aは、SUS、銅或いはその他の熱伝導性の良い材料により形成されている。補助冷却管62Aの形成部位では、冷媒槽21の内壁は除去されており、補助冷却管62Aの螺旋状の状態での内側となる管壁面の半分が熱交換面を有する隔壁となっている。また、かかる構造のため、螺旋状の状態で互いに隣接する補助冷却管62Aの管壁同士には隙間が生じないように溶接加工などによりシールされる。   The auxiliary cooling pipe 62A is made of SUS, copper, or other material having good thermal conductivity. At the site where the auxiliary cooling pipe 62A is formed, the inner wall of the refrigerant tank 21 is removed, and half of the inner wall surface of the auxiliary cooling pipe 62A in the spiral state is a partition wall having a heat exchange surface. Further, because of this structure, the auxiliary cooling pipes 62A adjacent to each other in a spiral state are sealed by welding or the like so that no gaps are formed between the pipe walls.

また、第二の循環冷却設備70の輸送管72は、補助冷却管62Aの上端部に接続され、輸送管73は補助冷却管62Aの下端部に接続される。これにより、補助冷却管62Aには、その上端部から液体冷媒が供給され、下端部から液体冷媒が回収される。   Further, the transport pipe 72 of the second circulating cooling facility 70 is connected to the upper end of the auxiliary cooling pipe 62A, and the transport pipe 73 is connected to the lower end of the auxiliary cooling pipe 62A. Thereby, liquid refrigerant is supplied to the auxiliary cooling pipe 62A from its upper end, and liquid refrigerant is recovered from its lower end.

補助冷却管62Aを備えた終端接続部1Aの場合も、終端接続部1の場合と同様に、補助冷却管62Aに対して、リザーバタンク75、循環ポンプ76及び冷凍機77を備える第二の循環冷却設備70により一定の流量で液体冷媒の循環冷却が行われるので、冷媒槽21内で熱交換が行われている液面の液体冷媒及び気体冷媒に対して冷却を行うことができる。
また、螺旋状の補助冷却管62Aを備えることにより、補助冷却管62Aの内部に沿って冷媒を循環させることができるので、冷媒槽21内の液体冷媒及び気体冷媒に対して全周方向について効果的且つ均一に冷却することができ、効率的に冷却及び液面調節を行うことが可能である。
また、補助冷却管62A及び第二の循環冷却設備70による冷媒槽21内の液体冷媒の液面Sの高さ維持により、ヒータ133の電源を切入で気体冷媒層の圧力上昇及び下降を抑止することができ、例えば、前述した図8や図10に示す段階的な上下限値を設定する圧力制御及び液面高さ制御を不要とし、冷媒槽21内の液体冷媒の液面の高さを適正に制御することが可能である。
In the case of the terminal connection portion 1A including the auxiliary cooling pipe 62A, the second circulation including the reservoir tank 75, the circulation pump 76, and the refrigerator 77 is provided for the auxiliary cooling pipe 62A, as in the case of the terminal connection portion 1. Since the cooling of the liquid refrigerant is performed at a constant flow rate by the cooling facility 70, it is possible to cool the liquid refrigerant and the gas refrigerant on the liquid surface where heat exchange is performed in the refrigerant tank 21.
Moreover, since the refrigerant can be circulated along the inside of the auxiliary cooling pipe 62A by providing the spiral auxiliary cooling pipe 62A, it is effective in the circumferential direction with respect to the liquid refrigerant and the gas refrigerant in the refrigerant tank 21. It is possible to efficiently and uniformly cool, and to efficiently perform cooling and liquid level adjustment.
Further, by maintaining the height of the liquid refrigerant liquid level S in the refrigerant tank 21 by the auxiliary cooling pipe 62A and the second circulating cooling facility 70, the heater 133 is turned on to suppress the pressure rise and fall of the gas refrigerant layer. For example, pressure control and liquid level control for setting the stepwise upper and lower limit values shown in FIG. 8 and FIG. 10 described above are unnecessary, and the liquid level of the liquid refrigerant in the refrigerant tank 21 is reduced. It is possible to control appropriately.

(第三の実施形態)
次に、本発明の第三の実施形態について図5に基づいて説明する。図5は第三の実施形態である極低温ケーブルとしての超電導ケーブル10の終端接続部1Bの概略構成を示す図である。
なお、以下の実施形態である終端接続部1Bにおいて、前述した終端接続部1と同一の構成については同一の符号を伏して重複する説明は省略し、終端接続部1Bについて終端接続部1と異なる点について専ら説明するものとする。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 5 is a diagram showing a schematic configuration of the terminal connection portion 1B of the superconducting cable 10 as the cryogenic cable according to the third embodiment.
In the termination connection unit 1B according to the following embodiment, the description of the same configuration as the termination connection unit 1 is omitted with the same reference numerals omitted, and the termination connection unit 1B is different from the termination connection unit 1. The point will be explained exclusively.

上記終端接続部1Bは、終端接続部1と同じ低温容器20、補助冷却機構60を備えており、低温容器20の冷媒槽21及び超電導ケーブル10の内管121に液体冷媒を循環させる第一の循環冷却設備80Bと、補助冷却機構60に液体冷媒を循環させる第二の循環冷却設備70Bとが、液体冷媒を貯留するリザーバタンク75Bを共用する点が終端接続部1と異なっている。   The end connection portion 1B includes the same low-temperature container 20 and auxiliary cooling mechanism 60 as the end connection portion 1, and a first liquid refrigerant is circulated through the refrigerant tank 21 of the low-temperature container 20 and the inner pipe 121 of the superconducting cable 10. The point is that the circulating cooling facility 80B and the second circulating cooling facility 70B that circulates the liquid refrigerant in the auxiliary cooling mechanism 60 share the reservoir tank 75B that stores the liquid refrigerant.

第一の循環冷却設備80Bは、液体冷媒を貯留するためのリザーバタンク75Bと液体冷媒を循環させる循環ポンプ86と液体冷媒を冷却する冷凍機87からなる冷却装置81と、冷媒槽21及び内管121と冷却装置81との間において液体冷媒の循環経路を形成する輸送管82,83と、輸送管82に設けられ、液体冷媒の流量を自在に制御する流量調整機構としての流量制御弁84とを備えている。
輸送管82、83は、いずれも、真空層を備えた二重管構造により断熱構造が施されている。そして、輸送管82は、断熱構造を備えるバヨネットコネクタ88を介して冷媒槽21に接続され、冷却装置81から冷媒槽21に液体冷媒を供給する。また、輸送管83は、断熱構造を備えるバヨネットコネクタ89を介して超電導ケーブル10の内管121に接続されており、内管121から冷却装置81に向けて液体冷媒を回収する。
The first circulation cooling facility 80B includes a reservoir tank 75B for storing liquid refrigerant, a circulation pump 86 for circulating the liquid refrigerant, and a cooling device 81 including a refrigerator 87 for cooling the liquid refrigerant, the refrigerant tank 21, and the inner pipe. 121 and the cooling device 81, transport pipes 82 and 83 that form a circulation path of the liquid refrigerant, and a flow control valve 84 that is provided in the transport pipe 82 and serves as a flow rate adjusting mechanism that freely controls the flow rate of the liquid refrigerant; It has.
The transport pipes 82 and 83 are both insulated by a double pipe structure having a vacuum layer. The transport pipe 82 is connected to the refrigerant tank 21 via a bayonet connector 88 having a heat insulating structure, and supplies the liquid refrigerant from the cooling device 81 to the refrigerant tank 21. The transport pipe 83 is connected to the inner pipe 121 of the superconducting cable 10 via a bayonet connector 89 having a heat insulating structure, and recovers the liquid refrigerant from the inner pipe 121 toward the cooling device 81.

第二の循環冷却設備70Bは、液体冷媒を貯留するためのリザーバタンク75Bと液体冷媒を循環させる循環ポンプ76Bと液体冷媒を冷却する冷凍機77Bからなる冷却装置71Bと、補助冷媒槽62と冷却装置71Bとの間において液体冷媒の循環経路を形成する輸送管72B,73Bと、輸送管72Bに設けられ、液体冷媒の流量を自在に制御する流量調整機構としての流量制御弁74Bとを備えている。
輸送管72B,73Bは、いずれも、真空層を備えた二重管構造により断熱構造が施されている。そして、輸送管72Bは、断熱構造を備えるバヨネットコネクタ78Bを介して補助冷媒槽62に接続され、冷却装置71Bから補助冷媒槽62に液体冷媒を供給する。また、輸送管73Bは、断熱構造を備えるバヨネットコネクタ79Bを介して補助冷媒槽62に接続されており、補助冷媒槽62から冷却装置71Bに向けて液体冷媒を回収する。
The second circulating cooling facility 70B includes a reservoir tank 75B for storing liquid refrigerant, a circulation pump 76B for circulating the liquid refrigerant, a cooling device 71B including a refrigerator 77B for cooling the liquid refrigerant, an auxiliary refrigerant tank 62, and a cooling device. Transport pipes 72B and 73B that form a circulation path of the liquid refrigerant with the apparatus 71B, and a flow rate control valve 74B that is provided in the transport pipe 72B and serves as a flow rate adjustment mechanism that freely controls the flow rate of the liquid refrigerant. Yes.
The transport pipes 72B and 73B are both heat-insulated by a double pipe structure having a vacuum layer. The transport pipe 72B is connected to the auxiliary refrigerant tank 62 via a bayonet connector 78B having a heat insulating structure, and supplies the liquid refrigerant from the cooling device 71B to the auxiliary refrigerant tank 62. Further, the transport pipe 73B is connected to the auxiliary refrigerant tank 62 via a bayonet connector 79B having a heat insulating structure, and recovers the liquid refrigerant from the auxiliary refrigerant tank 62 toward the cooling device 71B.

上述のように、第一の循環冷却設備80Bの冷却装置81と第二の循環冷却設備70Bの冷却装置71Bとは、リザーバタンク75Bを共用するので同じ液体冷媒がそれぞれの経路を循環することとなる。
これにより、各循環冷却設備80B,70Bの構成が簡易化され、設置コスト、製造コストの低減を図ると共に熱侵入の低減を図ることが可能となる。
As described above, since the cooling device 81 of the first circulating cooling facility 80B and the cooling device 71B of the second circulating cooling facility 70B share the reservoir tank 75B, the same liquid refrigerant circulates through each path. Become.
Thereby, the configuration of each of the circulating cooling facilities 80B and 70B is simplified, and it is possible to reduce the installation cost and the manufacturing cost and reduce the heat intrusion.

また、輸送管72Bの流量制御弁74Bよりも下流側の部分と輸送管82の流量制御弁84よりも下流側の部分とが連結管91により連結されており、当該連結管91には流量制御弁92が装備されている。従って、冷却装置81と冷却装置71Bのいずれか一方に突発的なトラブルが発生し停止した場合でも、流量制御弁74B,84,92を適宜開閉操作することにより、冷却槽21と補助冷却槽62の双方に液体冷媒を供給することが可能となっている。   Further, a downstream portion of the transport pipe 72B from the flow control valve 74B and a downstream portion of the transport pipe 82 from the flow control valve 84 are connected by a connecting pipe 91, and the connecting pipe 91 has a flow control. A valve 92 is provided. Therefore, even when a sudden trouble occurs in either one of the cooling device 81 and the cooling device 71B and stops, the cooling tank 21 and the auxiliary cooling tank 62 can be opened and closed by appropriately opening and closing the flow control valves 74B, 84, and 92. It is possible to supply the liquid refrigerant to both of them.

また、リザーバタンク75Bには、内部の液体冷媒の加熱を行うヒータ133が装備されており、圧力調整機構34には冷媒槽21の内部圧力を検出する圧力センサ132が装備され、また、冷媒槽21には内部の液体冷媒の液面高さを検出する液面センサ131が装備されている。これにより、前述した図7及び図9に示す圧力制御と液面高さ制御が実行される。   The reservoir tank 75B is equipped with a heater 133 that heats the internal liquid refrigerant, the pressure adjustment mechanism 34 is equipped with a pressure sensor 132 that detects the internal pressure of the refrigerant tank 21, and the refrigerant tank. 21 is equipped with a liquid level sensor 131 for detecting the liquid level of the internal liquid refrigerant. Thereby, the pressure control and the liquid level control shown in FIGS. 7 and 9 are executed.

なお、終端接続部1Bも補助冷媒槽62に換えて、第二の実施形態で例示した螺旋状の補助冷却管62Aを備える構成としても良い。   In addition, it is good also as a structure provided with the helical auxiliary | assistant cooling pipe 62A illustrated in 2nd embodiment instead of the auxiliary | assistant refrigerant | coolant tank 62 also in the termination | terminus connection part 1B.

(その他)
以上、本発明者によってなされた発明を第1〜第3の実施形態に基づいて具体的に説明したが、本発明は上記各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
(Other)
As mentioned above, although the invention made | formed by this inventor was concretely demonstrated based on 1st-3rd embodiment, this invention is not limited to said each embodiment, In the range which does not deviate from the summary. It can be changed.

例えば、超電導導体ケーブル10が単心型超電導ケーブルである場合を例示したが、三心のケーブルコアを一括して断熱管内に収納した三心一括型超電導ケーブルの終端部に施工する終端接続部においても適用できる。   For example, although the case where the superconducting conductor cable 10 is a single-core type superconducting cable is illustrated, in the terminal connection part constructed at the terminal part of the three-core collective superconducting cable in which the three-core cable cores are collectively stored in the heat insulation pipe Is also applicable.

また、極低温ケーブルとして超電導ケーブル10を例示したが、極低温下で使用する他の極低温ケーブルについても、上記各実施形態を適用することが可能である。
また、各実施形態では、二次冷媒槽と冷媒槽を冷却するそれぞれの循環冷却システムを流れる冷媒の温度は、基本、同じであってよい。すなわち、二次冷却槽の冷媒の温度を、冷媒槽に対して相対的に低くして循環させる必要はない。基本、管理温度レベル以下であればよい。
Moreover, although the superconducting cable 10 was illustrated as a cryogenic cable, each said embodiment is applicable also to the other cryogenic cable used under cryogenic temperature.
Moreover, in each embodiment, the temperature of the refrigerant | coolant which flows through each circulation cooling system which cools a secondary refrigerant tank and a refrigerant tank may be fundamentally the same. That is, it is not necessary to circulate the refrigerant in the secondary cooling tank at a relatively low temperature relative to the refrigerant tank. Basically, it may be below the control temperature level.

また、冷媒槽21には、その内部領域を上下に二分するバッフル板を装備しても良い。図6は前述した終端接続部1の冷媒槽21の内側にバッフル板を装備する場合の装備位置B1〜B3を図示した説明図である。
バッフル板はプラスチックその他の絶縁体からなる多孔質の平板であり、断熱性を備えている。
バッフル板は、その中心部を引き出し導体31及びブッシング41が貫通している。また、バッフル板とブッシング41の表面及びバッフル板と冷媒槽21の内壁との間は、いずれも僅かな隙間を設けることにより、バッフル板の上下間での断熱性が確保することができる。
このバッフル板の固定は、ブッシング41のフランジ部411や、上蓋から吊下する等の方法が採られる。
また、バッフル板の設置位置は、図6のB1のように、液面Sより上方に固定し、気体冷媒層を上下に二分する配置としても良い。また、図6のB2のように、ほぼ液面Sの高さに固定し、気体冷媒層と液体冷媒槽とを分離する配置としても良い。さらに、図6のB3のように、液面Sより下方に固定し、液体冷媒層を上下に二分する配置としても良い。バッフル板は多孔構造であるため比重が小さく、このように液面Sより下方に固定するには、浮力が生じ得るので、フランジ部411や上蓋から吊下支持する場合には、浮かないように部材で支持することが望ましい。
また、バッフル板は、上下方向について補助冷媒槽62の上端から下端までの範囲内に設置する必要がある。
バッフル板は多孔質であるため高い断熱性を有するため、上述のように固定することでバッフル板の上側の侵入熱が下側の領域に移動をすることを抑止し、高い保冷効果を得ることが可能である。
なお、バッフル板は通気性と通水性は有していないので、圧力センサ132による冷媒槽21の気体層の圧力検出に対する影響が生じないように、上下に貫通する微小の通気孔が形性されていてもよい。
また、バッフル板をB1又はB2に配置する場合には、冷媒槽21の内部の液体冷媒の液面高さを検出するために、浮きの高さを計測する液面計を利用することも可能である。この場合、液面計の浮きの上下動を妨げないように、バッフル板には浮きを上下動させるための微小な貫通穴が形成される。
また、バッフル板を終端接続部1に設ける場合を例示したが、終端接続部1A,1Bに設けても良い。
In addition, the refrigerant tank 21 may be equipped with a baffle plate that bisects the inner region. FIG. 6 is an explanatory diagram illustrating the installation positions B1 to B3 when the baffle plate is installed inside the refrigerant tank 21 of the end connection portion 1 described above.
The baffle plate is a porous flat plate made of plastic or other insulator, and has heat insulation properties.
The baffle plate has a lead conductor 31 and a bushing 41 passing through the center thereof. Further, by providing a slight gap between the baffle plate and the surface of the bushing 41 and between the baffle plate and the inner wall of the refrigerant tank 21, heat insulation between the upper and lower sides of the baffle plate can be ensured.
The baffle plate is fixed by a method such as hanging from the flange portion 411 of the bushing 41 or the upper lid.
Moreover, the installation position of the baffle plate may be arranged so as to be fixed above the liquid level S and the gas refrigerant layer is divided into two vertically as shown by B1 in FIG. Moreover, it is good also as arrangement | positioning which fixes to the height of the liquid level S substantially, and isolate | separates a gas refrigerant layer and a liquid refrigerant tank like B2 of FIG. Furthermore, it is good also as arrangement | positioning which fixes below a liquid level S and divides a liquid refrigerant layer into two up and down like B3 of FIG. Since the baffle plate has a porous structure, the specific gravity is small, and buoyancy may be generated to fix the baffle plate below the liquid level S in this way. It is desirable to support with a member.
Further, the baffle plate needs to be installed in the range from the upper end to the lower end of the auxiliary refrigerant tank 62 in the vertical direction.
Since the baffle plate is porous, it has high heat insulating properties. Therefore, by fixing the baffle plate as described above, it is possible to prevent the intrusion heat on the upper side of the baffle plate from moving to the lower region and to obtain a high cooling effect. Is possible.
In addition, since the baffle plate does not have air permeability and water permeability, a minute ventilation hole penetrating vertically is formed so that the pressure sensor 132 does not affect the pressure detection of the gas layer of the refrigerant tank 21. It may be.
Further, when the baffle plate is arranged at B1 or B2, a liquid level gauge that measures the height of the float can be used to detect the liquid level of the liquid refrigerant inside the refrigerant tank 21. It is. In this case, a small through hole for moving the float up and down is formed in the baffle plate so as not to prevent the vertical movement of the liquid level gauge.
Moreover, although the case where the baffle plate was provided in the termination connection part 1 was illustrated, you may provide in the termination connection parts 1A and 1B.

また、補助冷却機構60の円筒状の補助冷媒槽62は、その内部を水平な分割面により複数(例えば、二乃至三)に上下方向に区分しても良い。例えば、三つに区分する場合には、補助冷媒槽62は上段と中段と下段の三つに領域に区画され、各々の内部は液体冷媒槽の流通ができないように水密性をもって仕切るようにする。そして、上中下の三つの区画のそれぞれに、区画内に液体冷媒を供給する輸送管72と区画内の液体冷媒を回収する輸送管73とを個別に接続し、区画毎に個別に液体冷媒の循環を行うことを可能とする。
これにより、冷媒槽21内の液体冷媒の液面Sの高さが、隔壁61の熱交換面61aにおける上中下のそれぞれの区画に対応する三つの領域のいずれの領域内であるかに応じて、対応する区画について、液体冷媒を供給し循環を行うことで、局所的に効率的な冷却を行うことが可能である。
また、冷媒槽21の内部圧力の上昇の度合いや液面の低下の度合いが激しい場合には、全ての区画に対して液体冷媒の循環を行い、冷却能力を高めることも可能である。
なお、各区画の輸送管72に設けられる流量制御弁74を電気信号による制御流量や開閉制御が可能な電磁弁とし、液面Sの検出に応じて対応する区画に対して液体冷媒の循環を行うよう自動制御を行う構成としても良い。また、その場合も、圧力の上昇率や液面の上昇率を求めてその値が一定値を超えるような場合には全ての区画に対する循環を行うような制御を付加しても良い。
Further, the cylindrical auxiliary refrigerant tank 62 of the auxiliary cooling mechanism 60 may be divided into a plurality (for example, two to three) in the vertical direction by a horizontal dividing surface. For example, when dividing into three, the auxiliary refrigerant tank 62 is divided into three regions of an upper stage, a middle stage, and a lower stage, and each inside is partitioned with water tightness so that the liquid refrigerant tank cannot be circulated. . Then, a transport pipe 72 that supplies the liquid refrigerant into the compartment and a transport pipe 73 that collects the liquid refrigerant in the compartment are individually connected to each of the upper, middle, and lower three compartments, and the liquid refrigerant is individually provided for each compartment. It is possible to circulate.
Thus, depending on which of the three regions corresponding to the upper, middle, and lower sections of the heat exchange surface 61 a of the partition wall 61 is in the height of the liquid refrigerant S in the refrigerant tank 21. Thus, it is possible to locally cool efficiently by supplying a liquid refrigerant and circulating the corresponding compartment.
Further, when the degree of increase in the internal pressure of the refrigerant tank 21 and the degree of decrease in the liquid level are severe, it is possible to circulate the liquid refrigerant to all the compartments to increase the cooling capacity.
In addition, the flow control valve 74 provided in the transport pipe 72 of each section is an electromagnetic valve capable of controlling the flow rate and opening / closing by an electric signal, and the liquid refrigerant is circulated to the corresponding section according to the detection of the liquid level S. It is good also as a structure which performs automatic control to perform. Also in this case, when the rate of increase in pressure or the rate of increase in liquid level is obtained and the value exceeds a certain value, control may be added to perform circulation for all the compartments.

1,1A,1B 終端接続部
10 超電導ケーブル(極低温ケーブル)
11 ケーブルコア
12 断熱管
20 低温容器
21 冷媒槽
22 真空槽
31 引き出し導体
33 碍子管(常温部)
34 圧力調整機構
35 金属箔
41 コンデンサコーン方式のブッシング(絶縁部材)
50 導体用可動接続端子
60,60A 補助冷却機構
61 隔壁
61a 熱交換面
62 補助冷媒槽(補助冷却用の液体冷媒の循環領域)
62A 補助冷却管(補助冷却用の液体冷媒の循環領域)
70,70B 循環冷却設備
71 冷却装置
72,72B 輸送管
73,73B 輸送管
74,74B 流量制御弁(流量調整機構)
75,75B リザーバタンク
80,80B 第一の循環冷却設備
85 リザーバタンク
111 フォーマ
112 超電導導体層
113 電気絶縁層
114 超電導シールド層
121 内管
122 外管
133 ヒータ
341 排出管
342 定圧弁
414 ブッシング絶縁体
414a 下端部
414b 中間部
414c 上端部
415 金属箔
S 液面
1,1A, 1B Termination connection 10 Superconducting cable (Cryogenic cable)
11 Cable core 12 Heat insulation pipe 20 Cryogenic container 21 Refrigerant tank 22 Vacuum tank 31 Drawer conductor 33 Insulator pipe (normal temperature part)
34 Pressure adjusting mechanism 35 Metal foil 41 Capacitor cone type bushing (insulating member)
50 Conductive connection terminals 60, 60A Auxiliary cooling mechanism 61 Partition wall 61a Heat exchange surface 62 Auxiliary refrigerant tank (circulation region of liquid refrigerant for auxiliary cooling)
62A Auxiliary cooling pipe (circulation region of liquid refrigerant for auxiliary cooling)
70, 70B Circulation cooling equipment 71 Cooling device 72, 72B Transport pipe 73, 73B Transport pipe 74, 74B Flow rate control valve (flow rate adjustment mechanism)
75, 75B Reservoir tanks 80, 80B First circulating cooling equipment 85 Reservoir tank 111 Former 112 Superconducting conductor layer 113 Electrical insulation layer 114 Superconducting shield layer 121 Inner pipe 122 Outer pipe 133 Heater 341 Discharge pipe 342 Constant pressure valve 414 Bushing insulator 414a Lower end 414b Middle portion 414c Upper end 415 Metal foil S Liquid level

Claims (8)

ケーブルコアと当該ケーブルコアを冷却する液体冷媒を収容する断熱管とを備えた極低温ケーブルの終端接続部であって、
前記液体冷媒が貯留され、液体冷媒層と気体冷媒層とが形成される冷媒槽と、
下端部が前記極低温ケーブルの超電導導体層と接続されると共に前記液体冷媒層に浸漬され、上端部が前記気体冷媒層を経て常温部に引き出される引出し導体と、
前記引出し導体の周囲に設けられた絶縁部材と、
前記冷媒槽に供給する液体冷媒を貯留するリザーバタンクを有する第一の循環冷却設備と、
前記冷媒槽に設けられ、当該冷媒槽内の前記液体冷媒の液面位置における前記液体冷媒及び前記気体冷媒に対して熱交換を行うための熱交換面を有する補助冷却機構と、
前記補助冷却機構に接続された第二の循環冷却設備とを備え、
前記冷媒槽内の圧力又は液面高さに応じて、前記リザーバタンクを加熱するヒータの加熱と停止とを切り替えて前記冷媒槽内の液面高さが目標の範囲内に制御されることを
特徴とする極低温ケーブルの終端接続部。
A terminal connection part of a cryogenic cable comprising a cable core and a heat insulating pipe for containing a liquid refrigerant for cooling the cable core,
A refrigerant tank in which the liquid refrigerant is stored and a liquid refrigerant layer and a gas refrigerant layer are formed;
A lower conductor is connected to the superconducting conductor layer of the cryogenic cable and is immersed in the liquid refrigerant layer, and an upper conductor is drawn out to the room temperature part through the gas refrigerant layer,
An insulating member provided around the lead conductor;
A first circulating cooling facility having a reservoir tank for storing liquid refrigerant to be supplied to the refrigerant tank;
An auxiliary cooling mechanism provided in the refrigerant tank and having a heat exchange surface for exchanging heat with respect to the liquid refrigerant and the gas refrigerant at a liquid surface position of the liquid refrigerant in the refrigerant tank;
A second circulating cooling facility connected to the auxiliary cooling mechanism,
According to the pressure in the refrigerant tank or the liquid level, the liquid level in the refrigerant tank is controlled within a target range by switching between heating and stopping of the heater that heats the reservoir tank. Characteristic cryogenic cable termination connection.
前記補助冷却機構は、前記熱交換面を有する隔壁を介して前記冷媒槽内を冷却するための補助冷却用の液体冷媒の循環領域として、前記冷媒槽の周囲に形成された補助冷媒槽を備え、
当該補助冷媒槽の上端と下端の間に前記冷媒槽の液体冷媒層の液面位置が配置されていることを特徴とする請求項1記載の極低温ケーブルの終端接続部。
The auxiliary cooling mechanism includes an auxiliary refrigerant tank formed around the refrigerant tank as a circulation region of liquid refrigerant for auxiliary cooling for cooling the inside of the refrigerant tank through a partition having the heat exchange surface. ,
The terminal connection part of the cryogenic cable according to claim 1, wherein a liquid level position of a liquid refrigerant layer of the refrigerant tank is disposed between an upper end and a lower end of the auxiliary refrigerant tank.
前記補助冷媒槽は、液体冷媒で満たして気体冷媒層を有さないことを特徴とする請求項2記載の極低温ケーブルの終端接続部。   The terminal connection part of a cryogenic cable according to claim 2, wherein the auxiliary refrigerant tank is filled with a liquid refrigerant and does not have a gas refrigerant layer. 前記第二の循環冷却設備は、前記補助冷媒槽の上部からの補助冷却用の液体冷媒の供給と前記補助冷媒槽の下部からの補助冷却用の液体冷媒の回収とを輸送管を通じて行うことを特徴とする請求項2又は3記載の極低温ケーブルの終端接続部。   The second circulating cooling facility performs a supply of liquid refrigerant for auxiliary cooling from the upper part of the auxiliary refrigerant tank and recovery of liquid refrigerant for auxiliary cooling from the lower part of the auxiliary refrigerant tank through a transport pipe. The terminal connection part of the cryogenic cable according to claim 2 or 3, characterized by the above-mentioned. 前記第二の循環冷却設備は、前記補助冷媒槽の下部からの補助冷却用の液体冷媒の供給と前記補助冷媒槽の上部からの補助冷却用の液体冷媒の回収とを輸送管を通じて行うことを特徴とする請求項2又は3記載の極低温ケーブルの終端接続部。   The second circulation cooling facility performs supply of liquid refrigerant for auxiliary cooling from the lower part of the auxiliary refrigerant tank and recovery of liquid refrigerant for auxiliary cooling from the upper part of the auxiliary refrigerant tank through a transport pipe. The terminal connection part of the cryogenic cable according to claim 2 or 3, characterized by the above-mentioned. 前記補助冷媒槽を上下に並んだ複数の区画に分割し、それぞれの区画に対して補助冷却用の液体冷媒の供給と補助冷却用の液体冷媒の回収とを行うことを特徴とする請求項2から5のいずれか一項に記載の極低温ケーブルの終端接続部。   3. The auxiliary refrigerant tank is divided into a plurality of upper and lower sections, and supply of the auxiliary cooling liquid refrigerant and recovery of the auxiliary cooling liquid refrigerant are performed for each of the sections. The termination | terminus connection part of the cryogenic cable as described in any one of 1-5. 前記補助冷媒槽は、前記冷媒槽の内側に螺旋状に形成された補助冷却管からなることを特徴とする請求項2から6のいずれか一項に記載の極低温ケーブルの終端接続部。   The terminal connection part for a cryogenic cable according to any one of claims 2 to 6, wherein the auxiliary refrigerant tank includes an auxiliary cooling pipe formed in a spiral shape inside the refrigerant tank. 前記第二の循環冷却設備は、補助冷却用の液体冷媒を貯留するリザーバタンクと、補助冷却用の液体冷媒を循環させる循環ポンプと補助冷却用の液体冷媒を冷却する冷凍機とを有することを特徴とする請求項1から7のいずれか一項に記載の極低温ケーブルの終端接続部。   The second circulation cooling facility includes a reservoir tank that stores liquid refrigerant for auxiliary cooling, a circulation pump that circulates liquid refrigerant for auxiliary cooling, and a refrigerator that cools liquid refrigerant for auxiliary cooling. The terminal connection part of the cryogenic cable as described in any one of Claim 1 to 7 characterized by the above-mentioned.
JP2012083444A 2011-03-31 2012-04-02 Cryogenic cable termination connection Active JP5847000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083444A JP5847000B2 (en) 2011-03-31 2012-04-02 Cryogenic cable termination connection

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011078233 2011-03-31
JP2011078233 2011-03-31
JP2012083444A JP5847000B2 (en) 2011-03-31 2012-04-02 Cryogenic cable termination connection

Publications (2)

Publication Number Publication Date
JP2012217334A JP2012217334A (en) 2012-11-08
JP5847000B2 true JP5847000B2 (en) 2016-01-20

Family

ID=47269566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083444A Active JP5847000B2 (en) 2011-03-31 2012-04-02 Cryogenic cable termination connection

Country Status (1)

Country Link
JP (1) JP5847000B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102005582B1 (en) * 2013-01-23 2019-07-30 엘에스전선 주식회사 Termination Structure of Superconducting Device
KR102005583B1 (en) * 2013-01-23 2019-10-08 엘에스전선 주식회사 Termination Structure of Superconducting Device
KR102005117B1 (en) * 2013-03-05 2019-07-30 엘에스전선 주식회사 Termination Structure of Superconducting Device
JP2015029372A (en) * 2013-07-30 2015-02-12 昭和電線ケーブルシステム株式会社 Terminal device of cryogenic apparatus
JP2016226143A (en) * 2015-05-29 2016-12-28 昭和電線ケーブルシステム株式会社 Terminal connector for cryogenic cable
CN106992481B (en) * 2017-04-25 2018-05-25 朱建新 66kV to 500kV voltage class wall bushing
CN110289513B (en) * 2019-07-08 2024-02-02 旭立辰新能源(东莞)有限公司 Connecting structure of cable for charging gun and charging gun binding post
KR102618454B1 (en) * 2021-03-19 2023-12-27 엘에스일렉트릭(주) Cooling device for superconducting fault current limiter including condensing surface
KR20220130922A (en) * 2021-03-19 2022-09-27 엘에스일렉트릭(주) Power supply system using superconductor
KR102618452B1 (en) * 2021-03-19 2023-12-27 엘에스일렉트릭(주) Cooling apparatus for superconducting fault current limiter
CN114256662B (en) * 2021-12-21 2023-10-31 深圳供电局有限公司 Adiabatic binding post for superconductive combined electric appliance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3181513B2 (en) * 1996-08-26 2001-07-03 住友電気工業株式会社 Terminal structure of cryogenic cable
JP4273525B2 (en) * 2004-05-27 2009-06-03 住友電気工業株式会社 Terminal structure of superconducting equipment
JP2011040705A (en) * 2009-07-14 2011-02-24 Sumitomo Electric Ind Ltd Terminal connection system of superconducting cable

Also Published As

Publication number Publication date
JP2012217334A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5847000B2 (en) Cryogenic cable termination connection
JP4835821B2 (en) Superconducting cable
KR101118374B1 (en) Superconductive cable line
US9251932B2 (en) Terminal connecting part of superconducting cable
EP2602796B1 (en) Superconductor cable anchoring structure and superconductor cable line anchoring structure
CN100524546C (en) Superconducting cable line
TWI508402B (en) Terminal apparatus of superconducting device
US20170200541A1 (en) Superconducting magnet
US11540419B2 (en) Systems and methods for cooling of superconducting power transmission lines
US4625193A (en) Magnet lead assembly
TWI508403B (en) Terminal apparatus of superconducting device
CN112136189B (en) Superconducting magnet
EP2908145A1 (en) Method for testing cable core for superconducting cable, and cooling container
JP2006108560A (en) Current lead for superconductive apparatus
JP4273525B2 (en) Terminal structure of superconducting equipment
JP2005341767A (en) Terminal structure of superconducting cable
JP2014146585A (en) Superconductive cable and superconductive cable rail track
US8264802B2 (en) Current limiting device
KR20170016129A (en) A cryogenic refrigerant supply of Superconducting devices
JP2014146584A (en) Superconductive cable and superconductive cable rail track
KR20150051130A (en) Very Low Temperature Cooling Device And Connecting Structure of Superconducting Device
CN116888847A (en) Superconducting power supply system
US20190214813A1 (en) Pressure generation apparatus and method for superconducting power equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R151 Written notification of patent or utility model registration

Ref document number: 5847000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350