JP2016226143A - Terminal connector for cryogenic cable - Google Patents

Terminal connector for cryogenic cable Download PDF

Info

Publication number
JP2016226143A
JP2016226143A JP2015109786A JP2015109786A JP2016226143A JP 2016226143 A JP2016226143 A JP 2016226143A JP 2015109786 A JP2015109786 A JP 2015109786A JP 2015109786 A JP2015109786 A JP 2015109786A JP 2016226143 A JP2016226143 A JP 2016226143A
Authority
JP
Japan
Prior art keywords
baffle plate
layer
refrigerant
baffle plates
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2015109786A
Other languages
Japanese (ja)
Inventor
足立 和久
Kazuhisa Adachi
和久 足立
信博 三堂
Nobuhiro Sandou
信博 三堂
勉 小泉
Tsutomu Koizumi
勉 小泉
信幸 瀬間
Nobuyuki Sema
信幸 瀬間
隆代 長谷川
Takayo Hasegawa
隆代 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2015109786A priority Critical patent/JP2016226143A/en
Priority to CN201610363317.0A priority patent/CN106207946A/en
Publication of JP2016226143A publication Critical patent/JP2016226143A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/34Cable fittings for cryogenic cables

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a terminal connector for a cryogenic cable capable of reducing heat intrusion from the outside to the inside via a conductor lead-out part.SOLUTION: The terminal connector comprises: a terminal part of a cryogenic cable; a refrigerant tank in which a liquid refrigerant for cooling the terminal part of the cryogenic cable is stored, the terminal part of the cryogenic cable is disposed and a liquid refrigerant layer and a gas refrigerant layer are formed; and a conductor lead-out part of which the lower end is immersed in the liquid refrigerant and connected to a conductor of the cryogenic cable and the upper end is led out to a normal-temperature part via the gas refrigerant layer. In the gas refrigerant layer of the refrigerant tank, a plurality of insulative baffle plates are disposed around the conductor lead-out part for partitioning the gas refrigerant layer at predetermined intervals in a direction of extension of the conductor lead-out part.SELECTED DRAWING: Figure 1

Description

本発明は、超電導ケーブル等の極低温ケーブルの終端接続部に関する。   The present invention relates to a terminal connection part of a cryogenic cable such as a superconducting cable.

従来、極低温で超電導状態になる超電導線材を導体として用いた超電導ケーブルが知られている。超電導ケーブルは、大電流を低損失で送電可能な電力ケーブルとして期待されており、実用化に向けて開発が進められている。   Conventionally, a superconducting cable using a superconducting wire that becomes a superconducting state at an extremely low temperature as a conductor is known. The superconducting cable is expected as a power cable capable of transmitting a large current with a low loss, and is being developed for practical use.

超電導ケーブルは、断熱管内に一心又は複数心のケーブルコアが収容された構造を有する。ケーブルコアは、例えば中心から順に、フォーマ、超電導導体層、電気絶縁層、ケーブルシールド層、及び保護層等を有する。断熱管は、ケーブルコアを収容し内部に冷媒(例えば液体窒素)が充填される内管(以下「断熱内管」)と、断熱内管の外周を覆う外管(以下「断熱外管」)を有する。断熱内管と断熱外管の間は、断熱のために真空状態とされる。   The superconducting cable has a structure in which a single-core or multiple-core cable core is accommodated in a heat insulating tube. The cable core includes, for example, a former, a superconducting conductor layer, an electrical insulating layer, a cable shield layer, and a protective layer in order from the center. The heat insulation pipe includes an inner pipe (hereinafter referred to as “heat insulation inner pipe”) in which the cable core is accommodated and filled with a refrigerant (for example, liquid nitrogen), and an outer pipe (hereinafter referred to as “heat insulation outer pipe”) covering the outer periphery of the heat insulation inner pipe. Have Between the heat insulating inner tube and the heat insulating outer tube, a vacuum state is set for heat insulation.

超電導ケーブルの終端接続部においては、低温部となる低温容器に超電導ケーブルの端末部が収容され、超電導ケーブルの導体(例えば超電導導体層)が導体引出部を介して常温部に引き出される。低温容器は、超電導ケーブルの端末部を、当該超電導ケーブルの断熱内管に連通させて収容し運転時に液体窒素等の冷媒が充填される冷媒槽と、冷媒槽を収容し、冷媒槽への熱侵入を低減するために運転時に真空状態とされる真空槽とからなる二重構造を有する。また、冷媒槽の上部には、冷媒槽の外部に引き出された導体引出部を囲むように、終端接続部の設置環境における温度(例えば、室温)の層(常温層)を形成する常温部としての碍管が設けられる。   In the terminal connection part of the superconducting cable, the terminal part of the superconducting cable is accommodated in a low temperature container that is a low temperature part, and the conductor of the superconducting cable (for example, the superconducting conductor layer) is drawn out to the room temperature part through the conductor lead-out part. The cryogenic container accommodates the terminal portion of the superconducting cable in communication with the heat-insulated inner tube of the superconducting cable and contains a refrigerant tank filled with a refrigerant such as liquid nitrogen during operation, a refrigerant tank, and heat to the refrigerant tank. In order to reduce intrusion, it has a double structure consisting of a vacuum chamber that is evacuated during operation. In addition, as a room temperature part that forms a layer (room temperature layer) of temperature (for example, room temperature) in the installation environment of the terminal connection part so as to surround the conductor drawing part drawn to the outside of the refrigerant tank at the upper part of the refrigerant tank A soot tube is provided.

冷媒槽の内部には、液体窒素等の液体冷媒により構成される液体冷媒層と、気体冷媒層とが形成されている。導体引出部は、液体窒素等の液体冷媒が充填される極低温(例えば、液体窒素が液体冷媒の場合、大気圧で−196℃)の液体冷媒層から気体冷媒層を通過し、碍管(常温部)の常温層に引き出されている。これにより気体冷媒層には温度分布が発生し、冷媒層において気体冷媒層は、極低温の液体冷媒層側の下端部から常温の碍管側にある上端部まで温度が変化している温度勾配部として機能する。   A liquid refrigerant layer composed of a liquid refrigerant such as liquid nitrogen and a gas refrigerant layer are formed inside the refrigerant tank. The conductor lead-out portion passes through the gas refrigerant layer from the liquid refrigerant layer at a cryogenic temperature (for example, liquid nitrogen is liquid refrigerant, −196 ° C. at atmospheric pressure) filled with a liquid refrigerant such as liquid nitrogen, Part) at room temperature. As a result, a temperature distribution is generated in the gas refrigerant layer, and in the refrigerant layer, the temperature of the gas refrigerant layer changes from the lower end of the cryogenic liquid refrigerant layer to the upper end of the normal pipe side Function as.

このような終端接続部の構成では、冷媒槽の気体冷媒層は、導体引出部を介して常温部の常温層に隣接するので、導体引出部を介した熱侵入を受け易く、冷媒槽の外部から内部に、極低温環境下の液体冷媒層に向かって熱流入が発生する。この熱流入が大きい場合、導体引出部の下端部が浸漬される液体冷媒層における液体窒素の損失量が大きくなり、液体冷媒による超電導ケーブルの端末部を冷却する際の損失が大きくなる。   In such a configuration of the terminal connection part, the gas refrigerant layer of the refrigerant tank is adjacent to the normal temperature layer of the normal temperature part via the conductor extraction part, so that it is easy to receive heat intrusion via the conductor extraction part and the outside of the refrigerant tank. From inside, heat flows in toward the liquid refrigerant layer in a cryogenic environment. When this heat inflow is large, the loss amount of liquid nitrogen in the liquid refrigerant layer in which the lower end portion of the conductor lead-out portion is immersed becomes large, and the loss when cooling the terminal portion of the superconducting cable by the liquid refrigerant becomes large.

これに対して、例えば、特許文献1に示すように、冷媒槽内において、導体引出部の外周にストレスコーンが設けられ、このストレスコーンを囲むように、冷媒槽の液体冷媒層、液体冷媒の界面、或いは、気体冷媒層のいずれか一箇所で、一枚のバッフル板を設ける構成が知られている。このバッフル板により温度勾配部において極低温側と常温側とを断熱し、常温側から液体冷媒層への熱侵入を防ぐようにしている。   On the other hand, for example, as shown in Patent Document 1, a stress cone is provided on the outer periphery of the conductor lead-out portion in the refrigerant tank, and the liquid refrigerant layer of the refrigerant tank and the liquid refrigerant are surrounded by the stress cone. A configuration in which one baffle plate is provided at any one of the interface and the gas refrigerant layer is known. This baffle plate insulates the cryogenic temperature side and the room temperature side in the temperature gradient portion so as to prevent heat from entering the liquid refrigerant layer from the room temperature side.

特開2012−217334号公報JP 2012-217334 A

上述したように、冷媒槽内に配置される導体引出部を介して、液体冷媒層の超電導ケーブルの端末部の導体から電流を、気体冷媒層を経て常温部に引き出す従来の終端接続部において、導体引出部を介した外部から内部への熱侵入を従来よりも一層効果的に実現したいという要望があった。   As described above, in the conventional terminal connection part that draws the current from the conductor of the terminal part of the superconducting cable of the liquid refrigerant layer to the room temperature part through the gas refrigerant layer, through the conductor extraction part arranged in the refrigerant tank, There has been a demand for realizing more effective heat penetration from the outside to the inside via the conductor lead-out portion.

本発明の目的は、導体引出部を介した外部から内部への熱侵入を低減でき、信頼性の高い極低温ケーブルの終端接続部を提供することである。   An object of the present invention is to provide a highly reliable terminal connection portion of a cryogenic cable that can reduce heat intrusion from outside to inside through a conductor lead portion.

本発明に係る極低温ケーブルの終端接続部は、極低温ケーブルの端末部と、
前記極低温ケーブルの端末部を冷却する液体冷媒が貯留され、前記極低温ケーブルの端末部が配置される液体冷媒層と当該液体冷媒層上で連続する気体冷媒層とが形成される冷媒槽と、
下端部が前記液体冷媒に浸漬され、且つ、前記極低温ケーブルの導体に接続され、上端側が前記気体冷媒層を経て常温部に引き出される導体引出部と、
を有し、
前記冷媒槽の前記気体冷媒層には、前記導体引出部の周囲に配置され、前記気体冷媒層を、前記導体引出部の延在方向で所定間隔を空けて仕切る複数の絶縁性を有するバッフル板が設けられている、構成を採る。
The terminal connection part of the cryogenic cable according to the present invention is a terminal part of the cryogenic cable,
A refrigerant tank in which liquid refrigerant for cooling a terminal portion of the cryogenic cable is stored, and a liquid refrigerant layer in which the terminal portion of the cryogenic cable is disposed and a gas refrigerant layer continuous on the liquid refrigerant layer; ,
A conductor lead-out portion whose lower end is immersed in the liquid refrigerant and connected to the conductor of the cryogenic cable, and whose upper end is drawn out to the room temperature portion through the gas refrigerant layer;
Have
The gas refrigerant layer of the refrigerant tank is disposed around the conductor extraction portion, and has a plurality of insulating baffle plates that divide the gas refrigerant layer at predetermined intervals in the extending direction of the conductor extraction portion. The structure is provided.

本発明によれば、冷媒槽の気体冷媒層において導体引出部の周囲に配置される複数のバッフル板によって、気体冷媒層を複数の層で仕切るので、導体引出部を介した外部から内部への熱侵入を低減でき、信頼性の高い極低温ケーブルの終端接続部が実現される。   According to the present invention, the gas refrigerant layer is partitioned into a plurality of layers by the plurality of baffle plates arranged around the conductor lead-out portion in the gas refrigerant layer of the refrigerant tank, so that from the outside to the inside through the conductor lead-out portion. Thermal intrusion can be reduced and a highly reliable cryogenic cable termination connection can be realized.

本発明の一実施の形態に係る終端接続部を示す図。The figure which shows the termination | terminus connection part which concerns on one embodiment of this invention. 図1において冷媒槽の気体冷媒層部分を示す拡大部分断面図。The expanded partial sectional view which shows the gaseous refrigerant | coolant layer part of a refrigerant tank in FIG. 本発明の一実施の形態に係る終端接続部のバッフル板の説明に供する仕切りユニットの斜視図。The perspective view of the partition unit with which it uses for description of the baffle plate of the termination | terminus connection part which concerns on one embodiment of this invention. 本発明の一実施の形態に係る終端接続部のバッフル板の説明に供する仕切りユニットの他の一例を示す斜視図。The perspective view which shows another example of the partition unit with which it uses for description of the baffle plate of the termination | terminus connection part which concerns on one embodiment of this invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る終端接続部1を示す図である。説明の便宜上、極低温ケーブルとしての超電導ケーブル10が導入される側を後端側(図1では右側)、反対側を先端側(図1では左側)として説明する。   FIG. 1 is a diagram showing a termination connection unit 1 according to an embodiment of the present invention. For convenience of explanation, the side where the superconducting cable 10 as a cryogenic cable 10 is introduced will be described as the rear end side (right side in FIG. 1), and the opposite side will be described as the front end side (left side in FIG. 1).

図1に示すように、終端接続部1は、超電導ケーブル10の端末部、低温容器20、導体引出部30、碍管40、シールド通電部50、仕切りユニット70等を備える。低温容器20(詳細には冷媒槽21の冷媒槽本体21A)に超電導ケーブル10の端末部が所定の状態で収容され、導体引出部30を介して超電導ケーブル10の導体電流が電力機器等の実系統側に引き出される。また、シールド通電部50を介して、超電導ケーブル10のケーブルシールド層114が接地される。   As shown in FIG. 1, the terminal connection portion 1 includes a terminal portion of the superconducting cable 10, a cryogenic container 20, a conductor extraction portion 30, a soot tube 40, a shield energization portion 50, a partition unit 70, and the like. The terminal portion of the superconducting cable 10 is housed in a predetermined state in the cryogenic container 20 (specifically, the refrigerant tank main body 21A of the refrigerant tank 21), and the conductor current of the superconducting cable 10 is supplied to the power device or the like through the conductor lead-out part 30. It is pulled out to the system side. Further, the cable shield layer 114 of the superconducting cable 10 is grounded via the shield energization unit 50.

超電導ケーブル10は、断熱管12内に一心のケーブルコア11が収容された単心型の超電導ケーブルである。なお、超電導ケーブル10は、ケーブルコア11が3本撚り合わせた状態で断熱管12内に収容される三心一括型の三相超電導ケーブルであってもよい。   The superconducting cable 10 is a single-core superconducting cable in which a single-core cable core 11 is accommodated in a heat insulating tube 12. The superconducting cable 10 may be a three-core batch type three-phase superconducting cable accommodated in the heat insulating tube 12 in a state where three cable cores 11 are twisted together.

ケーブルコア11は、例えば中心から順に、フォーマ111、超電導導体層112、電気絶縁層113、ケーブルシールド層114、及び保護層115等を有する。   The cable core 11 includes, for example, a former 111, a superconducting conductor layer 112, an electrical insulating layer 113, a cable shield layer 114, a protective layer 115, and the like in order from the center.

超電導ケーブル10の端末部においては、ケーブルコア11に段剥ぎ加工が施され、先端側から順に各層が露出する。超電導導体層112の外周には、超電導導体層112に電気的に接続される接続電極部(以下、「電極部」という)13が配置される。ケーブルシールド層114の外周には、ケーブルシールド層114に電気的に接続されるシールド接続端子14が配置される。電極部13とシールド接続端子14の間に位置する電気絶縁層113の外周には、ストレスコーン等の電界緩和部15が配置される。   In the terminal portion of the superconducting cable 10, the cable core 11 is stepped, and each layer is exposed in order from the tip side. A connection electrode portion (hereinafter referred to as “electrode portion”) 13 that is electrically connected to the superconducting conductor layer 112 is disposed on the outer periphery of the superconducting conductor layer 112. A shield connection terminal 14 that is electrically connected to the cable shield layer 114 is disposed on the outer periphery of the cable shield layer 114. An electric field relaxation portion 15 such as a stress cone is disposed on the outer periphery of the electrical insulating layer 113 located between the electrode portion 13 and the shield connection terminal 14.

断熱管12は、内側の断熱内管121と外側の断熱外管122とからなる二重管構造を有する。   The heat insulating tube 12 has a double tube structure including an inner heat insulating inner tube 121 and an outer heat insulating outer tube 122.

断熱内管121は、ケーブルコア11を収容し、運転時には液体冷媒N(例えば液体窒素)が充填される。これにより、超電導導体層112は、超電導状態に維持される。断熱内管121と断熱外管122の間は、断熱のために、運転時に真空状態に保持される。   The heat insulating inner pipe 121 accommodates the cable core 11 and is filled with a liquid refrigerant N (for example, liquid nitrogen) during operation. Thereby, the superconducting conductor layer 112 is maintained in a superconducting state. A space between the heat insulating inner pipe 121 and the heat insulating outer pipe 122 is kept in a vacuum state during operation for heat insulation.

低温容器20は、内側の冷媒槽21と外側の真空槽22とからなる二重構造を有する。   The cryogenic container 20 has a double structure including an inner refrigerant tank 21 and an outer vacuum tank 22.

冷媒槽21は、例えば中空の有底円筒形状を有し、超電導ケーブル10の端末部を収容する冷媒槽本体21A、導体引出部30を導入する導体引出筒状部(以下、「引出筒状部」という)21B及びシールド通電部50を導入するシールド引出口21Cを有する。なお、冷媒槽本体21Aは、一体で構成された有底円筒形状でなくてもよく、本実施の形態の冷媒槽本体21Aは、筒状部分の先端側開口を円盤状の先端部211で閉塞することにより形成されている。有底筒状冷媒槽21は、例えば真空槽22内に配置された架台(図示略)に載置してもよい。   The refrigerant tank 21 has, for example, a hollow bottomed cylindrical shape, a refrigerant tank main body 21A that houses the terminal portion of the superconducting cable 10, and a conductor lead-out cylindrical part that introduces the conductor lead-out part 30 (hereinafter referred to as “drawer cylindrical part”). And a shield outlet 21 </ b> C for introducing the shield energization unit 50. The refrigerant tank main body 21A does not have to be integrally formed with a bottomed cylindrical shape, and the refrigerant tank main body 21A according to the present embodiment closes the opening on the front end side of the cylindrical portion with the disk-shaped front end portion 211. It is formed by doing. The bottomed cylindrical refrigerant tank 21 may be placed on a gantry (not shown) disposed in the vacuum tank 22, for example.

冷媒槽21には後端側(詳細には、冷媒槽本体21Aの後端側)から超電導ケーブル10の端末部が導入される。冷媒槽21の後端部212には、超電導ケーブル10の断熱内管121が接続される。冷媒槽21には、運転時に冷媒循環装置(図示略)により液体冷媒(例えば、液体窒素)Nが循環供給される。冷媒槽21に連通する断熱内管121の内部も液体冷媒で充填される。   The terminal part of the superconducting cable 10 is introduced into the refrigerant tank 21 from the rear end side (specifically, the rear end side of the refrigerant tank main body 21A). A heat insulating inner pipe 121 of the superconducting cable 10 is connected to the rear end portion 212 of the refrigerant tank 21. A liquid refrigerant (for example, liquid nitrogen) N is circulated and supplied to the refrigerant tank 21 by a refrigerant circulation device (not shown) during operation. The inside of the heat insulating inner pipe 121 communicating with the refrigerant tank 21 is also filled with the liquid refrigerant.

冷媒槽21には、供給される液体冷媒Nが貯留し、液体冷媒Nにより超電導ケーブル10の端末部を冷却する。冷媒槽21では、液体冷媒Nの液面NSの下側に液体冷媒(例えば液体窒素)からなる液体冷媒層が形成され、液面NSの上側に気体冷媒(例えば、気体窒素)ANからなる気体冷媒層が形成されている。例えば、冷媒槽21に液体冷媒Nを貯留することによって、冷媒槽21に貯留する液体冷媒Nの液体冷媒層と、液体冷媒Nが気化して、液体冷媒層の上方で、且つ、液体冷媒層に連続する気体冷媒ANの気体冷媒層とが形成される。   In the refrigerant tank 21, the supplied liquid refrigerant N is stored, and the terminal portion of the superconducting cable 10 is cooled by the liquid refrigerant N. In the refrigerant tank 21, a liquid refrigerant layer made of a liquid refrigerant (for example, liquid nitrogen) is formed below the liquid surface NS of the liquid refrigerant N, and a gas made of a gas refrigerant (for example, gaseous nitrogen) AN is formed above the liquid surface NS. A refrigerant layer is formed. For example, by storing the liquid refrigerant N in the refrigerant tank 21, the liquid refrigerant layer of the liquid refrigerant N stored in the refrigerant tank 21 and the liquid refrigerant N are vaporized, and above the liquid refrigerant layer and the liquid refrigerant layer. A gas refrigerant layer of the gas refrigerant AN that is continuous with the gas refrigerant AN.

気体冷媒層は、ここでは、冷媒槽21の引出筒状部21B内部に形成される。引出筒状部21Bは、冷媒槽21の有底円筒形状の冷媒槽本体21Aの上部に、互いの内部を連通させた状態で垂設されている。引出筒状部21Bの上部には、一般に、常温部と呼ばれる碍管40が互いの内部を連通させた状態で、固定されている。引出筒状部21B内の気体冷媒層には、気体冷媒層を複数層に仕切る複数のバッフル板71を有する仕切りユニット70が配置されている。この仕切りユニット70の詳細については後述する。   Here, the gas refrigerant layer is formed inside the drawn cylindrical portion 21 </ b> B of the refrigerant tank 21. The lead-out cylindrical part 21 </ b> B is suspended from the upper part of the bottomed cylindrical refrigerant tank main body 21 </ b> A of the refrigerant tank 21 in a state where the insides thereof are communicated with each other. In general, a soot tube 40 called a normal temperature portion is fixed to the upper portion of the drawer tubular portion 21B in a state where the insides thereof are in communication with each other. A partition unit 70 having a plurality of baffle plates 71 for partitioning the gas coolant layer into a plurality of layers is disposed in the gas coolant layer in the drawer tubular portion 21B. Details of the partition unit 70 will be described later.

真空槽22は、例えば中空の有底円筒形状を有し、冷媒槽21を収容する真空槽本体部22A、真空槽本体部22Aから上方に向けて垂設される第1の筒状部22B、及び第1の筒状部22Bと離間して真空槽本体部22Aから上方に向けて垂設される第2の筒状部22Cを有する。一般に、第2の筒状部22Cは、引出筒状部21Bと、引出筒状部21B内の気体冷媒層等とともに、一般に、温度勾配部と呼ばれる。なお、真空槽本体部22Aは、一体で構成された有底円筒形状でなくてもよく、本実施の形態の真空層本体部22Aは、筒状部分の先端側開口を円盤状の先端部221で閉塞することにより形成されている。   The vacuum tank 22 has, for example, a hollow bottomed cylindrical shape, and includes a vacuum tank main body 22A that accommodates the refrigerant tank 21, a first cylindrical portion 22B that is suspended upward from the vacuum tank main body 22A, And a second cylindrical portion 22C that is spaced apart from the first cylindrical portion 22B and extends upward from the vacuum chamber main body portion 22A. In general, the second cylindrical portion 22C is generally referred to as a temperature gradient portion together with the drawer cylindrical portion 21B, the gas refrigerant layer in the drawer cylindrical portion 21B, and the like. The vacuum chamber main body 22A may not be integrally formed with a bottomed cylindrical shape, and the vacuum layer main body 22A of the present embodiment has a disk-shaped front end 221 with the opening on the front end side of the cylindrical portion. It is formed by closing with.

真空槽22の内部には、第1の筒状部22B内に引出筒状部21Bが位置し、第2の筒状部22Cの下方にシールド引出口21Cが位置するように位置決めされた状態で、冷媒槽21が配置される。真空槽22の後端部222には、超電導ケーブル10の断熱外管122が接続される。   The vacuum chamber 22 is positioned so that the extraction cylindrical portion 21B is positioned in the first cylindrical portion 22B and the shield outlet 21C is positioned below the second cylindrical portion 22C. The refrigerant tank 21 is arranged. A heat insulating outer tube 122 of the superconducting cable 10 is connected to the rear end portion 222 of the vacuum chamber 22.

第1の筒状部22Bは、引出筒状部21Bの外周を囲むように配置され、第1の筒状部22Bの上部には、引出筒状部21B内と気密に連通する碍管40が固定される。第2の筒状部22Cには測定用配管61、及びシールド通電部50が配置される。   The first tubular portion 22B is disposed so as to surround the outer periphery of the drawer tubular portion 21B, and a soot tube 40 that is in airtight communication with the inside of the drawer tubular portion 21B is fixed to the upper portion of the first tubular portion 22B. Is done. The measurement pipe 61 and the shield energization part 50 are disposed in the second cylindrical part 22C.

冷媒槽21におけるシールド引出口21Cが真空槽22の真空槽本体部22Aに収容されるので、熱伝達経路となるシールド通電部50、及び測定用配管61は真空槽本体部22Aの内部まで導入される。これにより、熱侵入を低減するための熱伝達経路長を確保しやすくなるので、第2の筒状部22Cの長さを最小限にすることができ、終端接続部1の小型化を図ることができる。   Since the shield outlet 21C in the refrigerant tank 21 is accommodated in the vacuum tank main body 22A of the vacuum tank 22, the shield energization part 50 and the measurement pipe 61 serving as a heat transfer path are introduced to the inside of the vacuum tank main body 22A. The Thereby, since it becomes easy to ensure the heat transfer path length for reducing heat intrusion, the length of the second cylindrical portion 22C can be minimized, and the terminal connection portion 1 can be downsized. Can do.

真空槽22は、運転時に真空ポンプ(図示略)により真空引きされ、真空状態に保持される。真空槽22に連通する断熱内管121と断熱外管122の間の空間も真空状態に保持される。   The vacuum chamber 22 is evacuated by a vacuum pump (not shown) during operation and kept in a vacuum state. The space between the heat insulating inner tube 121 and the heat insulating outer tube 122 communicating with the vacuum chamber 22 is also maintained in a vacuum state.

導体引出部30は、超電導ケーブル10から実系統に電流を引き出すための導体である。導体引出部30は、例えば銅製の棒材またはパイプ材からなる導体引出棒を有する。なお、導体引出部30の構成はこれに限定されず、公知の構成を適用することができる。導体引出部30(導体引出棒)の一端は電極部13に接続される。導体引出部30は、電極部13を介して極低温ケーブル10の超電導導体層112と電気的に接続され、他端は、碍管40を気密に貫通して碍管40の上部から外部に引き出される。   The conductor lead-out part 30 is a conductor for drawing a current from the superconducting cable 10 to the actual system. The conductor lead part 30 has a conductor lead bar made of, for example, a copper bar or a pipe. In addition, the structure of the conductor extraction part 30 is not limited to this, A well-known structure is applicable. One end of the conductor lead portion 30 (conductor lead bar) is connected to the electrode portion 13. The conductor lead-out part 30 is electrically connected to the superconducting conductor layer 112 of the cryogenic cable 10 through the electrode part 13, and the other end penetrates the soot pipe 40 in an airtight manner and is drawn out from the upper part of the soot pipe 40.

具体的には、導体引出部30の下端部は、冷媒槽21内の液体冷媒Nに浸漬されつつ、電極部13を介して超電導ケーブル10の端末部に接続されている。   Specifically, the lower end portion of the conductor lead-out portion 30 is connected to the terminal portion of the superconducting cable 10 through the electrode portion 13 while being immersed in the liquid refrigerant N in the refrigerant tank 21.

また、導体引出部30の下端部では、導体引出部30において電極部13と接続される部位(下端)の上部分の外周に、電界緩和部(所謂ストレスコーン)62が配設されている。電界緩和部62は、冷媒槽21内において、導体引出部30の周囲に、液体冷媒Nの液面の上方に上部を露出させている。   Further, at the lower end portion of the conductor lead-out portion 30, an electric field relaxation portion (so-called stress cone) 62 is disposed on the outer periphery of the upper portion of the portion (lower end) connected to the electrode portion 13 in the conductor lead-out portion 30. The electric field relaxation part 62 exposes the upper part above the liquid surface of the liquid refrigerant N around the conductor lead-out part 30 in the refrigerant tank 21.

なお、電界緩和部62は、電極部13から引き出されて導体引出部30を流れる電流の電界を緩和する筒状のものであり、その外径は、引出筒状部21Bの内径よりも小さく、引出筒状部21Bの内周面との間で隙間ができるように形成される。   The electric field relaxation portion 62 is a cylindrical member that relaxes the electric field of the current drawn from the electrode portion 13 and flowing through the conductor extraction portion 30, and the outer diameter thereof is smaller than the inner diameter of the extraction cylindrical portion 21B. It forms so that a clearance gap may be made between the inner peripheral surfaces of the extraction | drawer cylindrical part 21B.

導体引出部30は、下端部が液体冷媒Nに浸漬し、下端部上の中央部分の下側が引出筒状部21B内に配置され、中央部分の上側が常温部としての碍管40内に配置される。導体引出部30の上端部は、碍管40内を通過して、碍管40の上端部を気密に貫通して碍管40の外部に、電気的に接続可能に露出している。   The conductor lead-out part 30 is immersed in the liquid refrigerant N at the lower end, the lower side of the central part on the lower end part is arranged in the lead-out cylindrical part 21B, and the upper side of the central part is arranged in the vertical tube 40 as a normal temperature part. The The upper end portion of the conductor lead-out portion 30 passes through the inside of the soot tube 40, penetrates the top end portion of the soot tube 40 in an airtight manner, and is exposed to the outside of the soot tube 40 so as to be electrically connectable.

引出筒状部21Bの内部の導体引出部30は、引出筒状部21Bの内周面から一定の間隔を空けた位置に配置される。ここでは、導体引出部30は、引出筒状部21B内を、その軸心上を挿通するように配置されている。   The conductor lead-out part 30 inside the lead-out cylindrical part 21B is arranged at a position spaced apart from the inner peripheral surface of the lead-out cylindrical part 21B. Here, the conductor lead-out portion 30 is disposed so as to be inserted through the inside of the lead-out cylindrical portion 21B on its axis.

なお、導体引出部30は、少なくとも一部に、例えば平編銅線等のフレキシブル導体(図示略)を有するのが好ましい。これにより、極低温ケーブル10の熱伸縮により電極部13の位置が水平方向に(図1の左右方向)に移動しても、容易に追従できるので、導体引出部30が冷媒槽21に固定される場合と異なり、固定箇所の損傷を防止できる。   In addition, it is preferable that the conductor extraction part 30 has flexible conductors (not shown), such as a flat knitted copper wire, at least in part. Thereby, even if the position of the electrode part 13 moves in the horizontal direction (left and right direction in FIG. 1) due to thermal expansion and contraction of the cryogenic cable 10, the conductor lead-out part 30 is fixed to the refrigerant tank 21. Unlike the case, it is possible to prevent the fixed part from being damaged.

導体引出部30は、冷媒槽21の引出筒状部21B内に配置される仕切りユニット70の複数のバッフル板71に遊挿されている。ここで、バッフル板71について仕切りユニット70とともに詳細に説明する。   The conductor lead-out portion 30 is loosely inserted into the plurality of baffle plates 71 of the partition unit 70 arranged in the lead-out cylindrical portion 21B of the refrigerant tank 21. Here, the baffle plate 71 will be described in detail together with the partition unit 70.

図2は、図1において冷媒槽の気体冷媒層部分を示す拡大部分断面図であり、図3は、本発明の一実施の形態に係る終端接続部のバッフル板の説明に供する仕切りユニットの斜視図である。   FIG. 2 is an enlarged partial cross-sectional view showing a gas refrigerant layer portion of the refrigerant tank in FIG. 1, and FIG. 3 is a perspective view of a partition unit used for explaining a baffle plate of a terminal connection portion according to an embodiment of the present invention. FIG.

図1及び図2に示すように、冷媒槽21内の気体冷媒層に、仕切りユニット70を設置することにより、冷媒槽21の引出筒状部21B内には、複数のバッフル板71が、導体引出部30の周囲に、導体引出部30の延在方向で所定間隔を空けて配置されている。複数のバッフル板71(最下段のバッフル板71を除く)は、終端接続部1の冷媒槽21内において絶縁してない領域に設置される。なお、バッフル板71の設置位置である所定間隔は、導体引出部30に沿う真空槽22の長さ(引出筒状部21Bの外周部分の筒状部22Bの長さ)に基づく温度勾配によって設定される。真空槽22の長さが長ければ、導体引出部30の延在方向での温度勾配(上端の常温から下端の極低温に向かって温度下降の勾配)は小さくなる。   As shown in FIG. 1 and FIG. 2, by installing a partition unit 70 in the gas refrigerant layer in the refrigerant tank 21, a plurality of baffle plates 71 are provided in the drawer tubular portion 21 </ b> B of the refrigerant tank 21. Around the lead-out part 30, the conductor lead-out part 30 is arranged at a predetermined interval in the extending direction. The plurality of baffle plates 71 (excluding the lowermost baffle plate 71) are installed in a region that is not insulated in the refrigerant tank 21 of the terminal connection portion 1. Note that the predetermined interval, which is the installation position of the baffle plate 71, is set by a temperature gradient based on the length of the vacuum chamber 22 along the conductor extraction portion 30 (the length of the cylindrical portion 22B on the outer peripheral portion of the extraction cylindrical portion 21B). Is done. If the length of the vacuum chamber 22 is long, the temperature gradient in the extending direction of the conductor lead-out portion 30 (the gradient of temperature decrease from the normal temperature at the upper end to the cryogenic temperature at the lower end) becomes smaller.

図2及び図3に示すように、仕切りユニット70は、複数のバッフル板71と、複数のバッフル板71(例えば、バッフル板71−1〜71−3)において対向するバッフル板71同士を連結する連結部材73(例えば、連結部材73−1、73−2)とを、有する。   As shown in FIGS. 2 and 3, the partition unit 70 connects the baffle plates 71 facing each other in the plurality of baffle plates 71 and the plurality of baffle plates 71 (for example, the baffle plates 71-1 to 71-3). And a connecting member 73 (for example, connecting members 73-1 and 73-2).

複数のバッフル板71は、冷媒槽21において気体冷媒ANが充填される内部領域、つまり、気体冷媒層を、導体引出部30の長手方向であり気体冷媒層の長手方向(温度勾配が生じる方向)に複数の層に仕切る。   The plurality of baffle plates 71 are an internal region where the gas refrigerant AN is filled in the refrigerant tank 21, that is, the gas refrigerant layer is the longitudinal direction of the conductor lead-out portion 30 and the longitudinal direction of the gas refrigerant layer (the direction in which the temperature gradient occurs). Into several layers.

バッフル板71は、プラスチックやその他の絶縁体からなる円環状の平板であり、断熱性を備えている。バッフル板71は、多孔質の円環状平板により構成されてもよい。バッフル板71は、バッフル板71の表面側(上側)からの侵入熱が裏面(下側)側の領域に移動をすることを低減し、高い保冷効果を得ることができる。なお、バッフル板71は、通気性と通水性を有していないので、気体冷媒ANを通過させるために上下に貫通する微小の通気孔が形性されていてもよい。ここでは、バッフル板71は、繊維強化プラスチック(Fiber Reinforced Plastics:FRP)により構成される。   The baffle plate 71 is an annular flat plate made of plastic or other insulator and has heat insulation properties. The baffle plate 71 may be configured by a porous annular flat plate. The baffle plate 71 can reduce the intrusion heat from the front surface side (upper side) of the baffle plate 71 from moving to the region on the back surface (lower side), and can obtain a high cooling effect. In addition, since the baffle plate 71 does not have air permeability and water permeability, a minute ventilation hole penetrating vertically may be formed in order to allow the gas refrigerant AN to pass therethrough. Here, the baffle plate 71 is made of fiber reinforced plastics (FRP).

バッフル板71では、その中心部の中央開口部712に導体引出部30が貫通される。また、バッフル板71の外縁と引出筒状部21Bの内周面との間、及び、バッフル板71において中央開口部712を規定する内周面と導体引出部30との間に、それぞれ隙間S1、S2が設けられる形状にバッフル板71は形成される。隙間S1は、バッフル板71の外縁と引出筒状部21Bの内周面との間で、周方向に等間隔空いた状態で形成される。また、隙間S2は、バッフル板71の中央開口部712の中心と、導体引出部30の軸心とを同一軸心とすることにより、周方向に等間隔空いた状態で形成される。これら隙間S1、S2は、超電導ケーブル10、冷媒槽21の各軸方向の収縮を吸収でき、加えて、バッフル板71自体の水平方向(半径方向)の収縮も吸収できる。   In the baffle plate 71, the conductor lead-out portion 30 is penetrated through the central opening 712 at the center thereof. Further, a gap S1 is provided between the outer edge of the baffle plate 71 and the inner peripheral surface of the lead-out cylindrical portion 21B, and between the inner peripheral surface defining the central opening 712 and the conductor lead-out portion 30 in the baffle plate 71, respectively. The baffle plate 71 is formed in a shape provided with S2. The gap S1 is formed between the outer edge of the baffle plate 71 and the inner peripheral surface of the extraction cylindrical portion 21B in a state of being evenly spaced in the circumferential direction. Further, the gap S <b> 2 is formed at equal intervals in the circumferential direction by setting the center of the central opening 712 of the baffle plate 71 and the axis of the conductor lead-out portion 30 as the same axis. These gaps S1 and S2 can absorb contraction in the axial directions of the superconducting cable 10 and the refrigerant tank 21, and can also absorb contraction in the horizontal direction (radial direction) of the baffle plate 71 itself.

連結部材73(73−1、73−2)は、所定間隔を空けて配置される複数のバッフル板71を、それぞれ対向するバッフル板71同士を、所定間隔を空けて、且つ、互いに絶縁した状態で、連結する。   The connecting member 73 (73-1, 73-2) is a state in which a plurality of baffle plates 71 arranged at a predetermined interval are insulated from each other and the baffle plates 71 opposed to each other at a predetermined interval. Connect.

ここでは、連結部材73は、バッフル板71の表裏面を貫通する孔部に挿通されるボルトなどの軸部材732と、軸部材732においてバッフル板71に挿通される部位でバッフル板71に止着するナット等の止着部材734とを有する。   Here, the connecting member 73 is fixed to the baffle plate 71 at a portion where the shaft member 732 is inserted into the baffle plate 71 and a shaft member 732 such as a bolt inserted into a hole penetrating the front and back surfaces of the baffle plate 71. And a fastening member 734 such as a nut.

軸部材732においてバッフル板71に挿通される部位をそれぞれ含む両端部の外周に雄ねじ部が形成される。この雄ねじ部をバッフル板71の孔部に挿通し、孔部の両側に位置する雄ねじ部分に、バッフル板71の表裏面側から、止着部材734としてのナットを螺合して締結する。このような連結部材73が、対向するバッフル板71同士間においてバッフル板71の周方向に少なくとも一つ以上架設されることにより、互いに対向するバッフル板71同士は連結される。   Male screw portions are formed on the outer circumferences of both end portions of the shaft member 732 including the portions inserted into the baffle plate 71. The male screw portion is inserted into the hole portion of the baffle plate 71, and a nut as a fastening member 734 is screwed and fastened to the male screw portions located on both sides of the hole portion from the front and back sides of the baffle plate 71. At least one such connecting member 73 is installed in the circumferential direction of the baffle plate 71 between the baffle plates 71 facing each other, thereby connecting the baffle plates 71 facing each other.

本実施の形態では、バッフル板71毎に、表裏面でそれぞれ連結されるバッフル板71は、連結部材73が連結方向(導体引出部30の延在方向)で重ならない位置で連結される。   In the present embodiment, for each baffle plate 71, the baffle plates 71 that are respectively connected on the front and back surfaces are connected at a position where the connecting member 73 does not overlap in the connecting direction (the extending direction of the conductor leading portion 30).

複数のバッフル板71同士の連結構造を、複数のバッフル板71のうち、図2及び図3に示すバッフル板71−1、71−2、71−3を用いて説明する。   A connection structure between a plurality of baffle plates 71 will be described using baffle plates 71-1, 71-2, 71-3 shown in FIGS. 2 and 3 among the plurality of baffle plates 71.

バッフル板71−1の表裏面側(上下方向)にはそれぞれバッフル板71−2、71−3が配置され、それぞれ連結部材73−1、73−2を介して連結されている。   Baffle plates 71-2 and 71-3 are respectively arranged on the front and back sides (vertical direction) of the baffle plate 71-1, and are connected via connecting members 73-1 and 73-2, respectively.

すなわち、バッフル板71−1と、バッフル板71−1と表面側で対向するバッフル板71−2とは、連結部材73−1を介して所定間隔を空けて互いに上下方向で対向するように連結されている。   That is, the baffle plate 71-1 and the baffle plate 71-2 facing the baffle plate 71-1 on the surface side are connected to each other in the vertical direction with a predetermined interval therebetween via the connecting member 73-1. Has been.

一方、バッフル板71−1と、バッフル板71−1と裏面側で対向するバッフル板71−3は、本実施の形態では、連結部材73−1とは離れた位置に位置する連結部材73−2により互いに対向して連結される。ここでは、所定のバッフル板71−1において、当該所定のバッフル板71−1の上下で対向するバッフル板71−1、71−2をそれぞれ連結するための孔部の位置を、周方向あるいは半径方向(ここでは水平方向)ずれた位置に形成する。これにより、これら孔部に挿通される軸部材732の端部は、水平方向にずれて、所定のバッフル板71の上下で互いの軸心が重ならない位置、つまり、互いが離間して接触しない位置に配置されるように構成されている。この構成により、連結部材73がステンレス等の金属製であり、且つ、導電性を有する材料により構成されていても、連結部材73により連結されるバッフル板71同士を、互いに絶縁された状態で所定間隔を空けて対向配置させることができる。   On the other hand, the baffle plate 71-1 and the baffle plate 71-3 facing the baffle plate 71-1 on the back surface side are, in this embodiment, a connecting member 73-located at a position away from the connecting member 73-1. 2 are connected to face each other. Here, in the predetermined baffle plate 71-1, the positions of the holes for connecting the baffle plates 71-1 and 71-2 facing each other above and below the predetermined baffle plate 71-1 are set in the circumferential direction or the radius. It is formed at a position shifted in the direction (here, the horizontal direction). As a result, the end portions of the shaft member 732 inserted through these holes are displaced in the horizontal direction, and the positions where the shaft centers do not overlap above and below the predetermined baffle plate 71, that is, they are not spaced apart from each other and do not contact each other. It is comprised so that it may be arrange | positioned in a position. With this configuration, even if the connecting member 73 is made of a metal such as stainless steel and is made of a conductive material, the baffle plates 71 connected by the connecting member 73 are predetermined in a state of being insulated from each other. They can be placed opposite each other with an interval between them.

なお、連結部材73において、バッフル板71同士に架設される軸部材732をボルトとしたが、これに限らず、可撓性を有する部材により対向するバッフル板71同士を連結する構成としてもよい。   In the connecting member 73, the shaft member 732 installed between the baffle plates 71 is a bolt. However, the present invention is not limited to this, and the baffle plates 71 facing each other may be connected by a flexible member.

これらバッフル板71の設置は、複数のバッフル板71は仕切りユニット70として一体であるので、冷媒槽21の気体冷媒ANによる気体冷媒層への設置を、引出筒状部21B内に挿入するだけで、容易に行うことができる。   Since these baffle plates 71 are integrated as a plurality of baffle plates 71 as a partition unit 70, the installation of the refrigerant tank 21 to the gas refrigerant layer by the gas refrigerant AN is simply inserted into the drawer tubular portion 21B. Can be done easily.

また、仕切りユニット70の上部には、仕切りユニット70(複数のバッフル板71)を気体溶媒層に設置するための編組線75等の吊り下げ部材が取り付けられている。仕切りユニット70が、吊り下げ部材を介して引出筒状部21B内に吊り下げられた状態で配置されることにより、複数のバッフル板71は、気体冷媒層に所定間隔を空けて配置される。   A suspension member such as a braided wire 75 for installing the partition unit 70 (the plurality of baffle plates 71) on the gas solvent layer is attached to the upper portion of the partition unit 70. By arranging the partition unit 70 in a state where the partition unit 70 is suspended in the extraction cylindrical portion 21B via the suspension member, the plurality of baffle plates 71 are disposed at predetermined intervals in the gas refrigerant layer.

また、本実施の形態では、複数のバッフル板71を引出筒状部12B内に設置する際に、複数のバッフル板71のうち最下段に位置するバッフル板71の中央開口部712を、電界緩和部62の上端部の外周側に、遊挿されて、互いが同一軸心となるように構成されている。これにより、例えば、終端接続部1の組み立てにおいて、導体引出部30の下端部に取り付けられる電界緩和部62に対して、仕切りユニット70、つまり、複数のバッフル板71の位置決めを容易に行うことができる。   Moreover, in this Embodiment, when installing the several baffle board 71 in the drawer | drawing-out cylindrical part 12B, the central opening part 712 of the baffle board 71 located in the lowest step among the several baffle boards 71 is made into electric field relaxation. It is configured to be loosely inserted on the outer peripheral side of the upper end portion of the portion 62 so as to have the same axial center. Thereby, for example, in assembling the terminal connection portion 1, the partition unit 70, that is, the plurality of baffle plates 71 can be easily positioned with respect to the electric field relaxation portion 62 attached to the lower end portion of the conductor lead portion 30. it can.

このように仕切りユニット70を冷媒槽21の引出筒状部21B内に設置することで、複数のバッフル板71は、冷媒槽21内において、冷媒槽本体21Aより上方の引出筒状部21B内、つまり、液体冷媒Nの冷媒液面NSよりも上方で、かつ、常温部(ここでは碍管40)より下方の気体冷媒層に設置される。複数のバッフル板71は、終端接続部1において、冷媒槽21において液体冷媒層と常温層との間の温度勾配部に、液体冷媒の極低温と、常温部の常温(例えば室温)との間の温度を段階的に仕切るように配置される。   Thus, by installing the partition unit 70 in the drawer tubular portion 21B of the refrigerant tank 21, the plurality of baffle plates 71 are arranged in the drawer tubular portion 21B above the refrigerant tank body 21A in the refrigerant tank 21, That is, it is installed in the gas refrigerant layer above the refrigerant liquid level NS of the liquid refrigerant N and below the normal temperature part (here, the soot tube 40). The plurality of baffle plates 71 are provided in the terminal connection portion 1 in the temperature gradient portion between the liquid refrigerant layer and the normal temperature layer in the refrigerant tank 21 between the cryogenic temperature of the liquid refrigerant and the normal temperature (for example, room temperature) of the normal temperature portion. It arrange | positions so that the temperature of may be divided in steps.

図1に戻り、碍管40は、ポリマー套管41及び遮へい金具42を有する。   Returning to FIG. 1, the soot tube 40 has a polymer sleeve 41 and a shielding fitting 42.

ポリマー套管41は、絶縁筒41aと、ポリマー被覆体41bと、を有する。絶縁筒41aは、機械的強度の高いFRP(繊維強化プラスチック)で構成される。ポリマー被覆体41bは、電気絶縁性能に優れる材料、例えばシリコーンポリマー(シリコーンゴム)などの高分子材料で構成される。ポリマー被覆体41bは、絶縁筒41aの外周に設けられており、ポリマー被覆体41bの外周面には、複数個の傘状の襞部が長手方向に離間して形成される。ポリマー套管41の内部(絶縁筒41aの内部)は中空となっている。   The polymer sleeve 41 has an insulating cylinder 41a and a polymer cover 41b. The insulating cylinder 41a is made of FRP (fiber reinforced plastic) having high mechanical strength. The polymer covering 41b is made of a material having excellent electrical insulation performance, for example, a polymer material such as silicone polymer (silicone rubber). The polymer cover 41b is provided on the outer periphery of the insulating cylinder 41a, and a plurality of umbrella-shaped ridges are formed on the outer peripheral surface of the polymer cover 41b so as to be separated in the longitudinal direction. The inside of the polymer sleeve 41 (inside the insulating cylinder 41a) is hollow.

遮へい金具42は、ポリマー套管41と同心状に埋設される円筒部42aと、円筒部42aの下端から径方向外側に延出するフランジ部42bを有する。円筒部42aは電界緩和機能を有し、碍管40の電界を緩和する。   The shielding metal fitting 42 has a cylindrical portion 42a embedded concentrically with the polymer sleeve 41, and a flange portion 42b extending radially outward from the lower end of the cylindrical portion 42a. The cylindrical portion 42a has an electric field relaxation function and relaxes the electric field of the soot tube 40.

真空槽22の第1の筒状部22Bの上部に碍管40を載置し、遮へい金具42のフランジ部42bをボルト等の接続部材(図示略)で接続することにより、碍管40は真空槽22に気密に固定される。碍管40の内部は第1の筒状部22Bに連通し、運転時には真空状態となる。これにより、真空断熱部を大きく確保することができるので、導体引出部30を介する外部からの熱侵入を低減することができる。   By placing the soot tube 40 on the upper portion of the first cylindrical portion 22B of the vacuum chamber 22 and connecting the flange portion 42b of the shielding metal fitting 42 with a connecting member (not shown) such as a bolt, the soot tube 40 is in the vacuum chamber 22. To be airtightly fixed. The inside of the soot tube 40 communicates with the first cylindrical portion 22B and is in a vacuum state during operation. Thereby, since a vacuum heat insulation part can be ensured largely, the heat penetration | invasion from the outside through the conductor extraction | drawer part 30 can be reduced.

シールド通電部50は、超電導ケーブル10のケーブルシールド層114を接地するための導体である。シールド通電部50は、例えば銅製の棒材からなるシールド引出棒を有する。なお、シールド通電部50の構成はこれに限定されず、公知の構成を適用することができる。シールド通電部50(シールド引出棒)の一端は真空槽22の第2の筒状部22Cを気密に貫通して外部に引き出され、他端はシールド接続端子14に接続される。シールド通電部50は、シールド接続端子14を介して超電導ケーブル10のケーブルシールド層114と電気的に接続する。   The shield energization unit 50 is a conductor for grounding the cable shield layer 114 of the superconducting cable 10. The shield energization unit 50 includes a shield lead bar made of, for example, a copper bar. In addition, the structure of the shield energization part 50 is not limited to this, A well-known structure is applicable. One end of the shield energization part 50 (shield lead bar) penetrates the second cylindrical part 22C of the vacuum chamber 22 in an airtight manner and is drawn to the outside, and the other end is connected to the shield connection terminal 14. The shield energization unit 50 is electrically connected to the cable shield layer 114 of the superconducting cable 10 via the shield connection terminal 14.

シールド通電部50は、少なくとも一部に、例えば平編銅線等のフレキシブル導体(図示略)を有するのが好ましい。これにより、超電導ケーブル10の熱伸縮によりシールド接続端子14の位置が水平方向に(図1の左右方向)に移動しても、容易に追従することができるので、蓋63等の損傷を防止できる。   The shield energization unit 50 preferably has at least a flexible conductor (not shown) such as a flat knitted copper wire. Thereby, even if the position of the shield connection terminal 14 moves in the horizontal direction (left and right direction in FIG. 1) due to thermal expansion and contraction of the superconducting cable 10, it can be easily followed, and thus damage to the lid 63 and the like can be prevented. .

このように、終端接続部1は、超電導ケーブル10の端末部と、超電導ケーブル10の端末部を冷却する液体冷媒Nが貯留され、超電導ケーブル10の端末部が配置される液体冷媒層と気体冷媒層とが形成される冷媒槽21と、下端部が液体冷媒Nに浸漬され、且つ、超電導ケーブル10の超電導導体層(導体)112に接続され、上端側が気体冷媒層を経て碍管(常温部)40に引き出される導体引出部30と、を有する。冷媒槽21の気体冷媒層には、導体引出部30の周囲に配置され、気体冷媒層を、導体引出部30の延在方向で所定間隔を空けて仕切る複数のバッフル板71が設けられている。碍管40は常温部を構成し、冷媒槽21に気密に固定される。また、導体引出部30は、碍管40内に挿通され、導体引出部30の上端部は、碍管40の外部に露出する。また、複数のバッフル板71は、それぞれ繊維強化プラスチックにより構成されてもよい。   As described above, the terminal connection portion 1 stores the terminal portion of the superconducting cable 10 and the liquid refrigerant N that cools the terminal portion of the superconducting cable 10, and the liquid refrigerant layer and the gas refrigerant in which the terminal portion of the superconducting cable 10 is disposed. The refrigerant tank 21 in which the layers are formed, the lower end portion is immersed in the liquid refrigerant N, and is connected to the superconducting conductor layer (conductor) 112 of the superconducting cable 10, and the upper end side passes through the gas refrigerant layer and the soot pipe (room temperature portion) And a conductor lead-out portion 30 led out to 40. The gas refrigerant layer of the refrigerant tank 21 is provided with a plurality of baffle plates 71 that are arranged around the conductor lead-out portion 30 and partition the gas refrigerant layer with a predetermined interval in the extending direction of the conductor lead-out portion 30. . The soot tube 40 constitutes a normal temperature part and is airtightly fixed to the refrigerant tank 21. The conductor lead-out portion 30 is inserted into the soot tube 40, and the upper end portion of the conductor lead-out portion 30 is exposed to the outside of the soot tube 40. Further, the plurality of baffle plates 71 may each be made of fiber reinforced plastic.

複数のバッフル板71は、第1のバッフル板71−1と、その表面側で対向する第2のバッフル板71−2と、第1のバッフル板71−1の裏面側で対向する第3のバッフル板71−3と、を有する。第1のバッフル板71−1と第2のバッフル板71−2とは、第1及び第2のバッフル板71−1、71−2間に架設される第1の連結部材73−1を介して所定間隔を空けて連結される。第1のバッフル板71−1と第3のバッフル板71−3とは、第1及び第3のバッフル板71−1、71−3間に架設される第2の連結部材73−2を介して前記所定間隔を空けて連結される。第1の連結部材73−1と第2の連結部材73−2は、第1のバッフル板71−1において離間する位置に配置される。すなわち、複数のバッフル板71において、導体引出部30の延在方向で対向するバッフル板同士(例えば、バッフル板71−1と71−2、71−1と71−3)は、バッフル板間に架設される連結部材73を介してそれぞれ所定間隔を空けて連結されている。そして、バッフル板(一例としてバッフル板71−1)毎に、表裏面側でそれぞれ連結部材73−1、73−2が突設される場合、連結部材73−1、73−2は、当該バッフル板(一例としてバッフル板71−1)において離間する位置に配置される。また、導体引出部30の下端側の外周には、上端部が、液体冷媒Nの液面NS位置から上方に位置する電界緩和部62が取り付けられ、気体冷媒層で、且つ、導体引出部30の周囲に配置される複数のバッフル板71は、その最下段のバッフル板71の内周を、電界緩和部62の上端部の外周に係合することにより位置決めされている。   The plurality of baffle plates 71 are a first baffle plate 71-1, a second baffle plate 71-2 facing the front surface side thereof, and a third baffle plate 71-1 facing the back surface side of the first baffle plate 71-1. Baffle plate 71-3. The first baffle plate 71-1 and the second baffle plate 71-2 are connected via a first connecting member 73-1 installed between the first and second baffle plates 71-1 and 71-2. Are connected with a predetermined interval. The first baffle plate 71-1 and the third baffle plate 71-3 are connected via a second connecting member 73-2 installed between the first and third baffle plates 71-1 and 71-3. Are connected with a predetermined interval. The 1st connection member 73-1 and the 2nd connection member 73-2 are arrange | positioned in the position spaced apart in the 1st baffle board 71-1. That is, in the plurality of baffle plates 71, the baffle plates (for example, baffle plates 71-1 and 71-2, 71-1 and 71-3) facing each other in the extending direction of the conductor lead-out portion 30 are between the baffle plates. They are connected to each other with a predetermined interval through connecting members 73 that are installed. And when connecting member 73-1 and 73-2 are each protrudingly provided by the front and back side for every baffle board (baffle board 71-1 as an example), connecting member 73-1 and 73-2 are the said baffle. It arrange | positions in the position spaced apart in a board (a baffle board 71-1 as an example). In addition, an electric field relaxation portion 62 having an upper end located above the position of the liquid surface NS of the liquid refrigerant N is attached to the outer periphery on the lower end side of the conductor extraction portion 30, is a gas refrigerant layer, and the conductor extraction portion 30. The plurality of baffle plates 71 arranged around the upper end of the baffle plate 71 are positioned by engaging the inner periphery of the lowermost baffle plate 71 with the outer periphery of the upper end portion of the electric field relaxation unit 62.

終端接続部1によれば、液体冷媒Nによる液体冷媒層と気体冷媒ANによる気体冷媒層が形成される冷媒槽21において、常温の常温層と極低温の液体冷媒層との間の気体冷媒層では、バッフル板71は、バッフル板71の上下の層毎に断熱性を確保する。   According to the terminal connection portion 1, in the refrigerant tank 21 in which the liquid refrigerant layer by the liquid refrigerant N and the gas refrigerant layer by the gas refrigerant AN are formed, the gas refrigerant layer between the normal temperature room temperature layer and the cryogenic liquid refrigerant layer. Then, the baffle plate 71 ensures heat insulation for each of the upper and lower layers of the baffle plate 71.

これにより、複数のバッフル板71は、気体冷媒層においてバッフル板71毎の上下間の気体冷媒(窒素)の対流を低減するので、気体冷媒層における温度勾配をバッフル板71間で温度を段階的に変更させることができ、導体引出部30における温度分布を作成し易くなる。このように、冷媒槽21の気体冷媒層において導体引出部30の周囲に配置される複数のバッフル板71によって、気体冷媒層を、所定間隔を空けて複数の層で仕切る。よって、導体引出部30を介した外部から内部への熱侵入、つまり、常温部側から極低温の液体冷媒層側への熱侵入を好適に低減して信頼性の高い超電導ケーブル10の終端接続部1を実現できる。   Accordingly, the plurality of baffle plates 71 reduce the convection of the gaseous refrigerant (nitrogen) between the upper and lower sides of each baffle plate 71 in the gas refrigerant layer, so that the temperature gradient in the gas refrigerant layer is stepped between the baffle plates 71. This makes it easy to create a temperature distribution in the conductor lead-out portion 30. In this manner, the gas refrigerant layer is partitioned by a plurality of layers at a predetermined interval by the plurality of baffle plates 71 arranged around the conductor extraction portion 30 in the gas refrigerant layer of the refrigerant tank 21. Therefore, it is possible to suitably reduce the heat intrusion from the outside to the inside through the conductor lead-out portion 30, that is, the heat intrusion from the normal temperature portion side to the cryogenic liquid refrigerant layer side, thereby terminating the highly reliable superconducting cable 10. Part 1 can be realized.

また、終端接続部1では、バッフル板71と、内部に気体冷媒層が形成される引出筒状部21Bの内周面とバッフル板71の外縁との間には、隙間S1が形成され、バッフル板71の内側に配置される導体引出部30との間には隙間S2が形成されている。すなわち、内部に気体冷媒ANを収容する(気体冷媒ANが充填される)ことにより気体冷媒層が形成される引出筒状部21B内に、複数のバッフル板71は遊挿され、これらバッフル板71の内部に、導体引出部30が遊挿されている。これにより、冷媒槽21(特に、引出筒状部21B)の運転時における熱収縮、超電導ケーブル10の運転時における熱収縮、又は、超電導ケーブル10の運転時における熱収縮に伴う導体引出部30の変位が発生しても、各構成要素がバッフル板71に衝突することがない。また、隙間S1、S2により、気体冷媒AN自体(窒素)自体は、熱侵入を発生させることなく上下方向に移動可能となっている。   Further, in the terminal connection portion 1, a gap S <b> 1 is formed between the baffle plate 71, the inner peripheral surface of the extraction cylindrical portion 21 </ b> B in which a gas refrigerant layer is formed, and the outer edge of the baffle plate 71. A gap S <b> 2 is formed between the conductor lead-out portion 30 disposed inside the plate 71. That is, a plurality of baffle plates 71 are loosely inserted into a drawer tubular portion 21B in which a gas refrigerant layer is formed by containing the gas refrigerant AN therein (filled with the gas refrigerant AN). The conductor lead-out part 30 is loosely inserted in the inside. Thereby, the thermal contraction during operation of the refrigerant tank 21 (particularly, the extraction tubular portion 21B), the thermal contraction during operation of the superconducting cable 10, or the conductor extraction portion 30 accompanying the thermal contraction during operation of the superconducting cable 10 is achieved. Even if the displacement occurs, each component does not collide with the baffle plate 71. In addition, the gas refrigerant AN itself (nitrogen) itself can move in the vertical direction without causing heat intrusion due to the gaps S1 and S2.

また、複数のバッフル板71では、所定のバッフル板(バッフル板71−1)に対して、その表裏面でバッフル板71−2、71−3が対向する場合、それぞれのバッフル板71−2、71−3を連結する連結部材73−1、73−2は、所定のバッフル板71−1において離間する位置に配置されるので、連結部材73−1、73−2が導電性を有する金属等の材料により形成されていても、バッフル板71毎で絶縁できる。   In addition, in the plurality of baffle plates 71, when the baffle plates 71-2 and 71-3 are opposed to a predetermined baffle plate (baffle plate 71-1) on the front and back surfaces, the respective baffle plates 71-2, Since the connecting members 73-1 and 73-2 that connect 71-3 are arranged at positions that are separated from each other on the predetermined baffle plate 71-1, the connecting members 73-1 and 73-2 are conductive metals or the like. Even if it is formed of the above material, it can be insulated for each baffle plate 71.

なお、実施の形態の終端接続部1において、複数のバッフル板71同士は、連結部材73により連結される構成としたが、連結部材73を、連結するバッフル板71同士を絶縁する絶縁部を含む構成としてもよい。すなわち、複数のバッフル板71を、絶縁材料で形成した連結部材により互いに所定間隔を空けて連結する構成としてもよい。この構成によれば、バッフル板71同士の絶縁処理を行う必要が無く、上記構成においては、例えば、軸部材732を絶縁材料により形成すれば、対向するバッフル板71同士を連結する連結部材(例えば、連結部材73―1、73−2)73をすべて同軸心となる位置に配置したり、連結部材(73−1、73−2)を隣接する位置に配置したりできる。   In addition, in the termination | terminus connection part 1 of embodiment, although several baffle plates 71 were set as the structure connected with the connection member 73, the insulation part which insulates the baffle plates 71 which connect the connection member 73 is included. It is good also as a structure. In other words, the plurality of baffle plates 71 may be connected to each other with a predetermined interval by a connecting member formed of an insulating material. According to this configuration, there is no need to insulate the baffle plates 71. In the above configuration, for example, if the shaft member 732 is formed of an insulating material, a connecting member that connects the baffle plates 71 facing each other (for example, The connecting members 73-1 and 73-2) 73 can all be arranged at coaxial positions, or the connecting members (73-1 and 73-2) can be arranged at adjacent positions.

図4は、本発明の一実施の形態に係る終端接続部1のバッフル板の説明に供する仕切りユニットの他の一例を示す斜視図である。   FIG. 4 is a perspective view showing another example of the partition unit used for explaining the baffle plate of the terminal connection portion 1 according to the embodiment of the present invention.

図4に示す仕切りユニット700は、仕切りユニット70と比較して連結部材を、連結部材730に換えた点のみ異なり、その他の構成要素は同様である。よって、仕切りユニット70と同様の構成要素については同符号同名称を付して説明は省略する。   The partition unit 700 shown in FIG. 4 differs from the partition unit 70 only in that the connecting member is replaced with the connecting member 730, and the other components are the same. Therefore, the same components as those of the partition unit 70 are denoted by the same reference numerals and description thereof is omitted.

図4に示す仕切りユニット700は、図1の終端接続部1において冷媒槽21の気体冷媒層において導体引出部30の周囲に配置され、気体冷媒層を、導体引出部30の延在方向で所定間隔を空けて仕切る複数の絶縁性を有する複数のバッフル板71を備える。   A partition unit 700 shown in FIG. 4 is arranged around the conductor lead-out portion 30 in the gas refrigerant layer of the refrigerant tank 21 in the terminal connection portion 1 of FIG. 1, and the gas refrigerant layer is predetermined in the extending direction of the conductor lead-out portion 30. A plurality of baffle plates 71 having a plurality of insulating properties are provided to partition at intervals.

複数のバッフル板71同士は、絶縁材である棒状材72により互いに所定間隔を空けて連結されている。   The plurality of baffle plates 71 are connected to each other at a predetermined interval by a rod-like material 72 that is an insulating material.

棒状材72は、複数のバッフル板71を挿通するとともに複数のバッフル板71のそれぞれが所定間隔を空けて固定される。ここでは、棒状材72は、FRP製の棒材であり、棒状材72を各バッフル板71に止着する止着部材734とともに、複数のバッフル板71のそれぞれを挿通して連結する連結部材730を構成する。なお、棒状材72が絶縁材料により構成されていれば、止着部材734としてのナットは金属製でもよい。   The rod-shaped member 72 is inserted through the plurality of baffle plates 71 and fixed to each of the plurality of baffle plates 71 at a predetermined interval. Here, the rod member 72 is a rod member made of FRP, and together with a fastening member 734 for fastening the rod member 72 to each baffle plate 71, a connecting member 730 that inserts and connects each of the plurality of baffle plates 71. Configure. Note that the nut as the fastening member 734 may be made of metal as long as the rod-shaped member 72 is made of an insulating material.

棒状材72は、バッフル板71に接着材等を用いてどのように固定されてもよいが、ここでは、各バッフル板71において表裏面を貫通する孔部に挿通される部位を挟む部分に雄ねじ部を形成し、この雄ねじ部に、バッフル板71の表裏面側から、止着部材734としてのナットを螺合して締結することで、バッフル板71に止着される。   The rod-shaped member 72 may be fixed to the baffle plate 71 using an adhesive or the like in any case, but here, the baffle plate 71 has a male screw at a portion sandwiching a portion inserted through a hole passing through the front and back surfaces. This is fixed to the baffle plate 71 by screwing and fastening a nut as a fastening member 734 to the male screw portion from the front and back sides of the baffle plate 71.

すなわち、棒状材72は、複数のバッフル板71全てを挿通する長さを有し、その外周には、バッフル板71を止着する部分に対応して、所定間隔を空けて形成される雄ねじ部を備える。   That is, the rod-shaped member 72 has a length through which all of the plurality of baffle plates 71 are inserted, and a male screw portion formed at a predetermined interval on the outer periphery corresponding to a portion where the baffle plate 71 is fixed. Is provided.

なお、仕切りユニット700が気体冷媒層に配置される際に、導体引出部30の周囲に配置される前記複数のバッフル板71は、最下段のバッフル板71の内径を、電界緩和部62の上端部の外径に係合することにより位置決めされる。   When the partition unit 700 is arranged in the gas refrigerant layer, the plurality of baffle plates 71 arranged around the conductor lead-out portion 30 have the inner diameter of the lowermost baffle plate 71 as the upper end of the electric field relaxation portion 62. Positioned by engaging the outer diameter of the part.

仕切りユニット700によれば、仕切りユニット70の備える複数のバッフル板71と同様の作用効果を得ることが出来るとともに、バッフル板71同士の連結を、互いの絶縁処理を考慮することなく、容易に行うことができる。   According to the partition unit 700, it is possible to obtain the same effects as the plurality of baffle plates 71 included in the partition unit 70, and to easily connect the baffle plates 71 without considering each other's insulation treatment. be able to.

図4では、複数のバッフル板71を、連結部材730の1本の棒状材72を介して連結する構成したが、これに限らず、同様に構成される連結部材730−1を用いて、複数本の棒状材72により連結する構成としてもよい。また、仕切りユニット700において棒状材72に換えて、複数のバッフル板71を一つの可撓性を有する絶縁材によって所定間隔を空けて連結する構成としてもよい。   In FIG. 4, a plurality of baffle plates 71 are connected via one bar-like member 72 of the connecting member 730. However, the present invention is not limited to this, and a plurality of baffle plates 71 are connected using a similarly configured connecting member 730-1. It is good also as a structure connected with the rod-shaped material 72 of a book. Moreover, it is good also as a structure which replaces with the rod-shaped material 72 in the partition unit 700, and connects the several baffle board 71 at predetermined intervals by one flexible insulating material.

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 終端接続部
10 超電導ケーブル(極低温ケーブル)
11 ケーブルコア
13 電極部
20 低温容器
21 冷媒槽
21A 冷媒槽本体
21B 引出筒状部
21C シールド引出口
22 真空槽
22A 真空槽本体部
22B 第1の筒状部
22C 第2の筒状部
30 導体引出部
40 碍管
41 ポリマー套管
41a 絶縁筒
41b ポリマー被覆体
42 遮へい金具
42a 円筒部
42b フランジ部
50 シールド通電部
62 電界緩和部
70、700 仕切りユニット
71 バッフル板
72 棒状材
73、730 連結部材
75 編組線
111 フォーマ
112 超電導導体層
113 電気絶縁層
114 ケーブルシールド層
115 保護層
121 断熱内管
122 断熱外管
212、222 後端部
712 開口部
732 軸部材
734 止着部材
S1、S2 隙間
1 Termination connection 10 Superconducting cable (Cryogenic cable)
DESCRIPTION OF SYMBOLS 11 Cable core 13 Electrode part 20 Cryogenic container 21 Refrigerant tank 21A Refrigerant tank main body 21B Draw-out cylindrical part 21C Shield outlet 22 Vacuum tank 22A Vacuum tank main body 22B 1st cylindrical part 22C 2nd cylindrical part 30 Conductor extraction Part 40 Steel pipe 41 Polymer sleeve 41a Insulating tube 41b Polymer cover 42 Shielding metal fitting 42a Cylindrical part 42b Flange part 50 Shield energization part 62 Electric field relaxation part 70, 700 Partition unit 71 Baffle plate 72 Rod-shaped material 73, 730 Connecting member 75 Braided wire 111 Former 112 Superconducting conductor layer 113 Electrical insulating layer 114 Cable shield layer 115 Protective layer 121 Thermal insulation inner tube 122 Thermal insulation outer tube 212, 222 Rear end portion 712 Opening portion 732 Shaft member 734 Fastening member S1, S2 Gap

Claims (5)

極低温ケーブルの端末部と、
前記極低温ケーブルの端末部を冷却する液体冷媒が貯留され、前記極低温ケーブルの端末部が配置される液体冷媒層と当該液体冷媒層上で連続する気体冷媒層とが形成される冷媒槽と、
下端部が前記液体冷媒に浸漬され、且つ、前記極低温ケーブルの導体に接続され、上端側が前記気体冷媒層を経て常温部に引き出される導体引出部と、
を有し、
前記冷媒槽の前記気体冷媒層には、前記導体引出部の周囲に配置され、前記気体冷媒層を、前記導体引出部の延在方向で所定間隔を空けて仕切る複数の絶縁性を有するバッフル板が設けられている、
極低温ケーブルの終端接続部。
The end of the cryogenic cable,
A refrigerant tank in which liquid refrigerant for cooling a terminal portion of the cryogenic cable is stored, and a liquid refrigerant layer in which the terminal portion of the cryogenic cable is disposed and a gas refrigerant layer continuous on the liquid refrigerant layer; ,
A conductor lead-out portion whose lower end is immersed in the liquid refrigerant and connected to the conductor of the cryogenic cable, and whose upper end is drawn out to the room temperature portion through the gas refrigerant layer;
Have
The gas refrigerant layer of the refrigerant tank is disposed around the conductor extraction portion, and has a plurality of insulating baffle plates that divide the gas refrigerant layer at predetermined intervals in the extending direction of the conductor extraction portion. Is provided,
Cryogenic cable termination connection.
前記常温部は、前記冷媒槽に気密に固定される碍管を有し、
前記導体引出部は、前記碍管内に挿通され、前記導体引出部の上端部は前記碍管の外部に露出する、
請求項1記載の極低温ケーブルの終端接続部。
The normal temperature part has a soot tube that is airtightly fixed to the refrigerant tank,
The conductor lead portion is inserted into the soot tube, and an upper end portion of the conductor lead portion is exposed to the outside of the soot tube.
The termination | terminus connection part of the cryogenic cable of Claim 1.
前記複数のバッフル板は、第1のバッフル板と、その表面側で対向する第2のバッフル板と、第1のバッフル板の裏面側で対向する第3のバッフル板と、を有し、
前記第1のバッフル板と前記第2のバッフル板とは、前記第1及び第2のバッフル板間に架設される第1の連結部材を介して所定間隔を空けて連結され、
前記第1のバッフル板と前記第3のバッフル板とは、前記第1及び第3のバッフル板間に架設される第2の連結部材を介して前記所定間隔を空けて連結され、
前記第1の連結部材と前記第2の連結部材は、前記第1のバッフル板において離間する位置に配置される、
請求項1または2に記載の極低温ケーブルの終端接続部。
The plurality of baffle plates include a first baffle plate, a second baffle plate facing the front surface side thereof, and a third baffle plate facing the back surface side of the first baffle plate,
The first baffle plate and the second baffle plate are connected to each other at a predetermined interval via a first connecting member provided between the first and second baffle plates.
The first baffle plate and the third baffle plate are connected to each other at a predetermined interval via a second connecting member provided between the first and third baffle plates.
The first connecting member and the second connecting member are disposed at positions separated from each other in the first baffle plate.
The termination | terminus connection part of the cryogenic cable of Claim 1 or 2.
前記複数のバッフル板は、それぞれを挿通する連結部材を介して連結され、
前記連結部材が絶縁性を有し、かつ複数のバッフル板を挿通する長さを有する、
請求項1または2に記載の極低温ケーブルの終端接続部。
The plurality of baffle plates are connected via a connecting member that passes through each of the baffle plates,
The connecting member has an insulating property and has a length for inserting a plurality of baffle plates;
The termination | terminus connection part of the cryogenic cable of Claim 1 or 2.
前記複数のバッフル板は、それぞれ繊維強化プラスチックにより構成される、
請求項1から4のいずれか一項に記載の極低温ケーブルの終端接続部。
The plurality of baffle plates are each made of fiber reinforced plastic,
The termination | terminus connection part of the cryogenic cable as described in any one of Claim 1 to 4.
JP2015109786A 2015-05-29 2015-05-29 Terminal connector for cryogenic cable Ceased JP2016226143A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015109786A JP2016226143A (en) 2015-05-29 2015-05-29 Terminal connector for cryogenic cable
CN201610363317.0A CN106207946A (en) 2015-05-29 2016-05-26 The terminal connection part of pole cryocable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015109786A JP2016226143A (en) 2015-05-29 2015-05-29 Terminal connector for cryogenic cable

Publications (1)

Publication Number Publication Date
JP2016226143A true JP2016226143A (en) 2016-12-28

Family

ID=57453058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015109786A Ceased JP2016226143A (en) 2015-05-29 2015-05-29 Terminal connector for cryogenic cable

Country Status (2)

Country Link
JP (1) JP2016226143A (en)
CN (1) CN106207946A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198195A (en) * 2017-04-07 2018-12-13 ネクサン Termination for superconductive cable
JP2019179781A (en) * 2018-03-30 2019-10-17 古河電気工業株式会社 Termination vessel of high-temperature superconducting cable and termination structure of high-temperature superconducting cable
CN112327110A (en) * 2020-10-19 2021-02-05 中国科学院电工研究所 Wide-temperature-area liquid medium environment test device based on refrigerator conduction cooling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323711A (en) * 2019-07-09 2019-10-11 华北电力大学 The low-temperature (low temperature) vessel connection structure of one vertical three-phase hyperconductive cable and superconductive current limiter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179980U (en) * 1984-05-09 1985-11-29 株式会社島津製作所 Skitt magnetometer probe
JPH01100071U (en) * 1987-12-22 1989-07-05
JPH05267728A (en) * 1992-01-07 1993-10-15 Toshiba Corp Cryostat
JP2012217334A (en) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The Terminal connection part for cryogenic cable
JP2015091162A (en) * 2013-11-05 2015-05-11 昭和電線ケーブルシステム株式会社 Terminal connector for cryogenic cable

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339650A (en) * 1992-01-07 1994-08-23 Kabushiki Kaisha Toshiba Cryostat
JP5566714B2 (en) * 2010-02-04 2014-08-06 古河電気工業株式会社 Cryogenic cable termination connection
WO2011152344A1 (en) * 2010-05-31 2011-12-08 古河電気工業株式会社 Terminal connecting section for very-low temperature cable
CN201797289U (en) * 2010-09-02 2011-04-13 刘金炜 Full-sealed irrigation type waterproof, fire-proof and explosion-proof safety box for intermediate joint of cable
KR102005583B1 (en) * 2013-01-23 2019-10-08 엘에스전선 주식회사 Termination Structure of Superconducting Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179980U (en) * 1984-05-09 1985-11-29 株式会社島津製作所 Skitt magnetometer probe
JPH01100071U (en) * 1987-12-22 1989-07-05
JPH05267728A (en) * 1992-01-07 1993-10-15 Toshiba Corp Cryostat
JP2012217334A (en) * 2011-03-31 2012-11-08 Furukawa Electric Co Ltd:The Terminal connection part for cryogenic cable
JP2015091162A (en) * 2013-11-05 2015-05-11 昭和電線ケーブルシステム株式会社 Terminal connector for cryogenic cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198195A (en) * 2017-04-07 2018-12-13 ネクサン Termination for superconductive cable
JP7049162B2 (en) 2017-04-07 2022-04-06 ネクサン Termination for superconducting cables
JP2019179781A (en) * 2018-03-30 2019-10-17 古河電気工業株式会社 Termination vessel of high-temperature superconducting cable and termination structure of high-temperature superconducting cable
JP7042675B2 (en) 2018-03-30 2022-03-28 古河電気工業株式会社 Termination container for high-temperature superconducting cables and termination structure for high-temperature superconducting cables
CN112327110A (en) * 2020-10-19 2021-02-05 中国科学院电工研究所 Wide-temperature-area liquid medium environment test device based on refrigerator conduction cooling

Also Published As

Publication number Publication date
CN106207946A (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP2016226143A (en) Terminal connector for cryogenic cable
EP2138459B1 (en) Apparatus for producing polycrystalline silicon
US8755853B2 (en) Contact element intended for a superconducting cable unit
KR101708062B1 (en) Terminal structure of superconducting cable system
JP2009268340A (en) Electric connection structure for superconductive device
US8271061B2 (en) Connection arrangement for two superconductor cables
BR112018071935B1 (en) HIGH VOLTAGE APPLIANCE AND MANUFACTURING METHOD OF SUCH APPLIANCE
KR20140013989A (en) System with three superconducting phase conductors
CN106300216B (en) Insulate terminal assembly
US5369387A (en) Shim lead power coupling assembly for superconducting magnet
TWI508403B (en) Terminal apparatus of superconducting device
JP7049162B2 (en) Termination for superconducting cables
WO2017073833A1 (en) Superconducting cable terminal device
JP5696200B1 (en) Cryogenic cable termination connection
JP2018078720A (en) Terminal connector of cryogenic cable
BR112016004967B1 (en) CONNECTION ELEMENT FOR ELECTRICALLY CONDUCTIVE CONNECTION OF AT LEAST FOUR ELECTRICAL CONDUCTORS AND THEIR USE
JP2016192858A (en) Cryogenic cable system and baking method of cryogenic cable system
JP2016178779A (en) Terminal connection part for cryogenic cable
JP2018129888A (en) Normal conductive connecting member and terminal structure of superconducting cable
JP5757987B2 (en) Cryogenic cable termination connection
JP2016171025A (en) Termination structure of superconducting cable
JP5757986B2 (en) Cryogenic cable termination connection
CN204793985U (en) Insulating terminal subassembly
JP6891054B2 (en) Terminal structure of normal conductive connection member and superconducting cable
JP2017005869A (en) Cryogenic cable end connection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20190528