JP2016195484A - Terminal structure of superconducting cable - Google Patents

Terminal structure of superconducting cable Download PDF

Info

Publication number
JP2016195484A
JP2016195484A JP2015073910A JP2015073910A JP2016195484A JP 2016195484 A JP2016195484 A JP 2016195484A JP 2015073910 A JP2015073910 A JP 2015073910A JP 2015073910 A JP2015073910 A JP 2015073910A JP 2016195484 A JP2016195484 A JP 2016195484A
Authority
JP
Japan
Prior art keywords
superconducting
conductor
superconducting cable
layer
refrigerant tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015073910A
Other languages
Japanese (ja)
Other versions
JP6463202B2 (en
Inventor
足立 和久
Kazuhisa Adachi
和久 足立
信博 三堂
Nobuhiro Sandou
信博 三堂
勉 小泉
Tsutomu Koizumi
勉 小泉
隆代 長谷川
Takayo Hasegawa
隆代 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SWCC Showa Cable Systems Co Ltd filed Critical SWCC Showa Cable Systems Co Ltd
Priority to JP2015073910A priority Critical patent/JP6463202B2/en
Publication of JP2016195484A publication Critical patent/JP2016195484A/en
Application granted granted Critical
Publication of JP6463202B2 publication Critical patent/JP6463202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a terminal structure of a superconducting cable capable of reducing the installation space by making compact, and capable of reducing heat intrusion.SOLUTION: A terminal structure of a superconducting cable includes a superconducting cable including a superconductor layer, and a conductor insulation layer provided thereon, a refrigerant tank to be filled with a refrigerant for cooling the end of the superconducting cable, an electric field relaxation part provided on the outer periphery of the conductor insulation layer, and disposed in the refrigerant tank, a lead part connected electrically with the end of the superconductor layer exposed by being stripped, and a vacuum tank disposed on the outer periphery of the refrigerant tank, coaxially with the superconductor cable at a position corresponding to the electric field relaxation part, and the inside of which is brought into vacuum state during operation. The refrigerant tank is an insulation tube, and the vacuum tank has a porcelain tube disposed coaxially with the superconducting cable at a position corresponding to the electric field relaxation part, on the outer periphery of the refrigerant tank.SELECTED DRAWING: Figure 1

Description

本発明は、超電導ケーブルの終端接続部等の端末構造体に関する。   The present invention relates to a terminal structure such as a terminal connection portion of a superconducting cable.

従来、極低温で超電導状態になる超電導線材を導体として用いた超電導ケーブルが知られている。超電導ケーブルは、大電流を低損失で送電可能な電力ケーブルとして期待されており、実用化に向けて開発が進められている。   Conventionally, a superconducting cable using a superconducting wire that becomes a superconducting state at an extremely low temperature as a conductor is known. The superconducting cable is expected as a power cable capable of transmitting a large current with a low loss, and is being developed for practical use.

超電導ケーブルは、断熱管内に一心又は複数心のケーブルコアが収容された構造を有するものが知られている。一心のケーブルコアとしては、例えば中心から順に、フォーマ、超電導導体層、電気絶縁層、ケーブルシールド層、及び保護層等を有する。また、ケーブルコアとしては、フォーマの外周に、超電導導体層と、電気絶縁層とを交互に同心円状に配置した複数の超電導導体層を同一心で有する同軸型のケーブルコアが知られている。   A superconducting cable having a structure in which a single-core or multiple-core cable core is accommodated in a heat insulating tube is known. The single-core cable core includes, for example, a former, a superconducting conductor layer, an electrical insulating layer, a cable shield layer, and a protective layer in order from the center. As a cable core, a coaxial cable core having a plurality of superconducting conductor layers arranged concentrically alternately on the outer periphery of the former and having a superconducting conductor layer and an electrical insulating layer arranged concentrically is known.

断熱管は、ケーブルコアを収容し内部に冷媒(例えば液体窒素)が充填される内管(以下「断熱内管」)と、断熱内管の外周を覆う外管(以下「断熱外管」)を有する。断熱内管と断熱外管の間は、断熱のために真空状態とされる。   The heat insulation pipe includes an inner pipe (hereinafter referred to as “heat insulation inner pipe”) in which the cable core is accommodated and filled with a refrigerant (for example, liquid nitrogen), and an outer pipe (hereinafter referred to as “heat insulation outer pipe”) covering the outer periphery of the heat insulation inner pipe. Have Between the heat insulating inner tube and the heat insulating outer tube, a vacuum state is set for heat insulation.

超電導ケーブルの終端接続部等に適用される端末構造体においては、低温部となる低温容器に超電導ケーブルの端末部が収容され、超電導ケーブルの導体(例えば超電導導体層)が導体引出部を介して常温部に引き出される。低温容器は、超電導ケーブルの端末部を収容し運転時に液体窒素等の冷媒が充填される冷媒槽と、冷媒槽を収容し運転時に真空状態とされる真空槽とからなる二重構造を有する。   In a terminal structure applied to a terminal connection portion of a superconducting cable, the terminal portion of the superconducting cable is accommodated in a low temperature container serving as a low temperature portion, and a conductor (for example, a superconducting conductor layer) of the superconducting cable is passed through a conductor lead-out portion. It is pulled out to the room temperature part. The cryogenic container has a double structure composed of a refrigerant tank that accommodates the terminal portion of the superconducting cable and is filled with a refrigerant such as liquid nitrogen during operation, and a vacuum tank that accommodates the refrigerant tank and is in a vacuum state during operation.

具体的には、特許文献1及び特許文献2に示すように、従来の超電導ケーブルの端末構造体では、低温容器は、冷媒槽を収容する真空槽本体部に、真空槽本体部から上方に向けて垂設される筒状部を有する。冷媒槽には、水平に配置される超電導ケーブルの端末部が収容され、この端末部における導体(例えば超電導導体層)は、筒状部内に垂設された導体引出部の下端部に接続されている。導体引出棒は、筒状部上に配置される筒状の絶縁管(がい管)内を挿通し、絶縁管の上端部から外部に上方から引き出すように構成されている。   Specifically, as shown in Patent Document 1 and Patent Document 2, in the conventional superconducting cable terminal structure, the cryogenic container is directed upward from the vacuum tank body to the vacuum tank body that houses the refrigerant tank. And has a cylindrical portion that is vertically suspended. The refrigerant tank accommodates a terminal portion of a superconducting cable disposed horizontally, and a conductor (for example, a superconducting conductor layer) in the terminal portion is connected to a lower end portion of a conductor lead-out portion suspended in the cylindrical portion. Yes. The conductor lead-out rod is configured to be inserted through a cylindrical insulating tube (insulation tube) disposed on the cylindrical portion and to be drawn from the upper end portion of the insulating tube to the outside from above.

特開2005−253204号公報JP 2005-253204 A 特開2013−150545号公報JP 2013-150545 A

しかしながら、従来の端末構造体である特許文献1及び特許文献2に記載の技術では、低温容器は、水平方向に延在する真空槽本体の他に、導体引出棒を囲む筒状部を、真空槽本体部から上方に向けて垂設した構造であるため、端末構造体を設置する際には、真空本体部の設置領域に加えて、上方に筒状部と絶縁管の設置領域を確保する必要がある。また、端末構造体自体が大型化すると、熱伝達経路となる導体引出棒が長くなり、冷媒槽への熱侵入が増加する恐れがある。   However, in the techniques described in Patent Document 1 and Patent Document 2, which are conventional terminal structures, the cryogenic vessel is not limited to the vacuum chamber body extending in the horizontal direction, but the cylindrical portion surrounding the conductor extraction rod is vacuumed. Because it is a structure that hangs upward from the tank main body, when installing the terminal structure, in addition to the installation area of the vacuum main body, secure the installation area of the tubular part and the insulating tube above. There is a need. In addition, when the terminal structure itself is enlarged, the conductor extraction rod serving as a heat transfer path becomes longer, and there is a concern that heat penetration into the refrigerant tank increases.

これにより、超電導ケーブルの端末構造体としては、低温容器をより小さくして端末構造体自体をよりコンパクトにすることが望まれている。   Thereby, as a terminal structure of a superconducting cable, it is desired to make the terminal structure itself more compact by making the cryogenic container smaller.

本発明の目的は、コンパクト化を図ることによって、設置スペースを小さくできるとともに、熱侵入を低減できる超電導ケーブルの端末構造体を提供することである。   An object of the present invention is to provide a terminal structure of a superconducting cable that can reduce the installation space and reduce heat intrusion by reducing the size.

本発明に係る超電導ケーブルの端末構造体は、超電導導体層と、前記超電導導体層上に設けられる導体絶縁層とを備える超電導ケーブルと、
前記超電導ケーブルの端末部を冷却する冷媒が満たされる冷媒槽と、
前記導体絶縁層の外周に設けられ、前記冷媒槽内に配置される電界緩和部と、
前記超電導ケーブルの端末部で段剥ぎされることによって露出する前記超電導導体層の端部と電気的に接続されるリード部と、
前記冷媒槽を収容し、運転時に内部が真空状態とされる真空槽と、
を備え、
前記冷媒槽は、絶縁管で形成され、
前記真空槽は、前記冷媒槽の外周において、前記電界緩和部に対応する位置に、且つ、前記超電導ケーブルと同軸上に配置されるがい管を有する、構成を採る。
A terminal structure of a superconducting cable according to the present invention is a superconducting cable comprising a superconducting conductor layer and a conductor insulating layer provided on the superconducting conductor layer,
A refrigerant tank filled with a refrigerant that cools a terminal portion of the superconducting cable; and
An electric field relaxation portion provided on an outer periphery of the conductor insulating layer and disposed in the refrigerant tank;
A lead portion electrically connected to an end portion of the superconducting conductor layer exposed by being stepped off at a terminal portion of the superconducting cable;
Containing the refrigerant tank, and a vacuum tank whose inside is evacuated during operation;
With
The refrigerant tank is formed of an insulating tube,
The vacuum tank has a configuration in which an outer periphery of the refrigerant tank has a insulator pipe disposed at a position corresponding to the electric field relaxation portion and coaxially with the superconducting cable.

本発明によれば、コンパクト化を図ることによって、設置スペースを小さくできるとともに、熱侵入を低減できる超電導ケーブルの端末構造体が実現される。   According to the present invention, the terminal structure of a superconducting cable that can reduce installation space and reduce heat intrusion can be realized by downsizing.

本発明の一実施の形態に係る端末構造体を示す図The figure which shows the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体における超電導ケーブルの概略構成を示す断面図Sectional drawing which shows schematic structure of the superconducting cable in the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体のがい管部を含む要部構成を示す図The figure which shows the principal part structure containing the insulator pipe part of the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体のリード部の接続電極部の要部構成を示す斜視図The perspective view which shows the principal part structure of the connection electrode part of the lead part of the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体のリード部の接続電極部の要部構成を示す先端側斜視図The front end side perspective view which shows the principal part structure of the connection electrode part of the lead part of the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体において低温容器と超電導ケーブルの断熱管との接続部分を示す図The figure which shows the connection part of a cryogenic container and the heat insulation pipe | tube of a superconducting cable in the terminal structure which concerns on one embodiment of this invention. 本発明の一実施の形態に係る端末構造体における内部保持部材の要部構成を示す斜視図The perspective view which shows the principal part structure of the internal holding member in the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体の接続電極部の変形例1を示す斜視図The perspective view which shows the modification 1 of the connection electrode part of the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体の接続電極部の変形例2を示す斜視図The perspective view which shows the modification 2 of the connection electrode part of the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体の接続電極部の変形例3を示す斜視図The perspective view which shows the modification 3 of the connection electrode part of the terminal structure which concerns on one embodiment of this invention 本発明の一実施の形態に係る端末構造体の接続電極部の変形例4を示す斜視図The perspective view which shows the modification 4 of the connection electrode part of the terminal structure which concerns on one embodiment of this invention

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る端末構造体1を示す図である。説明の便宜上、超電導ケーブル10が導入される側を後端側(図1では右側)、反対側を先端側(図1では左側であり挿入方向側ともいう)として説明する。   FIG. 1 is a diagram showing a terminal structure 1 according to an embodiment of the present invention. For convenience of explanation, the side where the superconducting cable 10 is introduced will be described as the rear end side (right side in FIG. 1), and the opposite side will be described as the front end side (left side in FIG. 1 and also referred to as the insertion direction side).

図1に示すように、端末構造体1は、超電導ケーブル10の端末部と、接続電極部13と、電界緩和部15と、冷媒槽21及び真空槽22を有する低温容器20と、リード部30と、シールド通電部40と、支持脚部(支持部)28を有する。低温容器20(詳細には冷媒槽21)に超電導ケーブル10の端末部が所定の状態で水平方向に延在するように収容され、接続電極部13及びリード部30を介して超電導ケーブル10の導体電流が電力機器等の実系統側に引き出される。また、シールド通電部40を介して、超電導ケーブル10のケーブルシールド層114が接地される。本実施の形態の超電導ケーブル10は、複層の超電導導体層を有し、端末構造体1において、略水平方向に配置した超電導ケーブル10から超電導導体層毎に、水平方向で所定間隔を空けて、接続電極部13及びリード部30を介して導体電流を引き出される。   As shown in FIG. 1, the terminal structure 1 includes a terminal part of the superconducting cable 10, a connection electrode part 13, an electric field relaxation part 15, a cryogenic container 20 having a refrigerant tank 21 and a vacuum tank 22, and a lead part 30. And a shield energization part 40 and a support leg part (support part) 28. The terminal of the superconducting cable 10 is accommodated in the cryogenic container 20 (specifically, the refrigerant tank 21) so as to extend in the horizontal direction in a predetermined state, and the conductor of the superconducting cable 10 is connected via the connection electrode part 13 and the lead part 30. Current is drawn to the real system side such as power equipment. In addition, the cable shield layer 114 of the superconducting cable 10 is grounded via the shield energization unit 40. The superconducting cable 10 of the present embodiment has a multi-layer superconducting conductor layer, and in the terminal structure 1, the superconducting cable 10 arranged in a substantially horizontal direction is spaced from the superconducting conductor layer by a predetermined interval in the horizontal direction. A conductor current is drawn through the connection electrode portion 13 and the lead portion 30.

図2は、本発明の一実施の形態に係る端末構造体における超電導ケーブルの概略構成を示す断面図である。   FIG. 2 is a cross-sectional view showing a schematic configuration of the superconducting cable in the terminal structure according to the embodiment of the present invention.

図1及び図2に示すように、超電導ケーブル10は、断熱管12内に、電気絶縁層(導体絶縁層)113(113−1、113−2、113−3)を介して超電導導体層112(112−1、112−2、112−3)を同心円状に複数備えるケーブルコア11が収容された超電導ケーブルである。超電導ケーブル10は、各超電導導体層で位相の異なる電流を流す多相超電導ケーブルとしてもよい。ここでは、超電導導体層を、中心から、U相、V相、W相の電流を流す導体として3層で同軸上に有する三相超電導ケーブルとしている。   As shown in FIGS. 1 and 2, the superconducting cable 10 includes a superconducting conductor layer 112 in a heat insulating tube 12 via an electric insulating layer (conductor insulating layer) 113 (113-1, 113-2, 113-3). This is a superconducting cable in which a cable core 11 having a plurality of concentric circles (112-1, 112-2, 112-3) is accommodated. The superconducting cable 10 may be a multiphase superconducting cable that allows currents having different phases to flow in each superconducting conductor layer. Here, a superconducting conductor layer is a three-phase superconducting cable having three layers on the same axis as conductors through which U-phase, V-phase, and W-phase currents flow from the center.

ケーブルコア11は、例えば中心から順に、N冷却管である中央冷却管111、第1超電導導体層112−1、第1電気絶縁層(導体絶縁層)113−1、第2超電導導体層112−2、第2電気絶縁層(導体絶縁層)113−2、第3超電導導体層112−3、第3電気絶縁層(導体絶縁層)113−3、ケーブルシールド層114、及び保護層115等を有する。 The cable core 11 includes, for example, a central cooling pipe 111, which is an N 2 cooling pipe, a first superconducting conductor layer 112-1, a first electric insulating layer (conductor insulating layer) 113-1, and a second superconducting conductor layer 112 in order from the center. -2, second electrical insulation layer (conductor insulation layer) 113-2, third superconducting conductor layer 112-3, third electrical insulation layer (conductor insulation layer) 113-3, cable shield layer 114, protective layer 115, etc. Have

各超電導導体層112及びケーブルシールド層114は、例えば、下層の外面に螺旋状に巻き付けた多数本の超電導テープ(テープ状の超電導線材)により構成されるものとした。超電導導体層を構成する各超電導テープは、互いに重ならずに配置されている。   Each superconducting conductor layer 112 and cable shield layer 114 are composed of, for example, a large number of superconducting tapes (tape-shaped superconducting wires) wound spirally around the outer surface of the lower layer. The superconducting tapes constituting the superconducting conductor layer are arranged without overlapping each other.

超電導テープは、ここでは、REBaCu系(REは、Y、Nd、Sm、Eu、Gd及びHoから選択された1種以上の元素を示し、y≦2及びz=6.2〜7である。)の高温超電導薄膜を備える酸化物超電導材である。この超電導テープは、テープ状の金属基板上に成膜された中間層上に、テープ状の超電導薄膜である酸化物超電導層(以下、「超電導層」と称する)、安定化層が順に積層されることによって作製される。なお、超電導テープの金属基板としては、ニッケル(Ni)、ニッケル合金、ステンレス鋼又は銀(Ag)である。また、中間層は、例えば、金属基板上に、酸化アルミニウム(Al)層、ガリウムドープ酸化亜鉛層(GdZr:GZO)、或いはイットリウム安定化ジルコニア(YSZ)等による第1層、Y又はLaMnO等の層である第2層、酸化マグネシウム(MgO)等から成る第3層、酸化ランタンマンガン(LaMnO)等の層である第4層、酸化セリウム(CeO)層である第5層を、順に積層することによって構成される。 Here, the superconducting tape is a REBa y Cu 3 O z system (RE represents one or more elements selected from Y, Nd, Sm, Eu, Gd, and Ho, and y ≦ 2 and z = 6.2. It is an oxide superconducting material provided with the high-temperature superconducting thin film. In this superconducting tape, an oxide superconducting layer (hereinafter referred to as “superconducting layer”), which is a tape-like superconducting thin film, and a stabilizing layer are laminated in this order on an intermediate layer formed on a tape-like metal substrate. It is produced by doing. The metal substrate of the superconducting tape is nickel (Ni), nickel alloy, stainless steel, or silver (Ag). In addition, the intermediate layer is formed of, for example, an aluminum oxide (Al 2 O 3 ) layer, a gallium-doped zinc oxide layer (Gd 2 Zr 2 O 7 : GZO), or a yttrium-stabilized zirconia (YSZ) layer on a metal substrate. One layer, a second layer that is a layer such as Y 2 O 3 or LaMnO 3, a third layer that is composed of magnesium oxide (MgO), a fourth layer that is a layer such as lanthanum manganese oxide (LaMnO 3 ), cerium oxide ( The fifth layer, which is a CeO 2 ) layer, is laminated in order.

超電導層は、有機金属酸塩あるいは有機金属化合物を原料とし、真空プロセスを使用せずに、MOD法(Metal Organic Deposition Processes:有機酸塩堆積法)により中間層上に成膜される。MOD法は、金属基板上に中間層を設けた複合基板上の金属有機酸塩を加熱して熱分解することによって複合基板上に超電導層である薄膜を形成する。   The superconducting layer is made of an organic metal salt or an organic metal compound as a raw material, and is formed on the intermediate layer by a MOD method (Metal Organic Deposition Processes) without using a vacuum process. In the MOD method, a metal organic acid salt on a composite substrate provided with an intermediate layer on a metal substrate is heated and thermally decomposed to form a thin film as a superconducting layer on the composite substrate.

電気絶縁層113は、それぞれ下層の超電導導体層112の外周に、例えば、半合成絶縁紙を巻回して構成される。   The electrical insulating layer 113 is configured by, for example, winding semi-synthetic insulating paper around the outer periphery of the lower superconducting conductor layer 112.

保護層115は、例えば、ケーブルシールド層114の外周にクラフト紙等を巻回して構成される。   The protective layer 115 is configured, for example, by winding kraft paper or the like around the outer periphery of the cable shield layer 114.

超電導ケーブル10の端末部においては、図1に示すように、ケーブルコア11に段剥ぎ加工が施され、先端側から順に各層が露出する。各超電導導体層112(112−1、112−2、112−3)には、各超電導導体層112(112−1、112−2、112−3)に電気的に接続される接続電極部13(13−1、13−2、13−3)が接続されている。ここでは、接続電極部13は、超電導導体層112の外周に配置される。ケーブルシールド層114の外周には、ケーブルシールド層114に電気的に接続されるシールド接続端子14が配置される。超電導導体層112(112−1、112−2、112−3)の外周に配置される電気絶縁層113(113−1、113−2、113−3)の外周には、ストレスコーン等の電界緩和部15(15−1、15−2、15−3)が配置される。具体的には、接続電極部13−1と接続電極部13−2との間に位置する電気絶縁層113−1の外周には、電界緩和部15−1が配置される。接続電極部13−2と絶続電極部13−3との間に位置する電気絶縁層113−2の外周には、電界緩和部15−2が配置される。接続電極部13−3とシールド接続端子14の間に位置する電気絶縁層113−3の外周には電界緩和部15−3が配置される。   At the terminal portion of the superconducting cable 10, as shown in FIG. 1, the cable core 11 is stepped, and the layers are exposed in order from the tip side. Each superconducting conductor layer 112 (112-1, 112-2, 112-3) has a connecting electrode portion 13 that is electrically connected to each superconducting conductor layer 112 (112-1, 112-2, 112-3). (13-1, 13-2, 13-3) are connected. Here, the connection electrode portion 13 is disposed on the outer periphery of the superconducting conductor layer 112. A shield connection terminal 14 that is electrically connected to the cable shield layer 114 is disposed on the outer periphery of the cable shield layer 114. On the outer periphery of the electrical insulating layer 113 (113-1, 113-2, 113-3) disposed on the outer periphery of the superconducting conductor layer 112 (112-1, 112-2, 112-3), there is an electric field such as a stress cone. Relaxation part 15 (15-1, 15-2, 15-3) is arranged. Specifically, the electric field relaxation part 15-1 is arrange | positioned on the outer periphery of the electric insulation layer 113-1 located between the connection electrode part 13-1 and the connection electrode part 13-2. An electric field relaxation portion 15-2 is disposed on the outer periphery of the electrical insulating layer 113-2 located between the connection electrode portion 13-2 and the continuous electrode portion 13-3. An electric field relaxation portion 15-3 is disposed on the outer periphery of the electrical insulating layer 113-3 located between the connection electrode portion 13-3 and the shield connection terminal 14.

断熱管12は、内側の断熱内管121と外側の断熱外管122とからなる二重管構造を有する。断熱内管121及び断熱外管122は、コルゲート状を有することが好ましい。断熱内管121及び断熱外管122は、例えば、ステンレス鋼(SUS)製のコルゲート管(波付き管)によりそれぞれ構成される。   The heat insulating tube 12 has a double tube structure including an inner heat insulating inner tube 121 and an outer heat insulating outer tube 122. The heat insulating inner tube 121 and the heat insulating outer tube 122 preferably have a corrugated shape. The heat insulation inner pipe 121 and the heat insulation outer pipe 122 are each configured by, for example, a corrugated pipe (corrugated pipe) made of stainless steel (SUS).

断熱内管121は、ケーブルコア11を収容し、運転時には冷媒(例えば液体窒素)が充填される。これにより、超電導導体層112は、超電導状態に維持される。断熱内管121と断熱外管122の間は、断熱のために、運転時に真空状態に保持される。   The heat insulating inner pipe 121 accommodates the cable core 11 and is filled with a refrigerant (for example, liquid nitrogen) during operation. Thereby, the superconducting conductor layer 112 is maintained in a superconducting state. A space between the heat insulating inner pipe 121 and the heat insulating outer pipe 122 is kept in a vacuum state during operation for heat insulation.

このように超電導ケーブル10は、フォーマの外周側に、超電導導体層と、波付き管である断熱内管と断熱外管とによる二重構造を採る断熱管とを順に有する構成となっている。   As described above, the superconducting cable 10 has a configuration in which a superconducting conductor layer and a heat insulating tube having a double structure of a heat insulating inner tube and a heat insulating outer tube, which are corrugated tubes, are sequentially provided on the outer peripheral side of the former.

低温容器20は、内側の冷媒槽21と外側の真空槽22とからなる二重構造を有する。   The cryogenic container 20 has a double structure including an inner refrigerant tank 21 and an outer vacuum tank 22.

冷媒槽21は、例えば中空円筒形状を有し、超電導ケーブル10の端末部を収容する。 冷媒槽21は、エポキシ樹脂や繊維強化プラスチック(FRP:Fiber Reinforced Plastics)等の絶縁材料により構成される絶縁管である。すなわち、超電導ケーブル10の端末部は、冷媒槽21である絶縁管に収容される。冷媒槽21は、リード部30を導入する内側の導体貫通部(「内側貫通部」という)214(214−1、214−2、214−3)及びシールド通電部40を導入するシールド内側貫通部216を有する。冷媒槽21は、例えば真空槽22内に配置された架台(図示略)に載置してもよい。   The refrigerant tank 21 has a hollow cylindrical shape, for example, and accommodates the terminal portion of the superconducting cable 10. The refrigerant tank 21 is an insulating tube made of an insulating material such as epoxy resin or fiber reinforced plastics (FRP). That is, the terminal portion of the superconducting cable 10 is accommodated in the insulating tube that is the refrigerant tank 21. The refrigerant tank 21 includes an inner conductor through portion (referred to as an “inner through portion”) 214 (214-1, 214-2, 214-3) for introducing the lead portion 30 and a shield inner through portion for introducing the shield energizing portion 40. 216. The refrigerant tank 21 may be placed on a gantry (not shown) disposed in the vacuum tank 22, for example.

冷媒槽21には後端側から超電導ケーブル10の端末部が導入される。冷媒槽21の後端部の後端面212には、超電導ケーブル10の断熱内管121が接続される。また、冷媒槽21内には、断熱内管121内のケーブルコア11が挿入される。冷媒槽21には、運転時に冷媒循環装置(図示略)により冷媒が循環供給される。冷媒槽21に連通する断熱内管121の内部も冷媒で充填される。なお、本実施の形態では、断熱内管121は、その先端部に取り付けられる内部フランジ部74を介して、後端部(後端面212)に接続されている。この冷媒槽21の後端面212と超電導ケーブル10における断熱管12の断熱内管121との接続については、真空槽22の後端部(後端側管部)と超電導ケーブル10の断熱外管122との接続構造と共に、低温容器20と断熱管12の接続構造として詳細に後述する。   A terminal portion of the superconducting cable 10 is introduced into the refrigerant tank 21 from the rear end side. A heat insulating inner pipe 121 of the superconducting cable 10 is connected to the rear end surface 212 of the rear end portion of the refrigerant tank 21. Further, the cable core 11 in the heat insulating inner pipe 121 is inserted into the refrigerant tank 21. The refrigerant is circulated and supplied to the refrigerant tank 21 by a refrigerant circulation device (not shown) during operation. The inside of the heat insulating inner pipe 121 communicating with the refrigerant tank 21 is also filled with the refrigerant. In the present embodiment, the heat insulating inner tube 121 is connected to the rear end portion (rear end surface 212) via an internal flange portion 74 attached to the front end portion. Regarding the connection between the rear end surface 212 of the refrigerant tank 21 and the heat insulation inner pipe 121 of the heat insulation pipe 12 in the superconducting cable 10, the rear end part (rear end side pipe part) of the vacuum tank 22 and the heat insulation outer pipe 122 of the superconducting cable 10. The connection structure between the cryogenic vessel 20 and the heat insulation pipe 12 will be described in detail later.

冷媒槽21の内側貫通部214には、リード部30の導体中継部32(図3参照)が取り付けられている。導体中継部32は、内側貫通部214に、例えばエポキシ樹脂やFRP等の絶縁材料で構成される絶縁スペ−サーを介して気密的に取り付けられている。すなわち、絶縁スペーサー及び導体中継部32により冷媒槽21と真空槽22とが仕切られており、冷媒槽21は気密かつ水密に封止される。   A conductor relay portion 32 (see FIG. 3) of the lead portion 30 is attached to the inner through portion 214 of the refrigerant tank 21. The conductor relay portion 32 is airtightly attached to the inner through portion 214 via an insulating spacer made of an insulating material such as epoxy resin or FRP. That is, the refrigerant tank 21 and the vacuum tank 22 are partitioned by the insulating spacer and the conductor relay portion 32, and the refrigerant tank 21 is sealed airtight and watertight.

真空槽22は、例えば中空円筒形状を有し、冷媒槽21を収容する。真空槽22は、冷媒槽21を囲むように配置されている。真空槽22は、電界緩和部15(15−1、15−2、15−3)に対応する位置に、超電導ケーブル10と同軸上に配置されるがい管部23(23−1、23−2、23−3)と、外側の導体貫通部(「外側貫通部」という)224(224−1、224−2、224−3)とを有する。外側貫通部224は、がい管部23の軸方向先端側に接続される。   The vacuum tank 22 has a hollow cylindrical shape, for example, and accommodates the refrigerant tank 21. The vacuum tank 22 is disposed so as to surround the refrigerant tank 21. The vacuum chamber 22 is a pipe portion 23 (23-1, 23-2) disposed coaxially with the superconducting cable 10 at a position corresponding to the electric field relaxation portion 15 (15-1, 15-2, 15-3). , 23-3) and outer conductor penetrating portions (referred to as “outer penetrating portions”) 224 (224-1, 242-2, 224-3). The outer through portion 224 is connected to the distal end side in the axial direction of the insulator tube portion 23.

図3は、本発明の一実施の形態に係る端末構造体1のがい管部23を含む要部構成を示す図である。なお、各がい管部23−1、23−2、23−3は、それぞれ同様に構成されるのでがい管部23として説明する。また、がい管部23−1、超電導導体層112−1、接続電極部13−1、電気絶縁層113−1及び電界緩和部15−1の関係と、がい管部23−2、超電導導体層112−2、接続電極部13−2、電気絶縁層113−2及び電界緩和部15−2の関係と、がい管部23−3、超電導導体層112−3、接続電極部13−3、電気絶縁層113−3及び電界緩和部15−3との関係はそれぞれ同様である。よって、以下では、がい管部23とともに、超電導導体層112、接続電極部13、電気絶縁層113及び電界緩和部15を用いて説明する。   FIG. 3 is a diagram showing a configuration of a main part including the insulator pipe part 23 of the terminal structure 1 according to the embodiment of the present invention. In addition, since each insulator pipe part 23-1,23-2,23-3 is comprised similarly, it demonstrates as the insulator pipe part 23. FIG. Also, the relationship between the insulator tube portion 23-1, the superconducting conductor layer 112-1, the connection electrode portion 13-1, the electrical insulating layer 113-1, and the electric field relaxation portion 15-1, the insulator tube portion 23-2, and the superconducting conductor layer. 112-2, connection electrode portion 13-2, electrical insulation layer 113-2, and electric field relaxation portion 15-2, and insulator tube portion 23-3, superconducting conductor layer 112-3, connection electrode portion 13-3, electrical The relationship between the insulating layer 113-3 and the electric field relaxation unit 15-3 is the same. Therefore, the following description will be made using the superconducting conductor layer 112, the connection electrode portion 13, the electrical insulating layer 113, and the electric field relaxation portion 15 together with the insulator tube portion 23.

がい管部23(23−1、23−2、23−3)は、例えば、ポリマーがい管または磁器がい管により構成される。ここでは、がい管部23をポリマーがい管で構成したものとして説明する。   The insulator tube portion 23 (23-1, 23-2, 23-3) is constituted by, for example, a polymer insulator tube or a porcelain insulator tube. Here, the description will be made assuming that the insulator tube portion 23 is constituted by a polymer insulator tube.

図3に示すように、がい管部23は、絶縁筒232と、ポリマー被覆体234と、を有する。絶縁筒232は、機械的強度の高いFRP(繊維強化プラスチック)で構成され、冷媒槽21内の超電導ケーブル10に取り付けられる電界緩和部15の周囲に、電界緩和部15を囲む位置に配置される。ポリマー被覆体234は、電気絶縁性能に優れる材料、例えばシリコーンポリマー(シリコーンゴム)などの高分子材料で構成される。ポリマー被覆体234は、絶縁筒232の外周に設けられており、ポリマー被覆体234の外周面には、複数個の傘状の襞部が長手方向に離間して形成される。がい管部23の内部(絶縁筒232の内部)は中空となっている。   As shown in FIG. 3, the insulator tube portion 23 includes an insulating cylinder 232 and a polymer cover 234. The insulating cylinder 232 is made of FRP (fiber reinforced plastic) having high mechanical strength, and is disposed around the electric field relaxation unit 15 attached to the superconducting cable 10 in the refrigerant tank 21 at a position surrounding the electric field relaxation unit 15. . The polymer cover 234 is made of a material excellent in electrical insulation performance, for example, a polymer material such as silicone polymer (silicone rubber). The polymer cover 234 is provided on the outer periphery of the insulating cylinder 232, and a plurality of umbrella-shaped ridges are formed on the outer peripheral surface of the polymer cover 234 so as to be separated in the longitudinal direction. The inside of the insulator tube part 23 (inside the insulating cylinder 232) is hollow.

がい管部23の内部は、運転時には真空引きされて真空状態となる。本実施の形態では、がい管部23は、絶縁管である冷媒槽21内のケーブルコア11(詳細には電気絶縁層113の外周)に設けられた電界緩和部15を囲む位置で、冷媒槽21の外側に配置されていることから、真空断熱部を大きく確保できる。これにより、リード部30を介して外部から冷媒槽21内へ侵入する熱侵入を低減することができる。   The inside of the insulator tube section 23 is evacuated during operation to be in a vacuum state. In the present embodiment, the insulator tube portion 23 surrounds the electric field relaxation portion 15 provided in the cable core 11 (specifically, the outer periphery of the electric insulation layer 113) in the refrigerant vessel 21 which is an insulating tube, and is in the refrigerant vessel. Since it is arrange | positioned on the outer side of 21, the vacuum heat insulation part can be ensured large. Thereby, the heat penetration | invasion which penetrates into the refrigerant tank 21 from the outside via the lead part 30 can be reduced.

真空槽22の外側貫通部224には、リード部30の外部端子部34が取り付けられている。外部端子部34は、外側貫通部224に、例えばエポキシ樹脂やFRP等の絶縁材料で構成される絶縁スペ−サーを介して気密的に取り付けられている。すなわち、絶縁スペーサー及び外部端子部34により真空槽22は気密かつ水密に封止される。   An external terminal portion 34 of the lead portion 30 is attached to the outer through portion 224 of the vacuum chamber 22. The external terminal portion 34 is airtightly attached to the outer through portion 224 via an insulating spacer made of an insulating material such as epoxy resin or FRP. That is, the vacuum chamber 22 is hermetically and watertightly sealed by the insulating spacer and the external terminal portion 34.

真空槽22の内部には、外側貫通部224の下方に内側貫通部214が位置し、シールド外側貫通部226の下方にシールド内側貫通部216が位置する(図1参照)ように位置決めされた状態で、冷媒槽21が配置される。真空槽22の後端面222(図1参照)には、超電導ケーブル10の断熱外管122が接続される。本実施の形態では、断熱外管122は、その先端部に取り付けられる外部フランジ部84(図1参照)を介して真空槽22の後端面222に接続されている。   The vacuum chamber 22 is positioned so that the inner through-hole 214 is positioned below the outer through-hole 224 and the shield inner through-hole 216 is positioned below the outer shield through-hole 226 (see FIG. 1). Thus, the refrigerant tank 21 is arranged. A heat insulating outer tube 122 of the superconducting cable 10 is connected to the rear end surface 222 (see FIG. 1) of the vacuum chamber 22. In the present embodiment, the heat insulating outer tube 122 is connected to the rear end surface 222 of the vacuum chamber 22 via an external flange portion 84 (see FIG. 1) attached to the front end portion thereof.

冷媒槽21の内側貫通部214及びシールド内側貫通部216が真空槽22に収容されるので、熱伝達経路となる接続電極部13、リード部30及びシールド通電部40は真空槽22の内部まで導入される。これにより、熱侵入を低減するための熱伝達経路長を確保しやすくなるので、接続電極と外部端子部の長さを最小限にすることができ、端末構造体1の小型化を図ることができる。   Since the inner penetration part 214 and the shield inner penetration part 216 of the refrigerant tank 21 are accommodated in the vacuum tank 22, the connection electrode part 13, the lead part 30, and the shield energization part 40 serving as a heat transfer path are introduced to the inside of the vacuum tank 22. Is done. Thereby, since it becomes easy to ensure the heat transfer path length for reducing heat penetration, the length of the connection electrode and the external terminal portion can be minimized, and the terminal structure 1 can be miniaturized. it can.

真空槽22は、運転時に真空ポンプ(図示略)により真空引きされ、真空状態に保持される。真空槽22に連通する断熱内管121と断熱外管122の間の空間が真空状態に保持される。   The vacuum chamber 22 is evacuated by a vacuum pump (not shown) during operation and kept in a vacuum state. A space between the heat insulating inner tube 121 and the heat insulating outer tube 122 communicating with the vacuum chamber 22 is maintained in a vacuum state.

リード部30は、超電導ケーブル10、具体的には、端末構造体1から実系統に電流を引き出すための導体である。リード部30は、超電導ケーブル10の超電導導体層112に接続される接続電極部13に接続されるものであり、内部中間導体31、導体中継部32、外部中間導体33、外部端子部34を有する。   The lead portion 30 is a conductor for drawing a current from the superconducting cable 10, specifically, the terminal structure 1 to the actual system. The lead portion 30 is connected to the connection electrode portion 13 connected to the superconducting conductor layer 112 of the superconducting cable 10, and has an internal intermediate conductor 31, a conductor relay portion 32, an external intermediate conductor 33, and an external terminal portion 34. .

なお、本実施の形態では、内部中間導体31及び外部中間導体33を、例えば、平編銅線等のフレキシブル導体等の可撓性を有するように構成し、内部中間導体31及び外部中間導体33が、冷却時における冷媒槽21の熱収縮を吸収する収縮吸収部として機能する。   In the present embodiment, the inner intermediate conductor 31 and the outer intermediate conductor 33 are configured to have flexibility such as a flexible conductor such as a flat knitted copper wire, and the inner intermediate conductor 31 and the outer intermediate conductor 33 are configured. However, it functions as a shrinkage absorbing portion that absorbs heat shrinkage of the refrigerant tank 21 during cooling.

外部端子部34及び導体中継部32は、例えば、導電性を有する材料、例えば、銅で構成される。外部端子部34は、真空槽22を気密に貫通して真空槽22に固定される。外部端子部34の一端34aは、外部に引き出され、真空槽22の外部に露出している。また、外部端子部34の他端34bは真空槽22の内部で導体中継部32に、外部中間導体33を介して電気的に接続される。導体中継部32は、冷媒槽21を気密に貫通して冷媒槽21に固定される。導体中継部32は、冷媒槽21の外部に位置する一端32aで外部中間導体33に接続され、冷媒槽21内の他端32bで、内部中間導体31を介して、接続電極部13に接続される。内部中間導体31は、外部中間導体33と同様に可撓性を有するので、冷却時における冷媒槽21の熱収縮(特に水平方向の熱収縮)を容易に吸収できる。   The external terminal portion 34 and the conductor relay portion 32 are made of, for example, a conductive material, for example, copper. The external terminal portion 34 passes through the vacuum chamber 22 in an airtight manner and is fixed to the vacuum chamber 22. One end 34 a of the external terminal portion 34 is drawn outside and exposed to the outside of the vacuum chamber 22. Further, the other end 34 b of the external terminal portion 34 is electrically connected to the conductor relay portion 32 inside the vacuum chamber 22 via the external intermediate conductor 33. The conductor relay portion 32 passes through the refrigerant tank 21 in an airtight manner and is fixed to the refrigerant tank 21. The conductor relay part 32 is connected to the external intermediate conductor 33 at one end 32 a located outside the refrigerant tank 21, and is connected to the connection electrode part 13 via the internal intermediate conductor 31 at the other end 32 b in the refrigerant tank 21. The Since the inner intermediate conductor 31 is flexible like the outer intermediate conductor 33, it can easily absorb the thermal contraction (particularly the horizontal thermal contraction) of the refrigerant tank 21 during cooling.

図4及び図5は、本発明の一実施の形態に係る端末構造体の接続電極部13の要部構成を示す斜視図である。   4 and 5 are perspective views showing the main configuration of the connection electrode portion 13 of the terminal structure according to one embodiment of the present invention.

図4及び図5に示す接続電極部13は、冷媒槽21中の超電導導体層112(具体的には超電導テープ1120)の端末に電気的に接続される。   4 and 5 is electrically connected to the terminal of the superconducting conductor layer 112 (specifically, the superconducting tape 1120) in the refrigerant tank 21.

接続電極部13は、常温側の機器と接続するための常電導導体であるリード部30に電気的に接続される。接続電極部13は、超電導ケーブル10の超電導導体層112と、外部端子部34とを接続する。   The connection electrode portion 13 is electrically connected to a lead portion 30 that is a normal conductive conductor for connecting to a room temperature side device. The connection electrode portion 13 connects the superconducting conductor layer 112 of the superconducting cable 10 and the external terminal portion 34.

接続電極部13は、銅等の導電部材により形成されており、円環板状の電極本体132を有する。電極本体132には、接続片部134が突設されており、この接続片部134に内部中間導体31(図3参照)が接続されている。   The connection electrode portion 13 is formed of a conductive member such as copper and has an electrode body 132 having a ring-shaped plate shape. The electrode main body 132 is provided with a connecting piece 134 projecting therefrom, and the inner intermediate conductor 31 (see FIG. 3) is connected to the connecting piece 134.

電極本体132を貫通する中央の開口には、冷媒槽21内の超電導ケーブル10が挿通されている。電極本体132には、段剥ぎされて外周側で露出する超電導導体層112を構成する複数の超電導テープ(テープ状の超電導線材)1120が接続されている。なお、電極本体132に接続される超電導テープ1120は、ケーブルコア11において、電極本体132を挿通させることが可能な超電導導体層のうち最も外周側に位置する超電導導体層112を構成する複数の超電導テープ1120であることが好ましい。   The superconducting cable 10 in the refrigerant tank 21 is inserted through the central opening that penetrates the electrode main body 132. The electrode body 132 is connected to a plurality of superconducting tapes (tape-shaped superconducting wire) 1120 constituting the superconducting conductor layer 112 which is stripped and exposed on the outer peripheral side. Note that the superconducting tape 1120 connected to the electrode body 132 includes a plurality of superconducting conductors constituting the superconducting conductor layer 112 positioned on the outermost side among the superconducting conductor layers through which the electrode body 132 can be inserted in the cable core 11. A tape 1120 is preferable.

ここでは、ケーブルコア11において、最も外側に位置する超電導導体層112を構成する複数の超電導テープ1120の端部11201以外の部分、つまり最も外側に位置する超電導導体層112より中心側に位置する部位を、電極本体132の開口に挿入されている。そして、最も外側に位置する超電導導体層112を構成する複数の超電導テープ1120の端部11201は、電極本体132の開口を通過せずに、電極本体132において開口する表裏面のうち挿通方向逆側の面(後端側の面)132aで、半田を介して電気的に接続している。ここでは各超電導テープ1120を、電極本体132(後端側の面132a)に、周方向に等間隔を空けて接続されている。   Here, in the cable core 11, a portion other than the end portions 11201 of the plurality of superconducting tapes 1120 constituting the outermost superconducting conductor layer 112, that is, a portion located on the center side of the outermost superconducting conductor layer 112. Is inserted into the opening of the electrode body 132. Ends 11201 of the plurality of superconducting tapes 1120 constituting the outermost superconducting conductor layer 112 do not pass through the opening of the electrode main body 132, and are on the opposite side in the insertion direction of the front and back surfaces opened in the electrode main body 132. The surface (rear end side surface) 132a is electrically connected via solder. Here, each superconducting tape 1120 is connected to the electrode body 132 (the rear end surface 132a) at equal intervals in the circumferential direction.

また、電極本体132に対して複数の超電導テープ1120は、互い同士や他の部材に接触しないように、それぞれ撓ませた状態で接続されている。これにより冷却時において超電導テープ1120自体が収縮(特に水平方向の熱収縮)しても容易に吸収して電極本体132自体、ひいては、内部中間導体31、内部中間導体31も含む他のリード部自体に負荷がかかることがない。また、超電導テープ1120は、電極本体132を挿通するケーブルコア11の延在方向に配置されている状態から立ち上げて、電極本体132の後端側の面132aに接続している。これにより、可撓性を有する超電導テープ1120は、ケーブルコア11の延在方向に沿った元の位置に戻ろうとするので、戻る方向に位置する後端側の面132aに対して密着した状態で接触する。これにより、超電導テープ1120と電極本体132とを半田を介してより確実に安定して電気的に接続できる。   Further, the plurality of superconducting tapes 1120 are connected to the electrode main body 132 in a bent state so as not to contact each other and other members. As a result, even if the superconducting tape 1120 itself contracts during cooling (especially horizontal thermal contraction), it is easily absorbed and the electrode body 132 itself, and thus the other lead portions themselves including the inner intermediate conductor 31 and the inner intermediate conductor 31 themselves. The load will not be applied. Further, the superconducting tape 1120 is raised from the state in which the cable core 11 extending through the electrode main body 132 extends and is connected to the surface 132a on the rear end side of the electrode main body 132. As a result, the flexible superconducting tape 1120 attempts to return to the original position along the extending direction of the cable core 11, so that it is in close contact with the rear end surface 132 a positioned in the returning direction. Contact. Thereby, the superconducting tape 1120 and the electrode main body 132 can be more reliably and stably electrically connected via the solder.

図1に示すシールド通電部40は、超電導ケーブル10のケーブルシールド層114を接地するための導体である。シールド通電部40は、例えば、銅製の棒材からなるシールド引出棒を有する等、公知の構成を適用することができる。ここでは、シールド通電部40は、リード部30と同様に構成され、超電導ケーブル10のシールド層114に接続されるシールド接続端子14に接続されるものであり、内部中間導体31と同様に構成される内部中間導体(図示省略)、導体中継部32と同様に構成されるシールド中継部42、外部中間導体33と同様に構成される外部中間導体(図示省略)、外部端子部34と同様に構成されるシールド外部端子部(図示省略)を有する。シールド通電部40では、シールド外部端子部は、真空槽22におけるシールド外側貫通部226を気密に貫通して外部に引き出されるように固定される。シールド外部端子部は、内部中間導体を介して、真空槽22の内部で、シールド中継部42の一端に電気的に接続される。シールド中継部42は、冷媒槽21を気密に貫通して冷媒槽21に固定される。具体的には、シールド中継部42は、シールド内側貫通部216に、冷媒槽21を貫通して、且つ、気密的に固定されている。シールド中継部42は、シールド接続端子14に接続される。シールド通電部40は、シールド接続端子14を介して超電導ケーブル10のケーブルシールド層114と電気的に接続する。シールド通電部40における内部中間導体、外部中間導体は、例えば平編銅線等のフレキシブル導体(図示略)により構成される。これにより、超電導ケーブル10の熱伸縮によりシールド接続端子14の位置が水平方向に(図1の左右方向)に移動しても、容易に追従することができるので、真空槽22のシールド外側貫通部226等の損傷を防止できる。本実施の形態では、シールド中継部42において冷媒槽21内に配置される部位をフレキシブル導体で構成して、このフレキシブル導体を介してシールド接続端子14に接続している。   The shield energization unit 40 shown in FIG. 1 is a conductor for grounding the cable shield layer 114 of the superconducting cable 10. The shield energization part 40 can apply a publicly known composition, such as having a shield lead bar made of a copper bar. Here, the shield energization section 40 is configured in the same manner as the lead section 30, is connected to the shield connection terminal 14 connected to the shield layer 114 of the superconducting cable 10, and is configured in the same manner as the internal intermediate conductor 31. Internal intermediate conductor (not shown), shield relay portion 42 configured similarly to the conductor relay portion 32, external intermediate conductor (not shown) configured similar to the external intermediate conductor 33, and configuration similar to the external terminal portion 34 A shield external terminal portion (not shown). In the shield energization part 40, the shield external terminal part is fixed so as to penetrate the shield outer through part 226 in the vacuum chamber 22 in an airtight manner and be drawn to the outside. The shield external terminal portion is electrically connected to one end of the shield relay portion 42 inside the vacuum chamber 22 through the internal intermediate conductor. The shield relay portion 42 passes through the refrigerant tank 21 in an airtight manner and is fixed to the refrigerant tank 21. Specifically, the shield relay part 42 penetrates the refrigerant tank 21 and is hermetically fixed to the shield inner penetration part 216. The shield relay part 42 is connected to the shield connection terminal 14. The shield energization unit 40 is electrically connected to the cable shield layer 114 of the superconducting cable 10 via the shield connection terminal 14. The inner intermediate conductor and the outer intermediate conductor in the shield energization unit 40 are configured by a flexible conductor (not shown) such as a flat knitted copper wire, for example. Thereby, even if the position of the shield connection terminal 14 moves in the horizontal direction (left and right direction in FIG. 1) due to thermal expansion and contraction of the superconducting cable 10, it can easily follow, so that the shield outer through portion of the vacuum chamber 22 226 etc. can be prevented from being damaged. In this Embodiment, the site | part arrange | positioned in the refrigerant tank 21 in the shield relay part 42 is comprised with the flexible conductor, and it connects to the shield connection terminal 14 via this flexible conductor.

図1に示す支持脚部28は、真空槽22(詳細にはがい管部23)を他の機器、ここでは、設置面から離間して支持する。ここでは、支持脚部28は、真空槽22の前端側及び後端側の下面から下方に突出して設けられ、真空槽22を、超電導ケーブル10の軸方向に沿って、水平方向に延在するように支持している。   The support leg portion 28 shown in FIG. 1 supports the vacuum chamber 22 (specifically, the strip tube portion 23) separately from another device, here, the installation surface. Here, the support leg portion 28 is provided so as to protrude downward from the lower surface of the front end side and the rear end side of the vacuum chamber 22, and extends in the horizontal direction along the axial direction of the superconducting cable 10. I support it.

支持脚部28において先端側の脚部28−1には、真空槽22の先端側で高電圧が印可されるため、その外面には複数の襞部を有する電界緩和部(碍子)282が設けられている。   Since a high voltage is applied to the leg portion 28-1 on the distal end side of the support leg 28 on the distal end side of the vacuum chamber 22, an electric field relaxation portion (insulator) 282 having a plurality of flange portions is provided on the outer surface thereof. It has been.

図6は、本発明の一実施の形態に係る端末構造体1において低温容器20と超電導ケーブル10の断熱管12との接続部分を示す図である。   FIG. 6 is a diagram showing a connection portion between the cryogenic container 20 and the heat insulating tube 12 of the superconducting cable 10 in the terminal structure 1 according to one embodiment of the present invention.

図6に示すように、超電導ケーブル10における低温容器20の後端部では、断熱内管121は、真空槽22の後端面222を貫通し、少なくとも冷媒槽21の後端面212近傍まで引き込まれている。   As shown in FIG. 6, at the rear end portion of the cryocontainer 20 in the superconducting cable 10, the heat insulating inner pipe 121 passes through the rear end surface 222 of the vacuum chamber 22 and is drawn into at least the vicinity of the rear end surface 212 of the refrigerant chamber 21. Yes.

内部フランジ部74は、中央の開口を、冷媒槽21の後端面212の開口212aに対応させた状態で、開口212aの縁部に当接されている。内部フランジ部74は、冷媒槽21の後端面212と断熱内管121とを密閉性を損なうことなく、真空槽22内で、冷媒槽21に気密的に接続している。   The inner flange portion 74 is in contact with the edge portion of the opening 212 a in a state where the central opening corresponds to the opening 212 a of the rear end surface 212 of the refrigerant tank 21. The internal flange portion 74 hermetically connects the rear end surface 212 of the refrigerant tank 21 and the heat insulating inner pipe 121 to the refrigerant tank 21 in the vacuum tank 22 without impairing the sealing performance.

内部フランジ部74は、冷媒槽21の後端面212と真空槽22の後端面222との間で、断熱内管121の端部に連続して設けられている。内部フランジ部74の内部には、ケーブルコア11が挿通されている。   The internal flange portion 74 is continuously provided at the end portion of the heat insulating inner pipe 121 between the rear end surface 212 of the refrigerant tank 21 and the rear end surface 222 of the vacuum chamber 22. The cable core 11 is inserted into the inner flange portion 74.

内部フランジ部74は、ケーブルコア11の外周を囲むように配置されている。内部フランジ部74は、一端部側の円環状の面(内部フランジ部74の一端部)が冷媒槽21の後端面212に当接し、他端部側に形成された内部筒部76の他端部(後端部)が断熱内管121の一端部(先端部)に接続されている。内部フランジ部74は、内部筒部76に断熱内管121に気密的に接合(溶接)されることにより、断熱内管121に対して、負荷を与えること無く、断熱内管121に対して、外周側に突出するように固定されている。内部フランジ部74では、一端部側の円環状の面(内部フランジ部74の一端部)が、冷媒槽21の後端面212に押し付けられ、内部フランジ部74は、後端面212と内部保持部材50とで挟持されることにより固定されている。   The internal flange portion 74 is disposed so as to surround the outer periphery of the cable core 11. The inner flange portion 74 has an annular surface on one end side (one end portion of the inner flange portion 74) abutting against the rear end surface 212 of the refrigerant tank 21, and the other end of the inner cylinder portion 76 formed on the other end side. The part (rear end part) is connected to one end part (front end part) of the heat insulating inner pipe 121. The inner flange portion 74 is airtightly bonded (welded) to the heat insulating inner tube 121 to the inner tube portion 76, so that no load is applied to the heat insulating inner tube 121. It is fixed so as to protrude to the outer peripheral side. In the internal flange portion 74, an annular surface on one end side (one end portion of the internal flange portion 74) is pressed against the rear end surface 212 of the refrigerant tank 21, and the internal flange portion 74 includes the rear end surface 212 and the internal holding member 50. It is fixed by being pinched by.

内部保持部材50は、内部フランジ部74に係合する係合部を有する保持部本体52と、保持部本体52を冷媒槽21の後端面212に止着して固定する止着部54とを有する。   The internal holding member 50 includes a holding portion main body 52 having an engaging portion that engages with the internal flange portion 74, and a fastening portion 54 that fastens and holds the holding portion main body 52 to the rear end surface 212 of the refrigerant tank 21. Have.

図7は、本発明の一実施の形態に係る端末構造体1における内部保持部材50の要部構成を示す斜視図である。   FIG. 7 is a perspective view showing a configuration of a main part of the internal holding member 50 in the terminal structure 1 according to the embodiment of the present invention.

保持部本体52は、ここでは、内部フランジ部74に対して、後端側から係合可能なリング状をなしている。なお、保持部本体52を、内部フランジ部74の後端面側に配置する場合には、内部フランジ部74と断熱内管121とを接合部90を介して接続する前に両部材の間に介在させておく。また、保持部本体52を、軸心を通る面で複数に分割した分割体により構成したものでもよい。この場合、内部フランジ部74と断熱内管121とを組み付けた後で、分割体を内部フランジ部74の後端面側に配置できる。   Here, the holding portion main body 52 has a ring shape that can be engaged with the internal flange portion 74 from the rear end side. When the holding portion main body 52 is disposed on the rear end face side of the inner flange portion 74, the holding portion main body 52 is interposed between the two members before connecting the inner flange portion 74 and the heat insulating inner pipe 121 via the joint portion 90. Let me. Moreover, what comprised the holding | maintenance part main body 52 by the division body divided | segmented into plurality by the surface which passes along an axial center may be sufficient. In this case, after the inner flange portion 74 and the heat insulating inner pipe 121 are assembled, the divided body can be disposed on the rear end face side of the inner flange portion 74.

止着部54は、例えば、ボルトであり、保持部本体52の外周縁部で厚み方向に後端側から挿入され、後端側の面で頭部が掛止し、先端側の面から突出する軸部を冷媒槽21の後端面212に螺合する。この止着部54により、保持部本体52は、外周縁側で冷媒槽21の後端面212に止着される(図6参照)。これにより、止着部(ボルト)54を締めることにより保持部本体52が後端面212側に変位し、保持部本体52の先端側の面52aで係合する内部フランジ部74が全周に亘って均等に後端面212に押圧される(図1及び図6参照)。すなわち、保持部本体52は、後端面212とともに内部フランジ部74を挟持した状態で保持する。また、内部フランジ部74と後端面212との間には、ガスケット(Oリング)等の気密部材18が設けられ、内部フランジ部74は、気密部材18を挟み後端面212に、一層気密的に固定される。   The fastening portion 54 is, for example, a bolt and is inserted from the rear end side in the thickness direction at the outer peripheral edge portion of the holding portion main body 52, the head is hooked on the rear end side surface, and protrudes from the front end side surface. The shaft portion to be engaged is screwed into the rear end surface 212 of the refrigerant tank 21. By this fastening part 54, the holding part main body 52 is fastened to the rear end face 212 of the refrigerant tank 21 on the outer peripheral edge side (see FIG. 6). As a result, by tightening the fastening portion (bolt) 54, the holding portion main body 52 is displaced toward the rear end surface 212, and the inner flange portion 74 that engages with the surface 52a on the front end side of the holding portion main body 52 extends over the entire circumference. Are uniformly pressed against the rear end face 212 (see FIGS. 1 and 6). That is, the holding portion main body 52 holds the inner flange portion 74 with the rear end face 212 in a sandwiched state. Further, an airtight member 18 such as a gasket (O-ring) is provided between the inner flange portion 74 and the rear end surface 212, and the inner flange portion 74 sandwiches the airtight member 18 and is more airtight on the rear end surface 212. Fixed.

このように、保持部本体52にボルト等の止着部54をねじ込むことにより内部フランジ部74を冷媒槽21に固定する場合、ねじ込む際の荷重は、保持部本体52にかかる。よって、内部フランジ部74にねじ込む際の荷重(螺合方向(捻れ方向)の荷重)がかかることがなく、内部フランジ部74を、超電導ケーブル10の軸方向に沿って、後端面212側に略平行移動させることができる。これにより、内部保持部材50は、内部フランジ部74の内部フランジ部74(具体的には、内部フランジ部74の一端面)を後端面212に押し付けて挟持した状態で保持できる。よって、内部保持部材50は、他端部側が断熱内管121に接続された内部フランジ部74の一端部(内部フランジ部74)を、内部フランジ部74を変形させることなく、つまり、断熱内管121に負荷をかけることなく、好適に冷媒槽21に固定することができる。   As described above, when the internal flange portion 74 is fixed to the refrigerant tank 21 by screwing the fastening portion 54 such as a bolt into the holding portion main body 52, the load at the time of screwing is applied to the holding portion main body 52. Therefore, there is no load (screwing direction (twisting direction) load) when screwing into the internal flange portion 74, and the internal flange portion 74 is substantially on the rear end face 212 side along the axial direction of the superconducting cable 10. Can be translated. Thereby, the internal holding member 50 can be held in a state where the internal flange portion 74 of the internal flange portion 74 (specifically, one end surface of the internal flange portion 74) is pressed against the rear end surface 212 and sandwiched. Therefore, the inner holding member 50 has one end portion (inner flange portion 74) of the inner flange portion 74 whose other end side is connected to the heat insulating inner tube 121 without deforming the inner flange portion 74, that is, the heat insulating inner tube. It can be suitably fixed to the refrigerant tank 21 without applying a load to 121.

図6に示すように、真空槽22の後端面222と断熱外管122は、外部フランジ部84を介して接続されている。   As shown in FIG. 6, the rear end surface 222 of the vacuum chamber 22 and the heat insulating outer tube 122 are connected via an outer flange portion 84.

外部フランジ部84は、断熱外管122の先端側で接続(ここでは、断熱外管122の先端部に接続)接続されており、断熱外管122とともに内部には、ケーブルコア11及び断熱内管121が挿通されている。   The external flange portion 84 is connected at the distal end side of the heat insulating outer tube 122 (here, connected to the distal end portion of the heat insulating outer tube 122), and the cable core 11 and the heat insulating inner tube are disposed inside the heat insulating outer tube 122. 121 is inserted.

外部フランジ部84は、内部フランジ部74と同様に構成されており、ここでは、円環板状部を有し、ケーブルコア11の外周を囲むように配置されている。外部フランジ部84は、一端部側の円環状の面(内部フランジ部74の一端部)が真空槽22の後端面222に当接し、他端部(後端部)側に形成された外部筒部82で断熱外管122の一端部(先端部)に連続して形成されている。ここでは、外部フランジ部84において、外部筒部82の内周面で断熱外管122が溶接等によりなる接合部90を介して気密的に接合されている。なお、外部筒部82の外周面で接合部90介して断熱外管122に気密的に接合されてもよい。外部フランジ部84の外径(円環板状部分の外径)は、真空槽22の後端面222の開口222aよりも大きく、外部フランジ部84の外周縁の先端側の面は、開口222aの縁部に対向する位置に位置される。外部フランジ部84(具体的には外部フランジ部84の外周縁の先端側の面)は、外部保持部材60により、真空槽22の後端面222に押し付けられ、後端面222とで挟持されることにより保持されている。   The outer flange portion 84 is configured in the same manner as the inner flange portion 74, and here has an annular plate-like portion and is disposed so as to surround the outer periphery of the cable core 11. The outer flange portion 84 has an annular surface on one end side (one end portion of the inner flange portion 74) abutting on the rear end surface 222 of the vacuum chamber 22 and is formed on the other end portion (rear end portion) side. The portion 82 is continuously formed at one end (tip portion) of the heat insulating outer tube 122. Here, in the outer flange portion 84, the heat insulating outer tube 122 is airtightly joined to the inner peripheral surface of the outer cylindrical portion 82 via a joint portion 90 formed by welding or the like. It should be noted that the outer peripheral surface of the outer cylindrical portion 82 may be airtightly bonded to the heat insulating outer tube 122 via the bonding portion 90. The outer diameter of the outer flange portion 84 (the outer diameter of the annular plate-shaped portion) is larger than the opening 222a of the rear end surface 222 of the vacuum chamber 22, and the front end side surface of the outer peripheral edge of the outer flange portion 84 is the opening 222a. It is located at a position facing the edge. The external flange portion 84 (specifically, the front end side surface of the outer peripheral edge of the external flange portion 84) is pressed against the rear end surface 222 of the vacuum chamber 22 by the external holding member 60 and is sandwiched between the rear end surfaces 222. Is held by.

外部保持部材60は、外部フランジ部84に、外部フランジ部84の他端部側(後端面側)から係合する係合部を有する保持部本体62と、保持部本体62を真空槽22の後端面222に止着して固定する止着部64とを有する。   The external holding member 60 includes a holding portion main body 62 having an engaging portion that engages with the external flange portion 84 from the other end portion side (rear end surface side) of the external flange portion 84, and the holding portion main body 62 of the vacuum chamber 22. And a fastening portion 64 that fastens and fixes to the rear end face 222.

外部保持部材60は、例えば、内部保持部材50と比較して外径及び内径の寸法が異なり、内部保持部材50と同様にリング状に形成される。   For example, the outer holding member 60 has a different outer diameter and inner diameter as compared with the inner holding member 50, and is formed in a ring shape like the inner holding member 50.

すなわち、保持部本体62は、外部フランジ部84に対して、後端側から係合可能なリング状をなしている。   That is, the holding portion main body 62 has a ring shape that can be engaged with the external flange portion 84 from the rear end side.

止着部64は、例えばボルトであり、保持部本体62の外周縁部で、厚み方向に後端側から挿入され、後端側の面で頭部が掛止し、先端側の面から突出する軸部が、真空槽22の後端面212に螺合する。この止着部64により、保持部本体62は、外周縁側で真空槽22の後端面222における開口222aの縁部に止着される。すなわち、止着部(ボルト)64を締めることにより保持部本体62が後端面222側に変位し、これに係合する外部フランジ部84が全周に亘って均等に後端面212に押圧される。外部フランジ部84と後端面222との間には、ガスケット(Oリング)等の気密部材18が設けられ、外部フランジ部84は、気密部材18を挟み後端面222に気密的に固定される。   The fastening portion 64 is, for example, a bolt, and is inserted from the rear end side in the thickness direction at the outer peripheral edge portion of the holding portion main body 62, the head is hooked on the rear end side surface, and protrudes from the front end side surface. A shaft portion to be engaged with the rear end surface 212 of the vacuum chamber 22 is screwed. By this fastening part 64, the holding part main body 62 is fastened to the edge part of the opening 222 a in the rear end surface 222 of the vacuum chamber 22 on the outer peripheral edge side. That is, when the fastening portion (bolt) 64 is tightened, the holding portion main body 62 is displaced toward the rear end surface 222 side, and the external flange portion 84 engaged therewith is uniformly pressed against the rear end surface 212 over the entire circumference. . An airtight member 18 such as a gasket (O-ring) is provided between the outer flange portion 84 and the rear end surface 222, and the outer flange portion 84 is airtightly fixed to the rear end surface 222 with the airtight member 18 interposed therebetween.

このように、保持部本体62にボルト等の止着部64をねじ込むことにより外部フランジ部84を真空槽22に固定する場合、ねじ込む際の荷重は、保持部本体62にかかる。よって、外部フランジ部84にねじ込む際の荷重(螺合方向(捻れ方向)の荷重)がかかることがなく、外部フランジ部84の外部フランジ部84を、超電導ケーブル10の軸方向に沿って、後端面222側に略平行移動させることができる。これにより、外部フランジ部84の外部フランジ部84(具体的には、外部フランジ部84の一端面)を後端面222に押し付けて保持できる。よって、外部保持部材60は、他端部側が断熱外管122に接続された外部フランジ部84を、外部フランジ部84を変形させることなく、好適に真空槽22に固定することができる。   As described above, when the outer flange portion 84 is fixed to the vacuum chamber 22 by screwing the fastening portion 64 such as a bolt into the holding portion main body 62, the load at the time of screwing is applied to the holding portion main body 62. Therefore, the load (screwing direction (twisting direction) load) when screwing into the external flange portion 84 is not applied, and the external flange portion 84 of the external flange portion 84 is moved rearward along the axial direction of the superconducting cable 10. It can be moved substantially parallel to the end face 222 side. As a result, the outer flange portion 84 of the outer flange portion 84 (specifically, one end surface of the outer flange portion 84) can be pressed against the rear end surface 222 and held. Therefore, the external holding member 60 can suitably fix the external flange portion 84 whose other end side is connected to the heat insulating outer tube 122 to the vacuum chamber 22 without deforming the external flange portion 84.

端末構造体1では、冷却時における冷媒槽21の収縮、超電導ケーブル10のケーブルコア11における各層の収縮を吸収するために、平編銅線等のフレキシブル導体で構成する内部中間導体31及び外部中間導体33、或いは、超電導テープ1120を撓ませて接続電極部13に接続するようにしている。これにより、冷却時において冷媒槽21、超電導ケーブル10が熱収縮しても、リード部30等が損傷することを防止できる。   In the terminal structure 1, in order to absorb the shrinkage of the refrigerant tank 21 during cooling and the shrinkage of each layer in the cable core 11 of the superconducting cable 10, the inner intermediate conductor 31 and the outer intermediate made of a flexible conductor such as a flat knitted copper wire are used. The conductor 33 or the superconducting tape 1120 is bent and connected to the connection electrode portion 13. Thereby, even if the refrigerant tank 21 and the superconducting cable 10 are thermally contracted during cooling, the lead portion 30 and the like can be prevented from being damaged.

なお、図4に示す接続電極部13において、超電導テープ1120が接続される電極本体13の挿入方向逆側(後端側)の面132aに超電導テープ1120を押さえる押え部を設けた構成としてもよい。   In addition, in the connection electrode part 13 shown in FIG. 4, it is good also as a structure which provided the pressing part which hold | suppresses the superconducting tape 1120 in the surface 132a of the insertion direction reverse side (rear end side) of the electrode main body 13 to which the superconducting tape 1120 is connected. .

図8は、接続電極部の変形例1を示す図である。   FIG. 8 is a diagram illustrating a first modification of the connection electrode portion.

図8に示す接続電極部13Aは、図4、図5に示す接続電極部13の構成において、超電導テープ1120が接続された電極本体132の挿入方向逆側(後端側)の面132aに、面132aを覆うように、押え部136を取り付けている。   The connection electrode portion 13A shown in FIG. 8 is formed on the surface 132a on the opposite side (rear end side) in the insertion direction of the electrode main body 132 to which the superconducting tape 1120 is connected in the configuration of the connection electrode portion 13 shown in FIGS. A pressing portion 136 is attached so as to cover the surface 132a.

押え部136は、電極本体132を軸方向で見た形状と同様の外形を有する円環板状をなしている。押え部136は、絶縁材料でも導電材料でもいずれの材料により形成されてもよい。電極本体132の後端側の面132aと、押え部136とを超電導テープ1120とともに半田を挟む等して密着させた構成にすることが好ましい。このような接続電極部13Aの構成によれば、周方向で等間隔に接続される複数の超電導テープ1120とより確実に電気的に接続できる。   The holding portion 136 has an annular plate shape having the same outer shape as the electrode body 132 viewed in the axial direction. The pressing portion 136 may be formed of any material, either an insulating material or a conductive material. It is preferable that the rear end surface 132a of the electrode main body 132 and the pressing portion 136 are in close contact with the superconducting tape 1120 by sandwiching solder or the like. According to such a configuration of the connection electrode portion 13A, electrical connection can be made more reliably with a plurality of superconducting tapes 1120 connected at equal intervals in the circumferential direction.

また、図9に示す変形例2としての接続電極部13Bのように、超電導電流リード137を介して、超電導ケーブル10の超電導導体層112(具体的には超電導テープ1120)と接続するようにしてもよい。   Further, like the connection electrode portion 13B as the modified example 2 shown in FIG. 9, it is connected to the superconducting conductor layer 112 (specifically, the superconducting tape 1120) of the superconducting cable 10 through the superconducting current lead 137. Also good.

接続電極部13Bは、銅等の導電部材により形成された円環板状の電極本体132Bを有し、電極本体132Bの外周の一部には、内部中間導体31(図3参照)が接続される接続片部134が半径方向に突設されている。   The connection electrode portion 13B has an annular plate-like electrode main body 132B formed of a conductive member such as copper, and the inner intermediate conductor 31 (see FIG. 3) is connected to a part of the outer periphery of the electrode main body 132B. The connecting piece 134 is projected in the radial direction.

電極本体132Bにおける後端側の面132Baには、複数の超電導テープ1120が、超電導テープ(酸化物超電導線材)にて形成された超電導電流リード137を介してそれぞれ接続されている。なお、超電導電流リード137における超電導テープは、超電導テープ1120と同様の超電導テープにより構成してもよい。すなわち、超電導電流リード137の超電導テープは、複合基板(超電導テープ1120の複合基板と同様)上にTFA−MOD法により形成された超電導薄膜を有する。この超電導薄膜中には、Y、Zr、Sn、Ti、Ceのうち少なくとも1つを含む50nm以下の酸化物粒子が磁束ピンニング点として分散している。このとき、超電導テープ1120は、超電導電流リード137に、超電導層側の面で半田接続されることが望ましい。   A plurality of superconducting tapes 1120 are connected to the rear end surface 132Ba of the electrode body 132B via superconducting current leads 137 formed of a superconducting tape (oxide superconducting wire). Note that the superconducting tape in the superconducting current lead 137 may be composed of a superconducting tape similar to the superconducting tape 1120. That is, the superconducting tape of the superconducting current lead 137 has a superconducting thin film formed by a TFA-MOD method on a composite substrate (similar to the composite substrate of the superconducting tape 1120). In this superconducting thin film, oxide particles of 50 nm or less containing at least one of Y, Zr, Sn, Ti, and Ce are dispersed as magnetic flux pinning points. At this time, the superconducting tape 1120 is preferably solder-connected to the superconducting current lead 137 on the surface on the superconducting layer side.

端末構造体1において、接続電極部13に替えて接続電極部13Bを用いた構造によれば、超電導ケーブル10の各超電導導体層112を構成する超電導テープ1120は、熱を伝達しにくい超電導電流リード137を介して、接続電極部13Bに電気的に接続される。これにより、外部から冷媒槽21内へ熱が伝達される際に、超電導電流リードを通ることとなるので、接続電極部13と比較して、一層、熱侵入しにくい。   In the terminal structure 1, according to the structure using the connection electrode portion 13 </ b> B instead of the connection electrode portion 13, the superconducting tape 1120 that constitutes each superconducting conductor layer 112 of the superconducting cable 10 is a superconducting current lead that hardly transmits heat. It is electrically connected to the connection electrode portion 13B via 137. As a result, when heat is transferred from the outside into the refrigerant tank 21, it passes through the superconducting current lead, so that compared to the connection electrode portion 13, it is more difficult for heat to enter.

また、図10に示す変形例3としての接続電極部13Cのように、超電導テープとは異なる常電導線(常電導テープ138)を介して、超電導ケーブル10の超電導導体層112(具体的には超電導テープ1120)と接続するようにしてもよい。   Further, like the connection electrode portion 13C as the modification 3 shown in FIG. 10, the superconducting conductor layer 112 (specifically, the superconducting cable 10 is connected via a normal conducting wire (normal conducting tape 138) different from the superconducting tape). You may make it connect with the superconducting tape 1120).

図10に示す接続電極部13Cは、銅等の導電部材により形成された円環板状の電極本体132Cを有し、電極本体132Cの外周の一部には、内部中間導体31(図3参照)が接続される接続片部134が半径方向に突設されている。   A connection electrode portion 13C shown in FIG. 10 has an annular plate-like electrode main body 132C formed of a conductive member such as copper, and an inner intermediate conductor 31 (see FIG. 3) is formed on a part of the outer periphery of the electrode main body 132C. ) Are connected to project in the radial direction.

電極本体132Cにおける後端側の面132Caには、超電導ケーブル10の超電導導体層112を各層で構成する複数の超電導テープ1120が、それぞれ常導電テープ(常導電線)138を介して電気的に接続されている。ここでは、常導電テープ138は、常導電性を有する線材であればどのような線材でもよく、例えば、銅テープが用いられる。なお、銅テープ138等の常電導テープ138を介して超電導テープ1120と接続電極部13Cとを電気的に接続(例えば半田接続)する際に、銅テープ(常導電テープ138)と接続電極部13Cとの接続に使用する半田と、銅テープ(常導電テープ138)と超電導テープ1120との接続に使用する半田とを、融点の異なる半田を用いるようにしてもよい。さらに常電導線を介することによって超電導テープ1120を撓ませて接続電極部13Cに接続できるため、冷却時における冷媒槽21の収縮を吸収できる。また、図9に示す接続電極部13Bにおいて、超電導電流リード137と、超電導テープ1120との間に、図10で示す常導電テープ138を介在させてもよい。この構成の場合、超電導電流リード137と、超電導テープ1120と、常導電テープ138とはそれぞれ半田により電気的に接続される。なお、この構成においても、超電導テープ1120は、接続対象としての常電導テープ138に対して、超電導テープ1120の超電導層側の面で半田接続されることが望ましい。   A plurality of superconducting tapes 1120 each comprising the superconducting conductor layer 112 of the superconducting cable 10 are electrically connected to the rear end surface 132Ca of the electrode main body 132C via normal conductive tapes (normal conductive wires) 138, respectively. Has been. Here, the normal conductive tape 138 may be any wire as long as it is a wire having normal conductivity. For example, a copper tape is used. When the superconducting tape 1120 and the connection electrode portion 13C are electrically connected (for example, by solder connection) via the normal conductive tape 138 such as the copper tape 138, the copper tape (normal conductive tape 138) and the connection electrode portion 13C are connected. Solder having a different melting point may be used as the solder used for connection to the solder and the solder used for connecting the copper tape (normal conductive tape 138) and the superconducting tape 1120. Furthermore, since the superconducting tape 1120 can be bent and connected to the connection electrode portion 13C through the normal conducting wire, the shrinkage of the refrigerant tank 21 during cooling can be absorbed. Further, in the connection electrode portion 13B shown in FIG. 9, the normal conductive tape 138 shown in FIG. 10 may be interposed between the superconductive current lead 137 and the superconductive tape 1120. In this configuration, the superconducting current lead 137, the superconducting tape 1120, and the normal conducting tape 138 are electrically connected by solder. Even in this configuration, it is desirable that the superconducting tape 1120 is solder-connected to the normal conducting tape 138 as a connection target on the surface of the superconducting tape 1120 on the superconducting layer side.

また、端末構造体1において、接続電極部13に替えて、図11に示す変形例4の接続電極部13Dを用いても良い。   Further, in the terminal structure 1, instead of the connection electrode portion 13, a connection electrode portion 13D of Modification 4 shown in FIG.

図11に示す接続電極部13Dは、銅等の導電部材により形成された円環板状の電極本体132Dを有し、電極本体132Dの外周の一部には、内部中間導体31(図3参照)が接続される接続片部134が半径方向に突設されている。   A connection electrode portion 13D shown in FIG. 11 has an annular plate-like electrode main body 132D formed of a conductive member such as copper, and an inner intermediate conductor 31 (see FIG. 3) is formed on a part of the outer periphery of the electrode main body 132D. ) Are connected to project in the radial direction.

また、電極本体132D内には、銅等の導電部材により形成され、且つ、中央の開口に超電導ケーブル10が挿通される円環板部139が配置されている。電極本体132Dと、円環板部139は、超電導電流リード137を介して接続されている。円環板部139には、開口方向に位置する表裏面のうち一方の面(後端側の面)139aに、超電導導体層112を各層毎に構成する複数の超電導テープ1120が、半田を介して電気的に接続されている。この構成における超電導テープ1120は、接続対象としての円環板部139に対して、超電導層側の面で半田接続されることが望ましい。   In addition, an annular plate portion 139 that is formed of a conductive member such as copper and through which the superconducting cable 10 is inserted is disposed in the electrode main body 132D. The electrode body 132D and the annular plate portion 139 are connected via a superconducting current lead 137. In the annular plate portion 139, a plurality of superconducting tapes 1120 constituting the superconducting conductor layer 112 for each layer are provided on one surface (the rear end surface) 139a of the front and back surfaces positioned in the opening direction via solder. Are electrically connected. It is desirable that the superconducting tape 1120 in this configuration is solder-connected on the surface on the superconducting layer side to the annular plate portion 139 as a connection target.

この構成により、複数の超電導テープ1120が接続された円環板部139と、電極本体132とは、熱伝導しにくい超電導電流リード137を介して電気的に接続されているので、超電導テープ1120が配置される冷媒槽21への熱侵入を防止できる。   With this configuration, the annular plate portion 139 to which the plurality of superconducting tapes 1120 are connected and the electrode main body 132 are electrically connected via the superconducting current leads 137 that are difficult to thermally conduct. It is possible to prevent heat from entering the refrigerant tank 21 disposed.

本実施の形態の超電導ケーブルの端末構造体1によれば、超電導導体層112と、超電導導体層112上に設けられる導体絶縁層(電気絶縁層)113とを備える超電導ケーブル10と、超電導ケーブル10の端末部を冷却する冷媒が満たされる冷媒槽21と、導体絶縁層113の外周に設けられ、冷媒槽21内に配置される電界緩和部15と、超電導ケーブル10の端末部で段剥ぎされることによって露出する超電導導体層112の端部と電気的に接続されるリード部30と、冷媒槽21を収容し、運転時に内部が真空状態とされる真空槽と、を備える。   According to the terminal structure 1 of the superconducting cable of the present embodiment, the superconducting cable 10 including the superconducting conductor layer 112 and the conductor insulating layer (electrical insulating layer) 113 provided on the superconducting conductor layer 112, and the superconducting cable 10. Steps are stripped at the refrigerant tank 21 filled with the refrigerant that cools the terminal part of the conductor, the electric field relaxation part 15 provided in the outer periphery of the conductor insulating layer 113 and disposed in the refrigerant tank 21, and the terminal part of the superconducting cable 10. The lead part 30 electrically connected with the edge part of the superconducting conductor layer 112 exposed by this, and the vacuum tank which accommodates the refrigerant | coolant tank 21 and is made into a vacuum state at the time of an operation are provided.

冷媒槽21は、絶縁管で形成され、真空槽22は、冷媒槽21の外周において、電界緩和部15に対応する位置に、且つ、超電導ケーブル10と同軸上に配置されるがい管(がい管部23)を有する。真空槽22は、がい管(がい管部23)の軸方向先端側に接続される導体貫通部(外側貫通部224)を備えてもよい。導体貫通部(外側貫通部224)には、リード部30が気密に貫通して、リード部の端部(外部端子部34の一端部34a)が真空槽22の外部に露出されていてもよい。また、がい管を有する真空槽22を地面から離間して水平に支持する支持脚部(支持部)28を備えてもよい。この支持脚部28は、電界緩和部(碍子)282を備えると好適である。この電界緩和部282によって、真空槽22の先端側で印可される高電圧を緩和できる。また、がい管部23は、ポリマーがい管または磁器がい管からなるようにしてもよい。また、超電導ケーブル10は、超電導導体層112−3の内側に、導体絶縁層113−3と同様に構成された他の導体絶縁層113−2、超電導導体層112−3と同様に構成された他の超電導導体層112−2を順に同心円状に有してもよい。この場合、超電導ケーブル10の端末部では、他の導体絶縁層113−2の外周には、他の電界緩和部15−2が設けられ、他の超電導導体層112−2の端部には、他のリード部30−2が電気的に接続される。加えて、真空槽22において、他のがい管(例えば、がい管部23−3に対するがい管部23−2)が、冷媒槽21の外周に、他の電界緩和部(例えば、電界緩和部15−3に対するがい管部15−2)に対応する位置に、超電導ケーブル10と同軸上に配置される。また、真空槽22は、他のがい管(例えば、がい管部23−2)の軸方向先端(超電導ケーブル10の端末部における先端側の端部)側に接続される、他の導体貫通部(例えば、外側貫通部224−3と同様に構成された外側貫通部224−2)を備えてもよい。他の導体貫通部(外側貫通部224−2)には、他のリード部30が気密に貫通して配置される。加えて、他のリード部30の端部が真空槽22の外部に露出される。導体貫通部224−3の先端(超電導ケーブル10の端末部における先端側の端部)に、他のがい管部23−2が気密に接続されている。   Refrigerant tank 21 is formed of an insulating tube, and vacuum tank 22 is an insulator pipe (an insulating tube) disposed on the outer periphery of refrigerant tank 21 at a position corresponding to electric field relaxation unit 15 and coaxially with superconducting cable 10. Part 23). The vacuum chamber 22 may include a conductor penetrating portion (outer penetrating portion 224) that is connected to the distal end side in the axial direction of the garment tube (gait tube portion 23). The lead portion 30 may be airtightly penetrated through the conductor penetration portion (outer penetration portion 224), and the end portion of the lead portion (one end portion 34 a of the external terminal portion 34) may be exposed to the outside of the vacuum chamber 22. . Moreover, you may provide the support leg part (support part) 28 which spaces apart the vacuum chamber 22 which has an insulator tube from the ground, and supports it horizontally. The support leg portion 28 preferably includes an electric field relaxation portion (insulator) 282. By this electric field relaxation part 282, the high voltage applied on the front end side of the vacuum chamber 22 can be relaxed. Further, the insulator tube portion 23 may be made of a polymer insulator tube or a porcelain insulator tube. Further, the superconducting cable 10 is configured in the same manner as the other conductor insulating layer 113-2 and the superconducting conductor layer 112-3, which are configured in the same manner as the conductor insulating layer 113-3, inside the superconducting conductor layer 112-3. Other superconducting conductor layers 112-2 may be concentrically arranged in order. In this case, at the terminal portion of the superconducting cable 10, another electric field relaxation portion 15-2 is provided on the outer periphery of the other conductor insulating layer 113-2, and at the end of the other superconducting conductor layer 112-2, The other lead part 30-2 is electrically connected. In addition, in the vacuum chamber 22, another insulator tube (for example, an insulator tube portion 23-2 for the insulator tube portion 23-3) is provided on the outer periphery of the refrigerant tank 21 with another electric field relaxing portion (for example, the electric field relaxing portion 15). -3 is arranged coaxially with the superconducting cable 10 at a position corresponding to the insulator pipe portion 15-2). In addition, the vacuum chamber 22 is connected to the other end of the other pipe (for example, the end of the superconducting cable 10 at the end of the superconducting cable 10) in the axial direction of the other pipe (for example, the pipe section 23-2). (For example, you may provide the outer side penetration part 224-2 comprised similarly to the outer side penetration part 224-3.). The other lead portion 30 is disposed in an airtight manner in the other conductor penetration portion (outer penetration portion 224-2). In addition, the end portion of the other lead portion 30 is exposed to the outside of the vacuum chamber 22. Another insulator tube portion 23-2 is airtightly connected to the tip end of the conductor penetrating portion 224-3 (the end portion on the tip end side in the terminal portion of the superconducting cable 10).

ここでは、超電導ケーブル10の延在方向に沿って配置される冷媒槽21内には、ケーブルコア11が、後端側から先端側に向かって、導体絶縁層(電気絶縁層)113−3、超電導導体層112−3、導体絶縁層(電気絶縁層)113−2、超電導導体層112−2、導体絶縁層(電気絶縁層)113−1、超電導導体層112−1が、段剥ぎされて直線状に並んで配置されている。導体絶縁層(電気絶縁層)113−3、超電導導体層112−3により、最外層の超電導導体層112−3を引き出すための絶縁部分、通電部分を形成する。また、続いて、導体絶縁層(電気絶縁層)113−2、超電導導体層112−2により、最外層より一層下層の超電導導体層112−2を引き出すための絶縁部分、通電部分を形成する。さらに、続いて、導体絶縁層(電気絶縁層)113−1、超電導導体層112−1により、超電導導体層112−2より下層、ここでは最内側層の超電導導体層112−1を引き出すための絶縁部分、通電部分を形成している。   Here, in the refrigerant tank 21 arranged along the extending direction of the superconducting cable 10, the cable core 11 is a conductor insulating layer (electrical insulating layer) 113-3 from the rear end side toward the front end side, Superconducting conductor layer 112-3, conductor insulating layer (electrical insulating layer) 113-2, superconducting conductor layer 112-2, conductor insulating layer (electrical insulating layer) 113-1, and superconducting conductor layer 112-1 are stepped off. They are arranged in a straight line. By the conductor insulating layer (electrical insulating layer) 113-3 and the superconducting conductor layer 112-3, an insulating part and a conducting part for drawing out the outermost superconducting conductor layer 112-3 are formed. Subsequently, an insulating portion and a conducting portion for drawing out the superconducting conductor layer 112-2 that is lower than the outermost layer are formed by the conductor insulating layer (electrical insulating layer) 113-2 and the superconducting conductor layer 112-2. Further, the conductor insulating layer (electrical insulating layer) 113-1 and the superconducting conductor layer 112-1 are used to draw out the superconducting conductor layer 112-1 below the superconducting conductor layer 112-2, here the innermost superconducting conductor layer 112-1. An insulating part and a current-carrying part are formed.

すなわち、端末構造体1では、所定の超電導導体層112を覆う導体絶縁層(電気絶縁層)113に電界緩和部15を設け、ストレスコーンに対応する位置、つまり、電界緩和部15の周囲を囲む位置に絶縁管を配置して絶縁部分を構成する。次いで、この絶縁部分に超電導ケーブル10の延在方向で直線的に連続して、導体絶縁層(電気絶縁層)113が覆う所定の超電導導体層に接続電極部13を接続することにより通電部分を構成している。一つの超電導導体層で必要な絶縁部分と通電部分とを、従来と異なり、直交して配置せずに、超電導ケーブル10の軸方向に沿って並べて(ここでは略水平)配置している。このように複数の超電導導体層112―3、112−2、112−3を直線上に並べた状態で、それぞれの超電導導体層112―3、112−2、112−3を流れる電流を、接続電極部13、リード部30を介して、端末構造体1の外部に引き出している。   That is, in the terminal structure 1, the electric field relaxation part 15 is provided in the conductor insulating layer (electrical insulating layer) 113 covering the predetermined superconducting conductor layer 112, and surrounds the position corresponding to the stress cone, that is, the periphery of the electric field relaxation part 15. An insulating tube is arranged at a position to constitute an insulating portion. Next, the conductive portion is connected to a predetermined superconducting conductor layer covered with a conductor insulating layer (electrical insulating layer) 113 in a linearly continuous manner in the extending direction of the superconducting cable 10 to this insulating portion. It is composed. Unlike the conventional case, the insulating portion and the current-carrying portion required for one superconducting conductor layer are arranged side by side (substantially horizontal here) along the axial direction of the superconducting cable 10 without being orthogonally arranged. In this state, a plurality of superconducting conductor layers 112-3, 112-2, 112-3 are arranged in a straight line, and currents flowing through the respective superconducting conductor layers 112-3, 112-2, 112-3 are connected. It is drawn out of the terminal structure 1 through the electrode part 13 and the lead part 30.

よって、従来と異なり、上方に筒状部と絶縁管の設置領域を確保する必要がなく、低温容器をより小さくして端末構造体自体のコンパクト化を図ることができ、設置スペースを小さくできるとともに、熱侵入を低減できる。
また、端末構造体1では、超電導ケーブル10からの導体(超電導導体層を流れる電流)の引き出しは、水平方向に延在する中空の低温容器20の上方から引き出す構成しているが、接続電極部13では、超電導テープ1120が接続される円環状の電極本体132の外周に形成される接続片部134の位置、数によって、導体の引出方向を自由に変更できる。例えば、低温容器20の外周面において、超電導テープの導体を、水平方向に引き出したり、下方に引き出したり、斜め方向に引き出すことも可能である。その場合、リード部30が貫通する導体中継部32、外部端子部34の位置も適宜変更した構成にすることは勿論である。
Therefore, unlike the conventional case, it is not necessary to secure an installation area for the cylindrical portion and the insulating tube above, the cryogenic container can be made smaller, the terminal structure itself can be made compact, and the installation space can be reduced. , Heat penetration can be reduced.
In the terminal structure 1, the conductor (current flowing through the superconducting conductor layer) is drawn from the superconducting cable 10 from above the hollow cryogenic container 20 extending in the horizontal direction. 13, the lead-out direction of the conductor can be freely changed by the position and number of the connecting piece portions 134 formed on the outer periphery of the annular electrode body 132 to which the superconducting tape 1120 is connected. For example, the conductor of the superconducting tape can be drawn out in the horizontal direction, drawn down, or drawn in an oblique direction on the outer peripheral surface of the cryogenic container 20. In that case, it is a matter of course that the positions of the conductor relay portion 32 and the external terminal portion 34 through which the lead portion 30 penetrates are appropriately changed.

また、本実施の形態の端末構造体1においては、複数層の超電導導体層を有する超電導ケーブル10、特に三相超電導ケーブルとしたが、これに限らず、一層、一相の超電導ケーブル10を用いた構成としてもよい。
また、超電導ケーブル10は、一層の超電導導体層を有する単心型のケーブルコア11が3本撚り合わせた状態で断熱管12内に収容される三心一括型の三相超電導ケーブルであってもよい。その場合、超電導ケーブルの端末では、一相毎のケーブルコア11のそれぞれで、本実施の形態の端末構造体を形成するようにする。すなわち、それぞれのケーブルコア11を低温容器20内に配置して、端末構造体1をそれぞれのケーブルコア毎に形成する。この構成であっても、従来の超電導ケーブルの終端接続部としての端末構造体では、ケーブルコアの端末を配置する冷媒槽21と真空槽22との2重管構造の低温容器20において、上方に突出する筒状部を設け、この筒状部内に導体引き出し棒を挿通させるとともに、筒状部上方に套管を設けた構成にする必要が無い。よって、本実施の形態と同様に、従来構成と比較して、コンパクト化を図ることによって、設置スペースを小さくできるとともに、熱侵入を低減した超電導ケーブルの端末構造体を実現できる。
In the terminal structure 1 of the present embodiment, the superconducting cable 10 having a plurality of superconducting conductor layers, particularly a three-phase superconducting cable is used. However, the present invention is not limited to this, and a single-phase superconducting cable 10 is used. It is good also as the structure which was.
The superconducting cable 10 may be a three-core one-phase superconducting cable accommodated in the heat insulating tube 12 in a state where three single-core cable cores 11 each having a single superconducting conductor layer are twisted together. Good. In that case, in the terminal of the superconducting cable, the terminal structure of the present embodiment is formed by each of the cable cores 11 for each phase. That is, the respective cable cores 11 are arranged in the cryogenic vessel 20 and the terminal structure 1 is formed for each cable core. Even in this configuration, in the terminal structure as a terminal connection portion of the conventional superconducting cable, in the cryogenic container 20 having the double-pipe structure of the refrigerant tank 21 and the vacuum tank 22 in which the terminal of the cable core is disposed, There is no need to provide a projecting cylindrical portion, insert a conductor lead bar into the cylindrical portion, and provide a cannula above the cylindrical portion. Therefore, as in the present embodiment, the terminal structure of the superconducting cable can be realized by reducing the installation space and reducing the heat penetration as compared with the conventional configuration.

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。   As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 端末構造体
10 超電導ケーブル
11 ケーブルコア
12 断熱管
13、13A、13B、13C、13D 接続電極部
14 シールド接続端子
15 電界緩和部
18 気密部材
20 低温容器
21 冷媒槽
22 真空槽
23、23−1、23−2、23−3 がい管部
28 支持脚部
30 リード部
31 内部中間導体
32 導体中継部
33 外部中間導体
34 外部端子部
34a 外部端子部の一端部(リード部の端部)
40 シールド通電部
42 シールド中継部
50 内部保持部材
52、62 保持部本体
54、64 止着部
60 外部保持部材
74 内部フランジ部
76 内部筒部
82 外部筒部
84 外部フランジ部
111 中央冷却管
112、112−1、112−2、112−3 超電導導体層
113、113−1、113−2、113−3 電気絶縁層
114 ケーブルシールド層
115 保護層
121 断熱内管
122 断熱外管
132、132B、132C、132D 電極本体
132a、132Ba、132Ca 後端側の面
134 接続片部
136 押え部
137 超電導電流リード
138 常電導テープ(常電導線)
139 円環板部
212、222 後端面(端面)
222a 開口
232 絶縁筒
234 ポリマー被覆体
282 電界緩和部(碍子)
1120 超電導テープ
11201 端部
DESCRIPTION OF SYMBOLS 1 Terminal structure 10 Superconducting cable 11 Cable core 12 Heat insulation pipe 13, 13A, 13B, 13C, 13D Connection electrode part 14 Shield connection terminal 15 Electric field relaxation part 18 Airtight member 20 Low temperature container 21 Refrigerant tank 22 Vacuum tank 23, 23-1 , 23-2, 23-3 Insulation tube portion 28 Support leg portion 30 Lead portion 31 Internal intermediate conductor 32 Conductor relay portion 33 External intermediate conductor 34 External terminal portion 34a One end portion of the external terminal portion (end portion of the lead portion)
40 Shield energizing part 42 Shield relay part 50 Internal holding member 52, 62 Holding part main body 54, 64 Fastening part 60 External holding member 74 Internal flange part 76 Internal cylindrical part 82 External cylindrical part 84 External flange part 111 Central cooling pipe 112, 112-1, 112-2, 112-3 Superconducting conductor layer 113, 113-1, 113-2, 113-3 Electrical insulation layer 114 Cable shield layer 115 Protection layer 121 Heat insulation inner tube 122 Heat insulation outer tube 132, 132B, 132C , 132D Electrode body 132a, 132Ba, 132Ca Rear end face 134 Connection piece 136 Presser 137 Superconducting current lead 138 Normal conductive tape (normal conductive wire)
139 Ring plate portion 212, 222 Rear end face (end face)
222a Opening 232 Insulating cylinder 234 Polymer covering 282 Electric field relaxation part (insulator)
1120 Superconducting tape 11201 End

Claims (7)

超電導導体層と、前記超電導導体層上に設けられる導体絶縁層とを備える超電導ケーブルと、
前記超電導ケーブルの端末部を冷却する冷媒が満たされる冷媒槽と、
前記導体絶縁層の外周に設けられ、前記冷媒槽内に配置される電界緩和部と、
前記超電導ケーブルの端末部で段剥ぎされることによって露出する前記超電導導体層の端部と電気的に接続されるリード部と、
前記冷媒槽を収容し、運転時に内部が真空状態とされる真空槽と、
を備え、
前記冷媒槽は、絶縁管で形成され、
前記真空槽は、前記冷媒槽の外周において、前記電界緩和部に対応する位置に、且つ、前記超電導ケーブルと同軸上に配置されるがい管を有する、
超電導ケーブルの端末構造体。
A superconducting cable comprising a superconducting conductor layer and a conductor insulating layer provided on the superconducting conductor layer;
A refrigerant tank filled with a refrigerant that cools a terminal portion of the superconducting cable; and
An electric field relaxation portion provided on an outer periphery of the conductor insulating layer and disposed in the refrigerant tank;
A lead portion electrically connected to an end portion of the superconducting conductor layer exposed by being stepped off at a terminal portion of the superconducting cable;
Containing the refrigerant tank, and a vacuum tank whose inside is evacuated during operation;
With
The refrigerant tank is formed of an insulating tube,
The vacuum chamber has a pipe that is disposed coaxially with the superconducting cable at a position corresponding to the electric field relaxation portion on the outer periphery of the refrigerant tank.
Superconducting cable terminal structure.
前記真空槽は、前記がい管の軸方向先端側に接続される導体貫通部を備え、
前記導体貫通部には、前記リード部が気密に貫通して配置され、
前記リード部の端部が前記真空槽の外部に露出されている、
請求項1記載の超電導ケーブルの端末構造体。
The vacuum chamber includes a conductor penetrating portion connected to the distal end side in the axial direction of the insulator tube,
In the conductor penetrating portion, the lead portion is arranged in an airtight manner,
The end of the lead part is exposed to the outside of the vacuum chamber,
The superconducting cable terminal structure according to claim 1.
前記真空槽を地面から離間して水平に支持する支持部を備える、
請求項1または2記載の超電導ケーブルの端末構造体。
A support portion for horizontally supporting the vacuum chamber away from the ground;
The terminal structure of the superconducting cable according to claim 1 or 2.
前記支持部が碍子を備える、
請求項3に記載の超電導ケーブルの端末構造体。
The support portion includes a lever;
The terminal structure of the superconducting cable according to claim 3.
前記がい管は中空のポリマーがい管または中空の磁器がい管からなる、
請求項1から4のいずれか一項に記載の超電導ケーブルの端末構造体。
The insulator tube comprises a hollow polymer insulator tube or a hollow porcelain insulator tube.
The terminal structure of the superconducting cable according to any one of claims 1 to 4.
前記超電導ケーブルは、前記超電導導体層の内側に、他の導体絶縁層、他の超電導導体層を順に同心円状に有し、
前記超電導ケーブルの端末部では、
前記他の導体絶縁層の外周には、他の電界緩和部が設けられ、
前記他の超電導導体層の端部には、他のリード部が電気的に接続され、
前記冷媒槽の外周には、前記他の電界緩和部に対応する位置に、前記超電導ケーブルと同軸上に他のがい管が配置され、
前記真空槽は、前記がい管と前記他のがい管とを有する、
請求項1から5のいずれか一項に記載の超電導ケーブルの端末構造体。
The superconducting cable has concentric circles in order of other conductor insulation layers and other superconducting conductor layers inside the superconducting conductor layer,
In the terminal part of the superconducting cable,
On the outer periphery of the other conductor insulating layer, another electric field relaxation portion is provided,
The other lead portion is electrically connected to the end of the other superconducting conductor layer,
On the outer periphery of the refrigerant tank, another insulator pipe is arranged coaxially with the superconducting cable at a position corresponding to the other electric field relaxation portion,
The vacuum chamber has the insulator tube and the other insulator tube.
The terminal structure of the superconducting cable according to any one of claims 1 to 5.
前記真空槽は、前記他のがい管の軸方向先端側に接続される、他の導体貫通部を備え、
前記他の導体貫通部には、前記他のリード部が気密に貫通して配置され、
前記他のリード部の端部が前記真空槽の外部に露出され、
前記導体貫通部の軸方向先端側に、前記他のがい管が気密に接続されている、
請求項6記載の超電導ケーブルの端末構造体。
The vacuum chamber includes another conductor penetrating portion connected to the axial front end side of the other insulating tube,
In the other conductor penetrating portion, the other lead portion is arranged so as to penetrate airtightly,
An end of the other lead portion is exposed to the outside of the vacuum chamber,
The other insulator tube is airtightly connected to the tip end side in the axial direction of the conductor penetration portion.
The terminal structure of the superconducting cable according to claim 6.
JP2015073910A 2015-03-31 2015-03-31 Superconducting cable terminal structure Active JP6463202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015073910A JP6463202B2 (en) 2015-03-31 2015-03-31 Superconducting cable terminal structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015073910A JP6463202B2 (en) 2015-03-31 2015-03-31 Superconducting cable terminal structure

Publications (2)

Publication Number Publication Date
JP2016195484A true JP2016195484A (en) 2016-11-17
JP6463202B2 JP6463202B2 (en) 2019-01-30

Family

ID=57323080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015073910A Active JP6463202B2 (en) 2015-03-31 2015-03-31 Superconducting cable terminal structure

Country Status (1)

Country Link
JP (1) JP6463202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129889A (en) * 2017-02-06 2018-08-16 昭和電線ケーブルシステム株式会社 Normally conducting connecting member and terminal structure of superconducting cable
JP2019009900A (en) * 2017-06-23 2019-01-17 昭和電線ケーブルシステム株式会社 Normal conductive connecting member and terminal structure of superconducting cable
JP2019009093A (en) * 2017-06-28 2019-01-17 昭和電線ケーブルシステム株式会社 Normal conductive connecting member and terminal structure of superconducting cable
EP3505793A1 (en) 2017-12-28 2019-07-03 Honda Motor Co., Ltd. Driving device, component set, and assembly method
CN114284761A (en) * 2021-12-21 2022-04-05 深圳供电局有限公司 Superconducting cable adapter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829387U (en) * 1971-08-11 1973-04-11
JPS536072Y2 (en) * 1971-12-29 1978-02-16
JPH08265956A (en) * 1995-03-20 1996-10-11 Sumitomo Electric Ind Ltd Terminal of cryogenic cable
JP2013178958A (en) * 2012-02-28 2013-09-09 Sumitomo Electric Ind Ltd Superconductive cable system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829387U (en) * 1971-08-11 1973-04-11
JPS536072Y2 (en) * 1971-12-29 1978-02-16
JPH08265956A (en) * 1995-03-20 1996-10-11 Sumitomo Electric Ind Ltd Terminal of cryogenic cable
JP2013178958A (en) * 2012-02-28 2013-09-09 Sumitomo Electric Ind Ltd Superconductive cable system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129889A (en) * 2017-02-06 2018-08-16 昭和電線ケーブルシステム株式会社 Normally conducting connecting member and terminal structure of superconducting cable
JP2019009900A (en) * 2017-06-23 2019-01-17 昭和電線ケーブルシステム株式会社 Normal conductive connecting member and terminal structure of superconducting cable
JP2019009093A (en) * 2017-06-28 2019-01-17 昭和電線ケーブルシステム株式会社 Normal conductive connecting member and terminal structure of superconducting cable
EP3505793A1 (en) 2017-12-28 2019-07-03 Honda Motor Co., Ltd. Driving device, component set, and assembly method
US11171540B2 (en) 2017-12-28 2021-11-09 Honda Motor Co., Ltd. Driving device, component set, and assembly method
CN114284761A (en) * 2021-12-21 2022-04-05 深圳供电局有限公司 Superconducting cable adapter
CN114284761B (en) * 2021-12-21 2023-09-12 深圳供电局有限公司 Superconducting cable adapter

Also Published As

Publication number Publication date
JP6463202B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6463202B2 (en) Superconducting cable terminal structure
US3749811A (en) Superconducting cable
JP5909799B2 (en) Superconducting cable termination connection
TW200532711A (en) Terminals of multiphase superconducting cable
JP4800755B2 (en) Connecting device for superconductor cable shield
JP4298450B2 (en) Superconducting cable terminal structure
US20110275521A1 (en) Transmission system with a superconducting cable
JP6482358B2 (en) Superconducting cable terminal structure
JP6791782B2 (en) Terminal structure of superconducting equipment
JP5115778B2 (en) Superconducting cable
JP2014143840A (en) Terminal structure of tape like superconducting wire material and manufacturing method of the same
JP6947509B2 (en) Terminal structure of normal conductive connection member and superconducting cable
JP6491518B2 (en) Superconducting cable terminal structure
KR101823814B1 (en) Joint part for superconducting cable and joint structure for superconducting cable
JP2017063578A (en) Terminal structure of superconducting cable
JP6444229B2 (en) Cryogenic cable termination connection
JP5742006B2 (en) End structure of room temperature insulated superconducting cable
JP6891054B2 (en) Terminal structure of normal conductive connection member and superconducting cable
JP6896527B2 (en) Terminal structure of normal conductive connection member and superconducting cable
RU2739710C1 (en) Current inputs to stator windings of htsc motor
JP2018186037A (en) Superconductive cable line
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable
JP2020028133A (en) Conductor pull-out member, terminal structure of superconducting apparatus, and manufacturing method of terminal structure of superconducting apparatus
JP5757986B2 (en) Cryogenic cable termination connection
JP7477959B2 (en) Superconducting coil device and current lead structure for superconducting coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181228

R150 Certificate of patent or registration of utility model

Ref document number: 6463202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350