JP2013178958A - Superconductive cable system - Google Patents

Superconductive cable system Download PDF

Info

Publication number
JP2013178958A
JP2013178958A JP2012042268A JP2012042268A JP2013178958A JP 2013178958 A JP2013178958 A JP 2013178958A JP 2012042268 A JP2012042268 A JP 2012042268A JP 2012042268 A JP2012042268 A JP 2012042268A JP 2013178958 A JP2013178958 A JP 2013178958A
Authority
JP
Japan
Prior art keywords
pipe
conductor
superconducting cable
heat insulating
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012042268A
Other languages
Japanese (ja)
Other versions
JP5796744B2 (en
Inventor
Masayuki Hirose
正幸 廣瀬
Yoshihiro Inagaki
芳宏 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012042268A priority Critical patent/JP5796744B2/en
Publication of JP2013178958A publication Critical patent/JP2013178958A/en
Application granted granted Critical
Publication of JP5796744B2 publication Critical patent/JP5796744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive cable system which can be utilized as a superconductive cable line in normal time, and of which the superconductive cable line can be utilized as a normal conductive cable line in loss of a cooling function.SOLUTION: A superconductive cable system includes: a normal temperature insulating type superconductive cable 100; and a cooling mechanism 200 of coolant 20, and has terminal conductor parts to be connected with normal conductive power equipment via a current lead on both ends of the superconductive cable 100. Both terminal conductor parts include: first current leads 31 which connect a conductor part 10 with power equipment; second current leads 32 which connect an external normal conductive member 16 with the power equipment; and interception means 33a, 33b for intercepting connection between the conductor part 10, the external normal conductive member 16 and the power equipment. One interception means 33a has: first interception means 34 for intercepting connection on the side of the conductor 10; and second interception means 35 for intercepting connection on the side of the external normal conductive member 16.

Description

本発明は、常温絶縁型超電導ケーブルを用いて送電線路を構成する超電導ケーブルシステムに関する。特に、通常時は超電導ケーブル線路として利用し、常温絶縁型超電導ケーブルの冷却機構が正常に動作できない冷却機能喪失時は、同ケーブルを常電導ケーブル線路として利用することができる超電導ケーブルシステムに関する。   The present invention relates to a superconducting cable system that constitutes a power transmission line using a room-temperature insulated superconducting cable. In particular, the present invention relates to a superconducting cable system that is normally used as a superconducting cable line and can be used as a normal conducting cable line when a cooling function is lost when the cooling mechanism of the room temperature insulated superconducting cable cannot operate normally.

近年、超電導ケーブルを実際の送電系統に接続することが検討されている。超電導ケーブルは、一般に、フォーマの外周に超電導線材を巻回して形成された超電導導体層を有する導体部を断熱管内に収納した構造である。このような超電導ケーブルにおいて、超電導導体層を外部から電気的に絶縁する構成には以下の二つが挙げられる。一つ目の構成は、超電導導体層の外側に主電気絶縁層が形成され、当該主電気絶縁層も超電導導体層と共に冷媒により冷却される低温絶縁型の構成である(例えば、特許文献1の図1を参照)。二つ目の構成は、断熱管の外側に主電気絶縁層が形成され、当該主電気絶縁層が冷媒により冷却されない常温絶縁型の構成である(例えば、特許文献2の段落0003を参照)。断熱管は、通常、内管と外管とを有する二重管構造の真空断熱管であり、内管と外管との間の断熱空間が真空引きされている。なお、主電気絶縁層とは、ケーブル線路の定格電圧が印加され、その電圧に対して絶縁に必要な絶縁強度を有する電気絶縁層のことである。   In recent years, it has been studied to connect a superconducting cable to an actual power transmission system. A superconducting cable generally has a structure in which a conductor portion having a superconducting conductor layer formed by winding a superconducting wire around the former is housed in a heat insulating tube. In such a superconducting cable, there are the following two configurations for electrically insulating the superconducting conductor layer from the outside. The first configuration is a low-temperature insulating configuration in which a main electrical insulation layer is formed outside the superconducting conductor layer, and the main electrical insulation layer is also cooled by a refrigerant together with the superconducting conductor layer (for example, Patent Document 1). (See FIG. 1). The second configuration is a room temperature insulation type configuration in which a main electrical insulation layer is formed outside the heat insulating tube and the main electrical insulation layer is not cooled by the refrigerant (see, for example, paragraph 0003 of Patent Document 2). The heat insulation pipe is usually a vacuum heat insulation pipe having a double pipe structure having an inner pipe and an outer pipe, and the heat insulation space between the inner pipe and the outer pipe is evacuated. The main electrical insulation layer is an electrical insulation layer to which the rated voltage of the cable line is applied and has an insulation strength necessary for insulation against the voltage.

また、このような超電導ケーブルを用いて送電線路を構築する場合、超電導ケーブルの両端部に、電流リードを介して常電導電力機器(例、遮断器)と接続するための端末が設けられる(例えば、特許文献3を参照)。   Moreover, when constructing a power transmission line using such a superconducting cable, terminals for connecting to a normal conducting device (eg, circuit breaker) are provided at both ends of the superconducting cable via current leads (for example, , See Patent Document 3).

特開2011−065879号公報JP 2011-065879 A 特開平08−064041号公報Japanese Patent Laid-Open No. 08-064041 特開2006−196628号公報JP 2006-196628 A

上記したいずれの絶縁方式の超電導ケーブルであっても、冷凍機や冷媒の循環機構を含む冷却機構で冷媒を冷却・循環して、その冷媒により超電導導体層を極低温に冷却して超電導状態に維持する。そのため、天災などの不測の事態により、この冷媒の冷却機構が正常に動作しない場合、送電系統の制御システムにおいて、超電導導体層を超電導状態に維持することが困難と判断されると、警報が発信されると共に超電導ケーブル線路が送電系統から遮断される。勿論、別ルートによる送電が試みられるが、天災などで別ルートの確保も困難な場合、送電が停止する。その際、超電導ケーブル線路の送電停止から復旧に至る通常の手順は、次の通りである。
(1)保護装置により遮断器が動作し、超電導ケーブル線路が遮断され、同線路での送電が停止される。
(2)保護装置が動作した原因や異常の発生状況が確認され、「超電導ケーブル線路での再送電が可能かどうか」が判断される。
(3)別ルートや予備回線での送電が可能な場合は、その送電を継続しつつ、超電導ケーブル線路の異常確認を行うと共に、必要に応じて超電導ケーブル線路を速やかに改修し、復旧する。
In any of the above-described superconducting cables, the refrigerant is cooled and circulated by a cooling mechanism including a refrigerator and a refrigerant circulation mechanism, and the superconducting conductor layer is cooled to a cryogenic temperature by the refrigerant to be in a superconducting state. maintain. Therefore, if the cooling mechanism of this refrigerant does not operate normally due to unforeseen circumstances such as natural disasters, an alarm will be issued if it is determined that it is difficult to maintain the superconducting conductor layer in the superconducting state in the transmission system control system. At the same time, the superconducting cable line is cut off from the power transmission system. Of course, power transmission by another route is attempted, but power transmission stops when it is difficult to secure another route due to a natural disaster or the like. At that time, the normal procedure from the stoppage of power transmission to the restoration of the superconducting cable line is as follows.
(1) The circuit breaker is operated by the protection device, the superconducting cable line is interrupted, and power transmission on the line is stopped.
(2) The cause of the operation of the protective device and the state of occurrence of the abnormality are confirmed, and “whether re-transmission on the superconducting cable line is possible” is determined.
(3) When power can be transmitted through another route or a backup line, while confirming the abnormality of the superconducting cable line while continuing the power transmission, the superconducting cable line is promptly repaired and restored as necessary.

一方で、天災などで予備回線も使用不能に陥った場合、冷媒の冷却機構が正常に動作しなくても、端末やジョイントを含む超電導ケーブル線路全体が損傷していなければ、この超電導ケーブルの一部を非常用の送電線路として利用できれば便利である。特に、災害の復旧などのための緊急の送電が求められる場合、超電導ケーブル本来の送電容量を下回る容量であっても送電ができれば、貴重な電力として有効な場合が生じ得る。   On the other hand, if the standby line becomes unusable due to a natural disaster, etc., even if the cooling mechanism of the refrigerant does not operate normally, the entire superconducting cable line including the terminals and joints is not damaged. It would be convenient if the part could be used as an emergency power transmission line. In particular, when urgent power transmission is required for disaster recovery or the like, if power can be transmitted even with a capacity lower than the original power transmission capacity of the superconducting cable, it may be effective as valuable power.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、通常時は超電導ケーブル線路として利用でき、冷却機能喪失時はこの超電導ケーブル線路を常電導ケーブル線路として利用することができる超電導ケーブルシステムを提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is that it can be used as a superconducting cable line during normal times, and that this superconducting cable line can be used as a normal conducting cable line when the cooling function is lost. The object is to provide a superconducting cable system capable of satisfying the requirements.

本発明者らは、超電導導体層を超電導状態に維持できない状況で、超電導ケーブル本体には外傷等の損傷が無い場合、超電導ケーブルを常電導ケーブルとして利用することを検討した。一般に、超電導ケーブルは、超電導導体層の他に、事故電流(例、短絡電流など)を分流する内部常電導導電部材を導体部に備えている。このような内部常電導導電部材の具体例としては、銅線を撚り合わせて形成したフォーマや、超電導線材の一部を構成する常電導導体が挙げられる。この内部常電導導電部材を冷却機能喪失時の主たる送電用導体として利用することを検討したところ、単にこの内部常電導導電部材に送電しただけでは、その発熱の影響を無視することが困難であるとの知見を得た。これは、通常、超電導導体層及び内部常電導導電部材は電気的に接続されると共に同じ断熱管内に収納されているため、送電によりこれら導体が発熱するが、その熱を断熱管の外部に放熱することが非常に困難だからである。そして、この発熱に伴う温度上昇により、超電導導体層など他の構成部材がダメージを受ける虞がある。従って、上記導体部材を送電用導体として継続的に利用することができない。本発明は、上記の知見に基づいて、断熱管の外側に常電導導電部材を配置すると共にこの常電導導電部材のみによる送電を可能にするようになされたもので、下記の構成を備える。   The present inventors examined using a superconducting cable as a normal conducting cable when the superconducting conductor layer cannot be maintained in a superconducting state and the superconducting cable body is not damaged, such as a wound. In general, a superconducting cable includes, in addition to a superconducting conductor layer, an internal normal conducting member for shunting an accident current (eg, a short circuit current) in a conductor portion. Specific examples of such an internal normal conductive member include a former formed by twisting copper wires and a normal conductive conductor constituting a part of the superconductive wire. Considering the use of this internal normal conductive member as a main power transmission conductor when the cooling function is lost, it is difficult to ignore the effect of heat generation simply by transmitting power to this internal normal conductive member. And gained knowledge. Usually, the superconducting conductor layer and the internal normal conducting member are electrically connected and housed in the same heat insulating tube, so these conductors generate heat by power transmission, but the heat is dissipated outside the heat insulating tube. Because it is very difficult to do. And, due to the temperature rise accompanying this heat generation, there is a possibility that other components such as the superconducting conductor layer may be damaged. Therefore, the conductor member cannot be continuously used as a power transmission conductor. Based on the above knowledge, the present invention is configured to arrange a normal conductive member on the outside of a heat insulating tube and to enable power transmission using only this normal conductive member, and has the following configuration.

本発明の超電導ケーブルシステムは、超電導ケーブルの両端部に設けられ、電流リードを介して常電導電力機器と接続するための端末導体部を有する超電導ケーブルと、冷媒の冷却機構とを備える超電導ケーブルシステムである。この超電導ケーブルシステムに使用される超電導ケーブルは、超電導導体層を有する導体部と、この導体部を収納し、超電導導体層を冷却する冷媒が流通する断熱管と、この断熱管の外側に設けられる主電気絶縁層と、断熱管と主電気絶縁層との間に形成される外部常電導導電部材とを備える常温絶縁型超電導ケーブルである。両端末導体部は、上記導体部と上記電力機器とを接続する第一電流リードと、上記外部常電導導電部材と上記電力機器とを接続する第二電流リードと、導体部及び外部常電導導電部材と電力機器との間の接続を遮断する遮断手段を備える。少なくとも一方の端末導体部における遮断手段は、導体部側の接続を遮断する第一遮断手段と、外部常電導導電部材側の接続を遮断する第二遮断手段とを有することを特徴とする。   The superconducting cable system according to the present invention includes a superconducting cable provided at both ends of the superconducting cable and having a terminal conductor for connecting to a normal conducting power device via a current lead, and a cooling mechanism for the refrigerant. It is. The superconducting cable used in this superconducting cable system is provided with a conductor part having a superconducting conductor layer, a heat insulating pipe that houses the conductor part and through which a refrigerant that cools the superconducting conductor layer flows, and outside the heat insulating pipe. A room temperature insulated superconducting cable comprising a main electrical insulating layer and an external normal conducting member formed between the heat insulating tube and the main electrical insulating layer. Both terminal conductor portions include a first current lead that connects the conductor portion and the power device, a second current lead that connects the external normal conductive member and the power device, a conductor portion, and an external normal conductive member. A blocking means for blocking the connection between the member and the power device is provided. The blocking means in at least one of the terminal conductor portions includes a first blocking means for blocking the connection on the conductor portion side, and a second blocking means for blocking the connection on the external normal conducting member side.

この構成によれば、通常時は超電導ケーブルを超電導ケーブル線路として送電に利用し、冷却機能喪失時は上記超電導ケーブルを常電導ケーブル線路として送電に利用することができる。具体的には、通常時は、両端末導体部の各遮断手段において、導体部側及び外部常電導導電部材側を接続状態にして、導体部(超電導導体層)を主たる送電用導体に利用する。冷却機能喪失時は、一方の遮断手段において、第一遮断手段により導体部側を遮断状態にして、導体部への送電を停止すると共に、両端末導体部の各遮断手段において、外部常電導導電部材側を接続状態にして、外部常電導導電部材を主たる送電用導体に利用する。つまり、少なくとも一方の遮断手段が第一遮断手段と第二遮断手段とを有することで、外部常電導導電部材を含む導体部による送電と、外部常電導導電部材のみによる送電とを切り替え可能である。よって、超電導ケーブルの状態に基づいて、導体部による送電を停止した状態で、外部常電導導電部材による送電を行うことができる。また、両端末導体部の各遮断手段において、導体部側及び外部常電導導電部材側を遮断状態にすることで、系統制御システム側とは別に、超電導ケーブルシステム側で超電導ケーブルを送電系統から切り離すことが可能である。   According to this configuration, the superconducting cable can be used for power transmission as a superconducting cable line during normal times, and the superconducting cable can be used for power transmission as a normal conducting cable line when the cooling function is lost. Specifically, in normal times, in each blocking means of both terminal conductor portions, the conductor portion side and the external normal conducting member side are connected, and the conductor portion (superconducting conductor layer) is used as the main power transmission conductor. . When the cooling function is lost, one of the shut-off means sets the conductor side to the shut-off state by the first shut-off means to stop power transmission to the conductor part, and at each shut-off means of both terminal conductors, external normal conducting The member side is in a connected state, and the external normal conducting member is used as a main power transmission conductor. That is, since at least one of the blocking means has the first blocking means and the second blocking means, it is possible to switch between power transmission by the conductor part including the external normal conducting member and power transmission only by the external normal conducting member. . Therefore, based on the state of the superconducting cable, power transmission by the external normal conductive member can be performed in a state where power transmission by the conductor portion is stopped. In addition, in each blocking means of both terminal conductors, the superconducting cable is disconnected from the power transmission system on the superconducting cable system side separately from the system control system side by putting the conductor part side and the external normal conducting member side into a blocking state. It is possible.

ここで、外部常電導導電部材は、断熱管の外側に設けられているため、既存の常電導ケーブルと同様に、送電により発熱しても許容温度の範囲内で送電が可能である。そのため、天災などの不測の事態により、冷媒の冷却機構が正常に動作せず、超電導導体層を超電導状態に維持できなくなり、導体部による送電ができなくなっても、外部常電導導電部材による送電が可能であり、非常用の送電線路として利用できる。また、冷却機構が復帰するまでの間、導体部による送電を停止することで、超電導導体層の過大な温度上昇を回避することができ、安全性が高い。さらに、導体部の送電を停止することで、短時間であれば断熱管内の温度上昇を抑制することができるので、冷却機構の復帰後、超電導ケーブル線路を速やかに復旧することができる。   Here, since the external normal conducting member is provided outside the heat insulating tube, power can be transmitted within the allowable temperature range even if heat is generated by power transmission, as in the existing normal conducting cable. For this reason, even if an unexpected situation such as a natural disaster occurs, the cooling mechanism of the refrigerant does not operate normally, the superconducting conductor layer cannot be maintained in a superconducting state, and power cannot be transmitted by the conductor part. It can be used as an emergency power transmission line. Further, by stopping the power transmission by the conductor until the cooling mechanism is restored, an excessive temperature rise of the superconducting conductor layer can be avoided, and the safety is high. Furthermore, since the temperature rise in the heat insulation pipe can be suppressed for a short time by stopping the power transmission of the conductor portion, the superconducting cable line can be quickly restored after the cooling mechanism is restored.

外部常電導導電部材は、例えば、銅やアルミニウム、銀などの金属及びその合金といった常電導材料で形成されている。また、外部常電導導電部材は、超電導ケーブルとして利用している通常時は、従来の内部常電導導電部材と同様、事故電流(例、短絡電流など)の分流路として機能させることができる。   The external normal conductive member is made of a normal conductive material such as a metal such as copper, aluminum, silver, or an alloy thereof. In addition, the external normal conducting member can function as a shunt path for an accident current (eg, short-circuit current, etc.) during normal use as a superconducting cable, similarly to the conventional internal normal conducting member.

両端末導体部の各遮断手段は、導体部及び外部常電導導電部材と常電導電力機器との間の接続を遮断することができる。また、少なくとも一方の遮断手段は、第一遮断手段と第二遮断手段とを有し、導体部側の接続と外部常電導導電部材側の接続を個別に遮断することができる。遮断手段は、例えば、第一電流リードと第二電流リードとが結合され一本化されて上記電力機器に接続されている場合、一本化された電流リードの途中にスイッチを配置することで実現できる。スイッチ以外にも、一本化された電流リードの途中に取り外し可能にボンド線を配置することで実現してもよく、この場合、ボンド線の取り付け・取り外しにより接続・遮断することが可能である。このように、一本化された電流リードの途中にスイッチなどを配置することよって遮断手段を構成した場合、1つのスイッチなどで導体部側及び外部常電導導電部材側を遮断状態にすることができる。   Each interruption | blocking means of both the terminal conductor parts can interrupt | block the connection between a conductor part and an external normal conductive member, and a normal conductive power apparatus. Moreover, at least one interruption | blocking means has a 1st interruption | blocking means and a 2nd interruption | blocking means, and can interrupt | block separately the connection by the side of a conductor part, and the connection by the side of an external normal conducting member. For example, in the case where the first current lead and the second current lead are combined and connected to the power device, the interrupting means is configured by arranging a switch in the middle of the integrated current lead. realizable. In addition to the switch, it may be realized by detachably placing the bond line in the middle of the integrated current lead. In this case, it is possible to connect / cut off by attaching / detaching the bond line. . In this way, when the shut-off means is configured by arranging a switch or the like in the middle of the integrated current lead, the conductor portion side and the external normal conducting member side can be shut off with one switch or the like. it can.

第一遮断手段は、導体部側を遮断状態にすることができ、例えば、第一電流リードの途中にスイッチを設けたり、取り外し可能にボンド線を取り付けたりすることで実現できる。また、第二遮断手段は、外部常電導導電部材側を遮断状態にすることができ、第一手段と同様に、第二電流リードの途中にスイッチ機構を設けたり、取り外し可能にボンド線を取り付けたりすることで実現できる。   The first cutoff means can put the conductor portion side in a cutoff state, and can be realized by, for example, providing a switch in the middle of the first current lead or detachably attaching a bond wire. In addition, the second blocking means can put the external normal conducting member side into a blocking state, and like the first means, a switch mechanism is provided in the middle of the second current lead, or a bond wire is detachably attached. It can be realized by doing.

両方の遮断手段がそれぞれ、第一遮断手段と第二遮断手段とを有する構成としてもよいが、一方の遮断手段が第一遮断手段と第二遮断手段とを有していれば、第一遮断手段によって導体部側を遮断して、導体部への送電を停止することができる。   Both of the blocking means may have a first blocking means and a second blocking means, respectively, but if one blocking means has the first blocking means and the second blocking means, the first blocking means The conductor part side is interrupted by the means, and the power transmission to the conductor part can be stopped.

本発明の超電導ケーブルシステムの一形態としては、一方の遮断手段において、第一遮断手段により導体部側を遮断状態にしたとき、他方の遮断手段では、導体部側を接続状態にすることが挙げられる。   As one form of the superconducting cable system of the present invention, when the conductor part side is blocked by the first blocking means in one blocking means, the conductor part side is connected in the other blocking means. It is done.

この構成によれば、一方の遮断手段の第一遮断手段により導体部側を遮断して、導体部による送電を停止した状態で、外部常電導導電部材による送電を行う場合、他方の遮断手段では、導体部側を接続状態にすることで、導体部が浮遊電極となることを回避することができる。そのため、導体部と外部常電導導電部材との間に電位差が生じて絶縁破壊などの主電気絶縁層が損傷することを防止できる。   According to this configuration, when the power is transmitted by the external normal conducting member in the state where the conductor portion side is interrupted by the first interrupting means of one of the interrupting means and the power transmission by the conductor portion is stopped, By making the conductor part side into a connected state, it can be avoided that the conductor part becomes a floating electrode. Therefore, it is possible to prevent a potential difference between the conductor portion and the external normal conducting member from damaging the main electrical insulating layer such as dielectric breakdown.

ところで、冷媒の冷却機構が復帰するまでに長時間を要する場合や、常電導ケーブル線路として利用する冷却機能喪失時の送電容量を上げる場合は、安定した送電を行うため、断熱管内に収納されている導体部(内部常電導導電部材)も送電用導体に利用することが求められる。そこで、断熱管内の導体部の放熱を可能にするように、下記の構成を備えることが好ましい。   By the way, when it takes a long time for the cooling mechanism of the refrigerant to return, or when increasing the power transmission capacity when the cooling function is lost to be used as a normal conducting cable line, it is housed in a heat insulating tube for stable power transmission. It is required to use the existing conductor part (internal normal conducting member) as a power transmission conductor. Therefore, it is preferable to have the following configuration so as to enable heat dissipation of the conductor portion in the heat insulating tube.

本発明の超電導ケーブルシステムの一形態としては、超電導ケーブルの断熱管が断熱空間を有する真空断熱管であり、上記冷媒機構が動作不能で、超電導導体層を超電導状態に維持できない冷却機能喪失時に、少なくとも真空断熱管の断熱空間に熱伝導材料を充填する充填手段を取り付けるための充填手段取付部を備えることが挙げられる。   As one form of the superconducting cable system of the present invention, the heat insulating tube of the superconducting cable is a vacuum heat insulating tube having a heat insulating space, the cooling mechanism is inoperable, and the superconducting conductor layer can not be maintained in the superconducting state when the cooling function is lost. It may be provided with a filling means attaching portion for attaching a filling means for filling a heat conductive material in at least the heat insulating space of the vacuum heat insulating tube.

この構成によれば、充填手段取付部を備え、この充填手段取付部に充填手段を取り付けることで、充填手段により真空断熱管の断熱空間に熱伝導材料を充填して、この断熱管の断熱性能を低下させ、真空断熱管を伝熱管とすることができる。そのため、常電導ケーブル線路として利用する冷却機能喪失時に、導体部を送電用導体に利用しても、導体部で発生した熱を伝熱管を通して放熱することができる。したがって、導体部が許容温度を超えて温度上昇することを抑制でき、常電導ケーブル運用時の送電容量を上げることができる。また、真空断熱管の断熱性能が確実に低下するまでの間は、上記第一遮断手段により導体部側を遮断状態にすることで、導体部による送電を停止して、安全性を確保することができる。例えば、断熱管内の冷媒がある程度低温の状態で断熱管の断熱性能を急激に低下させると、断熱管内外の温度差が大きく、急激な温度変化によって断熱管や断熱管に近接する常温の部材が破損するなど悪影響を及ぼす虞がある。   According to this configuration, the filling means attaching portion is provided, and the filling means is attached to the filling means attaching portion so that the heat conduction material is filled into the heat insulating space of the vacuum heat insulating tube by the filling means, and the heat insulating performance of the heat insulating pipe is obtained. The vacuum insulation tube can be used as a heat transfer tube. Therefore, when the cooling function used as the normal conducting cable line is lost, the heat generated in the conductor can be radiated through the heat transfer tube even if the conductor is used as the power transmission conductor. Therefore, it can suppress that a conductor part exceeds temperature exceeding allowable temperature, and can raise the power transmission capacity at the time of normal conductive cable operation. Moreover, until the heat insulation performance of the vacuum heat insulation pipe is surely lowered, the power transmission by the conductor part is stopped and the safety is ensured by putting the conductor part side in a cut-off state by the first cut-off means. Can do. For example, if the heat insulation performance of the heat insulation pipe is drastically reduced while the refrigerant in the heat insulation pipe is at a low temperature to some extent, the temperature difference between the inside and outside of the heat insulation pipe is large, and a room temperature member that is close to the heat insulation pipe or the heat insulation pipe due to a sudden temperature change. There is a risk of damage such as damage.

この充填手段は、冷却機能喪失時に、導体部を送電用導体に利用する際に、事後的に充填手段取付部に取り付けてもよく、超電導ケーブルシステムの建設当初から、予め充填手段取付部に取り付けられていてもよい。充填手段を構成する構成部材の一部が充填手段取付部に予め取り付けられていてもよく、導体部を送電用導体に利用する際に、構成部材の残部を取り付けてもよい。真空断熱管の断熱空間とは、二重管構造の真空断熱管における内管と外管との間の空間のことである。   When the cooling function is lost, this filling means may be attached to the filling means attaching part afterwards when the conductor part is used as a power transmission conductor, and is attached to the filling means attaching part in advance from the beginning of the construction of the superconducting cable system. It may be done. Part of the constituent members constituting the filling means may be attached in advance to the filling means attachment portion, and when the conductor portion is used as a power transmission conductor, the remaining portion of the constituent member may be attached. The heat insulating space of the vacuum heat insulating tube is a space between the inner tube and the outer tube in the vacuum heat insulating tube having a double tube structure.

充填手段を備える上記形態において、充填手段が、熱伝導材料となる気体を収容する気体供給源と、この気体供給源から上記断熱空間に気体を供給・停止する第一バルブとを備えることが挙げられる。   In the said form provided with a filling means, a filling means is provided with the gas supply source which accommodates the gas used as a heat conductive material, and the 1st valve | bulb which supplies and stops gas to this heat insulation space from this gas supply source. It is done.

この構成によれば、第一バルブの操作により、冷却機能喪失時に熱伝導材料となる気体を真空断熱管の断熱空間に供給し、充填することで、この断熱管の断熱性能を低下させることができる。これにより、通常時の真空断熱管を冷却機能喪失時に伝熱管とすることができ、導体部の発熱を放熱することができる。   According to this configuration, by operating the first valve, when the cooling function is lost, the heat insulating material is supplied to the heat insulating space of the vacuum heat insulating tube and filled with the gas, thereby reducing the heat insulating performance of the heat insulating tube. it can. As a result, the normal vacuum heat insulating tube can be used as a heat transfer tube when the cooling function is lost, and heat generated by the conductor can be radiated.

第一バルブを備える上記形態において、更に、上記断熱空間を真空引きする真空ポンプを備え、第一バルブは、気体供給源と真空ポンプとを断熱空間に対して選択的に連通させる開閉バルブであることが挙げられる。   The said form provided with a 1st valve | bulb is further equipped with the vacuum pump which evacuates the said heat insulation space, and a 1st valve is an on-off valve which selectively connects a gas supply source and a vacuum pump with respect to a heat insulation space. Can be mentioned.

この構成によれば、開閉バルブの動作により、真空断熱管の断熱空間を気体供給源と連通させる。そして、断熱空間に気体を充填して非真空状態とすることで、通常時の超電導ケーブルを冷却機能喪失時に常電導ケーブルとして送電線路に利用することができる。一方、超電導導体層を超電導状態に維持できるように冷却機構が復帰してからは、開閉バルブの動作により、真空断熱管の断熱空間を真空ポンプと連通させる。そして、この真空ポンプで断熱空間を真空引きすることにより、冷却機能喪失時に常電導ケーブル線路として利用していた超電導ケーブルを、再度超電導ケーブル線路として利用することができる。また、真空ポンプで断熱空間を所定の真空度まで真空引きする間、即ち、常電導ケーブル運用時から超電導ケーブル運用時に移行するまでの間は、上記第一遮断手段により導体部側を遮断状態にすることで、導体部による送電を停止して、安全性を確保することができる。   According to this structure, the heat insulation space of a vacuum heat insulation pipe | tube is connected with a gas supply source by operation | movement of an on-off valve. Then, by filling the heat-insulating space with a gas to be in a non-vacuum state, the normal superconducting cable can be used as a normal conducting cable in the power transmission line when the cooling function is lost. On the other hand, after the cooling mechanism is restored so that the superconducting conductor layer can be maintained in the superconducting state, the heat insulating space of the vacuum heat insulating tube is communicated with the vacuum pump by the operation of the opening / closing valve. Then, by evacuating the heat insulation space with this vacuum pump, the superconducting cable used as the normal conducting cable line when the cooling function is lost can be used again as the superconducting cable line. In addition, during the time when the heat insulation space is evacuated to a predetermined degree of vacuum with the vacuum pump, that is, until the transition from the normal conducting cable operation to the superconducting cable operation, the conductor section side is cut off by the first blocking means. By doing so, it is possible to stop power transmission by the conductor portion and ensure safety.

ここで、第一バルブを介して断熱管と接続される気体供給源や真空ポンプは接地電位にあり、一方、超電導ケーブルを送電線路に利用する際、断熱管は通常高電位にある。そのため、気体供給源や真空ポンプを断熱管に直接接続した場合、送電線路として運用できない問題があり、その場合、断熱管と気体供給源や真空ポンプとの間に所定の絶縁耐力を有する絶縁継手を設ける必要がある。   Here, the gas supply source and the vacuum pump connected to the heat insulation pipe via the first valve are at the ground potential, while the heat insulation pipe is usually at a high potential when the superconducting cable is used for the power transmission line. Therefore, when a gas supply source or a vacuum pump is directly connected to a heat insulation pipe, there is a problem that it cannot be operated as a power transmission line. In that case, an insulation joint having a predetermined dielectric strength between the heat insulation pipe and the gas supply source or the vacuum pump It is necessary to provide.

充填手段を備える上記形態において、充填手段が、液体供給源と、供給管と、排出管と、第二バルブと、圧送手段とを備えることが挙げられる。液体供給源は、上記熱伝導材料となる液体を貯留する。供給管は、この液体供給源から上記断熱空間に液体を供給する。排出管は、断熱空間から液体を排出する。第二バルブは、供給管及び排出管の各々を連通・遮断する。圧送手段は、供給管、断熱空間及び排出管を流通経路として、液体を循環させる。   The said form provided with a filling means WHEREIN: It is mentioned that a filling means is provided with a liquid supply source, a supply pipe, a discharge pipe, a 2nd valve | bulb, and a pumping means. A liquid supply source stores the liquid used as the said heat conductive material. The supply pipe supplies liquid from the liquid supply source to the heat insulation space. The discharge pipe discharges the liquid from the heat insulating space. The second valve communicates and blocks each of the supply pipe and the discharge pipe. The pressure feeding means circulates the liquid using the supply pipe, the heat insulating space, and the discharge pipe as a flow path.

この構成によれば、冷却機能喪失時に、熱伝導材料となる液体を真空断熱管の断熱空間に供給し、充填することで、この断熱管の断熱性能を低下させることができる。これにより、真空断熱管を伝熱管とすることができ、導体部の発熱を放熱することができる。また、断熱空間に供給した液体を圧送(循環)させ、この液体によって断熱管(伝熱管)を冷却することで、常電導ケーブル運用時の導体部の発熱に伴う温度上昇を効果的に抑制することもできる。   According to this configuration, when the cooling function is lost, the heat insulating performance of the heat insulating tube can be lowered by supplying the liquid serving as the heat conducting material to the heat insulating space of the vacuum heat insulating tube and filling it. Thereby, a vacuum heat insulation pipe | tube can be used as a heat exchanger tube, and the heat_generation | fever of a conductor part can be radiated. Moreover, the liquid supplied to the heat insulation space is pumped (circulated), and the heat insulation pipe (heat transfer pipe) is cooled by this liquid, thereby effectively suppressing the temperature rise caused by the heat generation of the conductor part during normal conductive cable operation. You can also

充填手段を備える上記形態において、充填手段が、真空断熱管内の冷媒流路と真空断熱管の断熱空間とを連通させる連通管と、連通管を連通・遮断する第三バルブとを備えることが挙げられる。   In the above-described form including the filling means, the filling means includes a communication pipe that communicates the refrigerant flow path in the vacuum heat insulation pipe and the heat insulation space of the vacuum heat insulation pipe, and a third valve that communicates and blocks the communication pipe. It is done.

この構成によれば、冷却機能喪失時に、真空断熱管内の冷媒を侵入熱により気化させ、第三バルブの操作により、その気化した冷媒を、連通管を介して真空断熱管の断熱空間に導入することで、この断熱管の断熱性能を低下させることができる。これにより、真空断熱管を伝熱管とすることができ、導体部の発熱を放熱することができる。   According to this configuration, when the cooling function is lost, the refrigerant in the vacuum heat insulation pipe is vaporized by intrusion heat, and the vaporized refrigerant is introduced into the heat insulation space of the vacuum heat insulation pipe through the communication pipe by the operation of the third valve. Thus, the heat insulating performance of the heat insulating pipe can be lowered. Thereby, a vacuum heat insulation pipe | tube can be used as a heat exchanger tube, and the heat_generation | fever of a conductor part can be radiated.

連通管と第三バルブとを備える上記形態において、連通管の途中に、冷却機能喪失時に気化した冷媒の圧力を開放する放圧弁と、この気化した冷媒の温度を上昇させる熱交換部とのうち、少なくとも一方を備えることが挙げられる。   In the above embodiment comprising the communication pipe and the third valve, a pressure release valve for releasing the pressure of the refrigerant vaporized when the cooling function is lost in the middle of the communication pipe, and a heat exchanging unit for increasing the temperature of the vaporized refrigerant And at least one of them.

この構成によれば、放圧弁を備えることで、冷媒が気化する際の連通管内の急激な圧力上昇を緩和することができる。また、熱交換部を備えることで、気化した冷媒が過度に低温のまま真空断熱管の断熱空間に導入されることを防止し、この断熱管に近接する常温の部材が不必要に冷却されて悪影響を受けることを防止できる。   According to this configuration, by providing the pressure release valve, it is possible to mitigate a rapid pressure increase in the communication pipe when the refrigerant is vaporized. In addition, by providing a heat exchange part, it is possible to prevent the vaporized refrigerant from being introduced into the heat insulation space of the vacuum heat insulation pipe at an excessively low temperature, and a member at room temperature adjacent to the heat insulation pipe is unnecessarily cooled. It can prevent being adversely affected.

本発明の超電導ケーブルシステムによれば、通常時は超電導ケーブル線路として利用していたケーブルを、冷却機能喪失時には常電導ケーブル線路として利用することができ、冷却機能喪失時において、安全に送電線路に利用することができる。   According to the superconducting cable system of the present invention, a cable that was normally used as a superconducting cable line can be used as a normal conducting cable line when the cooling function is lost, and can safely be used as a power transmission line when the cooling function is lost. Can be used.

常温絶縁型超電導ケーブルの一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a normal temperature insulated superconducting cable. 常温絶縁型超電導ケーブルの別の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a normal temperature insulated superconducting cable. 実施形態1に係る超電導ケーブルシステムの全体の概略構成図である。1 is an overall schematic configuration diagram of a superconducting cable system according to Embodiment 1. FIG. 実施形態1に係る超電導ケーブルシステムにおける端末の構造の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the structure of the terminal in the superconducting cable system which concerns on Embodiment 1. FIG. 実施形態2に係る超電導ケーブルシステムの全体の概略構成図である。It is a schematic block diagram of the whole superconducting cable system which concerns on Embodiment 2. FIG. 実施形態3に係る超電導ケーブルシステムの全体の概略構成図である。It is a schematic block diagram of the whole superconducting cable system which concerns on Embodiment 3. 実施形態4に係る超電導ケーブルシステムの全体の概略構成図である。It is a schematic structure figure of the whole superconducting cable system concerning Embodiment 4.

以下、図面を参照して、本発明の実施の形態を説明する。なお、各図において、同一又は相当の部材には同一の符号を用いる。   Embodiments of the present invention will be described below with reference to the drawings. In each figure, the same reference numerals are used for the same or corresponding members.

超電導ケーブルシステムは、超電導ケーブルの両端部に設けられ、電流リードを介して常電導電力機器と接続するための端末導体部を有する超電導ケーブルと、冷媒の冷却機構とを備える。まず、図1及び2を参照して、本発明の超電導ケーブルシステムに使用する超電導ケーブル(常温絶縁型超電導ケーブル)の構造を説明する。   The superconducting cable system includes a superconducting cable provided at both ends of the superconducting cable and having a terminal conductor portion for connecting to a normal conductive power device via a current lead, and a cooling mechanism for the refrigerant. First, the structure of a superconducting cable (room temperature insulated superconducting cable) used in the superconducting cable system of the present invention will be described with reference to FIGS.

[常温絶縁型超電導ケーブル(1)]
図1は、常温絶縁型超電導ケーブルの一例を示す図である。図1に示す超電導ケーブル101は、超電導導体層12を有する1つの導体部10と、導体部10を収納する断熱管14とを備え、断熱管14の内側には、超電導導体層12を冷却する冷媒が流通する。また、断熱管14の外側に主電気絶縁層15が設けられており、常温にて絶縁を行う構造である。さらに、断熱管14と主電気絶縁層15との間には、外部常電導導電部材16が形成されている。
[Room-temperature insulated superconducting cable (1)]
FIG. 1 is a diagram illustrating an example of a room temperature insulated superconducting cable. A superconducting cable 101 shown in FIG. 1 includes one conductor portion 10 having a superconducting conductor layer 12 and a heat insulating tube 14 that houses the conductor portion 10, and the superconducting conductor layer 12 is cooled inside the heat insulating tube 14. Refrigerant flows. In addition, a main electrical insulating layer 15 is provided outside the heat insulating tube 14, and the insulation is performed at room temperature. Further, an external normal conducting member 16 is formed between the heat insulating tube 14 and the main electrical insulating layer 15.

導体部10は、代表的には、中心から順にフォーマ11、超電導導体層12、保護層13を有する。フォーマ11は、超電導導体層12を支持する部材であり、例えば、エナメルなどの絶縁被覆を有する複数の金属線を撚り合わせた撚り線などの中実体、絶縁パイプや金属パイプ、金属帯を螺旋状に巻回して筒状に形成されたスパイラル帯などの中空体を利用することができる。このフォーマ11を、事故電流(短絡電流など)を分流する内部常電導導電部材とする場合は、銅やアルミニウムといった金属の常電導材料で形成するとよい。金属パイプなどの中空体とした場合は、その内部空間も冷媒流路に利用することが可能である。本例では、絶縁被覆を有する金属線を撚り合わせた中実体とした。   The conductor portion 10 typically has a former 11, a superconducting conductor layer 12, and a protective layer 13 in order from the center. The former 11 is a member that supports the superconducting conductor layer 12. For example, a solid body such as a stranded wire obtained by twisting a plurality of metal wires having an insulating coating such as enamel, an insulating pipe, a metal pipe, and a metal strip in a spiral shape It is possible to use a hollow body such as a spiral band that is wound around and formed into a cylindrical shape. When the former 11 is an internal normal conductive member that shunts an accident current (such as a short-circuit current), it may be formed of a metal normal conductive material such as copper or aluminum. When a hollow body such as a metal pipe is used, the internal space can also be used for the refrigerant flow path. In this example, the solid body is formed by twisting metal wires having an insulating coating.

超電導導体層12としては、例えば、酸化物超電導導体を用いたテープ状の超電導線材が好適に利用できる。超電導線材には、例えば、Bi2223系銀シース超電導線材(Ag-MnやAgなどの安定化金属中に酸化物超電導導体からなるフィラメントが配されたシース線線材)、RE123系薄膜超電導線材(RE:希土類元素(例えばY、Ho、Nd、Sm、Gdなど)。金属基板上に酸化物超電導相が成膜された積層線材)を使用することができる。超電導導体層12は、複数の超電導線材をフォーマ11の外周に螺旋状に巻回して形成した単層又は多層構造とすることができる。本例では、多層構造の超電導導体層12とした。超電導導体層12において、上記した超電導線材の安定化金属や金属基板も、事故電流を分流する内部常電導導電部材として機能する。さらに、フォーマ11と超電導導体層12との間にクッション層(図示せず)を介在させてもよく、クッション層はクラフト紙などを巻回することで形成することができる。   As the superconducting conductor layer 12, for example, a tape-shaped superconducting wire using an oxide superconducting conductor can be suitably used. Examples of the superconducting wire include a Bi2223-based silver sheathed superconducting wire (sheathed wire in which a filament made of an oxide superconducting conductor is disposed in a stabilizing metal such as Ag-Mn or Ag), an RE123-based thin film superconducting wire (RE: Rare earth elements (for example, Y, Ho, Nd, Sm, Gd, etc.) can be used as a laminated wire in which an oxide superconducting phase is formed on a metal substrate. The superconducting conductor layer 12 can be a single layer or a multilayer structure formed by spirally winding a plurality of superconducting wires around the outer periphery of the former 11. In this example, the superconducting conductor layer 12 has a multilayer structure. In the superconducting conductor layer 12, the above-described stabilizing metal or metal substrate of the superconducting wire also functions as an internal normal conducting member that shunts the accident current. Further, a cushion layer (not shown) may be interposed between the former 11 and the superconducting conductor layer 12, and the cushion layer can be formed by winding kraft paper or the like.

超電導導体層12の外周には保護層13が形成されている。保護層13は、その内側に配された超電導導体層12などを断熱管14と電気的に絶縁すると共に、機械的に保護する。保護層13は、クラフト紙などを巻回することで形成している。ここで、導体部10(超電導導体層12)と断熱管14とは、ケーブル線路の端末やジョイントなどの任意の箇所で電気的に繋がれており、同電位である。超電導導体層12の外側に設けられた保護層13による電気的な絶縁は、超電導導体層12に流れる主電流を断熱管14に分流させない(断熱管14との不安定な接触点を形成させない)ためのものであり、絶縁に必要な厚さを有していなくてもよい。超電導ケーブルの主絶縁は、断熱管14の外側に設けられた主電気絶縁層15により確保される。   A protective layer 13 is formed on the outer periphery of the superconducting conductor layer 12. The protective layer 13 electrically insulates the superconducting conductor layer 12 and the like disposed inside thereof from the heat insulating tube 14 and mechanically protects it. The protective layer 13 is formed by winding kraft paper or the like. Here, the conductor portion 10 (superconducting conductor layer 12) and the heat insulating tube 14 are electrically connected to each other at any location such as the end of a cable line or a joint, and have the same potential. The electrical insulation by the protective layer 13 provided outside the superconducting conductor layer 12 does not cause the main current flowing through the superconducting conductor layer 12 to be shunted to the heat insulating tube 14 (an unstable contact point with the heat insulating tube 14 is not formed). Therefore, it is not necessary to have a thickness necessary for insulation. The main insulation of the superconducting cable is ensured by the main electrical insulation layer 15 provided outside the heat insulating tube.

断熱管14は、導体部10を内部に収納する内管14aと、内管14aを内部に収納する外管14bとを有する二重管構構造の真空断熱管である。内管14aは、その内部に冷媒20が流通する冷媒流路として機能する。この冷媒20により、導体部10の超電導導体層12が超電導状態に維持される。冷媒20の代表例としては、液体窒素や液体ヘリウム、ヘリウムガスなどが挙げられる。この内管14aと、内管14aを覆う外管14bとで断熱管14を構成することで、外部からの侵入熱などによって冷媒20の温度が上昇することを抑制する。内管14aと外管14bとの間の断熱空間は真空引きされ、それにより通常時は真空断熱層が形成されている。その他、断熱空間にスーパーインシュレーションといった断熱材や、内管14aと外管14bとを離隔させるスペーサを配置すると、断熱管14の断熱性能をより高められる。   The heat insulating tube 14 is a vacuum heat insulating tube having a double-pipe structure having an inner tube 14a that houses the conductor portion 10 therein and an outer tube 14b that houses the inner tube 14a inside. The inner pipe 14a functions as a refrigerant flow path through which the refrigerant 20 flows. The refrigerant 20 maintains the superconducting conductor layer 12 of the conductor portion 10 in a superconducting state. Typical examples of the refrigerant 20 include liquid nitrogen, liquid helium, and helium gas. By forming the heat insulating tube 14 with the inner tube 14a and the outer tube 14b covering the inner tube 14a, it is possible to suppress the temperature of the refrigerant 20 from rising due to heat entering from the outside. The heat insulating space between the inner tube 14a and the outer tube 14b is evacuated, thereby forming a vacuum heat insulating layer under normal conditions. In addition, if a heat insulating material such as super insulation or a spacer that separates the inner tube 14a and the outer tube 14b is disposed in the heat insulating space, the heat insulating performance of the heat insulating tube 14 can be further improved.

本例では、断熱管14を構成する内管14aと外管14bとは、コルゲート管である。両管14a,14bをコルゲート管とすることで、断熱管14(即ち、超電導ケーブル)の曲げ剛性を小さくすることができ、管路内などへの超電導ケーブルの布設をより容易にすることができる。なお、両管14a,14bはストレート管であってもよい。常温絶縁型超電導ケーブルでは、断熱管14の外側に主電気絶縁層(後述)が設けられているため、断熱管14は電圧印加部位である。断熱管14(内管14a及び外管14b)は、ステンレス、アルミニウムやその合金などで形成されている。   In this example, the inner tube 14a and the outer tube 14b constituting the heat insulating tube 14 are corrugated tubes. By making both the pipes 14a and 14b corrugated pipes, the bending rigidity of the heat insulating pipe 14 (that is, the superconducting cable) can be reduced, and the laying of the superconducting cable inside the pipe can be made easier. . Both tubes 14a and 14b may be straight tubes. In a room-temperature insulated superconducting cable, a main electrical insulation layer (described later) is provided outside the heat insulation tube 14, so the heat insulation tube 14 is a voltage application site. The heat insulating tube 14 (the inner tube 14a and the outer tube 14b) is formed of stainless steel, aluminum, an alloy thereof, or the like.

断熱管14(外管14b)の外側には、主電気絶縁層15が形成されている。この主電気絶縁層15は、ケーブル線路として要求される電気的絶縁性能を満足する。この主電気絶縁層15には、既存の常電導ケーブルで実績がある電気絶縁強度に優れる材料、代表的にはCVケーブルに使用されている架橋ポリエチレン(XLPE)などの絶縁性樹脂を利用することができる。架橋ポリエチレンなどの絶縁性樹脂であれば、断熱管14の外側、具体的には、後述する外部常電導導電部材16の外周に絶縁性樹脂を押出しにより被覆することで主電気絶縁層15を容易に形成することができる。なお、主電気絶縁層15の内側又は外側には、常電導ケーブルと同様に、内部半導電層又は外部半導電層(図示せず)を主電気絶縁層15と同時に押出しにより形成してもよい。また、主電気絶縁層15の外周には、代表的には、銅やアルミニウムなどの常電導材料で形成された外側遮蔽層(図示せず)が設けられる。外側遮蔽層は、主電気絶縁層15の外側の電位を与えるもので、従来の電力ケーブルと同様に常電導材料を利用することができる。また、外側遮蔽層の外周には、外気の水分を遮断する遮水層(図示せず)や、所定の絶縁特性を有し、外側遮蔽層を保護する防食層(図示せず)が設けられる。   A main electrical insulating layer 15 is formed outside the heat insulating tube 14 (outer tube 14b). The main electrical insulation layer 15 satisfies the electrical insulation performance required as a cable line. The main electrical insulation layer 15 is made of a material having an excellent electrical insulation strength that has been used in existing normal conductive cables, typically an insulating resin such as cross-linked polyethylene (XLPE) used in CV cables. Can do. If the insulating resin such as cross-linked polyethylene is used, the main electrical insulating layer 15 can be easily formed by extruding the insulating resin on the outside of the heat insulating tube 14, specifically, the outer periphery of the external normal conducting member 16 described later by extrusion. Can be formed. In addition, an internal semiconductive layer or an external semiconductive layer (not shown) may be formed by extrusion simultaneously with the main electrical insulating layer 15 on the inner side or the outer side of the main electrical insulating layer 15 similarly to the normal conductive cable. . In addition, an outer shielding layer (not shown) made of a normal conducting material such as copper or aluminum is typically provided on the outer periphery of the main electrical insulating layer 15. The outer shielding layer provides a potential outside the main electrical insulating layer 15, and a normal conductive material can be used as in the case of a conventional power cable. Further, on the outer periphery of the outer shielding layer, a water shielding layer (not shown) that blocks moisture from the outside air and a corrosion prevention layer (not shown) that has a predetermined insulating property and protects the outer shielding layer are provided. .

断熱管14(外管14b)と主電気絶縁層15との間には、外部常電導導電部材16が形成されている。この外部常電導導電部材16は、冷媒機能喪失時に送電用導体に利用され、例えば、銅やアルミニウム、銀などの金属及びその合金といった常電導材料から形成されている。また、外部常電導導電部材16は、超電導ケーブル線路として利用する通常時に、事故電流の分流路として機能させることも可能である。外部常電導導電部材16は、例えば、銅撚り線からなるセグメント導体など、既存の常電導ケーブルの導体に準じた部材を外管14bの外周に巻回することで形成することができる。   An external normal conducting member 16 is formed between the heat insulating tube 14 (outer tube 14b) and the main electrical insulating layer 15. The external normal conductive member 16 is used as a power transmission conductor when the refrigerant function is lost, and is formed of a normal conductive material such as a metal such as copper, aluminum, silver, or an alloy thereof. Further, the external normal conducting member 16 can also function as a shunt path for fault current during normal use as a superconducting cable line. The external normal conductive member 16 can be formed, for example, by winding a member conforming to the conductor of an existing normal conductive cable, such as a segment conductor made of a copper twisted wire, around the outer periphery of the outer tube 14b.

外部常電導導電部材16の導体断面積を大きくすることで、常電導ケーブル線路として利用する冷却機能喪失時の送電容量や、事故電流の分流路を十分に確保することができる。外部常電導導電部材16が事故電流の分流路として機能する際、外部常電導導電部材16の導体断面積を十分に確保しておくことで、大きな事故電流が流れることによる導体部10(フォーマ11及び超電導導体層12)の温度上昇を低減し、断熱管14内の冷媒20の温度上昇を抑制することができる。   By enlarging the conductor cross-sectional area of the external normal conducting member 16, it is possible to sufficiently secure the power transmission capacity when the cooling function is used as a normal conducting cable line and the flow path for the accident current. When the external normal conducting member 16 functions as a shunt path for the fault current, the conductor section 10 (former 11) due to a large fault current flowing is ensured by ensuring a sufficient conductor cross-sectional area of the external normal conducting member 16. And the temperature rise of the superconducting conductor layer 12) can be reduced, and the temperature rise of the refrigerant 20 in the heat insulating tube 14 can be suppressed.

さらに、超電導ケーブル101の最外周には、布設用のテンションメンバーを設けもよい(図示せず)。   Furthermore, a tension member for laying may be provided on the outermost periphery of the superconducting cable 101 (not shown).

[常温絶縁型超電導ケーブル(2)]
図2は、常温絶縁型超電導ケーブルの別の一例を示す図である。図2に示す超電導ケーブル102は、管状支持部材17を備える点が、図1に示す上記した超電導ケーブル101と異なり、基本的な構成は超電導ケーブル101と同じであるので、以下では相違点を中心に説明する。
[Room-temperature insulated superconducting cable (2)]
FIG. 2 is a diagram showing another example of a room temperature insulated superconducting cable. The superconducting cable 102 shown in FIG. 2 is different from the superconducting cable 101 shown in FIG. 1 in that the tubular support member 17 is provided, and the basic configuration is the same as that of the superconducting cable 101. Explained.

超電導ケーブル102では、断熱管14(外管14b)に主電気絶縁層15が形成されておらず、断熱管14(外管14b)の外側に配置される管状支持部材17の外側に外部常電導導電部材16や主電気絶縁層15が形成されている。つまり、管状支持部材17は、その外側に形成される外部常電導導電部材16や主電気絶縁層15を支持する部材であり、所定の機械強度(機械特性)を有することが重要である。また、超電導ケーブル102に可撓性を持たせるために、管状支持部材17も所定の可撓性を有することが好ましい。これらの点を考慮して、管状支持部材17には、アルミニウム(その合金を含む)製のストレート管や、ステンレス製のコルゲート管などが好適に利用できる。その他、管状支持部材17は、樹脂などの非金属材料で形成してもよい。ここで、この管状支持部材17を常電導材料で形成した場合、上記した外部常電導導電部材16と同様に、冷媒機能喪失時の送電用導体や通常時の事故電流の分流路としての機能の一部を管状支持部材17に分担させることができる。   In the superconducting cable 102, the main electrical insulation layer 15 is not formed on the heat insulation pipe 14 (outer pipe 14b), and the external normal conduction is provided outside the tubular support member 17 disposed outside the heat insulation pipe 14 (outer pipe 14b). Conductive member 16 and main electrical insulating layer 15 are formed. That is, the tubular support member 17 is a member that supports the external normal conductive member 16 and the main electrical insulating layer 15 formed on the outside thereof, and it is important that the tubular support member 17 has a predetermined mechanical strength (mechanical characteristics). In order to make the superconducting cable 102 flexible, it is preferable that the tubular support member 17 also has a predetermined flexibility. In consideration of these points, a straight tube made of aluminum (including an alloy thereof), a corrugated tube made of stainless steel, or the like can be suitably used for the tubular support member 17. In addition, the tubular support member 17 may be formed of a non-metallic material such as a resin. Here, when the tubular support member 17 is formed of a normal conductive material, the function of the power transmission conductor when the refrigerant function is lost or the function of a normal current flow as a shunt path is the same as the external normal conductive member 16 described above. A part can be shared with the tubular support member 17.

管状支持部材17を備える場合、図2に例示するように、管状支持部材17と主電気絶縁層15との間に外部常電導導電部材16が形成されることになる。   When the tubular support member 17 is provided, the external normal conducting member 16 is formed between the tubular support member 17 and the main electrical insulating layer 15 as illustrated in FIG.

このような管状支持部材17を備えることで、導体部10を収納した断熱管14と、外部常電導導電部材16や主電気絶縁層15が設けられた管状支持部材17とを別個に取り扱うことができる。   By providing such a tubular support member 17, it is possible to separately handle the heat insulating tube 14 in which the conductor portion 10 is accommodated and the tubular support member 17 provided with the external normal conducting member 16 and the main electrical insulating layer 15. it can.

(実施形態1)
次に、図3、4を参照して、実施形態1に係る超電導ケーブルシステムの全体の概略構成、及び超電導ケーブルシステムにおける端末の構造の概略構成を説明する。
(Embodiment 1)
Next, with reference to FIGS. 3 and 4, the overall schematic configuration of the superconducting cable system according to the first embodiment and the schematic configuration of the terminal structure in the superconducting cable system will be described.

このシステムは、超電導ケーブル100と冷媒の冷却機構200とを備え、超電導ケーブル100の両端部には、ケーブル線路において、常電導電力機器(例、遮断器)と接続するための端末150a,150bが設けられている。超電導ケーブル100は、例えば図1や図2に示す上記した常温絶縁型超電導ケーブルであり、断熱管(真空断熱管)14の外側に主電気絶縁層15が設けられており、断熱管14と主電気絶縁層15との間に外部常電導導電部材16が形成されている。ここでは、超電導ケーブル100の構成が、図に示す超電導ケーブル101と同様の構成である場合を例に説明する。   This system includes a superconducting cable 100 and a refrigerant cooling mechanism 200, and terminals 150a and 150b for connecting to a normal conductive device (for example, a circuit breaker) in the cable line at both ends of the superconducting cable 100. Is provided. The superconducting cable 100 is, for example, the above-described room-temperature insulated superconducting cable shown in FIGS. 1 and 2, and a main electrical insulating layer 15 is provided outside a heat insulating tube (vacuum heat insulating tube) 14. An external normal conducting member 16 is formed between the electrical insulating layer 15 and the electrical insulating layer 15. Here, the case where the configuration of superconducting cable 100 is the same as that of superconducting cable 101 shown in the drawing will be described as an example.

超電導ケーブル100の両端部に設置された端末150a,150bの構造について、説明する。まず、図4を参照して、端末150a,150bのうち、一方の端末150aの構造について説明する。   The structure of the terminals 150a and 150b installed at both ends of the superconducting cable 100 will be described. First, with reference to FIG. 4, the structure of one of the terminals 150a and 150b will be described.

[端末導体部]
端末150aは、超電導ケーブル100と常電導電力機器の接続導体60とを電流リードを介して電気的に接続するための端末導体部30を有する。この端末導体部30は、超電導ケーブル100の導体部10と電力機器の接続導体60とを接続する第一電流リード31と、超電導ケーブル100の外部常電導導電部材16と電力機器の接続導体60とを接続する第二電流リードを備える。
[Terminal conductor]
The terminal 150a includes a terminal conductor portion 30 for electrically connecting the superconducting cable 100 and the connection conductor 60 of the normal conductive power device via a current lead. The terminal conductor portion 30 includes a first current lead 31 that connects the conductor portion 10 of the superconducting cable 100 and the connecting conductor 60 of the power device, an external normal conducting member 16 of the superconducting cable 100, and a connecting conductor 60 of the power device. A second current lead is provided.

この例では、超電導ケーブル100の端部の主電気絶縁層を除去する端部処理を行い、当該ケーブル100の端部を碍管51に挿入して端末絶縁部50を形成している。そして、端末絶縁部50から当該ケーブル100の断熱管14が外部に突出し、この断熱管14の端部から導体部10が引き出されている。導体部10と第一電流リード31との接続部は、端末絶縁部50の外部に設けられており、この接続部を収納するように、断熱容器40が形成されている。また、断熱管14の外側に形成された外部常電導導電部材16と第二電流リード32との接続部も端末絶縁部50の外部に設けられている。   In this example, an end treatment for removing the main electrical insulating layer at the end of the superconducting cable 100 is performed, and the end of the cable 100 is inserted into the soot tube 51 to form the terminal insulating portion 50. The heat insulating tube 14 of the cable 100 protrudes from the terminal insulating portion 50 to the outside, and the conductor portion 10 is drawn from the end of the heat insulating tube 14. A connecting portion between the conductor portion 10 and the first current lead 31 is provided outside the terminal insulating portion 50, and a heat insulating container 40 is formed so as to accommodate the connecting portion. Further, a connection part between the external normal conducting member 16 and the second current lead 32 formed outside the heat insulating tube 14 is also provided outside the terminal insulating part 50.

端末絶縁部50は、既存の常電導ケーブルの端末と同様であり、碍管51には、例えば、磁器製又は樹脂(例えばエポキシ樹脂)製のものを利用することができる。   The terminal insulating part 50 is the same as the terminal of the existing normal conducting cable, and the porcelain pipe 51 may be made of, for example, porcelain or resin (for example, epoxy resin).

超電導ケーブル100の端部の端末絶縁部50から突出する箇所では、主電気絶縁層などが除去され、外部常電導導電部材16が露出しており、導体部10が断熱管14の端部から引き出されている。引き出された導体部10の端部は、端末処理によって保護層などが除去され、超電導導体層12が露出しており、露出した超電導導体層12の外側には端末金具(図示せず)が取り付けられている。断熱管14の端部は断熱容器40に接続され、断熱管14の内側の冷媒流路と断熱容器40の内部空間とが連通している。   At the portion protruding from the terminal insulating portion 50 at the end of the superconducting cable 100, the main electrical insulating layer or the like is removed, the external normal conducting member 16 is exposed, and the conductor portion 10 is pulled out from the end of the heat insulating tube 14. It is. At the end of the drawn conductor portion 10, the protective layer and the like are removed by terminal treatment, the superconducting conductor layer 12 is exposed, and a terminal fitting (not shown) is attached to the outside of the exposed superconducting conductor layer 12. It has been. An end portion of the heat insulating pipe 14 is connected to the heat insulating container 40, and the refrigerant flow path inside the heat insulating pipe 14 and the internal space of the heat insulating container 40 communicate with each other.

第一電流リード31は、一端側が断熱容器40に収納され、断熱管14の端部から引き出された導体部10(超電導導体層12)と端末金具を介して電気的に接続されており、他端側が断熱容器40の外部(常温側)に引き出され、電力機器60の接続導体60に接続される。一方、第二電流リード32は、一端側が断熱管14の外側に形成された外部常電導導電部材16と電気的に接続されており、他端側が電力機器の接続導体60に接続される。第一電流リード31及び第二電流リード32は、例えば、銅やアルミニウムなどの常電導材料で形成されている。また、第一電流リード31は、外周面に断熱部材36を有しており、この断熱部材36を断熱容器40に嵌合させ接続することで、冷媒の封止と外部からの侵入熱の低減を行っている。   One end of the first current lead 31 is housed in the heat insulating container 40 and is electrically connected to the conductor portion 10 (superconducting conductor layer 12) drawn from the end portion of the heat insulating tube 14 via a terminal fitting. The end side is drawn out to the outside (room temperature side) of the heat insulating container 40 and connected to the connection conductor 60 of the power device 60. On the other hand, the second current lead 32 has one end side electrically connected to the external normal conducting member 16 formed outside the heat insulating tube 14, and the other end side connected to the connection conductor 60 of the power device. The first current lead 31 and the second current lead 32 are made of a normal conductive material such as copper or aluminum, for example. In addition, the first current lead 31 has a heat insulating member 36 on the outer peripheral surface, and the heat insulating member 36 is fitted and connected to the heat insulating container 40 to reduce the sealing of the refrigerant and the intrusion heat from the outside. It is carried out.

さらに、端末導体部30は、導体部10及び外部常電導導電部材16と電力機器の接続導体60との間の接続を遮断する遮断手段33aを備える。この遮断手段33aは、導体部10側の接続を遮断する第一遮断手段34と、外部常電導導電部材16側の接続を遮断する第二遮断手段35とを有する。そのため、導体部10側と外部常電導導電部材16側とをそれぞれ個別に接続・遮断することが可能である。この例では、第一電流リード31の途中に接続・遮断可能なスイッチを設けることで第一遮断手段34を構成し、第二電流リード32の途中に接続・遮断可能なスイッチを設けることで第二遮断手段35を構成している。第一遮断手段34や第二遮断手段35は、第一電流リード31や第二電流リード32を接続・遮断可能なスイッチで構成する他、第一電流リード31や第二電流リード32の途中に取り外し可能なボンド線を取り付けることで構成してもよく、この場合、ボンド線の取り付け・取り外しにより第一電流リード31や第二電流リード32を接続・遮断可能である。また、第一遮断手段34や第二遮断手段35の接続・遮断操作は、自動又は手動で行ってもよいし、ボンド線の取り付け・取り外しにより接続・遮断する場合は、作業員が手作業でボンド線の取り付け・取り外しを行ってもよい。   Further, the terminal conductor portion 30 includes a blocking means 33a that blocks the connection between the conductor portion 10 and the external normal conducting member 16 and the connection conductor 60 of the power device. The blocking means 33a includes a first blocking means 34 that blocks the connection on the conductor 10 side, and a second blocking means 35 that blocks the connection on the external normal conducting member 16 side. Therefore, it is possible to individually connect and disconnect the conductor portion 10 side and the external normal conducting member 16 side. In this example, the first cut-off means 34 is configured by providing a switch that can be connected / cut off in the middle of the first current lead 31, and the first cut-off switch 34 is provided in the middle of the second current lead 32 by providing a switch that can be connected / cut off. Two blocking means 35 are configured. The first interrupting means 34 and the second interrupting means 35 are configured by a switch that can connect and disconnect the first current lead 31 and the second current lead 32, and in the middle of the first current lead 31 and the second current lead 32. It may be configured by attaching a detachable bond wire. In this case, the first current lead 31 and the second current lead 32 can be connected / cut off by attaching / detaching the bond wire. Further, the connection / disconnection operation of the first interruption means 34 and the second interruption means 35 may be performed automatically or manually, and when connecting / disconnecting by attaching / detaching the bond line, an operator manually performs the operation. You may attach / remove the bond wire.

断熱容器40は、その内側が断熱管14の内側と連通しており、断熱管14に流通する冷媒20が充填される。本例では、断熱容器40は、内容器と外容器とを有する二重構造の真空断熱容器であり、内容器と外容器との間の断熱空間が真空引きされ、真空断熱層が形成されている。断熱容器40(内容器及び外容器)は、ステンレス、アルミニウムやその合金などで形成されている。   The inside of the heat insulating container 40 communicates with the inside of the heat insulating pipe 14 and is filled with the refrigerant 20 flowing through the heat insulating pipe 14. In this example, the heat insulating container 40 is a double-structure vacuum heat insulating container having an inner container and an outer container, and the heat insulating space between the inner container and the outer container is evacuated to form a vacuum heat insulating layer. Yes. The heat insulating container 40 (inner container and outer container) is made of stainless steel, aluminum, an alloy thereof, or the like.

第一電流リード31と断熱容器40との間で電流が流れないように、第一電流リード31と断熱容器40との間には絶縁部材(図示せず)が介在されている。この絶縁部材は、第一電流リード31と断熱部材36との間に設けてもよい。例えば、現地で接続構造を組み立てる場合、予め工場などで、第一電流リード31の上に絶縁部材を形成し、その上に断熱部材36を形成しておき、現地では、この第一電流リード31を断熱容器40に設けられた嵌合部42に挿入して、第一電流リード31と断熱容器40とを嵌合させる。このように第一電流リード31が断熱部材36を有することで、現地での接続構造の組み立てが容易になる。また、図示するように、第一電流リード31の断熱部材36と断熱容器40の嵌合部42とを重複させることで、外部からの侵入熱を効果的に抑制することができる。断熱容器40と断熱管14との接続箇所や断熱容器40と分岐冷媒管53(後述)との接続箇所においても、同様に、断熱管14や分岐冷媒管53と断熱容器40とを嵌合させ、重複させている。断熱部材36の外周にフランジ部を形成しておき、このフランジ部を嵌合部42に当接させ、位置決めに利用したり、このフランジ部を断熱容器40(嵌合部42)に固定してもよい。   An insulating member (not shown) is interposed between the first current lead 31 and the heat insulating container 40 so that no current flows between the first current lead 31 and the heat insulating container 40. This insulating member may be provided between the first current lead 31 and the heat insulating member 36. For example, when assembling the connection structure at the site, an insulating member is formed on the first current lead 31 in advance at a factory or the like, and a heat insulating member 36 is formed thereon, and the first current lead 31 is formed at the site. Is inserted into the fitting portion 42 provided in the heat insulating container 40 to fit the first current lead 31 and the heat insulating container 40 together. As described above, since the first current lead 31 includes the heat insulating member 36, it is easy to assemble the connection structure on site. Further, as shown in the figure, by making the heat insulating member 36 of the first current lead 31 and the fitting portion 42 of the heat insulating container 40 overlap, it is possible to effectively suppress the intrusion heat from the outside. Similarly, the insulation pipe 14, the branch refrigerant pipe 53, and the heat insulation container 40 are fitted in the connection place between the heat insulation container 40 and the heat insulation pipe 14 and the connection place between the heat insulation container 40 and the branch refrigerant pipe 53 (described later). , Overlapping. A flange portion is formed on the outer periphery of the heat insulating member 36, and this flange portion is brought into contact with the fitting portion 42 for use in positioning, or the flange portion is fixed to the heat insulating container 40 (fitting portion 42). Also good.

断熱容器40には、断熱管14に流通する冷媒20を冷却機構200(後述、図3参照)に送るための分岐冷媒管53が接続されている。常温絶縁型超電導ケーブルの場合、高電圧部である超電導導体層12と断熱管14との間に主電気絶縁層を有さないため、断熱管14が高電位である。よって、断熱管14が接続される断熱容器40や、断熱容器40に接続される分岐冷媒管53も高電位である。これに対し、冷凍機や冷媒の循環機構を含む冷却機構200は通常、接地部(低電圧部)に設けられるので接地電位(低電位)である。そのため、分岐冷媒管53を冷却機構200に直接接続した場合、電圧が印加できなくなる(地絡状態となり異常電流が流れる状態になる)ことにより、送電線路として成立しない問題がある。そこで、この例では、分岐冷媒管53と冷却機構200とを電気的に絶縁した状態で接続するため、分岐冷媒管53と冷却機構200との間に所定の絶縁耐力を有する絶縁継手55を設けている。分岐冷媒管53は、断熱管14と同様に、二重管構造の真空断熱管を利用することができる。なお、絶縁継手55は、その外側に断熱部56が設けられており、断熱容器40は、その外側に絶縁部材(図示せず)が設けられている。   A branch refrigerant pipe 53 for sending the refrigerant 20 flowing through the heat insulation pipe 14 to the cooling mechanism 200 (described later, see FIG. 3) is connected to the heat insulation container 40. In the case of a room-temperature insulated superconducting cable, since the main electric insulating layer is not provided between the superconducting conductor layer 12 and the heat insulating tube 14 which are high voltage portions, the heat insulating tube 14 has a high potential. Therefore, the heat insulating container 40 to which the heat insulating pipe 14 is connected and the branch refrigerant pipe 53 connected to the heat insulating container 40 are also at a high potential. On the other hand, since the cooling mechanism 200 including the refrigerator and the refrigerant circulation mechanism is normally provided in the grounding part (low voltage part), it has a grounding potential (low potential). Therefore, when the branch refrigerant pipe 53 is directly connected to the cooling mechanism 200, there is a problem that a voltage cannot be applied (a ground fault occurs and an abnormal current flows), and thus cannot be established as a power transmission line. Therefore, in this example, in order to connect the branch refrigerant pipe 53 and the cooling mechanism 200 in an electrically insulated state, an insulating joint 55 having a predetermined dielectric strength is provided between the branch refrigerant pipe 53 and the cooling mechanism 200. ing. As the branch refrigerant pipe 53, a vacuum heat insulation pipe having a double-pipe structure can be used similarly to the heat insulation pipe. The insulating joint 55 is provided with a heat insulating portion 56 on the outside thereof, and the heat insulating container 40 is provided with an insulating member (not shown) on the outside thereof.

断熱容器40には、更に、液体冷媒20が気化して内圧が上昇したときに、気化した冷媒20を放出するための放出弁(図示略)を備えている。これにより、冷却機能喪失時、冷媒20が温度上昇により気化して内圧が規定の圧力以上になった場合、気化した冷媒を断熱容器40から排出することができ、断熱容器40及びそれに連通する断熱管14の内圧が過大になることを防止することができる。   The heat insulating container 40 is further provided with a release valve (not shown) for discharging the vaporized refrigerant 20 when the liquid refrigerant 20 is vaporized and the internal pressure is increased. Thereby, when the cooling function is lost, when the refrigerant 20 is vaporized due to the temperature rise and the internal pressure becomes equal to or higher than the specified pressure, the vaporized refrigerant can be discharged from the heat insulating container 40, and the heat insulating container 40 and the heat insulating material communicating with the heat insulating container 40 can be discharged. It is possible to prevent the internal pressure of the pipe 14 from becoming excessive.

次に、図3に示す他方の端末150bの構造について説明すると、図4を用いて説明した一方の端末150aとほぼ同様の構成であり、端末導体部30が、第一電流リード31、第二電流リード32、及び遮断手段33bを備える。ただし、遮断手段33bは、第一電流リードと第二電流リードとが結合され一本化された電流リードの途中に接続・遮断可能なスイッチを設けることで構成している。この遮断手段33によって導体部10及び外部常電導導電部材16と電力機器の接続導体60との間の接続を遮断することができ、遮断手段33の接続・遮断操作により導体部10側及び外部常電導導電部材16側を同時に接続・遮断することが可能である。遮断手段33bは、上記した第一遮断手段34や第二遮断手段35と同様に、取り外し可能なポンド線を取り付けることで構成してもよい。また、遮断手段33bは、上記した遮断手段33aと同様に、第一遮断手段34や第二遮断手段35とを有する構成としてもよい。また、端末150bにおいても、端末150aと同様に、分岐冷媒管53と冷却機構200に接続される冷媒管300(後述、図3参照)とを電気的に絶縁した状態で接続するため、分岐冷媒管53と冷媒管300との間に絶縁継手55(図4参照)を設けている。   Next, the structure of the other terminal 150b shown in FIG. 3 will be described. The terminal 150b has almost the same configuration as that of the one terminal 150a described with reference to FIG. A current lead 32 and a blocking means 33b are provided. However, the blocking means 33b is configured by providing a switch that can be connected and disconnected in the middle of the current lead that is formed by combining the first current lead and the second current lead. By this interruption means 33, the connection between the conductor part 10 and the external normal conducting member 16 and the connection conductor 60 of the power equipment can be interrupted. It is possible to simultaneously connect and disconnect the conductive member 16 side. The blocking means 33b may be configured by attaching a detachable pond wire in the same manner as the first blocking means 34 and the second blocking means 35 described above. Further, the blocking means 33b may include a first blocking means 34 and a second blocking means 35 in the same manner as the blocking means 33a described above. Similarly to the terminal 150a, the terminal 150b connects the branch refrigerant pipe 53 and the refrigerant pipe 300 (see FIG. 3 described later) connected to the cooling mechanism 200 in an electrically insulated state. An insulating joint 55 (see FIG. 4) is provided between the pipe 53 and the refrigerant pipe 300.

[冷却機構]
冷媒の冷却機構200は、超電導ケーブル100の一方の端末150a側に設置されている。通常時、冷却機構200で冷却された冷媒20は、超電導ケーブル100の一方の端末150aから断熱管14に供給されて他方の端末150bから排出され、冷媒管300を通って再度冷却機構200に戻される。或いはその逆に冷媒20が循環される。具体的には、冷却機構200で冷却された冷媒20は、一方の端末150aの断熱容器40に分岐冷媒管53を介して充填され、断熱管14を通って、他方の端末150bの断熱容器40に充填される。その後、他方の端末150bの断熱容器40から分岐冷媒管53を介して冷媒管300に送られ、冷媒管300を通って冷却機構200に戻される。この冷媒20の循環により、断熱管14内に収納された導体部10の超電導導体層12を極低温に冷却して超電導状態に維持する。この例では、冷却機構200は、冷媒管300を介して冷却機構200に戻されて供給開始時に比べて温度上昇した冷媒20を再度所定の低温に冷却する冷凍機210と、冷凍機210で冷却された冷媒20を断熱管14と冷媒管300とを含む循環経路に圧送する循環機構(図示略)と、冷却塔215とを備える。冷凍機210には冷却塔215が連結され、冷凍機210自体の放熱側(高温側)を冷却する。循環機構にはポンプが好適に利用できる。なお、この冷却機構200は、冷媒の冷媒排出バルブ(図示略)を備えることが好ましい。冷却機能喪失時、液体の冷媒20が昇温して気化するため、冷媒排出バルブを開放することで、気化した冷媒20を循環経路から排出し、断熱管14、断熱容器40及び冷媒管300の内圧が過大にならないように制御することができる。
[Cooling mechanism]
The refrigerant cooling mechanism 200 is installed on one terminal 150a side of the superconducting cable 100. Normally, the refrigerant 20 cooled by the cooling mechanism 200 is supplied from one end 150a of the superconducting cable 100 to the heat insulating pipe 14, discharged from the other end 150b, and returned to the cooling mechanism 200 again through the refrigerant pipe 300. It is. Or conversely, the refrigerant 20 is circulated. Specifically, the refrigerant 20 cooled by the cooling mechanism 200 is filled into the heat insulating container 40 of one terminal 150a through the branch refrigerant pipe 53, passes through the heat insulating pipe 14, and then the heat insulating container 40 of the other terminal 150b. Filled. Thereafter, the refrigerant is sent from the heat insulating container 40 of the other terminal 150b to the refrigerant pipe 300 through the branch refrigerant pipe 53, and returned to the cooling mechanism 200 through the refrigerant pipe 300. The circulation of the refrigerant 20 cools the superconducting conductor layer 12 of the conductor portion 10 accommodated in the heat insulating tube 14 to a cryogenic temperature and maintains the superconducting state. In this example, the cooling mechanism 200 is returned to the cooling mechanism 200 via the refrigerant pipe 300, and the refrigerant 210 that has been cooled to a predetermined low temperature again is cooled with the refrigerator 210 that has risen in temperature compared to the supply start time. A circulation mechanism (not shown) that pumps the refrigerant 20 to the circulation path including the heat insulation pipe 14 and the refrigerant pipe 300, and a cooling tower 215 are provided. A cooling tower 215 is connected to the refrigerator 210 to cool the heat radiation side (high temperature side) of the refrigerator 210 itself. A pump can be suitably used for the circulation mechanism. The cooling mechanism 200 preferably includes a refrigerant discharge valve (not shown) for the refrigerant. When the cooling function is lost, the liquid refrigerant 20 is heated and vaporized, so by opening the refrigerant discharge valve, the vaporized refrigerant 20 is discharged from the circulation path, and the heat insulating pipe 14, the heat insulating container 40, and the refrigerant pipe 300 are discharged. It can be controlled so that the internal pressure does not become excessive.

[冷媒管]
冷媒管300は、超電導ケーブル100に並列して布設され、冷媒20の往路又は復路の一方を構成する。本例では、冷媒管300が冷媒20の復路を構成している。この冷媒管300は、超電導ケーブル100の断熱管14と同様に、二重管構造の真空断熱管が好適に利用できる。冷媒管300の一端側(図4の左側)が冷却機構200に接続され、他端側(図4の右側)が他方の端末150bの断熱容器40に分岐冷媒管53を介して接続されている。ここで、複数条の超電導ケーブルを備える場合、冷媒管を使用せず、いずれかの超電導ケーブルの断熱管を利用して冷媒の循環経路を構成してもよい。
[Refrigerant tube]
The refrigerant pipe 300 is laid in parallel with the superconducting cable 100 and constitutes one of the forward path and the return path of the refrigerant 20. In this example, the refrigerant pipe 300 constitutes the return path of the refrigerant 20. As the refrigerant tube 300, a vacuum heat insulating tube having a double tube structure can be suitably used, as with the heat insulating tube 14 of the superconducting cable 100. One end side (left side in FIG. 4) of the refrigerant pipe 300 is connected to the cooling mechanism 200, and the other end side (right side in FIG. 4) is connected to the heat insulating container 40 of the other terminal 150b via the branch refrigerant pipe 53. . Here, when a plurality of superconducting cables are provided, the refrigerant circulation path may be configured by using a heat insulating pipe of any of the superconducting cables without using the refrigerant pipe.

<システムの運用手順>
超電導ケーブル両端部に上述した端末導体部が設けられた実施形態1に係る超電導ケーブルシステムは、次のように運用する。
<System operation procedure>
The superconducting cable system according to the first embodiment in which the terminal conductors described above are provided at both ends of the superconducting cable is operated as follows.

(1)冷媒の冷却機構200が正常に動作している通常時、断熱管14内に流通する冷媒20により超電導導体層12が超電導状態に維持されることから、導体部10(超電導導体層12)を主たる送電用導体に利用し、超電導ケーブル100を超電導ケーブル線路として運用する。具体的には、各遮断手段33a,33bにおいて、第一電流リード31及び第二電流リード32を接続した状態とし、導体部10及び外部常電導導電部材16と電力機器の接続導体60との間を接続状態にする。   (1) Since the superconducting conductor layer 12 is maintained in the superconducting state by the refrigerant 20 flowing in the heat insulating pipe 14 during normal operation of the cooling mechanism 200 of the refrigerant, the conductor portion 10 (superconducting conductor layer 12 ) Is used as the main power transmission conductor, and the superconducting cable 100 is operated as a superconducting cable line. Specifically, in each blocking means 33a, 33b, the first current lead 31 and the second current lead 32 are connected, and between the conductor 10 and the external normal conducting member 16 and the connection conductor 60 of the power device. Is connected.

(2)冷媒の冷却機構が正常に動作せず、超電導導体層12を超電導状態に維持できない冷却機能喪失時、超電導ケーブルシステムから警報が発信され、系統制御システム側の遮断器が動作して、超電導ケーブル100が送電系統から切り離される。またこのとき、冷却機構200の冷凍機210や循環機構(ポンプ)が停止し、冷媒20の温度が上昇すると、冷媒20が気化すると共に圧力が上昇する。昇温により気化した冷媒20は、断熱容器40に備える放出弁や、冷却機構200に備える冷媒排出バルブを開放することによって循環経路から排出される。   (2) When the cooling mechanism of the refrigerant does not operate normally and the superconducting conductor layer 12 cannot be maintained in the superconducting state and the cooling function is lost, an alarm is issued from the superconducting cable system, and the breaker on the system control system side operates. Superconducting cable 100 is disconnected from the transmission system. At this time, when the refrigerator 210 and the circulation mechanism (pump) of the cooling mechanism 200 are stopped and the temperature of the refrigerant 20 rises, the refrigerant 20 is vaporized and the pressure rises. The refrigerant 20 vaporized by the temperature rise is discharged from the circulation path by opening a discharge valve provided in the heat insulating container 40 and a refrigerant discharge valve provided in the cooling mechanism 200.

超電導ケーブル100の状態を確認し、当該ケーブル100による送電が必要と判断された場合、超電導ケーブル100を常電導ケーブル線路として運用する。具体的には、一方の遮断手段33aにおいて、第一遮断手段34により第一電流リード31を遮断した状態とし、導体部10側を遮断状態にすると共に、第二遮断手段35により第二電流リード32を接続した状態とし、外部常電導導電部材16側を接続状態にする。また、他方の遮断手段33bでは、第一電流リード31及び第二電流リード32を接続した状態とし、導体部10側及び外部常電導導電部材16側を接続状態にする。これにより、導体部10への送電を停止できると共に、外部常電導導電部材16を主たる送電用導体に利用して、外部常電導導電部材16による送電が可能になる。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、導体部10による送電を停止した状態で、外部常電導導電部材16による送電を行う。なお、常電導ケーブル運用時の送電容量は、超電導ケーブル運用時の送電容量に比較して小さくなるが、少しでも電力を供給することで、冷却機能喪失時の貴重な電力として有効に利用できる。   When the state of the superconducting cable 100 is confirmed and it is determined that power transmission by the cable 100 is necessary, the superconducting cable 100 is operated as a normal conducting cable line. Specifically, in one of the blocking means 33a, the first current lead 31 is blocked by the first blocking means 34, the conductor part 10 side is blocked, and the second current lead 31 is blocked by the second blocking means 35. 32 is connected, and the external normal conducting member 16 side is connected. In the other blocking means 33b, the first current lead 31 and the second current lead 32 are connected, and the conductor 10 side and the external normal conducting member 16 side are connected. Thus, power transmission to the conductor portion 10 can be stopped, and power can be transmitted by the external normal conductive member 16 by using the external normal conductive member 16 as a main power transmission conductor. After the operation of the shut-off means is completed, the circuit breaker on the system control system side is returned, and power is transmitted by the external normal conducting member 16 in a state where power transmission by the conductor 10 is stopped. In addition, although the power transmission capacity at the time of normal conducting cable operation becomes small compared with the power transmission capacity at the time of superconducting cable operation, it can be effectively used as valuable power when the cooling function is lost by supplying even a little power.

(3)超電導ケーブル100を常電導ケーブル線路として運用している間に、冷却機構200が復帰したら、復帰した冷却機構200により冷媒20の供給を開始し、冷媒20を循環させる。また、系統制御システム側の遮断器によって一旦送電を停止し、超電導ケーブル100を送電系統から切り離す。超電導ケーブル100が超電導ケーブル線路として所定の機能を満足することを確認し、一方の遮断手段33aの第一遮断手段34を接続状態に切り替え、各遮断手段33a,33bにおいて、導体部10側及び外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、導体部10を主たる送電用導体に利用して、超電導ケーブル100を再度超電導ケーブル線路として運用する。   (3) When the cooling mechanism 200 is restored while the superconducting cable 100 is operated as a normal conducting cable line, supply of the refrigerant 20 is started by the restored cooling mechanism 200 and the refrigerant 20 is circulated. Further, power transmission is temporarily stopped by the circuit breaker on the system control system side, and the superconducting cable 100 is disconnected from the power transmission system. It is confirmed that the superconducting cable 100 satisfies a predetermined function as a superconducting cable line, the first blocking means 34 of one blocking means 33a is switched to the connected state, and each blocking means 33a, 33b is connected to the conductor 10 side and the outside The normal conductive member 16 side is connected. After completion of the operation of the interruption means, the circuit breaker on the system control system side is restored, and the superconducting cable 100 is operated again as a superconducting cable line by using the conductor portion 10 as a main power transmission conductor.

<作用効果>
上記した実施形態1に係る超電導ケーブルシステムによれば、通常時は超電導ケーブル100を超電導ケーブル線路として利用し、冷却機能喪失時にはそのケーブル100を常電導ケーブル線路として利用することができる。冷却機能喪失時に送電用導体に利用する外部常電導導電部材16は断熱管14の外側に設けられているため、既存の常電導ケーブルと同様に、送電により発熱しても放熱が可能であり、送電により発熱しても許容温度の範囲内であれば送電が可能である。そのため、災害時などにおいて、冷却機構200が動作不能であり、かつ予備回線も使用不能な場合などに、緊急避難的に常電導ケーブルとして送電を行うことができ、送電線路に利用することができる。また、冷却機構が復帰するまでの間、導体部10による送電を停止することで、送電による導体部10の発熱に伴う温度上昇を防止し、超電導導体層12の過大な温度上昇を回避することができる。さらに、導体部10の送電を停止することで、短時間であれば断熱管14内の温度上昇を抑制することができるので、冷却機構の復帰後、超電導ケーブル線路として速やかに復旧することができる。
<Effect>
According to the superconducting cable system according to the first embodiment described above, the superconducting cable 100 can be used as a superconducting cable line during normal times, and the cable 100 can be used as a normal conducting cable line when the cooling function is lost. Since the external normal conductive member 16 used for the power transmission conductor when the cooling function is lost is provided outside the heat insulating tube 14, heat can be dissipated even if heat is generated by power transmission, as with the existing normal conductive cable. Even if heat is generated by power transmission, power transmission is possible within the allowable temperature range. Therefore, in the event of a disaster, when the cooling mechanism 200 is inoperable and the standby line cannot be used, power can be transmitted as a normal conducting cable for emergency evacuation and can be used as a power transmission line. . Also, by stopping the power transmission by the conductor 10 until the cooling mechanism is restored, the temperature rise due to the heat generation of the conductor 10 due to the power transmission can be prevented, and the excessive temperature rise of the superconducting conductor layer 12 can be avoided. Can do. Furthermore, by stopping the power transmission of the conductor portion 10, the temperature rise in the heat insulating tube 14 can be suppressed for a short time, so that the superconducting cable line can be quickly restored after the cooling mechanism is restored. .

また、この実施形態1に係る超電導ケーブルシステムでは、冷却機能喪失時、一方の遮断手段33aにおいて、第一遮断手段34により導体部10側を遮断状態にすると共に、他方の遮断手段33bでは、導体部10側を接続状態にしている。そのため、常電導ケーブル運用時に、他方の遮断手段33bでは、導体部10側及び外部常電導導電部材16側が接続された状態となる。よって、導体部と外部常電導導電部材との間に電位差が生じることがなく、絶縁破壊などの主電気絶縁層が損傷することを防止できる。   Further, in the superconducting cable system according to the first embodiment, when the cooling function is lost, the one breaking means 33a causes the conductor section 10 side to be cut off by the first breaking means 34, and the other breaking means 33b The part 10 side is connected. Therefore, when the normal conducting cable is used, the conductor unit 10 side and the external normal conducting member 16 side are connected in the other blocking means 33b. Therefore, a potential difference does not occur between the conductor portion and the external normal conducting member, and damage to the main electrical insulating layer such as dielectric breakdown can be prevented.

さらに、両方の遮断手段33a,34がそれぞれ、導体部側及び外部常電導導電部材側を遮断状態にすることができ、系統制御システム側とは別に、超電導ケーブルシステム側で超電導ケーブル100を送電系統から切り離すことが可能である。   Furthermore, both of the blocking means 33a and 34 can respectively cut off the conductor portion side and the external normal conducting member side, and the superconducting cable 100 is connected to the power transmission system on the superconducting cable system side separately from the system control system side. It is possible to separate from.

上記した実施形態1に係る超電導ケーブルシステムでは、断熱管14の外側に形成された外部常電導導電部材16のみを送電用導体に利用する実施形態を説明した。以下では、冷却機能喪失時に、断熱管14内に収納されている導体部10(フォーマなどの内部常電導導電部材)も送電用導体に利用する場合の実施形態を説明する。図4〜6を参照して以下に説明する実施形態2〜4は、導体部10の放熱を可能にするため、真空断熱管14の断熱性能を低下させる構成を備えることを特徴としている。   In the superconducting cable system according to Embodiment 1 described above, the embodiment in which only the external normal conducting member 16 formed outside the heat insulating tube 14 is used as a power transmission conductor has been described. In the following, an embodiment will be described in which the conductor 10 (internal normal conducting member such as a former) housed in the heat insulating tube 14 is also used as a power transmission conductor when the cooling function is lost. Embodiments 2 to 4 described below with reference to FIGS. 4 to 6 are characterized in that the heat insulating performance of the vacuum heat insulating tube 14 is reduced in order to allow heat dissipation of the conductor portion 10.

(実施形態2)
図5を参照して、実施形態2に係る超電導ケーブルシステムを説明する。このシステムは、真空断熱管14の断熱空間に連通する真空ポンプ410、気体供給源420、真空ポンプ410と気体供給源420の断熱空間に対する連通状態を選択する第一バルブ440及び開閉バルブ470を備える点で、図3に示す実施形態1のシステムと異なる。
(Embodiment 2)
With reference to FIG. 5, the superconducting cable system according to the second embodiment will be described. This system includes a vacuum pump 410 that communicates with the heat insulation space of the vacuum heat insulation pipe 14, a gas supply source 420, a first valve 440 that selects a communication state of the vacuum pump 410 and the gas supply source 420 with respect to the heat insulation space, and an opening / closing valve 470. This is different from the system of the first embodiment shown in FIG.

冷媒の冷却機構200は、通常時、超電導導体層12を冷却する冷媒20を所定温度に冷却し、超電導ケーブル100の断熱管14と冷媒管300とを含む循環経路に冷媒20を圧送する。   The refrigerant cooling mechanism 200 normally cools the refrigerant 20 that cools the superconducting conductor layer 12 to a predetermined temperature, and pumps the refrigerant 20 to a circulation path including the heat insulating pipe 14 and the refrigerant pipe 300 of the superconducting cable 100.

一方、冷却機構200が正常に動作しない冷却機能喪失時には、冷媒20の冷却・循環を行わず、気体供給源420から真空断熱管14の断熱空間に気体を充填し、真空断熱管14の断熱性能を低下させる。そして、導体部10の放熱を可能にして、導体部10の送電による発熱に伴う温度上昇を抑制することで、導体部10(内部常電導導電部材)を送電用導体に利用する。つまり、冷却機能喪失時に、外部常電導導電部材のみを送電用導体に利用して常電導ケーブル線路として運用する上述した実施形態1に比較して、導体部10の内部常電導導電部材も送電用導体に利用する。なお、このときは、各遮断手段33a,33bにおいて、導体部10側及び外部常電導導電部材16側を接続状態にする。   On the other hand, when the cooling function 200 is not functioning properly and the cooling function is lost, the refrigerant 20 is not cooled and circulated, and the heat insulating space of the vacuum heat insulating tube 14 is filled with gas from the gas supply source 420, and the heat insulating performance of the vacuum heat insulating tube 14 Reduce. The conductor portion 10 (internal normal conductive member) is used as a power transmission conductor by enabling the heat radiation of the conductor portion 10 and suppressing the temperature rise caused by the heat generated by the power transmission of the conductor portion 10. That is, when the cooling function is lost, the internal normal conductive member of the conductor portion 10 is also used for power transmission, as compared with the above-described first embodiment in which only the external normal conductive member is used as a normal conductor cable line. Used for conductors. At this time, in each of the blocking means 33a and 33b, the conductor portion 10 side and the external normal conducting member 16 side are connected.

以下、このシステムの各部の構成の詳細を図5に基づいて説明する。   Details of the configuration of each part of this system will be described below with reference to FIG.

[真空ポンプ]
真空ポンプ410は、真空断熱管14の断熱空間を真空引きするポンプである。例えば、冷却機能喪失時に超電導ケーブル100を常電導ケーブル線路として運用する際、断熱空間には気体が充填されて非真空となる。その後、冷却機構200が復帰するなどして、超電導ケーブル線路としての運用が可能になった場合、断熱空間を再度真空に戻すために、この真空ポンプ410が利用される。真空ポンプ410により真空引きして断熱空間を真空に戻せば、超電導ケーブル100を再度超電導ケーブル線路として利用することができる。
[Vacuum pump]
The vacuum pump 410 is a pump that evacuates the heat insulating space of the vacuum heat insulating tube 14. For example, when the superconducting cable 100 is operated as a normal conducting cable line when the cooling function is lost, the heat insulating space is filled with gas and becomes non-vacuum. After that, when the cooling mechanism 200 is restored and the operation as a superconducting cable line becomes possible, the vacuum pump 410 is used to return the heat insulation space to a vacuum again. If the heat insulation space is returned to a vacuum by evacuation by the vacuum pump 410, the superconducting cable 100 can be used again as a superconducting cable line.

[気体供給源]
気体供給源420は、真空断熱管14の断熱空間に供給する熱伝導材料となる気体を収容する。冷却機能喪失時、この気体供給源420は、例えばタンクなどの閉鎖容器でも良いし、単に連通管450(後述)の端部を開口端とし、その開口端につながる大気の開放空間としてもよい。気体供給源420をタンクとした場合、そのタンク内に熱伝導材料となる窒素ガスなどの気体を貯留する。大気の開放空間を気体供給源420とした場合、空気が熱伝導材料となる。断熱管14を再度真空引きすることによって超電導ケーブル線路として復旧させる場合、大気中の水分が断熱空間に侵入することは好ましくなく、含有水分の少ない窒素ガスや乾燥空気を気体供給源420内に収容しておくことが好ましい。また、断熱管14を大気開放する場合、連通管450の途中に大気中の水分を除去する脱気手段(図示略)を設けておくことも有効である。
[Gas supply source]
The gas supply source 420 contains a gas that is a heat conductive material supplied to the heat insulating space of the vacuum heat insulating tube 14. When the cooling function is lost, the gas supply source 420 may be, for example, a closed container such as a tank, or simply an open end of the communication pipe 450 (described later) and an open space of the atmosphere connected to the open end. When the gas supply source 420 is a tank, a gas such as nitrogen gas serving as a heat conduction material is stored in the tank. When the open space of the atmosphere is used as the gas supply source 420, air becomes a heat conductive material. When the superconducting cable line is restored by evacuating the heat insulating tube 14 again, it is not preferable that moisture in the atmosphere enter the heat insulating space, and nitrogen gas or dry air with less water content is contained in the gas supply source 420. It is preferable to keep it. Further, when the heat insulating pipe 14 is opened to the atmosphere, it is also effective to provide a deaeration means (not shown) for removing moisture in the atmosphere in the middle of the communication pipe 450.

[第一バルブ]
第一バルブ440は、真空断熱管14の断熱空間に対し、真空ポンプ410及び気体供給源420を選択的に連通させるバルブである。本例では、断熱空間につながる連通管450(後述)を分岐させ、その一方の分岐管450Lに開閉バルブ440Aを、他方の分岐管450Rに開閉バルブ440Bを設けて、両開閉バルブ440A,440Bにより第一バルブ440を構成している。勿論、2つの開閉バルブ440A,440Bの代わりに、連通管440の分岐箇所に設けた三方弁により第一バルブ440を構成してもよい。さらに、連通管450のうち、断熱空間から分岐箇所までの途中にも元バルブとなる開閉バルブ470を設けている。本例のシステムを超電導ケーブル線路として運用する際は、真空断熱管14は真空封じ切りで運用されるのが通常であり、通常時には開閉バルブ470を閉として真空断熱管14を封じ切り、冷却機能喪失時には開閉バルブ470を開とする。
[First valve]
The first valve 440 is a valve that selectively connects the vacuum pump 410 and the gas supply source 420 to the heat insulation space of the vacuum heat insulation pipe 14. In this example, a communication pipe 450 (described later) connected to the heat insulation space is branched, an opening / closing valve 440A is provided in one branch pipe 450L, and an opening / closing valve 440B is provided in the other branch pipe 450R. The first valve 440 is configured. Of course, the first valve 440 may be constituted by a three-way valve provided at a branch point of the communication pipe 440 instead of the two on-off valves 440A and 440B. In addition, an open / close valve 470 serving as a source valve is provided in the communication pipe 450 midway from the heat insulation space to the branch point. When operating the system of this example as a superconducting cable line, the vacuum insulation tube 14 is usually operated with a vacuum seal. Normally, the on-off valve 470 is closed and the vacuum insulation tube 14 is sealed to provide a cooling function. When lost, the opening / closing valve 470 is opened.

[連通管]
連通管450は、真空断熱管14の断熱空間と真空ポンプ410又は気体供給源420とをつなぐ配管である。本例では、断熱空間から1本の連通管450を引き出し、その連通管450の途中を二股に分岐している。一方の分岐管450Lは真空ポンプ410につながり、他方の分岐管450Rは気体供給源420につながる。
[Communication pipe]
The communication pipe 450 is a pipe connecting the heat insulation space of the vacuum heat insulation pipe 14 and the vacuum pump 410 or the gas supply source 420. In this example, one communication pipe 450 is pulled out from the heat insulating space, and the middle of the communication pipe 450 is branched into two branches. One branch pipe 450L is connected to the vacuum pump 410, and the other branch pipe 450R is connected to the gas supply source 420.

[コンプレッサー]
必要に応じて、気体供給源420と開閉バルブ440Bとの間における分岐管450Rの途中にコンプレッサー460を設けてもよい。このコンプレッサー460により気体を加圧して、速やかに真空断熱管14の断熱空間に気体を充填させることができる。
[compressor]
If necessary, a compressor 460 may be provided in the middle of the branch pipe 450R between the gas supply source 420 and the open / close valve 440B. The compressor 460 can pressurize the gas to quickly fill the heat insulation space of the vacuum heat insulation pipe 14 with the gas.

上記した真空ポンプ410、気体供給源420、第一バルブ440、連通管450及びコンプレッサー460は、超電導ケーブルシステムの建設当初から設置されているか、事後的に設置されるかは問わない。例えば、真空ポンプ410、気体供給源420、第一バルブ440、連通管450及びコンプレッサー460を超電導ケーブルシステムの建設当初から設置しておいてもよいし、超電導ケーブルシステムにこれら部材を取り付けるための取付部を設けておき、冷却機能喪失時に事後的に設置してもよい。或いは、真空断熱管14に短い連通管と開閉バルブ470とを予め接続しておき、これを取付部として、冷却機能喪失時に残りの連通管、真空ポンプ410、気体供給源420及びコンプレッサー460を事後的に接続してもよい。この場合、通常時は、開閉バルブ470を閉として真空断熱管14を封じ切り、その状態で超電導ケーブル線路として運用することができる。なお、真空ポンプ410を超電導ケーブルシステムの建設当初から設置しておくことで、この真空ポンプ410を超電導ケーブルシステム建設時の真空断熱管14の真空引きにも使用することができる。   The vacuum pump 410, the gas supply source 420, the first valve 440, the communication pipe 450, and the compressor 460 described above may be installed from the beginning of the construction of the superconducting cable system or installed afterwards. For example, the vacuum pump 410, the gas supply source 420, the first valve 440, the communication pipe 450, and the compressor 460 may be installed from the beginning of the construction of the superconducting cable system, or mounting for attaching these members to the superconducting cable system. A part may be provided and installed after the cooling function is lost. Alternatively, a short communication pipe and an opening / closing valve 470 are connected in advance to the vacuum heat insulation pipe 14, and this is used as a mounting portion to connect the remaining communication pipe, vacuum pump 410, gas supply source 420 and compressor 460 when the cooling function is lost. May be connected. In this case, normally, the on-off valve 470 is closed and the vacuum heat insulating tube 14 is sealed, and in this state, it can be operated as a superconducting cable line. In addition, by installing the vacuum pump 410 from the beginning of the construction of the superconducting cable system, the vacuum pump 410 can also be used for evacuating the vacuum heat insulating tube 14 when the superconducting cable system is constructed.

真空ポンプ410や気体供給源420は接地電位にある。一方、超電導ケーブル100は常温絶縁型であり、送電線路に利用した際、真空断熱管14が高電位となるため、真空断熱管14と真空ポンプ410及び気体供給源420との間に絶縁継手455を設けている。本例では、連通管450における開閉バルブ470と真空ポンプ410及び気体供給源420との間に絶縁継手455を設けている。   The vacuum pump 410 and the gas supply source 420 are at ground potential. On the other hand, the superconducting cable 100 is a room temperature insulation type, and when used in a power transmission line, the vacuum heat insulating tube 14 is at a high potential, so that an insulating joint 455 is interposed between the vacuum heat insulating tube 14, the vacuum pump 410, and the gas supply source 420. Is provided. In this example, an insulating joint 455 is provided between the open / close valve 470 and the vacuum pump 410 and the gas supply source 420 in the communication pipe 450.

<システムの運用手順>
上述した実施形態2に係る超電導ケーブルシステムは、次のように運用する。
<System operation procedure>
The superconducting cable system according to the second embodiment described above is operated as follows.

(1)冷媒の冷却機構200が正常に動作している通常時、第一バルブ440(開閉バルブ440A,440B)及び開閉バルブ470が閉じられ、真空断熱管14の断熱空間を真空状態に保持する。また、断熱管14内に流通する冷媒20により超電導導体層12が超電導状態に維持されることから、導体部10(超電導導体層12)を主たる送電用導体に利用し、超電導ケーブル100を超電導ケーブル線路として運用する。具体的には、各遮断手段33a,33bにおいて、第一電流リード31及び第二電流リード32を接続した状態とし、導体部10及び外部常電導導電部材16と電力機器の接続導体60との間を接続状態にする。   (1) When the refrigerant cooling mechanism 200 is operating normally, the first valve 440 (open / close valves 440A and 440B) and the open / close valve 470 are closed, and the heat insulating space of the vacuum heat insulating pipe 14 is maintained in a vacuum state. . In addition, since the superconducting conductor layer 12 is maintained in a superconducting state by the refrigerant 20 flowing in the heat insulating pipe 14, the conductor portion 10 (superconducting conductor layer 12) is used as a main power transmission conductor, and the superconducting cable 100 is used as the superconducting cable. Operate as a track. Specifically, in each blocking means 33a, 33b, the first current lead 31 and the second current lead 32 are connected, and between the conductor 10 and the external normal conducting member 16 and the connection conductor 60 of the power device. Is connected.

(2)冷媒の冷却機構200が正常に動作せず、超電導導体層12を超電導状態に維持できない冷却機能喪失時、実施形態1で説明したように、超電導ケーブル100が送電系統から切り離され、また、冷却機構200の冷凍機210や循環機構(ポンプ)が停止し、昇温により気化した冷媒20は循環経路から排出される。昇温に要する時間を短縮するため、窒素ガスを真空断熱管14の内部(冷媒流路)に導入してもよい。排出される冷媒20の温度が所定の温度に上昇したことを確認した後、気体供給源420から真空断熱管14の断熱空間に気体を供給する。具体的には、開閉バルブ440B及び開閉バルブ470を開放する。この開放以前の断熱空間は、真空状態に保持されているため、開閉バルブ440B及び開閉バルブ470の開放により、気体供給源420から断熱空間に気体を自然流入により供給し、断熱空間に熱伝導材料となる気体を充填する。この気体の充填により、真空断熱管14の断熱性能が低下し、断熱管14が伝熱管となる。ここで、冷媒の昇温を早くする別の手段として、気体供給源420から真空断熱管14の断熱空間に気体を少量供給し、断熱管14の断熱性能を若干低下させることも有効である。冷媒がある程度低温の状態で、断熱管14の断熱性能を下げ過ぎると、断熱管14の表面温度が低下して凍結などの問題が生じる可能性があるので、冷媒の温度状況、断熱管14への気体供給量の調整が必要となる。この気体の供給が過剰となった場合、真空ポンプ410で排気することが有効である。   (2) When the cooling function 200 of the refrigerant does not operate normally and the cooling function is lost when the superconducting conductor layer 12 cannot be maintained in the superconducting state, the superconducting cable 100 is disconnected from the power transmission system as described in the first embodiment, and The refrigerator 210 and the circulation mechanism (pump) of the cooling mechanism 200 are stopped, and the refrigerant 20 vaporized by the temperature rise is discharged from the circulation path. Nitrogen gas may be introduced into the vacuum heat insulating tube 14 (refrigerant flow path) in order to shorten the time required for temperature increase. After confirming that the temperature of the discharged refrigerant 20 has risen to a predetermined temperature, gas is supplied from the gas supply source 420 to the heat insulating space of the vacuum heat insulating tube 14. Specifically, the opening / closing valve 440B and the opening / closing valve 470 are opened. Since the heat insulation space before the opening is kept in a vacuum state, by opening the on-off valve 440B and the on-off valve 470, gas is supplied from the gas supply source 420 to the heat insulation space by natural inflow, and the heat conduction material is supplied to the heat insulation space. The gas which becomes becomes. By this gas filling, the heat insulating performance of the vacuum heat insulating tube 14 is lowered, and the heat insulating tube 14 becomes a heat transfer tube. Here, as another means for quickly increasing the temperature of the refrigerant, it is also effective to supply a small amount of gas from the gas supply source 420 to the heat insulation space of the vacuum heat insulation pipe 14 to slightly reduce the heat insulation performance of the heat insulation pipe 14. If the heat insulation performance of the heat insulating tube 14 is lowered too much when the refrigerant is at a low temperature to some extent, the surface temperature of the heat insulating tube 14 may decrease, causing problems such as freezing. It is necessary to adjust the gas supply amount. When this gas supply becomes excessive, it is effective to evacuate with the vacuum pump 410.

また、真空断熱管14の断熱性能が低下するまでの間、実施形態1で説明したように、一方の遮断手段33aの第一遮断手段34を遮断状態に切り替え、導体部10側の接続を遮断すると共に、一方の遮断手段33aの第二遮断手段35及び他方の遮断手段33bを接続状態にして、外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、導体部10による送電を停止した状態で、外部常電導導電部材16による送電を行い、超電導ケーブル100を常電導ケーブル線路として運用する。   In addition, until the heat insulation performance of the vacuum heat insulation pipe 14 is lowered, as described in the first embodiment, the first cut-off means 34 of one of the cut-off means 33a is switched to the cut-off state to cut off the connection on the conductor 10 side. At the same time, the second blocking means 35 and the other blocking means 33b of one blocking means 33a are connected, and the external normal conducting member 16 side is connected. After the operation of the breaker is completed, the breaker on the system control system side is restored, and the power transmission by the conductor 10 is stopped, power is transmitted by the external normal conductive member 16, and the superconducting cable 100 is operated as a normal conductive cable line. To do.

(3)真空断熱容器14の断熱空間に熱伝導材料となる気体が充填され、真空断熱管14の断熱性能が低下し、導体部10の放熱が可能になったことを確認したら、系統制御システム側の遮断器によって一旦送電を停止し、超電導ケーブル100を送電系統から切り離す。そして、一方の遮断手段33aの第一遮断手段34を接続状態に切り替え、各遮断手段33a,33bにおいて、導体部10側及び外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、外部常電導導電部材16だけでなく、導体部10(内部常電導導電部材)も送電用導体に利用して送電を行う。この場合、外部常電導導電部材のみを送電用導体に利用して常電導ケーブル線路として運用する場合に比較して、導体部10(内部常電導導電部材)も送電用導体に利用することで、常電導ケーブル運用時の送電容量を上げることができる。   (3) After confirming that the heat insulation space of the vacuum heat insulation container 14 is filled with the gas as the heat conduction material, the heat insulation performance of the vacuum heat insulation pipe 14 is reduced, and the heat radiation of the conductor 10 is enabled, the system control system Power transmission is temporarily stopped by the circuit breaker on the side, and the superconducting cable 100 is disconnected from the power transmission system. Then, the first blocking means 34 of the one blocking means 33a is switched to the connected state, and the conductor 10 side and the external normal conducting member 16 side are connected to each of the blocking means 33a and 33b. After the operation of the shut-off means is completed, the circuit breaker on the system control system side is restored, and not only the external normal conductive member 16 but also the conductor portion 10 (internal normal conductive member) is used as a power transmission conductor for power transmission. In this case, by using only the external normal conductive member for the power transmission conductor and operating as a normal conductive cable line, the conductor 10 (internal normal conductive member) is also used for the power transmission conductor. It is possible to increase the transmission capacity during normal conductive cable operation.

(4)超電導ケーブル100を、導体部10(内部常電導導電部材)も送電用導体に利用して常電導ケーブル線路として運用している間に、冷却機構が復帰したら、一旦送電を停止し、超電導ケーブル100を送電系統から切り離す。そして、一方の遮断手段33aの第一遮断手段34を遮断状態に切り替え、導体部10側の接続を遮断すると共に、一方の遮断手段33aの第二遮断手段35及び他方の遮断手段33bを接続状態にして、外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、導体部10による送電を停止した状態で、外部常電導導電部材16による送電を行う。また、導体部10による送電を停止した後、開閉バルブ440Bを閉じて気体供給原420と真空断熱管14の断熱空間との連通を遮断し、さらに開閉バルブ440Aを開ける。そして、真空ポンプ410で真空断熱管14の断熱空間内の気体を排気して、断熱空間を所定の真空度まで真空引きする。   (4) While the superconducting cable 100 is operated as a normal conducting cable line using the conductor part 10 (internal normal conducting member) as a conducting conductor, once the cooling mechanism is restored, power transmission is stopped once. Disconnect superconducting cable 100 from the transmission system. Then, the first blocking means 34 of one blocking means 33a is switched to a blocking state, the connection on the conductor part 10 side is blocked, and the second blocking means 35 of one blocking means 33a and the other blocking means 33b are connected. Thus, the external normal conducting member 16 side is brought into a connected state. After the operation of the shut-off means is completed, the circuit breaker on the system control system side is returned, and power is transmitted by the external normal conducting member 16 in a state where power transmission by the conductor 10 is stopped. Further, after the power transmission by the conductor portion 10 is stopped, the open / close valve 440B is closed to cut off the communication between the gas supply source 420 and the heat insulating space of the vacuum heat insulating pipe 14, and the open / close valve 440A is further opened. Then, the gas in the heat insulating space of the vacuum heat insulating tube 14 is exhausted by the vacuum pump 410, and the heat insulating space is evacuated to a predetermined degree of vacuum.

(5)真空断熱管14の断熱空間が所定の真空度に達したら、開閉バルブ440A及び開閉バルブ470を閉じ、復帰した冷却機構200により冷媒20の供給を開始し、冷媒20を循環させる。また、系統制御システム側の遮断器によって一旦送電を停止し、超電導ケーブル100を送電系統から切り離す。超電導ケーブル100が超電導ケーブル線路として所定の機能を満足することを確認し、一方の遮断手段33aの第一遮断手段34を接続状態に切り替え、各遮断手段33a,33bにおいて、導体部10側及び外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、導体部10を主たる送電用導体に利用して、超電導ケーブル100を再度超電導ケーブル線路として運用する。   (5) When the heat insulation space of the vacuum heat insulation pipe 14 reaches a predetermined degree of vacuum, the opening / closing valve 440A and the opening / closing valve 470 are closed, and supply of the refrigerant 20 is started by the returned cooling mechanism 200, and the refrigerant 20 is circulated. Further, power transmission is temporarily stopped by the circuit breaker on the system control system side, and the superconducting cable 100 is disconnected from the power transmission system. It is confirmed that the superconducting cable 100 satisfies a predetermined function as a superconducting cable line, the first blocking means 34 of one blocking means 33a is switched to the connected state, and each blocking means 33a, 33b is connected to the conductor 10 side and the outside The normal conductive member 16 side is connected. After completion of the operation of the interruption means, the circuit breaker on the system control system side is restored, and the superconducting cable 100 is operated again as a superconducting cable line by using the conductor portion 10 as a main power transmission conductor.

<作用効果>
上記した実施形態2に係る超電導ケーブルシステムによれば、実施形態1の作用効果に加えて、次の作用効果を奏する。この構成によれば、冷却機能喪失時には真空断熱管14の断熱性能を低下させ、通常時の真空断熱管14を伝熱管とすることができる。よって、超電導ケーブル100を常電導ケーブル線路として運用する際、導体部10(内部常電導導電部材)も送電用導体に利用しても、導体部10の発熱を放熱して、導体部10の温度上昇を抑制することができる。そのため、導体部10の温度上昇を回避しつつ、常電導ケーブル運用時の送電容量を上げることができる。
<Effect>
According to the superconducting cable system according to the second embodiment described above, the following functions and effects are provided in addition to the functions and effects of the first embodiment. According to this configuration, when the cooling function is lost, the heat insulating performance of the vacuum heat insulating tube 14 is lowered, and the normal vacuum heat insulating tube 14 can be used as a heat transfer tube. Therefore, when the superconducting cable 100 is operated as a normal conductive cable line, even if the conductor 10 (internal normal conductive member) is also used as a power transmission conductor, the heat of the conductor 10 is dissipated and the temperature of the conductor 10 is The rise can be suppressed. Therefore, it is possible to increase the power transmission capacity when operating the normal conducting cable while avoiding the temperature rise of the conductor portion 10.

また、真空ポンプ410と気体供給源420とを選択的に真空断熱管14の断熱空間に連通することで、冷却機構200の復帰後、真空ポンプ410で真空断熱管14の断熱空間を再度真空に戻し、超電導ケーブル100を再度超電導ケーブル線路として運用することができる。特に、真空断熱管14の断熱空間や冷媒流路に気体を導入することで、冷却機能喪失時のケーブルの昇温を効率的に行うことができる。   Further, by selectively communicating the vacuum pump 410 and the gas supply source 420 to the heat insulation space of the vacuum heat insulation pipe 14, the vacuum heat insulation pipe 14 is again evacuated by the vacuum pump 410 after the cooling mechanism 200 is restored. Returning, the superconducting cable 100 can be operated again as a superconducting cable line. In particular, by introducing gas into the heat insulating space or the refrigerant flow path of the vacuum heat insulating tube 14, the temperature of the cable can be efficiently increased when the cooling function is lost.

さらに、第一遮断手段34により第一電流リード31を選択的に接続・遮断して導体部10への送電を制御することで、冷却機能喪失時に真空断熱管14の断熱性能が確実に低下するまでの間、並びに、冷却機構復帰時に真空ポンプ410で所定の真空度まで真空引きする間は、導体部10による送電を停止した状態で、外部常電導導電部材16による送電を行うことができる。   Furthermore, by selectively connecting / cutting off the first current lead 31 by the first cut-off means 34 and controlling the power transmission to the conductor portion 10, the heat insulation performance of the vacuum heat insulation pipe 14 is reliably lowered when the cooling function is lost. Power transmission by the external normal conducting member 16 can be performed in a state where power transmission by the conductor portion 10 is stopped while the vacuum pump 410 is evacuated to a predetermined vacuum degree when the cooling mechanism is restored.

上記した実施形態2のシステムでは、真空断熱管14の断熱空間に真空ポンプ410及び気体供給源420を連通管450を介して接続し、真空断熱管14の断熱空間に気体を供給したり、真空断熱管14の断熱空間を真空引きする場合を説明した。さらに、真空断熱容器40の断熱空間にも、真空断熱管14と同様に、連通管を介して真空ポンプ410及び気体供給源420を接続してもよい。このように構成することで、真空断熱容器40の断熱空間にも気体を供給して断熱容器40の断熱性能を低下させ、断熱容器40内の導体部10の発熱を放熱することができる。また、真空断熱容器40の断熱空間も真空引きして断熱空間を再度真空に戻し、再度超電導ケーブル線路として利用することができる。   In the system of the second embodiment described above, the vacuum pump 410 and the gas supply source 420 are connected to the heat insulation space of the vacuum heat insulation pipe 14 via the communication pipe 450 to supply gas to the heat insulation space of the vacuum heat insulation pipe 14 or vacuum. The case where the heat insulation space of the heat insulation pipe 14 is evacuated has been described. Further, the vacuum pump 410 and the gas supply source 420 may be connected to the heat insulation space of the vacuum heat insulation container 40 through the communication pipe as well as the vacuum heat insulation pipe 14. With this configuration, gas can also be supplied to the heat insulating space of the vacuum heat insulating container 40 to reduce the heat insulating performance of the heat insulating container 40, and heat generated by the conductor 10 in the heat insulating container 40 can be radiated. Also, the heat insulating space of the vacuum heat insulating container 40 can be evacuated to return the heat insulating space to a vacuum again, and can be used again as a superconducting cable line.

なお、天災などの不測の事態により、冷媒の冷却機構200が正常に動作しなくなった場合、超電導ケーブル100の状態の確認や、必要に応じて超電導ケーブルを改修する必要がある。そこで、真空ポンプ410や気体供給源420などが超電導ケーブルシステムの建設当初から設置されていない場合、この期間を活用して、事後的に設置しても、問題は少ない。むしろ、通常時(超電導ケーブル運用時)に高電圧となる真空断熱管40に連通管450などを接続しておく方が危険な場合もあり、安全面から送電を停止した状態で、事後的に設置することが好ましい。   If the refrigerant cooling mechanism 200 does not operate normally due to an unexpected situation such as a natural disaster, it is necessary to check the state of the superconducting cable 100 and to repair the superconducting cable as necessary. Therefore, if the vacuum pump 410, the gas supply source 420, and the like have not been installed since the beginning of the construction of the superconducting cable system, there are few problems even if they are installed later using this period. Rather, it may be more dangerous to connect the communication pipe 450 etc. to the vacuum insulation pipe 40, which is at high voltage during normal operation (when superconducting cable is in operation). It is preferable to install.

(実施形態3)
次に、冷却機能喪失時に、超電導ケーブルの真空断熱管の断熱空間に液体を充填して、超電導ケーブルを常電導ケーブル線路として運用する実施形態3に係る超電導ケーブルシステムを図6に基づいて説明する。このシステムの基本的な構成は、図5に示す実施形態2と共通であるため、主に相違点を説明する。このシステムは、熱伝導材料となる液体を貯留する液体供給源520と、この液体供給源520から真空断熱管14の断熱空間に液体を供給する供給管522と、真空断熱管14の断熱空間から液体を排出する排出管524と、液体供給源520と真空断熱管14の断熱空間とを連通・遮断する第二バルブ526とを備える。
(Embodiment 3)
Next, a superconducting cable system according to Embodiment 3 in which the heat insulating space of the vacuum heat insulating tube of the superconducting cable is filled with liquid when the cooling function is lost and the superconducting cable is operated as a normal conducting cable line will be described with reference to FIG. . Since the basic configuration of this system is the same as that of the second embodiment shown in FIG. 5, differences will be mainly described. This system includes a liquid supply source 520 that stores a liquid serving as a heat conduction material, a supply pipe 522 that supplies liquid from the liquid supply source 520 to the heat insulation space of the vacuum heat insulation pipe 14, and a heat insulation space of the vacuum heat insulation pipe 14. A discharge pipe 524 that discharges the liquid, and a second valve 526 that communicates and blocks the liquid supply source 520 and the heat insulation space of the vacuum heat insulation pipe 14 are provided.

[液体供給源]
液体供給源520は、真空断熱管14の断熱空間に供給する熱伝導材料となる液体を貯留する。通常、タンクが液体供給源520として好適に利用できる。液体の具体例としては、安価で入手が容易な水が利用できる。本例では、この液体供給源520にポンプ528(圧送手段)を併設している。このポンプ528は、液体を加圧して断熱空間に圧送する。さらに、必要に応じて、液体供給源520には放熱機構(図示略)を設けてもよい。放熱機構は、排出管524から液体供給源520に戻された液体を再度冷却するもので、液体供給源520を構成するタンクの外周に放熱フィンを設けたり、ラジエータなどの構成が利用できる。
[Liquid supply source]
The liquid supply source 520 stores a liquid serving as a heat conductive material supplied to the heat insulating space of the vacuum heat insulating tube. In general, a tank can be suitably used as the liquid supply source 520. As a specific example of the liquid, inexpensive and easily available water can be used. In this example, the liquid supply source 520 is provided with a pump 528 (pressure feeding means). The pump 528 pressurizes the liquid and pumps it to the heat insulating space. Furthermore, the liquid supply source 520 may be provided with a heat dissipation mechanism (not shown) as necessary. The heat dissipating mechanism cools the liquid returned from the discharge pipe 524 to the liquid supply source 520 again. A heat dissipating fin can be provided on the outer periphery of the tank constituting the liquid supply source 520, or a structure such as a radiator can be used.

[供給管・排出管]
液体供給源520と真空断熱管14の断熱空間とは、供給管522及び排出管524を介して連通されている。この液体供給源520、供給管522、真空断熱管14及び排出管524を流通経路として冷媒20を循環させる。本例では、真空断熱管14の一端側(図6の左側)に供給管522を接続し、断熱管14の他端側(図6の右側)に排出管524を接続している。
[Supply and discharge pipes]
The liquid supply source 520 and the heat insulation space of the vacuum heat insulation pipe 14 are communicated with each other via a supply pipe 522 and a discharge pipe 524. The refrigerant 20 is circulated using the liquid supply source 520, the supply pipe 522, the vacuum heat insulation pipe 14 and the discharge pipe 524 as distribution channels. In this example, a supply pipe 522 is connected to one end side (the left side in FIG. 6) of the vacuum heat insulating pipe 14, and a discharge pipe 524 is connected to the other end side (the right side in FIG. 6).

[第二バルブ]
上記した供給管522及び排出管524の各々には、開閉バルブ526,526が設けられ、その両開閉バルブで第二バルブ526が構成される。この第二バルブ526を開放することで、液体供給源520から液体を真空断熱管14の断熱空間に供給でき、同バルブ526、526を閉じることで、液体供給源520と真空断熱管14の断熱空間とを遮断する。
[Second valve]
Each of the supply pipe 522 and the discharge pipe 524 is provided with opening / closing valves 526, 526, and the both opening / closing valves constitute a second valve 526. By opening the second valve 526, liquid can be supplied from the liquid supply source 520 to the heat insulation space of the vacuum heat insulation pipe 14, and by closing the valves 526, 526, the liquid supply source 520 and the vacuum heat insulation pipe 14 are insulated. Shut off the space.

実施形態3のシステムにおいても、実施形態2と同様に、上記した液体供給源520、供給管522、排出管524及び第二バルブ526は、超電導ケーブルシステムの建設当初から設置されているか、事後的に設置されるかは問わない。例えば、液体供給源520などの構成部材を超電導ケーブルシステムの建設当初から設置しておいてもよいし、超電導ケーブルシステムにこれら部材を取り付けるための取付部を設けておき、冷却機能喪失時に事後的に設置してもよい。或いは、真空断熱管14に短い供給管522及び排出管524と第二バルブ526とを予め接続しておき、これを取付部として、冷却機能喪失時に残りの供給管522及び排出管524や液体供給源520などを事後的に接続してもよい。   Also in the system of the third embodiment, as in the second embodiment, the liquid supply source 520, the supply pipe 522, the discharge pipe 524, and the second valve 526 are installed from the beginning of the construction of the superconducting cable system. It doesn't matter whether it is installed in. For example, components such as the liquid supply source 520 may be installed from the beginning of the construction of the superconducting cable system, or a mounting portion for attaching these members to the superconducting cable system is provided so that the subsequent function when the cooling function is lost. You may install in. Alternatively, the short supply pipe 522 and the discharge pipe 524 and the second valve 526 are connected in advance to the vacuum heat insulation pipe 14, and this is used as a mounting portion to supply the remaining supply pipe 522 and discharge pipe 524 and liquid supply when the cooling function is lost. Source 520 or the like may be connected after the fact.

液体供給源520(ポンプ528を含む)は接地電位にある。一方、超電導ケーブル100は常温絶縁型であり、送電線路に利用した際、真空断熱管14が高電位となるため、真空断熱管14と液体供給源520との間に絶縁継手455を設けている。本例では、供給管522及び排出管524における開閉バルブ526,526と液体供給源520との間に絶縁継手455を設けている。   Liquid source 520 (including pump 528) is at ground potential. On the other hand, the superconducting cable 100 is a room temperature insulation type, and since the vacuum heat insulating tube 14 becomes a high potential when used in a transmission line, an insulating joint 455 is provided between the vacuum heat insulating tube 14 and the liquid supply source 520. . In this example, an insulating joint 455 is provided between the open / close valves 526 and 526 and the liquid supply source 520 in the supply pipe 522 and the discharge pipe 524.

<システムの運用手順>
(1)通常時、超電導ケーブル100を超電導ケーブル線路として運用する点は、上述した実施形態2と同様である。その際、第二バルブ526(開閉バルブ526,526)は閉じられている。
<System operation procedure>
(1) The point that the superconducting cable 100 is operated as a superconducting cable line at the normal time is the same as that of the second embodiment described above. At that time, the second valve 526 (open / close valves 526, 526) is closed.

(2)冷却機能喪失時、実施形態2と同様に、超電導ケーブル100が送電系統から切り離され、また、冷却機構200の冷凍機210や循環機構(ポンプ)が停止し、昇温により気化した冷媒20は循環経路から排出される。気化した冷媒20が外部に排出された後、第二バルブ526(開閉バルブ526,526)を開いて、液体供給源520から真空断熱管14の断熱空間に水を導入する。真空断熱管14の断熱空間に水が充填されることにより、真空断熱管14の断熱性能が低下し、断熱管14が伝熱管となる。   (2) When the cooling function is lost, as in the second embodiment, the superconducting cable 100 is disconnected from the power transmission system, the refrigerator 210 and the circulation mechanism (pump) of the cooling mechanism 200 are stopped, and the refrigerant is vaporized by the temperature rise. 20 is discharged from the circulation path. After the vaporized refrigerant 20 is discharged to the outside, the second valve 526 (open / close valves 526, 526) is opened, and water is introduced from the liquid supply source 520 into the heat insulation space of the vacuum heat insulation pipe. By filling the heat insulating space of the vacuum heat insulating tube 14 with water, the heat insulating performance of the vacuum heat insulating tube 14 is lowered, and the heat insulating tube 14 becomes a heat transfer tube.

また、真空断熱管14の断熱性能が低下するまでの間、実施形態2と同様に、一方の遮断手段33aの第一遮断手段34を遮断状態に切り替え、導体部10側の接続を遮断すると共に、一方の遮断手段33aの第二遮断手段35及び他方の遮断手段33bを接続状態にして、外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、導体部10による送電を停止した状態で、外部常電導導電部材16による送電を行い、超電導ケーブル100を常電導ケーブル線路として運用する。   Further, until the heat insulating performance of the vacuum heat insulating tube 14 is lowered, the first blocking means 34 of one blocking means 33a is switched to the blocking state, and the connection on the conductor portion 10 side is blocked as in the second embodiment. The second blocking means 35 and the other blocking means 33b of one blocking means 33a are connected, and the external normal conducting member 16 side is connected. After the operation of the breaker is completed, the breaker on the system control system side is restored, and the power transmission by the conductor 10 is stopped, power is transmitted by the external normal conductive member 16, and the superconducting cable 100 is operated as a normal conductive cable line. To do.

(3)真空断熱管14の断熱性能が低下し、導体部10の放熱が可能になったことを確認したら、系統制御システム側の遮断器によって一旦送電を停止し、超電導ケーブル100を送電系統から切り離す。そして、一方の遮断手段33aの第一遮断手段34を接続状態に切り替え、各遮断手段33a,33bにおいて、導体部10側及び外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、外部常電導導電部材16だけでなく、導体部10(内部常電導導電部材)も送電用導体に利用して送電を行う。このとき、真空断熱管14の断熱空間に液体を循環させ、断熱管14を冷却することで、送電による導体部10(内部常電導導電部材)の発熱に伴う温度上昇を効果的に抑制することもできる。   (3) After confirming that the heat insulation performance of the vacuum heat insulating tube 14 is reduced and the heat radiation of the conductor 10 is possible, the power transmission is temporarily stopped by the circuit breaker on the system control system side, and the superconducting cable 100 is disconnected from the power transmission system. Separate. Then, the first blocking means 34 of the one blocking means 33a is switched to the connected state, and the conductor 10 side and the external normal conducting member 16 side are connected to each of the blocking means 33a and 33b. After the operation of the shut-off means is completed, the circuit breaker on the system control system side is restored, and not only the external normal conductive member 16 but also the conductor portion 10 (internal normal conductive member) is used as a power transmission conductor for power transmission. At this time, by circulating a liquid in the heat insulation space of the vacuum heat insulation pipe 14 and cooling the heat insulation pipe 14, the temperature rise accompanying heat generation of the conductor 10 (internal normal conductive member) due to power transmission can be effectively suppressed. You can also.

<作用効果>
上記した実施形態3に係る超電導ケーブルシステムでも、実施形態2と同様に、冷却機能喪失時には真空断熱管14の断熱性能を低下させることができる。よって、超電導ケーブル100を常電導ケーブル線路として運用する際、導体部10(内部常電導導電部材)も送電用導体に利用しても、導体部10の発熱を放熱して、導体部10の温度上昇を抑制することができる。特に、真空断熱管14の断熱空間に水を循環させることで、常電導ケーブル運用時の導体部10(内部常電導導電部材)の発熱に伴う温度上昇を効果的に抑制することもできる。
<Effect>
Even in the superconducting cable system according to the third embodiment described above, as in the second embodiment, the heat insulation performance of the vacuum heat insulation tube 14 can be lowered when the cooling function is lost. Therefore, when the superconducting cable 100 is operated as a normal conductive cable line, even if the conductor 10 (internal normal conductive member) is also used as a power transmission conductor, the heat of the conductor 10 is dissipated and the temperature of the conductor 10 is The rise can be suppressed. In particular, by circulating water in the heat insulating space of the vacuum heat insulating tube 14, it is possible to effectively suppress the temperature rise accompanying heat generation of the conductor 10 (internal normal conductive member) during normal conductive cable operation.

上記した実施形態3のシステムでは、真空断熱管14の断熱空間に液体供給源520を供給管522及び排出管524を介して接続し、真空断熱管14の断熱空間に水を供給する場合を説明した。さらに、真空断熱容器40の断熱空間にも、真空断熱管14と同様に、供給管522及び排出管524を介して液体供給源520を接続してもよい。このように構成することで、真空断熱容器40の断熱空間にも液体を供給して断熱容器40の断熱性能を低下させ、断熱容器40内の導体部10の発熱を放熱することができる。   In the system of the third embodiment described above, the case where the liquid supply source 520 is connected to the heat insulation space of the vacuum heat insulation pipe 14 via the supply pipe 522 and the discharge pipe 524 and water is supplied to the heat insulation space of the vacuum heat insulation pipe 14 will be described. did. Further, the liquid supply source 520 may be connected to the heat insulation space of the vacuum heat insulation container 40 through the supply pipe 522 and the discharge pipe 524 in the same manner as the vacuum heat insulation pipe 14. With this configuration, liquid can be supplied also to the heat insulating space of the vacuum heat insulating container 40 to reduce the heat insulating performance of the heat insulating container 40, and heat generated by the conductor portion 10 in the heat insulating container 40 can be radiated.

(実施形態4)
次に、冷却機能喪失時に、真空断熱管の冷媒流路内の冷媒を気化させ、その気化冷媒を真空断熱管の断熱空間に充填して、超電導ケーブルを常電導ケーブル線路として運用する実施形態4に係る超電導ケーブルシステムを図7に基づいて説明する。このシステムの基本的な構成は、図5に示す実施形態2と共通であるため、主に相違点を説明する。このシステムは、真空断熱管14の冷媒流路と断熱空間とを連通させる連通管610、放圧弁620、熱交換部630及び第三バルブ640を備える。
(Embodiment 4)
Next, when the cooling function is lost, the refrigerant in the refrigerant flow path of the vacuum heat insulation pipe is vaporized, the vaporized refrigerant is filled in the heat insulation space of the vacuum heat insulation pipe, and the superconducting cable is operated as a normal conductive cable line. A superconducting cable system will be described with reference to FIG. Since the basic configuration of this system is the same as that of the second embodiment shown in FIG. 5, differences will be mainly described. This system includes a communication pipe 610, a pressure relief valve 620, a heat exchange unit 630, and a third valve 640 that allow the refrigerant flow path of the vacuum heat insulation pipe 14 to communicate with the heat insulation space.

[連通管]
連通管610は、真空断熱管14の冷媒流路と断熱空間とを連通する配管である。冷却機能喪失時、冷却機構200が正常に動作しないため、冷媒20の温度が上昇し、液体の冷媒20は気化する。連通管610は、気化した冷媒20を真空断熱管14の冷媒流路から断熱空間に導入させる。
[Communication pipe]
The communication pipe 610 is a pipe that connects the refrigerant flow path of the vacuum heat insulation pipe 14 and the heat insulation space. When the cooling function is lost, the cooling mechanism 200 does not operate normally, so the temperature of the refrigerant 20 rises and the liquid refrigerant 20 vaporizes. The communication pipe 610 introduces the vaporized refrigerant 20 from the refrigerant flow path of the vacuum heat insulation pipe 14 into the heat insulation space.

[放圧弁]
上記した連通管610の途中には、放圧弁620が設けられている。冷却機能喪失時、冷媒20は気化する際に急激な体積膨張を伴うため、放圧弁620を開放することで、連通管610内の圧力が過大にならにように制御することができる。
[Relief valve]
In the middle of the communication pipe 610 described above, a pressure release valve 620 is provided. When the cooling function is lost, the refrigerant 20 undergoes rapid volume expansion when it is vaporized, so that the pressure in the communication pipe 610 can be controlled to be excessive by opening the pressure release valve 620.

[熱交換部]
上記した連通管610の途中には、熱交換部630も設けられている。冷媒20は気化しても相当な低温である。例えば液体窒素の場合、1気圧では約77K(-196℃)で気化して窒素ガスになるが、気化した窒素ガスも極低温の気体である。このような低温の気化冷媒が直ちに真空断熱管14の断熱空間に導入されると、断熱管14が急激に冷却され、断熱管14に近接する他の部材に対して悪影響を及ぼす虞がある。そのため、気化冷媒を熱交換部630で昇温してから断熱空間に導入することで、上記の悪影響を受けることを防止できる。熱交換部630の具体的な構成としては、連通管610の途中に気化した冷媒20を貯留できる適宜な容器を設けることが挙げられる。この容器はフィンを設けるなどして外気との接触面積を増やすことで、気化した冷媒20の昇温をより効率的に行うことができる。或いは、連通管610を長くすることも熱交換部630として利用できる。
[Heat exchange part]
A heat exchange unit 630 is also provided in the middle of the communication pipe 610 described above. Even if the refrigerant 20 is vaporized, it is at a considerably low temperature. For example, in the case of liquid nitrogen, it is vaporized at about 77 K (-196 ° C.) at 1 atm to become nitrogen gas, but the vaporized nitrogen gas is also a cryogenic gas. If such a low-temperature vaporized refrigerant is immediately introduced into the heat insulating space of the vacuum heat insulating tube 14, the heat insulating tube 14 is rapidly cooled, and there is a possibility that other members close to the heat insulating tube 14 may be adversely affected. Therefore, the adverse effect of the above can be prevented by introducing the vaporized refrigerant into the heat insulating space after raising the temperature in the heat exchanging section 630. A specific configuration of the heat exchange unit 630 includes providing an appropriate container that can store the vaporized refrigerant 20 in the middle of the communication pipe 610. This container can increase the temperature of the vaporized refrigerant 20 more efficiently by increasing the contact area with the outside air by providing fins or the like. Alternatively, making the communication pipe 610 longer can also be used as the heat exchange unit 630.

[第三バルブ]
さらに、連通管610の途中には、第三バルブ640が設けられている。本例では、熱交換部630と真空断熱管14の断熱空間との間の連通管610の途中、並びに、熱交換部630と真空断熱管14の冷媒流路との間の連通管610の途中に、開閉バルブ640,640がそれぞれ設けられ、その両開閉バルブで第三バルブ640が構成される。通常時、真空断熱管14の断熱空間は真空であるため、この第三バルブ640を開放すれば、気化した冷媒20が真空断熱管14の断熱空間に導入される。本例では、熱交換部630と真空断熱管14の冷媒流路との間の連通管610の途中に開閉バルブ640を設けるようにしているが、この開閉バルブは省略してもよい。
[Third valve]
Further, a third valve 640 is provided in the middle of the communication pipe 610. In this example, in the middle of the communication pipe 610 between the heat exchange section 630 and the heat insulation space of the vacuum heat insulation pipe 14, and in the middle of the communication pipe 610 between the heat exchange section 630 and the refrigerant flow path of the vacuum heat insulation pipe 14. In addition, on-off valves 640 and 640 are respectively provided, and a third valve 640 is constituted by both the on-off valves. Since the heat insulating space of the vacuum heat insulating tube 14 is normally vacuum, when the third valve 640 is opened, the vaporized refrigerant 20 is introduced into the heat insulating space of the vacuum heat insulating tube 14. In this example, the opening / closing valve 640 is provided in the middle of the communication pipe 610 between the heat exchange unit 630 and the refrigerant flow path of the vacuum heat insulating pipe 14, but this opening / closing valve may be omitted.

実施形態4のシステムにおいても、実施形態2と同様に、上記した連通管610、放圧弁620、熱交換部630及び第三バルブ640は、超電導ケーブルシステムの建設当初から設置されているか、事後的に設置されるかは問わない。例えば、熱交換部630などの構成部材を超電導ケーブルシステムの建設当初から設置しておいてもよいし、超電導ケーブルシステムにこれら部材を取り付けるための取付部を設けておき、冷却機能喪失時に事後的に設置してもよい。或いは、真空断熱管14に連通管610の一部と第三バルブ640とを予め接続しておき、これを取付部として、冷却機能喪失時に残りの連通管や熱交換部630などを事後的に接続してもよい。   Also in the system of the fourth embodiment, as in the second embodiment, the communication pipe 610, the pressure release valve 620, the heat exchange unit 630, and the third valve 640 are installed from the beginning of the construction of the superconducting cable system. It doesn't matter whether it is installed in. For example, components such as the heat exchanging unit 630 may be installed from the beginning of the construction of the superconducting cable system, or a mounting part for attaching these members to the superconducting cable system is provided so that the ex post facto when the cooling function is lost. You may install in. Alternatively, a part of the communication pipe 610 and the third valve 640 are connected in advance to the vacuum heat insulating pipe 14, and this is used as a mounting part, so that the remaining communication pipe, heat exchange part 630, etc. can be used after the cooling function is lost. You may connect.

熱交換部630は接地電位にあることから、実施形態2と同様に、真空断熱管14と熱交換部630との間に絶縁継手455を設けている。本例では、連通管610における開閉バルブ640,640と熱交換部630との間に絶縁継手455を設けている。   Since the heat exchanging unit 630 is at the ground potential, an insulating joint 455 is provided between the vacuum heat insulating tube 14 and the heat exchanging unit 630 as in the second embodiment. In this example, an insulating joint 455 is provided between the open / close valves 640 and 640 and the heat exchange unit 630 in the communication pipe 610.

<システムの運用手順>
(1)通常時、超電導ケーブル100を超電導ケーブル線路として運用する点は、上述した実施形態2と同様である。その際、第三バルブ640は閉じられている。
<System operation procedure>
(1) The point that the superconducting cable 100 is operated as a superconducting cable line at the normal time is the same as that of the second embodiment described above. At that time, the third valve 640 is closed.

(2)冷却機能喪失時、実施形態2と同様に、超電導ケーブル100が送電系統から切り離され、また、冷却機構200の冷凍機210や循環機構(ポンプ)が停止し、冷媒20の温度が上昇する。液体冷媒20が昇温して気化すると、第三バルブ640を開放して、真空断熱管14の冷媒流路から連通管610を介して真空断熱管14の断熱空間に気化した冷媒を導入する。その際、必要に応じて、放圧弁620を開放し、連通管610内の圧力が過大にならにように制御する。気化した冷媒20は、連通管610を通って熱交換部630に一旦導入され、そこで、昇温される。そして、昇温された気化冷媒が断熱空間に導入される。この気化冷媒の導入により、真空断熱管14の断熱性能が低下し、断熱管14が伝熱管となる。   (2) When the cooling function is lost, as in the second embodiment, the superconducting cable 100 is disconnected from the power transmission system, the refrigerator 210 and the circulation mechanism (pump) of the cooling mechanism 200 are stopped, and the temperature of the refrigerant 20 increases. To do. When the liquid refrigerant 20 is heated and vaporized, the third valve 640 is opened, and the vaporized refrigerant is introduced from the refrigerant flow path of the vacuum heat insulation pipe 14 into the heat insulation space of the vacuum heat insulation pipe 14 via the communication pipe 610. At that time, if necessary, the pressure relief valve 620 is opened, and control is performed so that the pressure in the communication pipe 610 becomes excessive. The vaporized refrigerant 20 is once introduced into the heat exchange unit 630 through the communication pipe 610, where the temperature is raised. The heated vaporized refrigerant is introduced into the heat insulating space. By introducing the vaporized refrigerant, the heat insulating performance of the vacuum heat insulating tube 14 is lowered, and the heat insulating tube 14 becomes a heat transfer tube.

また、真空断熱管14の断熱性能が低下するまでの間、実施形態2と同様に、一方の遮断手段33aの第一遮断手段34を遮断状態に切り替え、導体部10側の接続を遮断すると共に、一方の遮断手段33aの第二遮断手段35及び他方の遮断手段33bを接続状態にして、外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、導体部10による送電を停止した状態で、外部常電導導電部材16による送電を行い、超電導ケーブル100を常電導ケーブル線路として運用する。   Further, until the heat insulating performance of the vacuum heat insulating tube 14 is lowered, the first blocking means 34 of one blocking means 33a is switched to the blocking state, and the connection on the conductor portion 10 side is blocked as in the second embodiment. The second blocking means 35 and the other blocking means 33b of one blocking means 33a are connected, and the external normal conducting member 16 side is connected. After the operation of the breaker is completed, the breaker on the system control system side is restored, and the power transmission by the conductor 10 is stopped, power is transmitted by the external normal conductive member 16, and the superconducting cable 100 is operated as a normal conductive cable line. To do.

(3)真空断熱管14の断熱性能が低下し、導体部10の放熱が可能になったことを確認したら、系統制御システム側の遮断器によって一旦送電を停止し、超電導ケーブル100を送電系統から切り離す。そして、一方の遮断手段33aの第一遮断手段34を接続状態に切り替え、各遮断手段33a,33bにおいて、導体部10側及び外部常電導導電部材16側を接続状態にする。遮断手段の操作完了後、系統制御システム側の遮断器を復帰させ、外部常電導導電部材16だけでなく、導体部10(内部常電導導電部材)も送電用導体に利用して送電を行う。   (3) After confirming that the heat insulation performance of the vacuum heat insulating tube 14 is reduced and the heat radiation of the conductor 10 is possible, the power transmission is temporarily stopped by the circuit breaker on the system control system side, and the superconducting cable 100 is disconnected from the power transmission system. Separate. Then, the first blocking means 34 of the one blocking means 33a is switched to the connected state, and the conductor 10 side and the external normal conducting member 16 side are connected to each of the blocking means 33a and 33b. After the operation of the shut-off means is completed, the circuit breaker on the system control system side is restored, and not only the external normal conductive member 16 but also the conductor portion 10 (internal normal conductive member) is used as a power transmission conductor for power transmission.

<作用効果>
上記した実施形態4に係る超電導ケーブルシステムでも、実施形態2と同様に、冷却機能喪失時には真空断熱管14の断熱性能を低下させることができる。よって、超電導ケーブル100を常電導ケーブル線路として運用する際、導体部10(内部常電導導電部材)も送電用導体に利用しても、導体部10の発熱を放熱して、導体部10の温度上昇を抑制することができる。特に、真空断熱管14の冷媒流路内の気化した冷媒20を熱伝導材料として真空断熱管14の断熱空間に導入するため、上記冷媒20とは別に断熱空間に充填する熱伝導材料を用意しておく必要がない。また、放熱弁620を設けることで、気化した冷媒20によって、連通管610内が過大な圧力になることを防止できる。さらに、熱交換部630を設けることで、気化した冷媒20が過度に低温のまま断熱空間に導入されることを防止し、断熱管14に近接する部材に悪影響が及ぶことも回避できる。
<Effect>
In the superconducting cable system according to the fourth embodiment described above, as in the second embodiment, the heat insulation performance of the vacuum heat insulating tube 14 can be lowered when the cooling function is lost. Therefore, when the superconducting cable 100 is operated as a normal conductive cable line, even if the conductor 10 (internal normal conductive member) is also used as a power transmission conductor, the heat of the conductor 10 is dissipated and the temperature of the conductor 10 is The rise can be suppressed. In particular, in order to introduce the vaporized refrigerant 20 in the refrigerant flow path of the vacuum heat insulating tube 14 into the heat insulating space of the vacuum heat insulating tube 14 as a heat conductive material, a heat conductive material that fills the heat insulating space separately from the refrigerant 20 is prepared. There is no need to keep it. Further, by providing the heat radiation valve 620, it is possible to prevent the inside of the communication pipe 610 from becoming an excessive pressure due to the vaporized refrigerant 20. Furthermore, by providing the heat exchanging unit 630, it is possible to prevent the vaporized refrigerant 20 from being introduced into the heat insulation space at an excessively low temperature, and to avoid adverse effects on members adjacent to the heat insulation pipe.

上記した実施形態4のシステムでは、真空断熱管14の冷媒流路と断熱空間とを連通管610を介して連通させ、気化した冷媒を真空断熱管14の断熱空間に充填する場合を説明した。さらに、真空断熱容器40の断熱空間にも、真空断熱管14と同様に、冷媒流路と真空断熱容器40の断熱空間とを連通管610を介して連通させてもよい。このように構成することで、真空断熱容器40の断熱空間にも気化した冷媒を充填して断熱容器40の断熱性能を低下させ、断熱容器40内の導体部10の発熱を放熱することができる。   In the system of the fourth embodiment described above, the case where the refrigerant flow path of the vacuum heat insulating tube 14 and the heat insulating space are communicated via the communication tube 610 and the vaporized refrigerant is filled in the heat insulating space of the vacuum heat insulating tube 14 has been described. Further, similarly to the vacuum heat insulation pipe 14, the refrigerant flow path and the heat insulation space of the vacuum heat insulation container 40 may be communicated with the heat insulation space of the vacuum heat insulation container 40 via the communication pipe 610. With such a configuration, the heat insulation performance of the heat insulation container 40 can be reduced by filling the heat insulation space of the vacuum heat insulation container 40 with the vaporized refrigerant, and the heat generated by the conductor 10 in the heat insulation container 40 can be radiated. .

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、第一電流リード、第二電流リード、遮断手段(第一遮断手段や第二遮断手段)の配置やその形態を適宜変更してもよい。また、上述した実施形態2〜4の各実施形態において、冷却機能喪失時に断熱空間に熱伝導材料を充填するための構成を個々に設けているが、これら個々の構成を組み合わせて利用してもよい。その他、超電導ケーブルのフォーマを非導電材料で形成してもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the arrangement and form of the first current lead, the second current lead, and the interruption means (first interruption means and second interruption means) may be changed as appropriate. Moreover, in each embodiment of Embodiment 2-4 mentioned above, although the structure for filling a heat insulation material into the heat insulation space at the time of a cooling function loss is provided individually, even if it utilizes, combining these each structure Good. In addition, the former of the superconducting cable may be formed of a nonconductive material.

本発明の超電導ケーブルシステムは、通常時は超電導ケーブル線路として送電に利用し、冷却機能喪失時は常電導ケーブル線路として送電に利用することができる。   The superconducting cable system of the present invention can be used for power transmission as a superconducting cable line during normal times, and can be used for power transmission as a normal conducting cable line when the cooling function is lost.

100,101,102 超電導ケーブル(常温絶縁型超電導ケーブル)
10 導体部
11 フォーマ 12 超電導導体層 13 保護層
14 断熱管(真空断熱管)
14a 内管 14b 外管
15 主電気絶縁層
16 外部常電導導電部材
17 管状支持部材
20 冷媒
30 端末導体部
31 第一電流リード 32 第二電流リード
33a,33b 遮断手段
34 第一遮断手段 35 第二遮断手段
36 断熱部材
40 断熱容器 42 嵌合部
50 端末絶縁部 51 碍管
53 分岐冷媒管 55 絶縁継手
60 常電導電力機器の接続導体
150a,150b 端末
200 冷却機構 210 冷凍機 215 冷却塔
300 冷媒管
410 真空ポンプ 420 気体供給源 440 第一バルブ
440A、440B 開閉バルブ 450 連通管 450L、450R 分岐管
460 コンプレッサー 470 開閉バルブ
480 加圧充填機構 480V 開閉バルブ
455 絶縁継手
520 液体供給源 522 供給管 524 排出管
526 第二バルブ(開閉バルブ) 528 ポンプ
610 連通管 620 放圧弁 630 熱交換部 640 第三バルブ
100,101,102 Superconducting cable (room temperature insulated superconducting cable)
10 Conductor section
11 Former 12 Superconducting conductor layer 13 Protective layer
14 Heat insulation pipe (vacuum heat insulation pipe)
14a Inner pipe 14b Outer pipe
15 Main electrical insulation layer
16 External normal conductive member
17 Tubular support
20 Refrigerant
30 Terminal conductor
31 First current lead 32 Second current lead
33a, 33b Blocking means
34 First blocking means 35 Second blocking means
36 Thermal insulation
40 Insulated container 42 Mating part
50 Terminal insulation 51 Steel pipe
53 Branch refrigerant pipe 55 Insulation joint
60 Connecting conductors for normal electrical power equipment
150a, 150b terminal
200 Cooling mechanism 210 Refrigerator 215 Cooling tower
300 Refrigerant pipe
410 Vacuum pump 420 Gas supply source 440 First valve
440A, 440B Open / close valve 450 Communication pipe 450L, 450R Branch pipe
460 Compressor 470 Open / close valve
480 Pressure filling mechanism 480V open / close valve
455 Insulation joint
520 Liquid source 522 Supply pipe 524 Discharge pipe
526 Second valve (open / close valve) 528 Pump
610 Communication pipe 620 Pressure relief valve 630 Heat exchanger 640 Third valve

Claims (8)

超電導ケーブルの両端部に設けられ、電流リードを介して常電導電力機器と接続するための端末導体部を有する超電導ケーブルと、冷媒の冷却機構とを備える超電導ケーブルシステムであって、
前記超電導ケーブルは、
超電導導体層を有する導体部と、
前記導体部を収納し、前記超電導導体層を冷却する前記冷媒が流通する断熱管と、
前記断熱管の外側に設けられる主電気絶縁層と、
前記断熱管と前記主電気絶縁層との間に形成される外部常電導導電部材とを備える常温絶縁型超電導ケーブルであり、
前記両端末導体部は、
前記導体部と前記電力機器とを接続する第一電流リードと、
前記外部常電導導電部材と前記電力機器とを接続する第二電流リードと、
前記導体部及び前記外部常電導導電部材と前記電力機器との間の接続を遮断する遮断手段とを備え、
前記少なくとも一方の端末導体部における遮断手段は、
前記導体部側の接続を遮断する第一遮断手段と、前記外部常電導導電部材側の接続を遮断する第二遮断手段とを有することを特徴とする超電導ケーブルシステム。
A superconducting cable system including a superconducting cable provided at both ends of the superconducting cable and having a terminal conductor for connecting to a normal conducting power device through a current lead, and a cooling mechanism for the refrigerant,
The superconducting cable is
A conductor portion having a superconducting conductor layer;
A heat-insulating pipe through which the refrigerant flows, containing the conductor portion and cooling the superconducting conductor layer;
A main electrical insulating layer provided outside the heat insulating tube;
A room temperature insulated superconducting cable comprising an external normal conducting member formed between the heat insulating tube and the main electrical insulation layer,
The both terminal conductor portions are
A first current lead connecting the conductor and the power device;
A second current lead connecting the external normal conducting member and the power device;
A blocking means for blocking the connection between the conductor part and the external normal conducting member and the power device,
The blocking means in the at least one terminal conductor portion is:
A superconducting cable system, comprising: a first blocking means for blocking the connection on the conductor portion side; and a second blocking means for blocking the connection on the external normal conducting member side.
前記一方の遮断手段において、前記第一遮断手段により前記導体部側を遮断状態にしたとき、前記他方の遮断手段では、前記導体部側を接続状態にすることを特徴とする請求項1に記載の超電導ケーブルシステム。   The said one interruption | blocking means WHEREIN: When the said conductor part side is made into the interruption | blocking state by said 1st interruption | blocking means, said conductor part side is made into a connection state in said other interruption | blocking means. Superconducting cable system. 前記超電導ケーブルの断熱管が断熱空間を有する真空断熱管であり、
前記冷媒機構が動作不能で、前記超電導導体層を超電導状態に維持できない冷却機能喪失時に、少なくとも前記真空断熱管の断熱空間に熱伝導材料を充填する充填手段を取り付けるための充填手段取付部を備えることを特徴とする請求項1又は2に記載の超電導ケーブルシステム。
The heat insulation pipe of the superconducting cable is a vacuum heat insulation pipe having a heat insulation space,
When the cooling mechanism is inoperable and the superconducting conductor layer cannot be maintained in a superconducting state, at least when the cooling function is lost, a filling means attaching portion is provided for attaching at least a filling means for filling a heat conductive material in the heat insulating space of the vacuum heat insulating tube. The superconducting cable system according to claim 1 or 2.
前記充填手段が、
前記熱伝導材料となる気体を収容する気体供給源と、
前記気体供給源から前記断熱空間に前記気体を供給・停止する第一バルブとを備えることを特徴とする請求項3に記載の超電導ケーブルシステム。
The filling means
A gas supply source containing a gas to be the heat conducting material;
The superconducting cable system according to claim 3, further comprising a first valve that supplies and stops the gas from the gas supply source to the heat insulation space.
更に、前記断熱空間を真空引きする真空ポンプを備え、
前記第一バルブは、前記気体供給源と前記真空ポンプとを前記断熱空間に対して選択的に連通させる開閉バルブであることを特徴とする請求項4に記載の超電導ケーブルシステム。
Furthermore, a vacuum pump for evacuating the heat insulation space is provided,
5. The superconducting cable system according to claim 4, wherein the first valve is an open / close valve that selectively connects the gas supply source and the vacuum pump to the heat insulation space.
前記充填手段が、
前記熱伝導材料となる液体を貯留する液体供給源と、
前記液体供給源から前記断熱空間に前記液体を供給する供給管と、
前記断熱空間から前記液体を排出する排出管と、
前記供給管及び前記排出管の各々を連通・遮断する第二バルブと、
前記供給管、前記断熱空間及び前記排出管を流通経路として、前記液体を循環させる圧送手段とを備えることを特徴とする請求項3〜5のいずれか一項に記載の超電導ケーブルシステム。
The filling means
A liquid supply source for storing a liquid serving as the heat conductive material;
A supply pipe for supplying the liquid from the liquid supply source to the heat insulation space;
A discharge pipe for discharging the liquid from the heat insulation space;
A second valve for communicating and blocking each of the supply pipe and the discharge pipe;
The superconducting cable system according to any one of claims 3 to 5, further comprising: a pumping unit configured to circulate the liquid using the supply pipe, the heat insulating space, and the discharge pipe as a flow path.
前記充填手段が、
前記真空断熱管内の冷媒流路と前記真空断熱管の断熱空間とを連通させる連通管と、
前記連通管を連通・遮断する第三バルブとを備えることを特徴とする請求項3〜6のいずれか一項に記載の超電導ケーブルシステム。
The filling means
A communication pipe for communicating the refrigerant flow path in the vacuum heat insulation pipe and the heat insulation space of the vacuum heat insulation pipe;
The superconducting cable system according to any one of claims 3 to 6, further comprising a third valve for communicating and blocking the communication pipe.
前記連通管の途中に、冷却機能喪失時に気化した前記冷媒の圧力を開放する放圧弁と、この気化した前記冷媒の温度を上昇させる熱交換部とのうち、少なくとも一方を備えることを特徴とする請求項7に記載の超電導ケーブルシステム。   At least one of a pressure release valve that releases the pressure of the refrigerant vaporized when the cooling function is lost and a heat exchange unit that increases the temperature of the vaporized refrigerant is provided in the middle of the communication pipe. The superconducting cable system according to claim 7.
JP2012042268A 2012-02-28 2012-02-28 Superconducting cable system Expired - Fee Related JP5796744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012042268A JP5796744B2 (en) 2012-02-28 2012-02-28 Superconducting cable system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012042268A JP5796744B2 (en) 2012-02-28 2012-02-28 Superconducting cable system

Publications (2)

Publication Number Publication Date
JP2013178958A true JP2013178958A (en) 2013-09-09
JP5796744B2 JP5796744B2 (en) 2015-10-21

Family

ID=49270418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012042268A Expired - Fee Related JP5796744B2 (en) 2012-02-28 2012-02-28 Superconducting cable system

Country Status (1)

Country Link
JP (1) JP5796744B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195484A (en) * 2015-03-31 2016-11-17 昭和電線ケーブルシステム株式会社 Terminal structure of superconducting cable
WO2017073833A1 (en) * 2015-10-29 2017-05-04 한국전기연구원 Superconducting cable terminal device
WO2022196951A1 (en) * 2021-03-19 2022-09-22 엘에스일렉트릭 주식회사 Superconducting power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996465U (en) * 1972-12-13 1974-08-20
JPS5746169B2 (en) * 1973-11-05 1982-10-01
JP2010277975A (en) * 2009-06-01 2010-12-09 Sumitomo Electric Ind Ltd Superconducting cable line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996465U (en) * 1972-12-13 1974-08-20
JPS5746169B2 (en) * 1973-11-05 1982-10-01
JP2010277975A (en) * 2009-06-01 2010-12-09 Sumitomo Electric Ind Ltd Superconducting cable line

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195484A (en) * 2015-03-31 2016-11-17 昭和電線ケーブルシステム株式会社 Terminal structure of superconducting cable
WO2017073833A1 (en) * 2015-10-29 2017-05-04 한국전기연구원 Superconducting cable terminal device
WO2022196951A1 (en) * 2021-03-19 2022-09-22 엘에스일렉트릭 주식회사 Superconducting power supply system

Also Published As

Publication number Publication date
JP5796744B2 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP4609121B2 (en) Superconducting cable line
JP4826996B2 (en) Superconducting cable line
US7849704B2 (en) Cryogenic apparatus of superconducting equipment
JP4835821B2 (en) Superconducting cable
JP4399770B2 (en) Superconducting cable operation method and superconducting cable system
WO2002065605A1 (en) Terminal structure of extreme-low temperature equipment
JP2006221877A (en) Intermediate connection structure of superconductive cable
JP5796744B2 (en) Superconducting cable system
JP4207223B2 (en) Superconducting cable and superconducting cable line using this superconducting cable
JP2005210834A (en) Connection structure of polyphase superconductive cable
WO2006059446A1 (en) Super-conducting cable
US8354591B2 (en) Superconducting cable
US20070169957A1 (en) Splice structure of superconducting cable
JP2006012776A (en) Superconductive cable
WO2011149562A2 (en) Superconducting electricity transmission system
JP2019129583A (en) Terminal structure of superconductor cable
JP5443835B2 (en) Superconducting cable line
JP2013066308A (en) Superconductive cable system
JP5742021B2 (en) Connection unit and connection structure
JP2014146585A (en) Superconductive cable and superconductive cable rail track
JP4273525B2 (en) Terminal structure of superconducting equipment
JP2006108560A (en) Current lead for superconductive apparatus
JP2016065629A (en) Adiabatic pipe insulation unit and superconductive cable track
JP2009048794A (en) Superconducting cable line
JP5754160B2 (en) Insulating joint and refrigerant drawing structure at the end of room temperature insulated superconducting cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150805

R150 Certificate of patent or registration of utility model

Ref document number: 5796744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees