JP2020025998A - Local polishing processing method, local polishing processing device, and corrective polishing processing device using the same - Google Patents

Local polishing processing method, local polishing processing device, and corrective polishing processing device using the same Download PDF

Info

Publication number
JP2020025998A
JP2020025998A JP2018150748A JP2018150748A JP2020025998A JP 2020025998 A JP2020025998 A JP 2020025998A JP 2018150748 A JP2018150748 A JP 2018150748A JP 2018150748 A JP2018150748 A JP 2018150748A JP 2020025998 A JP2020025998 A JP 2020025998A
Authority
JP
Japan
Prior art keywords
polishing
work
processing
local
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018150748A
Other languages
Japanese (ja)
Other versions
JP6446590B1 (en
Inventor
秀和 三村
Hidekazu Mimura
秀和 三村
寛和 橋爪
Hirokazu Hashizume
寛和 橋爪
雄介 松澤
Yusuke Matsuzawa
雄介 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Natsume Optical Corp
Original Assignee
University of Tokyo NUC
Natsume Optical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Natsume Optical Corp filed Critical University of Tokyo NUC
Priority to JP2018150748A priority Critical patent/JP6446590B1/en
Application granted granted Critical
Publication of JP6446590B1 publication Critical patent/JP6446590B1/en
Priority to DE112019003993.8T priority patent/DE112019003993T5/en
Priority to US17/264,511 priority patent/US20210331283A1/en
Priority to PCT/JP2019/031137 priority patent/WO2020032106A1/en
Publication of JP2020025998A publication Critical patent/JP2020025998A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

To provide a local polishing processing technique which stabilizes the amount of local polishing processing, which can obtain high corrective spatial resolution, and which is suitable for corrective polishing processing.SOLUTION: Pressing polishing processing is performed while a polishing processing fluid, in which abrasive grains 81 composed of organic particles with an average particle diameter of 5 μm or more are dispersed in a liquid, is supplied between a workpiece 9 and a workpiece-polishing rotary tool 11 for being locally pressed against the workpiece 9. The rotary tool 11 is made of an elastic material.SELECTED DRAWING: Figure 1

Description

本発明は、修正研磨加工に好適に用いることができる局所研磨加工方法、および局所研磨加工装置に関するものである。   The present invention relates to a local polishing method and a local polishing apparatus that can be suitably used for a modified polishing process.

たとえば光学レンズ等の光学素子の加工においては、局所的に研磨加工可能な回転ツールを、平均粒径1μm程度の微細砥粒からなるスラリー状の研磨加工液を間に供給しつつ、ワーク(被加工物)に押し付けながら全面にわたって走査加工する修正研磨加工が行われている。修正研磨加工では、予めワークと同質の材料に回転ツールを走査せずに研磨加工することで静止加工痕を得、この静止加工痕を単位時間当たりに置き換えた単位加工形状を得る。そして、この単位加工形状とワーク上の形状誤差(修正目標形状)とをデコンボリューション(逆畳み込み積分)計算することで回転ツールの滞留時間(走査速度)を算出し、この滞留時間分布に沿って回転ツールを走査する、というプロセスにより目的の形状へと修正加工を行う(例えば、特許文献1参照。)。   For example, in the processing of an optical element such as an optical lens, a rotary tool capable of locally polishing is supplied to a workpiece (coated) while a slurry-like polishing liquid comprising fine abrasive grains having an average particle diameter of about 1 μm is supplied therebetween. Correction polishing is performed in which the entire surface is scanned while being pressed against the workpiece. In the modified polishing process, a static processing mark is obtained by previously polishing a material of the same quality as the workpiece without scanning the rotating tool, and a unit processing shape in which the static processing mark is replaced per unit time is obtained. The unit processing shape and the shape error on the workpiece (corrected target shape) are deconvoluted (deconvolution integral) to calculate the dwell time (scanning speed) of the rotary tool, and along the dwell time distribution. Correction processing is performed to a target shape by a process of scanning a rotating tool (for example, see Patent Document 1).

修正研磨加工では、上述のとおり走査加工を行うことから、回転ツールによる局所加工量が時間に線形であり、且つ長期的に安定していることが重要である。しかしながら、従来の修正研磨加工では、局所的にワーク側に押し付けられる回転ツール自体が摩耗したり、押し付け力が変動しやすいことから、安定した加工量を得られにくいという問題があった。さらに、ツール表面性状が微細砥粒の運搬・保持・切り屑の排出などに与える影響が大きいため、回転ツールはツルーイング(形状形成)やドレッシング(目立て)といった前処理で表面性状を整えてから研磨に使用されるが、このような前処理は加工の効率の低下、コスト上昇の原因にもなるとともに、上記のとおり回転ツールが摩耗しやすいため表面性状のメンテナンスも頻繁に必要となり、さらなる効率の低下、コスト上昇の原因になる。   In the modified polishing process, since the scanning process is performed as described above, it is important that the local processing amount by the rotating tool is linear in time and stable for a long time. However, in the conventional correction polishing, there is a problem that a stable processing amount cannot be obtained because the rotating tool itself pressed locally against the work side is worn or the pressing force is apt to fluctuate. In addition, since the surface properties of the tool have a large effect on the transportation and retention of fine abrasive grains, and the discharge of chips, the rotating tool is polished after the surface properties are adjusted by pretreatment such as truing (shaping) and dressing (sharpening). However, such a pretreatment causes a decrease in processing efficiency and an increase in cost.In addition, as described above, since the rotating tool is easily worn, maintenance of the surface properties is also required frequently, and further efficiency is required. It causes a decrease and an increase in cost.

これに対し、近年では、回転ツールをワークに対して積極的に押し付けるのではなく、回転ツールとワークの間に微細砥粒の粒径以上のギャップを維持し、その間を流れるスラリー状の研磨加工液中の微細砥粒とワーク表面との間の化学結合と付着除去により精密研磨加工を行う非接触のEEM加工(Elastic Emission Machining)法や、ツールを磁性流体とした研磨加工方法も用いられつつある(たとえば、特許文献2参照。)。しかし、これら非接触の加工方法は、研磨加工液の粘度、濃度管理などを徹底した循環装置が必要であり、設備が大型化する傾向にあるとともに、ギャップ間を通過するスラリーの流れを高速にするために回転ツールのワークに対面する外周面の外径を所定以上に設定し、回転数も所定以上にする必要があり、修正可能な空間分解能に一定の限界も生じる。   On the other hand, in recent years, instead of positively pressing the rotating tool against the workpiece, a gap between the rotating tool and the workpiece that is equal to or greater than the diameter of the fine abrasive grains is maintained, and a slurry-like polishing process flowing therebetween. Non-contact EEM (Elastic Emission Machining), which performs precise polishing by chemical bonding and adhesion removal between fine abrasive grains in the liquid and the work surface, and polishing using a magnetic fluid tool are also being used. (For example, see Patent Document 2). However, these non-contact processing methods require a circulating device that thoroughly controls the viscosity and concentration of the polishing liquid, which tends to increase the size of the equipment and increase the speed of the slurry flowing through the gap. In order to achieve this, it is necessary to set the outer diameter of the outer peripheral surface of the rotating tool facing the work to be equal to or greater than a predetermined value, and also to set the rotation speed to be equal to or greater than a predetermined value.

修正研磨加工における修正可能な空間分解能は、単位加工形状の大きさに関係する。例えば周期1mmのうねりを修正する場合、単位加工形状サイズが1mm以下でなければ当然修正はできない。現在普及している非接触の修正研磨装置は、1mm程度の空間分解能が限界である。また高分解能を図った修正研磨技術の研究でも0.3mm程度までとなっている。一方、X線の様な短波長光源を用いる光学素子には、シングルナノメートル精度が要求されるが、本発明者らが別途開発したX線光学素子においては、空間波長0.1〜0.3mm程度のうねり領域に起因する波面誤差影響を確認している。非接触の修正研磨技術では、このような空間波長の小さいうねりの修正に対応できない。   The spatial resolution that can be corrected in the correction polishing process is related to the size of the unit processing shape. For example, when correcting a waviness having a cycle of 1 mm, the correction cannot be performed unless the unit processing shape size is 1 mm or less. The currently widely used non-contact correction polishing apparatus is limited to a spatial resolution of about 1 mm. Further, even in the study of the modified polishing technique aiming at high resolution, it is up to about 0.3 mm. On the other hand, an optical element using a short-wavelength light source such as an X-ray is required to have a single-nanometer accuracy. However, in an X-ray optical element separately developed by the present inventors, a spatial wavelength of 0.1 to 0. The effect of a wavefront error caused by a swell area of about 3 mm has been confirmed. The non-contact correction polishing technique cannot cope with the correction of the undulation having a small spatial wavelength.

特開2005−22005号公報JP 2005-22005 A 特公平2−25745号公報Japanese Patent Publication No. 2-25745

そこで、本発明が前述の状況に鑑み、解決しようとするところは、簡易な構造でコストを抑え、装置のコンパクト化も可能であり、局所研磨加工による加工量も安定し、高い空間分解能を得ることも可能な、修正研磨加工に好適な局所研磨加工技術を提供する点にある。   In view of the above-mentioned situation, the present invention seeks to solve the above-mentioned problems by suppressing the cost with a simple structure, making the apparatus compact, stabilizing the processing amount by local polishing, and obtaining high spatial resolution. Another object of the present invention is to provide a local polishing technique suitable for the modified polishing.

本発明者は、上述の課題を解決するべく鋭意検討した結果、従来の押し付けによる局所研磨加工においてツール自体が摩耗したり、ツール表面性状の影響が大きくなるのは、図1(a)に示すように平均粒径1μm以下の微細砥粒81を介して回転ツール11をワーク9の被加工面90に押し付けているために、回転ツール11がワーク9に直接接触してしまうことに原因があり、図1(b)に示すように、より粗い平均粒径5μm以上の砥粒81を用いれば、回転ツール11とワーク9の直接接触やそれによる回転ツール11の摩耗が防止され、ツール表面の表面性状も加工に影響せず、簡易な構造でコストを抑えつつ、加工量を安定化させることができることを着想し、さらに検討をすすめた。   As a result of the inventor's intensive studies to solve the above-described problems, it is shown in FIG. 1A that the tool itself is worn or the influence of the tool surface property is increased in the conventional local polishing by pressing. As described above, since the rotating tool 11 is pressed against the work surface 90 of the work 9 via the fine abrasive grains 81 having an average particle diameter of 1 μm or less, the rotating tool 11 comes into direct contact with the work 9. As shown in FIG. 1B, when the abrasive grains 81 having a coarser average particle diameter of 5 μm or more are used, direct contact between the rotary tool 11 and the work 9 and wear of the rotary tool 11 due to the direct contact are prevented, and The surface properties did not affect the processing, and with the idea that the processing amount could be stabilized while keeping costs down with a simple structure, further studies were conducted.

本発明者は、まず研磨砥粒として、平均粒径14μmのシリカを用いて回転ツールによる押し付け研磨加工を行った。この結果、加工安定性が確認された。しかしながら、研磨加工後の表面粗さが大きく悪化するという問題が生じた(後述のラスタースキャン加工試験1の比較例1の結果参照)。   The inventor of the present invention first carried out press-polishing using a rotating tool using silica having an average particle diameter of 14 μm as polishing abrasive grains. As a result, processing stability was confirmed. However, there was a problem that the surface roughness after the polishing was greatly deteriorated (see the result of Comparative Example 1 of the raster scan processing test 1 described later).

一方、粒子の沈降速度はストークスの式より、粒子径の2乗に比例することが分かる。つまり今回設定した10μm粒径以上の研磨砥粒の使用を考えると、分散性もボトルネックとなる。通常使用される研磨砥粒の密度は2〜8g/cmであるため、溶液を純水(密度1g/cm)としている以上、分散性を向上させることは難しい。実際に使用した凝集シリカは分散性が悪く、スラリー循環中では安定するものの、保管や再撹拌の面で扱いが非常に難しいものであった。 On the other hand, it can be seen from the Stokes equation that the sedimentation velocity of the particles is proportional to the square of the particle diameter. That is, considering the use of abrasive grains having a particle diameter of 10 μm or more set this time, the dispersibility also becomes a bottleneck. Since the density of the abrasive particles normally used is 2 to 8 g / cm 3, the solution of pure water (density 1 g / cm 3) and to have more, it is difficult to improve the dispersibility. The aggregated silica actually used had poor dispersibility and was stable during circulation of the slurry, but was very difficult to handle in terms of storage and re-stirring.

本発明者は、金属酸化物、金属炭化物を基本とした一般的な“研磨砥粒”という枠から外れ、5μm以上の平均粒径で単分散、密度の小さいものを砥粒として用いることを考えた結果、有機粒子の使用を着想した。例えば、高分子材料であるウレタンやアクリル、スチレンなどの粒子は、乳化重合法によって作製される。これらはほぼ球形を有しており、粒径も5〜10μm以上の物が作製可能である。また樹脂であることから、安価で密度が小さく分散性が良く、アセトンなどの有機溶剤に溶解するため研磨加工後の洗浄性も良いなど、研磨加工において様々なメリットが考えられる。   The present inventors deviate from the general term "polishing abrasive grains" based on metal oxides and metal carbides, and consider using monodisperse grains having an average grain size of 5 μm or more and having a small density as abrasive grains. As a result, the use of organic particles was conceived. For example, particles of a polymer material such as urethane, acrylic, and styrene are produced by an emulsion polymerization method. These have a substantially spherical shape, and a product having a particle size of 5 to 10 μm or more can be produced. Further, since the resin is a resin, various merits can be considered in the polishing process, such as low cost, low density, good dispersibility, and dissolving in an organic solvent such as acetone, so that the cleaning property after the polishing process is good.

そして、アクリル粒子(平均粒径10μm)で実際に押し付け研磨加工をした結果、優れた加工安定性が得られると同時に表面粗さを維持した加工が実現でき、本発明を完成するに至った。   Then, as a result of actual pressing and polishing with acrylic particles (average particle size of 10 μm), excellent processing stability was obtained, and at the same time, processing that maintained the surface roughness was realized, and the present invention was completed.

すなわち本発明は、以下の発明を包含する。
(1) ワークに対して局所的に押し付けられるワーク研磨用の回転ツールと前記ワークとの間に、平均粒径5μm以上の有機粒子からなる砥粒を液体中に分散させた研磨加工液を供給しながら、押し付け研磨加工を行う、局所研磨加工方法。ここに、平均粒径とは、レーザー回折散乱法で測定された粒度分布におけるメディアン径をいう。
That is, the present invention includes the following inventions.
(1) A polishing liquid in which abrasive grains composed of organic particles having an average particle size of 5 μm or more are dispersed in a liquid is supplied between the workpiece and a rotary tool for polishing the workpiece that is locally pressed against the workpiece. A local polishing method in which pressing and polishing is performed while performing. Here, the average particle size refers to a median size in a particle size distribution measured by a laser diffraction scattering method.

(2) 前記回転ツールを弾性素材より構成してなる、(1)記載の局所研磨加工方法。   (2) The local polishing method according to (1), wherein the rotating tool is made of an elastic material.

(3) 前記液体が、純水または水を主成分とする液体である、(1)又は(2)記載の局所研磨加工方法。   (3) The local polishing method according to (1) or (2), wherein the liquid is pure water or a liquid containing water as a main component.

(4) 前記回転ツールを、回転体と、先端に該回転体が設けられ、該回転体を回転させる軸方向に長い軸体と、基端側で該軸体を支持しつつ軸中心に回転させる回転支持部とより構成し、前記回転体の外周面をワーク側に押し当てることで前記軸体が湾曲し、該湾曲した軸体の弾性復元力により、前記回転体がワーク側に押し付け付勢される、(1)〜(3)の何れかに記載の局所研磨加工方法。   (4) rotating the rotating tool, a rotating body, a rotating body provided at a distal end, an axially long rotating body for rotating the rotating body, and a rotating shaft about the axial center while supporting the rotating shaft at a base end side; The shaft is curved by pressing the outer peripheral surface of the rotating body against the work side, and the rotating body is pressed against the work side by the elastic restoring force of the curved shaft body. The local polishing method according to any one of (1) to (3).

(5) 回転ツールのワークに対面する外周面における研磨作用領域の外径を5.0mm以下に設定してなる(1)〜(4)の何れかに記載の局所研磨加工方法。   (5) The local polishing method according to any one of (1) to (4), wherein the outer diameter of the polishing area on the outer peripheral surface of the rotary tool facing the work is set to 5.0 mm or less.

(6) 前記有機粒子を、アクリル粒子またはウレタン粒子とした、(1)〜(5)の何れかに記載の局所研磨加工方法。   (6) The local polishing method according to any one of (1) to (5), wherein the organic particles are acrylic particles or urethane particles.

(7) ワークに対して局所的に押し付けられるワーク研磨用の回転ツールと、該回転ツールとワークとの間に、平均粒径5μm以上の有機粒子からなる砥粒が液体中に分散した研磨加工液を供給する加工液供給手段とを備える、局所研磨加工装置。   (7) A rotating tool for polishing a workpiece that is locally pressed against the workpiece, and a polishing process in which abrasive grains composed of organic particles having an average particle size of 5 μm or more are dispersed in the liquid between the rotating tool and the workpiece. A local polishing processing apparatus, comprising: a processing liquid supply unit configured to supply a liquid.

(8) 前記回転ツールが、弾性素材より構成されている、(7)記載の局所研磨加工装置。   (8) The local polishing apparatus according to (7), wherein the rotating tool is made of an elastic material.

(9) 前記液体が、純水または水を主成分とする液体である、(7)又は(8)記載の局所研磨加工装置。   (9) The local polishing apparatus according to (7) or (8), wherein the liquid is pure water or a liquid containing water as a main component.

(10) 前記回転ツールが、回転体と、先端に該回転体が設けられ、該回転体を回転させる軸方向に長い軸体と、基端側で該軸体を支持しつつ軸中心に回転させる回転支持部とより構成され、前記回転体の外周面をワーク側に押し当てることで前記軸体が湾曲し、該湾曲した軸体の弾性復元力により、前記回転体がワーク側に押し付け付勢される、(7)〜(9)の何れかに記載の局所研磨加工装置。   (10) The rotating tool includes a rotating body, a rotating body provided at a distal end thereof, an axially long shaft body for rotating the rotating body, and a rotation about the axial center while supporting the shaft body at a base end side. The shaft body is curved by pressing the outer peripheral surface of the rotating body against the work side, and the rotating body is pressed against the work side by the elastic restoring force of the curved shaft body. The local polishing apparatus according to any one of (7) to (9).

(11) 回転ツールのワークに対面する外周面における研磨作用領域の外径が5.0mm以下である、(7)〜(10)の何れかに記載の局所研磨加工装置。   (11) The local polishing apparatus according to any one of (7) to (10), wherein an outer diameter of a polishing action area on an outer peripheral surface of the rotary tool facing the work is 5.0 mm or less.

(12) 前記有機粒子が、アクリル粒子又はウレタン粒子である、(7)〜(11)の何れかに記載の局所研磨加工装置。   (12) The local polishing apparatus according to any one of (7) to (11), wherein the organic particles are acrylic particles or urethane particles.

(13) (7)〜(12)の何れかに記載の局所研磨加工装置を用いた修正研磨加工装置。   (13) A modified polishing apparatus using the local polishing apparatus according to any one of (7) to (12).

以上にしてなる本願発明によれば、局所的な押し付け研磨加工において回転ツールの摩耗が防止され、ツール表面の表面性状も加工に影響せず、ツール表面の前処理やメンテナンスを省略することができる。そして、このように簡易な構造でコストを抑えつつ、優れた加工安定性が得られ、同時に表面粗さも維持できる局所研磨加工を実現することができ、修正研磨加工として好適に用いることができる。   According to the present invention described above, the wear of the rotating tool is prevented in the local pressing and polishing, the surface properties of the tool do not affect the processing, and the pretreatment and maintenance of the tool surface can be omitted. . In addition, it is possible to realize local polishing that can achieve excellent processing stability while maintaining surface roughness while suppressing costs with such a simple structure, and can be suitably used as modified polishing.

また、回転ツールを弾性素材より構成した場合は、回転ツールとワークとの間の前記砥粒の転動作用により研磨され、表面粗さをより良好なものにすることが可能になるとともに、回転ツールの弾性変形で押し付け力が安定化し、加工安定性をより向上させることが可能となる。   Further, when the rotating tool is made of an elastic material, the rotating tool is polished by the rolling operation of the abrasive grains between the rotating tool and the work, so that the surface roughness can be further improved and the rotating tool can be rotated. The pressing force is stabilized by the elastic deformation of the tool, and the processing stability can be further improved.

また、砥粒としての有機粒子を分散させる液体が、純水または水を主成分とする液体である場合は、有機粒子の分散性が向上し、加工安定性がより向上するとともに、ワークがシリコンやガラス等の場合には、水による軟質水和膜が表面にできることにより、さらに除去加工が促進され表面粗さも良好なものとすることができる。   Further, when the liquid for dispersing the organic particles as abrasive grains is pure water or a liquid containing water as a main component, the dispersibility of the organic particles is improved, the processing stability is further improved, and the work is made of silicon. In the case of glass or glass, since a soft hydrated film is formed on the surface by water, the removal process is further promoted and the surface roughness can be improved.

また、回転ツールを、回転体と、先端に該回転体が設けられ、該回転体を回転させる軸方向に長い軸体と、基端側で該軸体を支持しつつ軸中心に回転させる回転支持部とから構成し、前記回転体の外周面をワーク側に押し当てることで前記軸体が湾曲し、該湾曲した軸体の弾性復元力により、前記回転体がワーク側に押し付け付勢されるものとした場合は、回転ツールの押し付け力が安定化し、加工安定性をより向上させることが可能となる。   Also, a rotating tool, a rotating body, a rotating body provided with the rotating body at the distal end, a shaft body that is long in the axial direction for rotating the rotating body, and a rotation for rotating the rotating body about the shaft while supporting the shaft body at the base end side. The shaft is bent by pressing the outer peripheral surface of the rotating body against the work, and the elastic body is pressed against the work by the elastic restoring force of the curved shaft. In this case, the pressing force of the rotating tool is stabilized, and the processing stability can be further improved.

また、回転ツールのワークに対面する回転外周面における研磨作用領域の外径を5.0mm以下に設定した場合は、より高分解能な局所研磨加工が可能となる。   Further, when the outer diameter of the polishing action area on the rotating outer peripheral surface facing the work of the rotating tool is set to 5.0 mm or less, local polishing with higher resolution can be performed.

加工原理を説明するための説明図。FIG. 3 is an explanatory diagram for explaining a processing principle. 本発明の代表的実施形態に係る局所研磨加工装置を示す正面図。FIG. 1 is a front view showing a local polishing apparatus according to a representative embodiment of the present invention. 同じく局所研磨加工装置を斜め下方から見た斜視図。FIG. 2 is a perspective view of the local polishing apparatus as viewed obliquely from below. 同じく局所研磨加工装置の要部を示す説明図。Explanatory drawing which shows the principal part of the local polishing apparatus similarly. 他の実施形態に係る局所研磨加工装置を示す正面図。FIG. 6 is a front view showing a local polishing apparatus according to another embodiment. 同じく局所研磨加工装置の要部を示す説明図。Explanatory drawing which shows the principal part of the local polishing apparatus similarly. 回転ツールの要部を示す説明図。Explanatory drawing which shows the principal part of a rotating tool. 実施例1による静止加工痕の表面観察画像。4 is a surface observation image of a static processing trace according to the first embodiment. 実施例8による静止加工痕の表面観察画像。16 is a surface observation image of a still machining trace according to the eighth embodiment. 実施例9による静止加工痕の表面観察画像。19 is a surface observation image of a still machining trace according to the ninth embodiment. 比較例1による静止加工痕の表面観察画像。9 is a surface observation image of a static processing trace according to Comparative Example 1. 実施例1による加工量と加工時間の関係を示すグラフ。5 is a graph illustrating a relationship between a processing amount and a processing time according to the first embodiment. 比較例1による加工量と加工時間の関係を示すグラフ。7 is a graph showing a relationship between a processing amount and a processing time according to Comparative Example 1. ラスタースキャン加工試験の方法を示す説明図。FIG. 4 is an explanatory view showing a method of a raster scan processing test. 比較例1によるラスタースキャン加工結果を示す表面観察画像。9 is a surface observation image showing a raster scan processing result according to Comparative Example 1. ラスタースキャン加工前の表面粗さを示す表面観察画像。Surface observation image showing surface roughness before raster scan processing. 実施例1によるラスタースキャン加工後の表面粗さを示す表面観察画像。4 is a surface observation image showing the surface roughness after raster scan processing according to Example 1. 実施例2によるラスタースキャン加工後の表面粗さを示す表面観察画像。9 is a surface observation image showing the surface roughness after raster scan processing according to Example 2. 実施例8によるラスタースキャン加工後の表面粗さを示す表面観察画像。18 is a surface observation image showing the surface roughness after raster scan processing according to Example 8. 比較例1によるラスタースキャン加工後の表面粗さを示す表面観察画像。9 is a surface observation image showing the surface roughness after raster scan processing according to Comparative Example 1. 比較例2によるラスタースキャン加工後の表面粗さを示す表面観察画像。9 is a surface observation image showing the surface roughness after raster scan processing according to Comparative Example 2. 実施例1の合成石英ガラス基板に対する加工量と押し付け力の関係を示すグラフ。4 is a graph showing the relationship between the processing amount and the pressing force on the synthetic quartz glass substrate of Example 1. 実施例1のシリコン基板に対する加工量と押し付け力の関係を示すグラフ。4 is a graph showing the relationship between the amount of processing and the pressing force on the silicon substrate of Example 1. 実施例1によるシリコン基板へのラスタースキャン加工結果を示す表面観察画像。4 is a surface observation image showing a result of raster scan processing performed on a silicon substrate according to the first embodiment. 加工量と砥粒の粒径との関係を示すグラフ。5 is a graph showing the relationship between the amount of processing and the particle size of abrasive grains. 加工量と砥粒濃度との関係を示すグラフ。5 is a graph showing a relationship between a processing amount and an abrasive concentration. 修正研磨加工試験1による理想の加工結果(理想加工量計算結果)を示す図と実際の加工結果を示す表面観察画像。The figure which shows the ideal processing result (ideal processing amount calculation result) by the modified polishing test 1, and the surface observation image which shows the actual processing result. 修正研磨加工試験1による理想の加工結果と実際の加工結果の水平方向中心断面プロファイル(加工量)の対比図。FIG. 5 is a comparison diagram of a horizontal center cross-sectional profile (amount of processing) between an ideal processing result and an actual processing result by the modified polishing test 1; 修正研磨加工試験1前後の表面粗さを示す表面観察画像。Surface observation images showing the surface roughness before and after the modified polishing test 1. 修正研磨加工試験2による理想の加工結果(理想加工量計算結果)を示す図と実際の加工結果を示す表面観察画像。The figure which shows the ideal processing result (ideal processing amount calculation result) by the modified polishing test 2, and the surface observation image which shows the actual processing result. 修正研磨加工試験2前後の表面粗さを示す表面観察画像。Surface observation images showing the surface roughness before and after the modified polishing test 2.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明の代表的実施形態に係る局所研磨加工装置1は、図2〜図4に示すように、ワーク9に対して局所的に押し付けられるワーク研磨用の回転ツール11と、該回転ツール11とワーク9との間に、平均粒径5μm以上の有機粒子からなる砥粒が液体中に分散した研磨加工液8を供給する加工液供給手段12とを備えている。   As shown in FIGS. 2 to 4, a local polishing apparatus 1 according to a representative embodiment of the present invention includes a rotating tool 11 for polishing a workpiece that is locally pressed against a workpiece 9, A work fluid supply means 12 is provided between the work 9 and the work fluid to supply a polishing work fluid 8 in which abrasive grains made of organic particles having an average particle size of 5 μm or more are dispersed in a liquid.

加工原理は、図1(b)に示すように、回転ツール11とワーク9の間に供給される研磨加工液8中の砥粒81が当該間に挟まれてワーク9表面上を転がり、ワーク9表面が研磨加工される。したがって、回転ツール11のワーク9に対面する外周面の研磨作用領域は表面性状を整える必要がなく、本例ではより砥粒81を補足しやすい弾性素材よりなる弾性体を用いて構成されている。   As shown in FIG. 1 (b), the processing principle is such that the abrasive grains 81 in the polishing liquid 8 supplied between the rotating tool 11 and the work 9 are rolled on the surface of the work 9 while being sandwiched between the polishing tools. Nine surfaces are polished. Therefore, the polishing action area of the outer peripheral surface of the rotary tool 11 facing the work 9 does not need to have a uniform surface property, and in this example, is configured using an elastic body made of an elastic material that can more easily capture the abrasive grains 81. .

図2〜図4に示す装置は、板状のワーク9を研磨するタイプの装置として構成されており、被加工面90を下方に向けたワーク9を上方位置においてXYZ方向に移動可能に保持するワーク保持機構13(X軸ステージ41、Y軸ステージ42、Z軸ステージ43)が設けられている。また、このワーク保持機構13に保持されるワーク9のほぼ真下の位置には、加工液供給手段12として、回転ツール11を差し入れる隙間s1をあけて研磨加工液8を真上に噴射する噴出ノズル30を備えた加工液噴射ユニット14が設けられている。   The apparatus shown in FIGS. 2 to 4 is configured as an apparatus of a type for polishing a plate-shaped work 9, and holds the work 9 with the work surface 90 facing downward movably in the XYZ directions at an upper position. The work holding mechanism 13 (X-axis stage 41, Y-axis stage 42, Z-axis stage 43) is provided. At a position almost directly below the work 9 held by the work holding mechanism 13, as the working liquid supply means 12, a jet is provided for injecting the polishing working liquid 8 directly above with a gap s 1 into which the rotary tool 11 is inserted. The machining liquid ejection unit 14 having the nozzle 30 is provided.

本例では、板状のワーク9の被加工面90が平面であるが、レンズのような曲面等であってもワーク保持機構13でワーク9を三次元的に移動させることで対応できる。ワーク保持機構13にワーク9を保持したまま回動させる回動機構(回転ステージ;θステージ)を付与すれば、ワークの位置に加えて姿勢を変えることができ、より加工の自由度を高めることができる。   In the present example, the work surface 90 of the plate-shaped work 9 is a plane, but even if it is a curved surface such as a lens, the work holding mechanism 13 can move the work 9 three-dimensionally. If the work holding mechanism 13 is provided with a rotation mechanism (rotary stage; θ stage) for rotating the work 9 while holding it, the posture can be changed in addition to the position of the work, and the degree of freedom of processing can be further increased. Can be.

本例では、さらに回転ツール11を傾斜状態で支持する支持台23が、回転支持部22を角度調整可能に支持する機構を備えており、被加工面90の形状に応じてよりフレキシブルに対応でき、加工の自由度が高められている。これらワーク保持機構13や支持台23の動作を図示しないコンピュータにより自動制御することにより、被加工面を自動で走査加工する修正研磨加工装置として用いることができる。   In this example, the support table 23 that supports the rotary tool 11 in an inclined state further includes a mechanism that supports the rotary support section 22 so that the angle can be adjusted, and can more flexibly correspond to the shape of the work surface 90. , The degree of freedom of processing is increased. By automatically controlling the operations of the work holding mechanism 13 and the support table 23 by a computer (not shown), the apparatus can be used as a modified polishing apparatus that automatically scans a surface to be processed.

加工液供給手段12としての加工液噴射ユニット14は、前記噴出ノズル30と、該ノズルから噴射してワーク被加工面90に当って落下する研磨加工液8を受け入れる、噴出ノズル30の周りの回収槽31と、回収槽31に受け入れて回収された研磨加工液8を再度、噴出ノズル30に供給して上方に噴出させるポンプ35とより構成され、研磨加工中、研磨加工液8はこれら噴出ノズル30、ワーク被加工面90、回収槽31およびポンプ35の間を循環する。   The machining liquid ejecting unit 14 as the machining fluid supply unit 12 receives the ejection nozzle 30 and the polishing machining liquid 8 ejected from the nozzle and coming into contact with the workpiece surface 90 and collecting around the ejection nozzle 30. The polishing tank 8 comprises a tank 31 and a pump 35 for supplying the polishing liquid 8 received and collected in the collecting tank 31 again to the jet nozzle 30 and jetting the polishing liquid upward. The circulation is performed between 30, the work surface 90, the recovery tank 31, and the pump 35.

このように加工液噴射ユニット14によってワーク被加工面90に対して研磨加工液8を噴射供給することで、被加工面90の局所的な研磨加工領域に対して安定かつ効率よく研磨加工液8を供給することができ、少量の研磨加工液で長時間の安定した研磨加工を実現できる。また、ワークの形状、大きさにかかわらず対応でき、コスト削減にも寄与する。とくに真下から噴水状に噴射することで全方向に均等に研磨加工液8を供給でき、加工レートがより安定するとともに水量もより少なくできる。   In this way, the polishing liquid 8 is jetted and supplied to the work surface 90 by the processing liquid jet unit 14, so that the polishing liquid 8 can be stably and efficiently supplied to a local polishing region of the work surface 90. Can be supplied, and stable polishing can be performed for a long time with a small amount of polishing liquid. In addition, it can be used regardless of the shape and size of the work, which contributes to cost reduction. In particular, by injecting in the form of a fountain from directly below, the polishing liquid 8 can be supplied uniformly in all directions, so that the processing rate is more stable and the amount of water can be reduced.

回転ツール11は、弾性素材より構成されている。具体的には、ゴム等の弾性素材よりなる回転体20と、先端に該回転体20が設けられ、該回転体20を回転させる軸方向に長い軸体21と、基端側で該軸体21を支持しつつ軸中心に回転させる回転支持部22とより構成されている。そして、回転体20の外周面をワーク9側に押し当てることで、軸体21が湾曲し、該湾曲した軸体21の弾性復元力により回転体20がワーク9側に押し付け付勢される。   The rotating tool 11 is made of an elastic material. Specifically, a rotating body 20 made of an elastic material such as rubber, the rotating body 20 is provided at the distal end, a shaft body 21 that is long in the axial direction for rotating the rotating body 20, and the shaft body 21 at the base end side. And a rotation support portion 22 that rotates the shaft 21 while supporting it. When the outer peripheral surface of the rotating body 20 is pressed against the work 9, the shaft 21 is curved, and the rotating body 20 is pressed against the work 9 by the elastic restoring force of the curved shaft 21.

回転体20は、図7に示すように、好ましくはワーク9に対面する外周面20aにおける研磨作用領域201の外径d2(領域内の最大直径)が5.0mm以下になるように構成され、回転体の直径(外周面の最大直径)は従来の回転ツールの直径と比較して小径に設定されている。回転体20の形状は、球状、部分球状、断面円のリング形状(トロイダル形状)その他、種々の形状が採用できる。そして、回転体20とワーク被加工面90との間に介在する砥粒が、回転体20に押さえつけられながら被加工面90上を転動して被加工面90を研磨し、表面粗さをより良好なものにする。   As shown in FIG. 7, the rotating body 20 is preferably configured such that the outer diameter d2 (maximum diameter in the area) of the polishing action area 201 on the outer peripheral surface 20a facing the workpiece 9 is 5.0 mm or less, The diameter of the rotating body (the maximum diameter of the outer peripheral surface) is set smaller than the diameter of the conventional rotating tool. As the shape of the rotating body 20, various shapes such as a spherical shape, a partial spherical shape, a ring shape with a circular cross section (toroidal shape), and the like can be adopted. Then, the abrasive grains interposed between the rotating body 20 and the workpiece processing surface 90 roll on the processing surface 90 while being pressed by the rotating body 20 to polish the processing surface 90, thereby reducing the surface roughness. Make it better.

このように回転体20が弾性素材よりなるので、砥粒81を介して被加工面90を押し付ける押し付け力が安定化するとともに砥粒81をしっかりと保持して被加工面90上を転動させることができ、加工安定性が向上する。具体的な弾性素材としては、フッ素ゴムを用いることが好ましい。フッ素ゴムは摩擦係数が小さく、また、加工液のPH調整を考えた場合、化学的に安定している物質であるというメリットがある。   Since the rotating body 20 is made of an elastic material as described above, the pressing force for pressing the work surface 90 via the abrasive grains 81 is stabilized, and the abrasive grains 81 are firmly held and rolled on the work surface 90. And the processing stability is improved. As a specific elastic material, it is preferable to use fluoro rubber. Fluororubber has the advantage that it has a low coefficient of friction and is a chemically stable substance when the pH of the working fluid is adjusted.

また、上記のように回転体が小径に設定されることで、ワーク被加工面90側に局所的に押さえる力が働き、間に入った砥粒に対し、単位面積あたり砥粒を押さえるエネルギーが大きくなり、加工レートも上昇すると考えられる。また、小さい単位加工形状が得られ、優れた空間分解能も得られる。   Further, since the rotating body is set to have a small diameter as described above, a force for locally pressing the work processing surface 90 side is exerted, and the energy for pressing the abrasive grains per unit area with respect to the intervening abrasive grains is increased. It is thought that the processing rate will increase and the processing rate will also increase. In addition, a small unit processing shape can be obtained, and excellent spatial resolution can be obtained.

軸体21は、回転体20よりも小径の断面を有するステンレス等の金属シャフトを用いることができる。軸方向に長尺で可撓性を有するものであれば、他の素材でも勿論よい。本例では、軸体21の先端部をトロイダル形状の回転体20に嵌め込んで固定し、かつ該軸体21の基端部を回転支持部22に固定することにより回転ツール11が構成されている。回転支持部22は電動モータなどを用いることができる。   As the shaft body 21, a metal shaft such as stainless steel having a cross section smaller in diameter than the rotating body 20 can be used. Of course, other materials may be used as long as they are long and flexible in the axial direction. In this example, the rotating tool 11 is configured by fitting the distal end portion of the shaft body 21 into the toroidal-shaped rotating body 20 and fixing the same, and fixing the base end portion of the shaft body 21 to the rotation supporting section 22. I have. An electric motor or the like can be used for the rotation support section 22.

軸体21は、先端の回転体20が被加工面90側に押し付けられるように、ワーク9とノズル30の間の隙間s1に対して斜め下方の位置から斜めに延設されている。基端部は当該下方の位置に設けられた回転支持部22により回転可能に支持されている。本例では軸体の軸方向(ワークへの押し付けにより若干湾曲する場合、回転体が設けられている先端の位置での軸方向とする)が被加工面90の法線に対してほぼ45度をなす角度に設けられているが、当該角度に限定されるものではない。本例のように斜め下方から軸体21により回転体20を隙間s1に差し入れる構造とすることにより、被加工面が曲面(たとえば自由曲面)のような場合にワークを回転させながら加工することも容易となる。軸体21が被加工面90に平行に配置されると、このようにワークを回転させて加工することが困難になる。   The shaft body 21 extends obliquely from a position obliquely below the gap s1 between the work 9 and the nozzle 30 so that the rotating body 20 at the tip is pressed against the processing surface 90 side. The base end is rotatably supported by a rotation support portion 22 provided at the lower position. In this example, the axial direction of the shaft body (when slightly curved by pressing against the work, the axial direction at the position of the tip where the rotating body is provided) is approximately 45 degrees with respect to the normal line of the processing surface 90. , But is not limited to this angle. By adopting a structure in which the rotating body 20 is inserted into the gap s1 by the shaft 21 from diagonally below as in this example, when the surface to be processed is a curved surface (for example, a free curved surface), the workpiece is rotated and processed. Also becomes easier. If the shaft body 21 is arranged parallel to the processing surface 90, it becomes difficult to rotate and work the workpiece in this manner.

本例のように、可撓性を有する軸体21を用い、湾曲した軸体21の弾性復元力により回転体20をワーク9側に押し付け付勢しながら加工することにより、被加工面90の形状によって回転ツール11とワーク9との間に位置関係が若干ずれても軸体21がその分弾性変形するだけで、押し付け力が大きく変動してしまうことを回避でき、押し付け力をほぼ一定に保つことで安定した加工量が得られる。このことは、ステージ41、42、43(ワーク保持機構13)などに求められる精度を抑えることができる(たとえば、レンズのナノレベルの修正研磨においても10μm程度の精度でよい)ことを意味する。   As in this example, by using the flexible shaft body 21 and processing the rotary body 20 while pressing and pressing the rotating body 20 against the work 9 by the elastic restoring force of the curved shaft body 21, Even if the positional relationship between the rotary tool 11 and the workpiece 9 is slightly shifted depending on the shape, the shaft body 21 is only elastically deformed by that amount, so that the pressing force can be prevented from largely fluctuating, and the pressing force is made substantially constant. By keeping it, a stable processing amount can be obtained. This means that the precision required for the stages 41, 42, 43 (work holding mechanism 13) and the like can be suppressed (for example, the precision of about 10 μm is also required for the correction polishing at the nano level of the lens).

研磨加工液8の液体は、有機粒子の分散性の点で純水または水を主成分とする液体であることが好ましい。有機粒子は、種々のものを採用でき、とくに高分子材料からなるアクリル粒子、ウレタン粒子、スチレン粒子など、密度1g/cmに近いものが好ましい。なかでもウレタン・アクリル(密度は共に1.2g/cm)がより好ましい。有機粒子は、一般的な研磨材である金属酸化物粒子に比べて密度が1g/cmに近く、沈殿せず分散しやすい。異なる素材の有機粒子を混合してもよい。 The liquid of the polishing liquid 8 is preferably pure water or a liquid containing water as a main component in view of the dispersibility of the organic particles. As the organic particles, various types can be employed. In particular, those having a density close to 1 g / cm 3 such as acrylic particles, urethane particles, and styrene particles made of a polymer material are preferable. Among them, urethane / acryl (both having a density of 1.2 g / cm 3 ) is more preferable. Organic particles have a density close to 1 g / cm 3 and are easily dispersed without precipitation, as compared with metal oxide particles which are general abrasives. Organic particles of different materials may be mixed.

また、有機粒子の平均粒径は、5μm以上30μm以下が好ましい。   The average particle size of the organic particles is preferably 5 μm or more and 30 μm or less.

次に、図5及び図6に基づき、ロッドレンズ等の円柱状のワークの外周面や円錐状あるいは円錐台状のワークの外周面、円筒状のワークの内/外周面などの回転体形状のワークの表面(回転面)を被加工面とする場合に好適となる、本発明に係る他の装置構成の実施形態について説明する。   Next, based on FIGS. 5 and 6, the shape of a rotating body such as the outer peripheral surface of a cylindrical work such as a rod lens, the outer peripheral surface of a conical or frustoconical work, and the inner / outer peripheral surface of a cylindrical work will be described. An embodiment of another apparatus configuration according to the present invention, which is suitable when the surface (rotation surface) of the work is the surface to be processed, will be described.

本実施形態の局所研磨加工装置1Aは、上述の代表的実施形態の装置1と同様、ワーク9に対して局所的に押し付けられる回転ツール11と、該回転ツール11とワーク9との間に、平均粒径5μm以上の有機粒子からなる砥粒が液体中に分散した研磨加工液8を供給する加工液供給手段12とを備え、同じ加工原理によりワーク9表面を研磨加工するものである。   The local polishing apparatus 1 </ b> A according to the present embodiment includes a rotating tool 11 locally pressed against a workpiece 9, and a rotating tool 11 and the workpiece 9 between the rotating tool 11 and the workpiece 9, similarly to the apparatus 1 according to the representative embodiment described above. A machining fluid supply means 12 for supplying a polishing fluid 8 in which abrasive grains composed of organic particles having an average particle diameter of 5 μm or more are dispersed in a liquid, and polishes the surface of the work 9 by the same machining principle.

ワーク保持機構13は、図示省略したXYZステージとともに円柱状又は円筒状のワークを軸中心に回動させる機構が設けられている。円柱状又は円筒状のワーク内周面/外周面の加工では、ワークを大きく水平移動する必要が無いため、本実施形態では、加工液供給手段12として、研磨加工液8を収容する上端開口した加工槽32が設けられるとともに、上方から該加工槽32の開口を通じてワーク保持機構13に保持されたワーク9が浸漬され、同じく開口とワークの隙間を通じて斜め上方から回転ツール11が浸漬され、該回転ツール11により液中でワーク外周面の被加工面90が研磨加工される。   The work holding mechanism 13 is provided with a mechanism for rotating a columnar or cylindrical work around an axis together with an XYZ stage (not shown). In the processing of the inner or outer peripheral surface of a cylindrical or cylindrical work, it is not necessary to move the work largely horizontally, so in this embodiment, the working liquid supply means 12 has an upper end opening for storing the polishing liquid 8. While the processing tank 32 is provided, the work 9 held by the work holding mechanism 13 is immersed from above through the opening of the processing tank 32, and the rotary tool 11 is immersed obliquely from above through the gap between the opening and the work. The processing surface 90 of the workpiece outer peripheral surface is polished in the liquid by the tool 11.

加工槽32内で研磨加工液8を撹拌するため、加工槽32はマグネチックスターラ33上に設置され、加工槽32内の底部に設けた撹拌子34で低速回転による撹拌が行われる。   In order to stir the polishing liquid 8 in the processing tank 32, the processing tank 32 is installed on a magnetic stirrer 33, and stirring is performed by a low-speed rotation with a stirrer 34 provided at the bottom in the processing tank 32.

その他、回転ツール11の構成や、研磨加工液8、それに含まれる有機粒子81の構成、その他の構成については、上述の代表的実施形態と同様であるため、同一構造には同一符号を付し、その説明を省略する。   In addition, since the configuration of the rotary tool 11, the configuration of the polishing liquid 8, the configuration of the organic particles 81 contained therein, and other configurations are the same as those of the above-described representative embodiment, the same reference numerals are given to the same structures. , The description of which is omitted.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   As described above, the embodiments of the present invention have been described, but the present invention is not limited to these embodiments at all, and it goes without saying that the present invention can be implemented in various forms without departing from the gist of the present invention.

以下、実施例1〜9、比較例1〜4の各研磨加工液を用いて、各種試験を行った結果について説明する。   Hereinafter, the results of various tests performed using the polishing solutions of Examples 1 to 9 and Comparative Examples 1 to 4 will be described.

(研磨加工液)
次の表1のとおり、実施例1〜9、比較例1〜4の13種類の研磨加工液を準備した。
(Polishing liquid)
As shown in the following Table 1, 13 types of polishing liquids of Examples 1 to 9 and Comparative Examples 1 to 4 were prepared.

(静止加工痕試験1)
実施例1、8、9、比較例1の4種の研磨加工液を用い、上述の図2〜4、図7に示した代表的実施形態に係る局所研磨加工装置を用いて、下記表2の加工条件(回転ツールの回転数、押し付け力、加工時間)のもと、ツールの走査を停止した静止加工痕試験を行った。なお、局所研磨加工装置の詳細は次のとおりである。
・回転ツールの回転体:フッ素ゴムトロイダル形状 直径(d1)3mm
・回転ツールの軸体:φ1mmのステンレス製シャフト
・上記回転ツールを、軸体の軸方向(ワークへの押し付けにより若干湾曲するが、回転体が設けられている先端の位置での軸方向とする)が被加工面の法線に対して55度となるように設置し、研磨作用領域の外径(d2)を2.2mmとした。
・回転ツールの回転支持部のモータ:50〜4000rpmの範囲で回転数制御が可能なモータ
(Static processing trace test 1)
Using the four types of polishing liquids of Examples 1, 8, 9 and Comparative Example 1, using the local polishing apparatus according to the representative embodiment shown in FIGS. 2 to 4 and FIG. Under the processing conditions (the number of rotations of the rotary tool, the pressing force, and the processing time), a static processing mark test in which scanning of the tool was stopped was performed. The details of the local polishing apparatus are as follows.
・ Rotating body of rotating tool: Fluoro rubber toroidal shape Diameter (d1) 3mm
・ Rotating tool shaft: φ1 mm stainless steel shaft ・ The rotating tool is in the axial direction of the shaft (slightly curved by pressing against the work, but at the position of the tip where the rotating body is provided) ) Is set at 55 degrees with respect to the normal line of the surface to be processed, and the outer diameter (d2) of the polishing action area is 2.2 mm.
・ Motor of rotation support part of rotary tool: Motor whose rotation speed can be controlled in the range of 50 to 4000 rpm

また、ワークは合成石英ガラス基板、ワーク被加工面は平面とし、回転ツールの押し付けは、回転体が被加工面に接触してからステージを所定量下げることで行った。   The work was a synthetic quartz glass substrate, the work surface was a flat surface, and the rotating tool was pressed by lowering the stage by a predetermined amount after the rotating body came into contact with the work surface.

図8A〜8C、および図9の走査型白色干渉計による計測結果から分かるように、研磨加工液の液体を純水/フロリナートとし、有機砥粒をアクリル/ウレタンとした各実施例の場合(図8A、図8B、図8C)についても、一般的な研磨砥粒を用いた比較例1の研磨加工液の場合(図9)と同様、局所的に加工されている。一般的な研磨加工液の液体である水以外に、不活性なパーフルオロ化合物(フロリナート)も有効であることを確認した。   As can be seen from the measurement results by the scanning white interferometer of FIGS. 8A to 8C and FIG. 9, in each of the examples in which the liquid of the polishing processing liquid was pure water / fluorinate and the organic abrasive grains were acrylic / urethane (FIG. 8A, 8B, and 8C), the polishing is locally performed as in the case of the polishing liquid of Comparative Example 1 using general abrasive grains (FIG. 9). In addition to water, which is a general polishing liquid, it was confirmed that an inert perfluoro compound (fluorinate) was also effective.

(静止加工痕試験2)
実施例1、比較例1の2種の研磨加工液を用い、上記静止加工痕試験1と同じ局所研磨加工装置、同種のワーク(合成石英ガラス基板、ワーク被加工面が平面)を用いて、下記表3の加工条件(回転ツールの回転数、押し付け力)のもと、加工時間による静止加工痕の加工量の変化を確認する試験を行った。
(Static processing trace test 2)
Using the two types of polishing liquids of Example 1 and Comparative Example 1, using the same local polishing apparatus and the same type of work (synthetic quartz glass substrate, work surface being flat) as in the static processing mark test 1, Under the processing conditions (rotational speed of the rotary tool, pressing force) shown in Table 3 below, a test was performed to confirm the change in the processing amount of the static processing trace due to the processing time.

図10A、図10Bのグラフより、実施例1、比較例1ともに加工量が加工時間に比例していることが分かる。修正研磨加工に必要な静止加工痕の加工量が時間比例していることが確認された。   From the graphs of FIGS. 10A and 10B, it can be seen that the processing amount is proportional to the processing time in both Example 1 and Comparative Example 1. It was confirmed that the processing amount of the static processing trace required for the modified polishing was proportional to time.

(ラスタースキャン加工試験1)
実施例1、2、8、比較例1、2の5種の研磨加工液を用い、上記静止加工痕試験1と同じ局所研磨加工装置、同種のワーク(合成石英ガラス基板、ワーク被加工面が平面)を用いて、下記表4の加工条件(回転ツールの回転数、押し付け力、加工時間)のもと、図11に示すように2.5mm角の領域を10μmのステップでラスタースキャン加工を行った結果、いずれの実施例、比較例も、図12(比較例1)と同等のラスタースキャン除去加工が確認された。また、各例の表面粗さ評価は、走査型白色干渉計による0.187mm× 0.14mmのRMS値とした。
(Raster scan processing test 1)
Using the five types of polishing liquids of Examples 1, 2, 8 and Comparative Examples 1 and 2, the same local polishing apparatus and the same type of work (synthetic quartz glass substrate, work surface Under the processing conditions (the number of rotations of the rotary tool, the pressing force, and the processing time) shown in Table 4 below, the area of 2.5 mm square is raster-scanned in 10 μm steps as shown in FIG. As a result, in each of the examples and the comparative examples, the same raster scan removal processing as that in FIG. 12 (Comparative Example 1) was confirmed. In each example, the surface roughness was evaluated using an RMS value of 0.187 mm × 0.14 mm by a scanning white interferometer.

比較例1(シリカ粒子)、比較例2(平均粒径が5μmよりも小さいアクリル粒子)の場合、図15A, 図15Bを加工前の図13と比較しても分かるように、加工後は表面粗さがかなり悪化している。これに対し、実施例1、2、8(平均粒径10μm以上のアクリル粒子/ウレタン粒子)の場合、同じく図14A、図14B、図14Cを加工前の図13と比較しても分かるように、加工後も比較的良好な表面粗さを維持している。   In the case of Comparative Example 1 (silica particles) and Comparative Example 2 (acrylic particles having an average particle diameter smaller than 5 μm), as can be seen by comparing FIGS. 15A and 15B with FIG. The roughness has deteriorated considerably. On the other hand, in the case of Examples 1, 2, and 8 (acrylic particles / urethane particles having an average particle diameter of 10 μm or more), FIG. 14A, FIG. 14B, and FIG. Even after processing, relatively good surface roughness is maintained.

(静止加工痕試験3)
実施例1の研磨加工液、上記静止加工痕試験1と同じ局所研磨加工装置を用い、2種のワーク(合成石英ガラス基板、シリコン基板 いずれもワーク被加工面が平面)に対し、押し付け力を変更して加工を行った結果を、図16A、図16Bに示す。
(Static processing trace test 3)
Using the polishing liquid of Example 1 and the same local polishing apparatus as in the above-mentioned static processing mark test 1, pressing force was applied to two types of works (both synthetic quartz glass substrates and silicon substrates have flat work surfaces). FIGS. 16A and 16B show the results of the modified processing.

図16A、図16Bの各グラフから分かるように、加工量は押し付け力に比例している。   As can be seen from the graphs of FIGS. 16A and 16B, the processing amount is proportional to the pressing force.

(ラスタースキャン加工試験2)
実施例1の研磨加工液、上記静止加工痕試験1と同じ局所研磨加工装置を用い、ワーク(シリコン基板 ワーク被加工面が平面)に対し、回転ツールの回転数2000rpm、回転ツールの押し付け力0.006N、加工時間29分の加工条件のもと、1.0mm角の領域を10μmのステップでラスタースキャン加工を行った。走査型白色干渉計による計測結果を図17に示す。
(Raster scan processing test 2)
Using the polishing liquid of Example 1 and the same local polishing apparatus as in the above-mentioned static processing mark test 1, the rotation speed of the rotary tool was 2,000 rpm and the pressing force of the rotary tool was 0 against the work (the silicon substrate work surface was flat). Under the processing conditions of 0.006 N and processing time of 29 minutes, a raster scan process was performed on a 1.0 mm square area in steps of 10 μm. FIG. 17 shows the measurement results obtained by the scanning white light interferometer.

図17の結果より、ガラス基板に対する加工(図12)と同様に、シリコン基板にも加工可能であることが実証された。   The results in FIG. 17 demonstrate that processing can be performed on a silicon substrate as well as processing on a glass substrate (FIG. 12).

(静止加工痕試験4)
平均粒径のみ異なる実施例3〜5、比較例3、および砥粒を全く含まない純水のみの比較例4の計5種の研磨加工液、上記静止加工痕試験1と同じ局所研磨加工装置を用い、ワーク(合成石英ガラス基板、被加工面が平面)に対し、同一の加工条件(回転ツールの回転数1600rpm、回転ツールの押し付け力0.012N、加工時間1分)で加工を行った結果を、図18に示す。
(Static processing trace test 4)
A total of 5 types of polishing liquids of Examples 3 to 5, Comparative Example 3, and Comparative Example 4 containing only pure water containing no abrasive grains, and the same local polishing apparatus as in the above-mentioned static processing mark test 1 , A workpiece (synthetic quartz glass substrate, surface to be processed) was processed under the same processing conditions (rotational speed of rotary tool: 1600 rpm, pressing force of rotary tool: 0.012 N, processing time: 1 minute). The results are shown in FIG.

図18のグラフに示す通り、15μm粒径までは研磨量が増加したが、30μm粒径では加工量が低下した。   As shown in the graph of FIG. 18, the polishing amount increased up to the particle size of 15 μm, but the processing amount decreased at the particle size of 30 μm.

(静止加工痕試験5)
砥粒濃度のみ異なる実施例3、6、7、比較例4の4種の研磨加工液、上記静止加工痕試験1と同じ局所研磨加工装置を用い、ワーク(合成石英ガラス基板、被加工面が平面)に対し、同一の加工条件(回転ツールの回転数1600rpm、回転ツールの押し付け力0.012N、加工時間1分)で加工を行った結果を、図19に示す。
(Static processing trace test 5)
Using the four types of polishing liquids of Examples 3, 6, 7 and Comparative Example 4 differing only in the abrasive grain concentration, and the same local polishing apparatus as in the above-mentioned static processing mark test 1, the work (synthetic quartz glass substrate, surface to be processed) FIG. 19 shows the result of processing the same processing condition (plane) under the same processing conditions (the number of rotations of the rotary tool is 1600 rpm, the pressing force of the rotary tool is 0.012 N, and the processing time is 1 minute).

図19のグラフに示す通り、砥粒濃度が上がると加工量も増加する。さらに濃度を上げていくと、加工量の増加は緩やかになることが分かった。   As shown in the graph of FIG. 19, as the abrasive grain concentration increases, the processing amount also increases. It was found that as the concentration was further increased, the amount of processing increased gradually.

(修正研磨加工試験1)
実施例1の研磨加工液、上記静止加工痕試験1と同じ局所研磨加工装置を用い、ワーク(合成石英ガラス基板、被加工面が平面)に対し、0.1mm周期の形状誤差を修正研磨可能であるか試験した。
0.1mm幅の任意の目標形状を作成し、実施例1の静止加工痕試験1より得られた静止加工痕をもとに算出される単位加工形状とデコンボリューション計算することで滞留時間分布を計算した。合成石英ガラス平面基板上で滞留時間分布に沿った走査加工を実施し、走査型白色干渉計により計測した。結果、極めて理想と近い形状を作製することが出来た(図20、図21)。
また、図22に示すように、表面粗さ領域もほとんど変化がなく加工前の状態を維持している。表面粗さ評価は0.187mm× 0.14mmのRMS値である。
(Modified polishing test 1)
By using the polishing liquid of Example 1 and the same local polishing apparatus as in the above-mentioned static processing mark test 1, it is possible to correct and polish a shape error of a 0.1 mm cycle with respect to a work (a synthetic quartz glass substrate, a surface to be processed is flat). Was tested.
An arbitrary target shape having a width of 0.1 mm is created, and the dwell time distribution is calculated by performing a deconvolution calculation with a unit machining shape calculated based on the static machining trace obtained from the static machining trace test 1 of Example 1. Calculated. Scanning along the residence time distribution was performed on a synthetic quartz glass flat substrate, and measured by a scanning white light interferometer. As a result, a shape very close to the ideal was produced (FIGS. 20 and 21).
Further, as shown in FIG. 22, the surface roughness region hardly changes, and the state before processing is maintained. The surface roughness evaluation is an RMS value of 0.187 mm × 0.14 mm.

(修正研磨加工試験2)
実施例1の研磨加工液、上述の図5及び図6に示した実施形態に係る円柱又は円筒加工用の局所研磨加工装置を用いて、ワーク(φ10mm合成石英ガラス製の円柱状レンズ 被加工面が外周面)に0.15mm周期の形状誤差を修正研磨可能であるか試験した。
上記修正研磨加工試験1と同様、0.15mm幅の任意の目標形状を作成し、同じく上記実施例1の静止加工痕試験1より得られる単位加工形状とデコンボリューション計算することで滞留時間分布を計算した。被加工面上で滞留時間分布に沿った走査加工を実施し、走査型白色干渉計により計測した。結果、極めて理想と近い形状を作製することが出来た(図23)。また、図24に示すように、表面粗さ領域もほとんど変化していない結果が得られた。表面粗さ評価は0.187mm× 0.14mmのRMS値である。
(Modified polishing test 2)
Using the polishing liquid of Example 1 and the local polishing apparatus for cylindrical or cylindrical processing according to the embodiment shown in FIGS. 5 and 6 described above, a work (a cylindrical lens made of synthetic quartz glass having a diameter of 10 mm) Was tested to see if it was possible to correct and correct a shape error of 0.15 mm period on the outer peripheral surface).
Similarly to the above-mentioned modified polishing test 1, an arbitrary target shape having a width of 0.15 mm is created, and similarly, the residence time distribution is calculated by deconvolution calculation with the unit processed shape obtained from the static processing trace test 1 of Example 1 above. Calculated. Scanning processing was performed on the surface to be processed along the residence time distribution, and measurement was performed using a scanning white light interferometer. As a result, a shape very close to the ideal was produced (FIG. 23). Further, as shown in FIG. 24, a result was obtained in which the surface roughness region was hardly changed. The surface roughness evaluation is an RMS value of 0.187 mm × 0.14 mm.

いずれの修正研磨加工試験も、理想の目標形状の空間分解能を得ることができ、表面粗さ領域も維持できる結果となった。以上の結果から、目的としていた0.1mm周期形状の修正研磨加工を達成した。回転ツールと比較的大径の有機粒子を組み合わせた本手法は、高い修正空間分解能と高い安定性を有した修正研磨加工手法と言える。とくに高精度な光学素子開発において、十分に有用な技術であると考える。   In each of the modified polishing tests, it was possible to obtain a spatial resolution of an ideal target shape and to maintain a surface roughness region. From the above results, the intended correction polishing of the 0.1 mm periodic shape was achieved. This method, which combines a rotating tool and relatively large organic particles, can be said to be a modified polishing method having a high modified spatial resolution and high stability. It is considered to be a technique that is sufficiently useful especially in the development of highly accurate optical elements.

s1 隙間
d1 直径
d2 外径
1 局所研磨加工装置
8 研磨加工液
9 ワーク
11 回転ツール
12 加工液供給手段
13 ワーク保持機構
14 加工液噴射ユニット
20 回転体
20a 外周面
201 研磨作用領域
21 軸体
22 回転支持部
23 支持台
30 噴出ノズル
31 回収槽
32 加工槽
33 マグネチックスターラ
34 撹拌子
35 ポンプ
41 X軸ステージ
42 Y軸ステージ
43 Z軸ステージ
81 砥粒
90 被加工面
s1 gap d1 diameter d2 outer diameter 1 local polishing apparatus 8 polishing liquid 9 work 11 rotating tool 12 processing liquid supply means 13 work holding mechanism 14 processing liquid ejecting unit 20 rotator 20a outer peripheral surface 201 polishing action area 21 shaft body 22 rotation Supporting part 23 Supporting stand 30 Jet nozzle 31 Recovery tank 32 Processing tank 33 Magnetic stirrer 34 Stirrer 35 Pump 41 X-axis stage 42 Y-axis stage 43 Z-axis stage 81 Abrasive 90 Work surface

Claims (13)

ワークに対して局所的に押し付けられるワーク研磨用の回転ツールと前記ワークとの間に、平均粒径5μm以上の有機粒子からなる砥粒を液体中に分散させた研磨加工液を供給しながら、押し付け研磨加工を行う、局所研磨加工方法。   While supplying a polishing liquid in which abrasive grains composed of organic particles having an average particle diameter of 5 μm or more are dispersed in a liquid, between the rotary tool for work polishing that is locally pressed against the work and the work, A local polishing method in which pressing polishing is performed. 前記回転ツールを弾性素材より構成してなる、請求項1記載の局所研磨加工方法。   The local polishing method according to claim 1, wherein the rotating tool is made of an elastic material. 前記液体が、純水または水を主成分とする液体である、請求項1又は2記載の局所研磨加工方法。   The local polishing method according to claim 1, wherein the liquid is pure water or a liquid containing water as a main component. 前記回転ツールを、
回転体と、
先端に該回転体が設けられ、該回転体を回転させる軸方向に長い軸体と、
基端側で該軸体を支持しつつ軸中心に回転させる回転支持部とより構成し、
前記回転体の外周面をワーク側に押し当てることで前記軸体が湾曲し、該湾曲した軸体の弾性復元力により、前記回転体がワーク側に押し付け付勢される、
請求項1〜3の何れか1項に記載の局所研磨加工方法。
The rotation tool,
A rotating body,
The rotating body is provided at the tip, an axially long shaft body for rotating the rotating body,
A rotation support portion configured to rotate around the shaft while supporting the shaft at the base end side,
The shaft is curved by pressing the outer peripheral surface of the rotating body against the work, and the rotating body is pressed against the work by the elastic restoring force of the curved shaft,
The local polishing method according to claim 1.
回転ツールのワークに対面する外周面における研磨作用領域の外径を5.0mm以下に設定してなる請求項1〜4の何れか1項に記載の局所研磨加工方法。   The local polishing method according to any one of claims 1 to 4, wherein an outer diameter of a polishing action area on an outer peripheral surface of the rotary tool facing the work is set to 5.0 mm or less. 前記有機粒子を、アクリル粒子またはウレタン粒子とした、請求項1〜5の何れか1項に記載の局所研磨加工方法。   The local polishing method according to claim 1, wherein the organic particles are acrylic particles or urethane particles. ワークに対して局所的に押し付けられるワーク研磨用の回転ツールと、
該回転ツールとワークとの間に、平均粒径5μm以上の有機粒子からなる砥粒が液体中に分散した研磨加工液を供給する加工液供給手段とを備える、
局所研磨加工装置。
A rotary tool for polishing the workpiece that is pressed locally against the workpiece,
A machining fluid supply unit for supplying a polishing fluid in which abrasive grains made of organic particles having an average particle diameter of 5 μm or more are dispersed in the liquid, between the rotary tool and the work;
Local polishing machine.
前記回転ツールが、弾性素材より構成されている、請求項7記載の局所研磨加工装置。   The local polishing apparatus according to claim 7, wherein the rotating tool is made of an elastic material. 前記液体が、純水または水を主成分とする液体である、請求項7又は8記載の局所研磨加工装置。   9. The local polishing apparatus according to claim 7, wherein the liquid is pure water or a liquid containing water as a main component. 前記回転ツールが、
回転体と、
先端に該回転体が設けられ、該回転体を回転させる軸方向に長い軸体と、
基端側で該軸体を支持しつつ軸中心に回転させる回転支持部とより構成され、
前記回転体の外周面をワーク側に押し当てることで前記軸体が湾曲し、該湾曲した軸体の弾性復元力により、前記回転体がワーク側に押し付け付勢される、
請求項7〜9の何れか1項に記載の局所研磨加工装置。
The rotating tool is
A rotating body,
The rotating body is provided at the tip, an axially long shaft body for rotating the rotating body,
A rotation support portion configured to rotate around the shaft while supporting the shaft at the base end side,
The shaft is curved by pressing the outer peripheral surface of the rotating body against the work, and the rotating body is pressed against the work by the elastic restoring force of the curved shaft,
The local polishing apparatus according to claim 7.
回転ツールのワークに対面する外周面における研磨作用領域の外径が5.0mm以下である、請求項7〜10の何れか1項に記載の局所研磨加工装置。   The local polishing apparatus according to any one of claims 7 to 10, wherein an outer diameter of a polishing action area on an outer peripheral surface of the rotating tool facing the work is 5.0 mm or less. 前記有機粒子が、アクリル粒子又はウレタン粒子である、請求項7〜11の何れか1項に記載の局所研磨加工装置。   The local polishing apparatus according to any one of claims 7 to 11, wherein the organic particles are acrylic particles or urethane particles. 請求項7〜12の何れか1項に記載の局所研磨加工装置を用いた修正研磨加工装置。
A modified polishing apparatus using the local polishing apparatus according to any one of claims 7 to 12.
JP2018150748A 2018-08-09 2018-08-09 Local polishing method, local polishing apparatus, and corrected polishing apparatus using the local polishing apparatus Active JP6446590B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018150748A JP6446590B1 (en) 2018-08-09 2018-08-09 Local polishing method, local polishing apparatus, and corrected polishing apparatus using the local polishing apparatus
DE112019003993.8T DE112019003993T5 (en) 2018-08-09 2019-08-07 Local polishing method, local polishing device, and correction polishing device using the local polishing device
US17/264,511 US20210331283A1 (en) 2018-08-09 2019-08-07 Local polishing method, local polishing device, and corrective polishing apparatus using the local polishing device
PCT/JP2019/031137 WO2020032106A1 (en) 2018-08-09 2019-08-07 Local polishing method, local polishing device, and corrective polishing apparatus using said local polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018150748A JP6446590B1 (en) 2018-08-09 2018-08-09 Local polishing method, local polishing apparatus, and corrected polishing apparatus using the local polishing apparatus

Publications (2)

Publication Number Publication Date
JP6446590B1 JP6446590B1 (en) 2018-12-26
JP2020025998A true JP2020025998A (en) 2020-02-20

Family

ID=64899504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018150748A Active JP6446590B1 (en) 2018-08-09 2018-08-09 Local polishing method, local polishing apparatus, and corrected polishing apparatus using the local polishing apparatus

Country Status (4)

Country Link
US (1) US20210331283A1 (en)
JP (1) JP6446590B1 (en)
DE (1) DE112019003993T5 (en)
WO (1) WO2020032106A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133490A (en) * 2020-02-28 2021-09-13 国立大学法人 東京大学 Correction-polishing processing method and correction-polishing processing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464216B2 (en) 2019-10-04 2024-04-09 株式会社ジェイテックコーポレーション Processing method using organic fine particles
JP7487932B2 (en) 2020-07-06 2024-05-21 株式会社ジェイテックコーポレーション Nozzle-type processing head type EEM processing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716870B2 (en) * 1987-07-17 1995-03-01 森 勇蔵 Polishing equipment
US5591068A (en) * 1995-03-13 1997-01-07 Regents Of The University Of California Precision non-contact polishing tool
JP3875907B2 (en) * 2002-04-08 2007-01-31 秋田県 Fine processing method and fine processing equipment
JP2005177944A (en) * 2003-12-22 2005-07-07 Canon Inc Polishing method
JP5648153B2 (en) * 2010-09-13 2015-01-07 熊本県 Abrasive
WO2014208762A1 (en) * 2013-06-29 2014-12-31 Hoya株式会社 Manufacturing method for glass substrate, manufacturing method for magnetic disk, and polishing solution composition for glass substrate
JPWO2015020082A1 (en) * 2013-08-09 2017-03-02 株式会社フジミインコーポレーテッド Polishing tool and member processing method
JP6243920B2 (en) * 2013-09-28 2017-12-06 Hoya株式会社 Glass substrate manufacturing method and magnetic disk manufacturing method
JP6403981B2 (en) * 2013-11-13 2018-10-10 株式会社荏原製作所 Substrate holding device, polishing device, polishing method, and retainer ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133490A (en) * 2020-02-28 2021-09-13 国立大学法人 東京大学 Correction-polishing processing method and correction-polishing processing device

Also Published As

Publication number Publication date
US20210331283A1 (en) 2021-10-28
JP6446590B1 (en) 2018-12-26
WO2020032106A1 (en) 2020-02-13
DE112019003993T5 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2020032106A1 (en) Local polishing method, local polishing device, and corrective polishing apparatus using said local polishing device
TW546724B (en) Method and apparatus for processing a semiconductor wafer using final polishing method
US5795212A (en) Deterministic magnetorheological finishing
JP4519130B2 (en) Pressure transfer grinding of AMLCD substrate edge
KR20180097136A (en) Polishing apparatus and polishing method of substrate
WO1997014532A9 (en) Deterministic magnetorheological finishing
CN1715358A (en) Polishing composition
CN102794697A (en) Method of manufacturing workpiece
CN109983562B (en) Carrier for double-side polishing apparatus, and double-side polishing method
US8460061B2 (en) Method for producing large-size synthetic quartz glass substrate
CN106328560B (en) Machining device and machining method
CN110170892A (en) Grinding attachment
JP6750582B2 (en) Chuck table cleaning device and grinding device including the cleaning device
CN116394113A (en) Shearing thickening polishing device and method for optical lens
JP2019152829A (en) Method for manufacturing optical element
Walker et al. Commissioning of the first Precessions 1.2 m CNC polishing machines for large optics
JP2021133490A (en) Correction-polishing processing method and correction-polishing processing device
JP2019155232A (en) Cleaning method and cleaning device
WO2020201731A1 (en) Shaping apparatus, method tool and composition
JP4469266B2 (en) Workpiece polishing method
JP2006116692A (en) Cmp conditioner
JP7464216B2 (en) Processing method using organic fine particles
CN208275820U (en) Cleaning device
JP4770165B2 (en) High-speed EEM processing method using agglomerated fine particles
JPH0479789B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180809

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181203

R150 Certificate of patent or registration of utility model

Ref document number: 6446590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250